Stratifying k-points Algebraic Quotients

Ralph J. Bremigan

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

.

Stratifying k-points of Algebraic Quotients

RALPH J. BREMIGAN

Max-Planck-Institut für Mathematik, Bonn

§0. Introduction.

Let k be a field of characteristic zero. Let G be a reductive algebraic group and V an affine G-variety (both with points in \overline{k} , an algebraic closure of k). As usual, we define the algebraic quotient $V/\!\!/G$ to be the affine variety whose coordinate ring is $\mathcal{O}(V)^G$, the algebra of G-invariant regular functions on V.

In this paper, we introduce and explore basic properties of a stratification of $(V/\!\!/G)_k$, in the case that V, G, and the action of G on V are defined over k. The stratification comes from the k-structure on the Zariski-closed orbits of the action, and coincides with the usual isotropy-type stratification when k is algebraically closed. Behavior very much like the case k = C occurs when k = R or a p-adic field, and in these circumstances we also consider the space $V_k/\!\!/G_k$ of closed G_k -orbits in V_k , the map $V_k/\!\!/G_k \to (V/\!\!/G)_k$, and an interesting stratification of $V_k/\!\!/G_k$. The language of relative Galois cohomology, introduced by Springer [Sp], is essential for our purposes and is reviewed here (§2). The main technical tool we develop is a version of Luna's étale slice theorem for non-algebraically closed fields (§3); this allows us to give a k-stucture to the normal bundle of any Zariski-closed orbit in V which is defined over k. This was implicit in Luna's paper [Lu2], and some of his results in the case k = R required only minor modifications to become valid in more general situations.

Notation and Conventions: Unless otherwise indicated, G denotes a reductive algebraic group defined over k (with points in \overline{k}). All G-varieties are understood to be affine. The quotient map $V \to V/\!\!/G$ is denoted by $\pi_{V,G}$ or simply π . The notation $T_v S$ means the tangent space at v to S. The words "closure," "closed," "open," "neighborhood," etc. refer to the topology on the k-points of an affine variety, which comes from a topology on the field k. All field topologies are assumed to be nontrivial and nondiscrete. We use the notation $G *^H N$ to denote twisted products (see [SI]); points in a twisted product are writen as [g, n]. If H is a subgroup of G, then (H) denotes the set of G-conjugates of H. We write $V/\!\!/G = \bigcup_H (V/\!\!/G)_{(H)}$ for the isotropy-type stratification of $V/\!\!/G$. Finally, we use Gal as a shorthand for the Galois group $\operatorname{Gal}(\overline{k}/k)$.

§1. Algebraic quotients over k.

Let V be an affine G-variety over k, with k-structure $\mathcal{O}(V) = \overline{k} \bigotimes_{k} \mathcal{O}(V)_{k}$. It follows that $\mathcal{O}(V)^{G} = \overline{k} \bigotimes_{k} \mathcal{O}(V)^{G}_{k}$, since $\mathcal{O}(V)^{G} \subset \mathcal{O}(V)$ is stable under the action

of Gal. Hence $V/\!\!/G$ and $\pi: V \to V/\!\!/G$ are defined over k. We set $Z = (V/\!\!/G)_k$ and $X = \pi(V_k)$.

The following proposition describes $V/\!\!/G$, Z, and X as spaces of certain Zariskiclosed orbits:

PROPOSITION 1.1:

- (1) π is surjective.
- (2) Each fiber of π is a union of G-orbits and contains a unique Zariski-closed orbit, which is of minimum dimension among orbits in the fiber.
- (3) If $y \in V/\!\!/G$, then the following are equivalent:
 - (a) $y \in Z$.
 - (b) $\pi^{-1}(y)$ is defined over k.
 - (c) The Zariski-closed orbit in $\pi^{-1}(y)$ is defined over k.
- (4) If $y \in V/\!\!/G$, then the following are equivalent:
 - (a) $y \in X$.
 - (b) The Zariski-closed orbit $G \cdot v \subset \pi^{-1}(y)$ contains a k-point of V.

PROOF: (1) and (2) can be found in [Kr]. In (3), (a) \Leftrightarrow (b) \Leftarrow (c) is trivial since the action of Gal on V maps fibers to fibers. The implication $(b) \Rightarrow (c)$ follows from (2). In (4), $(b) \Rightarrow (a)$ is trivial. To prove $(a) \Rightarrow (b)$: there is a G-equivariant retraction $\pi^{-1}(y) \to G \cdot v$ which is defined over k (3.4), which must carry k-points to k-points.

LEMMA 1.2: If Y is an affine G-variety over k, then there is a G-equivariant, Zariskiclosed embedding over k of Y into a G-module V which is defined over k.

PROOF: Suppose that $\mathcal{O}(Y)$ is generated by $\{f_1, \ldots, f_n\}$. Then f_1, \ldots, f_n lie in a finite-dimensional G-module W', and $W = \operatorname{span}_{\sigma \in \operatorname{Gal}}\{\sigma(W')\}$ is again finitedimensional (any $f \in W'$ has a finite Gal-orbit, and W is the span of the Gal-orbits of a basis of W'). Finally, from the surjection of algebras $S'(W) \twoheadrightarrow \mathcal{O}(Y)$, we obtain an embedding of Y into the G-module $V = W^*$.

$\S2$. Compatible k-structures on homogeneous spaces.

In this section, G is an affine algebraic group, not necessarily reductive. For background on homogeneous spaces and k-structures on varieties, see [Bo].

We begin by recalling a fact about coset spaces. If H is a (Zariski-closed) subgroup of G, both defined over a field K (not necessarily algebraically closed), then G/Hhas the structure of a quasiprojective variety over K (with the action of $\text{Gal}(\overline{K}/K)$ given by $gH \xrightarrow{\sigma} \sigma(g)H$). The variety structure on G/H comes via an embedding into $\mathbf{P}(V)$, where V is a representation of G defined over K. If G and H are reductive, then G/H is affine.

We review relative Galois cohomology, which was introduced by Springer [Sp]. We return to our field k and group G defined over k, but only assume that H is defined over \overline{k} ; we consider the k-structures on G/H such the left action of G on G/H is defined over k. Thus we call an action $(\sigma, gH) \mapsto \sigma(gH)$ of Gal on G/H a compatible k-structure on G/H if it comes from a k-structure on G/H, and if

(*)
$$\sigma(g_1g_2H) = \sigma(g_1) \cdot \sigma(g_2H)$$

for all $g_1, g_2 \in G$ and $\sigma \in Gal$. We describe these structures, using the language of Galois cohomology:

By (*), we need only know $\sigma(eH)$ for each $\sigma \in \text{Gal.}$ Suppose that $\sigma(eH) = s_{\sigma}H$, where $s_{\sigma} \in G$. The map (Gal $\rightarrow G, \sigma \mapsto s_{\sigma}$) has the following properties:

- (1) $s_{\sigma_1\sigma_2}H = \sigma_1(s_{\sigma_2}) \cdot s_{\sigma_1}H$ for all $\sigma_1, \sigma_2 \in \text{Gal}$.
- (2) $s_{\sigma}Hs_{\sigma}^{-1} = \sigma(H)$ for all $\sigma \in \text{Gal.}$
- (3) $\{\sigma \in \text{Gal} : s_{\sigma} \in H\} \supset \text{Gal}(\overline{k}/k')$ for some finite Galois extension $k' \supset k$.

(1) follows since $(\sigma_1 \sigma_2)(eH) = \sigma_1(\sigma_2(eH))$, and (2) is true since $\sigma(eH) = \sigma(hH)$ for all $h \in H$. Finally, $eH \in (G/H)_{k'}$ for some finite Galois $k' \supset k$, hence $eH = \sigma(eH) = s_{\sigma}H$ for all $\sigma \in \operatorname{Gal}(\overline{k}/k')$.

