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§ 1

Introduction

Let [} C JRd be an open (unboundod) set and let d· a . d be a differential expression, where
a(.) is a 10ea11y integrable function on [} with values in the strietly positive real symmetrie
matriees.

Wo eonsider at least three realizations of -d . a . d in L Z( 57): An, Ai, An - the Diriehlct,
intermediate Dirichlet and generalized Neumann symmetrie Markov generators. It fo11ows
from the Beurling-Deny eriterion that there exist positivity preserving eontraction eOllsistent
semigroups on LP(fl), 1 ~ P < 00, with generators -Ap such that Az = A, where Adenotes
oue of the operators AD, Ai or AN.

We sha11 prove the spectral p-independenee of A for all p E [1,00[ under the following
assumptions on a( .):

a(·) E L1(flR) for some R < 00,

a(x)(1 +xZ)-llnl/(l +xZ) E LOO(fl \ 57R ) for some v> 0,

where fl R =: {x E 57 : Ix I ::; R}.
In the course of proof we show that An is loeal and that CJ (57) is a form core of An + V,

assuming only that a(.) and 0 ~ V belang to Lloc(.f2).
Next, we eonsider the generalized Sehrödinger operator A = A + V, V = V+ - V_, V± E

Lloc(57) with the form small negative part V_:

V_ ~ ßA +V+ +c(ß) for some 0 < ß < 1 and c(ß) E JR1.

Now -Ap ean be defined as a generator of a strongly continuous consistent semigroup in LP(57)
only for Po ::; P ~ p~ with appropriate 1 < Po < 2. We sha11 prove that for all z E g(ih)
the resolvent (z - AZ)-l can be extended by continuity to a bounded map on LP(fl) for all
p E}p(ß),p'(ß)[ where p'(ß) =: 1-J1-ß ,~, d 2:: 3 and p(ß) =: (p'(ß))'·

Ir Ile- tA2 fil Po ~ Alewt llfllPo' f E L2 n LPo( fl) for some Po E]p(ß),2[ (so that Ap is welJ
defined for an p E [PO, p~]) thon g( A2) = g( Ap ) for all p E [Po, p~]. In partieular, wc shall
see that this is always the ease for Po = t(ß) =: J . For the Schrödinger operator

1+ l-ß
A = -.d + V in L2(JRd) we abtain the equality g(Az) = g(Ap ) for all p E}p(ß), p'(ß)( if, in
addition, V_ = \11- + V2-, V1- E ](d, Vz- E Ld/Z,oo(JRd), d ~ 3 where

is the Kato dass and Lq,oo is a weak Lq space.
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§ 1 Introductioll

We should emphasize that there are fairly simple examples of potentials V = - V2- E
Ld/2,OO(JRd) for which .1 - V cannot be defined as a generator of a strongly continuous semi
group on LP(JRd) if p ~ p(ß) or p ~ p'(ß). Therefore, ]p(ß), p'(ß)[ is the maximal interval of
"bounded solvability" for -.1+V, and in this sense the very last statement on p-independence
of a(Ap ) = <[; \ g(Ap ) cannot be improved.

The stability of the LP-spectrum has been studied in [HVl-3], [ShJ, [Stl], [ScV], [Are], [D2].
The present work is based on idcas developed in [Are], [ScV] and [Sc].

The problem of the equivalence of the Green functions GA of A-1 and GA of A-1 was
discussed by many authors (see [Pi]' [Ra], [Zh] and papers quoted there). Our treatment
of the problem rests on applying thc fact that thc spectrum of Ap is independent of p for a
wide dass of coefficients and that the spectral bound of -Ap and the growth bound of e- tAp

coinside ([Na), [Wl]). Our approach leads to general and, more importantly, to natural for
unbounded [l conditions on V. In particular, thc following will bc proven. Let [l = JRd anel
let A = - L\ +V.

lf V E .Kd, IJ( -d)-IY+lloo < 00 and -ßd + Y ~ 0 for same 0 < ß < 1 then there exists a
constant 0 < c < 1 such that for all x, y E JRd

cGo(x, y) ~ GA(x, y) ~ c-1Go(x, y)

where Go(x, y) = cdlx - yI2-d, d ~ 3.
rt would be mentioned that we da not imposc any "optimal" decay assumptions on Y except

for "11(-d)-IY+lloo < 00". The latter is a necessary condition for V = Y+.
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§2

Construction and properties of "free"
~arkov generators

Let [l C m,d be an open set and let a : fl -t m,d 0 m,d be a measurable, symmetrie matrix
vailled function which satisfies the ellipticity eondition

I::; a(-) ::; av(·)I a. e. for some atJ : fl -t 1R~

in the sense of non-negative definite matrices. Set

~ ou ov
du· a· dv =: L.J aij(x)~ . ~'

i,j=l x~ x)
(/) =: Jf dx.

n

We will be assuming that aij, av E Lfoc( fl).
Let us consider the family T of all closed, symmetrie non-negative quadratic forms in L 2 ( J?).

As a general referenee we use [K1, Chaptcrs VI, VIII]. If lET, then there exists the unique
self-adjoint operator T 2:: 0 such that

I[U,V]
I[U, v]

(T l
/

2
U, T l

/
2
V), V(I) = Q(T) x Q(T),

= (Tu, v), U E V(T), v E Q(T) =: V(T l
/

2
).

In this case wo shall write T +-+ I.

Let Il, '2 E T alld assurne that D( '1 + 12) =: 'D(,d n V( 12) is dense in L2( fl), then
'1 + '2 E T. If Tv +-+ 'v, V = 1,2 and if T +-+ '1 + '2, then T is eallod thc form sum of Tl and
T2 and denoted by Tl +-T2 .

