Stratifying % -points Algebraic

Quotients

Ralph J. Bremigan

MPI / 92-20

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-StraBe 26
D-5300 Bonn 3

Germany
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£0. Introduction.

Let k be a field of characteristic zero. Let G be a reductive algebraic group and
V an affine G-variety (both with points in %, an algebraic closure of k). As usual,
we define the algebraic quotient VJ/G to be the affine variety whose coordinate ring
is O(V)¥, the algebra of G-invariant regular functions on V.

In this paper, we introduce and explore basic properties of a stratification of
(V/G),, in the case that V, G, and the action of G on V are defined over k. The
stratification comes from the k-structure on the Zariski-closed orbits of the action,
and coincides with the usual isotropy-type stratification when k is algebraically
closed. Behavior very much like the case £ = C occurs when k = R or a p-adic field,
and in these circumstances we also consider the space Vi /Gy of closed Gi-orbits
in Vi, the map Vi /Gi — (VJ/G),, and an interesting stratification of V. /Gx. The
language of relative Galois cohomology, introduced by Springer [Sp), is essential
for our purposes and is reviewed here (§2). The main technical tool we develop is
a version of Luna’s étale slice theorem for non-algebraically closed fields (§3); this
allows us to give a k-stucture to the normal bundle of any Zariski-closed orbit in
V which is defined over k. This was implicit in Luna’s paper [Lu2], and some of
his results in the case k¥ = R required only minor modifications to become valid in
more general situations.

Notation and Conventions: Unless otherwise indicated, G denotes a reductive
algebraic group defined over k (with points in k). All G-varieties are understood to
be affine. The quotient map V — V /G is denoted by my ¢ or simply 7. The notation
T,S means the tangent space at v to S. The words “closure,” “closed,” “open,”
“neighborhood,” etc. refer to the topology on the k-points of an affine variety,
which comes from a topology on the field k. All field topologies are assumed to be
nontrivial and nondiscrete. We use the notation G * N to denote twisted products
(see [S])); points in a twisted product are writen as [¢,n]. If H is a subgroup of G,
then (H) denotes the set of G-conjugates of H. We write V/G = Uy (V/G)y, for
the isotropy-type stratification of V/G. Finally, we use Gal as a shorthand for the
Galois group Gal(k/k).

§1. Algebraic quotients over k.
Let V be an affine G-variety over k, with k-structure O(V) = % ? OV It

follows that O(V)¢ = E(% O(V)E, since O(V)C C O(V) is stable under the action



of Gal. Hence VG and 7 : V — V//G are defined over k. We set Z = (V//G), and
X = 7n(Vi).

The following proposition describes VG, Z, and X as spaces of certain Zariski-
closed orbits:

PROPOSITION 1.1:

(1) = is surjective.
(2) Each fiber of 7 is a union of G-orbits and contains a unique Zariski-closed
orbit, which is of minimum dimension among orbits in the fiber.
(3) If y € VJG, then the following are equivalent:
(a) ye€Z.
(b) 7~ !(y) is defined over k.
(¢) The Zariski-closed orbit in 7~1(y) is defined over k.
(4) ¥ y € VJG, then the following are equivalent:
(a) velX.
(b) The Zariski-closed orbit G- v C #~!(y) contains a k-point of V.

PROOF: (1) and (2) can be found in [Kr]. In (3), (a) & (b) < (¢) is trivial since
the action of Gal on V maps fibers to fibers. The implication (b) = (¢) follows
from (2). In (4), (b) = (a) is trivial. To prove (a) = (b): there is a G-equivariant
retraction 7~!(y) — G - v which is defined over k (3.4), which must carry k-points
to k-points. 1

LEMMA 1.2: IfY is an affine G-variety over k, then there is a G-equivariant, Zariski-
closed embedding over k of ¥ into a G-module V which is defined over k.

PROOF: Suppose that O(Y) is generated by {fi,...,fu}. Then fi1,...,fn lie in
a finite-dimensional G-module W', and W = span,ega{oc(W')} is again finite-
dimensional (any f € W' has a finite Gal-orbit, and W is the span of the Gal-orbits
of a basis of W’). Finally, from the surjection of algebras S-(W) -» O(Y’), we obtain
an embedding of Y into the G-module V = W*. i

§2. Compatible k-structures on homogeneous spaces.

In this section, G is an affine algebraic group, not necessarily reductive. For
background on homogeneous spaces and k-structures on varieties, see [Bo].

We begin by recalling a fact about coset spaces. If H is a (Zariski-closed) subgroup
of G, both defined over a field K (not necessarily algebraically closed), then G/H
has the structure of a quasiprojective variety over K (with the action of Gal(K/K)
given by gH % o(g)H). The variety structure on G/H comes via an embedding into
P(V), where V is a representation of G defined over K. If G and H are reductive,
then G/H is affine.

We review relative Galois cohomology, which was introduced by Springer [Sp].
We return to our field ¥ and group G defined over k, but only assume that H is
defined over k; we consider the k-structures on G/H such the left action of G on
G/H is defined over k. Thus we call an action (0,9H) — o(gH) of Gal on G/H a
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compatible k-structure on G/H if it comes from a k-structure on G/H, and if

(*) o(g192H) = o(g1) - 0(92 H)

for all g1,92 € G and o €Gal. We describe these structures, using the language of
Galois cohomology:

By (*), we need only know o(eH) for each ¢ €Gal. Suppose that o(eH) = s,H,
where s, € G. The map (Gal — G, ¢ — 3,) has the following properties:

(1) 80,0.H = 01(80,) - 84, H for all 01,0, €Gal.

(2) soHs;! = o(H) for all o €Gal.