Conversely, suppose that $\sigma \mapsto s_{\sigma}$ is a map having these properties. By (1) and (2), it gives a well-defined action of $\operatorname{Gal}(\overline{k}/k)$ on G/H which satisfies (*). We show that the action comes from a k-structure. Let $g_0H \in G/H$, and let K be a finite Galois extension of k' such that H is defined over K and $g_0 \in G_K$. Then G/H is defined over K and the action of $\operatorname{Gal}(\overline{k}/K)$ is the same as the one coming from the inclusion $\operatorname{Gal}(\overline{k}/K) \hookrightarrow \operatorname{Gal}(\overline{k}/k)$. We may find an affine open neighborhood of g_0H in G/Hof the form $U = \operatorname{Spec} A$, where U is defined over K. Hence $A = \overline{k} \bigotimes_K A_0$, where $A_0 = \{f \in A : f(\sigma(g)H) = \sigma(f(gH)) \text{ for all } \sigma \in \operatorname{Gal}(\overline{k}/K)\}$. Moreover it is clear that $A_0 = K \bigotimes_k A_1$, where $A_1 = \{f \in A_0 : f(\sigma(g)s_{\sigma}H) = \sigma(f(gH)) \text{ for all } \sigma \in \operatorname{Gal}\}$ since K/k is finite. Hence $A = \overline{k} \bigotimes_k A_1$ as was required.

Functions $s: \text{Gal} \to G$ with the above properties are called *cocycles* (relative to H). We let $\mathcal{Z}(k, G, H)$ denote the set of cocycles, and let (G/H, s) denote G/H with the compatible k-structure induced by s. If H is defined over k, then the cocycle which is the constant function $\sigma \mapsto e$ will be denoted 1.

We wish to identify two compatible k-structures on G/H if they are related by a G-equivariant automorphism of G/H. Such automorphism are of the form $gH \mapsto gnH$ for some $n \in N_GH$. We obtain a corresponding equivalence relation on $\mathcal{Z}(k, G, H)$ as follows: for any $n \in N_GH$ and $\{h_\sigma\}_{\sigma \in Gal} \subset H$, we declare

$$(\sigma \mapsto s_{\sigma}) \equiv (\sigma \mapsto \sigma(n) \cdot s_{\sigma} \cdot n^{-1} \cdot h_{\sigma}).$$

Let $\mathcal{H}^1(k, G, H)$ denote the set of equivalence classes of cocycles relative to H. We have proven

PROPOSITION 2.1: $\mathcal{H}^1(k, G, H)$ parametrizes the equivalence classes of compatible k-structures on G/H.

If $H = \{e\}$, we shall use the briefer notation $\mathcal{Z}(k, G)$ and $\mathcal{H}^1(k, G)$. In nonabelian Galois cohomology, the case $H = \{e\}$ has received the most attention. It is a special case of [Se1, Proposition 5, pg. III-6] that the sets $\mathcal{H}^1(k, G, H)$ may be viewed in the "absolute" framework:

Suppose that $\mathcal{H}^1(k, G, H)$ is nonempty. Fix $s \in \mathcal{Z}(k, G, H)$. We obtain a k-structure on the algebraic group $\mathcal{W} := N_G H/H$, by demanding that the action of \mathcal{W} on (G/H, s) be defined over k. Specifically, $\sigma \in \text{Gal sends } nH \in \mathcal{W}$ to $s_{\sigma}^{-1} \cdot \sigma(n) \cdot s_{\sigma} H$. Then

PROPOSITION 2.2: The map $\begin{pmatrix} \mathcal{Z}(k,G,H) \longrightarrow \mathcal{Z}(k,\mathcal{W}) \\ (\sigma \mapsto t_{\sigma}) \longmapsto (\sigma \mapsto s_{\sigma}^{-1} \cdot t_{\sigma}H) \end{pmatrix}$ induces an isomorphism $\mathcal{H}^{1}(k,G,H) \simeq \mathcal{H}^{1}(k,\mathcal{W})$.

Of course if H is defined over k, then we may take $s_{\sigma} = 1$. NOTATION 2.3: If $a \in G$, then there is an isomorphism

$$\mathcal{H}^1(k,G,H) \xrightarrow{\sim} \mathcal{H}^1(k,G,aHa^{-1})$$

induced by the map

$$(\sigma \mapsto s_{\sigma}) \longmapsto (\sigma \mapsto \sigma(a) \cdot s_{\sigma} \cdot a^{-1})$$

on cocycles. We use this to identify $\mathcal{H}^1(k, G, H)$ and $\mathcal{H}^1(k, G, H')$ if H and H'are conjugate in G, and we shall write $\mathcal{H}^1(k, G, (H))$ when we choose not to draw attention to a particular element in (H). If $s \in \mathcal{Z}(k, G, H)$, let [s] denote its image in $\mathcal{H}^1(k, G, (H))$. Let $\mathcal{Z}(k, G, H)_0 = \{s \in \mathcal{Z}(k, G, H) : (G/H, s) \text{ has a } k\text{-point}\}$, and let $\mathcal{H}^1(k, G, (H))_0$ be the image of $\mathcal{Z}(k, G, H)_0$ in $\mathcal{H}^1(k, G, (H))$.

Let $\mathcal{C}(H) = \{H' \in (H) : H' \text{ is defined over } k\}$. If $s \in \mathcal{Z}(k, G, H)$, let $\mathcal{C}(H, s) = \{H' \in \mathcal{C}(H) : H' \text{ is the isotropy group of a } k\text{-point of } (G/H, s)\}$. Let $G'(H) = \{g \in G : \sigma(g^{-1}) \cdot g \in N_G H \text{ for all } \sigma \in \text{Gal}\}$.

LEMMA 2.4: Suppose that H is defined over k.

- (1) The map $(G'(H) \to C(H), g \mapsto gHg^{-1})$ induces a bijection $G'(H)/N_GH \simeq C(H)$. Likewise the map $(G'(H) \to G/N_GH, g \mapsto gN)$ induces a bijection between $G'(H)/N_GH$ and the set of k-points of $(G/N_GH, 1)$.
- (2) If $g \in G'(H)$, then the map $(\text{Gal} \to G, \sigma \mapsto \sigma(g^{-1}) \cdot g)$ is an element of $\mathcal{Z}(k, G, H)$.
- (3) If $g \in G'(H)$ and $n \in N_G H$, then the cocycles $(\sigma \mapsto \sigma((gn)^{-1}) \cdot (gn))$ and $(\sigma \mapsto \sigma(g^{-1}) \cdot g)$ are equivalent in $\mathcal{H}^1(k, G, (H))$.
- (4) If $s, t \in \mathcal{Z}(k, G, H)$ are equivalent, then $\mathcal{C}(H, s) = \mathcal{C}(H, t)$.

PROOF: (1)-(3) are trivial. We prove (4). Suppose that $t_{\sigma} = \sigma(n) \cdot s_{\sigma} \cdot n^{-1} \cdot h_{\sigma}$, for some $n \in N$ and $h_{\sigma} \in H$. We compute easily that gH is a k-point of (G/H, t) if and only if gnH is a k-point of (G/H, s). However, gH and gnH have the same isotropy group.

THEOREM 2.5.

(1) The map
$$\begin{pmatrix} G'(H) & \longrightarrow & \mathcal{Z}(k,G,H) \\ g & \longmapsto & (\sigma \mapsto \sigma(g^{-1}) \cdot g) \end{pmatrix}$$
 induces a map $\Phi: \mathcal{C}(H) \simeq G'(H)/N_G H \longrightarrow \mathcal{H}^1(k,G,(H))$

with image $\mathcal{H}^1(k,G,(H))_0$.

- (2) If $s \in \mathcal{Z}(k, G, H)$, then $\Phi^{-1}([s]) = \mathcal{C}(H, s)$.
- (3) If $\{s^i\}_{i\in I} \subset \mathcal{Z}(k,G,H)$ and $\mathcal{H}^1(k,G,(H))_0$ is the disjoint union of $\{[s^i]\}_{i\in I}$, then $\mathcal{C}(H) = \bigsqcup_{i\in I} \mathcal{C}(H,s^i)$.

PROOF: By (2.4(2)) and (2.4(3)), we obtain a map $G'(H)/N_GH \to \mathcal{H}^1(k, G, (H))$. The image is contained in $\mathcal{H}^1(k, G, (H))_0$ since if $g \in G'(H)$, then then gH is a k-point of (G/H, s) (where $s_{\sigma} = \sigma(g^{-1}) \cdot g$). Conversely, if $s \in \mathcal{Z}(k, G, H)$ is such that $[s] \in \mathcal{H}^1(k, G, (H))_0$, and gH is a k-point of (G/H, s), then $s_{\sigma} \in \sigma(g^{-1}) \cdot g \cdot H$. This proves (1).

