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MODULES COFINITE AND WEAKLY COFINITE WITH RESPECT
TO AN IDEAL

KAMAL BAHMANPOUR, REZA NAGHIPOUR∗,† AND MONIREH SEDGHI

Abstract. The purpose of the present paper is to continue the study of modules cofinite
and weakly cofinite with respect to an ideal a of a Noetherian ring R. It is shown that
an R-module M is cofinite with respect to a, if and only if, ExtiR(R/a,M) is finitely
generated for all i ≤ cd(a,M) + 1, whenever dimR/a = 1. In addition, we show that if
M is finitely generated and Hi

a(M) are weakly Laskerian for all i ≤ t−1, then Hi
a(M) are

a-cofinite for all i ≤ t− 1 and for any minimax submodule K of Ht
a(M), the R-modules

HomR(R/a, Ht
a(M)/K) and Ext1R(R/a, Ht

a(M)/K) are finitely generated, where t is a
non-negative integer. Finally, we explore a criterion for weakly cofiniteness of modules
with respect to an ideal of dimension one. Namely for such ideals it suffices that the two
first Ext-modules in the definition for weakly cofiniteness are weakly Laskerian. As an
application of this result we deduce that the category of all a-weakly cofinite modules
over R forms a full Abelian subcategory of the category of modules.

1. Introduction

Let R denote a commutative Noetherian ring (with non-zero identity) and a an ideal
of R. Also, we let M denote an arbitrary R-module.

It is well-known result that if R is a local (Noetherian) ring with maximal ideal m, then
the R-module M is Artinian if and only if Supp(M) ⊆ {m} and ExtjR(R/m,M) is finitely
generated for all j ≥ 0 (cf. [16, Proposition 1.1]).

Using this idea, Hartshorne [16] introduced the class of cofinite modules, answering
in negative a question of Grothendieck (cf. [15, Exposé XIII, Conjecture 1.1]). In fact,
Grothendieck conjectured that for any ideal a of R and any finitely generated R-module
M , the R-module HomR(R/a, H i

a(M)) is finitely generated, where H i
a(M) is the i-th local

cohomology module of M with support in V (a), (this is the case when a = m, the maximal
ideal in a local ring, since the modules H i

m(M) are Artinian), but soon Hartshorne was
able to present a counterexample (see [16] for details and proof) which shows that this
conjecture is false even when R is regular, and where he defined an R-module M to be
cofinite with respect to a (abbreviated as a-cofinite) if the support of M is contained in
V (a) and ExtjR(R/a,M) is finitely generated for all j and asked the following questions:

Key words and phrases. Abelian category, cofinite module, local cohomology, minimax module, Serre
category, weakly cofinite module, weakly Laskerian module.
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(i) For which rings R and ideals a are the modules H i
a(M), a-cofinite for all i and all

finitely generated modules M?
(ii) Whether the category C (R, a)cof of a-cofinite modules forms an Abelian subcategory
of the category of all R-modules?

With respect to the question (i), Hartshorne in [16] and later Chiriacescu in [9] showed
that if R is a complete regular local ring and a is a prime ideal such that dimR/a = 1,
then H i

a(M) is a-cofinite for any finitely generated R-module M (see [16, Corollary 7.7]).
Also, Delfino and Marley [10, Theorem 1] and Yoshida [25, Theorem 1.1] have

eliminated the complete hypothesis entirely. Finally, more recently Bahmanpour and
Naghipour removed the local condition on the ring (see [4, Theorem 2.6]).

For a survey of recent developments on finiteness properties of local cohomology mod-
ules, see Lyubeznik’s interesting paper [17].

In the second section, we establish several characterizations of the a-cofiniteness of an
R-module M . More precisely we prove the following result:

Theorem 1.1. Let R be a Noetherian ring, M an R-module and a a one-dimensional
ideal of R such that Supp(M) ⊆ V (a). Then the following conditions are equivalent:

(i) M is a-cofinite.
(ii) H i

a(M) is a-cofinite, for all i.
(iii) ExtiR(R/a,M) is finitely generated, for all i ≤ cd(a,M) + 1.
(iv) ExtiR(N,M) is finitely generated, for all i ≤ cd(a,M) + 1 and for any finitely

generated R-module N with Supp(N) ⊆ V (a).
(v) ExtiR(N,M) is finitely generated, for all i ≤ cd(a,M) + 1 and for some finitely

generated R-module N with Supp(N) = V (a).

Pursuing this point of view further we derive the following consequence of Theorem
1.1, which is an extension of the main results of Delfino-Marley [8] and Yoshida [34] for
an arbitrary Noetherian ring R.

Corollary 1.2. Let R be a Noetherian ring and let a, b be ideals of R such that b ⊆
Rad(a). Let M be a b-cofinite R-module.

(i) If dimR/a = 1, then H i
a(M) is a-cofinite for all i.

