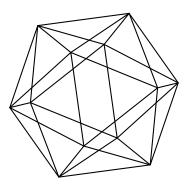
Max-Planck-Institut für Mathematik Bonn

A restricted wreath product with the property R_{∞}

by

Evgenij Troitsky



Max-Planck-Institut für Mathematik Preprint Series 2017 (55)

A restricted wreath product with the property R_{∞}

Evgenij Troitsky

Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn Germany Department of Mechanics and Mathematics Moscow State University 119991 GSP-1 Moscow Russia

A RESTRICTED WREATH PRODUCT WITH THE PROPERTY R_{∞}

EVGENIJ TROITSKY

ABSTRACT. We prove that for any automorphism ϕ of the restricted wreath product $\mathbb{Z}_2 \text{wr} \mathbb{Z}^2$ the Reidemeister number $R(\phi)$ is infinite.

INTRODUCTION

The Reidemeister number $R(\phi)$ of an automorphism ϕ of a (countable discrete) group G is the number of its Reidemeister or twisted conjugacy classes, i.e. the classes of the twisted conjugacy equivalence relation: $g \sim hg\phi(h^{-1})$, $h, g \in G$. Denote by $\{g\}_{\phi}$ the class of g.

The following two interrelated problems are in the mainstream of the study of Reidemeister numbers.

The first one is the following conjecture by A.Fel'shtyn and R.Hill [9]: $R(\phi)$ is equal to the number of fixed points of the associated homeomorphism $\hat{\phi}$ of the unitary dual \hat{G} (the set of equivalence classes of irreducible unitary representations of G), if one of these numbers is finite. The action of $\hat{\phi}$ on the class of a representation ρ is defined as $[\rho] \mapsto [\rho \circ \phi]$. This conjecture is called TBFT (twisted Burnside-Frobenius theorem). In fact it generalizes to infinite groups and to the twisted case the classical Burnside-Frobenius theorem: the number of conjugacy classes of a finite group is equal to the number of equivalence classes of its irreducible representations.

Some later by A.Fel'shtyn and co-authors the second problem was formulated (see [11] for a historical overview): the problem of description of the class of groups having the R_{∞} property. A group has the R_{∞} property if $R(\phi) = \infty$ for any automorphism $\phi : G \to G$. Evidently, the second problem is in some sence complementary to the first one: the question about TBFT has no sense for R_{∞} groups (formally having a positive answer).

The TBFT conjecture (more precisely some its modification) was proved for polycyclicby-finite groups in [13, 21]. Preliminary and related results, examples and counter-examples can be found in [9, 12, 14, 10, 40, 19, 23, 41].

The property R_{∞} was studied very intensively during the last years and was proved and disproved for many groups (see, in particular [8, 31, 15, 16, 38, 28, 11, 1, 25, 2, 17, 30, 32, 34, 33, 5, 18, 26, 27, 36, 6, 4, 20] and the literature therein). For Jiang type spaces the property R_{∞} has some direct topological consequences (see e.g. [27]). Concerning applications of Reidemeister numbers in Dynamics we refer to [29, 7].

In the present paper we prove that the group \mathbb{Z}_2 wr $\mathbb{Z}^2 = (\mathbb{Z}/2\mathbb{Z})$ wr $(\mathbb{Z} \oplus \mathbb{Z})$ has the property R_{∞} .

The R_{∞} property was proved for some wreath products by \mathbb{Z} and their generalizations in [39, 37]. The case of $\mathbb{Z} \oplus \mathbb{Z}$ is much more complicated, because \mathbb{Z} has only one automorphism

This work is supported by the Russian Science Foundation under grant 16-11-10018.

²⁰⁰⁰ Mathematics Subject Classification. 20C; 20E45; 22D10.

Key words and phrases. Reidemeister number, R_{∞} -group, twisted conjugacy class, residually finite group, rational (finite) representation.

with finite Reidemeister number, namely - Id, and its square has infinite Reidemeister number. For $\mathbb{Z} \oplus \mathbb{Z}$ we have a lot of automorphisms with finite Reidemeister numbers, and many of them have finite Reidemeister numbers for all their iterations.

ACKNOWLEDGEMENT: The author is indebted to A. Fel'shtyn and the MPIM for helpful discussions in the Max-Planck Institute for Mathematics (Bonn) in February, 2017.