Let pt be a Co-semigroup on L2(f2). Wo say that it is a Markov semigroup if for alll > 0

o::; ptu ::; 1 a. e. whellover u E L 2(f2), 0 ::; u ::; 1 a. e.

"Ve define

TM = {, E T : e-tT is asymmetrie Markov semigrotlp, T +-+ I}.

Wo put

c[u, v]
V(c)

-. (dU· a· dv),

Cci(f2) x Cci(f2)

and define
T( E) = {, E T : I :> c:}
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§ 2 Constrllctioll and properties of "[fee" Markov generators

and

We say that 7 E TM is loeal if

7[1, g] = 0 whenever 0 ::; 1,9,1 1\ 9 = 0 (1, 9 E V(7)).

We then define the following extensions of e:

7D = E'" (the closure of E),
7i J TD, V(Ti) = Vi X Vi, Vi = {u E H~(fl) : (du· a· du) < oo},
7N :> Ti, V(TN) = VN X VN, VN = {u E lll(fl): (dU· a· du) < oo}.

Lemma 2.1. TD, Ti, 7N E TM(E) and are loeal.

Proof. Dofine
1

an
(.) = 1+ (a(·) - 1)(1 + -au (-))-l, nEiN.

n

Evidently I ::; an(.) ::; (n +1)1 and an(.) ::; an+1(.) ::; a(·) a. e. Let E = HÖ(fl) or .H1(fl).
Let

Tn[U,v] _. (dU·an·dv), V(Tn ) = ExE

En[U, v] -. (du· an . dv), V(En) = V(c:).

Then Tn E TM(en),TD E TM(C:) and Tn are Ioeal (see [Fu]). Define T by

T[U,V] -.

D -.

Um 7n [U, v], V(T) = V X V,
n

{u E E : SlIp c:n[u] < oo}.
n

Then T :J e'" by definition, and T E T(e) by the limit theorem for an inereasing sequenee
of closed, symmetrie non-negative quadratie forms ([Kl, eh. VIII, Th. 3.13]). The Markov
property of e-tA (A f-1 T) and the Ioeal property of T follow immediately. Sinee TD C T, one
eancludes that TD is Ioeal. 0

It should be mentioned that TD is the maximal element ofTM(e) endowing with the semi-order

-<:
Tl -< 72 <==> V(TI) :> V(T2) and TtfU]::; T2[U], U E 'D(TZ).

One ean show (we will not da this here) that TN is the minimal element of TM(c:) if uu(') E
LOO(fl). This is partieulary known for a(·) = I [Fu]. Also, in the ease 1/1 (fl) = 1Id(fl) it
is natural to deseribe the dass of a(·)'s for which the Markov uniqueness (TD = Tmin) holds
true.

Let 0 ::; \f E Lfoc( S?) and T E T(c:). If A f-1 T then Q(lf) n Q(A) is dense in L2( fl) and

A+V is well-definod. It is easy to see using the Trotter-Kato produet farmula [K2] that if

T E TM(E) then e-t(A+V) is asymmetrie Markov semigroup. If T f-1 T, t f-1 L we writc T ::; L
iff 7 -< t.
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§3

Weights cOITlpatible with A+V

Definition 3.1. Let e : il --+ ]R,~ and

{

e(x) if l/n::;e(x)::;n,
en(x) = n if g(x) ~ n,

l/n if l/n ~ e(x),
(nEIN).

\Ve say that a weight g and the operator lf = A-t-V are compatible if

a) g, g-l E Wl~'~(il). (WI ,2(il) == HI(f?))j

b) g-2dg· a . de ::; coll +Cl für same cünstants 0 ::; Co, Cl < 00;

c) u E Q(H) implies ug~ E Q(II) and (HI/2 g;;5u , HI/2g~V) = (H I/2U,IJI/2v ) - b .
k(gn)[u, v], u, v E Q(JJ) for all b E ]R,l and all n E N,

where k(g) = kl (e)+k2(g)+bk3(e),kl (g)[u,v] = (u,g-ldg·a·dv), k2(g)[u,v] = -kl(g)[v,u],
k3 (g )[u, v] = (ug- 2dg . a . dg, v), D(k(gn)) = D(kv(e( n)) = Q(H) X Q(lf), v = 1,2,3.

Lemma 3.2.

1. If A = A D or Ai then
a)+b)=}c).

2. H A = AN then
a) +b) +ea) ==> c)

where

(en)

Proof.

1. Let H = Ai-t-V. Since Q(Ai) C JI~(f?) and g~ E W 1,OO(f?) olle has

u E Q(H) implies g~1L E HJ(f?),

dg~u == d(g~u) = g~du + b'lLg~-ldgn

dg~u. a . dg~u ::; 2b2n21511u12dg. a· dg +2n2151 dU· a . du.

Hellce by b)

(3.1) (dlJ~u, a . dg~u) ::; (1 + co82)2n2151(lJl/2u, H I/2u) + 2clb2n215111ull~

so that g~u E Q(Ai) and

( 1/2 5 AI /2 5 ) _ (1/2 1/2) .c k( )[] Q( )Ai gnu, i gnu - Ai u, Ai v - u· en u, v , U, v EH.

Since u E Q(.H) implies g~u E Q(V), the case A = l1i is proved.

6



§ 3 Weights compatible with A+-V

2. Thc same proof works for A = AN. Wo recall only that assurnption (en) is valid if e.
g. [2 has the extension property [Ste, p. 181].

3. Let 11 = An+-V. Sinee TD C Ti, we need only to prove that u E Q(H) implies uO~ E
Q(H). Taking into aeeount the fact that H is a Markov generator and that g~ ~ n- Isl >
0, without loss we restrict u E Q(II) to 0 ::; U E Q(II). Sinee g~u E Q(V), wc havc only
to show that g~u E Q(AD). To do this it is sufficient ([Kl, eh. VI, Th. 1.16]) to find
Vm E Q(Ao) with

(3.2) snp TO[Vm ] < 00 and Ilg~U - Vm 112 ~ 0 as m ~ 00
m

for 0 ::; U E Q(H).

