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Introduction

Archimedean local L-factors were introduced to simplify functional equations of global L-functions.
From the point view of arithmetic geometry these factors complete the Euler product representa-
tion of global L-factors by taking into account Archimedean places of the compactified spectrum
of the global field. A construction of non-Archimedean local L-factors is rather transparent and
uses characteristic polynomial of the image of the Frobenius homomorphism in finite-dimensional
representations of the local Weil-Deligne group closely related to the local Galois group. On the
other hand, Archimedean L-factors are expressed through products of Γ-functions and thus are
analytic objects avoiding simple algebraic interpretation. Moreover, Archimedean Weil-Deligne
groups are rather mysterious objects in comparison with their non-Archimedean counterparts. In
a series of papers [GLO1], [GLO2], [GLO3], [GLO4] we approach the problem of the proper inter-
pretation of Archimedean L-factors using various methods developed to study quantum integrable
systems and low-dimensional topological field theories. As a result we produce several interest-
ing explicit representations for Archimedean L-factors and related special functions revealing some
hidden structures that might be relevant to the Archimedean (also known as ∞-adic ) algebraic
geometry. Some of our considerations are close to the approach advocated by Deninger [D1], [D2].
Also equivariant symplectic volumes of the space of maps of a disk into symplectic manifolds were
previously discussed in [Gi1], [Gi2] in connection with the Gromov-Witten theory.

1 Archimedean Hecke algebra

Let K be a maximal compact subgroup of G = GL(`+ 1,R). Define spherical Hecke algebra HR =
H(GL(` + 1,R),K) as an algebra of K-biinvariant functions on G, φ(g) = φ(k1gk2), k1, k2 ∈ K
with the multiplication given by

φ ∗ f(g) =
∫
G
φ(gg̃−1) f(g̃)dg̃. (1.1)

To ensure the convergence of the integrals one usually imposes the condition of compact support on
K-biinvariant functions. We will consider a more general class of exponentially decaying functions.

By the multiplicity one theorem for principle series representations of GL(` + 1,R) there is a
unique smooth spherical vector 〈k| in a principal series irreducible representation Vλ = IndGB− χλ
where χλ is a character of a Borel subgroup B−. The action of a K-biinvariant function φ on the
spherical vector 〈k| in Vλ is reduced to multiplication by a character Λφ of the Hecke algebra:

φ ∗ 〈k| ≡
∫
G
dgφ(g−1) 〈k|πλ(g) = Λφ(λ)〈k|, φ ∈ HR. (1.2)

∗Talk given by the second author at Arbeitstagung 2009, MPIM, Bonn.
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Define gl`+1-Whittaker function Φgl`+1

λ as a matrix element in a principle series irreducible repre-
sentation Vλ satisfying the covariance property

Φgl`+1

λ (kan) = χN (n) Φgl`+1

λ (a), (1.3)

where kan ∈ KAN− → G is the Iwasawa decomposition. We parametrize the representations Vλ
of GL(`+ 1,R) by vectors λ = (λ1, · · · , λ`+1) in C`+1. Whitaker functions play an important role
in the theory of quantum integrable systems providing explicit solutions of quantum Toda chains.
Let us define a related function

Ψgl`+1

λ (x) = e−〈ρ,x〉 Φgl`+1

λ (x), (1.4)

where x = (x1, . . . , x`+1) ∈ R`+1, ρ ∈ R`+1 , with ρj = `
2 + 1 − j, j = 1, . . . , ` + 1 and we use the

standard orthogonal pairing 〈 , 〉 on R`+1. The functions (1.4) are common eigenfunctions of a ring
of commuting differential operators generated by coefficients of a polynomial

tgl`+1(λ) =
`+1∑
j=1

(−ı)jλ`+1−jHgl`+1

j (x, ∂x), (1.5)

where the first two operators are given by

Hgl`+1

1 = −ı
`+1∑
i=1

∂

∂xi
, Hgl`+1

2 = −1
2

(Hgl`+1

1 )2 − 1
2

`+1∑
i=1

∂2

∂xi
2 +

∑̀
i=1

exi−xi+1 . (1.6)

The last differential operator is a quantum Hamiltonian operator of gl`+1-Toda chain. Commuting
differential operators (1.5) provide an action of the center of the universal enveloping algebra
U(gl`+1) on the matrix elements satisfying (1.3). We have

tgl`+1(λ) Ψgl`+1

λ (x) =
`+1∏
j=1

(λ− λj) Ψgl`+1

λ (x). (1.7)

The following version of the Givental integral representation [Gi3] for gl`+1-Whittaker function was
proposed in [GKLO].

