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A RESTRICTED WREATH PRODUCT WITH THE PROPERTY R∞

EVGENIJ TROITSKY

Abstract. We prove that for any automorphism φ of the restricted wreath product Z2wrZ2

the Reidemeister number R(φ) is infinite.

Introduction

The Reidemeister number R(φ) of an automorphism φ of a (countable discrete) group G
is the number of its Reidemeister or twisted conjugacy classes, i.e. the classes of the twisted
conjugacy equivalence relation: g ∼ hgφ(h−1), h, g ∈ G. Denote by {g}φ the class of g.

The following two interrelated problems are in the mainstream of the study of Reidemeister
numbers.

The first one is the following conjecture by A.Fel’shtyn and R.Hill [9]: R(φ) is equal to the

number of fixed points of the associated homeomorphism φ̂ of the unitary dual Ĝ (the set
of equivalence classes of irreducible unitary representations of G), if one of these numbers

is finite. The action of φ̂ on the class of a representation ρ is defined as [ρ] 7→ [ρ ◦ φ].
This conjecture is called TBFT (twisted Burnside-Frobenius theorem). In fact it generalizes
to infinite groups and to the twisted case the classical Burnside-Frobenius theorem: the
number of conjugacy classes of a finite group is equal to the number of equivalence classes
of its irreducible representations.

Some later by A.Fel’shtyn and co-authors the second problem was formulated (see [11]
for a historical overview): the problem of description of the class of groups having the R∞
property. A group has the R∞ property if R(φ) = ∞ for any automorphism φ : G → G.
Evidently, the second problem is in some sence complementary to the first one: the question
about TBFT has no sense for R∞ groups (formally having a positive answer).

The TBFT conjecture (more precisely some its modification) was proved for polycyclic-
by-finite groups in [13, 21]. Preliminary and related results, examples and counter-examples
can be found in [9, 12, 14, 10, 40, 19, 23, 41].

The property R∞ was studied very intensively during the last years and was proved and
disproved for many groups (see, in particular [8, 31, 15, 16, 38, 28, 11, 1, 25, 2, 17, 30, 32, 34,
33, 5, 18, 26, 27, 36, 6, 4, 20] and the literature therein). For Jiang type spaces the property
R∞ has some direct topological consequences (see e.g. [27]). Concerning applications of
Reidemeister numbers in Dynamics we refer to [29, 7].

In the present paper we prove that the group Z2 wr Z2 = (Z/2Z) wr (Z ⊕ Z) has the
property R∞.

The R∞ property was proved for some wreath products by Z and their generalizations in
[39, 37]. The case of Z⊕Z is much more complicated, because Z has only one automorphism
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with finite Reidemeister number, namely − Id, and its square has infinite Reidemeister num-
ber. For Z⊕Z we have a lot of automorphisms with finite Reidemeister numbers, and many
of them have finite Reidemeister numbers for all their iterations.
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discussions in the Max-Planck Institute for Mathematics (Bonn) in February, 2017.
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1. Preliminaries

The following easy statement is well known:

Proposition 1.1. Suppose, H is a φ-invariant normal subgroup of G and φ : G/H → G/H
is the induced automorphism. Then φ induces an epimorphism of each Reidemeister class of
φ onto some Reidemeister class of φ. In particular, one has R(φ) 6 R(φ).

Denote by C(φ) the fixed point subgroup. The following much more non-trivial statement
can be extracted from [24] (see also [13]):

Lemma 1.2. In the above situation R(φ|H) 6 R(φ) · |C(φ)|.

It is well known (see [12]) the following.

Lemma 1.3. For an abelian group G the Reidemeister class of the unit element is a subgroup,
and the other classes are corresponding cosets.

The following statement is very useful in the field.

Lemma 1.4. A right shift by g ∈ G maps Reidemeister classes of φ onto Reidemeister
classes of τg−1 ◦ ϕ, where τg is the inner automorphism: τg(x) = gxg−1. In particular,
R(τg ◦ φ) = R(φ).

Proof. Indeed,

xyϕ(x−1)g = x(yg)g−1ϕ(x−1)g = x(yg)(τg−1 ◦ ϕ)(x−1).