(3) {s € Gal:s, € H} O Gal(k/k') for some finite Galois extension k' D k.
(1) follows since (oy0;)(eH) = 01(o3(eH)), and (2) is true since o(eH) = o(hH)
for all h € H. Finally, eH € (G/H),, for some finite Galois ¥' D k, hence eH =
o(eH) = s,H for all o € Gal(k/k').

Conversely, suppose that o — s, is a map having these properties. By (1) and (2),
it gives a well-defined action of Gal(k/k) on G/H which satisfies (). We show that
the action comes from a k-structure. Let goH € G/H, and let K be a finite Galois
extension of k' such that H is defined over K and g9 € Gx. Then G/H is defined
over K and the action of Gal(E/K) is the same as the one coming from the inclusion
Gal(k/K) — Gal(k/k). We may find an affine open neighborhood of goH in G/H
of the form U = Spec A, where U is defined over K. Hence A = 75% Ay, where

Ao = {f € A: f(o(9)H) = o(f(gH)) for all ¢ € Gal(k/K}. Moreover it is clear
that Ay = K?Al, where A; = {f € Ay : f(o(g)se H) = o(f(¢gH)) for all o € Gal}

since K/k is finite. Hence A =% @ A, as was required.

Functions s : Gal — G with the above properties are called cocycles (relative to
H). We let Z(k,G, H) denote the set of cocycles, and let (G/H,s) denote G/H
with the compatible k-structure induced by s. If H is defined over k, then the
cocycle which is the constant function ¢ +— e will be denoted 1.

We wish to identify two compatible k-structures on G/H if they are related
by a G-equivariant automorphism of G/H. Such automorphism are of the form

gH — gnH for some n € NgH. We obtain a corresponding equivalence relation on
Z(k,G, H) as follows: for any n € NgH and {hs}secal C H, we declare

(0 5,)=(0—0(n) s, -n"1-h,).

Let H!(k,G, H) denote the set of equivalence classes of cocycles relative to H. We
have proven

PROPOSITION 2.1: H'(k,G, H) parametrizes the equivalence classes of compatible
k-structures on G/H. |}



If H = {e}, we shall use the briefer notation Z(k,G) and H!(k, G). In nonabelian
Galois cohomology, the case H = {e} has received the most attention. It is a special
case of [Sel, Proposition 5, pg. I1I-6] that the sets H'(k,G, H) may be viewed in
the “absolute” framework:

Suppose that H!(k,G, H) is nonempty. Fix s € Z(k,G,H). We obtain a k-
structure on the algebraic group W := NgH/H, by demanding that the action of W
on (G/H, s) be defined over k. Specifically, & €Gal sends nH € W to s;1-0(n)-s,H.
Then
Z2(k,G,H) — Z(k,W)

(0 te) > (500850 t,H)
isomorphism H(k,G, H) ~ H!(k,W). I

Of course if H is defined over k, then we may take s, = 1.

NOTATION 2.3: If a € G, then there is an isomorphism

PROPOSITION 2.2: The map ( ) induces an

H(k,G,H) = H(k,G,aHa™")
induced by the map
(0 8y) — (o =+ a(a) s, -a” 1)

on cocycles. We use this to identify H!(k,G,H) and H'(k,G,H') if H and H'
are conjugate in G, and we shall write H'(k,G,(H)) when we choose not to draw
attention to a particular element in (H). If s € Z(k, G, H), let [s] denote its image
in H'(k,G,(H)). Let Z(k,G,H)s, = {s € Z(k,G,H) : (G/H,s) has a k-point},
and let H!(k,G,(H)), be the image of Z(k,G, H), in H'(k,G,(H)).

Let C(H) = {H' € (H) : H' is defined over k}. If s € Z(k,G,H), let C(H,s) =
{H' € C(H) : H' is the isotropy group of a k-point of (G/H,s)}. Let G'(H) = {g €
G:0(g7 ') g € NgH for all ¢ € Gal}. 1
LEMMA 2.4: Suppose that H is defined over k.

(1) The map (G'(H) — C(H),g9 — gHg™!) induces a bijection G'(H)/NgH =~
C(H). Likewise the map (G'(H) — G/NgH,g — gN) induces a bijection
between G'(H)/NgH and the set of k-points of (G/NgH,1).

(2) If ¢ € G'(H), then the map (Gal— G,o0 + o(g™!) - ¢) is an element of
Z(k,G, H).

(3) If g € G'(H) and n € NgH, then the cocycles (o — a((gn)~') - (gn)) and
(6 — o(g~!) - g) are equivalent in H!(k, G,(H)).

(4) If s;t € Z(k,G, H) are equivalent, then C(H,s) = C(H,t).

PROOF: (1)—(3) are trivial. We prove (4). Suppose that t, = o(n) - s, -n~!: hg,

for some n € N and h, € H. We compute easily that gH is a k-point of (G/H,1)
if and only if gnH is a k-point of (G/H,s). However, gH and gnH have the same

isotropy group. §



THEOREM 2.5.
) Themap (T = ZkGID
g

— (0 a(g1) - g)) induces a map

& :C(H) ~ G'(H)/NgH — H(k, G, (H))

with image H'(k, G, (H)),-

(2) If s € Z(k,G, H), then @~1([s]) = C(H, s).

(3) If {s'}ier C Z(k,G, H) and H!(k, G, (H)), is the disjoint union of {[s']}icr,
then C(H) = | |;c,C(H, s*).