Theorem 1.1 The following integral recursive representation of gl`+1-Whittaker functions holds

Ψgl`+1

λ1,...,λ`+1
(x`+1) =

∫
R`

∏̀
i=1

dx`,i Q
gl`+1

gl`
(x`+1, x`|λ`+1)Ψgl`

λ1,...,λ`
(x`), (1.8)

Q
gl`+1

gl`
(x`+1, x`|λ`+1) = exp

{
λ`+1

( `+1∑
i=1

x`+1,i −
∑̀
i=1

x`,i

)
−
∑̀
i=1

(
ex`+1,i−x`,i + ex`,i−x`+1,i+1

)}
,

where xk = (xk,1, . . . , xk,k) and we assume that Qgl1
gl0

(x11|λ1) = eλ1x1,1 .

Note that due to (1.2) any left K-invariant matrix element is an eigenfunction with respect to the
action of any φ ∈ HR. Thus we have for the Whittaker function

φ ∗ Φgl`+1

λ (g) = Λφ(λ)Φgl`+1

λ (g), φ ∈ HR, (1.9)
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Theorem 1.2 Let φQB(λ)(g) be a K-biinvariant function on G = GL(`+ 1,R) given by

φQB(λ)(g) = 2`+1|det g|λ+ `
2 e−πTrgtg. (1.10)

Then, the action of φQ0(λ) on the Whittaker function Φgl`+1

λ (g) (defined by (1.3)) descends to the

action of an integral operator Qgl`+1

B (λ) with the kernel

Qgl`+1

B (x, y|λ) = 2`+1 exp
{ `+1∑
j=1

(λ+ ρj)(xj − yj)− π
∑̀
k=1

(
e2(xk−yk) + e2(yk−xk+1)

)
− πe2(x`+1−y`+1)

}
,

where x = (x1, . . . , x`+1) and y = (y1, . . . , y`+1). The corresponding eigenvalue(
φQB(λ) ∗ Φgl`+1

λ

)
(g) = LR(λ|λ) Φgl`+1

λ (g), (1.11)

is given by

LR(λ|λ) =
`+1∏
j=1

π−
λ−λj

2 Γ
(λ− λj

2

)
. (1.12)

The integral operator Qgl`+1

B (λ) is an example of the Baxter operator which provides a key tool
to solve quantum integrable systems. Its construction for quantum gl`+1-Toda chains and its
interpretation as an element of a spherical Hecke algebra HR was given in [GLO1].

The eigenvalues (1.12) can be considered as elementary building blocks from which general
Whittaker functions can be constructed via Mellin-Barnes representations. Consider a simple
example of the degenerate Whittaker function for which an analog of the Givental representation
is given by

Ψgl`+1

λ (x) =
∫
R`

∏̀
k=1

dxk,1 eF(x1,1,...,x`,1,x`+1,1), (1.13)

where x := x`+1,1 and

F(t) = λ1x11 +
∑̀
k=1

λk+1(xk+1,1 − xk,1) − ex11 −
∑̀
k=1

exk+1,1−xk,1 .

The degenerate Whittaker function satisfies the following differential equation

{ `+1∏
k=1

(
− ∂

∂x
+ λk

)
− ex

}
Ψλ(x) = 0. (1.14)

Besides the Givental representation there exists a representation of the Mellin-Barnes type

Ψgl`+1

λ (x) =

σ+ı∞∫
σ−ı∞

dλ eλx
`+1∏
k=1

Γ (λk − λ) , (1.15)

where σ is such that σ < min {Reλj , j = 1, . . . , `+ 1}. Thus, basically, the degenerate Whittaker
function is given by an action of integral projection operator on a product of eigenvalues (1.12).

