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§o. Introduction.
Let k be a field of characteristic zero. Let G be a reductive algebraic group and

V an affine G-variety (both with points in k, an algebraic closure of k). As usual,
we define the algebraic quotient V /IG to be the affine variety whose coordinate ring
is O(V)G, the algebra of G-invariant regular functions on V.

In this paper, we introduce and explore basic properties of a stratification of
(V//G)k' in the case that V, G, and the action of G on V are defined over k. The
stratification comes from the k-structure on the Zariski-closed orbits of the action,
and coincides with the usual isotropy-type stratification when k is algebraically
closed. Behavior very much like the ca.se k = C occurs when k = R or a p-adic field,
and in these circumstances we also consider the space Yk//Gk of closed Gk-orbits
in Vk, the map Vk//Gk -+ (V//G)k' and an interesting stratification of Vk//Gk. The
language of relative Galois cohomology, introduced by Springer [Sp), is essential
for our purposes and is reviewed here (§2). The main technical tool we develop is
aversion of Luna's etale slice theorem for non-algebraically c10sed fields (§3)j this
allows us to give a k-stucture to the normal bundle of any Zariski-closed orbit in
V which is defined over k. This was implicit in Luna's paper [Lu2), and sorne of
bis results in the case k = R required ooly minor modifications to become valid in
more general situations.

Notation and Conventions: Unless otherwise indicated, G denotes a reductive
algebraic group defined over k (with points in k). All G-vaneties are understood to
be affine. The quotient map Y -+ V/IGis denoted by 7l"v,G or simply 7l". The notation
TuS means the tangent space at v to S. The words "closure," "c1osed," "open,"
"neighborhood," etc. refer to the topology on the k-points of an affine variety,
which comes !rom a topology on the field k. All field topologies are assumed to be
nontrivial and nondiscrete. We use the notation G *H N to denote twisted products
(see [SIJ); points in a twisted product are writen as [9, n). H H is a subgroup of G,
then (H) denotes the set of G-conjugates of H. We write V//G = UH (V//G)(H) for
the isotropy-type stratification of V//G. Finally, we use Gal as a shorthand for the
Galois group Gal(k/k).

§1. Algebraic quotients over k.
Let V be an affine G-variety over k, with k-structure O(V) = I ® O(V)k' It

k

follows that O(V)G = k ® O(V)r, since O(V)G C O(V) is stahle under the action
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of Ga!. Hence V//G and 1r : V -+ V//G are defined over k. We set Z = (V//G)k and
X = 1r(Vk).

The following proposition describes V//G, Z, and X as spaces of certain Zariski
closed orbits:

PROPOSITION 1.1:

(1) 1r ia surjective.
(2) Each fiber of 1r is a union of G-orbits and contains a unique Zariski-closed

orbit, which is of minimum dimension among orbits in the fiber.
(3) H y E V//G, then the following are equivalent:

(a) y E Z.
(b) 1r- l (y) ia defined over k.
(c) Tbe Zariaki-closed orbit in 1r-1(y) is defined over k.

(4) H y E V//G, then the following are equivalent:
(a) yEX.
(b) The Zariski-closed orbit G· v C 1r- l (y) contains a k-point of V.

PROOF: (1) and (2) can be found in [Kr]. In (3), (a) <=> (b) <= (c) is trivial since
the action of Gal on V maps fibers to fibers. The implication (b) => (c) follows
from (2). In (4), (b) => (a) is trivial. To prove (a) => (b): there ia a G-equivariant
retraction 1r- l (y) -+ G· v which is defined over k (3.4), which must carry k-points
to k-points.•

LEMMA 1.2: HY ia an affine G-variety over k, then there is a G-equivariant, Zariski
closed embedding over k of Y into aG-module V which is defined over k.

PROOF: Suppose that O(Y) is generated by {lI, ... , In}. Then 11, ... , f n lie in
a finite-dimensional G-module W', and W = span17 EGal{u(W')} is again finite
dimensional (auy lEW' has a finite Gal-orbit, and W ia tbe span of tbe Gal-orbits
of a basis of W'). Finally, from the surjection of algebras S'(W) -M> O(Y), we obtain
an embedding of Y into the G-module V = W· .•

§2. Compatible k-structures on homogeneous spaces.
In thiJ section, G iJ an affine algebraic gro'Up, not neces-,arily reductive. For

background on homogeneoua spaces and k-structures on varieties, see [Ba].
We begin by recalling a fact about coset spaces. H H ia a (Zariski-closed) subgroup

of G, both defined over a field K (not necessarily algebraically closed), then GIH
has the structure of a quasiprojective variety over K (with the action of Gal(KIK)

given by gH ~ u(g)H). The variety atructure on GIH comes via an embedding into
P(V), where V ia a representation of G defined over K. HG and H are reductive,
then GIH is affine.

We review relative Ga!ois cohomology, which was introduced by Springer [Sp].
We return to our field k and group G defined over k, hut oo1y assume that H is
defined over k; we consider tbe k-structures on GIH such the left action of G on
GIH is defined over k. Thus we call an action (u, gR) ..-+ u(gH) of Ga! on GIH a
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compatible k-"tructure on GIH if it comes from a k-structure on GIH, and if

for all 91,92 E G and 0" EGal. We describe these structures, using the language of
Galois cohomology:

By (*), we need only know O"(eH) for each 0" EGal. Suppose that O"(eH) = stTH,
where S(1 E G. The map (Gal -+ G, 0" H S(1) has the following properties:

(1) StTltT2H = 0"1 (S(12) . S(11H for all 0"1,0"2 EGal.
(2) suHs;l = O"(H) for all 0" EGal.
(3) {O" E Ga.! : S(1 E H}:> Gal(klk') for some finite Ga.!ois extension k' :> k.

(1) follows since (0"10"2)(eH) = 0"1(0"2(eH)), and (2) is true since O"(eH) = O"(hH)
for all h E H. Finally, eH E (GI H)k l for some finite Galois k' :> k, hence eH =
0"(eH) = suH for all 0" E Gal(II k').