To prove (2): by virtue of (1) and (2.4(4)), we may assume that $s = \sigma(g^{-1}) \cdot g$ for some $g \in G'(H)$, and then (2) follows easily. Part (3) follows directly from (2).

Otherwise said:

- (1) If S is a G-homogeneous space, then every compatible k-structure on S, for which S has a k-point, arises as $S \simeq (G/H, 1)$, where H is defined over k.
- (2) If $H_1, H_2 \subset G$ are defined over k and are G-conjugate, then $(G/H_1, 1) \simeq (G/H_2, 1)$ if and only if H_2 is the isotropy group of a k-point of $(G/H_1, 1)$.

REMARK 2.6: Using (2.4(1)), we obtain bijections

 $G_k \setminus G'(H) / N_G H \simeq \{G_k \text{-conjugacy classes in } \mathcal{C}(H)\} \simeq \{G_k \text{-orbits in } (G/N_G H)_k\}.$

By [Se1], the map $(G'(H) \to \mathcal{H}^1(k, N_G H), g \mapsto (\sigma \mapsto \sigma(g^{-1}) \cdot g))$ induces a bijection

$$G_k \setminus G'(H) / N_G H \simeq \text{Kernel} \left(\mathcal{H}^1(k, N_G H) \to \mathcal{H}^1(k, G) \right).$$

Suppose now that H is defined over k. Let $G''(H) \subset G'(H)$ denote $\{g \in G : \sigma(g^{-1})g \in H \text{ for all } \sigma \in \text{Gal}\}.$

REMARK 2.7: The map $(G''(H) \to G/H, g \mapsto G_k \cdot g \cdot H)$ induces a bijection

$$G_k \setminus G''(H)/H \simeq \{G_k \text{-orbits in } (G/H, 1)_k\}$$

and as in (2.6), these sets are isomorphic to the kernel of $\mathcal{H}^1(k, H) \to \mathcal{H}^1(k, G)$. REMARK 2.8: We obtain a map $G_k \setminus G''(H)/H \to G_k \setminus G'(H)/N_G H$ with image $G_k \setminus \mathcal{C}(H, 1)$. We give an example to show that this map is not injective in general. Let $G = SL(2, \mathbb{C})$, $G_{\mathbb{R}} = SL(2, \mathbb{R})$, and $H = SO(2, \mathbb{C})$. It is easily seen that the **R**-points of (G/H, 1) consist of two $G_{\mathbb{R}}$ -orbits, containing $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} H$ and $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} H$ respectively, but the two points have the same G-isotropy.

§3. The étale slice theorem over k.

We recall Luna's slice theorem ([Lu],[Sch1],[Sl], [Kn]). In the statement, we only assume that G and V are defined over \overline{k} .

THEOREM 3.1. Let V be an affine G-variety. Suppose that $v \in V$ lies on a Zariskiclosed G-orbit and has isotropy group H. Then there exists $S \subset V$ such that

- (1) $v \in S$.
- (2) S is affine, locally closed in the Zariski topology, and stable under H.
- (3) The morphism $(G \times S \to V, (g, s) \mapsto g \cdot s)$ induces an étale morphism $G *^{H} S \twoheadrightarrow U \subset V$, where U is affine, Zariski-open, and G-saturated, and where $U/\!\!/G \hookrightarrow V/\!\!/G$ as a Zariski-open, affine subvariety.
- (4) The induced morphism $S/\!\!/ H \simeq (G *^H S)/\!\!/ G \rightarrow V/\!\!/ G$ is étale.
- (5) The map

is an isomorphism of G-varieties. In particular, if $y \in U$, then the isotropy of y is G-conjugate to a subgroup of H.

- (6) If V is a G-module and N is an H-stable complement of $T_v(G \cdot v)$ in V, then we may choose S to be an affine, Zariski-open neighborhood of v in $v + N \subset V$.
- (7) If V is smooth at v, we may assume that S is smooth, and that there is an H-equivariant map $\phi: S \to T_v(S)$ (with $\phi(v) = 0$) which is étale with affine image. Furthermore, $\phi/\!\!/ H : S/\!\!/ H \to (T_vS)/\!\!/ H$ is étale, and we may assume that

is an isomorphism of G-varieties.

We now return to the situation where G, V, and the action of G on V are defined over k (notation as in (3.1)).

THEOREM 3.2. Suppose that $G \cdot v$ is Zariski-closed and $\pi_{V,G}(v) \in Z$. Then we may choose S such that the following also hold:

- (1) U is defined over k.
- (2) There are k-structures on $G *^H S$ and $S/\!\!/H$ such that the maps

$$G *^{H} S \twoheadrightarrow U \hookrightarrow V$$
$$S /\!\!/ H \twoheadrightarrow U /\!\!/ G \hookrightarrow V /\!\!/ G$$
$$G *^{H} S \twoheadrightarrow S /\!\!/ H,$$

the projection $G *^H S \twoheadrightarrow G/H \simeq G \cdot v$, and the action of G on $G *^H S$ are all defined over k.

(3) If furthermore V is smooth at v, then S may be chosen such that there are k-structures on $G *^{H}(T_{v}S)$ and $(T_{v}S)/\!\!/H$, for which the maps

$$S/\!\!/ H \longrightarrow (T_{v}S)/\!\!/ H$$
$$G *^{H} S \longrightarrow S/\!\!/ H \underset{(T_{v}S)/\!\!/ H}{\times} (G *^{H} (T_{v}S)),$$

the projection $G *^H (T_v S) \longrightarrow (T_v S) // H$, and the action of G on $G *^H (T_v S)$ are all defined over k.

PROOF: We indicate the points in the proof of (3.1) (we use the proof in [Kn]) where care must be taken when working over k.

Step 1. The main tool in the proof of (3.1) is Luna's "lemme fondamental", which describes the local behavior of a morphism $A \to B$ between *G*-varieties satisfying certain conditions. This lemma is applied to certain morphisms described below, and produces the variety U in the statement of (3.1). It is an easy consequence of the proof of the lemme fondamental [Kn] that under our hypotheses, we may choose U to be defined over k.

Step 2. We require the following lemma:

LEMMA 3.3: Let $s \in \mathcal{Z}(k, G, H)$. Let V be a G-module, defined over k, and let $W \subset V$ be an H-submodule such that $s_{\sigma} \cdot W = \sigma(W)$ for all $\sigma \in \text{Gal}$. Then there is an H-stable splitting $V = W \oplus W'$, where $s_{\sigma} \cdot W' = \sigma(W')$ for all $\sigma \in \text{Gal}$.

PROOF: Since *H* is reductive, the restriction res: $\operatorname{Hom}_H(V, W) \to \operatorname{Hom}_H(W, W)$ is surjective. We can define *k*-structures on $\operatorname{Hom}_H(V, W)$ and $\operatorname{Hom}_H(W, W)$ as follows: if β is in either set, let ${}^{\sigma}\beta = s_{\sigma}^{-1} \circ \sigma \circ \beta \circ \sigma^{-1} \circ s_{\sigma}$. It is straightforward to check that this gives *k*-structures and that res is defined over *k*. Since these are just \overline{k} -vector spaces and res is linear, we may find a *k*-point $\theta \in \operatorname{Hom}_H(V, W)$ such that $\operatorname{res}(\theta) = \operatorname{Id} \in \operatorname{Hom}_H(W, W)_k$. Then let $W' = \ker(\theta)$.

We continue with the proof of (3.2). Let $s \in \mathcal{Z}(k, G, H)$ satisfy $\sigma(v) = s_{\sigma} \cdot v$ for all $\sigma \in \text{Gal}$.

Step 3. Suppose that V is a G-module. By (3.3), we may choose an H-stable complement $N \subset V$ to $T_v(G \cdot v)$ such that $s_{\sigma} \cdot N = \sigma(N)$ for all $\sigma \in \text{Gal.}$ Applying Luna's lemme fondamental to the morphism $(G *^H v + N \to V, [g, v+n] \mapsto g \cdot (v+n))$, we obtain $U \subset V$. Following [Kn], we let $S = (v+N) \cap U$.

