Max-Planck-Institut für Mathematik Bonn

The variational structure of the space of holonomic measures
by

Rodolfo Ríos-Zertuche

The variational structure of the space of holonomic measures

Rodolfo Ríos-Zertuche

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

The variational structure of the space of holonomic measures

Rodolfo Ríos-Zertuche

September 5, 2014

Abstract

We examine a setting appropriate for the analysis of many variational problems. We work on the closure of the space of measures induced by embeddings of submanifolds. We prove that this space coincides with the space of measures that vanish on exact forms. We characterize the space of derivatives of variations for these objects. We use this characterization to deduce some results for the critical points of the action of very general Lagrangians.

An intermediate result of independent interest is the characterization of the distributions that can appear as derivatives of families of Borel probabilities and signed measures on manifolds.

Contents

1 Introduction 2
2 Preliminaries 4
2.1 Setting 4
2.2 Definition of holonomic measures and their topology 5
2.3 Relative holonomic measures 8
3 Distributions that arise as derivatives of families of mea- sures 8
3.1 Distributions and measures 8
3.1.1 Convolutions 8
3.1.2 Definition and smoothing of distributions 9
3.1.3 Structure 10
3.2 Variations 11
4 The tangent space 16
4.1 Mild distributions 16
4.2 Variations of holonomic measures 17
5 Examples 18
5.1 Horizontal variations 19
5.2 Vertical variations 21
5.3 Transpositional variations 23
A Proof of Theorem 1 25
A. 1 Smoothing revisited 25
A. 2 Triangulations 26
A. 3 The base measure and its approximation 28
A.3.1 Construction of the base measure 28
A.3.2 Construction of the approximation 28
A. 4 Conditions on the boundary 30
A. 5 Closing up the base measure 31
A.5.1 Inductive construction of cycles 31
A.5.2 Density lemma 35
A.5.3 Isoperimetric inequality 37
A. 6 Conclusion 38

1 Introduction

In this paper we consider the space of holonomic measures, which are roughly all measures that can be approximated by closed submanifolds. These are defined carefully in Section 2.

To motivate the definition, we mention and prove an important equivalence of two classes measures: those that can be approximated by the measures induced by embeddings of closed submanifolds, and those for which teh integrals of exact forms vanish. This is Theorem 1 in Section 2.2, and the proof is in Appendix A.

We also prove a general result on families of measures. Consider a family of measures μ_{s} indexed by a real parameter s with values in an interval that contains 0 , and such that $\mu=\mu_{0}$. We say that μ_{s} is differentiable at 0 if for every $f \in C_{c}^{\infty}(P)$ the function $s \mapsto \int f d \mu_{s}$ is differentiable at 0 and if the derivative induces a distribution. For example, if the family is a moving Dirac delta $\mu_{s}=\delta_{s}$ on \mathbb{R}, then the derivative at 0 is the distribution $-\partial \delta_{0}$ given by $\left\langle-\partial \delta_{0}, f\right\rangle=f^{\prime}(0)$ for all $f \in C_{c}^{\infty}(\mathbb{R})$.

We address the question of characterizing the distributions that arise in this way. In other words, we characterize the velocity vectors for curves in the space of measures that pass through μ. This result is stated and proved in Section 3.

Then we apply that to study the ways in which holonomic measures can be deformed, thus characterizing the velocity vectors of all curves in the space of holonomic measures that are differentiable. We are thus able to give a good description of what would be the tangent space to the space of holonomic measures. We do this in Section 4.

This study is fruitful, as is shown by an initial set of applications presented in Section 5. Among other things, we are able to show that the conditions we obtain for criticality are effectively more general than the classical Euler-Lagrange equations. Other applications include the formulation of a sort of n-dimensional energy-conservation principle, a version of the Hamilton-Jacobi equation, and the statement that the Lagrangian must look like an exact form in the support of the minimizers.

Related literature. Geometric measure theory and variational analysis are vast subjects, so a discussion about how this research fits in those contexts is in place. However, since it seems impossible to give an exhaustive discussion, we choose to instead give just a brief one and hence minimize the number of mistakes we make in the process due to our lack of expertise in all these fields. Also, we will not define all the objects involved, but rather we will just mention them in the hope that readers familiar with these concepts will find the information they are looking for, while readers not familiar with them will be happy to ignore the discussion.

Holonomic measures appeared in the $n=1$ case in Mather's [15] version of Mather-Aubry theory for minimizers of the action of Lagrangians on the torus. The theory of holonomic measures was extended by others; for example by Mañé [5, 13], Bangert [3], Bernard [4]. A certain case of codimension one of Mather-Aubry theory was considered by Moser [17-19].

In the more general context we treat here, in which n can be arbitrary, a similar theory should exist for a large class of Lagrangians. Under rather mild conditions in the Lagrangian (such as convexity, superlinearity, tightness) minimizers exist in all holonomy classes with coefficients in the real numbers \mathbb{R}. However, Mather's α and β functions are probably only defined for a very restricted set of Lagrangians.

Holonomic measures induce superpositions of currents (cf. [10, 16]) on a manifold M in an obvious way. However, they carry more information
than currents because they take into account the parameterization of the minimizers, and hence allow for the study of anisotropic Lagrangians.

Holonomic measures also induce varifolds (cf. [1, 2, 21]). Again, they carry more information because they record not only the tangent planes, but also the velocity vectors of a 'parameterization.'

With holonomic measures the issue of rectifiability is not a concern since rectifiability is built into them. Whether or not one can find their volume (or the action of a Lagrangian) depends on the question of whether this function is integrable with respect to them. They have empty perimeter, so finiteness of perimeter is also not a concern.

Holonomic measures are suitable for the treatment of many problems that could be approached parametrically using functions for example in Sobolev or Lipschitz spaces (cf. [7, 8, 12]).

Superpositions of Young measures (cf. [4,23]) are a special case of holonomic measures.

In Section 5.2 we deduce a sort of general Hamilton-Jacobi equation, a case of which has been studied to great depth (see for example $[6,9]$).

The definition of differentiability of families of measures (i.e., of varitions) that we use is only one possibility of many; see for example [22] for an exploration of other possibilities.

Acknowledgements. I am deeply indebted to John N. Mather for his patience in listening to a number of sometimes very confused and tentative presentations of this results and for his help in clarifying my ideas with numerous questions and suggestions. I am also very grateful to Antonio Ache and Matilde Martínez for several conversations on this subject, to Gonzalo Contreras and Renato Iturriaga for introducing me to the calculus of variations, and to Burglind Juhl-Jöricke for teaching me what I know about distributions.

I am very grateful to Princeton University, to the Institute for Computational and Experimental Research in Mathematics at Brown University, and to the Max Planck Institute for Mathematics in Bonn for their hospitality and support during the development of this research.

2 Preliminaries

2.1 Setting

Phase space. Let M be a compact, oriented C^{∞} manifold of dimension $m \geq 1$, possibly with boundary ∂M. Denote by $T M$ its tangent bundle and,
for $n \geq 1$, denote by $T^{n} M$ the direct sum bundle

$$
T^{n} M=\underbrace{T M \oplus \cdots \oplus T M}_{n}
$$

of n copies of $T M$. The dimension of $T^{n} M$ is $m(n+1)$. An element in $T^{n} M$ can be denoted $\left(x, v_{1}, v_{2} \ldots, v_{n}\right)$, where x is a point in M and $v_{1}, v_{2}, \ldots, v_{n} \in$ $T_{x} M$ are vectors tangent to x. When taking local coordinates, we will write

$$
x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad \text { and } \quad v_{i}=\left(v_{i 1}, v_{i 2}, \ldots, v_{i m}\right) .
$$

Sometimes for brevity we will write (x, v) instead of $\left(x, v_{1}, v_{2}, \ldots, v_{n}\right)$.
The projection $\pi: T^{n} M \rightarrow M$ is given by $\pi\left(x, v_{1}, \ldots, v_{n}\right)=x$. We denote by $\Omega^{n}(M)$ the space of smooth differential n-forms on M. We will often consider these forms as smooth functions on $T^{n} M$.

Throughout, when referring to functions on these objects, we will use the term smooth to mean C^{∞}. We will denote by $C^{\infty}(X, Y)$ the space of all smooth functions $X \rightarrow Y$. If Y is the real line \mathbb{R}, we will sometimes omit it in our notation. We will denote by $C_{c}^{\infty}(X)$ the set of all real-valued, compactly-supported, smooth functions on the set X.

Riemannian structure. We fix, once and for all, a Riemannian metric $g \in C^{\infty}\left(T^{2} M\right)$ on M and its corresponding Levi-Civita connection ∇. We denote the operation of covariant differentiation in the direction of a vector field F by ∇_{F}.

We will denote $|v|=\sqrt{g(v, v)}$ for $v \in T_{x} M$, and we extend this norm to $T_{x}^{n} M$ by letting

$$
\left|\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right|=\sqrt{\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2}+\cdots+\left|v_{n}\right|^{2}} .
$$

Forms. We will denote by $\Omega^{k}(M)$ the space of smooth differential k-forms on M. On this space we define a norm $\|\cdot\|$ by letting, for $\omega \in \Omega^{k}(M)$,

$$
\|\omega\|=\sup \left\{\omega_{x}\left(v_{1}, \ldots, v_{k}\right):\left(x, v_{1}, \ldots, v_{k}\right) \in T^{n} M,\left|v_{i}\right| \leq 1\right\} .
$$

2.2 Definition of holonomic measures and their topology

Subpower functions. We let \mathscr{P}_{n} be the space of subpower functions, that is, the space of real-valued continuous functions $f \in C^{0}\left(T^{n} M\right)$ such that

$$
\sup _{(x, v) \in T^{n} M} \frac{|f(x, v)|}{1+|v|^{n}}<+\infty .
$$

Note that all differential n-forms on M belong to \mathscr{P}_{n} when regarded as functions on $T^{n} M$. We endow \mathscr{P}_{n} with the supremum norm and its induced topology.

Mild measures. A signed measure μ on $T^{n} M$ is mild if

$$
\int_{T^{n} M} 1+\left|\left(v_{1}, \ldots, v_{n}\right)\right|^{n} d|\mu|<+\infty
$$

where $|\mu|=\mu^{+}+\mu^{-}$is the absolute value of the measure with Hahn decomposition $\mu=\mu^{+}-\mu^{-}$, for positive measures μ^{+}and μ^{-}. We denote the space of mild measures by \mathscr{M}_{n}. We define the mass $\mathbf{M}(\mu)$ of $\mu \in \mathscr{M}_{n}$ to be

$$
\begin{aligned}
\mathbf{M}(\mu)=\int_{T^{n} M}\left[\sup _{\omega \in \Omega^{n}(M),\|\omega\| \leq 1}\right. & \left.\omega_{x}\left(v_{1}, \ldots, v_{n}\right)\right] d|\mu|\left(x, v_{1}, \ldots, v_{n}\right) \\
& =\int_{T^{n} M} \operatorname{vol}_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right) d|\mu|\left(x, v_{1}, \ldots, v_{n}\right) .
\end{aligned}
$$

This is always a nonnegative number.
The space \mathscr{M}_{n} is natually embedded in the dual space $\mathscr{P}_{n}{ }^{*}$ and we endow it with the topology induced by the weak* topology on $\mathscr{P}_{n}{ }^{*}$. Although the topology on $\mathscr{P}_{n}{ }^{*}$ is not metrizable, the topology on \mathscr{M}_{n} is. We can give a metric in \mathscr{M}_{n} by picking a sequence of functions $\left\{f_{i}\right\}_{i \in \mathbb{N}} \subset C_{c}^{\infty}\left(T^{n} M\right)$ that are dense in \mathscr{P}_{n}, and then letting

$$
\begin{equation*}
\operatorname{dist}_{\mathscr{M}_{n}}\left(\mu_{1}, \mu_{2}\right)=\mathbf{M}\left(\mu_{1}-\mu_{2}\right)+\sum_{k=1}^{\infty} \frac{1}{2^{k} \sup \left|f_{k}\right|}\left|\int\right| f_{k}\left|d \mu_{1}-\int\right| f_{k}\left|d \mu_{2}\right| . \tag{1}
\end{equation*}
$$

Cellular complexes. An n-dimensional cell (or n-cell) γ is a smooth map

$$
\gamma: D \subseteq \mathbb{R}^{n} \rightarrow M
$$

where D is a subset of \mathbb{R}^{n} homeomorphic to a closed ball, together with a choice of coordinates $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ on D. A chain of n-cells is a formal linear combination of the form

$$
a_{1} \gamma_{1}+a_{2} \gamma_{2}+\cdots+a_{k} \gamma_{k}
$$

for real numbers $a_{1}, a_{2}, \ldots, a_{k}$ and n-cells $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$. We will say that a chain is positive if $a_{i}>0$.