PROOF: By (2.4(2)) and (2.4(3)), we obtain a map G'(H)/NgH — H'(k,G,(H)).
The image is contained in H!(k,G,(H)), since if ¢ € G'(H), then then gH is a
k-point of (G/H,s) (where s, = o(g™!) - g). Conversely, if s € Z(k,G, H) is such
that [s] € H'(k,G,(H)),, and gH is a k-point of (G/H, s), then s, € o(¢g~!)-g- H.
This proves (1).

To prove (2): by virtue of (1) and (2.4(4)), we may assume that s = o(g™1)- g for
some g € G'(H), and then (2) follows easily. Part (3) follows directly from (2). i

Otherwise said:

(1) If S is a G-homogencous space, then every compatible k-structure on S, for
which S has a k-point, arises as S ~ (G/H,1), where H is defined over k.
(2) If Hy,H; C G are defined over k and are G-conjugate, then (G/H;,1) ~
(G/H,,1) if and only if H; is the isotropy group of a k-point of (G/H;,1).
REMARK 2.6: Using (2.4(1)), we obtain bijections

Gi\G'(H)/NgH ~ {G-conjugacy classes in C(H)} ~ {Gy-orbits in (G/NgH),}.
By [Sel], the map (G'(H) — H(k,NgH),g — (0 +— c(g™1)-g)) induces a bijection
Gi\G'(H)/NgH ~ Kernel (H'(k,NgH) — H'(k,G)). §

Suppose now that H is defined over k. Let G"(H) C G'(H) denote {g € G :
a(g~1)g € H for all o € Gal}.

REMARK 2.7: The map (G"(H) — G/H,g — Gg - g - H) induces a bijection
Gk\G"(H)/H o~ {Gk-orbits in (G/H,l)k}

and as in (2.6), these sets are isomorphic to the kernel of H!(k, H) — H(k,G). 1
REMARK 2.8: We obtain a map Gi\G"(H)/H — Gi\G'(H)/NgH with image
Gx\C(H,1). We give an example to show that this map is not injective in general.
Let G = SL(2,C), Gr = SL(2,R), and H = SO(2,C). It is easily seen that the
R-points of (G/H,1) consist of two Gr-orbits, containing (; {1’)H and (; _?..)H
respectively, but the two points have the same G-isotropy.
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§3. The étale slice theorem over k.
We recall Luna’s slice theorem ([Lu],[Sch1],(Sl], [Kn]). In the statement, we
only assume that G and V are defined over k.

THEOREM 3.1. Let V be an affine G-variety. Suppose that v € V lies on a Zariski-
closed G-orbit and has isotropy group H. Then there exists S C V such that

1) ves.

(2) S is affine, locally closed in the Zariski topology, and stable under H.

(3) The morphism (G x § — V, (g,s) — g - 3) induces an étale morphism
G+H S - U C V, where U is affine, Zariski-open, and G-saturated, and
where U /G < V|G as a Zariski-open, affine subvariety.

(4) The induced morphism SJH ~ (G " )G — V|G is étale.

(5) The map

G«S — SJH x V
vJG

[9.5] +— (7s,u(s),9-3)

is an isomorphism of G-varieties. In particular, if y € U, then the isotropy
of y is G-conjugate to a subgroup of H.

(6) I V is a G-module and N is an H-stable complement of T,(G - v) in V,
then we may choose S to be an affine, Zariski-open neighborhood of v in
v+ NCV.

(7) IfV is smooth at v, we may assume that S is smooth, and that there is an
H-equivariant map ¢ : S — T,(S) (with ¢(v) = 0) which is étale with affine
image. Furthermore, ¢ /H : SJH — (T,S)/ H is étale, and we may assume
that

G+H § SJH G+HT,S
S = S mﬁm(* )

[9’3] — (WS,H(3)7[9,¢(3)D

is an isomorphism of G-varieties. |

We now return to the situation where G, V, and the action of G on V are defined
over k (notation as in (3.1)).

THEOREM 3.2. Suppose that G -v is Zariski-closed and ny,g(v) € Z. Then we may
choose S such that the following also hold:

(1) U is defined over k.
(2) There are k-structures on G *# S and S|/H such that
the maps

GxHS»U—V
SJH »UJG < V|G
G+" S » S/H,
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the projection G+ S + G/H ~ G - v,
and the action of G on G ¥ § are all defined over k.
(3) If furthermore V is smooth at v, then S may be chosen such that there are
k-structures on G *¥ (T,S) and (T, S)/ H, for which
the maps

S{H — (T,S)/H

Gl S S/H G +" (T,5)),
5= SH msﬁw(*( )

the projection G +" (T,8) — (T,S)}H,
and the action of G on G+ (T,S) are all defined over k.

PRrooF: We indicate the points in the proof of (3.1) (we use the proof in [Kn])
where care must be taken when working over k.

Step 1. The main tool in the proof of (3.1) is Luna’s “lemme fondamental”, which
describes the local behavior of a morphism A — B between G-varieties satisfying
certain conditions. This lemma is applied to certain morphisms described below,
and produces the variety U in the statement of (3.1). It is an easy consequence
of the proof of the lemme fondamental [Kn] that under our hypotheses, we may
choose U to be defined over k.

Step 2. We require the following lemma:

LEMMA 3.3: Let s € Z(k,G,H). Let V be a G-module, defined over k, and let
W C V be an H-submodule such that s, - W = ¢(W) for all 0 € Gal. Then there
is an H-stable splitting V = W & W', where 3, - W' = o(W') for all o €Gal.