Conversely, suppose that 0" t-t 8 tT is a map having these properties. By (1) and (2),
it gives a well-defined action of Gal(klk) on GIH which satisfies (*). We show that
the action comes from a k-structure. Let goH E GIH, and let K be a finite Galois
extension of k' such that H is defined over K and 90 E G K. Then GIH is defined
over K and the action of Gal(IIK) is the same as the one coming from the inclusion
Gal(kIK) <.......+ Gal('klk). We may find an affine open neighborhood of goH in GIH
of the form U = SpecA, where U is defined over K. Hence A = k ~ Ao, where

K
Ao = {f E A : f(O"(g )H) = O"(f(gH)) for all 0" E Gal(klK}. Moreover it is clear
that Ao = K ~ Al, where Al = {I E Ao : 1(0"(g)8(1H) = O"(f(gH)) for all 0" EGal}

k

since Klk is finite. Hence A = k ~ Al as was required.
k

Functions S : Ga! -+ G with the above properties are called cocycle" (relative to
H). We let Z(k,G,H) denote the set of cocycles, and let (GIH,s) denote GIH
with the compatible k-structure induced by s. H H is defined over k, then the
cocycle which is the constant function 0" H e will be denoted 1.
, We wish to identify two compatible k-structures on GIH if they are related
by a G-equivariant automorphism of GIH. Such automorphism are of the form
gH I-t gnH for some n E NaH. We obtain a corresponding equivalence relation on
Z(k, G, H) aB follows: for any n E NaH and {htT }(1EGal C H, we declare

Let 1f.l (k, G, H) denote the set of equivalence classes of cocycles relative to H. We
have proven

PROPOSITION 2.1: 1f.l (k, G, H) parametrizes the equivalence classes of compatible
k-structures on GIH .•
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If H = {e}, we Bhall use the briefer notation Z (k, G) and 'J-ll (k, G). In nonabelian
Galois cohomology, the case H = {e} has received the most attention. It is a special
case of [Set, Proposition 5, pg. 111-6] that the sets 1{1(k, G, H) may be viewed in
the "absolute" framework:

Suppose that }l1 ( k, G, H) is nonempty. Fix s E Z (k, G, H). We obtain a k
structure on the algebraic group W := NGHIH, by demanding that the action of W
on (GI H, s) be defined over k. Specifically, u EGal sends nH E W to s;l·u(n)·st7H.
Then

(
Z(k,G,H) -+ Z(k, W) )

PROPOSITION 2.2: Tbe map (u ...... t(7) 1--+ (u ...... s;1 . tt7H ) induces an

isomorphism 1{1(k,G,H) ~ rt.1(k, W). I
Of course if H is defined over k, then we may take St7 = l.

NOTATION 2.3: If a E G, then there is an isomorphism

induced by the map

on cocycles. We use thiB to identify ?t1(k,G,H) and }l1(k,G,H') if H and H'
are conjugate in G, and we shall write ?t1 (k, G, (H)) when we choose not to draw
attention to a particular element in (H). H s E Z(k, G, H), let [s] denote its image
in ?t1(k, C, (H)). Let Z(k, G, H)o = {s E Z(k, G, H) : (GI H, s) has a k-point},
and let 1{,1 (k, G, (H))o be the image of Z(k, G, H)o in 1{1(k, G, (H)).

Let C(H) = {H' E (H) : H' is defined over k}. H s E Z(k,G,H), let C(H,s) =
{B' E C(H) : B' is the isotropy group of a k-point of (GIH, s)}. Let G'(H) = {g E
G : U(g-l) . 9 E NGH for all u EGal}. I
LEMMA 2.4: Suppose that H is defined over k.

(1) The map (G'(H) -+ C(H),g ...... gHg-1 ) induces a bijection G'(H)/NGH ~

C(H). Likewise the map (G'(H) -+ GINGH, 9 ...... gN) induces a bijection
between G'(H)INaH and the set of k-points of (GINGH, 1).

(2) H 9 E G'(H), then tbe map (Gal-+ G, u ...... u(g-l) . g) is an element of
Z(k,G,H).

(3) H g E G'(H) and n E NGH, then the cocycles (u ...... u((gn)-I) . (gn)) and
(u ...... u(g-I). g) are equivalent in 1{,1(k,G,(H)).

(4) If s;t E Z(k,G,H) are equivalent, then C(H,s) = C(H,t).

PROOF: (1)-(3) are trivial. We prove (4). Suppose that tt7 = u(n) . St7 . n-1 • ht7 ,
for some n E N and ht7 E H. We compute easily that gH is a k-point of (GIH, t)
if and only if gnH is a k-point of (GI H, s). However, gH and gnH have the same
isotropy group. I
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THEOREM 2.5.

(1) TIL (G'(H) --+ Z(k,G,H)). d
ue map 9 « -1) ) m uces a map

t----+ u t-+ U 9 . 9

ep : C(H) ~ G'(H)/NGH --+ ?-l1(k, G, (H))

witb image 1-{1(k, G, (H))o'
(2) H s E Z(k, G, H), tben ~-I([S]) = C(H, s).
(3) H {si}iEI C Z(k, C, H) and ?l1(k, C, (H))o is the disjoint union oE {[si]}iEI,

then C(H) = UiEI C(H, si).

PROOF: By (2.4(2)) and (2.4(3)), we obtain a map C'(H)/NGH -+ Jil(k, G, (H)).
The image is contained in 1-{1(k, C, (H))o since if 9 E G'(H), then then gH is a
k-point of (G/H,s) (where S(7 = u(g-I). g). Conversely, if s E Z(k,G,H) is such
that [s] E 1-{1(k, G, (H))o, and gH is a k-point of (G/ H, 8), then 8(7 E a(g-I). g. H.
This proves (1).