There is a p-adic analog Hp = H(GL(`+1,Qp), GL(`+1,Zp)) of the Hecke algebra HR. One can
define a Hp-valued function of an axillary variable such that its action by convolution on the p-adic
analog [CS] of the Whittaker function is given by the multiplication on a local non-Archimedean
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L-factor Lp(s). In [GLO1] we argue that (1.10) should be considered as an Archimedean analog
of the Hp-valued function in non-Archimedean case. In particular the corresponding eigenvalues
(1.12) are given by real Archimedean L-factors

LR(s|V,Λ) = det
V

π−
s−Λ

2 Γ
(
s− Λ

2

)
, (1.16)

where V = C`+1, s = λ and Λ is diagonal matrix with the diagonal entries Λj = λj . In the next
Section we provide a functional integral representation of the Archimedean L-factors (1.16). Taking
into account that general Whittaker functions can be constructed form L-factors this leads to a
functional integral representation of general Whittaker functions.

2 L-factors via equivariant topological linear sigma model

In this Section we demonstrate how local Archimedean L-factors (1.16) can be described in the
framework of the two-dimensional topological field theory. Precisely, we consider equivariant version
of type A topological linear sigma model on a disk D = {z| |z| ≤ 1} with non-compact target space
X = C`+1. The vector space C`+1 is supplied with a Kähler form and a Kähler metric given in
local complex coordinates (ϕj ,ϕj̄) by

ω =
ı

2

`+1∑
j=1

dϕj ∧ ϕ̄j , g =
1
2

`+1∑
j=1

(dϕj ⊗ dϕ̄j + dϕ̄j ⊗ dϕj). (2.1)

We also supply the disk D with the flat metric d2s = dzdz̄ = dr2 + r2dσ2, z = r eıσ. Let K
and K̄ be canonical and anti-canonical bundles on D. Let Map(D,C`+1) be the space of maps
Φ : D → X of the disk D to C`+1. Let TCX = T 1,0C`+1 ⊕ T 0,1C`+1 be a decomposition of the
complexified tangent bundle of C`+1. Now let us specify the field content of the topological sigma
model for X = C`+1. We define commuting fields F and F̄ as sections of K⊗Φ∗(T 0,1X) and of K̄⊗
Φ∗(T 1,0X) correspondingly. The anticommuting fields χ, χ̄ are sections of the bundles Φ∗(ΠT 1,0X),
Φ∗(ΠT 0,1X) and anticommuting fields ψ, ψ̄ are sections of the bundles K ⊗ Φ∗(ΠT 0,1X), K̄ ⊗
Φ∗(ΠT 1,0X). Here ΠE denotes the vector bundle E with the reverse parity of the fibres. Denote
by 〈, 〉 a natural Hermitian pairing on the spaces of sections of various bundles involved. We have
the standard action of U`+1 on V = C`+1 and an action of S1 on D by rotations σ → σ + α. The
action of G = S1 × U`+1 lifts naturally to the action on the fields (F, F̄ , ϕ, ϕ̄, ψ, ψ̄, χ, χ̄). Let Λ be
an image of an element of u`+1 in the representation C`+1. Let ~ be a generator of S1, v0 = ∂σ be
a corresponding vector field on S1 and Lv0 be the Lie derivative along v0.

Consider G-equivariant type A topological linear sigma model on D with the target space
X = C`+1 described by a G-invariant action functional

SD = ı

∫
Σ
d2z

(
〈F, ∂ϕ〉+ 〈F̄ , ∂ϕ̄〉+ 〈ψ̄, ∂χ̄〉+ 〈ψ, ∂χ〉

)
, (2.2)

The action is also invariant with respect to an odd transformation δG

δGϕ = χ, δGχ = −(ıΛϕ+ ~Lv0ϕ), δGψ = F, δGF = −(ıΛψ + ~Lv0ψ),

δGϕ̄ = χ̄, δGχ̄ = −(−ıΛϕ̄+ ~Lv0ϕ̄), δGψ̄ = F̄ , δGF̄ = −(−ıΛψ̄ + ~Lv0ψ̄).
(2.3)