This work is supported by the Russian Science Foundation under grant 16-11-10018.

1. Preliminaries

The following easy statement is well known:

Proposition 1.1. Suppose, H is a ϕ -invariant normal subgroup of G and $\overline{\phi} : G/H \to G/H$ is the induced automorphism. Then ϕ induces an epimorphism of each Reidemeister class of ϕ onto some Reidemeister class of $\overline{\phi}$. In particular, one has $R(\overline{\phi}) \leq R(\phi)$.

Denote by $C(\phi)$ the fixed point subgroup. The following much more non-trivial statement can be extracted from [24] (see also [13]):

Lemma 1.2. In the above situation $R(\phi|_H) \leq R(\phi) \cdot |C(\overline{\phi})|$.

It is well known (see [12]) the following.

Lemma 1.3. For an abelian group G the Reidemeister class of the unit element is a subgroup, and the other classes are corresponding cosets.

The following statement is very useful in the field.

Lemma 1.4. A right shift by $g \in G$ maps Reidemeister classes of ϕ onto Reidemeister classes of $\tau_{g^{-1}} \circ \varphi$, where τ_g is the inner automorphism: $\tau_g(x) = gxg^{-1}$. In particular, $R(\tau_g \circ \phi) = R(\phi)$.

Proof. Indeed,

$$xy\varphi(x^{-1})g = x(yg)g^{-1}\varphi(x^{-1})g = x(yg)(\tau_{g^{-1}} \circ \varphi)(x^{-1}).$$

Also we need the following statement ([22], [19, Prop. 3.4]):

Lemma 1.5. Let $\phi : G \to G$ be an automorphism of a finitely generated residually finite group G with $R(\phi) < \infty$ (in particular, G can be a finitely generated abelian group). Then the subgroup of fixed elements is finite: $|C(\phi)| < \infty$.

Note, that this is not correct for infinitely generated groups, see [41].

2. The main result

Let $\Gamma := \mathbb{Z}_2 \text{ wr } \mathbb{Z}^2$ be the restricted wreath product. In other words,

$$\Gamma = \bigoplus_{(m,k)\in\mathbb{Z}^2} (\mathbb{Z}_2)_{(m,k)} \rtimes_{\alpha} \mathbb{Z}^2, \qquad (\mathbb{Z}_2)_{(m,k)} \cong \mathbb{Z}_2, \qquad \alpha(s,t)(\delta_{m,k}) := \delta_{m+s,k+t},$$

where $(s,t) \in \mathbb{Z}^2$ and $\delta_{m,k}$ is a unique non-trivial element of $(\mathbb{Z}_2)_{(m,k)}$. The direct sum supposes only finitely many non-trivial components for each element (in contrast with the direct product corresponding to the (unrestricted) wreath product).

The group Γ is a finitely generated metabelian group, in particular, residually finite (see e.g. [35]).

Let $\phi : \Gamma \to \Gamma$ be an automorphism. We will prove that $R(\phi) = \infty$. Denote $\Sigma := \bigoplus_{(m,k) \in \mathbb{Z}^2} (\mathbb{Z}_2)_{(m,k)} \subset \Gamma$. Then Σ is a characteristic subgroup as the torsion subgroup. Denote the restriction of ϕ by $\phi' : \Sigma \to \Sigma$, and the quotient automorphism by $\overline{\phi} : \mathbb{Z}^2 \to \mathbb{Z}^2$.

If $R(\phi) < \infty$, then $R(\phi) < \infty$ by Proposition 1.1; and by Lemma 1.5, ϕ has finitely many fixed elements. Thus, by Lemma 1.2, $R(\phi') < \infty$. Hence, to prove that $R(\phi) = \infty$, it is sufficient to verify that $R(\phi') = \infty$.

Since Σ is abelian, the results of e.g. [3] imply that

(1)
$$\phi'(\alpha(g)(h)) = \alpha(\overline{\phi}(g))(\phi'(h)), \quad h \in \Sigma, \quad g \in \mathbb{Z}^2.$$

Any element of Σ is a finite sum of some elements $\delta_{m,k}$. Let

(2)
$$\phi'(\delta_{0,0}) = \delta_{i(1),j(1)} + \dots + \delta_{i(n),j(n)}$$

Lemma 2.1. In (2) one has n = 1. Moreover, ϕ' is a permutation of $\delta_{m,k}$'s.