To prove (2): by virtue of (1) and (2.4(4)), we may assume that s = O'(g-I). 9 for
some 9 E G'(H), and then (2) follows easily. Part (3) follows directly from (2).•

Otherwise said:

(1) If S is a G-homogeneous space, then every compatible k-structure on S, for
which S has a k-point, arises as S ~ (G / H, 1), where H is defined over k.

(2) H H 1, H 2 C G are defined over k and are G-conjugate, then (G / H 1 , 1) ~
(G / H2 , 1) if and only if H2 is the isotropy group of a k-point of (G / BI, 1).

REMARK 2.6: Using (2.4(1)), we obtain bijections

Gk\G'(H)/NaH ~ {Gk-eonjugacy classes in C(H)} ~ {Gk-orbits in (G/NaH)k}'

By [Set], the map (G'(H) -+ 1-{1(k, NGH), 9 t-+ (u t-+ U(g-1 ).g)) induces a bijeetion

Gk\G'(H)/NaH ~ Kernel (1-{I(k, NGH) -+ 'J-ll(k, G)). •

Suppose now that H is defined over k. Let G"(H) C C'(H) denote {g E G :
a(g-l)g E H for all u EGal}.

REMARK 2.7: The map (G"(H) -+ G/H,g t-+ Gk . g. H) induees a bijection

Gk\G"(H)/H ~ {Gk-orbits in (G/H,l)k}

and as in (2.6), these sets are isomorphie to the kernel of Jil(k, H) -+ 'J-ll(k, G). I
REMARK 2.8: We obtain a map Gk\G"{H)/H -+ Gk\G'{H)/NaH with image
GI. \C(H, 1). We give an example to show that this map ia not injective in general.
Let G = SL(2, C), GR = 5L(2, R), and H = 50(2, C). It is easily seen that the

R-points of (G/ H, 1) consist of two GR-orbits, containing (~~)H and (~~i)H

respectively, but the two points have the same G-isotropy.
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§3. The etale slice theorem over k.
We recall Luna's slice theorem ([Lu],[Schl],[SI], [Kn]). In the statement, we

only assume that G and V are defined over k.

THEOREM 3.1. Let V be an affine G-vanety. Suppose that v E V lies on a Zariski
c10sed G-orbit and has isotropy group H. Then there exists S C V such that

(1) v E S.
(2) S is aJBne, locally dosed in tbe Zariski topology, and stable under H.
(3) Tbe morphism (G x S -+ V, (9, s) t-+ 9 . s) induces an etale morphism

G *H S """* U c V, wbere U is af1ine, Zariski-open, and G-saturated, and
wbere U//G '-t V//G as a Zariski-open, affine subvariety.

(4) Tbe induced morphism S//H ~ (G. H S)//G --+ V//G is etale.
(5) The map

G.H 5 --+ 5//H x V
V/G

[g, s] ~ (7rS, H ( S ), 9 . s)

is an isomorphism oE G-varieties. In particular, jf y E U, then the isotropy
oE y is G-conjugate to a subgroup oE H.

(6) H Visa G-module and N is an H-stable complement oE Tv(G . v) in V,
then we may choose S to be an a1Iine, Zariski-open neigbborhood oE v in
v+N C V.

(7) H V is smootb at v, we may assume that 5 is smooth, and that tbere is an
H-equivariant map 4>: 5 --+ Tv(S) (with 4>(v) = 0) which is etale with affine
image. Furthermore, ,plIH : SI!H --+ (TvS)// H is etale, and we mayassume
that

G*H 5 --+ S//H x (G*HTvS)
(TvS)/H

[g, s] I---t ( 7rS, H ( S ), [g, 4>(s)))

is an isomorphism oE G-varieties.•

We now return to the situation where G, V, and the action of G on V are defined
over k (notation as in (3.1)).

THEOREM 3.2. Suppose that G· v is Zariski-dosed and 7rV,G(v) E Z. Then we may
moose S such tbat tbe Eollowing also bold:

(1) U is defined over k.
(2) There are k-structures on G .H S and S//H such that

tbe maps

G .H S """* U '-t V

5//H """* UI/G '-t V//G

G *H S """* S//H,
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tbe projection G *H S ~ GIB ~ G· v,
and tbe action of G on G *H S are a11 deJ3.ned over k.

(3) H furthermore V is smooth at v, then S may be chosen such that there are
k-structures on G *H (TvS) and (TvS)//H, for whicb
the maps

S//H -+ (TvS)//H

G*HS-+S//H x (G*H(TvS)) ,
(TvS)/H

the projection G *H (TuS) -+ (TvS)//H,
and the action of G on G *H (TvS) are a11 defined over k.

PROOF: We indicate the points in the proof of (3.1) (we use the proof in [KnJ)
where eare roust be taken when working over k.
Step 1. The main tool in the proof of (3.1) is Luna's "lemme fondamental" , which
deseribes the loeal behavior of a morphism A -+ B between G-varieties satisfying
eertain eonditions. This lemma is applied to certain morphisms described below,
and produces the variety U in the statement of (3.1). It is an easy consequence
of the proof of the lemme fondamental [Kn] that under our hypotheses, we may
Ch003C U to be defined over k.
Step 2. We require the following lemma:

LEMMA 3.3: Let 8 E Z(k, G, H). Let V be aG-module, defined over k, and let
W C V be an H-submodule such that Sa • W = O'(W) for all 0' E Ga!. Then there
is an H -stable splitting V = W ffi W', where Ser • W' = O'(W') for all 0' EGal.

PROOF: Since H is reduetive, the restriction res : HOffiH(V, W) -+ HOIDH(W, W)
is surjective. We ean define k-structures on HOIDH(V, W) and HornH(W, W) as
folIows: if ß is in either set, let erß = 8;1 00' 0 ß 0 0'-1 0 Ser' It is straightforward
to check that this gives k-struetures and that res is defined over k. Sinee these are
just k-vector spaces and res is linear, we may find a k-point 8 E HomH(V, W) such
that res(8) = Id E HomH(W, W)k. Then let W' = ker(8).•

We continue with the proof of (3.2). Let SE Z(k, G, H) satisfy 0'(v) = SfT . v for
all 0' EGal.
Step 3. Suppose that V is aG-module. By (3.3), we may choose an H-stable
complement N C V to Tv(G· v) such that 8 er • N = O'(N) for all 0' EGal. Applying
Luna's lemme fondamenta! to the morphism (G *H V +N -+ V, [g, v+n] .....-+ 9 . (v +
n)), we obtain U C V. Following [Kn], we let S = (u + N) n U.