PROOF: Since H is reductive, the restriction res : Homg(V, W) — Homgz(W, W)
is surjective. We can define k-structures on Homy(V, W) and Hompy(W, W) as
follows: if 8 is in either set, let 8 =s;' 00080071 0s,. It is straightforward
to check that this gives k-structures and that res is defined over k. Since these are

just k-vector spaces and res is linear, we may find a k-point § € Homg(V, W) such
that res(d) = Id € Homy (W, W);. Then let W' = ker(6). §

We continue with the proof of (3.2). Let s € Z(k, G, H) satisfy o(v) = s, - v for

all o €Gal.
Step 3. Suppose that V is a G-module. By (3.3), we may choose an H-stable
complement N C V to T,(G - v) such that s, - N = o(N) for all & €Gal. Applying
Luna’s lemme fondamental to the morphism (G* v+ N =V, [g,v+n] = g-(v+
n)), we obtain U C V. Following [Kn], welet S=(v+ N)NU.

We define a k-structure on NJH by letting ¢ €Gal send a closed orbit H - n to
the closed orbit H-s;!-o(n). We likewise define a k structure on G * (v + N) via
[9,v+n] 5 [0(g) 5, v+ 85 -a(n)]. Since U is defined over k, it follows that G * §
(resp. SJ H) is stable under this action of Gal on G *# (v + N) (resp. NJH). Thus
we obtain k-structures on G *' S and S/ H. The verification that all the requisite
maps in (3.2) are defined over k is straightforward.

7



Step 4. Let V be an arbitrary affine G-variety over k. The variety S is constructed
as follows: we embed V (equivariantly, over k) in a G-module V' (1.2). Choose
N C V' asin Step 3, and let S' =V N (v + N). Applying the lemme fondamental
to the morphism G *H §' — V, we obtain our U C V; let S = U N S’. We then
take the restrictions of the k-structures on G * N and NJH defined in Step 3 to
obtain k-structures on G *¥ S and S/ H.
Step 5. Suppose that V is smooth at v. We must still verify (3.2(3)). We do this,
perhaps for a smaller S than the one constructed above.

First, we construct the map ¢ from (3.1(7)). Recall the notation §' = VN(v+N)
from Step 4. Let m be the maximal ideal of v € O(S’). There is an exact sequence
of (locally finite) H-modules

(*) 0—m?> —m— (T,5)" —0.

For each o €Gal, we can define an automorphism a, of §' (or §) via a, = s;' 00.
We obtain an automorphism of O(S') which leaves m and m? fixed (since a,v = v
for all o). As in the proof of (3.3), one may find an H-stable splitting of (x) such
that that (7,,S)* C m is stable under each a,. The composite (T,5)* — m — O(S5’)
induces a morphism § — T,(S). If we then define k-structures on (7,S)/H and
G +H (T,S) via

H - X+5S H-a,(X) and  [g,X]) =2 [0(9)se, ao(X)]

respectively, then the maps in (3.2(3)) are defined over k.

Let B denote the points in S at which either S is not smooth or ¢ is not étale.
Then B is Zariski-closed, H-stable, and stable under each a,. Let f € O(S/H)x
vanish on B. If we replace S by {s € S : f(s) # 0}, then the new S satisfies all the

requirements of the theorem. This concludes the proof of (3.2).

COROLLARY 3.4: Under the hypotheses of (3.2), let F = 7y (mv,g(v)). Then

there is a G-equivariant retraction F' — G - v which is defined over k.

PROOF: Using the notation from (3.1), wehave F ~ g y(v) x FCSJH x U.
vlG

my,q(v)
By restricting the isomorphism SJ/H x U ~ G*f S, we see that F ~ G« F',
UG

where F' = TFE’IH (ms,1(v)). By (3.2), the (equivariant) retraction (G *7 §' —
G/H ~ G- v, [g,s'] — [g,v]) is defined over k. 1
REMARK 3.5: If G- v contains a k point, we may assume that v € V; and 3, = e
for all 0. We then have k-structures on H and S via the inclusions of H into G and
S into some G-module over k, and the k-structures on G # § and S}/ H described
in the last theorem, come in the obvious way from the k-structures on G, H, and
S.

If G- v contains no k-points, we can at least say the following: the map n
s;%-o(n) gives a k-structure on $¥. From it and the k-structureon G/H ~ G-v we
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obtain k-structureson G *¥ (v + §) >~ G/H x §H and (STH) ) ~ SH and these
k-structures coincide with the ones coming from the inclusions G * (v + §H) —
G+ (v+ S) and (S/H) ) — SIH.

Suppose that v € V; lies on a Zariski-closed orbit, and has isotropy H. We
assume that S (as in (3.2)) lies in some G-module defined over k. We see that
the set of k-points of G+ § is a disjoint union of the subsets [Grgi, S*], where
{gi} is & set of representatives of Gx\G"(H)/H and where S = {n € S : o(n) =
o(g;)gi-n} = g7 - (gi - S)x. The set [Gigi, S'] is isomorphic to Gy *!* (g; - §)x
(where H' = g;Hg; '), and represents the k-points of G * N which retract to the
G-orbit Gi - g; - v under the map G «¥ N — G/H. 1

84, H'-strata in Z.

In this section, we use a partial order on the set of homogeneous spaces with
compatible k-structures (due to Springer [Sp]) to stratify Z = (V) G),.

Let ‘H' (resp. 'Hi) denote the disjoint union of the sets H!(k,G,(H)) (resp.
H'(k,G,(H)),) over all conjugacy classes of reductive subgroups of G. We define
a partial order on H! as follows: if s is an element of Z(k,G,H) and ¢ is an
element of Z(k,G, K), we declare that [s] < [t] if there exists a G-equivariant map
(G/H,s) = (G/K,t) which is defined over k.