We define a k-structure on $N/\!\!/H$ by letting $\sigma \in \text{Gal}$ send a closed orbit $H \cdot n$ to the closed orbit $H \cdot s_{\sigma}^{-1} \cdot \sigma(n)$. We likewise define a k structure on $G *^{H}(v+N)$ via $[g, v+n] \xrightarrow{\sigma} [\sigma(g) s_{\sigma}, v+s_{\sigma}^{-1} \cdot \sigma(n)]$. Since U is defined over k, it follows that $G *^{H} S$ (resp. $S/\!\!/H$) is stable under this action of Gal on $G *^{H}(v+N)$ (resp. $N/\!\!/H$). Thus we obtain k-structures on $G *^{H} S$ and $S/\!\!/H$. The verification that all the requisite maps in (3.2) are defined over k is straightforward. Step 4. Let V be an arbitrary affine G-variety over k. The variety S is constructed as follows: we embed V (equivariantly, over k) in a G-module V' (1.2). Choose $N \subset V'$ as in Step 3, and let $S' = V \cap (v + N)$. Applying the lemme fondamental to the morphism $G *^H S' \to V$, we obtain our $U \subset V$; let $S = U \cap S'$. We then take the restrictions of the k-structures on $G *^H N$ and $N/\!\!/H$ defined in Step 3 to obtain k-structures on $G *^H S$ and $S/\!\!/H$.

Step 5. Suppose that V is smooth at v. We must still verify (3.2(3)). We do this, perhaps for a smaller S than the one constructed above.

First, we construct the map ϕ from (3.1(7)). Recall the notation $S' = V \cap (v+N)$ from Step 4. Let \mathfrak{m} be the maximal ideal of $v \in \mathcal{O}(S')$. There is an exact sequence of (locally finite) *H*-modules

(*)
$$0 \longrightarrow \mathfrak{m}^2 \longrightarrow \mathfrak{m} \longrightarrow (T_{\mathfrak{v}}S)^* \longrightarrow 0.$$

For each $\sigma \in \text{Gal}$, we can define an automorphism α_{σ} of S' (or S) via $\alpha_{\sigma} = s_{\sigma}^{-1} \circ \sigma$. We obtain an automorphism of $\mathcal{O}(S')$ which leaves \mathfrak{m} and \mathfrak{m}^2 fixed (since $\alpha_{\sigma}v = v$ for all σ). As in the proof of (3.3), one may find an H-stable splitting of (*) such that that $(T_v S)^* \subset \mathfrak{m}$ is stable under each α_{σ} . The composite $(T_v S)^* \hookrightarrow \mathfrak{m} \hookrightarrow \mathcal{O}(S')$ induces a morphism $S \to T_v(S)$. If we then define k-structures on $(T_v S)/\!\!/H$ and $G *^H (T_v S)$ via

$$H \cdot X \xrightarrow{\sigma} H \cdot \alpha_{\sigma}(X) \quad \text{and} \quad [g, X] \xrightarrow{\sigma} [\sigma(g)s_{\sigma}, \alpha_{\sigma}(X)]$$

respectively, then the maps in (3.2(3)) are defined over k.

Let B denote the points in S at which either S is not smooth or ϕ is not étale. Then B is Zariski-closed, H-stable, and stable under each α_{σ} . Let $f \in \mathcal{O}(S/\!\!/H)_k$ vanish on B. If we replace S by $\{s \in S : f(s) \neq 0\}$, then the new S satisfies all the requirements of the theorem. This concludes the proof of (3.2).

COROLLARY 3.4: Under the hypotheses of (3.2), let $F = \pi_{V,G}^{-1}(\pi_{V,G}(v))$. Then there is a *G*-equivariant retraction $F \to G \cdot v$ which is defined over k.

PROOF: Using the notation from (3.1), we have $F \simeq \pi_{S,H}(v) \underset{\pi_{V,G}(v)}{\times} F \subset S /\!\!/ H \underset{U /\!\!/ G}{\times} U$. By restricting the isomorphism $S /\!\!/ H \underset{U /\!\!/ G}{\times} U \simeq G *^H S$, we see that $F \simeq G *^H F'$, where $F' = \pi_{S,H}^{-1}(\pi_{S,H}(v))$. By (3.2), the (equivariant) retraction $(G *^H S' \to G/H \simeq G \cdot v, [g, s'] \mapsto [g, v])$ is defined over k.

REMARK 3.5: If $G \cdot v$ contains a k point, we may assume that $v \in V_k$ and $s_{\sigma} = e$ for all σ . We then have k-structures on H and S via the inclusions of H into G and S into some G-module over k, and the k-structures on $G *^H S$ and S//H described in the last theorem, come in the obvious way from the k-structures on G, H, and S.

If $G \cdot v$ contains no k-points, we can at least say the following: the map $n \stackrel{\sigma}{\mapsto} s_{\sigma}^{-1} \cdot \sigma(n)$ gives a k-structure on S^{H} . From it and the k-structure on $G/H \simeq G \cdot v$ we

obtain k-structures on $G *^H (v + S^H) \simeq G/H \times S^H$ and $(S/\!\!/H)_{(H)} \simeq S^H$, and these k-structures coincide with the ones coming from the inclusions $G *^H (v + S^H) \hookrightarrow G *^H (v + S)$ and $(S/\!\!/H)_{(H)} \hookrightarrow S/\!\!/H$.

Suppose that $v \in V_k$ lies on a Zariski-closed orbit, and has isotropy H. We assume that S (as in (3.2)) lies in some G-module defined over k. We see that the set of k-points of $G *^H S$ is a disjoint union of the subsets $[G_k g_i, S^i]$, where $\{g_i\}$ is a set of representatives of $G_k \setminus G''(H)/H$ and where $S^i = \{n \in S : \sigma(n) = \sigma(g_i^{-1})g_i \cdot n\} = g_i^{-1} \cdot (g_i \cdot S)_k$. The set $[G_k g_i, S^i]$ is isomorphic to $G_k *^{H_k} (g_i \cdot S)_k$ (where $H^i = g_i H g_i^{-1}$), and represents the k-points of $G *^H N$ which retract to the G_k -orbit $G_k \cdot g_i \cdot v$ under the map $G *^H N \to G/H$.

§4. \mathcal{H}^1 -strata in Z.

In this section, we use a partial order on the set of homogeneous spaces with compatible k-structures (due to Springer [Sp]) to stratify $Z = (V/\!\!/G)_k$.

Let \mathcal{H}^1 (resp. \mathcal{H}^1_0) denote the disjoint union of the sets $\mathcal{H}^1(k, G, (H))$ (resp. $\mathcal{H}^1(k, G, (H))_0$) over all conjugacy classes of reductive subgroups of G. We define a partial order on \mathcal{H}^1 as follows: if s is an element of $\mathcal{Z}(k, G, H)$ and t is an element of $\mathcal{Z}(k, G, K)$, we declare that $[s] \leq [t]$ if there exists a G-equivariant map $(G/H, s) \to (G/K, t)$ which is defined over k.

LEMMA 4.1: For H, K, s, t as above, if $[s] \leq [t]$, then there exists $K' \in (K)$ such that

- (1) $H \subset K'$
- (2) $s: \text{Gal} \to G$ is an element of $\mathcal{Z}(k, G, K')$
- (3) $s \in \mathcal{Z}(k, G, K')$ and $t \in \mathcal{Z}(k, G, K)$ give the same element of $\mathcal{H}^1(k, G, (K))$.

PROOF: Since the map $\phi: G/H \to G/K$ is G-equivariant, it must be of the form $gH \mapsto g \cdot g_0 K$, where $H \subset g_0 K g_0^{-1}$. If we follow ϕ by the G-isomorphism

$$\begin{array}{ccc} G/K & \stackrel{\theta}{\longrightarrow} & G/g_0Kg_0^{-1} \\ gK & \longmapsto & gg_0^{-1} \cdot g_0Kg_0^{-1} \end{array}$$

(and give $G/g_0Kg_0^{-1}$ the unique k-structure such that θ is defined over k), we obtain the G-equivariant map

$$\begin{array}{rccc} G/H & \longrightarrow & G/g_0 K g_0^{-1} \\ gH & \longmapsto & g \cdot g_0 K g_0^{-1} \end{array}$$

defined over k. If we let $K' = g_0 K g_0^{-1}$, then the claims of the lemma are easily verified.

