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Abstract

We examine a setting appropriate for the analysis of many vari-
ational problems. We work on the closure of the space of measures
induced by embeddings of submanifolds. We prove that this space
coincides with the space of measures that vanish on exact forms. We
characterize the space of derivatives of variations for these objects. We
use this characterization to deduce some results for the critical points
of the action of very general Lagrangians.

An intermediate result of independent interest is the characteriza-
tion of the distributions that can appear as derivatives of families of
Borel probabilities and signed measures on manifolds.
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1 Introduction

In this paper we consider the space of holonomic measures, which are roughly
all measures that can be approximated by closed submanifolds. These are
defined carefully in Section 2.

To motivate the definition, we mention and prove an important equiva-
lence of two classes measures: those that can be approximated by the mea-
sures induced by embeddings of closed submanifolds, and those for which
teh integrals of exact forms vanish. This is Theorem 1 in Section 2.2, and
the proof is in Appendix A.

We also prove a general result on families of measures. Consider a family
of measures µs indexed by a real parameter s with values in an interval that
contains 0, and such that µ = µ0. We say that µs is differentiable at 0 if
for every f ∈ C∞c (P ) the function s 7→

∫
f dµs is differentiable at 0 and if

the derivative induces a distribution. For example, if the family is a moving
Dirac delta µs = δs on R, then the derivative at 0 is the distribution −∂δ0

given by 〈−∂δ0, f〉 = f ′(0) for all f ∈ C∞c (R).
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We address the question of characterizing the distributions that arise in
this way. In other words, we characterize the velocity vectors for curves in
the space of measures that pass through µ. This result is stated and proved
in Section 3.

Then we apply that to study the ways in which holonomic measures can
be deformed, thus characterizing the velocity vectors of all curves in the
space of holonomic measures that are differentiable. We are thus able to
give a good description of what would be the tangent space to the space of
holonomic measures. We do this in Section 4.

This study is fruitful, as is shown by an initial set of applications pre-
sented in Section 5. Among other things, we are able to show that the
conditions we obtain for criticality are effectively more general than the
classical Euler-Lagrange equations. Other applications include the formu-
lation of a sort of n-dimensional energy-conservation principle, a version of
the Hamilton-Jacobi equation, and the statement that the Lagrangian must
look like an exact form in the support of the minimizers.

Related literature. Geometric measure theory and variational analysis
are vast subjects, so a discussion about how this research fits in those con-
texts is in place. However, since it seems impossible to give an exhaustive
discussion, we choose to instead give just a brief one and hence minimize the
number of mistakes we make in the process due to our lack of expertise in all
these fields. Also, we will not define all the objects involved, but rather we
will just mention them in the hope that readers familiar with these concepts
will find the information they are looking for, while readers not familiar with
them will be happy to ignore the discussion.

Holonomic measures appeared in the n = 1 case in Mather’s [15] version
of Mather-Aubry theory for minimizers of the action of Lagrangians on the
torus. The theory of holonomic measures was extended by others; for exam-
ple by Mañé [5,13], Bangert [3], Bernard [4]. A certain case of codimension
one of Mather-Aubry theory was considered by Moser [17–19].

In the more general context we treat here, in which n can be arbitrary,
a similar theory should exist for a large class of Lagrangians. Under rather
mild conditions in the Lagrangian (such as convexity, superlinearity, tight-
ness) minimizers exist in all holonomy classes with coefficients in the real
numbers R. However, Mather’s α and β functions are probably only defined
for a very restricted set of Lagrangians.

Holonomic measures induce superpositions of currents (cf. [10, 16]) on
a manifold M in an obvious way. However, they carry more information
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than currents because they take into account the parameterization of the
minimizers, and hence allow for the study of anisotropic Lagrangians.

Holonomic measures also induce varifolds (cf. [1, 2, 21]). Again, they
carry more information because they record not only the tangent planes,
but also the velocity vectors of a ‘parameterization.’

With holonomic measures the issue of rectifiability is not a concern since
rectifiability is built into them. Whether or not one can find their volume
(or the action of a Lagrangian) depends on the question of whether this
function is integrable with respect to them. They have empty perimeter, so
finiteness of perimeter is also not a concern.

Holonomic measures are suitable for the treatment of many problems
that could be approached parametrically using functions for example in
Sobolev or Lipschitz spaces (cf. [7, 8, 12]).

Superpositions of Young measures (cf. [4,23]) are a special case of holo-
nomic measures.

In Section 5.2 we deduce a sort of general Hamilton-Jacobi equation, a
case of which has been studied to great depth (see for example [6, 9]).

The definition of differentiability of families of measures (i.e., of vari-
tions) that we use is only one possibility of many; see for example [22] for
an exploration of other possibilities.

Acknowledgements. I am deeply indebted to John N. Mather for his
patience in listening to a number of sometimes very confused and tentative
presentations of this results and for his help in clarifying my ideas with
numerous questions and suggestions. I am also very grateful to Antonio
Ache and Matilde Mart́ınez for several conversations on this subject, to
Gonzalo Contreras and Renato Iturriaga for introducing me to the calculus
of variations, and to Burglind Juhl-Jöricke for teaching me what I know
about distributions.

I am very grateful to Princeton University, to the Institute for Computa-
tional and Experimental Research in Mathematics at Brown University, and
to the Max Planck Institute for Mathematics in Bonn for their hospitality
and support during the development of this research.

2 Preliminaries

2.1 Setting

Phase space. Let M be a compact, oriented C∞ manifold of dimension
m ≥ 1, possibly with boundary ∂M . Denote by TM its tangent bundle and,
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for n ≥ 1, denote by TnM the direct sum bundle

TnM = TM ⊕ · · · ⊕ TM︸ ︷︷ ︸
n

of n copies of TM . The dimension of TnM is m(n+1). An element in TnM
can be denoted (x, v1, v2 . . . , vn), where x is a point in M and v1, v2, . . . , vn ∈
TxM are vectors tangent to x. When taking local coordinates, we will write

x = (x1, x2, . . . , xm) and vi = (vi1, vi2, . . . , vim).

Sometimes for brevity we will write (x, v) instead of (x, v1, v2, . . . , vn).
The projection π : TnM → M is given by π(x, v1, . . . , vn) = x. We

denote by Ωn(M) the space of smooth differential n-forms on M . We will
often consider these forms as smooth functions on TnM .

Throughout, when referring to functions on these objects, we will use
the term smooth to mean C∞. We will denote by C∞(X,Y ) the space of
all smooth functions X → Y . If Y is the real line R, we will sometimes
omit it in our notation. We will denote by C∞c (X) the set of all real-valued,
compactly-supported, smooth functions on the set X.

Riemannian structure. We fix, once and for all, a Riemannian metric
g ∈ C∞(T 2M) on M and its corresponding Levi-Civita connection ∇. We
denote the operation of covariant differentiation in the direction of a vector
field F by ∇F .

We will denote |v| =
√
g(v, v) for v ∈ TxM , and we extend this norm to

TnxM by letting

|(v1, v2, . . . , vn)| =
√
|v1|2 + |v2|2 + · · ·+ |vn|2.

Forms. We will denote by Ωk(M) the space of smooth differential k-forms
on M . On this space we define a norm ‖ · ‖ by letting, for ω ∈ Ωk(M),

‖ω‖ = sup{ωx(v1, . . . , vk) : (x, v1, . . . , vk) ∈ TnM, |vi| ≤ 1}.

2.2 Definition of holonomic measures and their topology

Subpower functions. We let Pn be the space of subpower functions,
that is, the space of real-valued continuous functions f ∈ C0(TnM) such
that

sup
(x,v)∈TnM

|f(x, v)|
1 + |v|n

< +∞.
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Note that all differential n-forms on M belong to Pn when regarded as
functions on TnM . We endow Pn with the supremum norm and its induced
topology.

Mild measures. A signed measure µ on TnM is mild if∫
TnM

1 + |(v1, . . . , vn)|nd|µ| < +∞,

where |µ| = µ+ + µ− is the absolute value of the measure with Hahn de-
composition µ = µ+−µ−, for positive measures µ+ and µ−. We denote the
space of mild measures by Mn. We define the mass M(µ) of µ ∈Mn to be

M(µ) =

∫
TnM

[
sup

ω∈Ωn(M),‖ω‖≤1
ωx(v1, . . . , vn)

]
d|µ|(x, v1, . . . , vn)

=

∫
TnM

voln(v1, v2, . . . , vn) d|µ|(x, v1, . . . , vn).