LEMMA 4.1: For H,K,s,t as above, if [s] < [t], then there exists K' € (K) such
that

(1) HC K’

(2) s:Gal — G is an element of Z(k,G,K')

(3) s € Z(k,G,K') and t € Z(k,G, K) give the same element of H!(k, G, (K)).

PROOF: Since the map ¢ : G/H — G/K is G-equivariant, it must be of the form
gH v g goK, where H C goKgg . If we follow ¢ by the G-isomorphism

G/IK 5 G/goKgy?
dK +— gg5'-g0Kg;!

(and give G/g0 K gy ! the unique k-structure such that 8 is defined over k), we obtain
the G-equivariant map

G/H — G/gKgg

gH +— g-gKg;'

defined over k. If we let K' = goKggy 1 then the claims of the lemma are easily
verified. |

We remark that if [s] € H}, {t] € H, and [s] < [t], then [t] € H}.

Now let V be a G-variety defined over k, and let =, V/G,Z and X be as in
§1. We define ¥ : Z — H!, to be the function which gives, for each z € Z, the
compatible k-structure on the unique Zariski-closed orbit in 7#=1(2). If [s] € H!, let
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Zi) = $7Y([s]) If [s] € MG, we also write X{,} for Z,) (this is justified by (1.1(4))).
Thus

Ziy = (VIG)mNnZ = U Z1s)
[s)eH (k,G,(H))
X(H) = (V//G)(H) NX = U X[,].

[s]eN (K, G,(H)),
For s € Z(k,G,H), let

VE={veV:h-v=vforall h€ H}

V) = {y € V¥ . v has isotropy H}

VE = {ve V¥ :0(v) =3, -vforall o € Gal}
VH 2y v

The following proposition contains well-known consequences of (3.1):

PROPOSITION 4.2: (see {Schl, pg. 56]) Let V be a G-variety, and let (H) be an
isotropy class of V.
(1) V{H) ig Zariski-open in V¥,
(2) All orbits intersecting V{H) are Zariski-closed.
(3) = (VI:H)) = (V//G)(H)' _ o .
G-module. J

We obtain the following analogues over k:
PROPOSITION 4.3: Let V be a G-variety, defined over k, and let (H) be an isotropy
class of V. Let s € Z(k,G, H).
(1) v+5 s71 - o(v) gives a k-structure on VH with k-points V1.
(2) Kis (V,(H)) = Z[,].
3) 7 (V") = U1 Z1o1-
(4) If V is a G-module, then Zj,) # §. Furthermore, for any field topology on k,
Cl(Z1s)) D Upey>(s) Z1o)» 8nd if (H) is the principal isotropy class of V, then
X(n)y is dense in X.
PROOF: (1) and (2) are trivial. We prove (3). By (4.1), if [¢'] > [s], we may
assume that s € Z(k,G,H), s' € Z(k,G,H') where H C H' and s’ = s as maps
from Gal to G. The inclusion (D) follows from (2). Conversely, if v' € V;F, let v

denote the image of v' under the retraction described in (3.4). (Here G - v is the
Zariski-closed orbit in the Zariski-closure of G - v'.) Then v € VH, and the map
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((G/H,s) - G-v,gH +— g-v) is G-equivariant and defined over k. If G- v is of type
[s], this shows that [s] > [s]. Since 7(v') = 7(v) € Z|,/), we obtain the inclusion
(C). This proves (3).

To prove (4), we need the following easy fact: Given any (nondiscrete) topology on
an (infinite) field k, the complement of the zero set of a finite number of polynomials
on k™, is dense in k™. To prove the first part of (4), we note that V,F ~ k" for
some n; also, V) C V¥ is stable under the action of Gal in (4.3(1)) (under
o € Gal, VH) is mapped to V{#7"o(H)s¢) — y(H)) Hence by (4.2(1)), V™ is the
complement in k™ of the zero set of a finite number of polynomials with coefficients
in k. In particular, it is not empty; hence Zj,) = W(V,(H)) is nonempty. If k has a
field topology, then by the above fact,

U Z) = 7(VH) = =(CUVM)) C CLx(VID)) = CL(Z).
[s']>]4]

To prove the last part, we consider V; N 7~! ((V// G)\(VIG) H)) and again apply
the above remark. |

§5. Normal types.

If V is a smooth G-variety, then as is well known, V /G may be given a strati-
fication finer than the one by isotropy type. To a point z € VG, one associates
(the isomorphism class of ) the normal bundle to the Zariski-closed orbit in = ~1(2).
If V is a G-module, then the two stratifications of VG coincide. In this section,
for smooth G-varieties defined over k, we discuss the stratification of Z by “normal
type with k-structure.” _

For us, an associated bundle will mean a G-variety of the form G * N, where H
is a reductive subgroup of G and N is an H-module. (It is the G-fibration associated
to N, coming from the principal H-fibration G — G/H.) If G is defined over &,
then a compatible k-structure on G x¥ N is a k-structure on (the affine variety)
G *H N such that the action of G on G ¥ N, the projection of G + N onto the
zero-section {[g,0] : ¢ € G} ~ G/H, and addition and scalar multiplication on
sections, are all defined over k. A morphism G 1t N} — G *M2 N, is a morphism
of associated bundles if it is a G-equivariant morphism of varieties; if it commutes
with projection onto the zero-fibers; and if it is linear on fibers. Two compatible k-
structures on G * N are equivalent if they differ by an automorphism of G+ N.
Let M denote the set of (equivalence classes of) compatible k-structures on G-
associated bundles.

REMARK 5.1: Let G' = NgH x GL(N) and H' = {(h,h) € G' : h € H}. Then
Aut(G+" N) = NgH'/H'. In particular, Aut (G * N) is reductive.