Proof. First of all, apply (1) to $h = \delta_{0,0}, g = (m, k)$. We have:

(3)
$$\phi'(\delta_{m,k}) = \phi'(\alpha(g)(h)) = \alpha(\overline{\phi}(g))(\phi'(\delta_{0,0})).$$

Thus, for any $(m, n) \in \mathbb{Z}^2$, the element $\phi'(\delta_{m,n})$ is obtained by the appropriate shift of indexes in the right side expression in (2).

Consider

$$p: \Sigma \to \mathbb{Z}_2, \qquad p(\delta_{m,k}) = 1.$$

Its kernel L is a subgroup of index 2. Suppose, n is even. Then the image of ϕ' is contained in L, by the definition. But ϕ' is an isomorphism. A contradiction.

Now suppose that n is odd, $n \neq 1$, and $\phi'(h) = \delta_{0,0}$ for some $h = \delta_{r(1),s(1)} + \cdots + \delta_{r(t),s(t)}$. Let

$$\pi_1: \oplus_{(m,k)\in\mathbb{Z}^2}(\mathbb{Z}_2)_{(m,k)} \to \oplus_{m\in\mathbb{Z}}(\mathbb{Z}_2)_{(m)}, \qquad \pi_2: \oplus_{(m,k)\in\mathbb{Z}^2}(\mathbb{Z}_2)_{(m,k)} \to \oplus_{k\in\mathbb{Z}}(\mathbb{Z}_2)_{(k)}$$

be natural epimorphisms (vertical and horizontal summation). The images $\pi_1(\phi'(\delta_{r(u),s(u)}))$, $u = 1, \ldots, t$, have the same odd number of non-zero summands (and moreover, these images can be obtained from each other by index shifts over \mathbb{Z}). The same is true for π_2 . At least for one of π_1 and π_2 this odd number is > 1, e.g. for π_1 . After cancellation of equal images this means that there is several distinct elements $\pi_1(\phi'(\delta_{r(u),s(u)}))$, obtained from each other by index shifts over \mathbb{Z} , and having $\delta_0 = \pi_1(\delta_{0,0})$ as their sum. In particular, they have all left-end elements distinct and all right-end elements distinct. Thus, their sum needs to have at least two non-trivial components (the most left of the left ends and the most right of the right ends). So, it cannot be equal to δ_0 .

Thus, n = 1. Together with the argument at the beginning of the proof, this gives the second statement.

By this lemma, we can define (x_0, y_0) by $\phi'(\delta_{0,0}) =: \delta_{x_0, y_0}$. The equation (3) can be written now as

(4)
$$\phi'(\delta_{m,k}) = \delta_{m',k'}, \qquad (m',k') := \overline{\phi}(m,k) + (x_0,y_0) \in \mathbb{Z}^2.$$

Lemma 2.2. If δ_{x_1,y_1} and δ_{x_2,y_2} belong to the same Reidemeister class of ϕ' , then

(5)
$$\overline{\phi}^t(x_1, y_1) + \overline{\phi}^{t-1}(x_0, y_0) + \dots + \overline{\phi}(x_0, y_0) + (x_0, y_0) = (x_2, y_2)$$

for some integer t.

EVGENIJ TROITSKY

Proof. By Lemma 1.3, the elements δ_{x_1,y_1} and δ_{x_2,y_2} belong to the same Reidemeister class of ϕ' if and only if $\delta_{x_1,y_1} - \delta_{x_2,y_2} = h - \phi'(h)$ for some $h \in \Sigma$. Representing h as $h = \delta_{u(1),v(1)} + \cdots + \delta_{u(t),v(t)}$ (with distinct summands) and applying (4) one has

$$\delta_{x_1,y_1} - \delta_{x_2,y_2} = h - \phi'(h) = \sum_{j=1}^t \left[\delta_{u(j),v(j)} - \delta_{u(j)',v(j)'} \right]$$