We remark that if $[s] \in \mathcal{H}_0^1$, $[t] \in \mathcal{H}^1$, and $[s] \leq [t]$, then $[t] \in \mathcal{H}_0^1$.

Now let V be a G-variety defined over k, and let $\pi, V/\!\!/G, Z$ and X be as in §1. We define $\Psi: Z \to \mathcal{H}^1$, to be the function which gives, for each $z \in Z$, the compatible k-structure on the unique Zariski-closed orbit in $\pi^{-1}(z)$. If $[s] \in \mathcal{H}^1$, let

 $Z_{[s]} = \Psi^{-1}([s])$ If $[s] \in \mathcal{H}_0^1$, we also write $X_{[s]}$ for $Z_{[s]}$ (this is justified by (1.1(4))). Thus

$$Z_{(H)} := (V/\!\!/G)_{(H)} \cap Z = \bigcup_{[s] \in \mathcal{H}^1(k,G,(H))} Z_{[s]}$$
$$X_{(H)} := (V/\!\!/G)_{(H)} \cap X = \bigcup_{[s] \in \mathcal{H}^1(k,G,(H))_0} X_{[s]}.$$

For $s \in \mathcal{Z}(k, G, H)$, let

$$V^{H} = \{ v \in V : h \cdot v = v \text{ for all } h \in H \}$$

$$V^{\langle H \rangle} = \{ v \in V^{H} : v \text{ has isotropy } H \}$$

$$V^{H}_{s} = \{ v \in V^{H} : \sigma(v) = s_{\sigma} \cdot v \text{ for all } \sigma \in \text{Gal} \}$$

$$V^{\langle H \rangle}_{s} = V^{\langle H \rangle} \cap V^{H}_{s}.$$

The following proposition contains well-known consequences of (3.1): **PROPOSITION 4.2:** (see [Sch1, pg. 56]) Let V be a G-variety, and let (H) be an isotropy class of V.

- (1) $V^{\langle H \rangle}$ is Zariski-open in V^H .
- (2) All orbits intersecting $V^{(H)}$ are Zariski-closed.
- (3) $\pi (V^{\langle H \rangle}) = (V/\!\!/G)_{(H)}.$
- (4) $\pi(V^H) = \bigcup_{(H')>(H)} (V//G)_{(H')} \supset \text{Zar } Cl(V//G)_{(H)}$, with equality if V is a G-module.

We obtain the following analogues over k:

PROPOSITION 4.3: Let V be a G-variety, defined over k, and let (H) be an isotropy class of V. Let $s \in \mathcal{Z}(k, G, H)$.

- (1) $v \stackrel{\sigma}{\mapsto} s_{\sigma}^{-1} \cdot \sigma(v)$ gives a k-structure on V^H with k-points V_s^H .
- (2) $\pi \left(V_{s}^{\langle H \rangle} \right) = Z_{[s]}.$
- (3) $\pi (V_s^H) = \bigcup_{[s'] \ge [s]} Z_{[s']}.$ (4) If V is a G-module, then $Z_{[s]} \neq \emptyset$. Furthermore, for any field topology on k, $\operatorname{Cl}(Z_{[s]}) \supset \bigcup_{[s'] \ge [s]} Z_{[s']}$, and if (H) is the principal isotropy class of V, then $X_{(H)}$ is dense in X.

PROOF: (1) and (2) are trivial. We prove (3). By (4.1), if $[s'] \ge [s]$, we may assume that $s \in \mathcal{Z}(k,G,H), s' \in \mathcal{Z}(k,G,H')$ where $H \subset H'$ and s' = s as maps from Gal to G. The inclusion (\supset) follows from (2). Conversely, if $v' \in V^H$, let v denote the image of v' under the retraction described in (3.4). (Here $G \cdot v$ is the Zariski-closed orbit in the Zariski-closure of $G \cdot v'$.) Then $v \in V_s^H$, and the map $((G/H, s) \to G \cdot v, gH \mapsto g \cdot v)$ is G-equivariant and defined over k. If $G \cdot v$ is of type [s'], this shows that $[s'] \ge [s]$. Since $\pi(v') = \pi(v) \in Z_{[s']}$, we obtain the inclusion (\subset) . This proves (3).

To prove (4), we need the following easy fact: Given any (nondiscrete) topology on an (infinite) field k, the complement of the zero set of a finite number of polynomials on k^n , is dense in k^n . To prove the first part of (4), we note that $V_s^H \simeq k^n$ for some n; also, $V^{\langle H \rangle} \subset V^H$ is stable under the action of Gal in (4.3(1)) (under $\sigma \in \text{Gal}, V^{\langle H \rangle}$ is mapped to $V^{\langle s_{\sigma}^{-1} \cdot \sigma(H) \cdot s_{\sigma} \rangle} = V^{\langle H \rangle}$). Hence by (4.2(1)), $V_s^{\langle H \rangle}$ is the complement in k^n of the zero set of a finite number of polynomials with coefficients in k. In particular, it is not empty; hence $Z_{[\sigma]} = \pi(V_s^{\langle H \rangle})$ is nonempty. If k has a field topology, then by the above fact,

$$\bigcup_{[s'] \ge [s]} Z_{[s']} = \pi(V_{\bullet}^H) = \pi(\operatorname{Cl}(V_{\bullet}^{(H)})) \subset \operatorname{Cl}(\pi(V_{\bullet}^{(H)})) = \operatorname{Cl}(Z_{[s]}).$$

To prove the last part, we consider $V_k \cap \pi^{-1}\left((V/\!\!/ G) \setminus (V/\!\!/ G)_{(H)}\right)$ and again apply the above remark.

§5. Normal types.

If V is a smooth G-variety, then as is well known, $V/\!\!/G$ may be given a stratification finer than the one by isotropy type. To a point $z \in V/\!\!/G$, one associates (the isomorphism class of) the normal bundle to the Zariski-closed orbit in $\pi^{-1}(z)$. If V is a G-module, then the two stratifications of $V/\!\!/G$ coincide. In this section, for smooth G-varieties defined over k, we discuss the stratification of Z by "normal type with k-structure."

For us, an associated bundle will mean a G-variety of the form $G *^H N$, where H is a reductive subgroup of G and N is an H-module. (It is the G-fibration associated to N, coming from the principal H-fibration $G \to G/H$.) If G is defined over k, then a compatible k-structure on $G *^H N$ is a k-structure on (the affine variety) $G *^H N$ such that the action of G on $G *^H N$, the projection of $G *^H N$ onto the zero-section $\{[g,0] : g \in G\} \simeq G/H$, and addition and scalar multiplication on sections, are all defined over k. A morphism $G *^{H_1} N_1 \to G *^{H_2} N_2$ is a morphism of associated bundles if it is a G-equivariant morphism of varieties; if it commutes with projection onto the zero-fibers; and if it is linear on fibers. Two compatible k-structures on $G *^H N$ are equivalent if they differ by an automorphism of $G *^H N$. Let \mathcal{M} denote the set of (equivalence classes of) compatible k-structures on G = 3

REMARK 5.1: Let $G' = N_G H \times GL(N)$ and $H' = \{(h, h) \in G' : h \in H\}$. Then Aut $(G *^H N) = N_{G'} H'/H'$. In particular, Aut $(G *^H N)$ is reductive.

We arrive at the same situation as (2.1). From any compatible k-structure on $G *^{H} N$, we can obtain a k-structure on Aut $(G *^{H} N)$, and then by [Se1, Prop. 5, pg. III-6]:

PROPOSITION 5.2: $\mathcal{H}^1(k, \operatorname{Aut}(G^{*H}N))$ parametrizes the equivalence classes of compatible k-structures on $G^{*H}N$.