Let $\gamma: D \subseteq \mathbb{R}^{n} \rightarrow M$ be an n-cell. Denote by $d \gamma$ the differential map associating, to each element in D, an element in $T^{n} M$. Explicitly, if we have coordinates $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ on D, then

$$
d \gamma(t)=\left(\gamma(t), \frac{\partial \gamma}{\partial t_{1}}(t), \frac{\partial \gamma}{\partial t_{2}}(t), \cdots, \frac{\partial \gamma}{\partial t_{n}}(t)\right)
$$

This map does depend on our choice of coordinates t.
To an n-cell γ, we associate a measure μ_{γ} on $T^{n} M$ defined by

$$
\int_{T^{n} M} f d \mu_{\gamma}=\int_{D} f(d \gamma(t)) d t
$$

where $d t=d t_{1} \wedge \cdots \wedge d t_{n}$. Similarly, to a chain of n-cells $\alpha=\sum_{i=1}^{k} a_{i} \gamma_{i}$, we associate the measure μ_{α} given by

$$
\mu_{\alpha}=\sum_{i=1}^{k} a_{i} \mu_{\gamma_{i}}
$$

The measure μ_{α} is an element of \mathscr{M}_{n}. We will say that the chain α is a cycle if for all forms $\omega \in \Omega^{n-1}(M)$,

$$
\int_{T^{n} M} d \omega d \mu_{\alpha}=0
$$

Holonomic measures. The proof of the following theorem can be found in Appendix A:

Theorem 1. Assume that $1 \leq n \leq d$. Let $\mu \in \mathscr{M}_{n}$ be a probability measure on $T^{n} M$. Then the following conditions are equivalent:
(Hol) The measure μ satisfies

$$
\int d \omega d \mu=0
$$

for all $\omega \in \Omega^{n-1}(M)$.
(Cyc) There exists a sequence $\left\{\alpha_{k}\right\}_{k \in \mathbb{N}}$ of cycles such that $\mu_{\alpha_{k}} \rightarrow \mu$ as $k \rightarrow \infty$ in the topology induced by the distance (1).

A mild measure $\mu \in \mathscr{M}_{n}$ is holonomic if it is a probability (that is, a positive measure such that $\mu\left(T^{n} M\right)=1$) satisfies the Conditions (Hol) and (Cyc). The space \mathscr{H} of holonomic measures is convex. By the BanachAlaoglu theorem, it is also compact, since it is a closed subset of the unit ball of $\mathscr{P}_{n}{ }^{*}($ it is cut out by the closed condition $(\mathrm{Hol}))$.

2.3 Relative holonomic measures

Since our proof of Theorem 1 relies on triangulations, it is easy to modify it in order to prove

Theorem 2. Assume that $1 \leq n \leq d$. Let $\mu \in \mathscr{M}_{n}$ and $U \subset M$ be a closed set diffeomorphic to a union of simplices of a smooth triangulation of M. Then the following conditions are equivalent:

1. For all forms $\omega \in \Omega^{n-1}(M)$ such that $\left.\omega\right|_{U}=0$,

$$
\int_{T^{n} M} d \omega d \mu=0
$$

2. There exists a sequence $\left\{\alpha_{k}\right\}_{k \in \mathbb{N}}$ of chains such that the boundaries $\partial \alpha_{k}$ are contained in U, and such that $\left\langle\alpha_{k}\right\} \rightarrow \mu$ as $k \rightarrow \infty$ in the topology induced by the distance (1).

A probability measure $\mu \in \mathscr{M}_{n}$ that satisfies the conditions in Theorem 2 is said to be holonomic relative to U. The space of all these measures is again compact and convex.

3 Distributions that arise as derivatives of families of measures

Let P be a Riemannian manifold without boundary. In Section 4.1, we will use the results in this section for $P=T^{n} M$.

In this section, we characterize the distributions that arise as derivatives of families of probabilities and of positive and signed Borel measures on smooth manifolds.

3.1 Distributions and measures

3.1.1 Convolutions

A mollifier $\psi \in C_{c}^{\infty}(\mathbb{R})$ is a function such that $\psi(x)=\psi(-x), \int \psi=1$, and $\psi \geq 0$.

We will say that a tuple of vector fields $F=\left(F_{1}, \ldots, F_{\ell}\right)$ on P is generating if at every point $p \in P$ the vectors $F_{1}(p), \ldots, F_{\ell}(p)$ span all of $T_{p} P .1$

Fix a generating tuple of vector fields $F=\left(F_{1}, \ldots, F_{\ell}\right)$. Denote by $\phi^{i}: P \times \mathbb{R} \rightarrow P$ the flow of F_{i} :

$$
\phi_{0}^{i}(x)=0, \quad \frac{d \phi_{s}^{i}(x)}{d s}=F_{i}\left(\phi_{s}^{i}(x)\right), \quad s \in \mathbb{R} .
$$

For $f \in C_{c}^{\infty}(P)$, we will denote by $P_{i}(f)$ the function given by

$$
P_{i}(f)(x)=\int_{\mathbb{R}} f \circ \phi_{s}^{i}(x) \psi(s) d s
$$

This is a convolution in the direction F_{i}.
For $f \in C_{c}^{\infty}(P)$, we will denote

$$
\psi *_{F} f:=P_{1} P_{2} \cdots P_{\ell}(f)
$$

3.1.2 Definition and smoothing of distributions

A distribution on the open set $U \subseteq \mathbb{R}^{m}$ is a linear functional $\eta: C_{c}^{\infty}(U) \rightarrow \mathbb{R}$ such that for each compact set $K \subset U$ there are some constants $N>0$ and $C>0$ (depending only on K and η) such that

$$
|\langle\eta, f\rangle| \leq C \sum_{|I| \leq N} \sup _{p \in U}\left|\partial^{I} f(p)\right|
$$

for all $f \in C_{c}^{\infty}(U)$. Here, the sum is taken over all multi-indices I with m nonnegative entries adding up to at most N, and ∂^{I} denotes the iterated partial derivatives in the corresponding directions in \mathbb{R}^{m}.

We fix, once and for all, an n-dimensional C^{∞} manifold P without boundary, and with a Riemannian metric that induces the distance dist_{P} between points of P.

Let $\eta: C_{c}^{\infty}(P) \rightarrow \mathbb{R}$ be a linear functional. For a chart $\varepsilon: U \rightarrow W$ from the open set $U \subseteq P$ to the open set $W \subseteq \mathbb{R}^{n}$, the pushforward $\varepsilon_{*} \eta$ is defined by

$$
\left\langle\varepsilon_{*} \eta, f\right\rangle=\left\langle\eta, f \circ \varepsilon^{-1}\right\rangle
$$

for f in $C_{c}^{\infty}(W)$.
The functional η is a distribution if for each chart ε as above, $\varepsilon_{*} \eta$ is a distribution on W. We will denote by $\mathscr{D}^{\prime}(P)$ the space of distributions on P. The topology on $\mathscr{D}^{\prime}(P)$ is induced by the seminorms

$$
\eta \mapsto|\langle\eta, f\rangle|
$$

for $f \in C_{c}^{\infty}(P)$. In other words, we have $\eta_{i} \rightarrow \eta$ if, and only if, $\left\langle\eta_{i}, f\right\rangle \rightarrow$ $\langle\eta, f\rangle$ for all $f \in C_{c}^{\infty}(P)$. We remark that any measure on P determines a distribution, but that not all distributions arise in this way.

For a distribution $\eta \in \mathscr{D}^{\prime}(P)$, we define the convolution by duality:

$$
\left\langle\psi *_{F} \eta, f\right\rangle=\left\langle\eta, \psi *_{F} f\right\rangle .
$$

Lemma 3. If η is a distribution in $\mathscr{D}^{\prime}(P), F$ is a generating tuple of vector fields, and ψ is a mollifier, then $\psi *_{F} \eta$ is a smooth signed Borel measure.

For a proof see for example $[11, \S 5.2]$.

3.1.3 Structure

We fix a generating tuple $F=\left(F_{1}, \ldots, F_{\ell}\right)$ of vector fields. As before, we denote by I a multi-index $I=\left(i_{1}, \ldots, i_{\ell}\right)$ with ℓ nonnegative entries, and by ∂^{I} the operator that iteratively takes i_{j} covariant derivatives in the direction $F_{j}, j=1, \ldots, \ell$.

Lemma 4 (Structural representation in terms of measures). A distribution $\eta \in \mathscr{D}^{\prime}(P)$ can be written as a sum

$$
\begin{equation*}
\eta=\sum_{I} \partial^{I} \nu_{I} \tag{2}
\end{equation*}
$$

where I ranges over all multi-indices as above; for each I, ν_{I} is a signed measure. For a compact set $K \subseteq P$,

$$
K \cap \operatorname{supp} \nu_{I}=\varnothing
$$

for all but finitely many multi-indices I.
Proof. Take a partition of unity $\left\{\xi_{j}\right\}_{j \in \mathbb{N}} \subseteq C_{c}^{\infty}(P)$ of P, that is, a countable set of smooth functions p_{i} with compact support such that $\sum_{j} \xi_{j}(p)=1$ and $\xi_{j}(p) \geq 0$ for all $p \in P$, and $\xi_{j}(p)=0$ for all but finitely $j \in \mathbb{N}$ at any point $p \in P$. We make the further assumption that the support of each of the functions ξ_{j} is contained in an open set $U_{j} \subseteq P$ that is diffeomorphic to a cube $[0,1]^{n}$, and we let $\phi_{j}: U_{j} \rightarrow[0,1]^{n}$ be the corresponding diffeomorphism.

We let $\tilde{\eta}_{j}$ be the distribution on \mathbb{R}^{n} that results from pushing $\xi_{j} \eta$ forward to the cube $[0,1]^{n}$ and extending periodically. In other words, for all rapidlydecreasing (Schwartz) functions $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$, we let $\tau_{z} f(x)=f(x-z)$ and

$$
\left\langle\tilde{\eta}_{j}, f\right\rangle=\sum_{z \in \mathbb{Z}^{n}}\left\langle\eta, p_{j} \cdot\left(\tau_{z} f\right) \circ \phi_{j}^{-1}\right\rangle
$$

Like all periodic distributions, $\tilde{\eta}_{j}$ is a tempered distribution. We have
Lemma 5. Every tempered distribution is a derivative of finite order of some continuous function of polynomial growth.

For a proof, see for example [11, Theorem 3.8.1].
Let ζ_{j} be the continuous function of polynomial growth corresponding to $\hat{\eta}_{j}$ and let α_{j} be the multi-index corresponding to the derivative in the lemma, so that

$$
\hat{\eta}_{j}=\partial^{\alpha_{j}} \zeta_{j} .
$$

Let D_{j} be the (smooth) differential operator on P such that $\phi_{j}^{*} \partial^{\alpha_{j}}=D_{j} \phi_{j}^{*}$, and write

$$
\xi_{j} \eta=D_{j} \phi_{j}^{*} \zeta_{j} .
$$

Since ζ_{j} is a continuous function, so is $\phi_{j}^{*} \zeta_{j}$, and hence it induces a measure on U_{j}. Then we can write

$$
\eta=\sum_{j} p_{j} \eta=\sum_{j} D_{j} \phi_{j}^{*} \zeta_{j},
$$

and since each of the summands on the right can be expressed as a finite sum of derivatives of a continuous function, this proves the lemma.

3.2 Variations

Let μ_{s} be a family of Borel measures on the manifold P parameterized by a real parameter s with values in an open interval $J \subseteq \mathbb{R}$ that contains 0 . We say that the family μ_{s} is differentiable at 0 if there is a distribution $\eta \in \mathscr{D}^{\prime}(P)$ such that, for every function $f \in C_{c}^{\infty}(P)$,

$$
\left.\frac{d}{d s}\right|_{s=0} \int f d \mu_{s}=\langle\eta, f\rangle .
$$

The distribution η is the derivative $d \mu_{s} /\left.d s\right|_{s=0}$ of μ_{s} at 0 .
Remark 6. This is just one way to define differentiability of families of distributions; other ways have been explored for example in [22].

Proposition 7. For every Borel measure μ and every distribution η, there exists a family of signed measures with

$$
\mu_{0}=\mu \quad \text { and }\left.\quad \frac{d \mu_{s}}{d s}\right|_{s=0}=\eta .
$$

Proof. Take a mollifier ψ and a tuple F of generating vector fields. Then, as follows from Lemma 3, the family $\mu_{s}=\psi *_{s F}\left(\mu_{0}+s \eta\right)$ has the required properties.

For families of positive measures, the situation is different.

Theorem 8. Let μ be a positive Borel measure and let η be a distribution. Denote by \mathscr{F}_{μ} the space of nonnegative functions $f \in C_{c}^{\infty}(P)$ that vanish identically on $\operatorname{supp} \mu$. Then there exists a family μ_{s} of positive measures with $\mu_{0}=\mu$ and derivative $d \mu_{s} /\left.d s\right|_{s=0}=\eta$ if, and only if, η satisfies the following condition:

$$
\begin{equation*}
\langle\eta, f\rangle=0 \text { for every } f \in \mathscr{F}_{\mu} \tag{Pos}
\end{equation*}
$$

If μ is a probability measure and η additionally satisfies that $\langle\eta, 1\rangle=0$, then μ_{s} can be realized as a family of probability measures.

Remark 9. Condition (Pos) implies that $\operatorname{supp} \eta \subseteq \operatorname{supp} \mu$. Apart from this, Condition (Pos) is relevant only when $\operatorname{supp} \mu$ has parts that are very thin - only one point thick.