�

Also we need the following statement ([22], [19, Prop. 3.4]):

Lemma 1.5. Let φ : G → G be an automorphism of a finitely generated residually finite
group G with R(φ) < ∞ (in particular, G can be a finitely generated abelian group). Then
the subgroup of fixed elements is finite: |C(φ)| <∞.

Note, that this is not correct for infinitely generated groups, see [41].

2. The main result

Let Γ := Z2 wr Z2 be the restricted wreath product. In other words,

Γ = ⊕(m.k)∈Z2(Z2)(m,k) oα Z2, (Z2)(m,k) ∼= Z2, α(s, t)(δm,k) := δm+s,k+t,

where (s, t) ∈ Z2 and δm,k is a unique non-trivial element of (Z2)(m,k). The direct sum
supposes only finitely many non-trivial components for each element (in contrast with the
direct product corresponding to the (unrestricted) wreath product).

The group Γ is a finitely generated metabelian group, in particular, residually finite (see
e.g. [35]).
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Let φ : Γ → Γ be an automorphism. We will prove that R(φ) = ∞. Denote Σ :=
⊕(m.k)∈Z2(Z2)(m,k) ⊂ Γ. Then Σ is a characteristic subgroup as the torsion subgroup. Denote

the restriction of φ by φ′ : Σ→ Σ, and the quotient automorphism by φ : Z2 → Z2.
If R(φ) <∞, then R(φ) <∞ by Proposition 1.1; and by Lemma 1.5, φ has finitely many

fixed elements. Thus, by Lemma 1.2, R(φ′) < ∞. Hence, to prove that R(φ) = ∞, it is
sufficient to verify that R(φ′) =∞.

Since Σ is abelian, the results of e.g. [3] imply that

(1) φ′(α(g)(h)) = α(φ(g))(φ′(h)), h ∈ Σ, g ∈ Z2.

Any element of Σ is a finite sum of some elements δm,k. Let

(2) φ′(δ0,0) = δi(1),j(1) + · · ·+ δi(n),j(n).

Lemma 2.1. In (2) one has n = 1. Moreover, φ′ is a permutation of δm,k’s.

Proof. First of all, apply (1) to h = δ0,0, g = (m, k). We have:

(3) φ′(δm,k) = φ′(α(g)(h)) = α(φ(g))(φ′(δ0,0)).

Thus, for any (m,n) ∈ Z2, the element φ′(δm,n) is obtained by the appropriate shift of
indexes in the right side expression in (2).

Consider

p : Σ→ Z2, p(δm,k) = 1.

Its kernel L is a subgroup of index 2. Suppose, n is even. Then the image of φ′ is contained
in L, by the definition. But φ′ is an isomorphism. A contradiction.

Now suppose that n is odd, n 6= 1, and φ′(h) = δ0,0 for some h = δr(1),s(1) + · · ·+ δr(t),s(t).
Let

π1 : ⊕(m.k)∈Z2(Z2)(m,k) → ⊕m∈Z(Z2)(m), π2 : ⊕(m.k)∈Z2(Z2)(m,k) → ⊕k∈Z(Z2)(k)

be natural epimorphisms (vertical and horizontal summation). The images π1(φ
′(δr(u),s(u))),

u = 1, . . . , t, have the same odd number of non-zero summands (and moreover, these images
can be obtained from each other by index shifts over Z). The same is true for π2. At least
for one of π1 and π2 this odd number is > 1, e.g. for π1. After cancellation of equal images
this means that there is several distinct elements π1(φ

′(δr(u),s(u))), obtained from each other
by index shifts over Z, and having δ0 = π1(δ0,0) as their sum. In particular, they have all
left-end elements distinct and all right-end elements distinct. Thus, their sum needs to have
at least two non-trivial components (the most left of the left ends and the most right of the
right ends). So, it cannot be equal to δ0.

Thus, n = 1. Together with the argument at the beginning of the proof, this gives the
second statement. �

By this lemma, we can define (x0, y0) by φ′(δ0,0) =: δx0,y0 . The equation (3) can be written
now as

(4) φ′(δm,k) = δm′,k′ , (m′, k′) := φ(m, k) + (x0, y0) ∈ Z2.