Let us remark that δG can be considered as an infinite-dimensional analog of the de Rham differen-
tial in the Cartan model for equivariant cohomology. Observables in the topological sigma model
are given by δG-closed G-invariant functionals of the fields.
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Theorem 2.1 Let V = C`+1 be a standard representation of U`+1, Λ be the image of an element
u ∈ u`+1 in End(V ). Then the following identity holds

〈
eµOΛ,~

〉
D

= ~−
`+1

2 det
V

(
2
µ~

)−Λ/~
Γ(Λ/~), (2.4)

where OΛ,~ is given by

OΛ,~ =
ı

2

∫ 2π

0
dσ (−〈χ(reıσ), χ(reıσ)〉+ 〈ϕ(reıσ), (ıΛ + ~Lv0)ϕ(reıσ)〉)|r=1. (2.5)

The functional integral in the S1 ×U`+1-equivariant type A topological linear sigma model (2.2) in
the l.h.s. of (2.4) is defined using ζ-function regularization of Gaussian integrals.

Taking µ = 2/π, ~ = 1 and making the change of variables Λ → (s · id − Λ)/2 the correlation
function (2.4) turns into local Archimedean L-factor (1.16). Let us note that the correlation
function (2.4) for arbitrary µ and ~ can be considered as an Archimedean L-factor taking into
account freedom to redefine ε-factor in the functional equation for global L-functions.

The functional integral (2.4) can be interpreted as a S1×U`+1-equivariant symplectic volume of
the space of holomorphic maps of the disk D to C`+1. Let M be a 2(`+ 1)-dimensional symplectic
manifold with a symplectic form ω. Let G be a compact Lie group acting on (M,ω) and the action
is Hamiltonian with the momentum map H : M → g∗ to the dual g∗ to the Lie algebra g of G.
Then G-equivariant symplectic volume of M is defined as an the following integral

Z(M,λ) =
∫
M
eω+〈λ,H〉 =

∫
M

ω`+1

(`+ 1)!
e〈λ,H〉, λ ∈ g, (2.6)

where 〈 , 〉 is the paring between g and its dual g∗. The integral (2.6) is a finite-dimensional analog
of the functional integral in the l.h.s. of (2.4) where the observable (2.5) plays the role of the
equivariant symplectic form ωG = ω + 〈λ,H〉.

3 q-version of gl`+1-Whittaker function

Any local non-Archimedean factor Lp(s) can be represented as a trace of Frobenius homomorphism
acting in the direct sum of symmetric powers S∗V of some fixed representation V of the Galois
group. Similar representation of a non-Archimedean Whittaker function as a trace of Frobenius
homomorphism in finite-dimensional representations of Galois group is given in [CS]. These rep-
resentations provides an arithmetic interpretation of local non-Archimedean L-factors/Whittaker
functions. On the other hand Archimedean L-factors/Whittaker functions are analytic objects
avoiding an analog of such interpretation. To make the corresponding structure in Archimedean
case visible one can use a q-deformation of L-factors/Whittaker functions interpolating between
non-Archimedean (q = 0) and Archimedean (q → 1) cases. In this Section we recall a con-
struction [GLO3] of the q-deformed gl`+1-Whittaker function Ψgl`+1

z (p
`+1

) defined on the lattice
p
`+1

= (p`+1,1, . . . , p`+1,`+1) ∈ Z`+1. The q-deformed gl`+1-Whittaker functions are common eigen-
functions of q-deformed gl`+1-Toda chain Hamiltonians:

Hgl`+1
r (p

`+1
)Ψgl`+1

z1,...,z`+1(p
`+1

) = (
∑
Ir

∏
i∈Ir

zi) Ψgl`+1
z1,...,z`+1(p

`+1
), (3.1)

where

Hgl`+1
r (p

`+1
) =

∑
Ir

(
X

1−δi2−i1, 1
i1

· . . . ·X
1−δir−ir−1, 1

ir−1
·X

1−δir+1−ir, 1
ir

)
Ti1 · . . . · Tir . (3.2)
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Here the sum is over ordered subsets Ir = {i1 < i2 < . . . < ir} ⊂ {1, 2, . . . , ` + 1}, ir+1 := ` + 2.
We use the following notations

