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Liouville's theorem asserts that for every algebraic number
o of degree d > 2 and every € > O there exists a constant

c(X,€) such that

> q79"€ for a1l -g € Q@ with q » c(x,€).

D
|- 3

Whereas this result was obtained by considering the value of the
irreducible equation of &« at a point -g- , one had to

p P
consider two approximations ( al , a-?- ) and auxiliary
1 2

polynomials in two variables in order to replace the exponent

d by

% +1 ( Thue )
e f 4 ~ o
1:.11‘1{-5-17 +8 3 8=0., see , d—1} ulegel )
Y2 d' ( Dyson and Gelfond )

Finally Roth, [ 9] , obtained

d-§l> q-2-£ for all € Q@ with q » c(%,g),

Qo

by considering auxiliary polynomials in several variables,

having a zero of high order at (%, ... ,X) and a zero of

low order at ( PR ) . Unfortunately the constant
1 n .
c(X,€) is not effectively computable, except in Liouville's

inequality.

In order to obtain effective bounds for approximations by
rational numbers of generators of certain number fields,
Bombieri, [1 ] » reconsidered and generalized Dyson's approach in
handling auxiliary polynomials in two variables. In this
article he posed the problem of the generalization of Dyson's
Lemma to thé several-variable case. Lore precisely, in a letter
dated December 2, 1981 , Bombieri formulated it in the following
way: ' o |
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0.1. Let fe €[x,,...,x,] be a polynomial of
multidegree d = (d,, ... ’dn) . i.g.: degxi(f) <d; .

In order to measure how badly a given point ~ T & €® occurs
as a zero of f , we define for t € R,C and

n
a = (a1, cee ,an) & R)C :

Definition 0.2. f has a zero of type (g,t) at ¥ if

i

9~ f T () =0 for every n-tuple i = (11, cee i
n
n

11 !

9%, *...0X

n
of natural numbers with 2 i,-a, € t .
v=

Of course, it is enough to consider only the n - tuples i
with i, 4, , v=1, ... ,n . Hence the number of equati

we have to look for in (0.2) is approximately .

d.,' o e 'anVOl(I(g_,_a_,t)) = d1.oao.dn . d§1A o.oAd%
1(4,2,t)

n ' n
where I ={(§v)€ R” ; 0¢ 3“51} »and

o _
I(g_,_a_,t) = {(gu) e 1B ;;_; d\,.gv-a\, < t} e
V=

0.3. Bombieri's problem: Assume that there exists £ # 0

of multidegree d such that f has a zero of type (g("),'g

at the point 5”5 ¢® , for p= 1, eee ,M . Under which
conditions on {'S,ﬁ A=, oo ,P.Z} and

{(_a_('“),t,.) s M= 1, ... ,M}can one find an inequality
’ L
EVOI(I(Q.Q(F)J,‘)) < 1+ &)

guch that €(d) is emall for d, » dy > ... >4 > 0.,
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The mnin renult of this article is:

Theorem 0.4.  Assume thot
a) 3" (3"’1 '] .,.. ,g/‘,n)'. [ for F= 1, eec e ,M 9 are LE

points in ¢®  sguch that 'sﬂ’v";é 33'9\’ for u#y sand

\,21, R ,no

b) a e (RI;O ( independently of m ) and %, € R,, for

=1, P ,I‘.‘ivo-

M
¢c) 4 6 N" such that  d, > dy > ..o >4 > 0.

Then, if there exists f € € [xT,... ,X, ] of multidegree 4
having 2 zero of type (g_(/‘_),t/.) at '5‘/‘ for =1, ... M,

one has the inequality

: Vol(I(d,a,t4)) < TT( 1+ (I.’I'-Z) T ai)
where K' = h:ax{r.:, 2}

Without assumption a) or b) the inequality fails to be true

( see the end of § 10 for more remarks concerning this point ).

If we consider (0.4) for n =2 we find on the right
hand side 1 + (.’:'-2)°d?-d1'1 . In fact, one is able to improve

the inequality ( see § 10 ) to obtain

L (£1-2) -4,
(0.5 Z VOl(I(Q,g,t/‘)) £ 1 + 53 -
A=1 1

This is finelly the inequality known as "Dyson's Lemma", [ o],
(under the adéitional assumption that
0 <t & Iin {a,°8,, dy°8,}) and it was obtained in the

form stated above by Bombieri , [1] , using Wronskian-determinants.,
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Viola ( unpublished ) found the first proof of (0.5) avoiding
the use of Wronskian-determinants. His arguments are based
on a careful local and global analysis of the singularities
of reducible algebraic curves. In some way the proof of
theorem 0.4 - using methods from the complex projective
geometry - is close in spirit to Viola's approach. In fact,
the first tool, the positivity results for direct images

of dualizing sheaves ( see § 6 ), were developed in order

to be applied in the classification theory of higher dimensic
varieties ( [3] ’ ['7] ’ [12] ’ [13] ). The second tool is t*
generalized "Kodaira-Vanishing-Theorem" for integral parts
of divisors with coefficients in & ( see (4.6), [8 ], [10])
which we already applied to "zeros of polynomials" in [ 5 l

/e are grateful to Enrico Bombieri who suggesfed this
problem to us in a letter and who explained to us, as non-
-specialists,a lot about problem (0.3) and its applications
in the theory of approximation of algebraic numbers.
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0.6. The first twc sections give the translation of (0.2)

in terms of ideals of €[x;,...,x,] (§ i) and of ideal-
~sheaves on (F1)2 ( § 2 ) . Ve study the powers of these

jdeals (1.9) =nd some combinatoriazl conditions (2.7),(2.9) on the
(2.n+1) - tuples (d,a,ts) imposed by the existence of the
polynomial f of (0.4). It is there, where we need the

assumptions =2) =2nd b) made in (0.4).