This is always a nonnegative number.
The space Mn is natually embedded in the dual space Pn

∗ and we endow
it with the topology induced by the weak* topology on Pn

∗. Although the
topology on Pn

∗ is not metrizable, the topology on Mn is. We can give a
metric in Mn by picking a sequence of functions {fi}i∈N ⊂ C∞c (TnM) that
are dense in Pn, and then letting

distMn(µ1, µ2) = M(µ1−µ2)+
∞∑
k=1

1

2k sup |fk|

∣∣∣∣∫ |fk|dµ1 −
∫
|fk|dµ2

∣∣∣∣ . (1)

Cellular complexes. An n-dimensional cell (or n-cell) γ is a smooth
map

γ : D ⊆ Rn →M,

where D is a subset of Rn homeomorphic to a closed ball, together with a
choice of coordinates t = (t1, t2, . . . , tn) on D. A chain of n-cells is a formal
linear combination of the form

a1γ1 + a2γ2 + · · ·+ akγk

for real numbers a1, a2, . . . , ak and n-cells γ1, γ2, . . . , γk. We will say that a
chain is positive if ai > 0.
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Let γ : D ⊆ Rn → M be an n-cell. Denote by dγ the differential map
associating, to each element in D, an element in TnM . Explicitly, if we have
coordinates t = (t1, t2, . . . , tn) on D, then

dγ(t) =

(
γ(t),

∂γ

∂t1
(t),

∂γ

∂t2
(t), · · · , ∂γ

∂tn
(t)

)
.

This map does depend on our choice of coordinates t.
To an n-cell γ, we associate a measure µγ on TnM defined by∫

TnM
f dµγ =

∫
D
f(dγ(t)) dt,

where dt = dt1 ∧ · · · ∧ dtn. Similarly, to a chain of n-cells α =
∑k

i=1 aiγi, we
associate the measure µα given by

µα =
k∑
i=1

aiµγi .

The measure µα is an element of Mn. We will say that the chain α is a cycle
if for all forms ω ∈ Ωn−1(M),∫

TnM
dω dµα = 0.

Holonomic measures. The proof of the following theorem can be found
in Appendix A:

Theorem 1. Assume that 1 ≤ n ≤ d. Let µ ∈Mn be a probability measure
on TnM . Then the following conditions are equivalent:

(Hol) The measure µ satisfies ∫
dω dµ = 0

for all ω ∈ Ωn−1(M).

(Cyc) There exists a sequence {αk}k∈N of cycles such that µαk
→ µ as k →∞

in the topology induced by the distance (1).

A mild measure µ ∈ Mn is holonomic if it is a probability (that is, a
positive measure such that µ(TnM) = 1) satisfies the Conditions (Hol) and
(Cyc). The space H of holonomic measures is convex. By the Banach-
Alaoglu theorem, it is also compact, since it is a closed subset of the unit
ball of Pn

∗ (it is cut out by the closed condition (Hol)).
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2.3 Relative holonomic measures

Since our proof of Theorem 1 relies on triangulations, it is easy to modify it
in order to prove

Theorem 2. Assume that 1 ≤ n ≤ d. Let µ ∈Mn and U ⊂M be a closed
set diffeomorphic to a union of simplices of a smooth triangulation of M .
Then the following conditions are equivalent:

1. For all forms ω ∈ Ωn−1(M) such that ω|U = 0,∫
TnM

dω dµ = 0.

2. There exists a sequence {αk}k∈N of chains such that the boundaries
∂αk are contained in U , and such that oαko → µ as k → ∞ in the
topology induced by the distance (1).

A probability measure µ ∈Mn that satisfies the conditions in Theorem
2 is said to be holonomic relative to U . The space of all these measures is
again compact and convex.

3 Distributions that arise as derivatives of families
of measures

Let P be a Riemannian manifold without boundary. In Section 4.1, we will
use the results in this section for P = TnM .

In this section, we characterize the distributions that arise as derivatives
of families of probabilities and of positive and signed Borel measures on
smooth manifolds.

3.1 Distributions and measures

3.1.1 Convolutions

A mollifier ψ ∈ C∞c (R) is a function such that ψ(x) = ψ(−x),
∫
ψ = 1, and

ψ ≥ 0.
We will say that a tuple of vector fields F = (F1, . . . , F`) on P is gener-

ating if at every point p ∈ P the vectors F1(p), . . . , F`(p) span all of TpP .1
Fix a generating tuple of vector fields F = (F1, . . . , F`). Denote by

φi : P × R→ P the flow of Fi:

φi0(x) = 0,
dφis(x)

ds
= Fi(φ

i
s(x)), s ∈ R.
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For f ∈ C∞c (P ), we will denote by Pi(f) the function given by

Pi(f)(x) =

∫
R
f ◦ φis(x)ψ(s) ds.

This is a convolution in the direction Fi.
For f ∈ C∞c (P ), we will denote

ψ ∗F f := P1P2 · · ·P`(f).

3.1.2 Definition and smoothing of distributions

A distribution on the open set U ⊆ Rm is a linear functional η : C∞c (U)→ R
such that for each compact set K ⊂ U there are some constants N > 0 and
C > 0 (depending only on K and η) such that

|〈η, f〉| ≤ C
∑
|I|≤N

sup
p∈U
|∂If(p)|

for all f ∈ C∞c (U). Here, the sum is taken over all multi-indices I with m
nonnegative entries adding up to at most N , and ∂I denotes the iterated
partial derivatives in the corresponding directions in Rm.

We fix, once and for all, an n-dimensional C∞ manifold P without
boundary, and with a Riemannian metric that induces the distance distP
between points of P .

Let η : C∞c (P )→ R be a linear functional. For a chart ε : U →W from
the open set U ⊆ P to the open set W ⊆ Rn, the pushforward ε∗η is defined
by

〈ε∗η, f〉 = 〈η, f ◦ ε−1〉

for f in C∞c (W ).
The functional η is a distribution if for each chart ε as above, ε∗η is a

distribution on W . We will denote by D ′(P ) the space of distributions on
P . The topology on D ′(P ) is induced by the seminorms

η 7→ |〈η, f〉|

for f ∈ C∞c (P ). In other words, we have ηi → η if, and only if, 〈ηi, f〉 →
〈η, f〉 for all f ∈ C∞c (P ). We remark that any measure on P determines a
distribution, but that not all distributions arise in this way.

For a distribution η ∈ D ′(P ), we define the convolution by duality:

〈ψ ∗F η, f〉 = 〈η, ψ ∗F f〉.
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Lemma 3. If η is a distribution in D ′(P ), F is a generating tuple of vector
fields, and ψ is a mollifier, then ψ ∗F η is a smooth signed Borel measure.

For a proof see for example [11, §5.2].

3.1.3 Structure

We fix a generating tuple F = (F1, . . . , F`) of vector fields. As before, we
denote by I a multi-index I = (i1, . . . , i`) with ` nonnegative entries, and by
∂I the operator that iteratively takes ij covariant derivatives in the direction
Fj , j = 1, . . . , `.

Lemma 4 (Structural representation in terms of measures). A distribution
η ∈ D ′(P ) can be written as a sum

η =
∑
I

∂IνI (2)

where I ranges over all multi-indices as above; for each I, νI is a signed
measure. For a compact set K ⊆ P ,

K ∩ supp νI = ∅

for all but finitely many multi-indices I.

Proof. Take a partition of unity {ξj}j∈N ⊆ C∞c (P ) of P , that is, a countable
set of smooth functions pi with compact support such that

∑
j ξj(p) = 1

and ξj(p) ≥ 0 for all p ∈ P , and ξj(p) = 0 for all but finitely j ∈ N at
any point p ∈ P . We make the further assumption that the support of each
of the functions ξj is contained in an open set Uj ⊆ P that is diffeomor-
phic to a cube [0, 1]n, and we let φj : Uj → [0, 1]n be the corresponding
diffeomorphism.

We let η̃j be the distribution on Rn that results from pushing ξjη forward
to the cube [0, 1]n and extending periodically. In other words, for all rapidly-
decreasing (Schwartz) functions f ∈ C∞(Rn), we let τzf(x) = f(x− z) and

〈η̃j , f〉 =
∑
z∈Zn

〈η, pj · (τzf) ◦ φ−1
j 〉.

Like all periodic distributions, η̃j is a tempered distribution. We have

Lemma 5. Every tempered distribution is a derivative of finite order of
some continuous function of polynomial growth.

10



For a proof, see for example [11, Theorem 3.8.1].
Let ζj be the continuous function of polynomial growth corresponding

to η̂j and let αj be the multi-index corresponding to the derivative in the
lemma, so that

η̂j = ∂αjζj .

Let Dj be the (smooth) differential operator on P such that φ∗j∂
αj = Djφ

∗
j ,

and write
ξjη = Djφ

∗
jζj .

Since ζj is a continuous function, so is φ∗jζj , and hence it induces a measure
on Uj . Then we can write

η =
∑
j

pjη =
∑
j

Djφ
∗
jζj ,

and since each of the summands on the right can be expressed as a finite
sum of derivatives of a continuous function, this proves the lemma.

3.2 Variations

Let µs be a family of Borel measures on the manifold P parameterized by
a real parameter s with values in an open interval J ⊆ R that contains 0.
We say that the family µs is differentiable at 0 if there is a distribution
η ∈ D ′(P ) such that, for every function f ∈ C∞c (P ),

d

ds

∣∣∣∣
s=0

∫
f dµs = 〈η, f〉.

The distribution η is the derivative dµs/ds|s=0 of µs at 0.

Remark 6. This is just one way to define differentiability of families of dis-
tributions; other ways have been explored for example in [22].