So one of δ 's with "+" on the right should be equal to δ_{x_1,y_1} , one of δ 's with "-" on the right should be equal to δ_{x_2,y_2} (or vice versa), and the remaining δ 's should annihilate. Since all $\delta_{u(j),v(j)}$ are distinct, all $\delta_{u(j)',v(j)'}$ are distinct too, by Lemma 2.1. So the cancellation can be only as $\delta_{u(j),v(j)} = \delta_{u(i)',v(j)'}$. Thus, after the appropriate renumbering of $1, \ldots, t$, we have:

$$(x_1, y_1) = (u(1), v(1)), \quad (u(1)', v(1)') = (u(2), v(2)), \quad \dots$$

 $(u(t-1)', v(t-1)') = (u(t), v(t)), \quad (u(t)', v(t)') = (x_2, y_2),$

or

$$\phi(x_1, y_1) + (x_0, y_0) = (u(2), v(2)),$$

$$\overline{\phi}^2(x_1, y_1) + \overline{\phi}(x_0, y_0) + (x_0, y_0) = (u(2)', v(2)') = (u(3), v(3)),$$

$$\overline{\phi}^3(x_1, y_1) + \overline{\phi}^2(x_0, y_0) + \overline{\phi}(x_0, y_0) + (x_0, y_0) = (u(3)', v(3)') = (u(4), v(4)),$$

$$\dots \dots \dots$$

$$\overline{\phi}^t(x_1, y_1) + \overline{\phi}^{t-1}(x_0, y_0) + \dots + \overline{\phi}(x_0, y_0) + (x_0, y_0) = (u(t)', v(t)') = (x_2, y_2).$$

Theorem 2.3. The group $\Gamma = \mathbb{Z}^2$ wr \mathbb{Z}^2 has the property R_{∞} .

Proof. One can reduce the proof of $R(\phi) = \infty$ to the case $(x_0, y_0) = (0, 0)$. Indeed, consider the element $w := (-x_0, -y_0) \in \mathbb{Z}^2 \subset \Gamma$ and the corresponding inner automorphism $\tau_w : \Gamma \to \Gamma$. Then by Lemma 1.4, $R(\tau_w \circ \phi) = R(\phi)$. On the other hand,

$$(\tau_w \circ \phi)'(\delta_{0,0}) = \alpha(w)(\phi'(\delta_{0,0})) = \alpha(-x_0, -y_0)(\delta_{x_0,y_0}) = \delta_{0,0}.$$

So, suppose $(x_0, y_0) = (0, 0)$. Then (5) takes the form $\overline{\phi}^t(x_1, y_1) = (x_2, y_2)$ for some integer t. Thus, it is sufficient to prove that $\overline{\phi} : \mathbb{Z}^2 \to \mathbb{Z}^2$ has infinitely many orbits.

For this purpose denote by $A \in GL_2(\mathbb{Z})$ the matrix of ϕ . Let us show that each orbit intersects the first coordinate axis not more than in 2 points. Denote by $(x, 0), x \neq 0$, one point from the intersection and suppose that

$$A^n \left(\begin{array}{c} x\\0\end{array}\right) = \left(\begin{array}{c} z\\0\end{array}\right)$$

is the next intersection. Evidently, $z \neq 0$, and

$$A^n = \left(\begin{array}{cc} a & b \\ 0 & c \end{array}\right)$$

with integer entries and det $A^n = \pm 1$. Thus, $a = \pm 1$. Hence, for a = 1 we have only one intersection point, namely (x, 0), and for a = -1 we have two intersection points: $(\pm x, 0)$.

Remark 2.4. In fact, it was sufficient for our purposes to use the following well-known exercise-level fact: the set $\{(x,0) \mid x \in \mathbb{Z}, x \ge 1\}$ parametrize orbits of the entire $GL_2(\mathbb{Z})$ on $\mathbb{Z} \oplus \mathbb{Z}$ because for any matrix $B \in GL_2(\mathbb{Z})$ the greatest common divisor of coordinates of $B\begin{pmatrix} x\\ 0 \end{pmatrix}$ is equal to x.