For example, if $P=\mathbb{R}, \mu$ is the Dirac delta δ_{0}, and $\rho: \mathbb{R} \rightarrow \mathbb{R} \in C_{c}^{\infty}(\mathbb{R})$ is a cutoff function $(\rho \geq 0, \rho \equiv 1$ in a neighborhood of 0 and $\rho \equiv 0$ outside a slightly larger neighborhood), then taking $f(x)=\rho(x) \sum_{i \geq 2} c_{i} x^{i}$ (with c_{2} large enough to ensure that $f \geq 0$) we see that η must be of the form $A \delta_{0}+B \partial \delta_{0}$, for involving any higher-degree derivatives would contradict the condition.

On the other hand, if we again had $P=\mathbb{R}$, but now $\mu=\chi_{[0,1]}$ the characteristic function on the unit interval, then as long as supp $\eta \subseteq \operatorname{supp} \mu$, η can be any distribution and still comply with Condition (Pos).
Remark 10. If μ_{s} is any family of measures that is differentiable at $s=0$ and if ψ is a mollifier and F is a generating tuple, then the measure $\tilde{\mu}_{s}=\psi *_{s F} \mu_{s}$ has the same derivative at 0 and the same mass as μ_{s}, and $\tilde{\mu}_{s}$ is a positive measure if $\tilde{\mu}_{s}$ is. By Lemma 3, the measure $\tilde{\mu}_{s}$ is a smooth density for all $s \neq 0$. Hence, the family μ_{s} can always be realized as a family of smooth measures (except maybe at $s=0$).

Lemma 11. Fix a point $p \in \operatorname{supp} \mu \subseteq P$. Let η_{p} be a distribution supported on p that satisfies Condition (Pos). Then there is a family of positive measures μ_{s}^{p} such that $\mu_{0}^{p}=\mu$ and

$$
\left.\frac{d \mu_{s}^{p}}{d s}\right|_{s=0}=\eta_{p}
$$

Moreover, the dependence of μ_{s}^{p} on p is measurable.
If μ is a probability measure and $\left\langle\eta_{p}, 1\right\rangle=0$, then μ_{s}^{p} is a family of probability measures too, when it exists.

For the proof of the lemma we will need a metric defined on the space of distributions involving up to $k^{\text {th }}$ derivatives, $k \geq 1$, and given by

$$
\operatorname{dist}_{k}\left(\theta_{1}, \theta_{2}\right)=\sum_{j=1}^{\infty} \frac{1}{2^{j}\left\|f_{j}\right\|_{k}}\left|\left\langle\theta_{1}, f_{j}\right\rangle-\left\langle\theta_{2}, f_{j}\right\rangle\right|
$$

for two distributions θ_{1} and θ_{2}, and with $\left\{f_{j}\right\}_{j} \subset C_{c}^{\infty}(P)$ a sequence of functions that is dense with respect to the norm

$$
\|f\|_{k}=\sum_{|I| \leq k} \sup _{q \in P}\left|\partial^{I} f(q)\right| .
$$

Proof of Lemma 11. Let $V \subseteq T_{p} P$ be the subspace that is null for the Hessians at p of all the functions in \mathscr{F}_{μ} :

$$
V=\left\{v \in T_{p} P: \operatorname{Hess}_{p} f(v, v)=0 \text { for all } f \in \mathscr{F}_{\mu}\right\} .
$$

Let $m=\operatorname{dim} V \leq n=\operatorname{dim} P$. Take coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ around p such that the vectors

$$
\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}} \in T_{p} P
$$

form a basis of V and $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}$ is an orthonormal basis of $T_{p} P$. Assume that p corresponds to the origin in these coordinates. Then by Lemma 4 we know that η must be a finite linear combination of distributions of the form

$$
\left(\frac{\partial}{\partial x_{u}}\right)^{e_{0}}\left(\frac{\partial}{\partial x_{1}}\right)^{e_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{e_{2}} \cdots\left(\frac{\partial}{\partial x_{m}}\right)^{e_{m}} \delta_{p}
$$

where $e_{0} \in\{0,1\}, u>m$, and the integers e_{1}, \ldots, e_{m} are nonnegative. For reasons analogous to those explained in Remark 9, Condition (Pos) makes it impossible to have higher derivatives in the directions outside V.

Note that if ν_{s} is a family of positive measures such that $\nu_{0}=\mu$ and

$$
\begin{equation*}
\left.\frac{d \nu_{s}}{d s}\right|_{s=0}=\left(\frac{\partial}{\partial x_{1}}\right)^{e_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{e_{2}} \cdots\left(\frac{\partial}{\partial x_{m}}\right)^{e_{m}} \delta_{p} \tag{3}
\end{equation*}
$$

and if ϕ is the flow of the vector field $\partial / \partial x_{u}$, then

$$
\left.\frac{d}{d s} \phi_{s}^{*} \nu_{s}\right|_{s=0}=\frac{\partial}{\partial x_{u}}\left(\frac{\partial}{\partial x_{1}}\right)^{e_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{e_{2}} \cdots\left(\frac{\partial}{\partial x_{m}}\right)^{e_{m}} \delta_{p} .
$$

So we will focus on finding such a family ν_{s}. In particular, we will assume that η_{p} is of the form given in (3). In other words, we will assume that it only involves derivatives in the directions of V.

Lemma 12. For η_{p} as in equation (3) and for $k=\sum_{i=1}^{m} e_{i}$, we have

$$
\inf _{g} \operatorname{dist}_{k}\left(g \mu, \eta_{p}\right)=0,
$$

where the infimum is taken over all measurable functions $g: P \rightarrow \mathbb{R}$.
The reader will find the proof of Lemma 12 below.
Take a strictly-decreasing sequence of positive numbers $\left\{v_{j}\right\}_{j=-\infty}^{0}$ such that $\sum_{j} 1 / v_{j}=1$. Let k be as in Lemma 12. For each $j=0,-1,-2, \ldots$, take a measurable function g_{j} such that $\sup _{q \in P}\left|g_{j}\right| \leq 1$ and

$$
\operatorname{dist}_{k}\left(v_{j} g_{j} \mu, \eta\right)<2^{j}+\inf _{|g| \leq 1} \operatorname{dist}_{k}\left(v_{j} g \mu, \eta\right)
$$

With this definition, Lemma 12 implies that if we let $j \rightarrow-\infty$, we get $v_{j} g_{j} \mu \rightarrow \eta$.

We let, for $\sum_{j=-\infty}^{i} v_{j}^{-2} \leq|s|<\sum_{j=-\infty}^{i+1} v_{j}^{-2}$,

$$
\nu_{s}=\left(1+\left(\left(s-\sum_{j=-\infty}^{i} \frac{\operatorname{sgn} s}{v_{j}^{2}}\right) v_{i+1} g_{i+1}+\sum_{j=-\infty}^{i} \frac{\operatorname{sgn} s}{v_{j}} g_{j}\right)\right) \mu .
$$

By construction, ν_{s} is a family of positive measures and its derivative at $s=0$ is η.

To ensure the measurability of the dependence of this construction in p, we further specify the construction as follows. For each $j \in \mathbb{Z}_{-}$, we take a covering of P by measurable sets A_{j} of diameter at most $-1 / j$. For all $p \in A_{i}$, we take the same function g_{j}. This ensures that these choices are made in a 'measurable' way. The rest of the construction does not depend on arbitrary choices, so the dependence becomes measurable immediately.

The last statement of the lemma follows from the fact that if η_{p} satisfies $\langle\eta, 1\rangle=0$, then either g_{j} can be chosen so that $g_{j} \mu$ satisfies this too, or else $e_{1}=e_{2}=\cdots=e_{n}=0$, and in both cases the coordinates can be picked so that the mass is preserved by the flow ϕ_{s} for small-enough $|s|$.

Proof of Lemma 12. Let V and $x_{1}, x_{2}, \ldots, x_{n}$ be as in the proof of Lemma 11. Let U be a small neighborhood of p on which the exponential map $\exp _{p}: T_{p} P \rightarrow P$ is injective.

The distribution η_{p} induces a distribution on $V, \bar{\eta}_{p}$, defined by

$$
\left\langle\bar{\eta}_{p}, f\right\rangle=\left\langle\eta_{p}, \xi \cdot\left(f \circ \operatorname{proj}_{V} \circ \exp _{p}^{-1}\right)\right\rangle, \quad f \in C_{c}^{\infty}(V),
$$

where ξ is any compactly-supported step-function with $\xi \equiv 1$ in a small neighborhood of p and $\xi \equiv 0$ outside U. Clearly, if we can find a sequence
of functions $g_{i}: T_{p} P \rightarrow \mathbb{R}$ such that $\operatorname{dist}_{k}\left(g_{i} \exp _{p}^{*} \mu, \bar{\eta}_{p}\right) \rightarrow 0$ as $i \rightarrow \infty$, then the sequence $\left\{\operatorname{dist}_{k}\left(\left(g_{i} \circ \exp _{p}^{-1}\right) \mu, \eta_{p}\right)\right\}_{i}$ will also approach 0 and the lemma will be proved. We may thus assume that P is a Euclidean space \mathbb{R}^{n}, that μ and η_{p} are defined on \mathbb{R}^{n}, and that p is at the origin of \mathbb{R}^{n}.

Condition (Pos) implies that for any open set $A \subseteq U$ that contains p, the set $\operatorname{proj}_{V}(\operatorname{supp} \mu \cap A)$ contains infinitely many vectors, and that these vectors span V as a vector space.

For each $j=1,2, \ldots$, let $\left\{x_{i}^{j}\right\}_{i=1}^{\infty} \subseteq \operatorname{supp} \mu \subset \mathbb{R}^{n}$ be a sequence of points contained within distance $1 / j$ of p and within distance $1 / j^{2}$ of V. We also assume that $\left\{\operatorname{proj}_{V} x_{i}^{j}\right\}_{i}$ span all of V. For a large-enough finite subset I_{j} of \mathbb{N}, there is always a solution to the problem of finding real numbers $c_{i j}$ such that

$$
\begin{equation*}
\left\langle\eta_{p}, f\right\rangle=\lim _{h \rightarrow 0} \frac{1}{h^{k}} \sum_{i \in I_{j}} c_{i j} f\left(h \operatorname{proj}_{V} x_{i}^{j}\right) \tag{4}
\end{equation*}
$$

for all $f \in C_{c}^{\infty}(P)$. To see this, note that expanding the right-hand-side as Taylor series in h and comparing coefficients, one obtains a linear system in the variables $c_{i j}$, and that this system has solutions if sufficiently many points x_{i}^{j} are available.

For each $j=1,2, \ldots$, let $\varepsilon_{j}>0$ be small enough that the balls $B_{\varepsilon_{j}}\left(x_{i}^{j}\right)$ are disjoint. For $q \in B_{\varepsilon_{j}}\left(x_{i}^{j}\right) \cap \operatorname{supp} \mu$ for some $i \in I_{j}$, let

$$
g_{j}(q)=\frac{c_{i j}}{\mu\left(B_{\varepsilon_{j}}\left(x_{i}^{j}\right)\right)},
$$

and let $g_{j}(q)=0$ for all other $q \in P$. Then $g_{j} \mu \rightarrow \eta$ as $j \rightarrow \infty$ because for each $y \in C_{c}^{\infty}(P)$ the set

$$
\begin{aligned}
A(y, R)=\{ & \sum_{i=1}^{N} c_{i} y\left(x_{i}\right): c_{j} \in \mathbb{R}, x_{i} \in B_{R}(p) \subset P, N \in \mathbb{N}, \text { and } \\
& \left.\left\langle\eta_{p}, f\right\rangle=\lim _{h \rightarrow 0} \frac{1}{h^{k}} \sum_{i=1}^{N} c_{i} f\left(h \operatorname{proj}_{V} x_{i}\right) \text { for all } f \in C_{c}^{\infty}(P)\right\}
\end{aligned}
$$

contains the value of $\sum_{i} c_{i j} y\left(x_{i}^{j}\right) \approx\left\langle g_{j} \mu, y\right\rangle$ for $R>1 / j$, and the diameter of $A(y, R)$ tends to 0 as $R \rightarrow 0$. This proves the lemma.

Proof of Theorem 8. Assume first that the family μ_{s} exists. To prove that Condition (Pos) must hold, let $f \in C_{c}^{\infty}(P)$ be a nonnegative function $f \in$ \mathscr{F}_{μ}, and consider the function

$$
g(s)=\int f d \mu_{s} .
$$

Since f is nonnegative and μ_{s} is a positive measure for all s, g must be nonnegative as well. Since $g(0)=0$, it must also be true that $g^{\prime}(0)=0$, and this is equivalent to Condition (Pos).

Now assume that we have a measure μ and a distribution η such that Condition (Pos) holds, and let us construct a family μ_{s} as in the statement of the theorem. Let ν_{I} be the measures as in Lemma 4. These induce a measure γ on P and a family of distributions η_{p} supported at $p \in P$ such that for all $f \in C_{c}^{\infty}(P)$

$$
\eta=\int \eta_{p} d \gamma(p) .
$$

For γ-almost all p, the distributions η_{p} also satisfy Condition (Pos). From Lemma 11, we get families μ_{s}^{p} of measures whose derivatives at 0 are precisely the distributions η_{p}. Thus,

$$
\mu_{s}=\int \mu_{s}^{p} d \gamma(p)
$$

is a family as in the statement of the theorem.
If μ is a probability, since each μ_{s}^{p} preserves the probability, so does μ_{s}.