Proposition 7. For every Borel measure µ and every distribution η, there
exists a family of signed measures with

µ0 = µ and
dµs
ds

∣∣∣∣
s=0

= η.

Proof. Take a mollifier ψ and a tuple F of generating vector fields. Then,
as follows from Lemma 3, the family µs = ψ ∗sF (µ0 + sη) has the required
properties.

For families of positive measures, the situation is different.
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Theorem 8. Let µ be a positive Borel measure and let η be a distribution.
Denote by Fµ the space of nonnegative functions f ∈ C∞c (P ) that vanish
identically on suppµ. Then there exists a family µs of positive measures
with µ0 = µ and derivative dµs/ds|s=0 = η if, and only if, η satisfies the
following condition:

〈η, f〉 = 0 for every f ∈ Fµ. ((Pos))

If µ is a probability measure and η additionally satisfies that 〈η, 1〉 = 0, then
µs can be realized as a family of probability measures.

Remark 9. Condition (Pos) implies that supp η ⊆ suppµ. Apart from this,
Condition (Pos) is relevant only when suppµ has parts that are very thin
— only one point thick.

For example, if P = R, µ is the Dirac delta δ0, and ρ : R→ R ∈ C∞c (R)
is a cutoff function (ρ ≥ 0, ρ ≡ 1 in a neighborhood of 0 and ρ ≡ 0 outside
a slightly larger neighborhood), then taking f(x) = ρ(x)

∑
i≥2 cix

i (with
c2 large enough to ensure that f ≥ 0) we see that η must be of the form
Aδ0 +B∂δ0, for involving any higher-degree derivatives would contradict the
condition.

On the other hand, if we again had P = R, but now µ = χ[0,1] the
characteristic function on the unit interval, then as long as supp η ⊆ suppµ,
η can be any distribution and still comply with Condition (Pos).

Remark 10. If µs is any family of measures that is differentiable at s = 0 and
if ψ is a mollifier and F is a generating tuple, then the measure µ̃s = ψ∗sF µs
has the same derivative at 0 and the same mass as µs, and µ̃s is a positive
measure if µ̃s is. By Lemma 3, the measure µ̃s is a smooth density for all
s 6= 0. Hence, the family µs can always be realized as a family of smooth
measures (except maybe at s = 0).

Lemma 11. Fix a point p ∈ suppµ ⊆ P . Let ηp be a distribution sup-
ported on p that satisfies Condition (Pos). Then there is a family of positive
measures µps such that µp0 = µ and

dµps
ds

∣∣∣∣
s=0

= ηp.

Moreover, the dependence of µps on p is measurable.
If µ is a probability measure and 〈ηp, 1〉 = 0, then µps is a family of

probability measures too, when it exists.
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For the proof of the lemma we will need a metric defined on the space
of distributions involving up to kth derivatives, k ≥ 1, and given by

distk(θ1, θ2) =
∞∑
j=1

1

2j‖fj‖k
|〈θ1, fj〉 − 〈θ2, fj〉|

for two distributions θ1 and θ2, and with {fj}j ⊂ C∞c (P ) a sequence of
functions that is dense with respect to the norm

‖f‖k =
∑
|I|≤k

sup
q∈P
|∂If(q)|.

Proof of Lemma 11. Let V ⊆ TpP be the subspace that is null for the Hes-
sians at p of all the functions in Fµ:

V = {v ∈ TpP : Hessp f(v, v) = 0 for all f ∈ Fµ}.

Let m = dimV ≤ n = dimP . Take coordinates (x1, x2, . . . , xn) around p
such that the vectors

∂

∂x1
, . . . ,

∂

∂xm
∈ TpP

form a basis of V and ∂/∂x1, . . . , ∂/∂xn is an orthonormal basis of TpP .
Assume that p corresponds to the origin in these coordinates. Then by
Lemma 4 we know that η must be a finite linear combination of distributions
of the form (

∂

∂xu

)e0 ( ∂

∂x1

)e1 ( ∂

∂x2

)e2
· · ·
(

∂

∂xm

)em
δp

where e0 ∈ {0, 1}, u > m, and the integers e1, . . . , em are nonnegative. For
reasons analogous to those explained in Remark 9, Condition (Pos) makes
it impossible to have higher derivatives in the directions outside V .

Note that if νs is a family of positive measures such that ν0 = µ and

dνs
ds

∣∣∣∣
s=0

=

(
∂

∂x1

)e1 ( ∂

∂x2

)e2
· · ·
(

∂

∂xm

)em
δp, (3)

and if φ is the flow of the vector field ∂/∂xu, then

d

ds
φ∗sνs

∣∣∣∣
s=0

=
∂

∂xu

(
∂

∂x1

)e1 ( ∂

∂x2

)e2
· · ·
(

∂

∂xm

)em
δp.

So we will focus on finding such a family νs. In particular, we will assume
that ηp is of the form given in (3). In other words, we will assume that it
only involves derivatives in the directions of V .
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Lemma 12. For ηp as in equation (3) and for k =
∑m

i=1 ei, we have

inf
g

distk(gµ, ηp) = 0,

where the infimum is taken over all measurable functions g : P → R.

The reader will find the proof of Lemma 12 below.
Take a strictly-decreasing sequence of positive numbers {vj}0j=−∞ such

that
∑

j 1/vj = 1. Let k be as in Lemma 12. For each j = 0,−1,−2, . . . ,
take a measurable function gj such that supq∈P |gj | ≤ 1 and

distk(vjgjµ, η) < 2j + inf
|g|≤1

distk(vjgµ, η).

With this definition, Lemma 12 implies that if we let j → −∞, we get
vjgjµ→ η.

We let, for
∑i

j=−∞ v
−2
j ≤ |s| <

∑i+1
j=−∞ v

−2
j ,

νs =

1 +

s− i∑
j=−∞

sgn s

v2
j

 vi+1gi+1 +

i∑
j=−∞

sgn s

vj
gj

µ.

By construction, νs is a family of positive measures and its derivative at
s = 0 is η.

To ensure the measurability of the dependence of this construction in p,
we further specify the construction as follows. For each j ∈ Z−, we take
a covering of P by measurable sets Aj of diameter at most −1/j. For all
p ∈ Ai, we take the same function gj . This ensures that these choices are
made in a ‘measurable’ way. The rest of the construction does not depend
on arbitrary choices, so the dependence becomes measurable immediately.

The last statement of the lemma follows from the fact that if ηp satisfies
〈η, 1〉 = 0, then either gj can be chosen so that gjµ satisfies this too, or else
e1 = e2 = · · · = en = 0, and in both cases the coordinates can be picked so
that the mass is preserved by the flow φs for small-enough |s|.

Proof of Lemma 12. Let V and x1, x2, . . . , xn be as in the proof of Lemma
11. Let U be a small neighborhood of p on which the exponential map
expp : TpP → P is injective.

The distribution ηp induces a distribution on V , η̄p, defined by

〈η̄p, f〉 = 〈ηp, ξ · (f ◦ projV ◦ exp−1
p )〉, f ∈ C∞c (V ),

where ξ is any compactly-supported step-function with ξ ≡ 1 in a small
neighborhood of p and ξ ≡ 0 outside U . Clearly, if we can find a sequence

14



of functions gi : TpP → R such that distk(gi exp∗p µ, η̄p)→ 0 as i→∞, then
the sequence {distk((gi ◦ exp−1

p )µ, ηp)}i will also approach 0 and the lemma
will be proved. We may thus assume that P is a Euclidean space Rn, that
µ and ηp are defined on Rn, and that p is at the origin of Rn.

Condition (Pos) implies that for any open set A ⊆ U that contains p,
the set projV (suppµ ∩ A) contains infinitely many vectors, and that these
vectors span V as a vector space.

For each j = 1, 2, . . . , let {xji}∞i=1 ⊆ suppµ ⊂ Rn be a sequence of points
contained within distance 1/j of p and within distance 1/j2 of V . We also
assume that {projV x

j
i}i span all of V . For a large-enough finite subset Ij

of N, there is always a solution to the problem of finding real numbers cij
such that

〈ηp, f〉 = lim
h→0

1

hk

∑
i∈Ij

cijf(hprojV x
j
i ) (4)

for all f ∈ C∞c (P ). To see this, note that expanding the right-hand-side as
Taylor series in h and comparing coefficients, one obtains a linear system
in the variables cij , and that this system has solutions if sufficiently many

points xji are available.

For each j = 1, 2, . . . , let εj > 0 be small enough that the balls Bεj (x
j
i )

are disjoint. For q ∈ Bεj (x
j
i ) ∩ suppµ for some i ∈ Ij , let

gj(q) =
cij

µ(Bεj (x
j
i ))
,

and let gj(q) = 0 for all other q ∈ P . Then gjµ → η as j → ∞ because for
each y ∈ C∞c (P ) the set

A(y,R) =
{ N∑
i=1

ciy(xi) : cj ∈ R, xi ∈ BR(p) ⊂ P , N ∈ N, and

〈ηp, f〉 = lim
h→0

1

hk

N∑
i=1

cif(hprojV xi) for all f ∈ C∞c (P )
}

contains the value of
∑

i cijy(xji ) ≈ 〈gjµ, y〉 for R > 1/j, and the diameter
of A(y,R) tends to 0 as R→ 0. This proves the lemma.