Sinee TO C Ti, it is clear that g~u E lId ([2) and d(J~u . a . do~u E LI ([2) and the same
is true for u 1\ i, eE IN. Moreover, sinee lIH1/2utl12 ::; IIH1/ 2uI12' one obtains (see (3.1))

(3.3) StlP(dg~wk . a . dg~Wk) < 00 and Ilo~(u - wk)112 ~ 0 as k ~ 00,
k

where Wk =U 1\ k.

Thus, it suffices to prove (3.2) for 0 ::; u E Q(H) n LOO(n). By the deflilition of TO for
such an u there exist Uk E Cö(n) with

[u - Uk] =: TO[U - 'Uk] + llu - ukll~ ~ 0 as k ~ 00.

Since TO E TM(e), we may suppose without loss that Uk are real. Then, sinee TO is
loeal, one has [u - Uk V 0] ::; TO[U - Uk] + Ilu - Uk V Oll~ ~ 0 as k ~ 00. In particular,
sUPk TO[ut] < 00, ut = Uk V O. Again, since TD E TM(t), TO[U A ut] :::; TO[U] +TO[ut]
and 11V1/ 2

( U 1\ ut)lb ::; IIV1/2uI12' Henee (see (3.1)) (3.3) holds with Wk = U 1\ ut. The
latter means that it suffices to prove (3.2) for 0 :::; U E Q(H) n L~m(n). ünee more,
for such an u there exist Ik E CJ(f2) with Ik = Re Ik and [u - fk] ~ 0 as k ~ 00. Ir
llulloo = e thon there exist hk E Cl(IR1

) with 0 ::; hk :::; 2f,0 :::; hk :::; 1 and hk(O) = 0
such that hkOfk E CÖ(f2), 0:::; hko/k :::; 2e and TD[hkO!k] ::; TO[U] and Ilu-hkojkl12 ~ 0
as k ~ 00. Let Uk = (hk 0 /k)' <f>, where </> E CÖ([2), </>(x) = 1 if x E suppu,O::; </>::; 1.
Then TO[Uk] ::; 2T[U] +8i2(d</>. a . d</». IIVl/2uk I1 2 :::; 2lIIV1/2</>112 and therefore (3.3)
holds with Wk = Uk E Cd (.!?). Thus, one needs only to provo (3.2) for 0 ::; U E Cö (n).
The latter can be checked easily. 0

Remark 3.3. A slight change in thc proof actually shows that C6(f2) is a form eore of
H = Ao+-V. (cf. [Dl, Th. 1.8.1]).

Wc Hext prove the following proposition which will be a crueial ingredient in our analysis
of the spectral p-independence.

Propositon 3.4. Let a weight g and the operator 1/ are cornpatible. Define the quadratic
forms t, k, kv , 11 = 1,2,3 in L2(!2) by

t[u, v] = (H 1/2u , Hl/2v) - b . k[u, v], b E IR!,

k = kl + k2 + bk3 , V(t) = V(kv ) = Q(II) X Q(.R),

k[u, v] =: k(g )[u, v], kv[u, v] =: kv(g)[u, v] (see Def. 3.1.).

Assume that
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§ 3 Weights compatible with A+V

b') d(]· a . dg ~ g2(Co + c, V1-,) a. e. for some f E]O, 1] and 0 < co, Cl < 00.

Thon the following assertions hold

(i) For any 8 E IR1 the form 'l is quasi m-sectorial,

t[u, v] = (H2,su, v), u E T>(H2,s) C Q(H), v E Q(H)

where 1/2 ,s is quasi m-accretive operator associated with l.

(ii) Fix 80 > 0, then fix "\0 > 0 by the candition 50"" < 1 where

"" = II(co + Cl V1-, )1/2(AO + V)-1/2112_2.

For all 8E JRI with 181 ~ 80 thcre cxists w = w(80 , Ao) > 0 s11ch that 11(z+ lJ2,s)-1112_2 ~

Iz - Aol-1
, larg (z - Ao)1 ~ I +w.

o ""0 0

(iii) Let F C g( -lI) be compact, P connected, F = Fand Ao E F. There exist 81 E]O,80]

and a constant C2 such that

for all 8 E JRl with 181 ::; 81 and all z E F.

(iv) For all A > "\0 and all 8 with 181 < 80

(]s(,.\ +H)-I fl-s f = (,.\ +H2,s)-1 /, f E L~om(!])'

(v) If Fand 81 are given in (iii) then

fls(Z +H)-l(]-S f = (z +H2,s)-1 f, f E L~om(12)

for all 8 with 181 ~ 81 and all z E F.

Remarks 3.5.

1. The condition b') has been introduced by T. Kato [K3].

2. Since f #- 0 in b'), lim>._oo 11 (co +CI Vl-')1/2(,.\ + V)-1/2112_2 = O.

3. Proposition 3.4 holds true in the case f = 0 with thc following additional assumptions:

in (i) 82 < cl l
,

in (ii)-(v) 86 < cl l and Ao > Co 1\ ~.