In § 3 we study the behaviour of the ideal-sheaves
under "blowing-ups". To this end we consider (locally) certain

coverings of (91)n , a construction which is used again in § 7 .

§ 4 starts with a crash-course on weakly positive
coherent sheaves. This notation is just made to study direct
images of certain sheaves in § 6 , but mostly used in this paper
in the case of invertible sheaves, where it serves as a convenient
notation avoiding to many "limit-processes". At the end of this
section we present the first tool the proof of (0.4) is based on,
the generalizel "lodaira-Vanishing~Theorem" for integral parts
of divisors with coefficients in 4 . This tool was already

used in [ 5 ] in order to study zeros of polynomials.

In the next section we formulate the Hain Lemma (5.3)
and we use it together with (2.9) to prove that a certain
sheaf is arithmetically positive (5.4) . At the end of § 5
we show how this implies Theorem (0.4). It seems, that (5.4)

is just the "sheaf-tieoretic version of Dyson's lemma".

In § 6 we discuss the second tool , the weak positivity
for the direct images of certain sheaves (6.2). This theory
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is based on nawazata's results [ 7] , applied to certain
coverings ( see [3] ’ [ 4] ’ [111 and [ 12‘] for a general
discussion of cyclic coverings ). ‘hereas the first tool , th
Vanishing-Theorems,con be obtained by interpretating the
symmetry of the Hodge~numbers of projective varieties and
the closedness of global logarithmic differential forms ( due
to Delirme ), the proof of Kawamata's Kain Theorem is based
on Griffith's theory of variatiors of Hodge-structures and
the Nilpotent-Orbit-Theorem ( due to 7. Schmid ). Somehow
the analytic theory replacing the ‘Ironskian determinants
used in [1] is hidden behind (6.1) and (6.2). At the end of
§ 6 we reformulate (6.2) using (4.5) in a quite technical

lemma, needed in § 8 .

The following section reformulates the llain Lemma in a
slightly more general set-up and in form of an induction step.
This finally is proved in § 8 , using again a covering const-

ruction ( made at the end of § 7.

Zven if it is well known to the specialists, we indicate
in § 9 how to obtain the theorem of Roth using (C.4)

_ a=1
( for a; = df ).

¢ 10 contains a discussion of possible ameliorétions
of the inequelity of (0.4). For example, if one knows the
deco.position of the polwvnomial f intb irreducible factors,
one can improve the inequality. In the general case one
can replace the constant (li'-2) by a slightly smaller
constant. e explain this only in the two-variable case and
prove the inequality (0.5).
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0.7. Lotations In this paper we are using the "standard

notations" of z2l-qebraic geometry, as they czn be found for
exanple in [6]. Specirl notations are:

£

- If D 1is 2 Crrtier-civisor on an algebraic variety <« ,

we write &.(L) to be the associated invertible sheaf.

e

- If T is any sheaf on X , we write F® = F%
-4

wr b

for the
tensorprocuct anc g(D) = EOC'X(D) . In order to create

gaoax(n) but _If(n)a = (£ @0y (D) 2 .

]

confusion : F2(D)

- The invertible sheaf of degree one on @1 is denoted by
~ T\n .
O'IF1(1') and the sheaf 0‘(91)n(d1,...,dn) on ()" is

n v
& pr,"® ,(1) , where pr, denotes the projection on
v=1 F

the v-th foctor .

oS

- If £ : { ~=—> (E1)n is any morphism and. F a sheaf on

X , then F(d1,...,dn) = Fof’O'(F1)n(d1,...,dn) . Again
- -
a N £ »

§(d1,ooc’dn)a (S‘(d1,ooo,dn))a L]

- ‘e write 0l (X,P) = ding(E1(Z,F)) end tor an invertible

sheaf L we define the "L dimei..ion"
[

~

tr.dg( @ 10x,Lt) -1 i mOLh) £ o
(L) = 12C for some i > 0

K(X,L)

- o0 otherwise

= All varieties are supposed to be nonsingular, irreducible,
projective nnd defined over thne field ot complex numbers ¢ ,

if not explicitely other properties are given. An open

subset is nn open subvariety, which is always supposed to



be not empty ( even if we sometimes forget to mention it ).

- The canonicel sheaf of a nonsingular variety X 1is written

éim( J) ;
(,u__ = /\ Qx end if £ : { =3 Y 1ig a morphism betwse

nonsinguler verieties we write “‘&/r = W af"w;1 .

g
o
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g #ith zeros of type ( &t ) .

Using the notation introduced in (0.1) we consider a
polynomial f € c[x1,...,xn] of multidegree d , having a

zero of type (a,t) ir 3 e €& .
n

The set of i with Z__T' a, i, ¢ t remains the same atter
V=

replacing a by a' and t by ¢t' as long as 0Oga, -al, < €

and C¢t'-t €€ for a very small perturbation € >0 ,

Since I(d,a,t) s I(4,a’,t') , one can assume that

(a,t) is a (n+1)-tuple of non negative rational numbers, or,

multiplying by the same integer, that it is a (n+1)-tuple of

non negative integers.