Proof of Theorem 8. Assume first that the family µs exists. To prove that
Condition (Pos) must hold, let f ∈ C∞c (P ) be a nonnegative function f ∈
Fµ, and consider the function

g(s) =

∫
f dµs.

15



Since f is nonnegative and µs is a positive measure for all s, g must be
nonnegative as well. Since g(0) = 0, it must also be true that g′(0) = 0, and
this is equivalent to Condition (Pos).

Now assume that we have a measure µ and a distribution η such that
Condition (Pos) holds, and let us construct a family µs as in the statement
of the theorem. Let νI be the measures as in Lemma 4. These induce a
measure γ on P and a family of distributions ηp supported at p ∈ P such
that for all f ∈ C∞c (P )

η =

∫
ηpdγ(p).

For γ-almost all p, the distributions ηp also satisfy Condition (Pos). From
Lemma 11, we get families µps of measures whose derivatives at 0 are precisely
the distributions ηp. Thus,

µs =

∫
µpsdγ(p)

is a family as in the statement of the theorem.
If µ is a probability, since each µps preserves the probability, so does

µs.

4 The tangent space

4.1 Mild distributions

Recall that distributions on a manifold P were defined in Section 3.1. Now
take the case in which P = TnM . A partition of unity in TnM is a set of
nonnegative functions {ψi}i ⊂ C∞c (TnM) such that for all x ∈ TnM∑

i

ψi(x) = 1.

Given a distribution η ∈ D ′(TnM), we want to make sense of its value at a
form ω ∈ Ωn(M). We let

〈η, ω〉 =
∑
i

〈η, ψiω〉,

We denote by D ′n ⊂ D ′(TnM) the set of distributions for which the series
in the right-hand-side converges absolutely for all ω ∈ Ωn(M). This is
independent of our choice of partition of unity {ψi}i. Also, the spaces of
mild measures Mn and of holonomic measures H are subsets of D ′n.
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A family of measures µt ∈ Mn is differentiable at 0 if there is a distri-
bution η ∈ D ′n such that for all f ∈ C∞c (TnM)

d

dt

∣∣∣∣
t=0

∫
f dµt = 〈η, f〉.

4.2 Variations of holonomic measures

Theorem 13. Let µ be a holonomic measure in TnM and let η ∈ D ′n be
a distribution on TnM . Then there exists a family of holonomic measures
µt ∈Mn, t ∈ R, such that µ0 = µ and

d

dt

∣∣∣∣
t=0

∫
f dµt = 〈η, f〉 (5)

for all f ∈ C∞c (TnM) if, and only if, the following two conditions are satis-
fied:

(Pos) For all nonnegative f ∈ C∞c (TnM) that vanish on suppµ, 〈η, f〉 = 0.

(Hol) For all differential forms ω ∈ Ωn−1(M), 〈η, dω〉 = 0.

Remark 14. In other words, the tangent space to the space of holonomic
measures at the point µ is characterized by Conditions (Pos) and (Hol).

Proof. By Theorem 8, Condition (Pos) is necessary. If µt exists, then we
have

0 =
d

dt

∣∣∣∣
t=0

∫
dω dµt = 〈η, dω〉

for all ω ∈ Ωn−1(M). Hence, Condition (Hol) is also necessary.
To prove that Conditions (Pos) and (Hol) are sufficient, assume that

they are satisfied. Then by Theorem 8 we have a family of probability
measures θt for t in some interval that contains 0, with θ0 = µ and with (5).
Now we need to modify θt so that it is also a family of holonomic measures.
Moreover, the proofs of Theorem 8 and Lemma reflem:variationpoint show
that θt can be assumed to be in Mn for all t.

There exists a family of measures νt such that for all ω ∈ Ωn−1(M) and
all t ∫

dω dθt +

∫
dω dνt = 0.

The measure νt can for example be obtained from θt as follows. For each
x ∈ M , let rx : TnxM → TnxM be some reflection such that the multivector
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rx(v) has the opposite orientation as the multivector v ∈ TnM . These
reflections can be chosen in a piecewise-continuous (and hence measurable)
way with respect to the variable x. Then one can take the family of measures
determined by νt|Tn

xM = r∗x(θt|Tn
xM ).

For a > 0, let λa : TnM → TnM be the map given by

λa(x, v1, v2, . . . , vn) = (x, av1, v2, v3, . . . , vn).

The measure νat = λ∗aνt/a satisfies∫
dω dνat =

1

a

∫
dω(x, av1, . . . , vn) dνt =

∫
dω dνt

for all ω ∈ Ωn−1(M). However, as a→∞, the mass
∫
dνat of νat tends to 0.

It is hence possible to find a function b : R− {0} → R+ such that ν
b(t)
t is a

family of measures with

dν
b(t)
t

dt

∣∣∣∣∣
t=0

= 0 and lim
t→0

1

t2

∫
dν

b(t)
t = 0.

We let

µt =
θt + ν

b(t)
t

1 +
∫
dν

b(t)
t

for t 6= 0 and µ0 = µ. This is a family of measures as in the statement of
the theorem.

5 Examples

Results in this section are valid for measures that are critical with respect to
the action of a general smooth Lagrangian L ∈ C∞(TnM). Unless explicitly
stated, we do not require, for example, that L be convex.

A variation of a holonomic measure µ ∈H is a family µt of holonomic
measures that is defined for t in an interval I ⊆ R containing 0 and is
differentiable at 0.

We denote by AL the action of the Lagrangian L,

AL(µ) =

∫
TnM

Ldµ.

We say that µ ∈H is critical for AL if for every variation µt with µ0 = µ

d

dt

∣∣∣∣
t=0

AL(µt) = 0. (6)
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By Theorem 13, µ is critical if, and only if, for all distributions η ∈ D ′n that
satisfy Conditions (Pos) and (Hol), we have

(Crit) 〈η, L〉 = 0.

Homology. A holonomic measure µ ∈ H is assigned its homology class
ρ(µ) ∈ Hn(M ;R) by requiring

〈ρ(µ), ω〉 =

∫
ω dµ

for all closed forms ω ∈ Ωn(M), dω = 0. If for each t the measure µt has the
same associated homology class as µ0, ρ(µt) = ρ(µ0), then we say that the
variation µt is homology preserving. Clearly, for this to happen the following
condition is necessary on the derivative η = dµt/dt|t=0:

(Hom) 〈η, ω〉 = 0 for all ω ∈ Ωn(M) with dω = 0.

Conjecture 15. Condition (Hom) is sufficient for the existence of a homol-
ogy preserving variation µt.

We will say that µ ∈ H is critical for AL within its homology class if
equation (6) holds for every homology variation µt of µ. In particular, if µ
is critical for AL, then it is also critical within its homology class.

5.1 Horizontal variations

Let X : M → TM be a smooth vector field on M . For f ∈ C∞c (TnM),
denote by Xf the Lie derivative in the (horizontal) direction X. This is
given by Xf = dxf(X), and is independent of the Riemannian metric on
M . For a differential form ω ∈ Ωn(M), the action of X on ω is also defined,
and it is equal to the Lie derivative LXω = iXdω + diXω. Here, iX denotes
the contraction.

Let µ be a holonomic measure on TnM . The distribution η given by

〈η, f〉 =

∫
TnM

Xf dµ (7)

for f ∈ C∞c (TnM) clearly satisfies Condition (Pos). It also satisfies Condi-
tion (Hol) because for all ω ∈ Ωn−1(M),

〈η, dω〉 =

∫
LXdω dµ =

∫
iXd

2ω + diXdω dµ = 0.
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Therefore, η is in the tangent space to µ.
It also satisfies Condition (Hom) because, if ω is a closed n-form,

d

ds

∫
ω dµs =

∫
LXω dµs =

∫
iXdω + diXω dµs = 0.

The last equality is true since dω = 0 because ω is closed, and
∫
diXω dµs = 0

because µs is holonomic.
In fact, it is easy to explicitly construct a family µt with derivative η and

µ0 = µ. To do this, take the flow φt : R×M →M of X on M , determined
by

φ0(x) = x,
d

dt
φt(x) = X(x), for x ∈M, t ∈ R.

Extend this to an isotopy r : R× TnM → TnM by

rt(x, v1, . . . , vn) = (φt(x), dφt(v1), . . . , dφt(vn)),

where dφt : TxM → Tφt(x)M denotes the derivative of φt at x. Then we can
simply let µt = r∗t µ. From this construction and Proposition 1, it is clear
that µt is homology preserving. We thus have

Proposition 16. If µ is critical for AL within its homology class, then Con-
dition (Crit) must hold for all distributions η of the form given in equation
(7).

Euler-Lagrange equations. Assume that the holonomic measure µ is
induced by a cycle α, that is,

µ = µα.

We will now recover the traditional Euler-Lagrange equations in this special
case.

For t ∈ R, rt ◦ α denote the cycle that results from the operation of
composing each of the n-cells γi that appear in α with the isotopy r:

if α =
∑
i

ciγi, ci ∈ R, then rt ◦ α =
∑
i

ci rt ◦ γi.