The proof of Propositon 3.4. Define the (complex) Hilbert spaces H+ C L2( S2) C H_
setting H+ = (Q(H), 11'11+), Ilull+ = II(Ao +lJ)1/2uI1 2,H_ = (H+)*. Let u, v E H+. One has

o~ ks[u] ::; II(co +CI Vl-,)1/2ull~ ~ ",,21Iullt,
Ik1[u, v]1 = Ik2 [v, u]1 ::; (Jde' a· dflfl-Ilul, y"-dV-·a-.-d-v')

< II(co +Cl V1-,)1/2uI12111I1/2vI12 ::; ""llull+ '1Ivll+,
Re t[u] = Ilulit - 82k3 [u] - '\ollull~,

Im t[u] = H8· (kl[u] - k2[u]),

(1 - 82~2)llull~ ::; Re t[u] + Aollull~ ::; Ilullt.
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§ 3 Weights compatible with A+V

The ab~ve proves (i) and (ii) (see [K1, Ch. VI]);.lt is clear~so that (H 1
/
2u, Hl/2v) = rJ!u, v),

where J] : H+ --+ H_ and V(H) = {f E H+ : Hf E L2}, H rV(H) = 11, Kv[u, v] = (]{vu, v),
k[u, v] = Cf(u, v), Kv , K : H+ --+ H_, H 2,s = jj - 8K rV(H2,s), V(H2,s) = {f E H+ :
iI f -8Kf E L 2}. Set fj =: )"+H-82K3,..\ > ..\0 and define B =: fj r{f E H+ : Bf E L 2} - the
form sum of )" +H and -8;..1}-2~. a . do. Since K,

282 < 1, B-1 / 2 : H_ --+ L 2, BI /2 : L 2 --+ H+.
Define ip =: _~B-1/2(A'1+ ](2)B- 1/ 2 so that ip = 1>* : L 2 --+ L 2 and

(3.4)

Although thc assertions (iii) and (iv) follow from (3.4) it will be convenient to use a slight
modification of it.

(3.4') (,,\ +H )-1 = 5-1/2 (1 _ y)-1 5-1/2 ,\ > ~ >,,\2,S ,0 _ 0,

where 5 = ,\ + 11, Y = 85-1/ 2](5-1 / 2 ; ~O is fixed by the condition 80 t\, < V2 - 1, which
implies

IIY112- 2 = 181IlS-1
/
2(Ä\ +](2 +8K3 )S-I/211z_2

< !81(2n: + 181K2) < 1.

By (3.4 ') one has

11(,\ +11)-1 - (..\ +H2,s)-1112-42 :::; lIS-1/211~-42 .111 - (1 - y)-lllz-42 --+ 0

as 181 -t o.
~ 0

The latter immediately yields (iii) with slightly different F ("\0 E F). See [K1, Ch. IV, Th.
2.2.5 and Rcmark 3.13]. To justify (iv) we note that (3.4), (3.4') hold for 112,s(On), B(fln),
Y(lJn) where H 2,s(g) =H 2,s etc. Given <p,1jJ E L 2(f2) one has

!((l''t - Yl (lJn))<P, 1J')1 = I(g-ld(g - gn) . a· dS-1/2<p, S-I/21jJ) 1

:::; IIJ]I/25-1/ 21p1l2· 1I Jd((} - gn) . a . d(g - gn)g-1 S-1 /21jJ112

< 111,0112·11(1- ]n)(CO +Cl V 1-,)I/Zs-1/21jJ112

where ]n i8 the indicator of the set {x E n : ~ ~ (}(x) ~ n}. Since (co +Cl VI-,)1/2S-1/21jJ E
L2 ( S2) and g, g-1 E L~c( il), one obtains

Y1 = 10 - L2
- lim Yl((}n)

n

alld similarly Yv =10 - L2 - limn Yv(gn), v = 2,3. Therefore, by (3.4')

Let te[u, v] denote t(u, v]. Then (i), (ii) imply

t"n [u, v] = (Hl/2 g;;Su, Hl/2g~v), u, v E H+,

t"n[u,v] = (H2,S(On)u, v), uED(H2,s((}n)),vEH+.
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§ 3 \'Veights compatibJe with A+V

Note that (]~e-tH(];;,S 1 t ~ 0 is a Co-semigroup on LZ( .0) and 11(]~e-tH(];;,sllz_z :::s; nZlsl . Let
-r denote its generator. We claim that r = Hz,s((]n)' lndeed for 1 E V(.Hz,s((]n)) C H+
and 9 E H+ one has

t

~ ((1 - e~e-tHe;")f, g) = ~J(e-,H H' /2e;" f, H' /2e~g) ds
o

-j. (H 1/ Z(];;s I, Ht/z(]~g) = (HZ,s((]n)/, g) as t -j. 0.

Hence r rV(.Hz,s((]n)) = HZ,8(fln)' Sirrce both -r and -Hz,S(fln) are generators and ,\ E

fl( - r) nO( - JIz,o(fln)) for ,\ > >:0 > 0, the last eq uality means that r = 1Iz,s( fln). In particular

Given /,g E L~om(.n), choose no = 7l-Q(supp/,suppg) such that

for all .-\ E fl( -H) and n ~ no (due to fl, fl- 1 E L~c(J2)). Now (3.5) and (3.6) combined lead

to (iv) (for all A> >:0 ~ .-\0)' We are IlOW in a position to prove (v). First note that if .-\ > .-\01

181< 80 then.-\ E fl(-1/z,8) and by (3.4) ((.-\+ HZ,_8)-1]* = (.-\+Hz,s)-t. Let 1,9 E L~om(.o).

By (iv) one has

((]o(>. + l/)-z(]-s /, g) = ((]s(>. + H)-l (]-s /,0- 0(>, + H)-l (]sg)

= ((>. + HZ,S)-l J, (.-\ +HZ,_o)-l g) = ((>. +11z,8)-2 I, g).

o
Thus, ti( >. +l/)-t (]-81 = (>. +H z,o)-t1 for e= 2 and hence for all eEIN. Finally, let>. E F,

z E {~ E F : I~ - >'l c2 < 1}, 181 < 01. Using (iii) yields

00

((z +HZ,S)-l/,g) = L((z - .-\)k(.-\ + Jlz,S)-k-l/,g)
k=O
00

= L ((z - >. )k(A+ JI)-k-l g-5I, rlg) = ((z +H)-l g-S /, g8g)
k=O

= (gS(z +1I)-lg-51,9).