4 The tangent space

4.1 Mild distributions

Recall that distributions on a manifold P were defined in Section 3.1. Now take the case in which $P=T^{n} M$. A partition of unity in $T^{n} M$ is a set of nonnegative functions $\left\{\psi_{i}\right\}_{i} \subset C_{c}^{\infty}\left(T^{n} M\right)$ such that for all $x \in T^{n} M$

$$
\sum_{i} \psi_{i}(x)=1
$$

Given a distribution $\eta \in \mathscr{D}^{\prime}\left(T^{n} M\right)$, we want to make sense of its value at a form $\omega \in \Omega^{n}(M)$. We let

$$
\langle\eta, \omega\rangle=\sum_{i}\left\langle\eta, \psi_{i} \omega\right\rangle,
$$

We denote by $\mathscr{D}_{n}^{\prime} \subset \mathscr{D}^{\prime}\left(T^{n} M\right)$ the set of distributions for which the series in the right-hand-side converges absolutely for all $\omega \in \Omega^{n}(M)$. This is independent of our choice of partition of unity $\left\{\psi_{i}\right\}_{i}$. Also, the spaces of mild measures \mathscr{M}_{n} and of holonomic measures \mathscr{H} are subsets of \mathscr{D}_{n}^{\prime}.

A family of measures $\mu_{t} \in \mathscr{M}_{n}$ is differentiable at 0 if there is a distribution $\eta \in \mathscr{D}_{n}^{\prime}$ such that for all $f \in C_{c}^{\infty}\left(T^{n} M\right)$

$$
\left.\frac{d}{d t}\right|_{t=0} \int f d \mu_{t}=\langle\eta, f\rangle
$$

4.2 Variations of holonomic measures

Theorem 13. Let μ be a holonomic measure in $T^{n} M$ and let $\eta \in \mathscr{D}_{n}^{\prime}$ be a distribution on $T^{n} M$. Then there exists a family of holonomic measures $\mu_{t} \in \mathscr{M}_{n}, t \in \mathbb{R}$, such that $\mu_{0}=\mu$ and

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} \int f d \mu_{t}=\langle\eta, f\rangle \tag{5}
\end{equation*}
$$

for all $f \in C_{c}^{\infty}\left(T^{n} M\right)$ if, and only if, the following two conditions are satisfied:
(Pos) For all nonnegative $f \in C_{c}^{\infty}\left(T^{n} M\right)$ that vanish on $\operatorname{supp} \mu,\langle\eta, f\rangle=0$.
(Hol) For all differential forms $\omega \in \Omega^{n-1}(M),\langle\eta, d \omega\rangle=0$.
Remark 14. In other words, the tangent space to the space of holonomic measures at the point μ is characterized by Conditions (Pos) and (Hol).

Proof. By Theorem 8, Condition (Pos) is necessary. If μ_{t} exists, then we have

$$
0=\left.\frac{d}{d t}\right|_{t=0} \int d \omega d \mu_{t}=\langle\eta, d \omega\rangle
$$

for all $\omega \in \Omega^{n-1}(M)$. Hence, Condition (Hol) is also necessary.
To prove that Conditions (Pos) and (Hol) are sufficient, assume that they are satisfied. Then by Theorem 8 we have a family of probability measures θ_{t} for t in some interval that contains 0 , with $\theta_{0}=\mu$ and with (5). Now we need to modify θ_{t} so that it is also a family of holonomic measures. Moreover, the proofs of Theorem 8 and Lemma reflem:variationpoint show that θ_{t} can be assumed to be in \mathscr{M}_{n} for all t.

There exists a family of measures ν_{t} such that for all $\omega \in \Omega^{n-1}(M)$ and all t

$$
\int d \omega d \theta_{t}+\int d \omega d \nu_{t}=0
$$

The measure ν_{t} can for example be obtained from θ_{t} as follows. For each $x \in M$, let $r_{x}: T_{x}^{n} M \rightarrow T_{x}^{n} M$ be some reflection such that the multivector
$r_{x}(v)$ has the opposite orientation as the multivector $v \in T^{n} M$. These reflections can be chosen in a piecewise-continuous (and hence measurable) way with respect to the variable x. Then one can take the family of measures determined by $\left.\nu_{t}\right|_{T_{x}^{n} M}=r_{x}^{*}\left(\left.\theta_{t}\right|_{T_{x}^{n} M}\right)$.

For $a>0$, let $\lambda_{a}: T^{n} M \rightarrow T^{n} M$ be the map given by

$$
\lambda_{a}\left(x, v_{1}, v_{2}, \ldots, v_{n}\right)=\left(x, a v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right)
$$

The measure $\nu_{t}^{a}=\lambda_{a}^{*} \nu_{t} / a$ satisfies

$$
\int d \omega d \nu_{t}^{a}=\frac{1}{a} \int d \omega\left(x, a v_{1}, \ldots, v_{n}\right) d \nu_{t}=\int d \omega d \nu_{t}
$$

for all $\omega \in \Omega^{n-1}(M)$. However, as $a \rightarrow \infty$, the mass $\int d \nu_{t}^{a}$ of ν_{t}^{a} tends to 0 . It is hence possible to find a function $b: \mathbb{R}-\{0\} \rightarrow \mathbb{R}_{+}$such that $\nu_{t}^{b(t)}$ is a family of measures with

$$
\left.\frac{d \nu_{t}^{b(t)}}{d t}\right|_{t=0}=0 \quad \text { and } \quad \lim _{t \rightarrow 0} \frac{1}{t^{2}} \int d \nu_{t}^{b(t)}=0
$$

We let

$$
\mu_{t}=\frac{\theta_{t}+\nu_{t}^{b(t)}}{1+\int d \nu_{t}^{b(t)}}
$$

for $t \neq 0$ and $\mu_{0}=\mu$. This is a family of measures as in the statement of the theorem.

5 Examples

Results in this section are valid for measures that are critical with respect to the action of a general smooth Lagrangian $L \in C^{\infty}\left(T^{n} M\right)$. Unless explicitly stated, we do not require, for example, that L be convex.

A variation of a holonomic measure $\mu \in \mathscr{H}$ is a family μ_{t} of holonomic measures that is defined for t in an interval $I \subseteq \mathbb{R}$ containing 0 and is differentiable at 0 .

We denote by A_{L} the action of the Lagrangian L,

$$
A_{L}(\mu)=\int_{T^{n} M} L d \mu
$$

We say that $\mu \in \mathscr{H}$ is critical for A_{L} if for every variation μ_{t} with $\mu_{0}=\mu$

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} A_{L}\left(\mu_{t}\right)=0 \tag{6}
\end{equation*}
$$

By Theorem 13, μ is critical if, and only if, for all distributions $\eta \in \mathscr{D}_{n}^{\prime}$ that satisfy Conditions (Pos) and (Hol), we have
(Crit) $\langle\eta, L\rangle=0$.
Homology. A holonomic measure $\mu \in \mathscr{H}$ is assigned its homology class $\rho(\mu) \in H^{n}(M ; \mathbb{R})$ by requiring

$$
\langle\rho(\mu), \omega\rangle=\int \omega d \mu
$$

for all closed forms $\omega \in \Omega^{n}(M), d \omega=0$. If for each t the measure μ_{t} has the same associated homology class as $\mu_{0}, \rho\left(\mu_{t}\right)=\rho\left(\mu_{0}\right)$, then we say that the variation μ_{t} is homology preserving. Clearly, for this to happen the following condition is necessary on the derivative $\eta=d \mu_{t} /\left.d t\right|_{t=0}$:
(Hom) $\langle\eta, \omega\rangle=0$ for all $\omega \in \Omega^{n}(M)$ with $d \omega=0$.
Conjecture 15. Condition (Hom) is sufficient for the existence of a homology preserving variation μ_{t}.

We will say that $\mu \in \mathscr{H}$ is critical for A_{L} within its homology class if equation (6) holds for every homology variation μ_{t} of μ. In particular, if μ is critical for A_{L}, then it is also critical within its homology class.

5.1 Horizontal variations

Let $X: M \rightarrow T M$ be a smooth vector field on M. For $f \in C_{c}^{\infty}\left(T^{n} M\right)$, denote by $X f$ the Lie derivative in the (horizontal) direction X. This is given by $X f=d_{x} f(X)$, and is independent of the Riemannian metric on M. For a differential form $\omega \in \Omega^{n}(M)$, the action of X on ω is also defined, and it is equal to the Lie derivative $\mathcal{L}_{X} \omega=i_{X} d \omega+d i_{X} \omega$. Here, i_{X} denotes the contraction.

Let μ be a holonomic measure on $T^{n} M$. The distribution η given by

$$
\begin{equation*}
\langle\eta, f\rangle=\int_{T^{n} M} X f d \mu \tag{7}
\end{equation*}
$$

for $f \in C_{c}^{\infty}\left(T^{n} M\right)$ clearly satisfies Condition (Pos). It also satisfies Condition (Hol) because for all $\omega \in \Omega^{n-1}(M)$,

$$
\langle\eta, d \omega\rangle=\int \mathcal{L}_{X} d \omega d \mu=\int i_{X} d^{2} \omega+d i_{X} d \omega d \mu=0
$$

Therefore, η is in the tangent space to μ.
It also satisfies Condition (Hom) because, if ω is a closed n-form,

$$
\frac{d}{d s} \int \omega d \mu_{s}=\int \mathcal{L}_{X} \omega d \mu_{s}=\int i_{X} d \omega+d i_{X} \omega d \mu_{s}=0
$$

The last equality is true since $d \omega=0$ because ω is closed, and $\int d i_{X} \omega d \mu_{s}=0$ because μ_{s} is holonomic.

In fact, it is easy to explicitly construct a family μ_{t} with derivative η and $\mu_{0}=\mu$. To do this, take the flow $\phi_{t}: \mathbb{R} \times M \rightarrow M$ of X on M, determined by

$$
\phi_{0}(x)=x, \quad \frac{d}{d t} \phi_{t}(x)=X(x), \quad \text { for } x \in M, t \in \mathbb{R} .
$$

Extend this to an isotopy $r: \mathbb{R} \times T^{n} M \rightarrow T^{n} M$ by

$$
r_{t}\left(x, v_{1}, \ldots, v_{n}\right)=\left(\phi_{t}(x), d \phi_{t}\left(v_{1}\right), \ldots, d \phi_{t}\left(v_{n}\right)\right),
$$

where $d \phi_{t}: T_{x} M \rightarrow T_{\phi_{t}(x)} M$ denotes the derivative of ϕ_{t} at x. Then we can simply let $\mu_{t}=r_{t}^{*} \mu$. From this construction and Proposition 1, it is clear that μ_{t} is homology preserving. We thus have

Proposition 16. If μ is critical for A_{L} within its homology class, then Condition (Crit) must hold for all distributions η of the form given in equation (7).

Euler-Lagrange equations. Assume that the holonomic measure μ is induced by a cycle α, that is,

$$
\mu=\mu_{\alpha} .
$$

We will now recover the traditional Euler-Lagrange equations in this special case.

For $t \in \mathbb{R}, r_{t} \circ \alpha$ denote the cycle that results from the operation of composing each of the n-cells γ_{i} that appear in α with the isotopy r :

$$
\text { if } \alpha=\sum_{i} c_{i} \gamma_{i}, c_{i} \in \mathbb{R} \text {, then } r_{t} \circ \alpha=\sum_{i} c_{i} r_{t} \circ \gamma_{i} \text {. }
$$

The variation $\mu_{t}=r_{t}^{*} \mu_{\alpha}$ constructed above is precisely the same as $\mu_{r_{t} \circ \alpha}$.
We want to examine what happens when the measure μ is critical for A_{L} with respect to all such variations μ_{t} for all vector fields X. For clarity, we use the time variable s instead of t, and we use the variables t_{j} on the domain
of γ_{i}. Also, we write $d t=d t_{1} \cdots d t_{n}$. We denote the partial derivatives of L by L_{x} and $L_{v_{i}}$. For each such variation have:

$$
\begin{aligned}
& 0=\left.\frac{d}{d s}\right|_{s=0} \int L d \mu_{s}=\left.\frac{d}{d s}\right|_{s=0} \sum_{i} c_{i} \int L\left(d\left(r_{s} \circ \gamma_{i}\right)\right) d t \\
&=\sum_{i} c_{i} \int\left[\left.L_{x}\left(d \gamma_{i}\right) \frac{\partial r_{s} \circ \gamma_{i}}{\partial s}\right|_{s=0}+\left.\sum_{j} L_{v_{j}}\left(d \gamma_{i}\right) \frac{\partial^{2}\left(r_{s} \circ \gamma_{i}\right)}{\partial s \partial t_{j}}\right|_{s=0}\right] d t \\
&=\left.\sum_{i} c_{i} \int\left[L_{x}\left(d \gamma_{i}\right)-\sum_{j} \frac{\partial L_{v_{j}}\left(d \gamma_{i}\right)}{\partial t_{j}}\right] \frac{\partial\left(r_{s} \circ \gamma_{i}\right)}{\partial s}\right|_{s=0} d t \\
&=\left.\sum_{i} c_{i} \int(\mathrm{E}-\mathrm{L}) \frac{\partial r_{s}}{\partial s}\right|_{s=0} d t
\end{aligned}
$$

where

$$
(\mathrm{E}-\mathrm{L}):=\frac{\partial L}{\partial x}-\sum_{i=1}^{n}\left(\frac{\partial^{2} L}{\partial x \partial v_{i}} v_{i}+\sum_{j=1}^{n} \frac{\partial^{2} L}{\partial v_{i} \partial v_{j}} \mathrm{X}_{i j}\right)
$$

and a point in the vector space $T_{\left(v_{1}, \ldots, v_{n}\right)}\left(T_{x}^{n} M\right)$ has coordinates $\mathrm{X}_{i j}, 1 \leq$ $i, j \leq n$. Since the above is true for all smooth vectorfields $X=\partial r_{s} /\left.\partial s\right|_{s=0}$, we conclude that (E-L) must vanish identically throughout the support of $\mu=\mu_{\alpha}$.