(ii) If dimR/b = 1, then H i
b(M) is a-cofinite for all i.

In [27] H. Zöschinger, introduced the interesting class of minimax modules, and he has
in [27, 28] given many equivalent conditions for a module to be minimax. The R-module
N is said to be minimax, if there is a finitely generated submodule L of N , such that
N/L is Artinian. The class of minimax modules thus includes all finitely generated and
all Artinian modules. It was shown by T. Zink [26] and by E. Enochs [13] that a module
over a complete local ring is minimax if and only if it is Matlis reflexive.

In the second section, we also shall prove the following, which is a generalization of the
main result of Brodmann-Lashgari [6].

Theorem 1.3. Let R be a Noetherian ring, a an ideal of R and M a finitely gener-
ated R-module such that for a non-negative integer t, the R-modules H i

a(M) are weakly
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Laskerian for all i ≤ t. Then the R-modules H0
a (M), . . . , H t

a(M) are a-cofinite and for
any minimax submodule K of H t+1

a (M) and for any finitely generated R-module L with
Supp(L) ⊆ V (a), the R-modules HomR(L,H t+1

a (M)/K) and Ext1
R(L,H t+1

a (M)/K) are
finitely generated.

An R-module M is said to be a weakly Laskerian module, if the set of associated primes
of any quotient module M is finite (see [11] and [23]).

With respect to the question (ii), Hartshorne with an example showed that this not true
in general. However, he proved that if a is a prime ideal of dimension one in a complete
regular local ring R, then the answer to his question is yes. In [10], Delfino and Marley
extended this result to arbitrary complete local rings. Recently, Kawasaki [19], by using a
spectral sequence argument, generalized the Delfino and Marley’s result for an arbitrary
ideal a of dimension one in a local ring R. Finally, more recently Bahmanpour, Naghipour
and Sedghi in [5] removed the local condition on the ring. Namely, therein it is shown
that Hartshorne’s question is true for C 1(R, a)cof , the category of all a-cofinite R-modules
M with dim Supp(M) ≤ 1, for all ideals a in a Noetherian ring R. The proof of this result
is based on [5, Proposition 2.6] which states that in order to deduce the a-cofiniteness for
a module M with dim Supp(M) ≤ 1 and Supp(M) ⊆ V (a), it suffices that we know that
the R-modules HomR(R/a,M) and Ext1

R(R/a,M) are finitely generated.
The main goal of Section 3 is to establish the analogue of this result to the a-weakly

cofiniteness. Namely, in this section among other things, we show that for the a-weakly
cofiniteness of a module M with dim Supp(M) ≤ 1 and Supp(M) ⊆ V (a), it suffices that
we know that the R-modules HomR(R/a,M) and Ext1

R(R/a,M) are weakly Laskerian.
In particular, when a is one-dimensional, in order to deduce the a-weakly cofiniteness for
a module (with support in V (a)), it suffices that we know that the first two Ext-modules
in the definition for weakly cofiniteness are weakly Laskerian. More precisely, we shall
show that:

Theorem 1.4. Let a denote an ideal of a Noetherian ring R and let M be an R-module
such that dim Supp(M) ≤ 1 and Supp(M) ⊆ V (a). Then M is a-weakly cofinite if and
only if the R-modules HomR(R/a,M) and Ext1

R(R/a,M) are weakly Laskerian.

An R-module M is said to be a-weakly cofinite if Supp(M) ⊆ V (a) and ExtiR(R/a,M)
is a weakly Laskerian module for all i (see [12]). We denote the category of the a-weakly
cofinite modules by C (R, a)wcof . As an application of Theorem 1.4 we show that, when
a is one-dimensional, C (R, a)wcof forms an Abelian subcategory of the category of all
R-modules (see Corollary 3.7). That is, if f : M −→ N is an R-homomorphism between
a-weakly cofinite modules, then ker f and cokerf are a-weakly cofinite. The proof of this
result is based on the following theorem.

Theorem 1.5. Let a be an ideal of a Noetherian ring R. Let C 1(R, a)wcof denote the
category of a-weakly cofinite R-modules M with dim Supp(M) ≤ 1. Then C 1(R, a)wcof is
an Abelian category.

The proof of Theorem 1.5 is given in Theorem 3.6. Finally, we end the paper with a
question concerning the Serre subcategory.
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Throughout this paper, R will always be a commutative Noetherian ring with non-zero
identity and a will be an ideal of R. For an R-module M , the i-th local cohomology
module of M with support in a is defined as

H i
a(M) = lim−→

n≥1

ExtiR(R/an,M).

For facts about the local cohomology modules we refer to the textbook by Brodmann-
Sharp [7] or Grothendieck’s interesting book [14].

Further, for any ideal b of R, we denote the set {p ∈ SpecR : p ⊇ b} by V (b); and the
radical of b, denoted by Rad(b), we define to be the set {x ∈ R : xn ∈ b for some n ∈ N}.