We define a k-structure on N //H by letting 0' EGal send a closed orbit H . n to
the closed orbit H· 8;1 . eren). We likewise define a k structure on G.H (v + N) via
[g,v+n] ~ [u(g)SfT,v+s;I·O'(n)]. Since U is defined over k, it follows that G *H S
(resp. S//H) is stable under this action of Gal on G *H (v + N) (resp. N //H). Thus
we obtain k-structures on G .H S and S//H. The verification that all the requisite
maps in (3.2) are defined over k is straightforward.
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Step 4. Let V be an arbitrary affine G-variety over k. The variety S is constructed
as follows: we embed V (equivariantly, over k) in aG-module V' (1.2). Choose
N C V' as in Step 3, and let S' = V n (v + N). Applying the lemme fondamental
to the morphism G *H S' --+ V, we obtain our U C V; let S = unS'. We then
take the restrictions of the k-structures on G *H N and NI!H defined in Step 3 to
obtain k-structures on G *H S and SI!H.
Step 5. Suppose that V is smooth at v. We must still verify (3.2(3)). We do this,
perhaps for a smaller S than the one constructed above.

First, we construct the map 4> from (3.1(7)). Recall the notation S' = Vn(v+N)
from Step 4. Let m be the maximal ideal of v E O(S'). There is an exact sequence
of (locally finite) H -modules

For each u EGal, we can define an automorphism QtY of 5' (or 5) via ll'a = 8;1 0 a.
We obtain an automorphism of 0(5') which leaves m and m2 fixed (since QO'V = v
for all Cf). As in the proof of (3.3), one may find an H -stable splitting of (*) such
that that (TvS)· C m is stahle undereach 00" The composite (TvS)- ~ m~ 0(5')
induces a morphism S --+ Tv(S). H we then define k-structures on (TvS)1!H and
G *H (TvS) via

and

respectively, then the maps in (3.2(3)) are defined over k.
Let B denote the points in 8 at which either S is not smooth or ,p is not etale.

Then B is Zarlski-closed, H-stable, and stahle under each (ta' Let / E 0(81!H)k
vanish on B. H we replace S by {8 ES: /(s) 1= O}, then the new S satisfies all the
requirements of the theorem. This concludes the proof of (3.2).•

COROLLARY 3.4: Under the hypotheses of (3.2), let F = 1rV,~ (-7I'v,a(v)). Then
there is a G-equivariant retraction F --+ G . v which is defined over k.

PROOF: Using the notation from (3.1), we have F ~ 1rS,H(V) X Fe SI!H x U.
"'v,a(v) U/G

By restricting the isomorphism SI!H x u ~ G *H S, we see that F ~ G *H F',
U/G

where F' = 1rs,k (1rS,H(V)). By (3.2), the (equivariant) retraction (G *H 5' --+

GIH ~ G· v, [g, s'] .-+ [g, uD ia defined over k.•

REMARK 3.5: HG· v contains a k point, we mayassume that u E Vk and Sa = e
for all Cf. We then have k-structures on H and S via. the inclusions of H into G and
Sinto some G-module over k, and the k~Btructureson G *H S and SI!H described
in the last theorem, come in the obvious way from the k-structures 00 G, H, and
8.

HG· v cootains 00 k-points, we can at least say the following: the map n ~
8;1 . Cf(n) gives a k-structure on SH. From it and the k-structure on GIH ~ G· v we
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obtain k-structures on G *H (v + SH) ~ GIH X SR and (S/IH)(H) ~ SH, and these
k-struetures coincide with the ones eoming from the inc1usions G *H (v + SH) '--+

G *H (v + S) and (SI/H)(H) ~ SI/H.
Suppose that v. E Vk lies on a Zariski-c1osed orbit, and has isotropy H. We

assume that S (as in (3.2)) lies in some G-module defined over k. We see that
the set of k-points of G *H S is a disjoint union of the subsets [Gkgi, Si], where
{gi} is a set of representatives of Gk\G"(H)IH and where Si = {n ES: u(n) =
0'(9;-1)9i . n} = g;-l . (9i . S)It:. The set [Gk9i, Si] is isomorphie to Gk *H~ (gi' S)1t:
(where Bi = giH g;l), and represents the k-points of G *H N whieh retract to the
Ge-orbit Ge' gi' v under the map G.H N --t GIH.•

§4. 1iI .strata in Z.
In this seetion, we use a partial order on the set of homogeneous spaees with

compatible k-struetures (due to Springer [Sp]) to stratify Z = (V/IG)It:.
Let 1{.1 (resp. 1{.A) denote the disjoint union of tbe sets 1{.1 (k, G, (H)) (resp.

1{.1(k, G, (H))o) over all conjugacy c1asses of reductive subgroups of G. We define
a partial order on 1{.1 a.s follows: if 8 is an element of Z(k, G, H) and t is an
element of Z(k, G, K), we dec1are that [8] ~ [tl if there exists a G-equivariant map
(G I H, s) --+ (GI K, t) which is defined over k.

LEMMA 4.1: For H, K, 8, t as above, if [8] ::; [tl, then there exists K' E (K) such
that

(1) H c K'
(2) s : Ga! --+ G is an element of Z(k, G, K')
(3) s E Z(k, G, K') and t E Z(k, G, K) give tbe same element of 'H1(k, G, (K)).

