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§1. Discussion and statement of the result

Let T = PSLZ(E) be the modular group acting canonically
on the upper half plane H. Let ¢ be a subgroup of r of
finite index d. The geometric invariants of ¢ include g
(resp. t) the genus (resp. the number of cusps) of ¢\3¢,
and e, (resp. e3) the number of elliptic branch points with
branching index 2 (resp. 3) on ¢\MH . The well-known relation-
ship among these numbers is the Riemann-Hurwitz formula :

(1.1) d =3e, + 4e, + 12g + 6t - 12.
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A remarkable theorem of Millington, cf. [5] asserts that

(1.2) Theorem. Given positive integers d,t and non-negative
integers g, eyieq satisfying (1.1) there exists a subgroup of
the modular group of index d having the invariants g, t,

eyr 4 with their meanings as attached above.

This theorem extends the previous work and answers a series
of questions posed by H. Petersson cf. [4],(6],[7] and the
references there. The method consists in relating the existence

of a subgroup of index 4 to the existence of certain
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permutations in the symmetric group zd, and finding these

permutations explicitly, cf. [5],(8].

Evidently thé problem hay be generalized and formulated in
purely topological terms as follows. Let T be a finitely
generated properly discontinuous group of orientation-preserving
homeomorphisms of IRZ2. Then FQRz is an orientable surface.

Let g (resp. t) be the genus (resp. the number of ends)
of f“Rz, and let m,,m,,...,m  be the branching indices of the

branch points on ﬁQRz. The signature of T is ({g,t; ml,...,mk},

cf. [2],[9]. Since T is finitely generated, g,t,k are
finite. Let ¢ be a subgroup of T of finite index d. Then
¢ has its own signature {h,s; nl,...,nt}. The well-known

relations among the two signatures are

1) each n, divides some mj.

ii) (the Riemann Hurwitz relation)

(1.3)
(1- 2}

2-2h-s- I" (1= 7=) = d{2-2g-t . m;

j=1 p) i

Lok

iii) g

IA

h, t <s <dt

Henceforth asgsume that t > 1 i.e. ﬁQRz is noncompact. Then,

as an abstract group,

sk

r « F _q ® 1 ' m, >0
2g+t-1 * 1 P, 1



where henceforth Pu will denote the free group of rank u,
E‘a will denote a finite cyclic group of order a, and «

will stand for the free product. Then iii) implies
(1.4) iii)*  2g+t-1 < 2h+s-1.

In [3] we studied, TI,¢ with prescribed signatures as above
oh the level of abstract groups, the problem of embedding ¢
in T as a subgroup of finite index, and found that the obvious
necessary conditions 1), ii), 1iii)' are not sufficient. We

found a further diophantine condition, cf. [3], theorem 2, and

showed that i), ii), 1ii)' and the diophantine condition are
necessary and sufficient for finding a subgroup of I of
index 4 which is isomorphic to ¢. This still leaves the
problem of finding effective criteria for the existence of a

subgroup =¢ with prescribed genus and the number of ends

consistent with iii). A solution of this problem would be a
proper generalization of Millington's theorem. This problem
however is very difficult. It is closely related to the famous
Hurwitz problem on realizability of branched coverings. In fact
in case k > 3 and s = dt it is equivalent to the Hurwitz
problem. Recently the Hurwitz problem was studied in [1],

and the results therein have some implication for the problem
at hand. For example, if a) g > O, or b) s < (t-1)d+l

the conditions (1.3) together with the diophantine condition
mentioned above are sufficient for finding a subgroup of



r of index 4@, genus h, the number of ends = 8, and .
Although many other cases may be settled by using the results
from (1], it is usually difficult to find succinct answers

covering a large class of interesting cases.

The purpose of this note is to consider one general case
which includes (1.2) and which is not covered by the results in
[11.

® i, ©©
(1.5) Theorem. Let T'=Z_ # Z and ¢ =F_=» | 2Z '
- i B Fou=l ™

r = 2h + s-1 where h >0 and s > 1 are integers. Then ¢
can be realized as a subgroup of finite index d, genus h and

the number of ends s iff the following conditions hold

(a) each m, divides n, or n,,

L
(8) I S -rL-oral=aite -1y,
u=1 Py 1 02

(v) 1let my = 1, and Myseoo,my the maximal set
of distinct mu's, and each mq, 1 <q <2

occur bq times. Set

® So T has signature {0,1; nl,nz}, and upto a topological
‘equivalence, it can be realized as a properly discontinuous
group of orientation-preserving homeomorphisms of IR2 in

a unique way.

® ® The case ¢ = Pr is covered unter ¢ = Frﬂzm with
1
m, = 1.




ny
i_ if mqlni
5 = 1
iq
o) otherwise , 1 < i <2, 0 <q < ¢
Then the system
x1q+x2q=bq ? q= 1,2---2
2
z 6 X = d' i = 1l2
q=0 iqg Tiq

has a solution for xiq's in nonnegative integers, with

x, =0 if mq{’ni.

iq
An interesting special case is when n,,n, are distinct

primes. Then y) is a consequence of a) and B8), cf.