For an Artinian R-module A the set of attached prime ideals of A is denoted by AttR A.
Also, for each R-module L, we denote by AsshRL the set {p ∈ AssR L : dimR/p = dimL}.
Finally, we shall use Max(R) to denote the set of all maximal ideals of R. For any unex-
plained notation and terminology we refer the reader to [8] and [20].

2. Modules cofinite

The main goals of this section are Theorems 2.4 and 2.8. The following lemmas will
be needed in the proof of these results. Recall that a class S of R-modules is a Serre
subcategory of the category of R-modules, when it is closed under taking submodules,
quotients and extensions. It is well known that the subcategories of, finitely generated,
minimax, weakly Laskerian, and Matlis reflexive modules are examples of Serre subcate-
gory. Following we let S denote a Serre subcategory of the category of R-modules.

Lemma 2.1. Let R be a Noetherian ring and a an ideal of R. Let s be a non-
negative integer and let M be an R-module such that ExtsR(R/a,M) ∈ S. Suppose
that ExtjR(R/a, H i

a(M)) ∈ S for all i < s and all j ≥ 0. Then HomR(R/a, Hs
a(M)) ∈ S.

Proof. See [1, Theorem 2.2]. �

Lemma 2.2. Let R be a Noetherian ring and a an ideal of R. Let s be a non-
negative integer and let M be an R-module such that Exts+1

R (R/a,M) ∈ S. Suppose

that ExtjR(R/a, H i
a(M)) ∈ S for all i < s and all j ≥ 0. Then Ext1

R(R/a, Hs
a(M)) ∈ S.

Proof. We use induction on s. Let s = 0. Then the exact sequence

0 −→ Γa(M) −→M −→M/Γa(M) −→ 0, (†)
induces the exact sequence

HomR(R/a,M/Γa(M)) −→ Ext1
R(R/a,Γa(M)) −→ Ext1

R(R/a,M).

As HomR(R/a,M/Γa(M)) and Ext1
R(R/a,M) are in S, it follows that Ext1

R(R/a,Γa(M))
is also in S. (Note that HomR(R/a,M/Γa(M)) = 0.)

Now, suppose inductively that s > 0 and that the assertion holds for s− 1. Using the
exact sequence (†) we obtain the following exact sequence, j ≥ 0,

ExtjR(R/a,M) −→ ExtjR(R/a,M/Γa(M)) −→ Extj+1
R (R/a,Γa(M)).
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Therefore, since Exts+2
R (R/a,Γa(M)) and Exts+1

R (R/a,M) are in S, it follows that
Exts+1

R (R/a,M/Γa(M)) ∈ S. Also, it easily follows from assumption and [7, Corol-

lary 2.1.7] that ExtjR(R/a, H i
a(M/Γa(M))) ∈ S for all i < s and all j ≥ 0. Therefore we

may assume that Γa(M) = 0.
Next, let ER(M) denote the injective hull of M . Then Γa(ER(M)) = 0, and so it follows

from the exact sequence

0 −→M −→ ER(M) −→ ER(M)/M −→ 0,

that H i+1
a (M) ∼= H i

a(ER(M)/M) for all i ≥ 0. Also, as HomR(R/a, ER(M)) = 0, it yields
that

ExtjR(R/a,M) ∼= Extj+1
R (R/a,M),

for all j ≥ 0. Consequently the R-module ER(M)/M satisfies our condition hypothesis.
Thus Ext1

R(R/a, Hs−1
a (ER(M)/M)) ∈ S. Now the assertion follows from the isomorphism

Hs
a(M) ∼= Hs−1

a (ER(M)/M).

�

Lemma 2.3. Let a be an ideal of a Noetherian ring R and M a non-zero R-module,
such that dim Supp(M) ≤ 1 and Supp(M) ⊆ V (a). Then the following statements are
equivalent:

(i) M is a-cofinite.
(ii) The R-modules HomR(R/a,M) and Ext1

R(R/a,M) are finitely generated.

Proof. See [5, Proposition 2.6]. �

Now we are prepared to state and prove the first main theorem of this section. Recall
that for an R-module N , the cohomological dimension of N with respect to an ideal a of
R, denoted by cd(a, N), is defined as

cd(a, N) = sup{i ∈ N0 | H i
a(N) 6= 0}.