PROOF: Since the map 4J : GIH --t GIK is G-equivariant, it must be of the form
gH .-. 9 . goK, where.H c goKgö1

• H we follow 4J by the G-isomorphism

GIK
gK

GIgoK9ö1

-1 K-1ggo . 90 90

(and give GIgo K 9Öl the unique k-structure such that 8 is defined over k), we 0 btain
the G-equivariant map

GIB -+ GIgoKgö1

gH 1---+ 9' 90K9ö1

defined over k. H we let K' = 90Kgö1, then the claims of the lemma are easily
verified.•

We remark that if [8] E 'HA, [tl E 'H1 , and [8] < [tl, then [tl E 'HA.
Now let V be a G-vanety defined over k, and let 1f', V/IG, Z and X be as in

§l. We define W : Z --+ 'Ht, to be the funetion which gives, for each z E Z, the
compatible k-structure on the unique Zariski-closed orbit in 1f'-I(Z). H [s] E 'H1, let
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Zr.] = q,-1([S]) H [s] E 'HA, we also write xr,,] for zr.] (this is justified by (1.1(4))).
Thus

Z(H) := (V//G)(H) n Z = U Z[,,]
[,,] E'H1 (k,G,(H»

X(H) := (V//G)(H) n x = U X[,,].
["]E'H 1 (k,G,(H»o

For s E Z(k, G, H), let

V H = {v E V : h . v = v for all h E H}

V(H) = {v E yH : v has isotropy H}

V
ll

H = {v E yH : O'(v) = Scr • v for all 0' EGal}

V,,(H) = y(H) n y.H.

The following proposition contains well-known consequences of (3.1):

PROPOSITION 4.2: (see [SchI, pg. 56]) Let Y be a G-vanety, and let (H) be an
isotropy dass of V.

(1) V(H) is Zariski-open in yH.
(2) All orbits intersecting V(H) are Zariski-closed.
(3) 7l" (V(H») = (V//G)(H)'
(4) 7r(VH) = U(HI)~(H) (V//G)(H'):> Zar Cl (V//G)(H)' with equality if V is a

G-module.•

We obtain the following analogues over k:

PROPOSITION 4.3: Let V be a G-variety, defined over k, and let (H) be an isotropy
dass of V. Let 8 E Z(k, G, H).

(1) v ~ 8;1 . u(v) gives a k-structure on V H with k-points V"H.

(2) 7r (Vll(H») = Z[ll]'

(3) 7r (V"H) = U["'J~["] Z[,,/].
(4) H V is aG-module, then Z[,,] i= 0. Furthermore, for any field topology on k,

Cl (Z[ll]) :> U[ll'];?:["] Z["'J' and if (H) is the principal isotropy class of V, then
X(H) is dense in X.

PROOF: (1) and (2) are trivial. We prove (3). By (4.1), if [s'] ~ [s], we may
assume that s E Z(k, G, H), s' E Z(k, G, H' ) where H c B' and Si = S as maps
from Ga! to G. The inclusion (:» follows from (2). Conversely, if Vi E V"H, let v
denote the image of v' under the retraction described in (3.4). (Here G . v is the
Zariski-closed orbit in the Zariski-closure of G . v'.) Then v E Vll

H , and the map
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«GIH, s) -+ G ·v, gH 1-+ 9 'v) ia G-equivariant and defined over k. HG· v is of type
[s'], this shows that [s'] ;::: [s]. Since ?r(v') = 1l'"(v) E Z[./), we obtain the inclusion
(c). This proves (3).

To prove (4), we need the following easy fact: Given any (nondi.Jcrete) topology on
an (infinite) field k, the complement 01 the zero .Jet 01 a finite numher 01 polynomiaz"
on k n

, i" dense in k n . To prove the first part of (4), we note that Y6H ~ k n for
some n; also, y(H) C yH is stable under the action of Ga! in (4.3(1)) (under
(1 EGal, y(H) is mapped to y(.;t. 17(H) .•O') = V(H»). Hence by (4.2(1)), V.(H) is the
complement in kn of the zero set of a finite number of polynomials with coefficients
in k. In particu1ar, it is not emptYj hence Z[17] = 1l'"(V.(H») is nonempty. H k has a
field topology, then by the above fact,

U Z[.,] = 1r(y.H) = 1r(Cl(V.(H»)) C Cl (1r(V.(H»)) = Cl (Z[6])'
[.']~[.]

To prove the last part, we consider Yk n1r-
I (V//G) \ (V//G)(H») and again apply

the above remark.•

§5. Normal types.
H V is a .Jmooth G-varlety, then as is weIl known, V //G may be given a strati

fication finer than the one by isotropy type. To a point z E V//G, one associates
(the isomorphism class of) the normal bundle to the Zariski-closed orbit in 7l'-I(Z).
H V is aG-module, then the two stratifications of V //G coincide. In this section,
for smooth G-vaneties defined over k, we discuss the stratification of Z by "normal
type with k-structure."

For us, an ll.'"ociated bundle will mean a G-variety of the form G *H N, where H
is a reductive subgroup of G and N is an H -module. (H is the G-fibration associated
to N, coming from the prlncipal H-fibration G -+ GIH.) H G is de:fined over k,
then a compatible k-.Jtructure on G.H N is a k-structure on (the affine variety)
G *H N such that the action of G on G.H N, the projection of G *H N onto the
zero-section {[g,O] : 9 E G} ~ GIH, and addition and scalar multiplication on
sections, are all defined over k. A morphism G *Ht NI -+ G *H2 N 2 is a morphi.Jm
01 aJ"ociated bundle.J if it is a G-equivariant morphisID of varietiesj if it commutes
with projection onto the zero-fibers; and if it is linear on fibers. Two compatible k
structures on G.H N are equivalent if they differ by an automorphism of G *H N.
Let M denote the set of (equivalence classes of) compatible k-structures on G
associated bundles.

REMARK 5.1: Let G' = NcH X GL(N) and H' = {(h,h) E G' : h EH}. Then
Aut (G *H N) = Nc,H' IH'. In particular, Aut (G. H N) is reductive.