We arrive at the same situation as (2.1). From any compatible k-structure on
G * N, we can obtain a k-structure on Aut (G x¥ N), and then by [Sel, Prop. 5,
pg. 11I-6]:
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PROPOSITION 5.2: H!(k,Aut (G ¥ N)) parametrizes the equivalence classes of
compatible k-structures on G *# N. j

Specifically, given a compatible k-structure on G *7 N, ¢ € Gal acts by the rule

l9,7] > [0(9)30, m0o,n],

where (o — 3,)€ Z(k,G, H), and where {m, } satisfies

(1) mg,n € N.

(2) moany4ny, = 0(A)Mon, + Moy, forallde % and ny,ng € N.

(3) Moy moyn — h- Mgy02,n if Joyo0 = Ul(ga—,) "oy - h.
REMARK 5.3: We have already encountered compatible k-structures on associated
bundles G *¥ N in Step 3 of the proof of (3.2). We.show that all k-structures arise
in this way. Let G+ N C V be a G-equivariant embedding of G * N in a G-
module, defined over k (1.2). (Note that N — G »f N C V.) Using the notation
from the last paragraph, we see that o(n) = ole,n] = [s5,Mo.n] = 35 - M, for all
n € N (in particular, o(N) = 3, - N). Hence m,n = s;' - 6(n), and finally,

o(lg,n]) = [0(9)35,m0,n] = [0(g)se, 57" - o(n)]  asin (3.2). W

Suppose that V is a smooth G-variety, defined over k. We have a function A :
Z - M which assigns to each z € Z, the isomorphism class of the normal bundle
(with k-structure) to the Zariski-closed orbit in #~1(z). We obtain a stratification
Z =Urer 2
PROPOSITION 5.4: Let V be a smooth G-variety, defined over k. The stratification
of Z by M is a refinement of the stratification by H'. If V is a G-module, then the
two stratifications coincide.

ProOF: The first part is trivial: if two Zariski-closed, Gal-stable orbits in V' have
k-isomorphic normal bundles, then the zero-sections are k-isomorphic.

We prove the second part. Suppose we have z;,z9 € Z which lie in the same
HY-stratum. We must show that they have the same normal type. Suppose we
have v;,v9 € V, lying on Zariski-closed orbits and having isotropy H, such that
m(v;) = z; and o(v;) = 3, - v; for some s € H!(k,G,H). Let T; C V denote the
tangent space to G - v;; we know that o(T;) = s, - T; for all ¢ € Gal. By (3.3),
we may pick H-stable complements N; to T;, with o(N;) = s, - N; for all 0. Asin
the proof of (3.3), we may define a k-structure on Homg( Ny, N2), and then clearly
there is a k-point in Hompyg (N, N;) which is a nonsingular linear transformation.
In this way we obtain a map 6 : N; — N; which is H-equivariant and commutes
with each s;1 0 0. Finally, the map (G« N; = G *H Ny, [g,n] = [g,6(n)]) is an
isomorphism which is defined over k. |§

§6. Complete flelds.
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In this section we consider, for the more part, only fields of characteristic zero
which are complete under a (nontrivial) real absolute value. We use elementary facts
about analytic manifolds and analytic groups over such fields (see [Se2]). We do
not distinguish between equivalent absolute values on a field. We need the following
facts:

PROPOSITION 6.1 (see [Cas]): Let k be complete under a nontrivial absolute value.
If the absolute value is archimedean, then k = R or C (with the standard absolute
value). If the absolute value is nonarchimedean, then the following are equivalent:

(1) k is locally compact.

(2) {a € k:|a| <1} is compact.

(3) The value group of | | on k* is discrete, and the residue class field is finite.
(4) k is a finite extension of Q, (p a prime). §

An example of a complete but not locally compact field is k((T")), the field of
formal Laurent series over an (infinite) field k, where | Yoo a;T*| = 1/2" if a,, # 0.

We also consider “fields of type (F)” (we still only consider characteristic zero).
These are defined by the following equivalent statements [Sel]:

(1) k has only finitely many extensions of a given degree.
(2) H'(k,G) is finite for all finite groups G.
(3) H*(k,G) is finite for all (affine) algebraic groups G.
Examples include R, p-adic fields, and K((T)), where K is algebraically closed.
Type (F)-fields have the following properties:
(1) Any affine algebraic group G has only finitely many inequivalent k-forms.
(2) If G is an algebraic group defined over k, then the set of k-points of any
homogeneous space defined over k, consists of finitely many G-orbits.

We begin by recalling a theorem of Kempf which is valid for all perfect fields &:

THEOREM 6.2 [Ke]. Let V be a G-module, defined over k. Suppose that the G-
orbit of v € Vi is not Zariski-closed. Then there is a homomorphism X\ : - G,
defined over k, such that lim,_.o A(t) - v exists and lies on a Zariski-closed orbit. 1

From now on, we assume that k is complete under a real absolute value.

PROPOSITION 6.3: If v € V}, then G - v is Zariski-closed if and only if Gy - v is
closed (in the k-topology). Each Gg-orbit in (G - v)i is open and closed in (G - v).
PROOF: If G} - v is closed, then G - v is Zariski-closed by (6.2). (For this, k need
not be complete.)