Theorem 2.4. Let R be a Noetherian ring, M an R-module and a a one-dimensional
ideal of R. Then the following conditions are equivalent:

(i) ExtiR(R/a,M) is finitely generated, for all i ≤ cd(a,M) + 1.
(ii) H i

a(M) is a-cofinite, for all i.
(iii) ExtiR(R/a,M) is finitely generated, for all i.
(iv) ExtiR(N,M) is finitely generated, for all i ≤ cd(a,M) + 1 and for any finitely

generated R-module N with Supp(N) ⊆ V (a).
(v) ExtiR(N,M) is finitely generated, for all i ≤ cd(a,M) + 1 and for some finitely

generated R-module N with Supp(N) = V (a).
(vi) ExtiR(N,M) is finitely generated, for all i and for any finitely generated R-module

N with Supp(N) ⊆ V (a).
(vii) ExtiR(N,M) is finitely generated, for all i and for some finitely generated R-module

N with Supp(N) = V (a).
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Proof. In order to prove (i) =⇒ (ii) we may assume that i ≤ cd(a,M). Now, we use
induction on i. When i = 0, then the exact sequence

0 −→ Γa(M) −→M −→M/Γa(M) −→ 0,

induces the exact sequence

0 −→ HomR(R/a,Γa(M)) −→ HomR(R/a,M) −→ HomR(R/a,M/Γa(M))

−→ Ext1
R(R/a,Γa(M)) −→ Ext1

R(R/a,M).

As HomR(R/a,M/Γa(M)) = 0 and ExtjR(R/a,M), for j = 0, 1, is finitely generated,
it follows that HomR(R/a,Γa(M))) and Ext1

R(R/a,ΓI(M)) are finitely generated. It now
follows from Lemma 2.3 that Γa(M) is a-cofinite.

Assume, inductively, that i > 0 and that the result has been proved for i − 1. Then
the R-modules

H0
a (M), H1

a (M), . . . , H i−1
a (M),

are a-cofinite, and so it follows from Lemmas 2.1 and 2.2 that HomR(R/a, H i
a(M)) and

Ext1
R(R/a, H i

a(M)) are finitely generated. Now, it yields from Lemma 2.3 that H i
a(M) is

a-cofinite.
The implication (ii) =⇒ (iii) follows from [22, Proposition 3.9], and for prove (iii) =⇒

(vi) see [18, Lemma 1]. Finally, in order to complete the proof, it enough for us to show
that (v) =⇒ (iv). To this end, let L be a finitely generated R-module with Supp(L) ⊆
V (a) and N a finitely generated R-module such that Supp(N) = V (a). Then Supp(L) ⊆
Supp(N), and so according to Gruson’s Theorem [24, Theorem 4.1], there exists a chain

0 = L0 ⊂ L1 ⊂ · · · ⊂ Lk = L,

such that the factors Lj/Lj−1 are homomorphic images of a direct sum of finitely many
copies of N . Now consider the exact sequences

0 −→ K −→ Nn −→ L1 −→ 0

0 −→ L1 −→ L2 −→ L2/L1 −→ 0
...

0 −→ Lk−1 −→ Lk −→ Lk/Lk−1 −→ 0,

for some positive integer n. Now, from the long exact sequence

· · · → Exti−1
R (Lj−1, N)→ ExtiR(Lj/Lj−1, N)→ ExtiR(Lj, N)→ ExtiR(Lj−1, N)→ · · · ,

and an easy induction on k, it suffices to prove the case when k = 1.
Thus there is an exact sequence

0 −→ K −→ Nn −→ L −→ 0 (†)
for some n ∈ N and some finitely generated R-module K.

Now, we use induction on i. First, HomR(L,M) is a submodule of HomR(Nn,M);
hence, in view of assumption, Ext0

R(L,M) is finitely generated. So assume that i > 0
and that ExtjR(L′,M) is finitely generated for every finitely generated R-module L′ with
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Supp(L′) ⊆ Supp(N) and for all j ≤ i− 1. Now, the exact sequence (†) induces the long
exact sequence

· · · −→ Exti−1
R (K,M) −→ ExtiR(L,M) −→ ExtiR(Nn,M) −→ · · · ,

so that, by the inductive hypothesis, Exti−1
R (K,M) is finitely generated. On the other

hand ExtiR(Nn,M) ∼=
n
⊕ ExtiR(L,M) is finitely generated, and so ExtiR(L,M) is finitely

generated, the inductive step is complete. �

As a consequence of Theorem 2.4, we derive the following result which is an extension
of the main results of Delfino-Marley [8] and Yoshida [34] for arbitrary Noetherian rings.

Corollary 2.5. Let R be a Noetherian ring and a, b be ideals of R such that b ⊆ Rad(a).
Let M be a b-cofinite R-module.

(i) If dimR/a = 1, then the R-module H i
a(M) is a-cofinite for all i.

(ii) If dimR/b = 1, then the R-module H i
b(M) is a-cofinite for all i.

Proof. In order to show (i), since b ⊆ Rad(a), it follows that Supp(R/a) ⊆ Supp(R/b).
On the other hand, since M is b-cofinite it follows from [18, Lemma 1] that M is also
a-cofinite. Now as dimR/a = 1, it follows from Theorem 2.4 that H i

a(M) is a-cofinite for
all i.