Specifically, given a compatible k-structure on $G *^H N$, $\sigma \in \text{Gal acts by the rule}$

$$[g,n] \stackrel{\sigma}{\mapsto} [\sigma(g)s_{\sigma}, m_{\sigma,n}],$$

where $(\sigma \mapsto s_{\sigma}) \in \mathcal{Z}(k, G, H)$, and where $\{m_{\sigma,n}\}$ satisfies

- (1) $m_{\sigma,n} \in N$.
- (2) $m_{\sigma,\lambda n_1+n_2} = \sigma(\lambda)m_{\sigma,n_1} + m_{\sigma,n_2}$ for all $\lambda \in \overline{k}$ and $n_1, n_2 \in N$.
- (3) $m_{\sigma_1,m_{\sigma_2,n}} = h \cdot m_{\sigma_1\sigma_2,n}$ if $g_{\sigma_1\sigma_2} = \sigma_1(g_{\sigma_2}) \cdot g_{\sigma_1} \cdot h$.

REMARK 5.3: We have already encountered compatible k-structures on associated bundles $G *^H N$ in Step 3 of the proof of (3.2). We show that all k-structures arise in this way. Let $G *^H N \subset V$ be a G-equivariant embedding of $G *^H N$ in a Gmodule, defined over k (1.2). (Note that $N \hookrightarrow G *^H N \subset V$.) Using the notation from the last paragraph, we see that $\sigma(n) = \sigma[e, n] = [s_{\sigma}, m_{\sigma,n}] = s_{\sigma} \cdot m_{\sigma,n}$ for all $n \in N$ (in particular, $\sigma(N) = s_{\sigma} \cdot N$). Hence $m_{\sigma,n} = s_{\sigma}^{-1} \cdot \sigma(n)$, and finally,

$$\sigma([g,n]) = [\sigma(g)s_{\sigma}, m_{\sigma,n}] = [\sigma(g)s_{\sigma}, s_{\sigma}^{-1} \cdot \sigma(n)] \qquad \text{as in (3.2).} \blacksquare$$

Suppose that V is a smooth G-variety, defined over k. We have a function $\Lambda : Z \to \mathcal{M}$ which assigns to each $z \in Z$, the isomorphism class of the normal bundle (with k-structure) to the Zariski-closed orbit in $\pi^{-1}(z)$. We obtain a stratification $Z = \bigcup_{\lambda \in \mathcal{M}} Z_{\lambda}$.

PROPOSITION 5.4: Let V be a smooth G-variety, defined over k. The stratification of Z by \mathcal{M} is a refinement of the stratification by \mathcal{H}^1 . If V is a G-module, then the two stratifications coincide.

PROOF: The first part is trivial: if two Zariski-closed, Gal-stable orbits in V have k-isomorphic normal bundles, then the zero-sections are k-isomorphic.

We prove the second part. Suppose we have $z_1, z_2 \in Z$ which lie in the same \mathcal{H}^1 -stratum. We must show that they have the same normal type. Suppose we have $v_1, v_2 \in V$, lying on Zariski-closed orbits and having isotropy H, such that $\pi(v_i) = z_i$ and $\sigma(v_i) = s_{\sigma} \cdot v_i$ for some $s \in \mathcal{H}^1(k, G, H)$. Let $T_i \subset V$ denote the tangent space to $G \cdot v_i$; we know that $\sigma(T_i) = s_{\sigma} \cdot T_i$ for all $\sigma \in \text{Gal.}$ By (3.3), we may pick H-stable complements N_i to T_i , with $\sigma(N_i) = s_{\sigma} \cdot N_i$ for all σ . As in the proof of (3.3), we may define a k-structure on $\text{Hom}_H(N_1, N_2)$, and then clearly there is a k-point in $\text{Hom}_H(N_1, N_2)$ which is a nonsingular linear transformation. In this way we obtain a map $\theta : N_1 \to N_2$ which is H-equivariant and commutes with each $s_{\sigma}^{-1} \circ \sigma$. Finally, the map $(G *^H N_1 \to G *^H N_2, [g, n] \mapsto [g, \theta(n)])$ is an isomorphism which is defined over k.

§6. Complete fields.

In this section we consider, for the more part, only fields of characteristic zero which are complete under a (nontrivial) real absolute value. We use elementary facts about analytic manifolds and analytic groups over such fields (see [Se2]). We do not distinguish between equivalent absolute values on a field. We need the following facts:

PROPOSITION 6.1 (see [Cas]): Let k be complete under a nontrivial absolute value. If the absolute value is archimedean, then $k = \mathbf{R}$ or C (with the standard absolute value). If the absolute value is nonarchimedean, then the following are equivalent:

- (1) k is locally compact.
- (2) $\{\alpha \in k : |\alpha| \le 1\}$ is compact.
- (3) The value group of | | on k^* is discrete, and the residue class field is finite.
- (4) k is a finite extension of \mathbf{Q}_p (p a prime).

An example of a complete but not locally compact field is k((T)), the field of formal Laurent series over an (infinite) field k, where $|\sum_{i=n}^{\infty} \alpha_i T^i| = 1/2^n$ if $\alpha_n \neq 0$.

We also consider "fields of type (F)" (we still only consider characteristic zero). These are defined by the following equivalent statements [Se1]:

- (1) k has only finitely many extensions of a given degree.
- (2) $\mathcal{H}^1(k,G)$ is finite for all finite groups G.
- (3) $\mathcal{H}^1(k,G)$ is finite for all (affine) algebraic groups G.

Examples include **R**, *p*-adic fields, and K((T)), where K is algebraically closed. Type (F)-fields have the following properties:

- (1) Any affine algebraic group G has only finitely many inequivalent k-forms.
- (2) If G is an algebraic group defined over k, then the set of k-points of any homogeneous space defined over k, consists of finitely many G_k -orbits.

We begin by recalling a theorem of Kempf which is valid for all perfect fields k:

THEOREM 6.2 [Ke]. Let V be a G-module, defined over k. Suppose that the Gorbit of $v \in V_k$ is not Zariski-closed. Then there is a homomorphism $\lambda : \overline{k}^* \to G$, defined over k, such that $\lim_{t\to 0} \lambda(t) \cdot v$ exists and lies on a Zariski-closed orbit.

From now on, we assume that k is complete under a real absolute value.

PROPOSITION 6.3: If $v \in V_k$, then $G \cdot v$ is Zariski-closed if and only if $G_k \cdot v$ is closed (in the k-topology). Each G_k -orbit in $(G \cdot v)_k$ is open and closed in $(G \cdot v)_k$. PROOF: If $G_k \cdot v$ is closed, then $G \cdot v$ is Zariski-closed by (6.2). (For this, k need not be complete.)

Conversely, if $G \cdot v$ is Zariski-closed, then $(G \cdot v)_k$ is closed. Consequently $(G \cdot v)_k = \bigcup_{i \in I} G_k \cdot v_i$, a union of G_k -orbits. Since the map $(G_k \to (G \cdot v)_k, g \mapsto g \cdot v_i)$ has everywhere surjective differential, it follows that each $G_k \cdot v_i$ is open in $(G \cdot v)_k$. Hence each $G_k \cdot v_i$ is closed in $(G \cdot v)_k$ and therefore closed in V_k .

PROPOSITION 6.4: If $v \in V_k$, then $Cl(G_k \cdot v)$ contains a unique closed G_k -orbit.

PROOF: The existence follows from (6.2) and (6.3). By (3.4), (3.5), and (6.3), we see that $\pi^{-1}(\pi(v)) \cap V_k$ is a union of open subsets, each containing exactly one closed G_k -orbit; hence the uniqueness.

Let $V_k /\!\!/ G_k$ denote the set of closed G_k -orbits in V_k . By (6.4), there is a map $p: V_k \to V_k /\!\!/ G_k$ which is constant on G_k -orbits. We give $V_k /\!\!/ G_k$ the quotient topology. A set $F \subset V_k$ is G_k -saturated if $p^{-1}(p(F)) = F$, or equivalently, if F contains v whenever F contains a point in the unique closed G_k -orbit in the closure of $G_k \cdot v$.

COROLLARY 6.5: We obtain a (continuous) map $P: V_k /\!\!/ G_k \to X$, which identifies closed G_k -orbits which lie on the same Zariski-closed G-orbit.

REMARK 6.6: For any $U \subset X$, $\pi^{-1}(U) \cap V_k$ is G_k -saturated.