Conversely, if G-v is Zariski-closed, then (G v) is closed. Consequently (G-v)x =
U;er Gk - vi, a union of Gy-orbits. Since the map (Gx — (G - v)x,g — ¢ - v;) has
everywhere surjective differential, it follows that each G - v; is open in (G - v);.
Hence each Gy - v; is closed in (G - v); and therefore closed in V;. B

PROPOSITION 6.4: If v € Vi, then Cl1(Gi - v) contains a unique closed Gg-orbit.
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PROOF: The existence follows from (6.2) and (6.3). By (3.4), (3.5), and (6.3), we
see that 7~ !(w(v)) N Vi is a union of open subsets, each containing exactly one
closed Gg-orbit; hence the uniqueness. |

Let Vi /G denote the set of closed Gi-orbits in Vi. By (6.4), there is a map
p : Vi = Vi/Gi which is constant on Gi-orbits. We give Vi /G the quotient
topology. A set F C V; is Gy-saturated if p~1(p(F)) = F, or equivalently, if F
contains v whenever F contains a point in the unique closed G-orbit in the closure
of Gy - v.
COROLLARY 6.5: We obtain a (continuous) map P : V; /G — X, which identifies
closed G-orbits which lie on the same Zariski-closed G-orbit. |

REMARK 6.6: For any U C X, #~}(U) N Vi is Gy-saturated. |

THEOREM 6.7. Let V be a G-variety, defined over k, and let (H) be an isotropy
class of V such that Z(gy # 0. Let ¢ € H! (and A € M, if V is smooth) be such

that the corresponding strata are nonempty subsets of Z .

(1) Given v asin (3.2), there are neighborhoods U of wg u(v) in (SJH), and U’
of ry,g(v) in (V)/G), = Z (in the k-topology), which are analytically isomor-
phic. Furthermore, the map G *!' § — V yields a G-equivariant bijection
”E:HS,G(U) o~ w;'IG(U’) commuting with the action of Gal. The map re-
stricts to a Gx-equivariant analytic isomorphism 73} 4 scUIN(G *H §)y ~
r;,IG(U') N Vi, and these sets are Gg-saturated.

(2) ¥ is locally constant on Zyy, and if V is smooth, then A is also locally
constant on Zy).

(8) C1(Zy) CUy>y Zy, with equality if V is a G-module.

(4) If V is smooth, then Z(yy, Zy, and Z) are analytic manifolds, of dimension
equal to the dimension of (V/G)y as a variety over k.

(5) X is closed in Z.

PRrOOF: The first part of (1) is true since the map (SJH), — (V/G), is étale
at 75 g(v). Note that by (3.1) and (3.2), the morphism G *¥ § — V restricts
to a G-equivariant bijection G * (TI'E,IH(U )) — 7, g(U') which commutes with
the action of Gal. With (6.6), this proves the rest of (1). Since there is a G-
equivariant retraction of G * S to the zero-section, the same is true for nQ’IG(U') ~

G *H (ﬂE},(U)) C G " S. 1t follows that ¥ must be constant on U’ N Z (), hence

locally constant on Z(y). By (5.4), A must be locally constant on Zyy. Also,
we have shown that every point in Z has a neighborhood on which ¥ can only
increase; this proves the first part of (3). The second part follows from (4.3(4)).
Next, we prove (4). We have seen that Uy N (V/G)yy =~ Ux N (S)H) 4y, and
near ms x(v), the latter is analytically isomorphic to a neighborhood of 71, 5,1#(0)
in the k-points of (T, S/ H) . However, (T,S/H)py (T,S) ~ E" for some
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n. Hence Uy N(V/]G) 4y is analytically isomorphic near wv,g(v) to k", and (4)
follows. Finally, (5) follows from (1): if z € C1(X), then the neighborhood of U’ of
z described in (1) intersects X. Using (1), there is a retraction defined over k, to
the closed orbit in 77(z), of a set in V containing k points. Hence 7~*(2) contains
k-points, and z € X. 1

THEOREM 6.8. Let v € Vi lie on a closed orbit, and let H and S be as in (3.2).
Then there is an open, Gy-saturated neighborhood of v € V} which is isomorphic
to an open, G-saturated neighborhood of [e,v] in Gi *"* Si. If V is smooth, then
the same is true if S is replaced by (T,S)x.

PRrOOF: By (6.7(1)), v has an open, G-saturated neighborhood which is isomorphic
to an open, Gg-saturated set A C (G *¥ S);. By (8.5), (G ™ S)i is a union of
subspaces [Gigi, S'] which retract to the different G-orbits in (G - v)i; by (6.3),
these spaces are open in (G ** S);, hence they must be Gj;-saturated. The one
containing [e, v] is isomorphic to G */* §;. We take A N Gy *H* S} as the desired
neighborhood of [e,v] in G ** Si. Similar arguments and (3.2(3)) complete the
proof for (T, S). 1

REMARK 6.9: We have shown that if v € V; is on a closed orbit, then (G-v)x has a
G-saturated neighborhood, equal to the union of open, Gi-saturated sets U;, with
each U; containing exactly one Gi-orbit in (G - v)y, and having the form described
in (6.8). 1

CoOROLLARY 6.10: Vi /Gy is Hausdorft.