We arrive at the same situation as (2.1). From any compatible k-structure on
G *H N, we can obtain a k-structure on Aut (G. H N), and then by [SeI, Prop. 5,
pg. 111-6]:
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PROPOSITION 5.2: 11.1(k, Aut (G *H N)) parametrizes the equivalence elasses of
compatible k-structures on G *H N .•

Specifical1y, given a compatible k-structure on G *H N, a E Gal acts by the rule

[g, n] ~ [a(g )8 17 , m17,n],

where (a t-t S17)E Z(k,G,H), and where {m17,n} satisfies

(1) m 17,n E N.
(2) m 17,Anl +n2 = a(). )ma,nl + m 17,n2 for a1l AE k and nI, n2 E N.
(3) m171,mcr2.n = h . m ala2 ,n if g171tT2 = al (gtT2) . gtTl . h.

REMARK 5.3: We have already encountered compatible k-structures on associated
bundles G *H N in Step 3 of the proof of (3.2). We,show that all k-structures arise
in this way. Let G *H N C V be a G-equivariant embedding of G *H N in a G
module, defined over k (1.2). (Note that N C-.+ G *H N C V.) Using the notation
from the last paragraph, we see that a(n) = a[e, n] = [S17' mtT,n] = Sa . ma,n for all
n E N (i~ particular, a(N) = stT . N). Hence mtT,n = S;1 . a(n), and finally,

as in (3.2).•

Suppose that V is a smooth G-variety, defined over k. We have a function A :
Z -+ M which assigns to each z E Z, the isomorphism elass of the normal bundle
(with k-structure) to the Zariski-closed orbit in 11"-1 (z). We obtain a stratification

Z = U..\EM Z~.

PROPOSITION 5.4: Let V be a smooth G-variety, defined over k. The stratification
of Z by M is a refinement of the stratification by 11.1 • H V is aG-module, then the
two stratifications coincide.

PROOF: The first part is trivial: if two Zariski-elosed, Gal-stable orbits in V have
k-isomorphic normal bundles, then the zero-sections are k-isomorphic.

We prove the second part. Suppose we have ZI, Z2 E Z which lie in the same
11.1-stratum. We must show that they have the same normal type. Suppose we
have VI, V2 E V, lying on Zariski-closed orbits and having isotropy H, such that
11"(vd = Zi and a(Vi) = Sa . Vi for sorne s E 11.1(k, G, H). Let Ti C V denote the
tangent space to G . vi; we lmow that a(T;) = StT • Ti for all a EGal. Hy (3.3),
we may pick H-stable complements Ni to Ti, with a(N;) = StT • Ni for all a. As in
the proof of (3.3), we may define a k-structure on HornH(N1 , N2 ), and then elearly
there is a k-point in HOffiH(N1 , N2 ) which is a nonsingular linear transformation.
In this way we obtain a map () : Nt --t N1, which is H-equivariant and commutes
with each s;1 0 a. Finally, the map (G *H NI --t G *H N2 , [g, n] t-t [g,8(n)]) is an
isomorphism which is defined over k.•

§6. Complete ftelds.
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In this section we consid~r, for the more part, only fields of characteristic zero
which are complete under a (nontrivial) real absolute value. We use elementary facts
about analytic manifolds and analytic groups over such fields (see [8e2]). We do
not distinguish between equivalent absolute values on a field. We need the following
facts:

PROPOSITION 6.1 (see [Cas]): Let k be complete under a nontrivial absolute value.
H the absolute value is archimedean, then k = R or C (with the standard absolute
value). H the absolute value is nonarchimedean, then the following are equivalent:

(1) k is locally compact.
(2) {o: E k : Jol ~ I} is compact.
(3) The value group of I1 on k* is discrete, and the residue class field is finite.
(4) k is a finite extension of Qp (p a prime). I

An example of a complete but not locally compact field is k«T)), the field of
formal Laurent senes over an (infinite) field k, where IE~n aiTi I= 1/2n if an f:. O.

We also consider "fields of type (F)" (we still only consider characteristic zero).
These are defined by tbe following equivalent statements [Se!]:

(1) k has only finitely many extensions of a given degree.
(2) 1{,l(k, G) is finite for all finite groups G.
(3) 1{,l(k, G) is finite for all (affine) algebraic groups G.

Examples include R, p-adic fields, and K«T)), where K is algebraically closed.
Type (F)-fields have the following properties:

(1) Any affine algebraic group G has only finitely many inequivalent k-form's.
(2) H G is an algebraic group defined over k, then the set of k-points of auy

homogeneous 8pace defined over k, consists of finitely many GI;-orbits.

We begin by recalling a theorem of Kempf which is valid for all perfect fields k:

THEOREM 6.2 [Ke]. Let V be aG-module, deilned over k. Suppose tbat tbe G
orbit oI v E Vk is not Zariski-c1osed. Tben tbere is a homomorpmsm ..\ : -,;* --.. G,
defined over k, such tbat limt-o A(t) . v exists and lies on a Zariski-c1osed orbit.•

From now on, we 8Ssume that k is complete under a real absolute value.

PROPOSITION 6.3: H v E Vk, then G . v is Zariski-closed if and only if Gk . v is
closed (in the k-topology). Each Gk-orbit in (G· V)k is open and closed in (G· V)k.

PROOF: H Gk . v is closed, then G . v is Zariski-c1osed by (6.2). (For this, k need
not be complete.)

Conversely, if G·v is Zariski-c1osed, tben (G'V)k is c1osed. Consequently (G'V)k =
UiEI GI;' Vi, a union of GI;-orbits. Since the map (Gk -+ (G· V)k,g ~ g' Vi) has
everywhere surjective differential, it follows that each GI; . Vi is open in (G . V)k.
Hence each Gk . Vi is closed in (G· V)k and therefore closed in Vk .•

PROPOSITION 6.4: H v E Vk, then Cl(Gk' v) contains a unique closed Gk-orbit.
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PROOF: The existence follows from (6.2) and (6.3). By (3.4), (3.5), and (6.3), we
see that 1r-1Crr(v)) n VI;; is a union of open subsets, each containing exactly one
closed GI;;-orbit; hence the uniqueness. I

Let VI;;//GI;; denote the set of closed Gk-orbits in VI;;. By (6.4), there is a map
p : Vk -+ VI;;//GI;; which is constant on GJ;-orbits. We give VI;;//GJ; the quotient
topology. A set F C Vk is GI;;-3aturated if p-l(p(F)) = F, or equivalently, if F
eontains v whenever F eontains a point in the unique closed GI;;-orbit in the closure
of GI;;' v.