THEOREM 6.7. Let V be a G-variety, defined over k, and let (H) be an isotropy class of V such that $Z_{(H)} \neq \emptyset$. Let $\psi \in \mathcal{H}^1$ (and $\lambda \in \mathcal{M}$, if V is smooth) be such that the corresponding strata are nonempty subsets of $Z_{(H)}$.

- Given v as in (3.2), there are neighborhoods U of π_{S,H}(v) in (S//H)_k and U' of π_{V,G}(v) in (V//G)_k = Z (in the k-topology), which are analytically isomorphic. Furthermore, the map G *^H S → V yields a G-equivariant bijection π⁻¹_{G*^HS,G}(U) ≃ π⁻¹_{V,G}(U') commuting with the action of Gal. The map restricts to a G_k-equivariant analytic isomorphism π⁻¹_{G*^HS,G}(U) ∩ (G *^H S)_k ≃ π⁻¹_{V,G}(U') ∩ V_k, and these sets are G_k-saturated.
- (2) Ψ is locally constant on $Z_{(H)}$, and if V is smooth, then Λ is also locally constant on $Z_{(H)}$.
- (3) $Cl(Z_{\psi}) \subset \bigcup_{\psi' \geq \psi} Z_{\psi'}$, with equality if V is a G-module.
- (4) If V is smooth, then $Z_{(H)}$, Z_{ψ} , and Z_{λ} are analytic manifolds, of dimension equal to the dimension of $(V/\!\!/G)_{(H)}$ as a variety over \overline{k} .
- (5) X is closed in Z.

PROOF: The first part of (1) is true since the map $(S/\!\!/H)_k \to (V/\!\!/G)_k$ is étale at $\pi_{S,H}(v)$. Note that by (3.1) and (3.2), the morphism $G *^H S \to V$ restricts to a *G*-equivariant bijection $G *^H \left(\pi_{S,H}^{-1}(U) \right) \to \pi_{V,G}^{-1}(U')$ which commutes with the action of Gal. With (6.6), this proves the rest of (1). Since there is a *G*equivariant retraction of $G *^H S$ to the zero-section, the same is true for $\pi_{V,G}^{-1}(U') \simeq$ $G *^H \left(\pi_{S,H}^{-1}(U) \right) \subset G *^H S$. It follows that Ψ must be constant on $U' \cap Z_{(H)}$, hence locally constant on $Z_{(H)}$. By (5.4), Λ must be locally constant on $Z_{(H)}$. Also, we have shown that every point in Z has a neighborhood on which Ψ can only increase; this proves the first part of (3). The second part follows from (4.3(4)). Next, we prove (4). We have seen that $U'_k \cap (V/\!\!/G)_{(H)} \simeq U_k \cap (S/\!\!/H)_{(H)}$, and near $\pi_{S,H}(v)$, the latter is analytically isomorphic to a neighborhood of $\pi_{T_vS,H}(0)$ in the k-points of $(T_vS/\!\!/H)_{(H)}$. However, $(T_vS/\!\!/H)_{(H)} \simeq (T_vS)^H \simeq \overline{k}^n$ for some n. Hence $U'_k \cap (V/\!\!/G)_{(H)}$ is analytically isomorphic near $\pi_{V,G}(v)$ to k^n , and (4) follows. Finally, (5) follows from (1): if $z \in Cl(X)$, then the neighborhood of U' of z described in (1) intersects X. Using (1), there is a retraction defined over k, to the closed orbit in $\pi^{-1}(z)$, of a set in V containing k points. Hence $\pi^{-1}(z)$ contains k-points, and $z \in X$.

THEOREM 6.8. Let $v \in V_k$ lie on a closed orbit, and let H and S be as in (3.2). Then there is an open, G_k -saturated neighborhood of $v \in V_k$ which is isomorphic to an open, G_k -saturated neighborhood of [e, v] in $G_k *^{H_k} S_k$. If V is smooth, then the same is true if S_k is replaced by $(T_v S)_k$.

PROOF: By (6.7(1)), v has an open, G_k -saturated neighborhood which is isomorphic to an open, G_k -saturated set $A \subset (G *^H S)_k$. By (3.5), $(G *^H S)_k$ is a union of subspaces $[G_k g_i, S^i]$ which retract to the different G_k -orbits in $(G \cdot v)_k$; by (6.3), these spaces are open in $(G *^H S)_k$, hence they must be G_k -saturated. The one containing [e, v] is isomorphic to $G_k *^{H_k} S_k$. We take $A \cap G_k *^{H_k} S_k$ as the desired neighborhood of [e, v] in $G_k *^{H_k} S_k$. Similar arguments and (3.2(3)) complete the proof for $(T_v S)_k$.

REMARK 6.9: We have shown that if $v \in V_k$ is on a closed orbit, then $(G \cdot v)_k$ has a G_k -saturated neighborhood, equal to the union of open, G_k -saturated sets U_i , with each U_i containing exactly one G_k -orbit in $(G \cdot v)_k$, and having the form described in (6.8).

COROLLARY 6.10: $V_k //G_k$ is Hausdorff.

PROOF: Let $z_1 \neq z_2 \in V_k /\!\!/ G_k$; we need disjoint open sets containing these points. If $P(z_1) \neq P(z_2)$, the result is clear. If $P(z_1) = P(z_2)$, the result follows from (6.9).

We give a stratification of $V_k /\!\!/ G_k$, using ideas from §2. If $H' \in \mathcal{C}(H)$ for some H, let [H'] denote its G_k -conjugacy class. Let $\mathcal{C} = \bigcup_H [H]$; that is, \mathcal{C} consists of the disjoint union of all G_k -conjugacy classes of reductive subgroups of G which are defined over k. We define a partial order on \mathcal{C} by declaring that $[H] \leq [H']$ if there exists $H'' \in [H']$ such that $H \subset H''$. Clearly we may use \mathcal{C} to stratify $V_k /\!\!/ G_k$; we denote a typical stratum by $(V_k /\!\!/ G_k)_{(H)}$.

REMARK 6.11: This stratification is a refinement of the stratification of X by \mathcal{H}_0^1 , pulled back to $V_k /\!\!/ G_k$ via the map P. We give an example to show that it may indeed be finer. Let $G = SL(2, \mathbb{C})$, $G_{\mathbb{R}} = SL(2, \mathbb{R})$, and let H be the normalizer of the set of diagonal elements of G. Computation shows that $\mathcal{H}^1(\mathbb{R}, G)$ and $\mathcal{H}^1(\mathbb{R}, H)$ have one and two elements, respectively. By (2.6), $\mathcal{C}(H)$ has two conjugacy classes, even though $\mathcal{H}^1(\mathbb{R}, G, H)$ has only one element (this is clear from (2.2) since H is self-normalizing). Specifically, if $g_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $g_2 = \begin{pmatrix} 1/\sqrt{2} & i/\sqrt{2} \\ i/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$, then g_1H and g_2H are real points of (G/H, 1) with G-isotropy groups which are not $G_{\mathbb{R}}$ -conjugate (and therefore g_1H and g_2H lie on different $G_{\mathbb{R}}$ -orbits). LEMMA 6.12: Let V be a G-variety, defined over k.

- (1) $p(V_s^H) = \bigcup_{[H'] \ge [H]} (V_k / / G_k)_{[H']}.$
- (2) $p(V_{s}^{(H)}) = (V_{k}/\!\!/G_{k})_{[H]}.$
- (3) Cl $((V_k / / G_k)_{[H]}) \subset \bigcup_{[H'] \ge [H]} (V_k / / G_k)_{[H']}.$

PROOF: Part (1) is proved easily using (3.4). Part (2) is immediate, and (3) follows from (6.8). \blacksquare

THEOREM 6.13. Let V be a G-module, defined over k. Let (H) be an isotropy class of V and suppose that we may choose H to be defined over k. Then $(V_k /\!\!/ G_k)_{[H]} \neq \emptyset$, and $Cl (V_k /\!\!/ G_k)_{[H]} = \bigcup_{[H'] \ge [H]} (V_k /\!\!/ G_k)_{[H']}$.

PROOF: We need only show the reverse inclusion in (6.12(3)), and this follows from (6.12) as in the proof of (4.3(4)).