To prove (ii), since dimR/b = 1 and M is b-cofinite it follows from Theorem 2.4 that
H i

b(M) is b-cofinite for all i. Now, because of Supp(R/a) ⊆ Supp(R/b) it follows from
[18, Lemma 1] that H i

b(M) is a-cofinite, for all i. �

Before proving the next main theorem, we need the following lemma and proposition,
which will be used in Theorem 2.8.

Lemma 2.6. Let R be a Noetherian ring and M an R-module. Then M is weakly
Laskerian if and only if there exists a finitely generated submodule N of M such that
Supp(M)/N is finite.

Proof. See [2, Theorem 3.3]. �

Proposition 2.7. Let R be a Noetherian ring, a an ideal of R and M a finitely generated
R-module such that H i

a(M) is weakly Laskerian for all i ≤ t. Then the R-modules

H0
a (M), . . . , H t

a(M)

are a-cofinite. In addition the R-modules

HomR(R/a, H t+1
a (M)) and Ext1

R(R/a, H t+1
a (M))

are finitely generated. In particular, the set AssR H t+1
a (M) is finite.

Proof. We use induction on t. The case t = 0 follows from Lemmas 2.1 and 2.2. So,
let t ≥ 1 and the case t − 1 is settled. Then by inductive hypothesis the R-modules
H0

a (M), . . . , H t−1
a (M) are a-cofinite and the R-modules

HomR(R/a, H t
a(M)) and Ext1

R(R/a, H t
a(M))
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are finitely generated. Now since by assumption the R-module H t
a(M) is weakly Laskerian,

it follows from Lemma 2.6 that there is a finitely generated submodule N of H t
a(M) such

that Supp(H t
a(M)/N) is finite set, and so dim Supp(H t

a(M)/N) ≤ 1. Now it follows from
the exact sequence

0 −→ N −→ H t
a(M) −→ H t

a(M)/N −→ 0,

that the R-modules

HomR(R/a, H t
a(M)/N) and Ext1

R(R/a, H t
a(M)/N),

are finitely generated. Therefore it follows from Lemma 2.3 that the R-module H t
a(M)/N

is a-cofinite, and so the R-module H t
a(M) is a-cofinite. Hence, it follows from Lemmas 2.1

and 2.2 that the R-modules HomR(R/a, H t+1
a (M)) and Ext1

R(R/a, H t+1
a (M)) are finitely

generated. This completes the induction step. �

Now, we are ready to state and prove the second main result of this section, which
is a generalization the main results of Bahmanpour-Naghipour [3, Theorem 2.6] and
Brodmann-Lashgari [6, Theorem 2.2].

Theorem 2.8. Let R be a Noetherian ring, a an ideal of R and M a finitely generated R-
module such that for a non-negative integer t, the R-modules H i

I(M) are weakly Laskerian
for all i ≤ t. Then the R-modules

H0
a (M), . . . , H t

a(M)

are a-cofinite and for any minimax submodule K of H t+1
a (M) and for any finitely generated

R-module L with Supp(L) ⊆ V (a), the R-modules

HomR(L,H t+1
a (M)/K) and Ext1

R(L,H t+1
a (M)/K)

are finitely generated.

Proof. By virtue of Proposition 2.7 the R-module H i
a(M) is a-cofinite for all i ≤ t and

HomR(R/a, H t+1
a (M)) is finitely generated. Hence the R-module HomR(R/a, K) is finitely

generated, and so in view of [22, Proposition 4.3], K is a-cofinite. Thus, [18, Lemma 1]
implies that ExtiR(L,K) is finitely generated for all i.

Next, the exact sequence

0 −→ K −→ H t+1
a (M) −→ H t+1

a (M)/K −→ 0

provides the following exact sequence,

HomR(L,Ht+1
a (M)) −→ HomR(L,H t+1

a (M)/K) −→ Ext1
R(L,K)

−→ Ext1
R(L,H t+1

a (M)) −→ Ext1
R(L,H t+1

a (M)/K) −→ Ext2
R(L,K).

Now, since ExtiR(L,K) is finitely generated, the assertion follows from Proposition 2.7
and [18, Lemma 1], because the R-modules

HomR(L,H t+1
a (M)) and Ext1

R(L,H t+1
a (M))

are finitely generated. �
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3. Modules weakly cofinite

The purpose of this section is to establish that the category of modules weakly cofinite
with respect to an ideal of dimension one in a Noetherian ring is a full Abelian subcategory
of the category of modules. The main goal of this section is Theorem 3.6. The proof of this
theorem is based on the Proposition 3.3, which plays a key role in this section, says that
(when a is one-dimensional), in order to deduce the a-weakly cofiniteness for a module
(with support in V (a)), it suffices that we know that the first two Ext-modules in the
definition for weakly cofiniteness are weakly Laskerian. Before stating it, we record a
couple of lemmas that will be needed in the proof of this proposition.

Lemma 3.1. Let R be a Noetherian ring and M an R-module. Then M is weakly
Laskerian if and only if there exists a finitely generated submodule N of M such that
Supp(M)/N is finite.