The variation µt = r∗t µα constructed above is precisely the same as µrt◦α.
We want to examine what happens when the measure µ is critical for AL

with respect to all such variations µt for all vector fields X. For clarity, we
use the time variable s instead of t, and we use the variables tj on the domain
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of γi. Also, we write dt = dt1 · · · dtn. We denote the partial derivatives of L
by Lx and Lvi . For each such variation have:

0 =
d

ds

∣∣∣∣
s=0

∫
Ldµs =

d

ds

∣∣∣∣
s=0

∑
i

ci

∫
L(d(rs ◦ γi)) dt

=
∑
i

ci

∫ Lx(dγi)
∂rs ◦ γi
∂s

∣∣∣∣
s=0

+
∑
j

Lvj (dγi)
∂2(rs ◦ γi)
∂s ∂tj

∣∣∣∣
s=0

 dt
=
∑
i

ci

∫ Lx(dγi)−
∑
j

∂Lvj (dγi)

∂tj

 ∂(rs ◦ γi)
∂s

∣∣∣∣
s=0

dt

=
∑
i

ci

∫
(E-L)

∂rs
∂s

∣∣∣∣
s=0

dt

where

(E-L) :=
∂L

∂x
−

n∑
i=1

 ∂2L

∂x∂vi
vi +

n∑
j=1

∂2L

∂vi∂vj
Xij

 ,

and a point in the vector space T(v1,...,vn)(T
n
xM) has coordinates Xij , 1 ≤

i, j ≤ n. Since the above is true for all smooth vectorfields X = ∂rs/∂s|s=0,
we conclude that (E-L) must vanish identically throughout the support of
µ = µα.

In other words, Condition (Crit) for measures µα and for distributions
of the form (7) is equivalent to the Euler-Lagrange equations.

Remark 17. In the case of an arbitrary holonomic measure (not necessarily
induced by a cycle) we have no information about the ‘second derivatives,’
so we find no clear way to give this deduction in that general case. While it
can be ascertained that these equations must be respected in a ‘weak’ way
(if µ = limi µαi , the measures µαi will asymptotically satisfy Euler-Lagrange
in the sense of distributions, so (E-L) must vanish µ-almost everywhere), it
is not clear to us how this can be useful.

5.2 Vertical variations

Let µ be a holonomic measure in TnM .
We introduce the Hilbert space H of all functions

u : suppµ ⊆ TnM → TnM
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such that u(x, v) ∈ TnxM for all (x, v) ∈ TnM , and
∫
g(u, u) dµ < +∞,

where g is the Riemannian metric on M . The inner product in H is defined
by

(u1, u2) =

∫
g(u1, u2) dµ.

The set of gradients ∇vdω of exact differential forms (viewed as functions
on TnM) is a subspace F of H.

Each function u in H induces a distribution ηu of the form

〈ηu, f〉 =

∫
TnM

g(u,∇vf) dµ.

for f ∈ C∞c (TnM). This distribution clearly satisfies Condition (Pos). The
set of all functions u in H such that ηu satisfies Condition (Hol) as well are
exactly the orthogonal complement F⊥ to F in H because Condition (Hol)
is

0 = 〈ηu, dω〉 =

∫
g(u,∇vdω) dµ = (u, dω).

for ω ∈ Ωn−1(M).
It follows that, if Condition (Crit) is satisfied for all ηu satisfying Condi-

tions (Pos) and (Hol), then ∇vL must be contained in the space F⊥⊥, which
coincides with the topological closure F . We have proved

Proposition 18 (“Lv = dω”). If µ is a holonomic measure that is critical
for AL, then there exist a sequence {ωi}i ⊂ Ωn−1(M) such that

∇vL|suppµ = lim
i→∞
∇vdωi.

The limit is taken in H.

It is possible to produce an explicit variation µut of µ with derivative ηu

by letting ∫
TnM

f dµus =

∫
TnM

f(x, v + su(x, v)) dµ(x, v)

for all f ∈ C∞c (TnM) and s ∈ R. It follows from the construction that
this variation preserves homology whenever Condition (Hom) holds. That
is, whenever u is such that

0 = 〈ηu, ω〉 = (u, ω)

for all closed forms ω ∈ Ωn(M). Hence, the same argument as before yields
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Proposition 19. If µ is a holonomic measure that is critical for AL within
its homology class, then there exists a sequence of closed n-forms {ωi}i ⊂
Ωn(M), dωi = 0, such that

∇vL|suppµ = lim
i→∞
∇vωi.

The limit is taken in H.

5.3 Transpositional variations

Let µ ∈H again be a holonomic measure, and let L be a Lagrangian.
Let σ ∈ C∞c (TnM) and fix some 1 ≤ i ≤ n. We consider the distribution

on TnM given by

〈η, f〉 =

∫
σf dµ−

∫
σ
∂f

∂vi
· vi dµ−

∫
f dµ

∫
σdµ

for f ∈ C∞c (TnM). The distribution η clearly satisfies Condition (Pos). To
see that it also satisfies Condition (Hol), we compute, for ω ∈ Ωn−1(M),

〈η, dω〉 =

∫
σ dω dµ−

∫
σ dω dµ−

∫
dω dµ

∫
σ dµ = 0.

Here, we used that ∂dω/∂vi = dω by linearity, and we also used the fact
that µ is holonomic.

If µ is critical for AL, it must satisfy Condition (Crit) for all variations
arising in this way from any σ ∈ C∞c (TnM). This translates to

0 = − d

ds

∣∣∣∣
s=0

AL(µσs ) =

∫
σLdµ−

∫
σLvi · vi dµ−

∫
Ldµ

∫
σ dµ.

If the domain of σ is very small around a point (x, v) ∈ TnM , this can be
very well approximated by

0 ≈
∫
σ dµ

(
vi · Lvi(x, v)− L(x, v)−

∫
Ldµ

)
.

This is how we deduce

Proposition 20 (Energy conservation). If a holonomic measure is critical
with respect to all transpositional variations, then its support is a subset of
the set where

vi · Lvi − L = AL(µ).
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Remark 21. In the cases in which we can define the change of variables
pi = Lvi (for example, in the case of convex, superlinear Lagrangians), we
can also define the Hamiltonians

Hi(x, pi) = Hi(x, pi; v1, . . . , v̂i, . . . , vn) = max
vi∈Tn

xM
pivi − L(x, v1, . . . , vn),

and what we have here is just a higher-dimensional version of the usual
energy conservation principle.

Remark 22 (Hamilton-Jacobi equation). We can form the full Hamiltonian
H =

∑
iHi, which in the case of a convex, superlinear Lagrangian L is the

convex dual to the Lagrangian nL. Then it follows from Proposition 18 that
there is a sequence of (n − 1)-forms ωk such that, abusing the notation a
little,

lim
k→∞

H(x, dωk) = nAL(µ)

on suppµ. This is a generalized form of the Hamilton-Jacobi equation.

The distribution η is in fact the derivative of the variation µσt given by∫
f dµσt =

∫
(1− tσ)f(x, v1, . . . , vi−1, (1− tσ)−1vi, vi+1, . . . , vn) dµ∫

(1− tσ) dµ

for f ∈ C∞c (TnM) and for t in an open interval that contains 0.
If we require the variation µσt to preserve homology, then we find that

we must require
∫
σ dµ = 0 because∫

ω dµσt =
〈ρ(µ), ω〉∫
(1− tσ) dµ

must be constant for each closed form ω ∈ Ωn(M), dω = 0. It follows that
if µ is critical for AL within its homology class then it must satisfy∫

σ(L− Lvi · vi) dµ = 0

for all σ with
∫
σ dµ = 0. We can use σdµ to approximate the derivative at

any point in suppµ arbitrarily well. Hence, we get

Proposition 23 (Energy conservation for homological minimizers). If a
holonomic measure is critical for AL within its homology class, then there
are some c1, . . . , cn ∈ R such that the support of µ contained in the set where

L− vi · Lvi = ci, i = 1, 2, . . . , n.
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A Proof of Theorem 1

This section is devoted to the proof of Theorem 1, which will be given in
Section A.6.

The n = 1 case of this result was proved by Bangert [3] and Bernard [4].
The author saw a letter by Mather [14] in which an idea similar to Bangert’s
was sketched. Our proof if that case is different to theirs.

The idea of the proof is the following. The fact that Condition (Cyc)
implies Condition (Hol) is an easy consequence of Stokes’s theorem, so we
concentrate in the other implication.

We start with a positive measure µ that satisfies Condition (Hol). We
prove in Section A.1 that we may assume that the measure µ is a smooth
density. In Section A.2 we specify a family of triangulations Tk on M for
k ∈ N. Then in Section A.3.1 we construct ‘base measures’ µ̄k, which are
approximations to our smooth density that are (in a sense) constant on each
simplex of Tk; this is analogous to approximating a smooth function on R
with simple functions. In Section A.3.2 we construct an n-chain βk that is
again (in a sense) constant on each simplex of Tk.