Since F is compact, (v) is proved.
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§4

(LP, Lq) estilllates for "weighted"
resolvents

Befare praving the crucial far the whale approach (LP, Lq) estimates we need the following
technical lemma.

Lemma 4.1. Let T E TM(c) be such one that

or
TN :> T :> TD if the condition (en) of Lemma 3.2 holds.

If 0::; u,up -
1 and u p / 2 belong to Q(l{) for some p > 1, H = A-tV,A t-+ T, then T[U,Up -

1] =
49T[Up

/ 2] and
p

(H 1/2g~U, Hl/2g~up - 1 ) = 4 P~ 1T[up/ 2] + IlVl/pull~ +2P - 2 8 . k1[up/ 2]- 82k3 [u p/ 2], 8 E JRl
P P

where k1 [v] = (v, g-ldgn . a· dv), k3 [v] = (vg- 2dQn . a· da, v).

Proof. We consider c. g. the case Ti :> T :> TD. Ir au E Loo([2) then the statements are
evident for u E CJ([2) and, since HJ([2) = (CJ([2))HJ(il)' for u E ,H6([2) too. Let Tm,km,k~

be built by arn (.) (see the proof of Lemma 2.1). Because of T C Ti one has

T[U, up- 1] Ti[U, UP-I] = lim Tm[u, u p- 1].
m

Tm[U, up-I] 4P ~ 1Tm [u p/ 2], r m (up/ 2] --t Ti[U p/ 2] = T[Up/ 2],
P

k
1
m [u, UP-I] + k2

m [u, uP-I) 2P - 2km [up / 2] --t 2P - 2k1 [up / 2],
P 1 P

k;n [u, uP-
I

] k3[up
/
2] --t k3[up

/
2] as m --t 00.

These complctes the prove of thc Lemma. 0

Proposition 4.2. Let H = A-t V, A t-+ T, Ti :> T :> TD (or TN :> T :> TD if [2 satisfies (Cil)).

Let the assum ptions of Proposition 3.4 be hold. For all 1 < P ::; q < 00 with 1/P - 1/q = 2/d
and 0 < 1/p - 1/q < 2/d if q = 00 there exist 0 < '\p,8p < 00 such that the operator
a5(,\ + H)-l{]-S : L~m(.f2) --t Lfoc([2), ,\ > 0,8 E JRI, can be extended by continuity to a
bounded map from LP( [2) into Lq([2) as soon as ,\ > ,\P and 101 < op.

Proof. Let Un = .Q~(,\ + H)-Ia;:;S /,° :$ f E L~m(J?), ,\ > 0, 0 E IRl
. It is clear that

o :$ Un E Loo n L1([2) and, since e-tHrg = e-tH9,9 E Lr n L2([2), 1 ::; T < 00, one has
(,\ + Hr)-lg;;S f = Q;;Sun. Therefore g;:;Sun E 1J(Hr) and

(4.1) (('\+Hr)a;Sun,g;5U~-]) = (f,U~-I) Vv> 1.

11



(4.2)

§4 (LP, Lq) estimates for "weighted" resolvents

We need now the following general result [LSe, Th. 2.1]. If B is asymmetrie Markov generator
and if h E V(B r ) for some 1 < r < 00 then hlhl r

-
2/ 2 E Q(B).

The above leads to (Q;;6un y/2 E Q(H). Putting eonsequently r = 2, 2(v -1), v with v > 3/2,

and using thc fact that Q(H) is invariant under multiplieation by Q~ one has Un , u~-t, u~/2
all belong to Q(11). Henee Lemma 4.1 is applicable to (4.1) so that

v-I v-2
4-2-r(v) + Allvll~ + (v, Vv) = (f,u~-l) - 2--okl [v] + 02k3[v]

V V

h 1I/2
W ere v =: U n .

The inequality 2k1(v] ::; J-Lk3 [v] + tr[v] with J-L = '~::::i' v]81 and the condition k3 [v] ::; coll1)'I~ +
Cl (v, Vl-"Yv) give

v-I 2 I 1
2-2-7[V] + (A - colols)]I1'112 ::; (f, u~- ) + clI8!s(v, V -"Yv ) - (v, Vv)

v

where s = 101 + v I~::::i'.
By the Young inequality cllolsVl-"Y ::; J(cdols)1/'y + (1 -J)V a. e., so that

v-I -
2-2-7[V] + (A - AI/ )lIvll~ ::; (f, u~-l) -1'(v, Vv)

v

where ~1I = COOI/(OI/ + vl~=~I) + (CIOll(Oll + vl~::::il))l/"Y.

Sinee (f,u~-l) ::; I!flii/llunll~-l, one has by (4.2)

(4.3)

Similarly,
(f,ll~-l) ::; Ilfllpll1Lnll~J~1 ::; cl(v,d)llfll~ + c2(v,d)llunll~}

where ~ - ~} = ~,j = ~,d ~ 3, p > ~ a:h-. Now (4.2) and the Sobolev imbedding theorem
eombilled give

(4.4)

The ease ~~ < p < q < 00, ~ - ~ = ~ or ~ < P ::; q < 00, ~ - ~ ~ ~ follows now by applying

(3.5) to (4.3), (4.4) with A > Ap= AO V ~P' 101 < 00 A op. By duality the same holds for all
1 < p.