Proof. See [2, Theorem 3.3 ]. �

Lemma 3.2. Let (R,m) be a local (Noetherian) ring and let A be an Artinian R-module.
(i) If a is an ideal of R such that HomR(R/a, A) is a finitely generated R-module, then

V (a) ∩ AttR A ⊆ V (m).

(ii) If x is an element of R such that V (Rx) ∩ AttR A ⊆ {m}, then the R-module A/xA
has finite length.

Proof. See [4, Lemmas 2.4 and 2.5]. �

The following proposition will be one our main tools in this section. It’s proof is based
on the important notion of the arithmetic rank of an ideal. The arithmetic rank of an
ideal b in a Noetherian ring R, denoted by ara(b), is the least number of elements of R
required to generate an ideal which has the same radical as b, i.e.,

ara(b) = min{n ∈ N0 : ∃b1, . . . , bn ∈ R with Rad(b1, . . . , bn) = Rad(b)}.

Let M be an R-module. The arithmetic rank of an ideal b of R with respect to M ,
denoted by araM(b), is defined the arithmetic rank of the ideal b + AnnR(M)/AnnR(M)
in the ring R/AnnR(M).

Proposition 3.3. Let a be an ideal of a Noetherian ring R and M an R-module such that
dim Supp(M) ≤ 1 and Supp(M) ⊆ V (a). Then the following statements are equivalent:

(i) M is a-weakly cofinite.
(ii) The R-modules HomR(R/a,M) and Ext1

R(R/a,M) are weakly Laskerian.

Proof. The conclusion (i) =⇒ (ii) is obviously true. In order to prove that (ii) =⇒ (i), as

AssR HomR(R/a,M) = AssR M

and HomR(R/a,M) is weakly Laskerian, it follows that AssR M is finite. Now, if
dim Supp(M) = 0, then AssR M = Supp(M), and so Supp(M) is also finite. There-
fore, in view of definition, M is weakly Laskerian, and so by [12, Lemma 2.2], M is
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a-weakly cofinite. Consequently, we may assume dim Supp(M) = 1; and we use induction
on

t := araM(a) = ara(a + AnnR(M)/AnnR(M))

that M is a-weakly cofinite. If t = 0, then it follows from definition that an ⊆ AnnR(M)
for some positive integer n, and so M = (0 :M an). Therefore the assertion follows from
[12, Lemma 2.8]. So assume that t > 0 and the result has been proved for all i ≤ t − 1.
In view of Lemma 3.1 there exist finitely generated submodules A of HomR(R/a,M) and
B of Ext1

R(R/a,M) such that the set

Ω := Supp(HomR(R/a,M)/A)
⋃

Supp(Ext1
R(R/a,M)/B).

is finite. Now, let

T = {p ∈ Supp(M) | dimR/p = 1} \ Ω.

It is easy to see that T ⊆ AsshRM , and so T is finite. (Note that AssR M is finite.)
In addition, as Ω ⊆ Supp(M), it follows that

max{dim Supp(HomR(R/a,M)/A), dim Supp(Ext1
R(R/a,M)/B)} ≤ 1.

Therefore, in view of the prime avoidance theorem it is easy to see that, for each p ∈ T
we have p 6⊆

⋃
q∈Ω q. Consequently, it is easily yields that

(HomR(R/a,M)/A)p = 0 = (Ext1
R(R/a,M)/B)p.

Whence for each p ∈ T the Rp-module HomRp(Rp/aRp,Mp) is finitely generated, by [20,
Ex. 7.7], and Mp is an aRp-torsion Rp-module, with Supp(M)p ⊆ V (pRp), and so it
follows that the Rp-module HomRp(Rp/aRp,Mp) is Artinian. Consequently, according to
Melkersson’s results [21, Theorem 1.3] and [22, Proposition 4.3], Mp is an Artinian and
aRp-cofinite Rp-module. Next, let T = {p1, . . . , pn}. Then by Lemma 3.2(i), we have

V (aRpj) ∩ AttRpj
(Mpj) ⊆ V (pjRpj),

for all j = 1, 2, . . . , n. Next, set

U :=
⋃n

j=1{q ∈ SpecR | qRpj ∈ AttRpj
(Mpj)}.

It is easy to check that U ∩ V (a) ⊆ T .

On the other hand, since t = araM(a) ≥ 1, there exist elements y1, . . . , yt ∈ a such that

Rad(a + AnnR(M)/AnnR(M)) = Rad((y1, . . . , yt) + AnnR(M)/AnnR(M)).

Now, as a 6⊆
⋃

q∈U \V (a) q, it follows that (y1, . . . , yt) + AnnR(M) 6⊆
⋃

q∈U \V (a) q.

Furthermore, for each q ∈ U we have qRpj ∈ AttRpj
(Mpj), for some integer 1 ≤ j ≤ n.