1.1. In the rest of this paper, one has (a,t) € W°*' for

the type of all zeros considered.

Definition ?1.2. PFor a given type (a,t) and a given point
5= (515000, 5,) € € we define

(Qyt)

oy to be the ideal generated in € [x1,...,xn]
i i
by all the moromials (x1- 5'1) 1...(chn- ‘Sn) % such that

81.11 + L X X ] + an‘in ) t L 3

1.3. If f has a zero of type (a,t) in s , then fem,(é:t)

Even if the converse is not true, because we allowed in (1.2)
monvmials at the boundary (for which Byely +ooot adl =1%),
we will say " £ has a zero of type (2,t)" instead of saying

kKoreover, if f = n: oy o (x4~ 3’1)11-...'(xn- S’n)in

ien® -
is 1in 33(9—"” » all the monomials with &, # O are in the
ideal,

(a,t)
f e 133. ’
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(P_;ot)
3

If a given 4 is to small, m can not be generated

w

by monomials of multidegree d .

Definition 1.4. Tor a given type (a,t) and a given point

T = ( 31,..., Sn) e ¢" wevdefine

13(2'5’“ to be the ideal in C Cx1,...,xn] generated

i
by those monomizls (xq- 31) 1-...°(xn- 'Sn) D out of

m (2% for wnich 0¢ i,¢d, forall v .
-/

1.5, For N eWlN , one has tne inclusions

m (éft)N —_— ms(g‘-’ﬂ‘t)

4 4

N

1 (28, )", (N-d,a,N-t)
~S ~3

In order to have equalities we need some additional
assumptions which are always fulfilled after replacing (d,t)
by (s+d,s-t) ,i.e. after replacing the polynomial f of
(0.4) by % .,

1.6. Assunption on (a,t) : For all v , n-a,, divides 1

In other words, the edge points of

n
{_(3\,) € Rfo 3 2__ay5, = t} have coordinates in n-.& .
yv=

1.7. Consider the (n-1)-dimensional polygon

Mgt = {G)e8 ; 0< §,<dyand 3= a,§, =1

v=1



Let 2, "“”Er be the edge points of (d,a,t) (see
figure (1.12) ) . The coordinates of an edge point

are all O or d,, but one and satisfy the equality

n
Z ay’ ;v =t . CTf course, they are all rational numbers,
v=

The edge points of the polygon ['(s-d,a,s+t) for a given
positive integer s are aulfiplied by s . Hence we may

assume (1.8) .

1.8. Aissumption on (d,a,t)e N2%+1 . the edge points

E1,...,Er have coordinates in r.H .

Lemma 1 .2.

i) Assure thot (a,t) gatisfies (1.6). Then one has

o (8t | o (a,Fet)

- L4

ii) Assume th-t (d,a,t) satisfies (1.8) . Then one has

for all Ne N .

X .
1;(2’3'“ = 33(N.Q’E’E t) for all Nem .

Proof. Of course m (2,%) is of the form 1l (d,a,t)

- 3 w ¥

for some big 4 . In this case, the n edge points of the
polygon corresponding to m s(é’t) have coordinates in
n-f by assumption (1.6). So i) is a special case of ii) .

e write for simplicity 3% = (0,...,0) . Let

11 in

Xyt X, be any gengrator of i
0¢ i,¢ Nd, for all v and

(N’Q’Q,N't) , i.e

n
2 ay-i, = (N+£)°t for some €30 . ile have to present
v=

this monomial as a product of N elements of (d,8,t)

lz
/
By induction on N and the definition of the ideals it is

sufficient to find n - tuples
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(iy) € P ((N=1)-d,2,(N=-1)t) n Z° and
(ky) € ['((1+€)d,a,(1+€)-t) o Z°
‘BuCh that jv"' kv= i“ for VY= 1,00. oI o

Let E, , ... ,E, be the edge points of r,a,t) , as

in 1.7. The point (i,) can be written as

Ir
(i,) = o B
=
by
for (dy , oo, o) € [0, M4€] and T o, =F+€.
g=1 »

Claim: There exist natural numbers Bs such that
8

(1.10) ¥ - (1+€)¢ =2 ¢ min{a,,N-1} ana
r B

(1.11) 2 _F =N-1
g=1

Proof: If [ ] denotes the integral part of a real number,

we have the inequalities

KR+£& ¢ g ( sr +z) and
[ag-r]

r
N-1 ¢ E I.’Iin{—-i,—-,ﬂ-1}-‘N+£
8=1

For 81 = L’in{f«s-r] R (K-1)-r} the condition (1.10) is

fulfilled. In fect the second inequality follows from the
choice of 3! and the first from ¥g € N-1+ 1+ & an(

oLy & [us.r]-r"1 + 1 . Assume that (1.11) 1is not true. Ti

r_ B8g 1
T p (1‘3-1)+; and
S=

B'

(o, - =) 1+6-% .
S= 8 b of ‘ + T

Ve can find sole index s, such that Bg > 0 and
)
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Bl
o 1
X —F% & 1V+E€-37 -
o
If we replace Bé by Bé - 1 , we have another solution
o o

of (1.10) such that

r 2!
S
—— > H - 1 .
We are allowed to repeat this step until we have found the

r - tuple 2, satisfying both conditions, (1.10) and (1.11)