Lemma 2.2. If δx1,y1 and δx2,y2 belong to the same Reidemeister class of φ′, then

(5) φ
t
(x1, y1) + φ

t−1
(x0, y0) + · · ·+ φ(x0, y0) + (x0, y0) = (x2, y2)

for some integer t.
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Proof. By Lemma 1.3, the elements δx1,y1 and δx2,y2 belong to the same Reidemeister class
of φ′ if and only if δx1,y1 − δx2,y2 = h − φ′(h) for some h ∈ Σ. Representing h as h =
δu(1),v(1) + · · ·+ δu(t),v(t) (with distinct summands) and applying (4) one has

δx1,y1 − δx2,y2 = h− φ′(h) =
t∑

j=1

[δu(j),v(j) − δu(j)′,v(j)′ ].

So one of δ’s with ”+” on the right should be equal to δx1,y1 , one of δ’s with ”-” on the right
should be equal to δx2,y2 (or vice versa), and the remaining δ’s should annihilate. Since all
δu(j),v(j) are distinct, all δu(j)′,v(j)′ are distinct too, by Lemma 2.1. So the cancellation can be
only as δu(j),v(j) = δu(i)′,v(i)′ . Thus, after the appropriate renumbering of 1, . . . , t, we have:

(x1, y1) = (u(1), v(1)), (u(1)′, v(1)′) = (u(2), v(2)), . . .

(u(t− 1)′, v(t− 1)′) = (u(t), v(t)), (u(t)′, v(t)′) = (x2, y2),

or

φ(x1, y1) + (x0, y0) = (u(2), v(2)),

φ
2
(x1, y1) + φ(x0, y0) + (x0, y0) = (u(2)′, v(2)′) = (u(3), v(3)),

φ
3
(x1, y1) + φ

2
(x0, y0) + φ(x0, y0) + (x0, y0) = (u(3)′, v(3)′) = (u(4), v(4)),

. . . . . . . . .

φ
t
(x1, y1) + φ

t−1
(x0, y0) + · · ·+ φ(x0, y0) + (x0, y0) = (u(t)′, v(t)′) = (x2, y2).

�

Theorem 2.3. The group Γ = Z2 wr Z2 has the property R∞.

Proof. One can reduce the proof of R(φ) =∞ to the case (x0, y0) = (0, 0). Indeed, consider
the element w := (−x0,−y0) ∈ Z2 ⊂ Γ and the corresponding inner automorphism τw : Γ→
Γ. Then by Lemma 1.4, R(τw ◦ φ) = R(φ). On the other hand,

(τw ◦ φ)′(δ0,0) = α(w)(φ′(δ0,0)) = α(−x0,−y0)(δx0,y0) = δ0,0.

So, suppose (x0, y0) = (0, 0). Then (5) takes the form φ
t
(x1, y1) = (x2, y2) for some integer

t. Thus, it is sufficient to prove that φ : Z2 → Z2 has infinitely many orbits.
For this purpose denote by A ∈ GL2(Z) the matrix of φ. Let us show that each orbit

intersects the first coordinate axis not more than in 2 points. Denote by (x, 0), x 6= 0, one
point from the intersection and suppose that

An
(
x
0

)
=

(
z
0

)
is the next intersection. Evidently, z 6= 0, and

An =

(
a b
0 c

)
with integer entries and detAn = ±1. Thus, a = ±1. Hence, for a = 1 we have only
one intersection point, namely (x, 0), and for a = −1 we have two intersection points:
(±x, 0). �
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Remark 2.4. In fact, it was sufficient for our purposes to use the following well-known
exercise-level fact: the set {(x, 0) | x ∈ Z, x > 1} parametrize orbits of the entire GL2(Z)
on Z ⊕ Z because for any matrix B ∈ GL2(Z) the greatest common divisor of coordinates

of B

(
x
0

)
is equal to x.

References

[1] Collin Bleak, Alexander Fel′shtyn, and Daciberg L. Gonçalves. Twisted conjugacy classes
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[16] Alexander Fel′shtyn and Daciberg L. Gonçalves. The Reidemeister number of any automor-
phism of a Baumslag-Solitar group is infinite. In Geometry and dynamics of groups and spaces, volume
265 of Progr. Math., pages 399–414. Birkhäuser, Basel, 2008.
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