Whence

AnnR(M)Rpj ⊆ AnnRpj
(Mpj) ⊆ qRpj .

Since q is prime we get that AnnR(M) ⊆ q. Consequently, it follows from

AnnR(M) ⊆
⋂

q∈U \V (a) q,
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that (y1, . . . , yt) 6⊆
⋃

q∈U \V (a) q. Therefore, by [20, Ex. 16.8] there is a ∈ (y2, . . . , yt) such

that y1 + a 6∈
⋃

q∈U \V (a) q. Let x := y1 + a. Then x ∈ a and

Rad(a + AnnR(M)/AnnR(M)) = Rad((x, y2, ..., yt) + AnnR(M)/AnnR(M)).

Next, let N := (0 :M x). Then, it is easy to see that

araN(a) = ara(a + AnnR(N)/AnnR(N)) ≤ t− 1.

(note that x ∈ AnnR N), and hence

Rad(a + AnnR(N)/AnnR(N)) = Rad((y2, . . . , yt) + AnnR(N)/AnnR(N))).

Now, the exact sequence

0 −→ N −→M −→ xM −→ 0, (†)
induces an exact sequence

0 −→ HomR(R/a, N) −→ HomR(R/a,M) −→ HomR(R/a, xM)

−→ Ext1
R(R/a, N) −→ Ext1

R(R/a,M),

which implies that the R-modules HomR(R/a, N) and Ext1
R(R/a, N) are weakly Laske-

rian. Consequently, by the inductive hypothesis, the R-module N is a-weakly cofinite.
Moreover, the exact sequence (†) induces the exact sequence

Ext1
R(R/a,M) −→ Ext1

R(R/a, xM) −→ Ext2
R(R/a, N),

which implies that the R-module Ext1
R(R/a, xM) is weakly Laskerian.

Also, from the exact sequence

0 −→ xM −→M −→M/xM −→ 0

we get the exact sequence

HomR(R/a,M) −→ HomR(R/a,M/xM) −→ Ext1
R(R/a, xM)

which implies that the R-module HomR(R/a,M/xM) is weakly Laskerian.
Now, from Lemma 3.2(ii), it is easy to see that the Rpj -module (M/xM)pj has finite
length for all j = 1, . . . , n. Therefore there exists a finitely generated submodule Lj of
M/xM such that

(M/xM)pj = (Lj)pj .

Let L := L1 + · · ·+ Ln. Then L is a finitely generated submodule of M/xM such that

SuppR(M/xM)/L ⊆ Supp(M) \ {p1, . . . , pn} ⊆ (AssR M
⋂

Max(R))
⋃

Ω.

The exact sequence

0 −→ L −→M/xM −→ (M/xM)/L −→ 0,

provides the following exact sequence,

HomR(R/a,M/xM) −→ HomR(R/a, (M/xM)/L) −→ Ext1
R(R/a, L);

which implies that HomR(R/a, (M/xM)/L) is weakly Laskerian.
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We now show that M/xM is a weakly Laskerian R-module. To do this, since the
sets AssR M ∩Max(R) and Ω are finite, it follows that the set Supp(M/xM)/L is finite
too. Thus, as L is finitely generated, it follows from Lemma 3.1 that M/xM is a weakly
Laskerian R-module. Thus in view of [12, Lemma 2.6] the R-module M/xM is a a-weakly
cofinite. Now, since the R-modules N = (0 :M x) and M/xM are a-weakly cofinite, it
follows from [22, Lemma 3.1] and [12, Lemma 2.2] that M is a-weakly cofinite module.
This completes the inductive step. �

The first application of Proposition 3.3 gives us a characterization of the a-weakly
cofiniteness of an R-module M in terms of the a-weakly cofiniteness of the local cohomol-
ogy modules H i

a(M).

Corollary 3.4. Let R be a Noetherian ring, M an R-module and a a one-dimensional
ideal of R. Then the following conditions are equivalent:

(i) ExtiR(R/a,M) is weakly Laskerian for all i ≤ cd(a,M) + 1.
(ii) H i

a(M) is a-weakly cofinite for all i.
(iii) ExtiR(R/a,M) is weakly Laskerian for all i.
(iv) ExtiR(N,M) is weakly Laskerian for all i ≤ cd(a,M) + 1 and for any finitely

generated R-module N with Supp(N) ⊆ V (a).
(v) ExtiR(N,M) is weakly Laskerian for all i ≤ cd(a,M) + 1 and for some finitely

generated R-module N with Supp(N) = V (a).
(vi) ExtiR(N,M) is weakly Laskerian for all i and for any finitely generated R-module

N with Supp(N) ⊆ V (a).
(vii) ExtiR(N,M) is weakly Laskerian for all i and for some finitely generated R-module

N with Supp(N) = V (a).