Tif(p
`+1

) = f(p̃
`+1

), p̃`+1,k = p`+1,k + δk,i, i, k = 1, . . . , `+ 1,

Xi = 1− qp`+1,i−p`+1,i+1+1, i = 1, . . . , `,

and X`+1 = 1. We also assume q ∈ C∗, |q| < 1. For example, the first nontrivial Hamiltonian has
the following form:

Hgl`+1(p
`+1

) =
∑̀
i=1

(1− qp`+1,i−p`+1,i+1+1)Ti + T`+1. (3.3)

The main result of [GLO3] is a construction of common eigenfunctions of quantum Hamiltonians
(3.2) satisfying the “class one” condition (important for arithmetic interpretations [CS]). Thus one
shall have

Ψgl`+1
z (p

`+1
) = 0, (3.4)

outside dominant domain p`+1,1 ≥ . . . ≥ p`+1,`+1. Denote by P(`+1) ⊂ Z`(`+1)/2 a subset of integers
pn,i, n = 1, . . . , ` + 1, i = 1, . . . , n satisfying the Gelfand-Zetlin conditions pk+1,i ≥ pk,i ≥ pk+1,i+1

for k = 1, . . . , `. In the following we use the standard notation (n)q! = (1− q)...(1− qn).

Theorem 3.1 Let P`+1,` be a set of p
`

= (p`,1, . . . , p`,`) satisfying the conditions p`+1,i ≥ p`,i ≥
p`+1,i+1. The following recursive relation holds:

Ψgl`+1
z1,...,z`+1(p

`+1
) =

∑
p
`
∈P`+1,`

∆(p
`
) z

∑
i p`+1,i−

∑
i p`,i

`+1 Q`+1,`(p`+1
, p
`
|q)Ψgl`

z1,...,z`
(p
`
),

where

Q`+1,`(p`+1
, p
`
|q) =

1∏̀
i=1

(p`+1,i − p`,i)q! (p`,i − p`+1,i+1)q!
,

∆(p
`
) =

`−1∏
i=1

(p`,i − p`,i+1)q! .

(3.5)

The representation (3.5) is a q-analog of Givental’s integral representation of the classical gl`+1-
Whittaker function given in Theorem 1.1 and turns into (1.8) after taking appropriate limit q → 1.

Proposition 3.1 There exists a C∗×GL(`+ 1,C)-module V such that the common eigenfunction
constructed in Theorem 3.1 allows the following representation for p`+1,1 ≤ p`+1,2 ≤ . . . p`+1,`+1:

Ψgl`+1

λ (p
`+1

) = Tr V qL0
∏`+1
i=1 q

λHi , (3.6)

Here zj = qλj , Hi, i = 1, . . . , `+ 1 are Cartan generators of gl`+1 = Lie(GL(`+ 1,C)) and L0 is a
generator of Lie(C∗).

Define a degenerate q-deformed gl`+1-Whittaker function as a specialization of the q-deformed
gl`+1-Whittaker function

Ψgl`+1
z1,...,z`+1(n, k) := Ψgl`+1

z1,...,z`+1(n+ k, k, . . . , k). (3.7)
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This degenerate q-Whittaker function is an analog of the calssical degeenrate Whittake function
(1.13) and has explicit representations analogous to (1.13) and (1.15)

Ψgl`+1
z1,...,z`+1(n, k) =

( `+1∏
i=1

zki

) ∑
n1+...+n`+1=n

zn1
1

(n1)q!
· . . . ·

z
n`+1

`+1

(n`+1)q!
,

=
( `+1∏
i=1

zki

) ∮
t=0

dt

2πı t
t−n

`+1∏
i=1

Γq(zit),

(3.8)

for n ≥ 0 and Ψgl`+1
z1,...,z`+1(n, k) = 0 for n < 0. Here we use a q-version of Γ-function

Γq(x) =
∞∏
n=0

1
1− qnx

=
∞∑
n=0

tn

(n)q!
.