In other words, Condition (Crit) for measures μ_{α} and for distributions of the form (7) is equivalent to the Euler-Lagrange equations.
Remark 17. In the case of an arbitrary holonomic measure (not necessarily induced by a cycle) we have no information about the 'second derivatives,' so we find no clear way to give this deduction in that general case. While it can be ascertained that these equations must be respected in a 'weak' way (if $\mu=\lim _{i} \mu_{\alpha_{i}}$, the measures $\mu_{\alpha_{i}}$ will asymptotically satisfy Euler-Lagrange in the sense of distributions, so (E-L) must vanish μ-almost everywhere), it is not clear to us how this can be useful.

5.2 Vertical variations

Let μ be a holonomic measure in $T^{n} M$.
We introduce the Hilbert space \mathcal{H} of all functions

$$
u: \operatorname{supp} \mu \subseteq T^{n} M \rightarrow T^{n} M
$$

such that $u(x, v) \in T_{x}^{n} M$ for all $(x, v) \in T^{n} M$, and $\int g(u, u) d \mu<+\infty$, where g is the Riemannian metric on M. The inner product in \mathcal{H} is defined by

$$
\left(u_{1}, u_{2}\right)=\int g\left(u_{1}, u_{2}\right) d \mu .
$$

The set of gradients $\nabla_{v} d \omega$ of exact differential forms (viewed as functions on $\left.T^{n} M\right)$ is a subspace F of \mathcal{H}.

Each function u in \mathcal{H} induces a distribution η^{u} of the form

$$
\left\langle\eta^{u}, f\right\rangle=\int_{T^{n} M} g\left(u, \nabla_{v} f\right) d \mu
$$

for $f \in C_{c}^{\infty}\left(T^{n} M\right)$. This distribution clearly satisfies Condition (Pos). The set of all functions u in \mathcal{H} such that η^{u} satisfies Condition (Hol) as well are exactly the orthogonal complement F^{\perp} to F in \mathcal{H} because Condition (Hol) is

$$
0=\left\langle\eta^{u}, d \omega\right\rangle=\int g\left(u, \nabla_{v} d \omega\right) d \mu=(u, d \omega)
$$

for $\omega \in \Omega^{n-1}(M)$.
It follows that, if Condition (Crit) is satisfied for all η^{u} satisfying Conditions (Pos) and (Hol), then $\nabla_{v} L$ must be contained in the space $F^{\perp \perp}$, which coincides with the topological closure \bar{F}. We have proved

Proposition 18 (" $L_{v}=d \omega$ "). If μ is a holonomic measure that is critical for A_{L}, then there exist a sequence $\left\{\omega^{i}\right\}_{i} \subset \Omega^{n-1}(M)$ such that

$$
\left.\nabla_{v} L\right|_{\operatorname{supp} \mu}=\lim _{i \rightarrow \infty} \nabla_{v} d \omega^{i} .
$$

The limit is taken in \mathcal{H}.
It is possible to produce an explicit variation μ_{t}^{u} of μ with derivative η^{u} by letting

$$
\int_{T^{n} M} f d \mu_{s}^{u}=\int_{T^{n} M} f(x, v+s u(x, v)) d \mu(x, v)
$$

for all $f \in C_{c}^{\infty}\left(T^{n} M\right)$ and $s \in \mathbb{R}$. It follows from the construction that this variation preserves homology whenever Condition (Hom) holds. That is, whenever u is such that

$$
0=\left\langle\eta^{u}, \omega\right\rangle=(u, \omega)
$$

for all closed forms $\omega \in \Omega^{n}(M)$. Hence, the same argument as before yields

Proposition 19. If μ is a holonomic measure that is critical for A_{L} within its homology class, then there exists a sequence of closed n-forms $\left\{\omega^{i}\right\}_{i} \subset$ $\Omega^{n}(M), d \omega^{i}=0$, such that

$$
\left.\nabla_{v} L\right|_{\operatorname{supp} \mu}=\lim _{i \rightarrow \infty} \nabla_{v} \omega^{i} .
$$

The limit is taken in \mathcal{H}.

5.3 Transpositional variations

Let $\mu \in \mathscr{H}$ again be a holonomic measure, and let L be a Lagrangian.
Let $\sigma \in C_{c}^{\infty}\left(T^{n} M\right)$ and fix some $1 \leq i \leq n$. We consider the distribution on $T^{n} M$ given by

$$
\langle\eta, f\rangle=\int \sigma f d \mu-\int \sigma \frac{\partial f}{\partial v_{i}} \cdot v_{i} d \mu-\int f d \mu \int \sigma d \mu
$$

for $f \in C_{c}^{\infty}\left(T^{n} M\right)$. The distribution η clearly satisfies Condition (Pos). To see that it also satisfies Condition (Hol), we compute, for $\omega \in \Omega^{n-1}(M)$,

$$
\langle\eta, d \omega\rangle=\int \sigma d \omega d \mu-\int \sigma d \omega d \mu-\int d \omega d \mu \int \sigma d \mu=0 .
$$

Here, we used that $\partial d \omega / \partial v_{i}=d \omega$ by linearity, and we also used the fact that μ is holonomic.

If μ is critical for A_{L}, it must satisfy Condition (Crit) for all variations arising in this way from any $\sigma \in C_{c}^{\infty}\left(T^{n} M\right)$. This translates to

$$
0=-\left.\frac{d}{d s}\right|_{s=0} A_{L}\left(\mu_{s}^{\sigma}\right)=\int \sigma L d \mu-\int \sigma L_{v_{i}} \cdot v_{i} d \mu-\int L d \mu \int \sigma d \mu .
$$

If the domain of σ is very small around a point $(x, v) \in T^{n} M$, this can be very well approximated by

$$
0 \approx \int \sigma d \mu\left(v_{i} \cdot L_{v_{i}}(x, v)-L(x, v)-\int L d \mu\right)
$$

This is how we deduce
Proposition 20 (Energy conservation). If a holonomic measure is critical with respect to all transpositional variations, then its support is a subset of the set where

$$
v_{i} \cdot L_{v_{i}}-L=A_{L}(\mu) .
$$

Remark 21. In the cases in which we can define the change of variables $p_{i}=L_{v_{i}}$ (for example, in the case of convex, superlinear Lagrangians), we can also define the Hamiltonians

$$
H_{i}\left(x, p_{i}\right)=H_{i}\left(x, p_{i} ; v_{1}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right)=\max _{v_{i} \in T_{x}^{n} M} p_{i} v_{i}-L\left(x, v_{1}, \ldots, v_{n}\right)
$$

and what we have here is just a higher-dimensional version of the usual energy conservation principle.
Remark 22 (Hamilton-Jacobi equation). We can form the full Hamiltonian $H=\sum_{i} H_{i}$, which in the case of a convex, superlinear Lagrangian L is the convex dual to the Lagrangian $n L$. Then it follows from Proposition 18 that there is a sequence of $(n-1)$-forms ω^{k} such that, abusing the notation a little,

$$
\lim _{k \rightarrow \infty} H\left(x, d \omega^{k}\right)=n A_{L}(\mu)
$$

on $\operatorname{supp} \mu$. This is a generalized form of the Hamilton-Jacobi equation.
The distribution η is in fact the derivative of the variation μ_{t}^{σ} given by

$$
\int f d \mu_{t}^{\sigma}=\frac{\int(1-t \sigma) f\left(x, v_{1}, \ldots, v_{i-1},(1-t \sigma)^{-1} v_{i}, v_{i+1}, \ldots, v_{n}\right) d \mu}{\int(1-t \sigma) d \mu}
$$

for $f \in C_{c}^{\infty}\left(T^{n} M\right)$ and for t in an open interval that contains 0 .
If we require the variation μ_{t}^{σ} to preserve homology, then we find that we must require $\int \sigma d \mu=0$ because

$$
\int \omega d \mu_{t}^{\sigma}=\frac{\langle\rho(\mu), \omega\rangle}{\int(1-t \sigma) d \mu}
$$

must be constant for each closed form $\omega \in \Omega^{n}(M), d \omega=0$. It follows that if μ is critical for A_{L} within its homology class then it must satisfy

$$
\int \sigma\left(L-L_{v_{i}} \cdot v_{i}\right) d \mu=0
$$

for all σ with $\int \sigma d \mu=0$. We can use $\sigma d \mu$ to approximate the derivative at any point in supp μ arbitrarily well. Hence, we get

Proposition 23 (Energy conservation for homological minimizers). If a holonomic measure is critical for A_{L} within its homology class, then there are some $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that the support of μ contained in the set where

$$
L-v_{i} \cdot L_{v_{i}}=c_{i}, \quad i=1,2, \ldots, n .
$$

A Proof of Theorem 1

This section is devoted to the proof of Theorem 1, which will be given in Section A.6.

The $n=1$ case of this result was proved by Bangert [3] and Bernard [4]. The author saw a letter by Mather [14] in which an idea similar to Bangert's was sketched. Our proof if that case is different to theirs.

The idea of the proof is the following. The fact that Condition (Cyc) implies Condition (Hol) is an easy consequence of Stokes's theorem, so we concentrate in the other implication.

We start with a positive measure μ that satisfies Condition (Hol). We prove in Section A. 1 that we may assume that the measure μ is a smooth density. In Section A. 2 we specify a family of triangulations T_{k} on M for $k \in \mathbb{N}$. Then in Section A.3.1 we construct 'base measures' $\bar{\mu}_{k}$, which are approximations to our smooth density that are (in a sense) constant on each simplex of T_{k}; this is analogous to approximating a smooth function on \mathbb{R} with simple functions. In Section A.3.2 we construct an n-chain β_{k} that is again (in a sense) constant on each simplex of T_{k}.

In Section A. 4 we derive a condition on the $(d-n)$-dimensional skeleton of T_{k} that in Section A.5.1 allows us to construct cycles that contain the chains β_{k}, and whose mass \mathbf{M} can be estimated. We work on the estimates for the mass in Sections A.5.2 and A.5.3. Finally, we put everything together in Section A.6.

A. 1 Smoothing revisited

Lemma 24. Any measure μ in \mathscr{M}_{n} can be approximated arbitrarily well using a smooth density on $T^{n} M$. If μ is a probability measure that satisfies Condition (Hol) then it can be approximated by smooth probability densities that also satisfies Condition (Hol).

Proof. Denote the exponential map by $\exp _{x}: T_{x} M \rightarrow M$.
A mollifier $\psi \in C_{c}^{\infty}(\mathbb{R})$ is a function such that $\psi(x)=\psi(-x), \int \psi=1$, and $\psi \geq 0$.

Recall that the operators P_{i} were defined in Section 3.1.1. These are a convolutions in the horizontal directions defined by vector fields F_{i}, which are taken to form a generating tuple.

Also, for $f \in C_{c}^{\infty}\left(T^{n} M\right)$ we let $V(f)$ be the convolution in the vertical
direction,

$$
\begin{aligned}
V(f)\left(x, v_{1}, \ldots, v_{n}\right) & =\int_{T_{x} M} d w_{1} \psi\left(\left|w_{1}-v_{1}\right|\right) \int_{T_{x} M} d w_{2} \psi\left(\left|w_{2}-v_{2}\right|\right) \\
& \ldots \int_{T_{x} M} d w_{n} \psi\left(\left|w_{n}-v_{n}\right|\right) f\left(x, w_{1}, w_{2}, \ldots, w_{n}\right)
\end{aligned}
$$

For $f \in C_{c}^{\infty}\left(T^{n} M\right)$, we will denote

$$
\psi * f=P_{1} P_{2} \cdots P_{\ell} V(f)
$$

Note that $\psi * f$ is a C^{∞} function even if f is only measureable. Moreover, if the diameter of the support of ψ is sufficiently small, and if f is an exact form, $f=d \omega$, then $\psi * d \omega$ is the exact form $d(\psi * \omega)$. To see this, note first that by linearity of ω on each entry $V(d \omega)=d \omega$. Also, for s small enough, ϕ_{s}^{*} is a diffeomorphism and hence

$$
P_{i}(d \omega)=\int \psi(s) \phi_{s}^{i *} d \omega d s=d\left[\int \psi(s) \phi_{s}^{i *} \omega d s\right]=d\left(P_{i} \omega\right)
$$

Now let μ be a probability measure on $T^{n} M$. Recall that we define the convolution $\psi * \mu$ by duality, setting

$$
\int_{T^{n} M} f d(\psi * \mu)=\int_{T^{n} M}(\psi * f) d \mu
$$

Then $\psi * \mu$ is a smooth density (see for example [11, §5.2]), and in the topology of \mathscr{M}_{n},

$$
\psi * \mu \rightarrow \mu \quad \text { as } \quad \operatorname{diam} \operatorname{supp} \psi \rightarrow 0
$$

Also, if μ satisfies Condition (Hol), then

$$
\int_{T^{n} M} d \omega d(\psi * \mu)=\int_{T^{n} M} d(\psi * \omega) d \mu=0
$$

so $\psi * \mu$ also satisfies Condition (Hol).