Proof. By a slight modification of the proof of Theroem 2.4, the result follows easily from
Proposition 3.3 and Lemmas 2.1, 2.2, by applying [12, Lemmas 2.2 and 2.8]. �

Corollary 3.5. Let R be a Noetherian ring and let a, b be ideals of R such that b ⊆
Rad(a). Let M be a b-weakly cofinite R-module.

(i) If dimR/a = 1, then the R-module H i
a(M) is a-weakly cofinite for all i.

(ii) If dimR/b = 1, then the R-module H i
b(M) is a-weakly cofinite for all i.

Proof. In order to show that (i), since b ⊆ Rad(a), it follows that Supp(R/a) ⊆
Supp(R/b). On the other hand, since M is b-weakly cofinite it follows from [12, Lemma
2.8] that M is also a-weakly cofinite. Now since dimR/a = 1, the result follows from
Corollary 3.4.

To prove (ii), since dimR/b = 1 and M is b-weakly cofinite it follows from Corollary
3.4 that H i

b(M) is b-weakly cofinite for all i. Now as Supp(R/a) ⊆ Supp(R/b) it follows
from [12, Lemma 2.8] that H i

b(M) is a-weakly cofinite for all i. �

We are now in a position to use Proposition 3.3 to produce a proof of the main theorem
of this section, which shows that C 1(R, a)wcof , the category of a-weakly cofinite R-modules
M with dim Supp(M) ≤ 1, is a full Abelian subcategory of the category of modules.
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Theorem 3.6. Let a be an ideal of a Noetherian ring R. Let C 1(R, a)wcof denote the
category of a-weakly cofinite R-modules M with dim Supp(M) ≤ 1. Then C 1(R, a)wcof is
an Abelian category.

Proof. Let M,N ∈ C 1(R, a)wcof and let f : M −→ N be an R-homomorphism. We
show that the R-modules ker f and cokerf are a-weakly cofinite. To this end, the exact
sequence

0 −→ ker f −→M −→ imf −→ 0,

induces an exact sequence

0 −→ HomR(R/a, ker f) −→ HomR(R/a,M) −→ HomR(R/a, imf)

−→ Ext1
R(R/a, ker f) −→ Ext1

R(R/a,M),

that implies the R-modules

HomR(R/a, ker f) and Ext1
R(R/a, ker f),

are weakly cofinite. Therefore it follows from Proposition 3.3 that ker f is a-weakly
cofinite. Now, by using the exact sequences

0 −→ ker f −→M −→ imf −→ 0,

and

0 −→ imf −→ N −→ cokerf −→ 0,

we see that cokerf is also a-weakly cofinite, as required. �

As an immediate consequence of Theorem 3.6, we derive the weakly cofiniteness ver-
sion of Delfino-Marley’s result in [10] and Kawasaki’s result in [19], which shows that
the category of modules weakly cofinite, with respect to an ideal of dimension one in a
Noetherian ring, is a full Abelian subcategory of the category of modules. Following, we
let C (R, a)wcof denote the category of modules weakly cofinite with respect to a.

Corollary 3.7. Let a be an ideal of a Noetherian ring R of dimension one. Then
C (R, a)wcof forms an Abelian subcategory of the category of all R-modules.

Proof. As Supp(M) ⊆ Supp(R/a) for all M ∈ C (R, a)wcof , and dimR/a = 1, it follows
that dim Supp(M) ≤ 1. Now the assertion follows from Theorem 3.6. �

Corollary 3.8. Let a be an ideal of a Noetherian ring R of dimension one. Let

X• : · · · −→ X i f i

−→ X i+1 f i+1

−→ X i+2 −→ · · · ,

be a complex such that X i ∈ C (R, a)wcof for all i ∈ Z. Then the i-th homology module
H i(X•) is in C (R, a)wcof .

Proof. The assertion follows from Corollary 3.7. �
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Corollary 3.9. Let a = (x1, . . . , xn) be an ideal of a Noetherian ring R. Let M and
N be two R-modules such that N is finitely generated and M is a-weakly cofinite with
dim Supp(M) ≤ 1. Then the R-modules ExtiR(N,M), TorRi (N,M) and; the Koszul ho-
mology module Hi(x1, . . . , xn;M) are a-weakly cofinite for all i.

Proof. By considering a finite free resolution F• −→ N of N , and applying Theorem 3.6
to the complexes

Hom(F•,M), F• ⊗R M , K•(x1, . . . , xn;M),

the assertion follows. �

We end the paper with the following question:

Question. Let a be an ideal of a Noetherian ring R and M an R-module such that
dim Supp(M) ≤ 1 and Supp(M) ⊆ V (a). Let S be a Serre subcategory of the category
of R-modules. Is the following statements are equivalent ?

(i) The R-modules ExtiR(R/a,M) are in S, for all i ≥ 0.
(ii) The R-modules HomR(R/a,M) and Ext1

R(R/a,M) are in S.
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