[3], (5.1). This explains why the condition (1.1) sufficed in

Millington's theorem which deals with the case n

=2, n, = 3.
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The proof of (1.5) actually is quite elementary. It
replaces constructing permutations by the diagrams introduced

in [3] and uses some elementary surface topology.



§2. Proof of (1.5)

(2.1) From the discussion of (1.3) in §1 and [3], theorem 2, the
cbnditibns a),B),Y) are»seen to be necessary. So we proceed to
show their sufficiency. The diagrams for I and its thickening
X, cf. (3] §4 and (A.1.1) are

respectively. A diagram corresponding to a subgroup ¥ of T

is obtained from the building blocks

(2.1.2) e : } a edges , and
(2.1.3) b edges { : ‘

for suitable divisors a resp. b of n, resp. n, by identi-

fying suitably the endpoints of the edges. Moreorver if xt“, is

its thickening then the canonical projection int )ixv + int xxr

provides the picture of the actual corresponding branched covering.

(2.2) Let {xiq} be a nonnegative integral solution of the

diophantine system in y), 1 <i <2, O0<q<2t, and x;, =0

o
. iq
if mq—i"ni. The significance of y) 1is precisely that from the

x?q copies of

(2.2.1) : } 1’11/111q edges



and xgq' éopies of
(2.2.2) n,/m; edges { : ,

0 <qg < l. it 1is possible to construct a connected diagram which

would correspond to a subgroup =¢ .

(2.3) Now we show how to obtain a subgroup =¢ of genus O.
Notice that X.= a closed disk. Orient . and ¥, in some
way. This induces orientations on the diagrams in (2.2.1) and
(2.2.2), and on their thickenings. For simplicity we shall call
the thickening of an edge in (2.2.1) or (2.2.2) as an arm. Notice

that there is a well-defined cyclic order on the edges of each of

the diagrams in (2.2.1) and (2.2.2) and also on the arms of their
thickenings. Now embed the union of these thickened diagrams

corresponding to (2.2.1) and (2.2.2) in ]R2 preserving orientation.

We thus get a certain complex in :IR2 with, say, r, (resp rz)

components corresponding the diagrams in (2.2.1) (resp. (2.2.2)).

For simplifying expression let us call these r, resp. r com-

2
ponents as the first r, components resp. the last r,__compo-

nents of this complex. Now we start connecting the arms of the
last r, components with those of the first r, components in
pairs so that we do not introduce any intersections (except where
the arms meet) and we go on reducing the number r, of components
as quickly as feasible until we are left with exactly one compo-
nent, cf. the proof of theorem 1 in [3]. Let us call the new

complex obtained this way as D

0* Evidently D, = a closed disk.

(o]



Also certain of the arms of the first r, components (now com-
bined into Do) still may remain to be connected with some arms
of some of the last r, components. But notice that the unconnec-
ted arms of Do have a well-defined cyclic order (w.r.t.Do) ’

and so also the arms of each of the last r, components which
remain to be connected. Using these cyclic orders it is possible
to connect the remaining arms of Do with those of the last r,
components in :Rz, so that in this process no intersections
(except where the arms meet) are introduced. In other words we
obtain a thickened diagram of a subgroup =¢ of T of index d

as a subset of :IR2

so this subgroup has genus O.

(To motivate the reader, we interrupt the proof to illustrate
the process described above by an example. Let T = Zz * zz3 and
¢ = F2 »* Z3 * Z3 . Then the possible finite value of the index

d is given by B):

The diagram for ¢ 1is constructed out of l%

"

7 copies of

2 copies of
: '

= 4 copies of

ana 1452



A choice of a disk D is the thickened version of

SNCNCNCNONORT

which remains to be connected to the arms

There are 5 arms of Do

of the thickenings of

Evidently these arms can be joined in ]R2 without intersections

except where they meet).

(2.4) It remains to obtain a subgroup =¢ of orbitrary genus

h > 0 satisfying r = 2h+s-1 with 8 > 1. Notice that the number

8 of ends of a subgroup ¥ of T 4is just the number of com-

ponents of axc‘,

Let us denote a subgroup obtained by the process in (2.3)

as ¢, so xxo is a compact surface of genus O with s = r+1
o

boundary components. This X,
o
(which has only one boundary component) by attaching some complexes

is obtained from the disk D°
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each with a certain number of arms, and this process produceé o
extra boundary components. If r = 0 or 1 there is nothing to
prove. If r > 2, then s > 3. It is an elementary fact from the
topology of surfaces that as long as s > 3 we can interchange
two connections of an appropriate pair of arms which reduces s
by 2 and increases the genus by 1. In this way we can produce the
thickened diagrams of subgroups =*¢ of I of any prescribed
genus h > O and number of ends s > 1 satisfyigg r = 2h+s-1.

This finishes the proof.
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