PROPOSITION 6.14: Let k be a complete field of type (F). Let V be a G-module, defined over k, where G acts effectively on V. If $\{z_i\} \subset X$ converges to z, then for some subsequence of $\{z_i\}$, there are points $v_i \in V_k$ on closed orbits such that $\pi(v_i) = z_i$ and $\{v_i\}$ converges. Furthermore, each v_i has the same isotropy group, and if $v = \lim v_i$, then v lies on a closed orbit.

PROOF: Use induction on dim V. Since k is of type (F), the \mathcal{H}^1 -stratification of Z is finite, and we may assume that all z_i lie in a single stratum. Hence there is a (Gal-stable) subgroup $H \subset G$ such that $\{z_i\} \subset \pi(V_k^{\langle H \rangle})$. If H = G then the proposition is trivial. We suppose that $H \neq G$, so that $V^H \neq V$. We consider the map $\alpha : V^H /\!\!/ N_G H \to V /\!\!/ G$, and see that for each z_i , we may pick a point $z'_i \in (V^H /\!\!/ N_G H)_k$ such that $\alpha(z'_i) = z_i$.

By a theorem of Luna [Lu3, §2], α is finite. We claim that by refining the sequence, we may assume that $\{z_i'\}$ converges to some $z' \in \alpha^{-1}(z)$. More generally, let $\alpha : X \to Y$ be a finite map of affine varieties over k, and suppose that $\{y_i\} \subset Y_k$ converges to y_0 . Further suppose that there exists $\{x_i\} \subset X_k$ with $\alpha(x_i) = y_i$. If $g \in \mathcal{O}(X)_k$, then there exists a polynomial $f(T) = \sum_{j=1}^n a_j(y)T^j$ (where $a_j \in \mathcal{O}(Y)_k$ and $a_n = 1$) such that f(g) = 0 in $\mathcal{O}(X)$. We may write $f(T) = f_1(T) - f_2(T)$, where $f_1(T) = \sum_{j=1}^n a_j(y_0)T^j$, $f_2(T) = \sum_{j=1}^{n-1} b_j(y)T^j$ and $b_j(y) = a_j(y_0) - a_j(y)$. In some finite extension of k, we may factor $f_1(T)$ as $\prod_{j=1}^n (T-t_j)$. Since f(g(x)) = 0 for all $x \in X$, we conclude that for all i,

(*)
$$\prod_{j=1}^{n} (g(x_i) - t_j) = \sum_{j=1}^{n-1} b_j(y_i) g^j(x_i).$$

From (*), it is clear that $\{g(x_i)\}$ is bounded. But then the right side of (*) approaches 0 as $i \to \infty$, and hence some infinite subsequence of $\{g(x_i)\}$ approaches one of the t_j 's. We may then repeat this procedure to obtain a subsequence (still

denoted $\{x_i\}$ such that $\{g(x_i)\}$ converges for all g is a finite set of generators of $\mathcal{O}(X)_k$. It follows that $\{x_i\}$ converges.

By induction, we obtain points $v_i \in V_k^{(H)}$ and $v \in V_k^H$ on closed N_GH -orbits, such that $\pi_{V^H,N_GH}(v_i) = z'_i$, and hence $\pi_{V,G}(v_i) = z_i$. By [Lu3, §3], since $N_GH \cdot v_i$ and $N_GH \cdot v$ are Zariski-closed, so are $G \cdot v_i$ and $G \cdot v$.

THEOREM 6.15. Let V be a G-variety defined over k, where k is complete and of type (F). If $S \subset V_k$ is closed and G_k -stable, then $\pi(S) \subset X$ is closed.

PROOF: By embedding, we may assume that V is a G-module, and the result then follows from (6.14).

THEOREM 6.16. Under the same hypotheses as in (6.15), it follows that p(S) is closed in $V_k /\!\!/ G_k$.

PROOF: Let $\{z_i\} \to z$ in $V_k /\!\!/ G_k$, with $z_i \in p(S)$. We must show that $z \in p(S)$. By continuity, $\{P(z_i)\} \to P(z)$. Let $U \subset V_k /\!\!/ G_k$ be an open set containing all points of $P^{-1}(P(z))$ except for z, and avoiding a neighborhood of z (this is possible by (6.9)). Let $S' = S \setminus p^{-1}(U)$; it is closed and G_k -stable. By (6.15), $\pi(S')$ is closed in X, hence $P(z) \in \pi(S')$. By construction, $z \in p(S') \subset p(S)$.

THEOREM 6.17. With the same hypotheses on k, let $v \in V_k$ lie on a closed orbit. Suppose that $U \subset V_k$ is open, G_k -stable, and contains v. Then there exists $v \in U' \subset U$ such that U' is open and G_k -saturated.

PROOF: Let $S = V_k \setminus U$. It is closed and G_k -stable. By (6.16), p(S) is closed, hence $p^{-1}(p(S)) \cap V_k$ is closed; also it is G_k -saturated and does not contain v. Let U' be its complement in V_k .

REMARK 6.18: (6.3), (6.4), (6.7(1)), and (6.8) were proved by Luna in [Lu2] for $k = \mathbb{R}$, and our proofs are essentially the same. In the same paper one will find a rather delicate proof of (6.15). Completely different proofs of several results of this section, including (6.15), using a result of Kempf and Ness, can be found in papers of Schwarz [Sch2] (for $k = \mathbb{C}$) and Richardson & Slodowy [RS] (for $k = \mathbb{R}$).

References

- [Bo] A. Borel, "Linear Algebraic Groups," Second Enlarged Edition, Springer-Verlag, New York, 1991.
- [Br1] R. Bremigan, "Reductive Groups, Algebraic Quotients, and Real Structures," Thesis, Brandeis University, 1990.
- [Br2] R. Bremigan, Galois cohomology and real algebraic quotients, Jour. of Alg. (to appear).
- [Br3] R. Bremigan, Real algebraic quotients.
- [Cas] J. W. S. Cassels, "Local Fields," London Math. Soc. Student Texts 3, Cambridge Univ. Press, Cambridge, 1986.
- [Ke] G. Kempf, Instability in invariant theory, Ann. of Math. 108 (1978), 299-316.
- [Kn] F. Knop, Anhang: Beweis des Fundamentallemmas und des Scheibensatzes, in "Algebraische Transformationsgruppen und Invariantentheorie," Birkhäuser, Basel, 1989, pp. 110-113.

- [Kr] H. Kraft, "Geometrische Methoden in der Invariantentheorie," Aspekte der Mathematik D1, Vieweg-Verlag, Braunschweig, 1985.
- [Lu1] D. Luna, Slices étales, Bull. Soc. Math. France, Mémoire 33 (1973), 81-105.
- [Lu2] D. Luna, Sur certaines opérations différentiables des groupes de Lie, Amer. J. Math. 97 (1975), 172–181.
- [Lu3] D. Luna, Adhérences d'orbite et invariants, Invent. Math. 29 (1975), 231-238.
- [RS] R. W. Richardson and P. J. Slodowy, Minimum vectors for real reductive algebraic groups, J. London Math. Soc. (2) 42 (1990), 409-429.
- [Sch1] G. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Etudes Sci. Publ. Math. 51 (1980), 37-135.
- [Sch2] G. Schwarz, The topology of algebraic quotients, in "Topological Methods in Algebraic Transformation Groups," Progress in Mathematics, Birkhäuser, Boston, 1989, pp. 135-151.
- [Se1] J.-P. Serre, "Cohomologie Galoisienne," Lect. Notes Math. 5, Springer-Verlag, New York, 1973.
- [Se2] J.-P. Serre, "Lie Algebras and Lie Groups," W. A. Benjamin, New York, 1965.
- [SI] P. Slodowy, Der Scheibensatz für algebraische Transformationsgruppen, in "Algebraische Transformationsgruppen und Invariantentheorie," Birkhäuser, Basel, 1989, pp. 89–109.
- [Sp] T. A. Springer, Nonabelian H² in Galois cohomology, in "Algebraic Groups and Discontinuous Subgroups," Proceedings of Symposia in Pure Mathematics IX, American Mathematical Society, Providence, Rhode Island, 1966.
- [War] S. Warner, "Topological Fields," North-Holland Mathematics Studies 157, North-Holland, Amsterdam, 1989.