A. 2 Triangulations

A triangulation $T=(K, h)$ of M is a simplician complex K homeomorphic to M together with a homeomorphism $h: K \rightarrow M$. When talking about such a triangulation T, we will speak indistinctly of a simplex $U \subseteq K$ and of its image $h(U) \subseteq M$. In other words, we will ignore K as a topological space,
and we will instead think of the triangulation as being 'drawn' directly on M.

On \mathbb{R}^{d}, we will use the standard inner product. For a subspace $W \subset \mathbb{R}^{d}$ passing through the origin, let $\operatorname{proj}_{W}: \mathbb{R} \rightarrow W$ denote the orthogonal projection onto W. Also, for a subspace W, we will denote the subspace perpendicular to W by $W^{\perp} \subseteq \mathbb{R}^{d}$.

We fix a sequence of triangulations $\left\{T_{k}\right\}_{k \in \mathbb{N}}$ on M such that:
T1. (Successive refinements) For $k>1, T_{k}$ is a refinement of T_{k-1}.
For each simplex V in $T_{k}, k \geq 1$, we denote by $U(V)$ the simplex of dimension d of T_{1} in which V is contained. (This is ambiguous for the simplices of dimension less than d, but any choice will work, so we assume that this choice has been made for each V once and for all.)

T2. (Finite) T_{k} has finitely many simplices.
T3. (Charted) For each simplex U of dimension d of T_{1}, there is a chart $\varphi_{U}: M \rightarrow \mathbb{R}^{d}$ such that the image $\varphi_{U}(U)$ is the standard simplex with vertices at the origin and at the vectors of the standard basis of \mathbb{R}^{d}.
For brevity, we will denote $\varphi_{U(V)}$ by φ_{V} for all simplices V in the triangualtions $T_{k}, k \geq 1$.

T4. (Affine) For every simplex V in $T_{k}, \varphi_{V}(V)$ is contained in a translate of a vector space $Y(V) \subset \mathbb{R}^{d}$ of dimension $\operatorname{dim} V$.

T5. (Nondegeneracy) All simplices of T_{k} are non-degenerate. In other words, if a simplex V has dimension m, then also

$$
\operatorname{vol}_{m} V>0 .
$$

T6. (Vanishing diameter)

$$
\lim _{k \rightarrow \infty} \operatorname{diam} T_{k}=0
$$

Existence of triangulations on manifolds is discussed in great detail for example in [20]. A triangulation T_{1} satisfying $\mathrm{T} 2-\mathrm{T} 5$ always exists. To obtain all other refinements T_{k} of T_{1}, one successively refines the standard simplex $\varphi_{U}(U)$ (for U a simplex in T_{1}) making sure that the rules T2-T5 are respected every time. It can be seen by induction on k that this is possible. It is quite obvious how to take a refinement that respects T2-T5. Ensuring overall compliance with T6 is easy. Then one pulls the resulting triangulation onto M using the maps φ_{U}.

We will denote by E_{m}^{k} the m-dimensional skeleton of the triangulation T_{k}.

A. 3 The base measure and its approximation

A.3.1 Construction of the base measure

In Section A. 2 we specified the triangulations $T_{k}, k \in \mathbb{N}$, and we introduced the notation φ_{V}.

Let μ be a smooth density in \mathscr{M}_{n}. We will define base measures $\bar{\mu}_{k} \leq \mu$ depending on the triangulations T_{k} such that $\bar{\mu}_{k} \rightarrow \mu$ as $k \rightarrow \infty$. Roughly speaking, the measure $\bar{\mu}_{k}$ is the largest density, constant on a constant section of $T^{n} M$ in the interior of each d-dimensional simplex U of T_{k}. Our goal here is not to produce measures that satisfy Condition (Hol).

For a simplex V of dimension d in the triangulation T_{k}, we take the chart φ_{V} and extend it to a trivialization of $T^{n} M, d \varphi_{V}: T^{n} M \rightarrow \mathbb{R}^{d(n+1)}$, by setting

$$
d \varphi_{V}\left(x, v_{1}, v_{2}, \ldots, v_{n}\right)=\left(\varphi_{V}(x), d \varphi_{V}\left(v_{1}\right), \ldots, d \varphi_{V}\left(v_{n}\right)\right) .
$$

Let m denote Lebesgue measure on $\mathbb{R}^{d(n+1)}$ and let ρ be the Radon-Nikodym derivative of the pushforward measure $\left(\varphi_{V}\right)_{*} \mu=\rho \mathrm{m}$ on $\mathbb{R}^{d(n+1)}$.

For $(x, v) \in \mathbb{R}^{d(n+1)}$ with $x \in \varphi_{V}(V)$ for a simplex V of dimension d, we let

$$
\bar{\rho}_{k}(x, v)=\inf _{y \in \varphi_{V}(V)} \rho(y, v) .
$$

Note that v is the same on both sides of the equation, and the dependence of the right-hand-side on x comes from the choice of V. Also, this is ambiguous when x is in a simplex of dimension $<d$. This ambiguity happens only on a set of m-measure zero, so we may just ignore it, as it will not affect the rest of our argument. We let

$$
\left.\bar{\mu}_{k}\right|_{T^{n} V}=\varphi_{V}^{*}\left(\bar{\rho}_{k} \mathrm{~m}\right) .
$$

This completely determines $\bar{\mu}_{k}$ on the whole bundle $T^{n} M$. Also, $\rho_{k} \rightarrow \rho$ uniformly on compact sets, because ρ is smooth and diam $T_{k} \rightarrow 0$ by T6. Similarly, $\mathbf{M}\left(\bar{\mu}_{k}-\mu\right) \rightarrow 0$. Hence dist $\mathscr{M}_{n}\left(\bar{\mu}_{k}, \mu\right) \rightarrow 0$.

A.3.2 Construction of the approximation

For each $k \in \mathbb{N}$, we will construct a chain β_{k} whose induced measure $2 \beta_{k} 2$ will approximate the base measure $\bar{\mu}_{k}$ very well. We do this in the following steps.

Step 1. On each d-dimensional simplex V of T_{k}, we sample the distribution $\bar{\rho}_{k} \mathrm{~m}$ to get a finite sequence of points $p_{1}^{V}, \ldots, p_{\ell_{V}}^{V} \in \mathbb{R}^{d(n+1)}$. We may assume that the following conditions are true for these points:

A1. Each point p_{i}^{V} is in the interior of $\varphi_{V}(V)$.
A2. Write p_{i}^{V} as $\left(x, v_{1}, \ldots, v_{n}\right)$ in the standard basis of $\left(\mathbb{R}^{d}\right)^{n+1}$. Let Π be the plane

$$
\Pi_{i}^{V}=\left\{x+t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{n} v_{n}: t_{i} \in \mathbb{R}\right\}
$$

We assume that Π_{i}^{V} intersects all the simplices $W \subseteq \partial \varphi_{V}(V)$ of dimension $\operatorname{dim} W \geq d-n$ transversally.

A3. For a $(d-n)$-dimensional simplex $W \subset E_{d-n}^{k}$, let V_{1} and V_{2} be two d-dimensional simplices adjacent to W. Let $A_{i}, i=1,2$, be the set of points of the form $\Pi_{i}^{V_{i}} \cap W$. There is a finite partition of W by disjoint, convex sets U_{1}, \ldots, U_{m} with $\operatorname{diam} U_{i}<a(k)$ such that each of them contains at least one point in A_{1}, and

$$
\begin{equation*}
\left|\frac{\bar{\mu}_{k}\left(V_{2}\right)}{\bar{\mu}_{k}\left(V_{1}\right)}-\frac{\# U_{i} \cap A_{2}}{\# U_{i} \cap A_{1}}\right|<a(k), \tag{8}
\end{equation*}
$$

where $a: \mathbb{N} \rightarrow \mathbb{R}_{+}$is an asymptotically-vanishing function that will be specified at the end of Section A.5.2.

Note that the measure

$$
\begin{equation*}
\sum_{V \subset E_{d}^{k}} \frac{1}{\ell_{V}} \sum_{i} \varphi_{V}^{*} \delta_{p_{i}^{V}} \tag{9}
\end{equation*}
$$

is a good approximation of $\bar{\mu}_{k}$. Compliance with item A3 can be achieved by increasing the number of points, thus making the sample more dense.

Step 2. Let V be a d-dimensional simplex in T_{k}. Let $\gamma_{i}^{V}: D_{i}^{V} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ be the solution to the equations

$$
\begin{equation*}
\gamma_{i}^{V}(0,0, \ldots, 0)=x, \quad \frac{\partial \gamma_{i}^{V}}{\partial t_{j}}=v_{j}, \quad i=1, \ldots, n . \tag{10}
\end{equation*}
$$

Assume that the domain D_{i}^{V} of γ_{i}^{V} is the largest closed subset of \mathbb{R}^{n} such that γ_{i}^{V} remains within $\varphi_{V}(V)$. Note that image $\gamma_{i}^{V}=\gamma_{i}^{V}\left(D_{i}^{V}\right) \subset \Pi_{i}^{V}$, so by A2 this image also intersects the simplices in $\partial \varphi_{V}(V)$ transversally.

We let

$$
\beta_{k}=\sum_{V \subset E_{d}} \frac{1}{\ell_{V}} \sum_{i} \frac{1}{\left|D_{i}^{V}\right|} \varphi_{V}^{*} \gamma_{i}^{V}
$$

When we consider the measure $\left\langle\beta_{k} \ell\right.$, this is like taking the measure in equation (9) and spreading the mass of each point along a simplex determined by its velocity vectors v_{1}, \ldots, v_{n}. Since $\left.\bar{\mu}_{k}\right|_{V}$ is 'constant' for each such set of velocity vectors, $\left\langle\beta_{k}\right.$ l is in fact a very natural approximation to $\bar{\mu}_{k}$. Note that we divide by the n-dimensional lebesgue measure of the domain, $\left|D_{i}^{V}\right|$, in order to normalize and obtain the correct weights.

A. 4 Conditions on the boundary

We say that a sequence of simplices $V_{1}, \ldots V_{\ell}$ of a triangulation is properly nested if $V_{i} \subset \partial V_{i-1}$ and $\operatorname{dim} V_{i}=d-i$.

Let V be a simplex in a triangulation T of M. For x in V, let

$$
u_{V}(x)=\operatorname{dist}(x, \partial V) .
$$

If the triangulation T is reasonably nice, u_{V} can then be extended to all of M in such a way that u_{V} will be smooth on the interiors of the simplices of ∂V. In our case, this can be done because the triangulation satisfies T3-T5. There is some ambiguity in the choice of the extension, but it is immaterial in our argument.

Let, for $\varepsilon>0$,

$$
u_{V}^{\varepsilon}(x)= \begin{cases}u_{V}(x) / \varepsilon, & \text { if }\left|u_{V}(x)\right|<\varepsilon \\ -1, & \text { if } u_{V}(x)<-\varepsilon \\ 1, & \text { if } u_{V}(x)>\varepsilon\end{cases}
$$

Finally, let $\bar{u}_{V}^{\varepsilon}$ be a smoothed version of u_{V}^{ε}, such that the amount of smoothing tends to 0 as $\varepsilon \rightarrow 0$. This can be obtained, for example, by convolving as in Section A. 1 and ensuring that one uses mollifiers ψ such that diam supp $\psi<\varepsilon^{2}$.