Ta treat the ease p > ~,q = 00, we proeeed as follows. Fix Po E)~, oo[ alld let A > ~po so

that IlunIlpQ ::; (A - ~Po )-lllflIPo • Let P ~ Po and )1 = ~ so that 1 ::; j1 < j. By the Sobolev

imbedding theorem Ilvll~+]IVvll~ ~ cdllvll~jl and by ineqnalities (f,u~-1) ::; Ilfllpo'llunllf;~I)pb'

I11lnll~ ~ IlunlJPo ·IJunllf;~1)pb we obtain from (4.2)

Ilunll~h ::; c· (p - l)rllfll73O '1Iunllf;~1)pb

where r = 1 + 1. and c = c(d, Po,°730 ). Set l, = -ir-. One has"Y Po

1. e=..!.
lIunll(p-1)pb~ ::; [c. (p - 1)rllfIIPo ] p 'lI un ll(;-I)pb'

12



§ 4 (LP, Lq) estimates far "weigllted" resalvents

The latter admits iteration on p. Putting consecutively p - 1 = Po - 1, (Po - 1)t" (Po 
1)t,2, ... , (Po - 1)t,m one has

(4.5)

where

m 1 TIm (Po - l)~i

O'm -. {; 1 + (Po -1)t,k-1 t;k 1 + (Po -1)t,i'

m-Z k 1 k ( 1) m-im- - Po- t, m

ßm -. {; 1 + (po - 1)~m-k-l g 1 + (Po - 1)t,m-i + 1 + (Po - l)t,m'

1 m (Po - 1)~i

Sm - . p~D1 + (Po - 1) ~ i .

We then have

1 1 1
O'm < a =: - +-- .--,

- Po Po-1 ~-1

00

ßm 5: ß =: Liti
,

1;1

o

Remarks 4.3.

1. Without fllrther assunlptions the resolvent (z-HZ,S)-l even jf V =0 cannot be extended
by continuity to a bounded map on L1 (J2) (or LOO(J2)) for some z E e(Jlz,s) and fJ f:. O.

2. The above variant of Moser's iteration process appeared in [Se) alld then was applied
to related problems in Orlicz spaces in [LPJ.

"Ve consider now the case of V = Y+ - Y_, 0 5: V± E Lloc(S?)' LP theory of A + \7 can be
developed under the following condition on V_

for some ß ::::; 1 and c(ß) E IR?

in the sense that

(I, (Y- 1\ n)/) 5: ß(/, AI) + (I, V+/) + c(ß)II/II~

for all I E Q(A) n Q(Y+) and for all nEIN.

Setting A(n) = A+V+ - V_ 1\ n and using semiboundness of A(n) and (pointwise a. e.)

inequalities 0 $ e-tA(n) III $ e-
tA

(n+1) III (t > 0) one has:

V~ =: s - L2 - lim e-tA(n)
n

exists and determincs a Co-semigroup. For aJt P E (t(ß), t'(ß)] (t(ß) = 2/1 +vr=!3, t'(ß) =:

2/1- vr=!3)

(4.6)
-

Vp
t =: (V~ r (LZ n LP])

Lp-Lp

13



is a Co-semigraup and

§ 4 (LP, Lq) estimates [ar "weiglIted" resalvents

ll vtll < etc(ß)
p P-P - .

Let -Ap denote the generator of v~. Then for all P E]t(ß), t'(ß)[ and for all A > c(ß) and
1 50 j1 50 j

(4.7)

Moreover, (A + Ap)-l is cxtended by continuity to a map Trom Lq1 (52) into LPh (52), q\ =
-p~ + -J-. The above facts can be easily extracted from the proof of Th. 3.2. in [LSe]. The

J1 J1
proof on Proposition 3.4 and 4.2 can be adapted to obtain the following

Proposition 4.4. Let ll+ = A-t-V+ satisfy the hypotheses of Proposition 4.2. ]n addition,
assurne that

dt] . a • dl] ~ Col]'l. a. e. for some constant Co < 00.

Then for all p E]t(ß), t'(ß)[ there exist 0 < Ap,Op < 00 such that the operator t]0(A+ A)-11]-5 :
L~m( [2) -,). Lfoc( .0), A> c(ß),°E IR1 can be extended by continuity to a bounded map

from LP( f7) into LPh (.0)

and
1 1 1
-=-+-:
q1 Pj] Jl

for all A> Ap and 101 50 op.
We comment that one can state first all of the claims for A(n) ( in order to have thc fact:

t]~(A+A(m) )-11];;0f E LOO nL1 (.0), f E L~m( .0)) and then taking thc limit obtain the desized
for A.

14



§5

LP spectral independence

Definition 5.1. We say that 'ljJ : lRd
-t lRd is L1-regular if

1) 11f;(x) -1f;(y)l::; Llx - Yl for all x,y E lRd and some cünstant L < 00.

2) For each c > 0

Lemma 5.2. Let 'ljJ be Ll-regular, 80 > 0 and 1 ::; P ::; q ::; 00. Für each linear operator

N : L~m(.!2) --+ L{oc(.!2) üne has

IINII < LooVd II e-lj;N -e-lj;11rt-r 2 _ COoe sup e e p_q

lel500

für all p ::; Tl ::; T2 ::; q.

Proof. We subdivide lRd into cubes of unite size length as follows. For i E LEd define
Qi =: {x E n: Ix - iloo < ~}- Let k,i E LEd, j E LOO(n), suppj C Qi. Putting

~ = 00 I~~:~ =~~~~I if 1/J(k) i 1/J( i) and ~ = 0 if 1/J(k) = 1/J(i).