8

(1.10) fuarantees that -;s € [0,N-1] and
8 -
o --;?» € LO, 1+£] . koreover, from (1.11) we have in
T Bs
addition that Zs=1 ( ots i ) =1 +E .
. r. 8
Hence (3,) = 2. —32, € ‘F((N-ﬂ-g,g.(ﬂ-ﬂft)
r Bs
and (ky) =3 _(x --£).E_ 6 [ ((1+€)d,a, (1+£) . t)
8=1 '

From (1.8) we know that (j,) is a point with integer
coordinates, and hence (k,) too. By construction

jv + kv = iv o

(1.12) In the following figure we consider

2+t t 2+t
a1=m'-,82=2—.a; and aaa-s-.—E-B-.

The monomials generating Eg(g-’é’t) are corresponding to
integer points inside of the box, but over the dotted hyper-
surface. In other words, we show the image of 1I(d,a,t)

under multiplication with (d1,d2,d3) .
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e i > > e W) e e e amm. e e o dhop i o Ul s b WS i S M S T T S W T W e T S M — Y L TEN YR R I omr MR S TED s S S e - e —
32ttt P 3t 2 - 2 2 23 3 5

2.1, Let i:C®% — ()2 bve the embedding of €2 into
the multiprojective space such that

i(131, oo ,Bn) = ((31’1), oo ,(Bn’1))o

Any polynomial I € C[x1, cee ,xn] of multidegree d gives
rise to a polynonmial F(X1,Y1. coo ’%’Yn) , homogeneous of
degree d4, in X, , Y, for all v , such that

F(x1,1, cee ,xn,1) = f(x1, - ,xn) . e may as well consider

F as an element of H°((P1)n,e'(E1)n‘(d1, .ee »d4.)) -and in the

sequel we don't di-_s_,_t_i”rg;}_xish polynomials and sections.

2.2, Let ¥ be a point of €% ( where we denote i(3) again
by 3 ). Ue consider m @Y ang  1.(&21) (g

L4

(1.2) and (1.4)) as ideal sheaves on €® and we denote

i, m (Q’t)n & ( and inl (g’ﬁ’t)n &
-3 (E1)n »o3 (E‘l)n

again by mg(g-’t) (and ls(g’é’t) respectively ).
w

-

)

Remark 2.3,
i) ms(-a-’t) can also be defined by the following property:

ot

Let 3 = ((A1 ,71), ceo ,(An,7n)) and chooge a second point
3 o= ((A3,71)5 <o »(A2,70)) such that (A,%,) # (AL,%)
for v=1, ... ,n . Then for all n - tuple d = (d1,...,dn)

of natural numbers the vector-space

woce"hn, ¢

(?.'9 t) )

(d1, cos ,dn)og

has a basis given by the monomials
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TT (X, =AyY,) «C 0ok, = ALeY,) such that
v=1

Il

> i,-a,»t and O0g¢ i,gd, forall v .
V=

ii) The description given sbove shows that

HO((e)7, 192 Ve e

p1ynldrs we 1dy)) =

n

0, /p1\0 (a,t)
= H ((P") ,:ls-a- 06’(91)“

is the uniquely determined subsheaf of

(dg) vee ,d)) .

loreover, 1 .s((-i-’-a-’ t)

m (2,%) such that 1 (9‘-’-8‘—’1;)0 o
-3 -3 140

(¢')
generated by its global sections. In fact, if we choose

5' = ((1,0), «o. ,(1,0)) , the basis given in 1i) is just

(d1, coe ’dn) is

consisting of the multihomogeneous monomials corresponding

to the generators of .]_.'3(9’9-’1;) in (1.4).

2.4. The volume introduced in the introduction can now be

described in the following way:

i) For K € ® - {0}, Vol(I(d,a,t)) = Vol(I(F-d,z,N-t))

i1) Vol(I(d,2,t)) = lim (N%ed,-...d )7 -

N =~>os
. ’(I(g,_a_,t)nﬁo"aﬁ.l@,,,gﬁ.z) '
n
where I I denotes the number of elements.
In other terms,

d.' LI 'dn’v°1(1(9_’§;’t)) =

-l - n
= 1lim X ~H(§,) e 3" ; 0¢ §,¢ -4, and \’Z.; a,,-§\, < Nt

N—b>o»



= 1lim N"n-((b?od1+1)o...-(N-dnH) -

N— o

_nOr(ptyn (2,N-% .
n°((@"H?, n (2 Lef([’,)n(n-dv...,n d)))

= d;e...°d - lim B,
I —» e

100 @")?, lg(li'i,é,lt-t)o o

(@1 )n(}?'d1, .o .,K-dn))

iii) If &' is a2 second n - tuple of natural numbers and
1 7 dé > d2 y eee o dr'1 > dn‘ » then the first equality
shows that

d;'...‘dé’VOl(I(g',g,t)) P d1°o-.’dnbv°1(I(_d._,2,t)) Y

The zero-set of the ideal 13,(9'9-’” is in general
not concentrated in the point 3 . For example in the situation
described in figure (1.12) in § 1 , this zero-set contains
V(X1) and V(X2,X3) .