PROOF: Let z; # z5 € Vi J/Gy; we need disjoint open sets containing these points.
If P(z1) # P(2;), the result is clear. If P(z;) = P(z;), the result follows from
(6.9). 8

We give a stratification of Vi /Gy, using ideas from §2. If H' € C(H) for some
H, let [H'] denote its Gg-conjugacy class. Let C = |J,[H]; that is, C consists of
the disjoint union of all Gi-conjugacy classes of reductive subgroups of G which are
defined over k. We define a partial order on C by declaring that [H] < [H'] if there
exists H" € [H'] such that H C H". Clearly we may use C to stratify Vi /Gyg; we
denote a typical stratum by (Vi /Gr)(p)-

REMARK 6.11: This stratification is a refinement of the stratification of X by H},
pulled back to Vi /Gy via the map P. We give an example to show that it may
indeed be finer. Let G = SL(2,C), Gg = SL(2,R), and let H be the normalizer of
the set of diagonal elements of G. Computation shows that H!(R, G) and H'(R, H)
have one and two elements, respectively. By (2.6), C(H) has two conjugacy classes,
even though H'(R, G, H) has only one element (this is clear from (2.2) since H is

self-normalizing). Specifically, if g1 = ([1) (1]) and g = (t}lﬁ ;4@), then ¢ H and

g2 H are real points of (G/H, 1) with G-isotropy groups which are not Gg-conjugate
(and therefore g1 H and g H lie on different Gr-orbits). i
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LEMMA 6.12: Let V be a G-variety, defined over k.
Q) p(VS7) = Uiarnaim (el Gy
(2) p(Vi™) = (Vi) Gi )y
(3) Ci ((Vk//Gk)[u]) C Umrsim Vel G-

PROOF: Part (1) is proved easily using (3.4). Part (2) is immediate, and (3) follows
from (6.8). N

THEOREM 6.13. Let V be a G-module, defined over k. Let (H) be an isotropy class
of V and suppose that we may choose H to be defined over k. Then (Vk//Gk)[H] #0,

and Cl (Vk//Gk)[H] = U[H’]Z[H] (Vk//Gk)[H']'

PROOF: We need only show the reverse inclusion in (6.12(3)), and this follows from
(6.12) as in the proof of (4.3(4)). 1

PROPOSITION 6.14: Let k be a complete field of type (F'). Let V be a G-module,
defined over k, where G acts effectively on V. If {2;} C X converges to 2, then
for some subsequence of {z;}, there are points v; € Vi on closed orbits such that
m(v;) = z; and {v;} converges. Furthermore, each v; has the same isotropy group,
and if v = lim v;, then v lies on a closed orbit.

PROOF: Use induction on dimV. Since k is of type (F), the H!-stratification of
Z is finite, and we may assume that all z; lie in a single stratum. Hence there is
a (Gal-stable) subgroup H C G such that {z;} C W(Vk(H>). If H = G then the
proposition is trivial. We suppose that H # G, so that V¥ # V. We consider
the map o : VEJNgH — V/G, and see that for each z;, we may pick a point
Z € (VH//NGH)k such that «(z}) = z;.

By a theorem of Luna [Lu3, §2], « is finite. We claim that by refining the
sequence, we may assume that {z!} converges to some 2’ € a™(z). More generally,
let @ : X — Y be a finite map of affine varieties over k, and suppose that {y;} C Yx
converges to yo. Further suppose that there exists {z;} C X with a(z;) =y;. fg €
O(X ), then there exists a polynomial f(T') = 337_, a;(y)T’ (where a; € O(Y)y
and a, = 1) such that f(g) = 0 in O(X). We may write f(T) = f1(T) — fo(T),
where f1(T) = ¥0_, a;(40)T7, f2(T) = 352, b;(y)T7 and b;(y) = aj(yo) — a;(y)-
In some finite extension of k, we may factor f(T") as H;=1(T—tj). Since f(g(z)) =0
for all z € X, we conclude that for all ¢,

(%) H(g(-’cf) —tj) = Z_: bi(yi)g’ (2:).

From (x), it is clear that {g(z:)} is bounded. But then the right side of (*) ap-
proaches 0 as ¢ — oo, and hence some infinite subsequence of {g(z;)} approaches
one of the t;’s. We may then repeat this procedure to obtain a subsequence (still
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denoted {z;}) such that {g(z;)} converges for all ¢ is a finite set of generators of
O(X)k. It follows that {z;} converges.

By induction, we obtain points v; € Vk(H) and v € VkH on closed NgH-orbits,
such that my» n,py(vi) = z{, and hence 7y g(v;) = 2;. By [Lu3, §3], since NgH - v;
and NgH - v are Zariski-closed, so are G- v; and G - v. |

THEOREM 6.15. Let V be a G-variety defined over k, where k is complete and of
type (F). If S C Vy is closed and Gy-stable, then 7(S) C X is closed.

PRrROOF: By embedding, we may assume that V is a G-module, and the result then
follows from (6.14). §

THEOREM 6.16. Under the same hypotheses as in (6.15), it follows that p(S) is
closed in Vi | G.

PROOF: Let {z;} — z in Vi Gk, with 2; € p(S). We must show that z € p(S). By
continuity, {P(z;)} — P(z). Let U C Vi /G be an open set containing all points
of P~(P(z)) except for z, and avoiding a neighborhood of z (this is possible by
(6.9)). Let $' = S\ p~!(U); it is closed and Gj-stable. By (6.15), 7(S') is closed
in X, hence P(z) € n(S'). By construction, z € p(S’') C p(S5). 1

THEOREM 6.17. With the same hypotheses on k, let v € Vi lie on a closed orbit.
Suppose that U C Vi is open, Gi-stable, and contains v. Then there exists v €
U' C U such that U’ is open and Gi-saturated.

PROOF: Let S = Vi \U. It is closed and Gi-stable. By (6.16), p(S) is closed, hence
7 1(p(S)) NV} is closed; also it is G-saturated and does not contain v. Let U’ be
its complement in Vi.

REMARK 6.18: (6.3), (6.4), (6.7(1)), and (6.8) were proved by Luna in [Lu2] for
k = R, and our proofs are essentially the same. In the same paper one will find a
rather delicate proof of (6.15). Completely different proofs of several results of this
section, including (6.15), using a result of Kempf and Ness, can be found in papers

of Schwarz [Sch2] (for k = C) and Richardson & Slodowy [RS] (for k£ = R). I
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