In Section A.4 we derive a condition on the (d−n)-dimensional skeleton
of Tk that in Section A.5.1 allows us to construct cycles that contain the
chains βk, and whose mass M can be estimated. We work on the estimates
for the mass in Sections A.5.2 and A.5.3. Finally, we put everything together
in Section A.6.

A.1 Smoothing revisited

Lemma 24. Any measure µ in Mn can be approximated arbitrarily well
using a smooth density on TnM . If µ is a probability measure that satisfies
Condition (Hol) then it can be approximated by smooth probability densities
that also satisfies Condition (Hol).

Proof. Denote the exponential map by expx : TxM →M .
A mollifier ψ ∈ C∞c (R) is a function such that ψ(x) = ψ(−x),

∫
ψ = 1,

and ψ ≥ 0.
Recall that the operators Pi were defined in Section 3.1.1. These are a

convolutions in the horizontal directions defined by vector fields Fi, which
are taken to form a generating tuple.

Also, for f ∈ C∞c (TnM) we let V (f) be the convolution in the vertical
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direction,

V (f)(x, v1, . . . , vn) =

∫
TxM

dw1ψ(|w1 − v1|)
∫
TxM

dw2ψ(|w2 − v2|)

· · ·
∫
TxM

dwnψ(|wn − vn|)f(x,w1, w2, . . . , wn).

For f ∈ C∞c (TnM), we will denote

ψ ∗ f = P1P2 · · ·P`V (f).

Note that ψ ∗ f is a C∞ function even if f is only measureable. Moreover,
if the diameter of the support of ψ is sufficiently small, and if f is an exact
form, f = dω, then ψ ∗ dω is the exact form d(ψ ∗ ω). To see this, note first
that by linearity of ω on each entry V (dω) = dω. Also, for s small enough,
φ∗s is a diffeomorphism and hence

Pi(dω) =

∫
ψ(s)φi∗s dω ds = d

[∫
ψ(s)φi∗s ω ds

]
= d(Piω).

Now let µ be a probability measure on TnM . Recall that we define the
convolution ψ ∗ µ by duality, setting∫

TnM
f d(ψ ∗ µ) =

∫
TnM

(ψ ∗ f) dµ.

Then ψ ∗ µ is a smooth density (see for example [11, §5.2]), and in the
topology of Mn,

ψ ∗ µ→ µ as diam suppψ → 0.

Also, if µ satisfies Condition (Hol), then∫
TnM

dω d(ψ ∗ µ) =

∫
TnM

d(ψ ∗ ω)dµ = 0,

so ψ ∗ µ also satisfies Condition (Hol).

A.2 Triangulations

A triangulation T = (K,h) of M is a simplician complex K homeomorphic
to M together with a homeomorphism h : K → M . When talking about
such a triangulation T , we will speak indistinctly of a simplex U ⊆ K and of
its image h(U) ⊆M . In other words, we will ignore K as a topological space,
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and we will instead think of the triangulation as being ‘drawn’ directly on
M .

On Rd, we will use the standard inner product. For a subspace W ⊂ Rd
passing through the origin, let projW : R → W denote the orthogonal
projection onto W . Also, for a subspace W , we will denote the subspace
perpendicular to W by W⊥ ⊆ Rd.

We fix a sequence of triangulations {Tk}k∈N on M such that:

T1. (Successive refinements) For k > 1, Tk is a refinement of Tk−1.

For each simplex V in Tk, k ≥ 1, we denote by U(V ) the simplex of
dimension d of T1 in which V is contained. (This is ambiguous for
the simplices of dimension less than d, but any choice will work, so we
assume that this choice has been made for each V once and for all.)

T2. (Finite) Tk has finitely many simplices.

T3. (Charted) For each simplex U of dimension d of T1, there is a chart
ϕU : M → Rd such that the image ϕU (U) is the standard simplex with
vertices at the origin and at the vectors of the standard basis of Rd.
For brevity, we will denote ϕU(V ) by ϕV for all simplices V in the
triangualtions Tk, k ≥ 1.

T4. (Affine) For every simplex V in Tk, ϕV (V ) is contained in a translate
of a vector space Y (V ) ⊂ Rd of dimension dimV .

T5. (Nondegeneracy) All simplices of Tk are non-degenerate. In other words,
if a simplex V has dimension m, then also

volm V > 0.

T6. (Vanishing diameter)
lim
k→∞

diamTk = 0.

Existence of triangulations on manifolds is discussed in great detail for
example in [20]. A triangulation T1 satisfying T2–T5 always exists. To
obtain all other refinements Tk of T1, one successively refines the standard
simplex ϕU (U) (for U a simplex in T1) making sure that the rules T2–T5
are respected every time. It can be seen by induction on k that this is
possible. It is quite obvious how to take a refinement that respects T2–T5.
Ensuring overall compliance with T6 is easy . Then one pulls the resulting
triangulation onto M using the maps ϕU .

We will denote by Ekm the m-dimensional skeleton of the triangulation
Tk.
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A.3 The base measure and its approximation

A.3.1 Construction of the base measure

In Section A.2 we specified the triangulations Tk, k ∈ N, and we introduced
the notation ϕV .

Let µ be a smooth density in Mn. We will define base measures µ̄k ≤ µ
depending on the triangulations Tk such that µ̄k → µ as k → ∞. Roughly
speaking, the measure µ̄k is the largest density, constant on a constant
section of TnM in the interior of each d-dimensional simplex U of Tk. Our
goal here is not to produce measures that satisfy Condition (Hol).

For a simplex V of dimension d in the triangulation Tk, we take the
chart ϕV and extend it to a trivialization of TnM , dϕV : TnM → Rd(n+1),
by setting

dϕV (x, v1, v2, . . . , vn) = (ϕV (x), dϕV (v1), . . . , dϕV (vn)) .

Let m denote Lebesgue measure on Rd(n+1) and let ρ be the Radon-Nikodym
derivative of the pushforward measure (ϕV )∗µ = ρm on Rd(n+1).

For (x, v) ∈ Rd(n+1) with x ∈ ϕV (V ) for a simplex V of dimension d, we
let

ρ̄k(x, v) = inf
y∈ϕV (V )

ρ(y, v).

Note that v is the same on both sides of the equation, and the dependence of
the right-hand-side on x comes from the choice of V . Also, this is ambiguous
when x is in a simplex of dimension < d. This ambiguity happens only on a
set of m-measure zero, so we may just ignore it, as it will not affect the rest
of our argument. We let

µ̄k|TnV = ϕ∗V (ρ̄km).

This completely determines µ̄k on the whole bundle TnM . Also, ρk → ρ
uniformly on compact sets, because ρ is smooth and diamTk → 0 by T6.
Similarly, M(µ̄k − µ)→ 0. Hence distMn(µ̄k, µ)→ 0.

A.3.2 Construction of the approximation

For each k ∈ N, we will construct a chain βk whose induced measure oβko
will approximate the base measure µ̄k very well. We do this in the following
steps.
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Step 1. On each d-dimensional simplex V of Tk, we sample the distribution
ρ̄km to get a finite sequence of points pV1 , . . . , p

V
`V
∈ Rd(n+1). We may assume

that the following conditions are true for these points:

A1. Each point pVi is in the interior of ϕV (V ).

A2. Write pVi as (x, v1, . . . , vn) in the standard basis of (Rd)n+1. Let Π be
the plane

ΠV
i = {x+ t1v1 + t2v2 + · · ·+ tnvn : ti ∈ R}.

We assume that ΠV
i intersects all the simplices W ⊆ ∂ϕV (V ) of dimen-

sion dimW ≥ d− n transversally.

A3. For a (d − n)-dimensional simplex W ⊂ Ekd−n, let V1 and V2 be two
d-dimensional simplices adjacent to W . Let Ai, i = 1, 2, be the set of
points of the form ΠVi

i ∩W . There is a finite partition of W by disjoint,
convex sets U1, . . . , Um with diamUi < a(k) such that each of them
contains at least one point in A1, and∣∣∣∣ µ̄k(V2)

µ̄k(V1)
− #Ui ∩A2

#Ui ∩A1

∣∣∣∣ < a(k), (8)

where a : N→ R+ is an asymptotically-vanishing function that will be
specified at the end of Section A.5.2.

Note that the measure ∑
V⊂Ek

d

1

`V

∑
i

ϕ∗V δpVi
(9)

is a good approximation of µ̄k. Compliance with item A3 can be achieved
by increasing the number of points, thus making the sample more dense.

Step 2. Let V be a d-dimensional simplex in Tk. Let γVi : DV
i ⊆ Rn → Rd

be the solution to the equations

γVi (0, 0, . . . , 0) = x,
∂γVi
∂tj

= vj , i = 1, . . . , n. (10)

Assume that the domain DV
i of γVi is the largest closed subset of Rn such

that γVi remains within ϕV (V ). Note that image γVi = γVi (DV
i ) ⊂ ΠV

i , so
by A2 this image also intersects the simplices in ∂ϕV (V ) transversally.

29



We let

βk =
∑
V⊂Ed

1

`V

∑
i

1

|DV
i |
ϕ∗V γ

V
i .