References

- COLLIN BLEAK, ALEXANDER FEL'SHTYN, AND DACIBERG L. GONÇALVES. Twisted conjugacy classes in R. Thompson's group F. Pacific J. Math. 238, No. 1, 1–6, 2008.
- [2] J. BURILLO, F. MATUCCI, AND E. VENTURA. The conjugacy problem in extensions of Thompson's group F. e-print, 2013. arXiv:1307.6750.
- [3] M. J. CURRAN. Automorphisms of semidirect products. Math. Proc. R. Ir. Acad. 108, No. 2, 205–210, 2008.
- [4] KAREL DEKIMPE AND DACIBERG GONÇALVES. The R_{∞} property for free groups, free nilpotent groups and free solvable groups. Bull. Lond. Math. Soc. 46, No. 4, 737–746, 2014.
- [5] KAREL DEKIMPE AND DACIBERG GONÇALVES. The R_{∞} property for abelian groups. Topol. Methods Nonlinear Anal. 46, No. 2, 773–784, 2015.
- [6] KAREL DEKIMPE AND PIETER PENNINCKX. The finiteness of the Reidemeister number of morphisms between almost-crystallographic groups. J. Fixed Point Theory Appl. 9, No. 2, 257–283, 2011.
- [7] A. FEL'SHTYN. Dynamical zeta functions, Nielsen theory and Reidemeister torsion. Mem. Amer. Math. Soc. 147, No. 699, xii+146, 2000.
- [8] A. FEL'SHTYN. The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 279, No. 6 (Geom. i Topol.), 229– 240, 250, 2001.
- [9] A. FEL'SHTYN AND R. HILL. The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion. *K*-Theory 8, No. 4, 367–393, 1994.
- [10] A. FEL'SHTYN, F. INDUKAEV, AND E. TROITSKY. Twisted Burnside theorem for two-step torsion-free nilpotent groups. In C^{*}-algebras and elliptic theory. II, Trends in Math., pages 87–101. Birkhäuser, 2008.
- [11] A. FEL'SHTYN, YU. LEONOV, AND E. TROITSKY. Twisted conjugacy classes in saturated weakly branch groups. Geometriae Dedicata 134, 61–73, 2008.
- [12] A. FEL'SHTYN AND E. TROITSKY. A twisted Burnside theorem for countable groups and Reidemeister numbers. In C. Consani and M. Marcolli, editors, *Noncommutative Geometry and Number Theory*, pages 141–154. Vieweg, Braunschweig, 2006.
- [13] A. FEL'SHTYN AND E. TROITSKY. Twisted Burnside-Frobenius theory for discrete groups. J. Reine Angew. Math. 613, 193–210, 2007.
- [14] A. FEL'SHTYN, E. TROITSKY, AND A. VERSHIK. Twisted Burnside theorem for type II₁ groups: an example. *Math. Res. Lett.* 13, No. 5, 719–728, 2006.
- [15] ALEXANDER FEL'SHTYN. New directions in Nielsen-Reidemeister theory. Topology Appl. 157, No. 10-11, 1724–1735, 2010.
- [16] ALEXANDER FEL'SHTYN AND DACIBERG L. GONÇALVES. The Reidemeister number of any automorphism of a Baumslag-Solitar group is infinite. In *Geometry and dynamics of groups and spaces*, volume 265 of *Progr. Math.*, pages 399–414. Birkhäuser, Basel, 2008.
- [17] ALEXANDER FEL'SHTYN AND DACIBERG L. GONÇALVES. Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups. *Geom. Dedicata* 146, 211–223, 2010. With an appendix written jointly with Francois Dahmani.
- [18] ALEXANDER FEL'SHTYN AND DACIBERG L. GONÇALVES. Reidemeister spectrum for metabelian groups of the form $Q^n \rtimes \mathbb{Z}$ and $\mathbb{Z}[1/p]^n \rtimes \mathbb{Z}$, p prime. Internat. J. Algebra Comput. 21, No. 3, 505–520, 2011.
- [19] ALEXANDER FEL'SHTYN, NIKITA LUCHNIKOV, AND EVGENIJ TROITSKY. Twisted inner representations. Russian Journal of Mathematical Physics 22, No. 3, 301–306, 2015.
- [20] ALEXANDER FEL'SHTYN AND TIMUR NASYBULLOV. The R_{∞} and S_{∞} properties for linear algebraic groups. J. Group Theory 19, No. 5, 901–921, 1916.