Lemme_2.5. Let (2% - coker( 1LY 5 o )

then the support of Cg(g-’-?'-’t) is exactly U S;

Ic{1,...,n]
p i d, > %t
iL v;av )

V(R =AY, ; VEI) if ;v aydy, <t .
€

tor S5y =
Proof: e xndy a‘ssume that T = ((0,1),...,(0,1)).
Prom (2.3,ii)) we know that ( for =' = ((1,0),...,(1,0)) )

the sheaf 3 Q'E*t)ee' (d1, cos ’dn) is generated by

(
5 (B
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I i\’ d\l-i\)

T %y Y, for 2all i with ay*i, > t and
\):1 v
0

N

[

<

n
] 3
b

dv fOI’ V= 1,...,11 .
If for some I Q{1,...,n}» one has 2 ay,cdy, < t,
Y
n
then every n-tuple i with 2 a,*i, > t mnust
v=1

have i, # 0 for at leé.st one vV ¢ I ., Hence 13(2-2,17)

contained in ¢ X, ,»¢1> or 5 < c}(g.’.?'.st)

On the other hand, if P is any point in the support of

Cs@-’ﬁ’t) , w1¢ can choose J s { 1,..,n} to be the set of

all Vv such that P e V(X,) . Then the monomial

T2y TT4” e
’Xv . Y, ,being non-zero at P , can not be one of the
véJ veJ

generating monomials and E ay-d, < t .
V&

2.6. FPor the rest of this section we consider for M= 1

y !

the points 3. =(§"1, coe ’sn,n) € (!"1)n where

5., = (A

Hs ¥ v Tp) € e’ - Ve fix t,e W, 2Me o,

A

for M= 1,..0,0 , and we write

#
M , M (d,al
- - -— /‘ (d) = -,-

=] Bs, L= ls

ind u=1 M

For simplicity, if d is fix, we write L' = L'(2) , Ag in |
o -

we have E°((£")7, M (dgy.0008,)) = HO((E)R, L'(dy,0..,d)

but for I 2 2 it is no longer true that L'(d.',...,dn) !
w

generated by its global sections. Ve assume in the sequel

HO((EM)®, Lr(d,, ... 4)) 40
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which ( see 71.3) and (2.2)) just means that there existsa
non-zero polynomial f € c.[x1, ++eyX ] of multidegree 4
having a zero of type (_a_("),tﬁ) at 5. for all m . We also have

(M)

to assume that =2 = a , independent of u.

ggt__x__ngg=gé_l_é Let 14 ¢ M,Y & 7 and MmEY .

Asgume that S/‘ﬂ # 3Y’v for v=1, ... ,n0 , Then
n

Proof: Of course, we may assume that

S, = ((0,1),...,(0,1)) and  3,= ((1,0),...,(1,0)) .

If P=2_ o{i-;]I Xy Y, is a non-zero section of

r.':'(d1,...,d) and if i 1is any n-tuple with o 4 0 ,
" n - 1

n .
the monomial ﬂ- X, ¥, must be one of the generators
y=1
(a,tu)

given in (2.3,i)) for H°((P1)n, m

s, @ 6(91)n(d1""’dn))

n
Hence > ayeiy » tu and ( exchanging u and y )
ys=

n
> a,(d,-i,) > t)” Adding up both inequalities we find (2.7).
V=

8. (_see (1] . Lemma 4 ) Under the assumption of (2.7)

Lemma 2.

Supp( C (g'ﬂ't’)) Supp( C (Q’E’t’)S 8
. n u = .

wp( Co Pp( Cg

Proof: Again we assume that

3'“ = ((0,1),...,(0,1)) and -S-Y = ((1,0),-..,(1,0)) .

If (2.8) we.s wrong, (2.5) would show the existence of
Ssubsets I,,, and Iy of {1,...,n} such that

ay,rd, < ¢t and a,dy, < t and such that
E ARIV) A ";‘r y*Cy v



V(X,;ve€Ip)nV(Ly; v&I,) £ 5 . 0f course, for any

v, we have V( X, )n V(Y ) =4 and therefore
0 o Vo

TuuIy = {1,...,n} . Then

n
> ayed, & 2 ayed, + 2 ay-dy <t t,
V= vel, vely

in contradiction to (2.7).

As we mentioned already in (2.6) the sheaf E'(d1,...,dI
is in generzl not generated by its global sections. We can no
even exclude the case, that all sections are zero along
(91)11-1 regarded as a subvariety of (e1)® by the inclusion
J ’given by j(P1,QOQ’Pn-1) = (P1 ’OOC’Pk-1 ’Ss’k,Pk’.."Pn-1)

for a fixed pair s,k . If the subvariety J((IP1)n"1)' does

. (Qua.'.’t/')
not meet Cg“ yfor m# s , we can forget about the

other points and use (2.3,ii)) to produce sections of

3*3'(d1,...,dn) .

9. Using the notations introduced in (2.6) we assume

all the (2.n+1) -tuples (d,e,t.) satisfy (1.8) and that
Sy, # sy,v for u#éy 2and v=1,...,n.Let

k € {1,...,n] and s e {_1,...,&:} be fixed numbers such that

v( ns,k'xk" )s,k'Yk ) is not contained in the support of

(d,a,tg)
c,ss . e write é = (d1’...'dk-1'_dk+1’...’dn) ’

g = (31,...,81(_1,ak‘..‘,.a.,an) 9 te = t and

t,.al.’.in{o,t,.-ak-dk} for wn4#é s

on (™' we consider L" = h 1.,
w p= "5,4

—o—r- 3' = (su 1"0003.. LI ,.t - .t ‘
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Then

D Ln eIl PL > & )

N
ii) (B". g(E“)n_"(d1,ooo,dk_1,dk+1,ooo,dn)) has a non

trivial section for some N big enough .