When we consider the measure oβko, this is like taking the measure in equa-
tion (9) and spreading the mass of each point along a simplex determined
by its velocity vectors v1, . . . , vn. Since µ̄k|V is ‘constant’ for each such set
of velocity vectors, oβko is in fact a very natural approximation to µ̄k. Note
that we divide by the n-dimensional lebesgue measure of the domain, |DV

i |,
in order to normalize and obtain the correct weights.

A.4 Conditions on the boundary

We say that a sequence of simplices V1, . . . V` of a triangulation is properly
nested if Vi ⊂ ∂Vi−1 and dimVi = d− i.

Let V be a simplex in a triangulation T of M . For x in V , let

uV (x) = dist(x, ∂V ).

If the triangulation T is reasonably nice, uV can then be extended to all of
M in such a way that uV will be smooth on the interiors of the simplices of
∂V . In our case, this can be done because the triangulation satisfies T3–T5.
There is some ambiguity in the choice of the extension, but it is immaterial
in our argument.

Let, for ε > 0,

uεV (x) =


uV (x)/ε, if |uV (x)| < ε.
−1, if uV (x) < −ε
1, if uV (x) > ε

Finally, let ūεV be a smoothed version of uεV , such that the amount of smooth-
ing tends to 0 as ε → 0. This can be obtained, for example, by convolv-
ing as in Section A.1 and ensuring that one uses mollifiers ψ such that
diam suppψ < ε2.

Let C = {V1 ⊃ · · · ⊃ Vn} ⊆ Tk be a set of n properly nested simplices.
Observe that the form

ωε = dūεV1 ∧ dū
ε
V2 ∧ · · · ∧ dū

ε
Vn

is exact.
Let ν be a measure on TnM . Let C = {V1 ⊃ V2 ⊃ · · · ⊃ V`} be properly

nested simplices in some triangulation of M . Let

Bε(C) = {x ∈M : |uVi(x)| ≤ ε, i = 1, 2, . . . , `}.
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Define the measure νC by∫
f dνC = lim

ε→0+

1

ε`

∫
Bε(C)

f dν,

where f ∈ C∞c (TnM).
Notice that

lim
ε→0+

∫
ωε dµ =

∫
duV1 ∧ duV2 ∧ · · · ∧ duVn dµC .

Since the left-hand-side vanishes when µ satisfies Condition (Hol), we get

Lemma 25. If the smooth density µ ∈Mn satisfies Condition (Hol), then
for every k ∈ N and for every properly nested sequence of simplices C =
{V1 ⊃ V2 ⊃ · · · ⊃ Vn} of the triangulation Tk, we have∫

TnM
duV1 ∧ duV2 ∧ · · · ∧ duVn dµC = 0. (11)

A.5 Closing up the base measure

A.5.1 Inductive construction of cycles

The 0-dimensional chain. Recall that the chain βk was constructed in
Section A.3.2. It is a linear combination of n-cells ϕ∗V γ

V
i , determined by the

equations (10). For each k > 0, we let β̃k be the chain that results from
extending the domain of the n-cell γVi (still respecting (10)) to an open set
very slightly larger than its original domain DV

i , so that it now intersects
the skeleton Ekd−1 of T k. By property A2, this intersection is transversal.

Then, for properly-nested simplices C = {V1 ⊃ · · · ⊃ V`} the measure oβ̃ko
C

reflects the way the boundary of βk intersects ∂V`.
For a point p in TnM such that π(p) ∈ V`, and for a set of n properly

nested simplices C = {V1 ⊃ · · · ⊃ Vn} let

W (p, C) = duV1 ∧ duV2 ∧ · · · ∧ duVn(p),

where the functions uVi are as in Section A.4. Observe that if C and C ′ are
two sets of n properly nested simplices that differ only in the `th simplex,
` < n, and the corresponding simplices V` and V ′` are adjacent, then

W (p, C) = −W (p, C ′) (12)

because duV` = −duV` at p.
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For each k, we pick a finite set of points {pki }i ⊂ TnM , and weights
rki ∈ R+ such that Conditions U1–U4 below are true. We will imagine that
there is an n-chain whose (degenerate) cells are the points {π(pi)}i ⊆M , so
that η0

k is given by

η0
k =

∑
i

rki π(pki ),

and parameterized so that

oη0
ko =

∑
i

rki δpki
.

Strictly speaking, such chain η0
k does not exist, but the measure oη0

ko does,
and this is the object we need. The conditions are:

U1. π(pki ) ∈ Ekd−n for all i.

U2. We require the points in the support of oβ̃ko
C

to be contained in {pki }i,
and the corresponding weights rki to be at least as large as the weights

these points have in the measure oβ̃ko
C

.

U3. For each set of n properly nested simplices C = {V1 ⊃ · · · ⊃ Vn} ⊆ T k,∑
i

W (pki , C) rki = 0,

where the sum is taken over all i such that π(pi) is in Vn.

U4. The measure oη0
ko approximates the restriction of µ to the skeleton Ekd−n:

distMn

(∑
C

µC ,
∑
C

oη0
ko
C

)
≤ 1

k

where the sums are taken over all sets of n properly nested simplices of
T k.

The idea is that {pki }i∩π−1(Vn) should be a very good sample of the measure
µC . The set of points and weights can be found as follows. Start with

the points in the support of oβ̃ko
C

, with the weights they inherit from βk.
Then by further sampling the measure µC , and invoking the fact that it
satisfies the conclusion of Lemma 25, a solution for the condition in item
U3 is guaranteed to exist. Note that the condition in item U3 is essentially
a rephrasing of the conclusion of Lemma 25 adapted to oη0

ko
C

. Taking a
sufficiently large sample of µC , one can also guarantee that item U4 will be
satisfied.
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The higher-dimensional chains. For every set of n+ 1 properly nested
simplices C = {V1 ⊃ · · · ⊃ Vn+1}, we let ηCk denote the 0-dimensional chain

ηCk =
∑
i

(sgnW (pki , C))rki π(pki )

where the sum is taken over all indices i such that pki is contained in Vn+1.
For every set C = {V1 ⊃ · · · ⊃ Vn−j} ⊆ Tk of n − j properly nested

simplices, 1 ≤ j < n, β̃k induces an j-dimensional chain βCk on ∂Vn−j that
satisfies, for all ω ∈ Ωj(M),∫

βC
k

ω =

∫
TnM

ω ∧ duV1 ∧ duV2 ∧ · · · ∧ duVn−j doβ̃ko

Observe that the chain βCk is in general not unique, but any choice will do
for our purposes. We also let β∅k = βk.

For sets of properly nested simplices

C ′ = {V1 ⊃ · · · ⊃ Vn−j−1} ⊂ C = {V1 ⊃ · · · ⊃ Vn−j},

we refine the chain βC
′

k so that each of its (j+1)-dimensional cells intersects
only one of the (d−n+j+1)-dimensional simplices of the boundary ∂Vn−j−1.
We then let β̄Ck be the part of βC

′
k that is contained in Vn−j . In other words,

βC
′

k =
∑

V⊂∂Vn−j

β̄
C′∪{V }
k .

We proceed to construct, inductively on j = 0, 1, . . . , n − 1, (j + 1)-
dimensional cycles ηCk corresponding to each set of n − j properly nested
simplices C = {V1 ⊃ · · · ⊃ Vn−j} ⊆ Tk, such that:

E1. The cells of ηCk are contained in Vn−j ⊆ Ekd−n+j+1 ⊆M .

E2. We require that β̄Ck be contained in ηCk , in the sense that all the cells of
β̄Ck appear in ηCk with coefficients of magnitud greater or equal to those
they have in β̄Ck .

If j = n−1, C = {V1} and ηCk contains precisely the cells of βk that are
contained in V1, and with exactly the same parameterization for each
cell.

E3. We have
∂ηCk =

∑
V⊂∂Vn−j

η
C∪{V }
k ,

where the sum is taken over all simplices in the boundary of Vn−j .
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E4. If C and C ′ are sets of n− j properly nested simplices of Tk that only
differ in the `-th simplex, 1 ≤ ` < n−j, and the corresponding simplices
V` and V ′` are adjacent, then

ηCk = −ηC′k .

This should hold in the sense that the induced functionals on Ωj+1(M)
(i.e., the induced currents) must be equal.

E5. If C ′ = {V1 ⊃ · · · ⊃ Vn−j−1} ⊆ Tk is not empty,∑
V⊂∂Vn−j−1

∂η
C′∪{V }
k = 0,

where the sum is taken over all simplices in the boundary of Vn−j−1. If
C ′ is empty, then the same equation should hold, but now taking the
sum over all simplices V of dimension d in Tk.

E6. The cells of ηCk that are not inherited from β̄Ck are almost M-mass
minimizing, in a sense that will be specified at the end of Section A.5.3.

E7. If j = n − 1, the cells of ηCk that are not inherited from β̄Ck are pa-
rameterized with very high speed (and thus the induced total measure
oβ̄Ck o(TnM) is very small), in a sense that will be specified in Section
A.6.