EVGENIJ TROITSKY

- [21] ALEXANDER FEL'SHTYN AND EVGENIJ TROITSKY. Geometry of Reidemeister classes and twisted Burnside theorem. J. K-Theory 2, No. 3, 463–506, 2008.
- [22] ALEXANDER FEL'SHTYN AND EVGENIJ TROITSKY. Twisted conjugacy classes in residually finite groups. Arxiv e-print 1204.3175, 2012.
- [23] ALEXANDER FEL'SHTYN AND EVGENIJ TROITSKY. Aspects of the property R_{∞} . J. Group Theory 18, No. 6, 1021–1034, 2015.
- [24] D. GONÇALVES. The coincidence Reidemeister classes on nilmanifolds and nilpotent fibrations. *Topology and Its Appl.* 83, 169–186, 1998.
- [25] DACIBERG GONÇALVES AND DESSISLAVA HRISTOVA KOCHLOUKOVA. Sigma theory and twisted conjugacy classes. Pacific J. Math. 247, No. 2, 335–352, 2010.
- [26] DACIBERG GONÇALVES AND PETER WONG. Twisted conjugacy classes in wreath products. Internat. J. Algebra Comput. 16, No. 5, 875–886, 2006.
- [27] DACIBERG GONÇALVES AND PETER WONG. Twisted conjugacy classes in nilpotent groups. J. Reine Angew. Math. 633, 11–27, 2009.
- [28] LUC GUYOT AND YVES STALDER. Limits of Baumslag-Solitar groups and dimension estimates in the space of marked groups. Groups Geom. Dyn. 6, No. 3, 533–577, 2012.
- [29] B. JIANG. Lectures on Nielsen Fixed Point Theory, volume 14 of Contemp. Math. Amer. Math. Soc., Providence, RI, 1983.
- [30] A. JUHÁSZ. Twisted conjugacy in certain Artin groups. In Ischia Group Theory 2010, eProceedings, pages 175–195. World Scientific, 2011.
- [31] G. LEVITT AND M. LUSTIG. Most automorphisms of a hyperbolic group have very simple dynamics. Ann. Scient. Éc. Norm. Sup. 33, 507–517, 2000.
- [32] T. MUBEENA AND P. SANKARAN. Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups. Canad. Math. Bull. 57, No. 1, 132–140, 2014.
- [33] T. MUBEENA AND P. SANKARAN. Twisted conjugacy classes in lattices in semisimple lie groups. Transformation Groups 19, No. 1, 159–169, 2014.
- [34] T. R. NASYBULLOV. Twisted conjugacy classes in general and special linear groups. Algebra Logika 51, No. 3, 331–346, 415, 418, 2012.
- [35] DEREK J. S. ROBINSON. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.
- [36] V. ROMAN'KOV. Twisted conjugacy classes in nilpotent groups. J. Pure Appl. Algebra 215, No. 4, 664–671, 2011.
- [37] MELANIE STEIN, JENNIFER TABACK, AND PETER WONG. Automorphisms of higher rank lamplighter groups. Internat. J. Algebra Comput. 25, No. 8, 1275–1299, 2015.
- [38] JENNIFER TABACK AND PETER WONG. Twisted conjugacy and quasi-isometry invariance for generalized solvable Baumslag-Solitar groups. J. Lond. Math. Soc. (2) 75, No. 3, 705–717, 2007.
- [39] JENNIFER TABACK AND PETER WONG. The geometry of twisted conjugacy classes in wreath products. In *Geometry, rigidity, and group actions*, Chicago Lectures in Math., pages 561–587. Univ. Chicago Press, Chicago, IL, 2011. (Arxiv:0805.1372).
- [40] E. TROITSKY. Noncommutative Riesz theorem and weak Burnside type theorem on twisted conjugacy. Funct. Anal. Pril. 40, No. 2, 44–54, 2006. In Russian, English translation: Funct. Anal. Appl. 40 (2006), No. 2, 117–125.
- [41] EVGENIJ TROITSKY. Two examples related to the twisted Burnside-Frobenius theory for infinitely generated groups. *Fundam. Appl. Math.*, 2017. (to appear).

DEPT. OF MECH. AND MATH., MOSCOW STATE UNIVERSITY, 119991 GSP-1 MOSCOW, RUSSIA E-mail address: troitsky@mech.math.msu.su URL: http://mech.math.msu.su/~troitsky