Proof: We may write k=1 and s =1 and

5, = ((0,1),...,(0,1)) . From (2.8) we know that the

(d,2,tp) .-
supports of C.s are disjoint for different m .
m

Hence in order to prove i) we can consider each point

seperately.
! (d:2,%) (dyye0.,d4.)) 1is generated by the
~ 31 (l?1 )n 1°? '“n
monomials X;2 ‘e -Zin-Ygz-iz ‘ees -an-in with
n

a,*i, » t, . In fact, j* 1is right exact, and all
o By°ty 2 T

the other generators written down in (2.3.ii)) are mapped to

zero under j* .

It ‘5'“ is another point, let's say u = 2 and

3, = ((1,0),...,(1,0)) , then

3% 1 (4,2, .tz)

&
u=2 ©

(e')®
d,-i d -i d i i
2 72 n n., 1,2, v n
mOnomials X2 ®s00 'xn ’Y1 ‘Yz eeo @ Yn With

(d,,...,4_)) is generated by the
1

n

n
a.‘,-d1 + VZ_ ay-i, > t2 ,using the same argument,and

in both cases we verified i) .

Renumbering the points we may assume that

Tau=0 for u= 2, ..../7 and
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L't = 1,’ ,(-:l’-:’t1) . The non trivial section exists by (2.3.:

- 1

Therefore, we may ascuse that T, = t2 - a,-d, >0 .

Let * be a general s:ction of 5'(d1,...,dn) and c¢ the

largest number such that X? divices T .,
Consider the polynomial G = j*(F -XT'C) .
G has 2 zero of type (X,T,-c-a,) at ‘51' and a zero

of tYPe (g’tp+COa1) at s; for f‘= 2’...’K .

For example, if §,= ((1,0),000,(1,0)) and

i i d,~-i d -i
-C - . 1. . n. 1 1. b4 n n
F.X,' = Zl Bi X1 eoe Xn Y1 eee”dy s+ then

d

i -~ d_-~i
G = 2 Bi .ng’ooo' n’Yzz 2'000.Ynn n

where the secon

sum is taken over all i with i, = O . For those i the

coefficient Bi can only be non-zero if

o]

' ' n
ay°c +v§_ ay-i, 3 t, and a,.(d,-c) +Zv- a,+(d, -1i,) »

n
For w = § a, .4, we know trom (2.7) that
V=

r

w=-%

4 ;4 _cca,edy
Consider H = G -TT X,
v=2

. At 31,H has a zero of

type (¥, (w-t,)<(T,~c-a,) + cea,-w ) and at 3. for uf

a zero of type (X, (w-t,):(Tu+c-a,)).

The multidegree of H 1is (w-t,+ca,)-d .

We have (w-t1)o('c1-c-a1) + Cea oW = (w-t1+c-a1)'r1 since
t, =T, , and (w-t,)(Tutceay) = (w-t,) Tu + (w=t,)ec 2,
and this is bigger than or equal to (w-t,+c-a,)<T, .

Hence for I = w~t, +ce2, we found the section needed in
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§3 A covering congtruction

o o - - o e . i e o s
TERURNST SEEESSDESEEs

In this § we want to study the behaviour of the ideals

lg(g-’é’t) and m<-§’t)
it

this end we consider-certain coverings. This construction is

under certain blowing up's . To

going to appear again in §7 . Some general remarks about

cyclic coverings can be found at the end of the § .

3.1. Generalities on blowing up's .

Let X be 2 variety and _‘I a sheaf of ideals. The blowing

up of J is 2 morphism ¥ : X'=——> X such that

v7'J.0 = In(¥>J ——> ;) becomes invertible and such that

T is universal for this property ( [6], p.164 ) . The variety X'
is nothing but  Proj( d?c gd) . Yoreover, w is birational

and is an isomorphism on the open variety on which J is inverti -

1

ble. The blowing up of J~ is the same as the blowing up of

5 for all integers Y > O .,

3.2, 'le define E to be the effective divisor such that
1

T -0 = ¢,(~E) . The divisor -E is relatively ample and
-by the theorems of Serre ( [6] , p.228 )- one has
Ry, .(-¥2) = 0 for all 1>0 and all 3>0 big enough
and the natural inclusion :,Tl' ———)tr.e’x.(—l-E) becomes an
equality for ) big enough.

de take o desingularization g : Y —> X' (possible
after Hironaka's construction, see [6] P.391 for references )

and set T: TWod: Y —a X ,

Definition J.3. "The sheaf of ideals J 1is said to be full

Ao d

if the natural inclusion

J — T.6"0%:(-3) = ¢, Im( :-;I —> &,) 1is an isomorphism.,
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Using the projection formula ( {6] p.124) one sees t"
this definition is independent of the choosen desingularizat
Y . Coming from the possible non rormality of X' , (3.2)
does not imply that gl ig full for 3} big enough.

In order to prove that our ideals gx(g’t) and }3(2’9

full, we use the following numerical conditions.