One has

IINfllQk,q = Ile-e-lj;ee-1jJN e-e-1J.'ee-1/; fllQk,q

< ce-e-1/;(k)llee-1/;N e-e-lJ;llp_q -llee-,p flIQi,P

< cMe-e-1/J(k) Ilee-1/J fllQi,p

< c2M e-e-(,p(k)-lJ;(i» IIfllQi,p ::; c2M e- ool1/J(k)-1/J(i)lllfIIQi'p,

(where SUPXEQk ee-lj;(k) . e-e-1/J(x) ::; eooL~Vd =: C, M =: sUPlel5 00 Il ee-1/JN e-e-,p IIp-q). Für arbi

trary f E L~m( S2) one has

IINfll~; = L IINfll~k,r2 ::; L lINjll~k,q
kEZd, k

< L (L IIN(J1Q.!)lkh,Qr
k 1

::; c2" M" ~ ( ~ e-5olob(kl-ob(;llllfIlQ;,p) r,

::; c2', M" ~ (~e-5olob(kl-ob('llllfIlQ;,rl)r,

< C
2r2

Mr2C;~Ilfll~i.

(see [DS, eh. VI, 11.4] für the last step). 0
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§ 5 LP spectral independence

Remark 5.3. Lemma 5.2 is a straightforward generalization of Proposition 3.2 in [ScV],
wherc it was considered the case 1/;(x) = x and Tl = T2.

Theorem 5.4. Let A = AD, Ai Of AN. (lf A = AN we suppose that rl has the extension
property). Asslune that

1/; : JRd ---'f JRd is L1-regular,
d(a .1J;). a· d(o:· 1/;)::; cl(e) for all a E JRd with Jal ::; e, a. e. x E rl

where cl(e) ---'f 0 as e ---'f o. Thon a(A p ) = a(A), Vp E [1,00[.

Proof. Since e- tAp [LP(!2)] C LP(rl) n LOO(rl) c LQ(!2), q > p, one has a(Ap ) :> a(A) (see
[nVl]).
Put e(') =: ea(') = e~rt/JO, 0:' E lRd \ {O}. It is easily seen that f2 and Aare compatible. Now
the resolvent equation

Proposition 3.4. (iii) and 4.2 imply

11(Z +Jb,s)-lllp_2 ::; (1 + C2 sup Iz - .-\I)c
zEF

for z, A E F, 181 ::; 8],0 ::; ~ - ! ::; ~. Proposition 3.4. (v) and Lemma 5.2 yicld

Repeating this procedure 8 times leads to the bound

for z E F, 181 ::; 88 ,1 ::; p < 2 and by duality for all 1 ::; p < 00. Since e- tAp are consistent, we

obtaill the indusion F C e( -Ap ) Vp '2: 1. 0

Corollary 5.5. The spectral p-independence of Ap , 1 ::; p < 00 holds if

au E Lfoc(!2),
au(x) ::; c· (1 +x2 ) In-V(e + lxI) a. e. x E {y E f2 : lyl > R}

where v > 0, R < 00,0 < c < 00 a.re some constants.

Proof. Set 1/;(x) = x(1 + Ixl)-1In V1 (J;; V 1), VI = ~ +1.

Remark 5.6. For 1/+ = A+V+ the following is valid. If for all lxi sufficiently large

c]xl m < V+(x),c> O,m > 0,

au ( x) < c· (1 + 1x I~+m ), c> 0, J1 < 2,

then aCHt) = a(H+), Vp '2: 1.

16
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§ 5 LP spectral indcpendencc

Theorem 5.7. Let A and 1/1 satisfy the hypotheses of Theorem 5.4. Then the following is
valid:

(I) Let A(V) == A. Ir for some k > 1

11e-tA
(kV) flh :s; M ewt 11flh, J E L 1(fl) n L 2

( fl)

then a(A p ) = a(A), Vp E [1,00[.
Moreover, the resolvent (z - 11)-1 is an integral operator with

1

(5.1) lI(z - Ad-lI11~p' = eS:E~p (J I(z - A)-I(x, y)IP' dX) pr = lI(z - Ap)-llIp~oo

for all z E g(l1) and p E]~, 00[.

(11) For all z E o(A) the resolvent (z - A)-l extcndes to a bounded rnap on LT(fl) for all

T E]p(ß), p'(ß){.

(In) If for some Po E]p(ß), 2[

11 v~ f 11 Po :s; M ewt 11 f 11 Po , f E L2
( fl) n LPO (fl)

then a(Ap ) = a(A), Vp E [Po,po].
In particular the following is always true

a(Ap ) = a(A), Vp E [t(ß), t'(ß)].

Proof.

(I) In fact, the proof of Theorem 5.4 gives the bound

Combining with the Dunford-Pettis theorem this yields (5.1) for A(O) = A. There
are many ways of deriving (LP, Lq)-estimates for g6(>.. + A(lf))-1 e-S from the related
estimatcs for ll(>. + A)-lg-O; e. g. one can use the inequalities (6.2). After that the
proof of the equality a(Ap ) = a(A) can be carried out in the same manner as it has
been done for A p •

(fI) The proof follows directly from Proposition 3.4, 4.4 and Lemma 5.2.

(HI) By virture of (Il) the proof of "g(A p) =:> g(A)" is straightforward. If Po E]t(ß), 2[ then by
(4.7) (z-A p )-1[LP(fl)] c Lq(fl) for all z E g(-A p ) and suitable q > p, so g(A p ) C g(A)
for all p E [Po, p~]. Thus we have only to treat the case Po E]p(ß),t(ß)]. Lemma 5.2 with
Tl < TZ applied to N = (>' +A)-1 with >. > c(ß) sllfficiently large and Proposition 4.4
yield (A +11)-1 : LP ----* Lq for all pE [Po, po] and q = qp > p. Thus, again g(Ap ) C g(I1).
The last claim follows from (4.6). 0
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§ 5 LP spectral independence

Remarks 5.8.

1. The hypotheses on V of Theorem 5.7.1 can be checked for potentiaJs which non-negative

parts belong to the Kato class

Kd(H+) =: {I E Lloc(S2): inf II(A +A+V+)-ll/llloo < I}
'\>0

(see [LSe, § 5)). Highly oscillating potentials are considered in [St2].