First we show how to create the 1-chain ηCk corresponding to the case
in which C contains n properly nested simplices. We start with β̄Ck , which
will provide for compliance with item E2. By U2, the boundary of β̄Ck is

also contained in
∑

V⊂∂Vn−1
η
C∪{V }
k . So what we do, in order to comply

with E1 and E3, is that we connect the remaining dots in
∑

V⊂∂Vn−1
η
C∪{V }
k

with curves contained in Vn−1 in the way prescribed by the weights of the
dots; because of property U3, this is possible. By taking very short curves,
we ensure compliace with E6. Because of identity (12), the construction of

η
C∪{V }
k (V ⊂ ∂Vn−1) immediately implies E4. Property E5 also follows from

the identity (12).
Now assume that we have ηCk for j = m − 1, and let us construct it

for j = m, m > 1. Let C = {V1 ⊃ · · · ⊃ Vn−m} ⊆ Tk. For each simplex
V ⊂ ∂Vn−m, we are assuming that there exists ηC∪Vk that satisfies E1–E6. To
close these up, we again start with β̄C (whence complying with E2) and we
add cells of dimension m+1 contained in Vn−m (complying with E1) so that
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property E3 will hold; this is possible because Vn−m has trivial homology

and because
∑

V⊂∂Vn−1
η
C∪{V }
k is a cycle as it satisfies E5. Properties E4

and E5 for j = m follow from property E4 for j = m− 1. Compliance with
property E6 can be attained by choosing an almost mass-minimizing set of
(m+1)-cells. Property E7 can be achieved by adjusting the parameterization
of the cells involved.

Write ηk = η∅k. We have proved:

Lemma 26. There is a sequence of cycles ηk that contain βk and such that

M(oηko)−M(oβko) (13)

is almost minimal while respecting

distMn

(∑
C

µC ,
∑
C

oηkoC
)
≤ 1

k
, (14)

where the sums are taken over all sets C of n properly nested simplices of
T k. Also, the part of oηkoC that comes inherited from βk satisfies A3.

By construction, equation (14) is exactly the same as the condition in
U4.

A.5.2 Density lemma

For each set C = {V1 ⊃ · · · ⊃ Vn−1} ⊂ Tk of properly nested simplices,
in Section A.5.1 the 1-dimensional chain ηCk was constructed. Our goal in
this section is to estimate the asymptotic behavior of its mass M(oηCk o) as
k →∞.

For a set U ⊂ Rm, the diameter of U within U is defined to be

diamU U = sup
x,y∈U

inf
γ

arclength(γ)

where the infimum is taken over all absolutely-continuous curves γ param-
eterized on any interval [a, b] ⊆ R and such that γ(a) = x and γ(b) = y.

Lemma 27. Let U be a path-connected, bounded open set in Rm, m ≥ 1.
There is a number ε0 > 0 such that if 0 < ε < ε0 and A and B are two finite
subsets of U of equal cardinality, then the following is true. Assume that
there is a finite partition of U by disjoint, path-connected sets U1, . . . , Um
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with diamUi Ui < ε such that each of them contains at least one point of A,
and ∣∣∣∣1− #Ui ∩B

#Ui ∩A

∣∣∣∣ < ε2. (15)

Then there is a 1-dimensional chain θ such that oθo(U) = 1, M (oθo) < 2ε,
and

∂oθo = 1

#A

∑
x∈A

δx −
∑
y∈B

δy

 . (16)

Proof. Let

ε0 =
1

2 diamU U
.

Condition (15) implies that at least b(1 − ε2)#Ui ∩ Ac points of A can be
joined to points of B within Ui. Since diamUi Ui < ε, this can be done using
curves γ of length smaller than ε. Let λ1 be the chain formed by all those
curves γ, each parameterized at the right speed that its induced measure will
be a probability, oγo(TU) = 1. The remaining ∼ ε2#Ui∩A points of A (and
a similar amount of points of B) need to be paired with points outside Ui.
Since #A = #B, this is always possible, and it can be done using curves
of length ≤ diamU U . Let λ2 be the chain corresponding to these longer
curves, again parameterized at a speed that will make the induced measure
a probability.

We let θ = (λ1 + λ2)/#A. It is clear then that oθo is a probability, and
that (16) holds. We estimate

M (oθo) =
arclength(λ1) + arclength(λ2)

#A

≤ ε(1− ε2)#A+ (diamU U)ε2#A

#A
≤ 2ε.

Let k ≥ 1 and let C be a set of properly nested simplices in Tk. Decom-
pose the chain ηCk into the part of it that comes from β̄Ck and a remainder
ζCk ,

ηCk = β̄Ck + ζCk .

Fix k ∈ N and a set C of n properly nested simplices. From the con-
struction of ηCk , it follows that ζCk is formed from two types of components:

• Curves joining two points in the 0-chains βCk ; call the corresponding
chain ζshort.
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• Curves joining points in various 0-chains ηC
′

k (C ′ ⊃ C) that are not
both already in βCk ; call the corresponding chain ζlong.

Observe that as k →∞, the first quotient in (8) behaves as

µ̄k(V2)

µ̄k(V1)
→ 1

since the triangulations Tk satisfy T6 and µ is assumed to be a smooth
density. So (8) tends to look like (15). It follows that if k is large, we can
apply Lemma 27 to a large subset of the points of ∂ζshort, with the conclusion
that the part of ζshort joining them has very small mass M. What remains
of ∂ζshort tends to have 0 weight, so the mass of the corresponding part of
ζshort also vanishes asymptotically.

Similarly, since µ̄k → µ as k →∞, and since the points {pki }i are a sam-
ple of µ|Ek

d−n
(they satisfy U4), the weight of ∂ζlong vanishes asymptotically,

and hence so does the mass of ζlong.
We let the function a in A3 decrease rapidly enough that the following

lemma will hold as per the preceding argument.

Lemma 28. As k →∞,

∑
C

M(oζCk o)→ 0 and

∑
C M(oηCk o)∑
C M(oβ̄Ck o)

→ 1,

where the sums are taken over all sets C of n− 1 properly nested simplices
in Tk.

A.5.3 Isoperimetric inequality

In this section we want to find an upper bound for the mass difference (13).
Recall the isoperimetric inequality:

Proposition 29 (Federer [10, §4.2.10], [16, §5.3]). There is a constant C4 >
1 such that if θ is an m-chain with ∂θ = 0 and contained in a simplex V of
some triangulation Tk and of diameter diamV V < 1, then there exists an
(m+ 1)-chain σ with ∂σ = θ contained in V and with mass bounded by

M(oσo) ≤ C4M(oθo)
k+1
k .

The original proposition is valid for chains θ in Rd. It is true as stated
because when we pullback a chain from Rd to M via any of the functions
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ϕV , the modulus of these mappings is globally bounded. This in turn is
true because there are only finitely many of them, and they have compact
domains.

Let k ≥ 1 and let V1 be a d-dimensional simplex in Tk. Recall that the
chains ζCk were defined in Section A.5.2. It follows from Lemma 28 and
Proposition 29 that we can take the cells in ζCk to be such that, as k →∞

M(ζ
{V1}
k ) ≤ C4

∑
V2⊂∂V1

M(ζ
{V1,V2}
k )2 + εk2

≤ C4
1+ 3

2

∑
V3⊂∂V2

∑
V2⊂∂V1

M(ζ
{V1,V2,V3}
k )3 + εk3

≤ · · ·

≤ C4
pn

∑
Vn−1⊂∂Vn−2

· · ·
∑

V2⊂∂V1

M(ζ
{V1,V2,...,Vn−1}
k )n−1 + εkn−1 → 0,

where pn > 1 is some number depending only on n, ε`k is arbitrarily small
(it is the error we may get from not taking exactly the cell provided by
Proposition 29, but one with slightly larger mass; we thus specify property
E6 to mean that εk` → 0 as k → ∞ for all `), and the sums are taken over
all simplices in the corresponding boundaries. We conclude

Lemma 30.
|M(oηko)−M(oβko)| → 0 as k →∞.

A.6 Conclusion

Proof of Theorem 1. Let µ ∈Mn be a positive measure. If µ satisfies Con-
dition (Cyc), it follows from Stokes’s theorem that it also satisfies Condition
(Hol).

To prove the other direction, assume that µ satisfies Condition (Hol).
By Lemma 24, we can assume that µ is smooth. We can thus construct for
k ≥ 1 triangulations Tk as in Section A.2, base measures µ̄k as in Section
A.3.1, chains βk approximating these as in Section A.3.2, and cycles ηk as
in Section A.5.1 that contain βk. We have

distMn(µ, oηko) ≤ distMn(µ, µ̄k) + distMn(µ̄k, oβko) + distMn(oβko, oηko).

The first two summands on the right-hand-side vanish asymptotically by
construction. The last term, as per the definition of distMn in equation (1),
has two parts: the mass difference, which tends to zero by Lemma 30, and
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the one involving the functions fi. The second one can be arranged to tend
to zero by having the cells of ηk not present in βk be parameterized at very
high speeds, thus specifying property E7. We conclude that the measures
induced by the cycles ηk indeed approximate µ, so µ satisfies Condition
(Cyc).
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