3.4, i)issumption oz (a,t) € g™ . a, divides t .
11) issumption on (d,a,t) :

n
Let (%)e R), be any solution of the equation 3 _a, .§,
y=

such that J  is either O or d, for allv but one . Thr

(3,) is a point of .

Of cource, i) 1is a special case of ii) . We prove he"
that i) 4implies ii) and prove i) in (3.6) .
Choose T : ¥ ~—> (E’1)n "big enough" such that both

and 1 = 1:"15_5(94’9’1:)'0’

- -1 (E;’t).
sheaves m=71T .i'."s v Y

Y
-t
are invertible. One has the inclusions (3.5i))

l(g-’-a-’t) —T,l =T . m=m (2,t)

‘3 - - -03
If the first inclusion is not an equality, we choose an
embedding ¢l — (91)n for which the restriction of
this inclusion is not an equality. In other words, there is

a polynomisl f which is int,l[en but not in 13(9172:")

-

One can assume that ¥ = (0,...,0) € ¢ . Bvery monomial

i i
x11-... ‘X, n appearing in f must satisfy the inequality

8j0iy #..0+ a ¢l > t . After pevmuting the variables, one

assume that there is one monomial such that for some k >
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i1>d1 [ LN ik> dk 9 lk+14dk+1 g oo ey lnsdn and

d1 dk ) i'k-M .

i.
b4 . n (-d- 2 t) n
X1 .too Xk . xk+1 - & @& % ‘ ‘];3 ’ ’

In other wo:¢és, one has

k n
7 a,,d, + > a,cig<t .
y= v v=k+ v

n-=k
Let j : C ——> ¢" be the inclusion given by

j(dk"'“ g000y (xp) = ( 31,000’31( ’«k+1 goecey qn) for a pOint

(31""’31: ) in general position. One has

1, (4.8, t")
- S

2' = (ak+1’...’an) [ g_' = (dk+1 ,oo.,dn) and

k
tt = ¢ "z Vav'dv .
v=1

j. lr(g’_a',t) = fOI' 3" = (O’.O0,0) [}

From (3.5,i) one has again

j.(f) e j‘.l- Q___? Es'(-a-'-. ’t') .
But (3.4,ii)) is just formulated to make (3.4,i)) true for

(a' ,t') . However, j*(f) contains the monomial

i, n k
Txr' Xy whereas E i,cay, ¢t = 3 d,-a,
V=

V=k+1 Vv =k+1

3.6. The pg;_g;t_‘ of (3.5,i) s If Bs(?‘-’t) is a power of the
maximal ideal of the point 5 , i.e if a,=a for all v,

then it is well known, So the idea is to come back to this situa-
tion. Since 3.5(-"‘-"-’“ is invertible outside of 3 , we xay

agssume that the situstion is local and consider
m}(g,t)

-

in the affine space where 3= (0,...,0) .

3.7, Let 8: X —=> ¢ be any finite covering, such that X
is emooth and the discriminant A (X/C€®) is contained in
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the coordinate-axes V(x1-...-xn) . Assume that for every poi

” ey (3) one ecan find a local parameter system (u,,...,un)

L%

such that u,, £, = x, where «oyel and f, is a unit at

Define Ny to be the idesl generated by
n 3 n a

T vy’ such that :jv.—‘: >t .
y =1 v=1 “V

§* m (a,t) ——> m n, = If and a commutative dia—
-3 S (3) ~ " ————

m (2% sl ——m S(g,i:)
( { ¢
G’cn C———-—)S. Ux —— 0’en

where the second row congistgs of the matural splitting given

by the natural inclugion and the trace map.

Proof : Kear =, g'mé-a-’t)

is the ideal generated by

a

“voi‘) lv n v
=1 v:.-; v

Hence the first inclusion is obvious.
Wwe have the natural inclusion m,s(-g’t) —> N,

compatible with &en —=>¢,0; . So we have only to show tv

the image of §,N' under the trece map is contained in I _S(é’
To this end, one can essume that 9~1(3) = 2 and suppose
@cn and & to be complete. Write X = Spec c[ty,..;,uhﬂ.
Then f, =1 and the trace map is just the sum of the
conjugates under the operation of the Galois group

G= 2/.,xw.x3 % . The ideal X' is invarient under ¢
So the image is generated by the G-invariant elements of E',
this means by the G-invariant monomials

1
Txtu\, v o This implies that 1, =«yem, for val,.,.,n and
VS
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a, n
that Z 1, — ;mv.av)t .
\’ v=

3.9. Now let N be cny positive integer divisible by the

smallest common ~ultiple of the edge points %—- (which are
v

N.a
integers by (3.4,i)) . For w,= -15—3 and

oy

X = Spec C [u1,...,%]———>c“ for u," =x, , the ideal

3.1 is nothirg but the N-th power of the maxinal ideal of

the point » =C in X .

e know that n is full. Cl“-gose a diagram of non singular varie~

w7
ties

7z —Es ¢
d IS
Y e—— ¢~
<
such that =z, <¢' are birational, <T'~ N, 0 = N and

t'1m.§(§'-’t)' v = L are invertivle,

- L

We have %iie ratural inclusions
' ML= t"’(e" (a 1‘))'e' —— 1 and

E Cn) 97. gv'[.,'; Cmmed g'ﬂ,
Hence, 1:,"' is contained in § ', .I_W a Doy o i.oreover the
image is G-invariant cnd from (3.8) we find