Let $C=\left\{V_{1} \supset \cdots \supset V_{n}\right\} \subseteq T_{k}$ be a set of n properly nested simplices. Observe that the form

$$
\omega_{\varepsilon}=d \bar{u}_{V_{1}}^{\varepsilon} \wedge d \bar{u}_{V_{2}}^{\varepsilon} \wedge \cdots \wedge d \bar{u}_{V_{n}}^{\varepsilon}
$$

is exact.
Let ν be a measure on $T^{n} M$. Let $C=\left\{V_{1} \supset V_{2} \supset \cdots \supset V_{\ell}\right\}$ be properly nested simplices in some triangulation of M. Let

$$
B_{\varepsilon}(C)=\left\{x \in M:\left|u_{V_{i}}(x)\right| \leq \varepsilon, i=1,2, \ldots, \ell\right\} .
$$

Define the measure ν^{C} by

$$
\int f d \nu^{C}=\lim _{\varepsilon \rightarrow 0+} \frac{1}{\varepsilon^{\ell}} \int_{B_{\varepsilon}(C)} f d \nu
$$

where $f \in C_{c}^{\infty}\left(T^{n} M\right)$.
Notice that

$$
\lim _{\varepsilon \rightarrow 0+} \int \omega_{\varepsilon} d \mu=\int d u_{V_{1}} \wedge d u_{V_{2}} \wedge \cdots \wedge d u_{V_{n}} d \mu^{C}
$$

Since the left-hand-side vanishes when μ satisfies Condition (Hol), we get
Lemma 25. If the smooth density $\mu \in \mathscr{M}_{n}$ satisfies Condition (Hol), then for every $k \in \mathbb{N}$ and for every properly nested sequence of simplices $C=$ $\left\{V_{1} \supset V_{2} \supset \cdots \supset V_{n}\right\}$ of the triangulation T_{k}, we have

$$
\begin{equation*}
\int_{T^{n} M} d u_{V_{1}} \wedge d u_{V_{2}} \wedge \cdots \wedge d u_{V_{n}} d \mu^{C}=0 \tag{11}
\end{equation*}
$$

A. 5 Closing up the base measure

A.5.1 Inductive construction of cycles

The 0-dimensional chain. Recall that the chain β_{k} was constructed in Section A.3.2. It is a linear combination of n-cells $\varphi_{V}^{*} \gamma_{i}^{V}$, determined by the equations (10). For each $k>0$, we let $\tilde{\beta}_{k}$ be the chain that results from extending the domain of the n-cell γ_{i}^{V} (still respecting (10)) to an open set very slightly larger than its original domain D_{i}^{V}, so that it now intersects the skeleton E_{d-1}^{k} of T^{k}. By property A2, this intersection is transversal. Then, for properly-nested simplices $C=\left\{V_{1} \supset \cdots \supset V_{\ell}\right\}$ the measure $\imath \tilde{\beta}_{k} C^{C}$ reflects the way the boundary of β_{k} intersects ∂V_{ℓ}.

For a point p in $T^{n} M$ such that $\pi(p) \in V_{\ell}$, and for a set of n properly nested simplices $C=\left\{V_{1} \supset \cdots \supset V_{n}\right\}$ let

$$
W(p, C)=d u_{V_{1}} \wedge d u_{V_{2}} \wedge \cdots \wedge d u_{V_{n}}(p),
$$

where the functions $u_{V_{i}}$ are as in Section A.4. Observe that if C and C^{\prime} are two sets of n properly nested simplices that differ only in the $\ell^{\text {th }}$ simplex, $\ell<n$, and the corresponding simplices V_{ℓ} and V_{ℓ}^{\prime} are adjacent, then

$$
\begin{equation*}
W(p, C)=-W\left(p, C^{\prime}\right) \tag{12}
\end{equation*}
$$

because $d u_{V_{\ell}}=-d u_{V_{\ell}}$ at p.

For each k, we pick a finite set of points $\left\{p_{i}^{k}\right\}_{i} \subset T^{n} M$, and weights $r_{i}^{k} \in \mathbb{R}_{+}$such that Conditions $\mathrm{U} 1-\mathrm{U} 4$ below are true. We will imagine that there is an n-chain whose (degenerate) cells are the points $\left\{\pi\left(p_{i}\right)\right\}_{i} \subseteq M$, so that η_{k}^{0} is given by

$$
\eta_{k}^{0}=\sum_{i} r_{i}^{k} \pi\left(p_{i}^{k}\right)
$$

and parameterized so that

$$
\imath \eta_{k}^{0} \imath=\sum_{i} r_{i}^{k} \delta_{p_{i}^{k}}
$$

Strictly speaking, such chain η_{k}^{0} does not exist, but the measure $2 \eta_{k}^{0} \ell$ does, and this is the object we need. The conditions are:

U1. $\pi\left(p_{i}^{k}\right) \in E_{d-n}^{k}$ for all i.
U2. We require the points in the support of $2 \tilde{\beta}_{k} l^{C}$ to be contained in $\left\{p_{i}^{k}\right\}_{i}$, and the corresponding weights r_{i}^{k} to be at least as large as the weights these points have in the measure $\left.2 \tilde{\beta}_{k}\right\rangle^{C}$.
U3. For each set of n properly nested simplices $C=\left\{V_{1} \supset \cdots \supset V_{n}\right\} \subseteq T^{k}$,

$$
\sum_{i} W\left(p_{i}^{k}, C\right) r_{i}^{k}=0
$$

where the sum is taken over all i such that $\pi\left(p_{i}\right)$ is in V_{n}.
U4. The measure $\imath \eta_{k}^{0} \imath$ approximates the restriction of μ to the skeleton E_{d-n}^{k} :

$$
\operatorname{dist}_{\mathscr{M}_{n}}\left(\sum_{C} \mu^{C}, \sum_{C}\left\langle\eta_{k}^{0}\right\rangle^{C}\right) \leq \frac{1}{k}
$$

where the sums are taken over all sets of n properly nested simplices of T^{k} 。

The idea is that $\left\{p_{i}^{k}\right\}_{i} \cap \pi^{-1}\left(V_{n}\right)$ should be a very good sample of the measure μ^{C}. The set of points and weights can be found as follows. Start with the points in the support of $\left\langle\tilde{\beta}_{k}\right\rangle^{C}$, with the weights they inherit from β_{k}. Then by further sampling the measure μ^{C}, and invoking the fact that it satisfies the conclusion of Lemma 25, a solution for the condition in item U3 is guaranteed to exist. Note that the condition in item U3 is essentially a rephrasing of the conclusion of Lemma 25 adapted to $\left\langle\eta_{k}^{0}{ }^{C}\right.$. Taking a sufficiently large sample of μ^{C}, one can also guarantee that item U 4 will be satisfied.

The higher-dimensional chains. For every set of $n+1$ properly nested simplices $C=\left\{V_{1} \supset \cdots \supset V_{n+1}\right\}$, we let η_{k}^{C} denote the 0-dimensional chain

$$
\eta_{k}^{C}=\sum_{i}\left(\operatorname{sgn} W\left(p_{i}^{k}, C\right)\right) r_{i}^{k} \pi\left(p_{i}^{k}\right)
$$

where the sum is taken over all indices i such that p_{i}^{k} is contained in V_{n+1}.
For every set $C=\left\{V_{1} \supset \cdots \supset V_{n-j}\right\} \subseteq T_{k}$ of $n-j$ properly nested simplices, $1 \leq j<n, \tilde{\beta}_{k}$ induces an j-dimensional chain β_{k}^{C} on ∂V_{n-j} that satisfies, for all $\omega \in \Omega^{j}(M)$,

$$
\int_{\beta_{k}^{C}} \omega=\int_{T^{n} M} \omega \wedge d u_{V_{1}} \wedge d u_{V_{2}} \wedge \cdots \wedge d u_{V_{n-j}} d \imath \tilde{\beta}_{k} \ell
$$

Observe that the chain β_{k}^{C} is in general not unique, but any choice will do for our purposes. We also let $\beta_{k}^{\emptyset}=\beta_{k}$.

For sets of properly nested simplices

$$
C^{\prime}=\left\{V_{1} \supset \cdots \supset V_{n-j-1}\right\} \subset C=\left\{V_{1} \supset \cdots \supset V_{n-j}\right\}
$$

we refine the chain $\beta_{k}^{C^{\prime}}$ so that each of its $(j+1)$-dimensional cells intersects only one of the $(d-n+j+1)$-dimensional simplices of the boundary ∂V_{n-j-1}. We then let $\bar{\beta}_{k}^{C}$ be the part of $\beta_{k}^{C^{\prime}}$ that is contained in V_{n-j}. In other words,

$$
\beta_{k}^{C^{\prime}}=\sum_{V \subset \partial V_{n-j}} \bar{\beta}_{k}^{C^{\prime} \cup\{V\}}
$$

We proceed to construct, inductively on $j=0,1, \ldots, n-1,(j+1)$ dimensional cycles η_{k}^{C} corresponding to each set of $n-j$ properly nested simplices $C=\left\{V_{1} \supset \cdots \supset V_{n-j}\right\} \subseteq T_{k}$, such that:
E1. The cells of η_{k}^{C} are contained in $V_{n-j} \subseteq E_{d-n+j+1}^{k} \subseteq M$.
E2. We require that $\bar{\beta}_{k}^{C}$ be contained in η_{k}^{C}, in the sense that all the cells of $\bar{\beta}_{k}^{C}$ appear in η_{k}^{C} with coefficients of magnitud greater or equal to those they have in $\bar{\beta}_{k}^{C}$.
If $j=n-1, C=\left\{V_{1}\right\}$ and η_{k}^{C} contains precisely the cells of β_{k} that are contained in V_{1}, and with exactly the same parameterization for each cell.

E3. We have

$$
\partial \eta_{k}^{C}=\sum_{V \subset \partial V_{n-j}} \eta_{k}^{C \cup\{V\}}
$$

where the sum is taken over all simplices in the boundary of V_{n-j}.

E4. If C and C^{\prime} are sets of $n-j$ properly nested simplices of T_{k} that only differ in the ℓ-th simplex, $1 \leq \ell<n-j$, and the corresponding simplices V_{ℓ} and V_{ℓ}^{\prime} are adjacent, then

$$
\eta_{k}^{C}=-\eta_{k}^{C^{\prime}} .
$$

This should hold in the sense that the induced functionals on $\Omega^{j+1}(M)$ (i.e., the induced currents) must be equal.

E5. If $C^{\prime}=\left\{V_{1} \supset \cdots \supset V_{n-j-1}\right\} \subseteq T_{k}$ is not empty,

$$
\sum_{V \subset \partial V_{n-j-1}} \partial \eta_{k}^{C^{\prime} \cup\{V\}}=0
$$

where the sum is taken over all simplices in the boundary of V_{n-j-1}. If C^{\prime} is empty, then the same equation should hold, but now taking the sum over all simplices V of dimension d in T_{k}.

E6. The cells of η_{k}^{C} that are not inherited from $\bar{\beta}_{k}^{C}$ are almost M-mass minimizing, in a sense that will be specified at the end of Section A.5.3.

E7. If $j=n-1$, the cells of η_{k}^{C} that are not inherited from $\bar{\beta}_{k}^{C}$ are parameterized with very high speed (and thus the induced total measure $\imath \bar{\beta}_{k}^{C} \imath\left(T^{n} M\right)$ is very small), in a sense that will be specified in Section A.6.

First we show how to create the 1-chain η_{k}^{C} corresponding to the case in which C contains n properly nested simplices. We start with $\bar{\beta}_{k}^{C}$, which will provide for compliance with item E2. By U2, the boundary of $\bar{\beta}_{k}^{C}$ is also contained in $\sum_{V \subset \partial V_{n-1}} \eta_{k}^{C \cup\{V\}}$. So what we do, in order to comply with E1 and E3, is that we connect the remaining dots in $\sum_{V \subset \partial V_{n-1}} \eta_{k}^{C \cup\{V\}}$ with curves contained in V_{n-1} in the way prescribed by the weights of the dots; because of property U3, this is possible. By taking very short curves, we ensure compliace with E6. Because of identity (12), the construction of $\eta_{k}^{C \cup\{V\}}\left(V \subset \partial V_{n-1}\right)$ immediately implies E4. Property E5 also follows from the identity (12).

Now assume that we have η_{k}^{C} for $j=m-1$, and let us construct it for $j=m, m>1$. Let $C=\left\{V_{1} \supset \cdots \supset V_{n-m}\right\} \subseteq T_{k}$. For each simplex $V \subset \partial V_{n-m}$, we are assuming that there exists $\eta_{k}^{C \cup V}$ that satisfies E1-E6. To close these up, we again start with $\bar{\beta}_{C}$ (whence complying with E2) and we add cells of dimension $m+1$ contained in V_{n-m} (complying with E1) so that
property E3 will hold; this is possible because V_{n-m} has trivial homology and because $\sum_{V \subset \partial V_{n-1}} \eta_{k}^{C \cup\{V\}}$ is a cycle as it satisfies E5. Properties E4 and E 5 for $j=m$ follow from property E 4 for $j=m-1$. Compliance with property E6 can be attained by choosing an almost mass-minimizing set of ($m+1$)-cells. Property E7 can be achieved by adjusting the parameterization of the cells involved.

Write $\eta_{k}=\eta_{k}^{\emptyset}$. We have proved:
Lemma 26. There is a sequence of cycles η_{k} that contain β_{k} and such that

$$
\begin{equation*}
\mathbf{M}\left(2 \eta_{k} \imath\right)-\mathbf{M}\left(\imath \beta_{k} \imath\right) \tag{13}
\end{equation*}
$$

is almost minimal while respecting

$$
\begin{equation*}
\operatorname{dist}_{\mathscr{M}_{n}}\left(\sum_{C} \mu^{C}, \sum_{C}\left\langle\eta_{k}\right\rangle^{C}\right) \leq \frac{1}{k}, \tag{14}
\end{equation*}
$$

where the sums are taken over all sets C of n properly nested simplices of T^{k}. Also, the part of $\left\langle\eta_{k}\right\rangle^{C}$ that comes inherited from β_{k} satisfies A3.

By construction, equation (14) is exactly the same as the condition in U4.

A.5.2 Density lemma

For each set $C=\left\{V_{1} \supset \cdots \supset V_{n-1}\right\} \subset T_{k}$ of properly nested simplices, in Section A.5.1 the 1-dimensional chain η_{k}^{C} was constructed. Our goal in this section is to estimate the asymptotic behavior of its mass $\mathbf{M}\left(\imath \eta_{k}^{C} \imath\right)$ as $k \rightarrow \infty$.