COROLLARY 6.5: We obtain a (continuous) map P: VI;;//Gk -+ X, whieh identifies
elosed GI;;-orbits which lie on the same Zariski-elosed G-orbit.•

REMARK 6.6: For any U c X, 1r-1(U) n VI. is GJ;-saturated.•

THEOREM 6.7. Let V be a G-variety, defined over k, and let (H) be an isotropy
elass of V such that Z(H) f 0. Let,p E 1i1 (and A E M, jf V is smooth) be such
that the eorresponding strata are nonempty subsets of Z(H)'

(1) Given v as in (3.2), there are neighborhoods U of7rs,H(v) in (8//H)I;; and U'
of1rv,a(v) in (V/IG) I;; = Z (in the k-topology), wbicb are analytieally isomor
phie. Furthermore, the map G *H 8 -+ V yie1ds a G-equivariant bijeetion
1I"Ö~H s,a(U) ~ 1rv,~(U') commuting with the action of Gal. The map re-

striets to a GI;;-equivariant analytic isomorphism 7rä~HS a(U) n (G *H 8)1. ~,
1rv~(U') n VJ;, and these sets are GJ;-saturated.,

(2) '1' js loca11y constant on Z(H), and if V is smooth, then A is also locally
constant on Z(H)'

(3) Cl (ZtjJ) c U~~~ Z,p" wjtb equality if V is aG-module.
(4) H V is smooth, tben Z(H), Z t/J, and Z). are analytic manifolds, of dimension

equal to tbe dimension of (V//G)(H) B8 a variety over k.
(5) X is dosed in Z.

PROOF: The first part of (1) is true ainee the wap (8//H)k -+ (V//Gh: is etale
at 1r'S,H(V). Note that by (3.1) and (3.2), the morphism G *H 8 -+ V restriets

to a G-equivariant bijeetion G *H ('1rs,k(U)) -+ 7I'"V,~(U') which commutes with

the action of Gal. With (6.6), this proves the rest of (1). Since there is a G
equivariant retraction of G.H S to the zera-section, the same is true for 1rv~(U') ~

G *H (1Ts,k(U)) C G *H S. It follows that 'Ir roust be constant on U' n Z(~}. hence

locally constant on Z(H)' By (5.4), A must be locally constant on Z(H)' Also,
we have shown that every point in Z has a neighborhood on which W can only
increase; this proves the first part of (3). The second part follows from (4.3(4)).
Next, we prove (4). We have seen that Ui: n (V//G)(H) ~ UI;; n (8//H)(H)' and
near 1rS,H{V), the latter is analytically isomorphie to a neighborhood of 1rTv S,H{O)
in the k-points of (Tv8//H)(H)' However, (TvS//H)(H) ~ (TvS)H ~ k for sorne
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n. Henee U~ n (V//G)(H) is analytieally isomorphie near 7rv,o(v) to kn
, and (4)

follows. Finally, (5) follows from (I): if z E Cl (X), then the neighborhood of U' of
z desenbed in (I) interseets X. Using (1), there is a retraction defined over k, to
the closed orbit in 7r-1(z), of a set in V containing k points. Hence 7r-

1 (z) contains
k-points, and z EX. •

THEOREM 6.8. Let v E VI. lie on a c10sed orbit, and let H and S be as in (3.2).
Then there is an open, Gk-saturated neighborhood of v E VI. which is isomorphie
to an open, Gk-saturated neighborhood of [e, v] in GI: *H" Sk. H V is smooth, then
the same is true if SI: is replaced by {TvS)I:.

PROOF: Hy (6.7(1)), v has an open, Gk-saturated neighborhood which is isomorphie
to an open, Gk-saturated set A c (G *H S)I:. By (3.5), {G *H S)k is a union of
subspaces [Gk9i, Si] which retract to the different GI:-orbits in {G . V)k; by (6.3),
these spaces are open in {G *H S)I:, henee they must be GI:-saturated. The one
containing [e, v] ia isomorphie to GI: .H" SI:' We take An GI: .H" Sk as the desired
neighborhood of [e, v] in GI: *H" Sk. Similar arguments and (3.2{3)) eomplete the
proof for (TvS)J; .•

REMARK 6.9: We have ahown that if v E VJ; ia on a cloaed orbit, then {G· V)k has a
Gk-saturated neighborhood, equal to the union of open, Gk-saturated sets Ui, with
each Ui eontaining exactly one Gk-orbit in (G· V)k' and having the form deseribed
in (6.8).•

COROLLARY 6.10: VI://Gk ia Hausdorff.

PROOF: Let Zl =f:. Z2 E Vk//G k ; we need diajoint open sets eontaining these points.
H P{Zl) =f:. P{Z2), the result is clear. H P{Zl) = P(Z2), the result follows from
(6.9).•

We gjve a stratification of Vk //Gl" using ideas from §2. H H ' E C{R) for some
H, let [H'] denote its Gk-eonjugacy class. Let C = UH[H]; that ia, C consiats of
the disjoint union of al1 Gk-conjugacy classes of reductive subgroups of G which are
defined over k. We define a partial order on C by declaring that [H] ::; [H'] if there
exists R" E [H'] such that H c H". Clearly we may use C to stratify Vk//Gk; we
denote a typieal stratum by (Vk//Gk)[R)'

REMARK 6.11: This stratifieation is a refinement of the stratification of X by 1i~,

pulled back to Vk//Gk via the map P. We give an example to show that it may
indeed be finer. Let G = SL(2, C), GR = SL(2, R), and let H be the normalizer of
the set of diagonal elements of G. Computation shows that 1{1 (R, G) and 1{1 (R, H)
have one and two elements, respeetively. Hy (2.6), C(H) has two conjugacy classes,
even though 1{1 (R, G, H) has only one element (this ia clear from (2.2) since H is

self-normalizing). Specifieally, if 91 = (~ ~) and 92 = (~j~ ~j1), then 91 H and

g2H are real points of (G/ H, 1) with G-i80tropy groups which are not GR-conjugate
(and therefore 91H and 92H lie on different GR-orbits).•
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LEMMA 6.12: Let V be a G-vanety, defined over k.