Simialrly to (1.15) the q-version of degenerate Whittaker function is expressed through the q-
versions of a local L factor

Lq(s|V ) = det
V

Γq(qs−Λ), (3.9)

where V = C`+1 and Λ = (Λ1, . . . ,Λ`+1). Thus defined Lq-factors allow a representation as
a trace analogous to the representation (3.6) for Whittaker functions. The representation (3.6)
can be considered as q-version of the Shintani-Casselman-Shalika formula [CS] representing non-
Archimedean Whittaker function as trace of Frobenius over a finite-dimensional representation of
the local Galois group. Indeed in the limit q → 0 the Whittaker given in Theorem 3.1 reduces to a
character of an irreducible finite-dimensional representations of GL`+1 corresponding to a partition
p`+1,1 ≤ . . . ≤ p`+1,`+1

Ψgl`+1

λ (p
`+1

) = χ
gl`+1
p
`+1

(z) :=
∑

pk,i∈P`+1

`+1∏
k=1

z
(
∑k
i=1 pk,i−

∑k−1
i=1 pk−1,i)

k , (3.10)

where we set zi = qλi , i = 1, . . . , ` + 1 and the notation z = (z1, z2, . . . , z`+1) is used. Thus for
q = 0 (3.6) reproduces the non-Archimedean expression [CS]. In the next Sections we elucidate the
nature of the C∗ ×GL`+1-modules V apearing in (3.6).

4 q-Whittaker function and spaces of quasimaps

In this Section we provide an interpretation of the trace type representation (3.6) for the degenerate
q-Whittaker function (3.7) and an analog of (3.6) for Lq-factors (3.9). Consider the space Md(P`)
of holomorphic maps of P1 to P` of degree d. Explicitly, it can be described as a set of collections
of (` + 1) relatively prime polynomials of degree d, up to a common constant factor. The space
Md(P`) allows a compactification by the space of quasi-maps QMd(P`) = P(`+1)(d+1)−1 defined as
a set of collections of (`+1) polynomials of degree d, up to a common constant factor. On the space
QMd(P`) there is a natural action of the group C∗ × GL`+1 (and, thus, of its maximal compact
subgroup S1 × U`+1) where the action of GL`+1 is induced by the standard action on P` and the
action of C∗ is induced by the action of C∗ on P1. The space of sections of the line bundle O(n) on
QMd(P`) is naturally a C∗ ×GL`+1-module. Let T ∈ GL`+1 be a Cartan torus, H1, . . . ,H`+1 be
a basis in Lie(T ), and L0 be a generator of Lie(C∗). Let Lk be a one-dimensional GL`+1-module
such that HiLk = kLk, for i = 1, . . . , `+ 1. Cohomology groups H∗(QMd(P`),O(n))⊗ Lk have a
natural structure of C∗ ×GL`+1(C)-module. Let Md(C,C`+1) be a space of holomorphic maps of
C to C`+1 defined as a set of collections of (` + 1) polynomials of degree d and let Wd be a space
of polynomial functions on Md(C,C`+1).
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Proposition 4.1 For the C∗×GL`+1-character of the module Vn,k,d = H0(QMd(P`),Lk⊗O(n)),
n ≥ 0 the following integral representation holds

Tr Vn,k,d q
L0 e

∑
λiHi =

( `+1∏
i=1

zki

) ∮
t=0

dt

2πı tn+1

`+1∏
m=1

d∏
j=0

1
(1− tqjzm)

, (4.1)

where z = (z1, . . . , z`+1), zm = eλm, Hi, i = 1, . . . , `+1 are Cartan generators of gl`+1 = Lie(GL(`+
1,C)) and L0 is a generator of Lie(C∗).

Let us remark that the r.h.s. can be interpreted as a Riemann-Roch-Hirzebruch formula for G-
equivariant holomorphic Euler characteristic of the line bundle Lk(n) = Lk ⊗O(n)

χG(QMd(P`),Lk(n)) =
〈
ChG(Lk(n)) TdG(T QMd(P`)), [QMd(P`)]

〉
. (4.2)

using the standard model for equivariant K-theory of projective spaces

K(PN ) = C[t, t−1]/(1− t)N+1, KUN+1
(PN ) = C[t, t−1, z, z−1]

/N+1∏
j=1

(1− tzj) . (4.3)

Using this Proposition, q-deformed degenerate gl`+1-Whittaker functions can be expressed in terms
of holomorphic sections of line bundles on a space LP`+ defined as an appropriate limit of QMd(P`)
when d→ +∞. Geometrically LP`+ should be considered as a space of algebraic disks in P`.