For a set $U \subset \mathbb{R}^{m}$, the diameter of U within U is defined to be

$$
\operatorname{diam}_{U} U=\sup _{x, y \in U} \inf _{\gamma} \operatorname{arclength}(\gamma)
$$

where the infimum is taken over all absolutely-continuous curves γ parameterized on any interval $[a, b] \subseteq \mathbb{R}$ and such that $\gamma(a)=x$ and $\gamma(b)=y$.

Lemma 27. Let U be a path-connected, bounded open set in $\mathbb{R}^{m}, m \geq 1$. There is a number $\varepsilon_{0}>0$ such that if $0<\varepsilon<\varepsilon_{0}$ and A and B are two finite subsets of U of equal cardinality, then the following is true. Assume that there is a finite partition of U by disjoint, path-connected sets U_{1}, \ldots, U_{m}
with $\operatorname{diam}_{U_{i}} U_{i}<\varepsilon$ such that each of them contains at least one point of A, and

$$
\begin{equation*}
\left|1-\frac{\# U_{i} \cap B}{\# U_{i} \cap A}\right|<\varepsilon^{2} \tag{15}
\end{equation*}
$$

Then there is a 1-dimensional chain θ such that $2 \theta 2(U)=1, \mathbf{M}(2 \theta 2)<2 \varepsilon$, and

$$
\begin{equation*}
\partial\langle\theta\rangle=\frac{1}{\# A}\left(\sum_{x \in A} \delta_{x}-\sum_{y \in B} \delta_{y}\right) \tag{16}
\end{equation*}
$$

Proof. Let

$$
\varepsilon_{0}=\frac{1}{2 \operatorname{diam}_{U} U}
$$

Condition (15) implies that at least $\left\lfloor\left(1-\varepsilon^{2}\right) \# U_{i} \cap A\right\rfloor$ points of A can be joined to points of B within U_{i}. Since $\operatorname{diam}_{U_{i}} U_{i}<\varepsilon$, this can be done using curves γ of length smaller than ε. Let λ_{1} be the chain formed by all those curves γ, each parameterized at the right speed that its induced measure will be a probability, $\left\langle\gamma \imath(T U)=1\right.$. The remaining $\sim \varepsilon^{2} \# U_{i} \cap A$ points of A (and a similar amount of points of B) need to be paired with points outside U_{i}. Since $\# A=\# B$, this is always possible, and it can be done using curves of length $\leq \operatorname{diam}_{U} U$. Let λ_{2} be the chain corresponding to these longer curves, again parameterized at a speed that will make the induced measure a probability.

We let $\theta=\left(\lambda_{1}+\lambda_{2}\right) / \# A$. It is clear then that $2 \theta 2$ is a probability, and that (16) holds. We estimate

$$
\begin{aligned}
& \mathbf{M}(2 \theta 2)=\frac{\operatorname{arclength}\left(\lambda_{1}\right)+\operatorname{arclength}\left(\lambda_{2}\right)}{\# A} \\
& \leq \frac{\varepsilon\left(1-\varepsilon^{2}\right) \# A+\left(\operatorname{diam}_{U} U\right) \varepsilon^{2} \# A}{\# A} \leq 2 \varepsilon
\end{aligned}
$$

Let $k \geq 1$ and let C be a set of properly nested simplices in T_{k}. Decompose the chain η_{k}^{C} into the part of it that comes from $\bar{\beta}_{k}^{C}$ and a remainder ζ_{k}^{C},

$$
\eta_{k}^{C}=\bar{\beta}_{k}^{C}+\zeta_{k}^{C}
$$

Fix $k \in \mathbb{N}$ and a set C of n properly nested simplices. From the construction of η_{k}^{C}, it follows that ζ_{k}^{C} is formed from two types of components:

- Curves joining two points in the 0 -chains β_{k}^{C}; call the corresponding chain $\zeta_{\text {short }}$.
- Curves joining points in various 0-chains $\eta_{k}^{C^{\prime}}\left(C^{\prime} \supset C\right)$ that are not both already in β_{k}^{C}; call the corresponding chain $\zeta_{\text {long }}$.

Observe that as $k \rightarrow \infty$, the first quotient in (8) behaves as

$$
\frac{\bar{\mu}_{k}\left(V_{2}\right)}{\bar{\mu}_{k}\left(V_{1}\right)} \rightarrow 1
$$

since the triangulations T_{k} satisfy T 6 and μ is assumed to be a smooth density. So (8) tends to look like (15). It follows that if k is large, we can apply Lemma 27 to a large subset of the points of $\partial \zeta_{\text {short }}$, with the conclusion that the part of $\zeta_{\text {short }}$ joining them has very small mass \mathbf{M}. What remains of $\partial \zeta_{\text {short }}$ tends to have 0 weight, so the mass of the corresponding part of $\zeta_{\text {short }}$ also vanishes asymptotically.

Similarly, since $\bar{\mu}_{k} \rightarrow \mu$ as $k \rightarrow \infty$, and since the points $\left\{p_{i}^{k}\right\}_{i}$ are a sample of $\left.\mu\right|_{E_{d-n}^{k}}$ (they satisfy U4), the weight of $\partial \zeta_{\text {long }}$ vanishes asymptotically, and hence so does the mass of $\zeta_{\text {long }}$.

We let the function a in A3 decrease rapidly enough that the following lemma will hold as per the preceding argument.

Lemma 28. As $k \rightarrow \infty$,

$$
\sum_{C} \mathbf{M}\left(2 \zeta_{k}^{C} \imath\right) \rightarrow 0 \quad \text { and } \quad \frac{\sum_{C} \mathbf{M}\left(\imath \eta_{k}^{C} \imath\right)}{\sum_{C} \mathbf{M}\left(\imath \bar{\beta}_{k}^{C} \imath\right)} \rightarrow 1,
$$

where the sums are taken over all sets C of $n-1$ properly nested simplices in T_{k}.

A.5.3 Isoperimetric inequality

In this section we want to find an upper bound for the mass difference (13).
Recall the isoperimetric inequality:
Proposition 29 (Federer [10, §4.2.10], [16, §5.3]). There is a constant $C_{4}>$ 1 such that if θ is an m-chain with $\partial \theta=0$ and contained in a simplex V of some triangulation T_{k} and of diameter $\operatorname{diam}_{V} V<1$, then there exists an $(m+1)$-chain σ with $\partial \sigma=\theta$ contained in V and with mass bounded by

$$
\mathbf{M}(\imath \sigma \imath) \leq C_{4} \mathbf{M}(\imath \theta \imath)^{\frac{k+1}{k}}
$$

The original proposition is valid for chains θ in \mathbb{R}^{d}. It is true as stated because when we pullback a chain from \mathbb{R}^{d} to M via any of the functions
φ_{V}, the modulus of these mappings is globally bounded. This in turn is true because there are only finitely many of them, and they have compact domains.

Let $k \geq 1$ and let V_{1} be a d-dimensional simplex in T_{k}. Recall that the chains ζ_{k}^{C} were defined in Section A.5.2. It follows from Lemma 28 and Proposition 29 that we can take the cells in ζ_{k}^{C} to be such that, as $k \rightarrow \infty$

$$
\begin{aligned}
\mathbf{M}\left(\zeta_{k}^{\left\{V_{1}\right\}}\right) & \leq C_{4} \sum_{V_{2} \subset \partial V_{1}} \mathbf{M}\left(\zeta_{k}^{\left\{V_{1}, V_{2}\right\}}\right)^{2}+\varepsilon_{2}^{k} \\
& \leq C_{4}^{1+\frac{3}{2}} \sum_{V_{3} \subset \partial V_{2}} \sum_{V_{2} \subset \partial V_{1}} \mathbf{M}\left(\zeta_{k}^{\left\{V_{1}, V_{2}, V_{3}\right\}}\right)^{3}+\varepsilon_{3}^{k} \\
& \leq \cdots \\
& \leq C_{4}^{p_{n}} \sum_{V_{n-1} \subset \partial V_{n-2}} \cdots \sum_{V_{2} \subset \partial V_{1}} \mathbf{M}\left(\zeta_{k}^{\left\{V_{1}, V_{2}, \ldots, V_{n-1}\right\}}\right)^{n-1}+\varepsilon_{n-1}^{k} \rightarrow 0,
\end{aligned}
$$

where $p_{n}>1$ is some number depending only on $n, \varepsilon_{k}^{\ell}$ is arbitrarily small (it is the error we may get from not taking exactly the cell provided by Proposition 29 , but one with slightly larger mass; we thus specify property E6 to mean that $\varepsilon_{\ell}^{k} \rightarrow 0$ as $k \rightarrow \infty$ for all ℓ), and the sums are taken over all simplices in the corresponding boundaries. We conclude

Lemma 30.

$$
\left|\mathbf{M}\left(\imath \eta_{k} \imath\right)-\mathbf{M}\left(\imath \beta_{k} \imath\right)\right| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

A. 6 Conclusion

Proof of Theorem 1. Let $\mu \in \mathscr{M}_{n}$ be a positive measure. If μ satisfies Condition (Cyc), it follows from Stokes's theorem that it also satisfies Condition (Hol).

To prove the other direction, assume that μ satisfies Condition (Hol). By Lemma 24, we can assume that μ is smooth. We can thus construct for $k \geq 1$ triangulations T_{k} as in Section A.2, base measures $\bar{\mu}_{k}$ as in Section A.3.1, chains β_{k} approximating these as in Section A.3.2, and cycles η_{k} as in Section A.5.1 that contain β_{k}. We have

$$
\operatorname{dist}_{\mathscr{M}_{n}}\left(\mu, \imath \eta_{k} l\right) \leq \operatorname{dist}_{\mathscr{M}_{n}}\left(\mu, \bar{\mu}_{k}\right)+\operatorname{dist}_{\mathscr{M}_{n}}\left(\bar{\mu}_{k}, \imath \beta_{k} l\right)+\operatorname{dist}_{\mathscr{M}_{n}}\left(2 \beta_{k} \imath,\left\langle\eta_{k} l\right) .\right.
$$

The first two summands on the right-hand-side vanish asymptotically by construction. The last term, as per the definition of dist $_{\mathscr{M}_{n}}$ in equation (1), has two parts: the mass difference, which tends to zero by Lemma 30, and
the one involving the functions f_{i}. The second one can be arranged to tend to zero by having the cells of η_{k} not present in β_{k} be parameterized at very high speeds, thus specifying property E7. We conclude that the measures induced by the cycles η_{k} indeed approximate μ, so μ satisfies Condition (Cyc).

References

[1] William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417-491, 1972.
[2] Frederick J. Almgren, Jr. Plateau's problem: An invitation to varifold geometry. W. A. Benjamin, Inc., New York-Amsterdam, 1966.
[3] V. Bangert. Minimal measures and minimizing closed normal onecurrents. Geom. Funct. Anal., 9(3):413-427, 1999.
[4] Patrick Bernard. Young measures, superposition and transport. Indiana Univ. Math. J., 57(1):247-275, 2008.
[5] Gonzalo Contreras and Renato Iturriaga. Global minimizers of autonomous Lagrangians. 22° Colóquio Brasileiro de Matemática. [22nd Brazilian Mathematics Colloquium]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1999.
[6] Michael G. Crandall and Pierre-Louis Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 277(1):1-42, 1983.
[7] Bernard Dacorogna. Introduction to the calculus of variations. Imperial College Press, London, second edition, 2009. Translated from the 1992 French original.
[8] Lawrence C. Evans. Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal., 95(3):227-252, 1986.
[9] Albert Fathi. Weak KAM theorem in lagrangian dynamics. Preliminary Version Number 10, June 2008.
[10] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
[11] F. G. Friedlander. Introduction to the theory of distributions. Cambridge University Press, Cambridge, second edition, 1998. With additional material by M. Joshi.
[12] Jan Kristensen and Giuseppe Mingione. The singular set of minima of integral functionals. Arch. Ration. Mech. Anal., 180(3):331-398, 2006.
[13] Ricardo Mañé. Ergodic theory and differentiable dynamics, volume 8 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy.
[14] John N. Mather. Personal letter to G. Contreras and R. Iturriaga.
[15] John N. Mather. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207(2):169-207, 1991.
[16] Frank Morgan. Geometric measure theory. Elsevier/Academic Press, Amsterdam, fourth edition, 2009. A beginner's guide.
[17] Jürgen Moser. Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(3):229-272, 1986.
[18] Jürgen Moser. A stability theorem for minimal foliations on a torus. Ergodic Theory Dynam. Systems, 8*(Charles Conley Memorial Issue):251281, 1988.
[19] Jürgen Moser. Minimal foliations on a torus. In Topics in calculus of variations (Montecatini Terme, 1987), volume 1365 of Lecture Notes in Math., pages 62-99. Springer, Berlin, 1989.
[20] James R. Munkres. Elementary differential topology, volume 1961 of Lectures given at Massachusetts Institute of Technology, Fall. Princeton University Press, Princeton, N.J., 1966.
[21] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University Centre for Mathematical Analysis, Canberra, 1983.
[22] O. G. Smolyanov and H. von Weizsäcker. Differentiable families of measures. J. Funct. Anal., 118(2):454-476, 1993.
[23] L. C. Young. Lectures on the calculus of variations and optimal control theory. Foreword by Wendell H. Fleming. W. B. Saunders Co., Philadelphia, 1969.