(1) P(VII
H) = U[H')2:[H] (Vl:§G'.)[H')·

(2) p(VII(H») = (Vk§Gl:)[H).

(3) Cl (Vl:§Gk)[H]) C U[HI]~[H] (Vk//Gl:)[H']'

PROOF: Part (1) is proved easily using (3.4). Part (2) is immediate, and (3) follows
from (6.8).•

THEOREM 6.13. Let V be aG-module, de1ined over k. Let (H) be an isotropy dass
ofV and suppose tbat we may cboose H to be deiined over k. Tben (Vl://Gk)[H] =1= 0,
and Cl (Vl://Gl:)[H] = U[H/]~[H] (Vk//Gl:)[HI].

PROOF: We need ooly show the reverse inclusion in (6.12(3), and this follows from
(6.12) as in the proof of (4.3(4» .•

PROPOSITION 6.14: Let k be a complete field of type (F). Let V be aG-module,
defined over k, where G acts effectively on V. H {Zi} C X converges to z, then
for some subsequence of {Zi}, there are points Vi E VA: on closed orbits such that
7r(vd = Zi and {Vi} converges. Furthermore, each Vi has the same isotropy group,
and if V = lim Vi, then V lies on a closed orbit.

PROOF: Use induction on dirn V. Since k is of type (F), the '}-ll-stratification of
Z is finite, and we mayassume that all Zi lie in a single stratum. Hence there is
a (Gal-stable) subgroup H C G such that {Zi} C 7r(Vk(H»). H H = G then the
proposition is trivial. We suppose tha.t H =1= C, so that V H =1= V. We consider
the map a : V H 11NGH ~ V§G, and see tha.t for each Zi, we may pick a point
z: E (VB //NaH)k such that a(zD = Zi.

By a theorem of Luna [Lu3, §2], a is finite. We claim that by refining the
sequence, we may assume tha.t {z:} converges to BOme Z' E a-1(z). More generally,
let a : X ~ Y be a finite map of affine varieties over k, and suppose that {Yi} C Yk
converges to Ya. FUrther suppose that there exists {Xi} C Xl: with a(Xi) = Yi. Hg E
O(X)k, then there exists a polynomial I(T) = 2:;=1 aj(y)Tj (where aj E O(Y)k
and an = 1) such that I(g) = 0 in O(X). We may write I(T) = 11(T) - f2(T),
where 11 (T) = 2:;=1 aj(Yo )Tj, 12(T) = 2:j~ll bj(y)Tj and bj(y) = aj(Ya) - aj(Y)·
ln some finite extension of k, we may factor 11 (T) as [1;=1 (T-tj). Since I(g(x» = 0
for all x EX, we conclude that for all i,

n n-1

II(g(Xi) - tj) = L b;(ydgj(Xi).
j=l ;=1

From (*), it is clear that {g(Xi)} is bounded. But then the right side of (*) ap
proaches 0 as i ~ 00, and hence some infinite subsequence of {g(xd} approaches
one of the t/s. We may then repeat this procedure to obtain a subsequence (still

16



denoted {Xi}) such that {g( Xi)} converges for all 9 is a finite set of generators of
O(X)k' It follows that {Xi} converges.

By induction, we obtain points Vi E viH
) and V E VkH on closed NaH-orbits,

such that 7rVH,NaH(vd = zi, and hence '1rV,a(Vi) = Zi. By [Lu3, §3], since NaH 'Vi

and NaH· V are Zariski-closed, so are G . Vi and G . v.•

THEOREM 6.15. Let V be a G-vanety denned over k, wbere k is complete and oE
type (F). H 8 c Vk is dosed and Gk-stable, then 7t"(8) C X is dosed.

PROOF: By embedding, we mayassume that V is aG-module, and the result then
follows from (6.14).•

THEOREM 6.16. Under tbe same bypotbeses B.S in (6.15), it follows tbat peS) is
dosed in Vk//Gk.

PROOF: Let {zd -. z in Vk//GI;;, with Zi E P(S). We must show that z E p(S). By
continuity, {P(Zi)} --+ P(z). Let U c Vk//GI;; be an open set containing all points
of P-1(P(z)) except for z, and avoiding a neighborhood of Z (this is possible by
(6.9)). Let S' = S \ p-l(U); it is closed and GI;;-stable. By (6.15), 7r(S') is closed
in X, hence P(z) E 11"(8'). By construction, z E p(S') C peS).•

TH EOREM 6.17. With tbe same bypotheses on k, let v E VI;; lie on a c10sed orbit.
Suppose tbat U C Vk is open, GI;;-stable, and contains v. Tben there exists v E
U' C U such tbat U' is open and Gj;-saturated.

PROOF: Let S = Vk \ U. It is closed and Gk-stable. By (6.16), peS) is closed, hence
p-l(p(S)) n VA; is closedj also it ia Gk-saturated and does not contain v. Let U' be
its complement in Vk.•

REMARK 6.18: (6.3), (6.4), (6.7(1)), and (6.8) were proved by Luna in [Lu2] for
k = R, and our proofs are essentially the same. In the same paper one will find a
rather delicate proof of (6.15). Completely different proofs of several results of this
section, including (6.15), using a. reault of Kempf and Ness, can be found in papers
of Schwarz [Sch2] (for k = C) and Richardson & Slodowy [RS] (for k = R).•
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