2. Under the assumptions of Theorem 5.7. rr the expected result on integral representability
of (z - A)-l, Z E Q(A) should be as follows.

If p E]p(ß),p'(ß)[ alld z E Q(A) then the extension of (z - A)-l to a map on LP(f2)
is an integral operator. At present the following is known. If p E]p(ß), p'(ß)[ alld
Rez> s( -A) =: SUp{A E ]Rl : A E a( -An thcn thc extension of (z + A)-l on LP(f2)
is a regular integral operator.

1'0 justify the claim we note that

I(z +A) -1 hI ::; (Re z + A) -11hI, Re z > s(- A),
1 1

(A + A)-1 I ::; [(A +A(kv))-l f]1C . [(A + A)-1 I]k', I ~ 0, A> c(ß) V 0,

with k - 1 E]O, b- 1( sufficiently small. Thus, if In, f E LP(n), I/nl ::; I and In ---* 0 a.
e., one has

I(A +A)-1In1 ::; 9 . [(A + Ap)-ll/nIP~T

where gk = (A +A(kV))-l f.
Since (A + Ap)-l is integral, (A + Ap)-llfnl ---* °a. e. The claim follows now from the
Bnkhvalov critcrium [Bu] (see also [ArB], [W2J) for A > c(ß) V 0 and, hence, for all z
with Re z > s( -A).

oe course, the above arguments work for Ap , p E]t(ß), t'(ß)[, with arbitrary a(·) ~

I, (Lu E Lfoc(J?).

In applications it is usually nceded more than the bare fact of integrability, e. g. in the
theory of eigenfunction expansion one needs Carleman 's property of (A + A)-" to hold
for SOßle s (> ~) and all A > 0 sufficiently large. One can show that in the conditions of
Theorem 5.7.1I the latter does hold (see also [Se], where considered a slightly different

situation).

3. Let f2 = ]Rd, A = -Ll, V_ = V1- + V2-. ]f V2- E L ~,oo( JRd), d ~ 3 with II V2-11 ~,oo ::;
•

fl](d;2)2ß,O < ß < 1,fld = ]{x E ]Rd; lxI::; 1}1, then according to [KPS]

lle- t(-ä-v.-) flIp::; Mpllfll p, f E L2 n EP, Vp E]p(ß),p'(ß)[.

By (6.2) one has

Ile-t(-ä+V) flip::; Mpewptllfllp, f E L 2 n LP, Vp E]P(ß),p'(ß)[

where V = V+ - v_,v2 E !(d. Set Qa(x) = e#r·x,a E ]Rd \ {O}. Then all of the

assumptions of Theorem 5.7.III hold and hence a(A p ) = a(A), A = -L\+V.

18



§6

Equivalence of Green's functions

Sinee loeal and/or global singularities of a(·) as weil as Ioeal singularities of V_ such as
clx - xol- 2

, Xo E {} distroy the property of e- tA , e- tA to adlnit an upper Gaussian bound,
there is not any deep link between this property and the spectral IJ-independenee of A p , Ap

as Theorems 5.4 and 5.7 show.
Nevertheless, we indicate one extremely usefni application of Theorem 5.7 to the problem of

the equivalenee of the Green functions GA and GA, whieh shows that the questioll of spectral
independenee presents not only aeadelnie value.

Theorem 6.1. Let A = AD or Ai satisfies the hypotheses of Theorem 5.4. Assurne that for
same k > 1

(6.1 )
A(kV) ~ 0,
Ile-tA(kV) 1]1-1 ~ M ewt (t>O,w>O,M~I).

Then for any m E [1, k[ there exist finite numbers Mi, M2 such that

Ile-tA(mV)11 < M1-1 _ 1,

Furtherrnare, if

then thcre exists a eonstant °< c < 1 such that

Proof. Fix m E]l, k[. The inequality

m /;-m

(6.2) e-tA(mV) f ~ (e-tA(kV) f) k . (e- tA f) -r a. e. °~ f E L1({}),

which is a consequenee of the Trotter-Kato product formula (see [HS]), and (6.1) imply the
bound

Ile-tA(mV) 111-1 ~ A1T /f-wt

and henee by Theorem 5.7.1 a(Al (ml V)) = a(A(ml V)) 'iml E]l, m[. Since A(ml V) ~ 0, we
eonclude that the type of e-tA1 (mI V) is non-positive, so that

Ile- tA (m 1 V)lh_l ~ AIl

Sinee A(ml V) ~ k-r 1 A, one has

(t ~ 0, A11 < 00).
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§ 6 Equivalence of Green 's functions

The latter is equivalent to the bound

(6.3) (t>0,M2 <oo)

(see [LSe, Th. 7.1] or [VSC, Ch. 11]).
If a(·) E LOO(IRd) then due to (Aro] (see also (D1], (Str]) there exist constants 0 < Mo, Co < 1

such that

(6.4)

for all t > 0 and x, y E JRd.
The R.H.S. of (6.4) combined with (6.3) and the inequality

e-tA(V)(x,y) ~ (e-tA(mlV)(X,y))~l . (e-tA(x,y))l-~l

give the bound

(6.5) (t> 0,0< c,M3 < 1).

Now choose PI > 1 such that IIA-I F+lloo < PI - 1. Put l1' = - p~l V+, P > PI. By (Vo]

thc operator -(Al +W) dcfined on 1J(A l ) gcneratcs a boundcd Co-semigroup on L l ([2) and
Al (11') = Al +W. Next, A(kl1') ~ 0 and lIe-tAdkW)lh_I ~ MI with k = p~__\ > 1. Thus,
thc preccding leads to (6.5) with W instead of V. Thc latter, thc L.H.S. of (6.4) and the

inequality

givc thc bound

(6.6) (0< M3 ,c < 1).

Now the equivalence GA rv GA follows from (6.5), (6.6).
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