Theorem 4.1 (i) Let Ψgl`+1
z (n, k) be a degenerate Whittaker function (3.7). Then the following

holds

Ψgl`+1
z (n, k) = lim

d→∞
Tr Vn,k,d q

L0 e
∑
λiHi =

( `+1∏
j=1

zkj

)∮
C

dt

2πı tn+1

`+1∏
i=1

Γq(tzi), (4.4)

where the integration contour C encircles all poles except t = 0.

(ii) The following expression for a q-version of the local L-factor (3.9) holds

Lq(s|V ) := det
V

Γq(qs−Λ) = lim
d→∞

TrWd
qL0 q

∑
λiHi , (4.5)

where V = C`+1 and Λ = (Λ1, . . . ,Λ`+1), Λj = s− λj.

Taking a limit d → ∞ at the level of underlying vector spaces Vn,k,d and Wd can be naturally
understood in terms of topological field theory interpretation of representation given in Theorem
4.1. In the following Section we provide such interpretation for q-deformed L-function (4.5).

5 Γq-function via equivariant linear sigma model on D × S1

In Section 2 we describe functional integral representation of a Γ-function as an equivariant symplec-
tic volume of the space of holomorphic maps D → C. According to the standard Correspondence
Principle in quantum/statistical mechanics such equivariant volumes provide asymptotics of the
partition functions of quantum theories. Applying this reasoning to the equivariant volume con-
sidered in Section 2 and using the standard path integral interpretation of quantum mechanics we
obtain the following functional representation of the q-version of Γ-function.
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Theorem 5.1 Consider a three-dimensional topological linear sigma model on N = S1 ×D with
the action

S = S0 +O, (5.1)

where

S0 = ı

∫
S1×D

d2z dτ
(
∂z̄χψ̄z + F̄z∂z̄ϕ+ ∂zχ̄ψz̄ + Fz̄∂zϕ̄), (5.2)

and

O =
ı

2
β

∫
∂N=S1×S1

dτ dσ (χ̄χ+ ϕ̄(~∂σ + 2πıβ−1∂τ + ıλ)ϕ). (5.3)

Then the functional integral with free boundary conditions defined using ζ-function regularization
is equal to

Z(t, q) =
+∞∏
n=0

1
1− tqn

= Γq(t), (5.4)

where t = e−βλ, q = e−β~.

Note that similar to the two-dimensional topological theory considered in Section 2 this three-
dimensional theory is also invariant with respect to odd transformations

δG0 ϕ = χ, δG0χ = −(~∂σ + 2πıβ−1∂τ + ıλ)ϕ,

δG0ψz̄ = Fz̄, δG0Fz̄ = −(~∂σ + 2πıβ−1∂τ + ıλ)ψz̄.

Finally note the the functional integral (5.1) defined using ζ-function regularization gives a proper
interpretation of the d→∞ limit considered in the previous Section.

6 Concluding remarks

The construction of the functional integral representation of local Archimedean L-factors uses
an integral representation of the Γ-function. This functional integral representation should be
compared with the standard Euler integral representation. One can show that the Euler integral
representation naturally arises as a disk partition function in the equivariant type B topological
Landau-Ginzburg model on a disk with the target space C and the superpotential W (ξ) = eξ +λξ,
ξ ∈ C. This result is not surprising in view of a mirror symmetry between type A and type
B topological sigma model. Thus we have two integral representations of Γ-function, one is in
terms of an infinite-dimensional equivariant symplectic volume and another is given by a finite-
dimensional complex integral. Taking into account the mirror symmetry relating the two underlying
topological theories, the two integral representations should be considered on equal footing. These
two integral representations of Γ-functions are similar to two different constructions (arithmetic
and automorphic) of local Archimedean L-factors. The equivalence of the resulting L-factors is
a manifestation of local Archimedean Langlands correspondence. The analogy between mirror
symmetry and local Archimedean Langlands correspondence looks not accidental and can eventually
imply that local Archimedean Langlands correspondence follows from the mirror symmetry.
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