Tl a8t e
3,10, Tet I be ~ny effective divisor on the non finsular quasi-
projective veriety Y ond D = ) Y;)'E,j the decomposition
into prine components. Yfor 21l integers i3>0 and N>0

we write

[-%2] = ) [;;—x-l] ’E;j where [ ] denotes the integral part
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of z rezl nu:zber.
Notation s11 - D is called a normal crossing divisor if

the Z. are non ringuler and intersect transversally. This

means that for all points of Y one can find a local paranm
system (u1,...,un) ruch thet ne~r the point the equation:

‘.red is u1'ooo.us = 0 o

The integral parts of divisors are compatible with
blowing up's ( sirple exercise, or see [10] sy 243 rd 2.4 )

Lemma 3,12 : Let ©: 2 —>Y be a birational morphism

———— ===

of non sinzular varieties such that D and D' =t*D arev

normal crossing divisors. Then one has

woey [H2) = ey [5R] ) e

T(wye o(- (2] ) = wye sy~ [47] )

3.13. The divicors [LNQ] occur in a natural way in the fo.

wing construction.

If 1> ¥, we replace D by r*D and I by r-N for r
enough 2rd we keep the seme i , So we assune i< N ,
Assume that ther: exists an invertible sheaf E such that
EH = @(C) , where D is a normal crossing divisor . |

The section of LDI » whose zero-gset is D, defines .n the

N-1
& -module 4 = @ L™ an @ ,-algebra structure. Let T
Y i=0 ™

be any desinguilarization of Spec A cnd @: T =Y the

corresponcin~ morphism. Then one has

o= @ L7 [4P]) ena

i=0 +«

lv-

sawp = @ wyerl- [42] )

i=

C
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For the prooi and some applications of this construction,

see[4].
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In this section we introduce and discuss the notations
of weakly positive sheaves and arithmetically positive
invertible sheuves, and we formulate the generalized

"Kodaira-Vanishing-Theorenm".

Notation 4.1. Let .2 be any coherent, torsion-free sheaf
on a nonsingular quasi-projective variety Y .
i) Let U ©be an open subvariety of Y . ’e say that F 1is

generated by its slobal sections over U , if there is a map

OO’Y ——y F , surjective over U . This is equivalent to
the fact, that for all y € U we can find elements in

H%(:,F) which generate F near y .

ii) Let i:V ——> Y be the biggest open subvariety of Y
such that i®" F 1is locally free. Then we define for 8> 0
SB(F) = i.,sB(i‘F) , where s  denotes the usual symmetric

product.

Definition 4.2. Let F be a coherent torsicn-free sheaf on ¥ ard
U a set of open subvarieties of Y , closed under intersections

(ice. U, , U € U implies Ujn U, e U ).

i) F 1is called weakly positive with respect to U if

a) F is locally free for some U s U .
—-U —

b) For all anrle invertible sheaves H on ¥ and all & >0

there exist some B > 0 and some U' @ U such that

s*Biryenl is generated by its global sections over U

a) and b) , we accume - of course -U and U' to be non-empty ).



ii) If U 4is the set of all open subvarieties of Y ,

-

we say P to be weakly positive 1instead of "weakly positi

with respect to U ".

1i1) If U ={C}, we just say that P is weakly positive
- wel

over U .,

The notation "weakly positive" was introduced to study
direct images of certain sheaves under surjective morphisms
( see § 6 ). In § 7 and § 8 we apply this notation to
invertible sheaves and to a quite special class of open
subvarieties., This is nothing but a convenient way to

avoid too many "limit-processes".

General properties of weakly positive sheaves are dis-

cussed in [11], [12] and [13]. The most important are:

4.3. Properties of weakly positive sheaves, Let X , Y and

be nonsingular quasiprojective varieties, U a set of open
subvarieties of Y , closed under intersections, and F enl

coherent, torsion-free sheaves on Y , locally free over sor
Ué
1) If F is weakly positive with respect to U and

F —~—— G a nap, surjective over some U &€ U , then

G 1is weakly positive with respect to U .

2) Let 21 and 22 be any invertible sheaves on Y .
Assume that for all Y > O there is some M > 0 such
that §Y°'“(z )OE: ®L, 1is weakly positive with respect
to E . Then f is weakly positive with respect to H .

3) If F and G are weakly positive with respect to U,
then FeG , det(F) and SY¥(F) ( for ally> 0 ) are



4)

5)

6)

weakly positive with respect to U .

Let ¢ Z ~—> Y be any morphism and E be weakly positive
with resgpect to g If either ¢ 1is flat or _E" locally
free, then c*g is weakly positive with respect to
N = { = ;v e ul.

loreover, if t is a finite covering ( and hence flat ),
then:

t'f is weakly positive with respect to z~! (LJ) if and

only if F 1s weakly positive with respect to U ,

L4

Let ' : ¥ —>X be a birational morphism ond _I:‘ weakly
positive with respect to 9 . Then <T' ,._1_a is weakly
positive with respect to {t'(U)nv ; Ue H} where

V 1is the bi~zsest open subvariety of X such that

T o is an isomorphism.

o (V)

lore precisely we can say that for all ample invertible
sheaves I on X and all «> 0 there is some 8 >0
such that S%°5( 7 )@t (EP) is generated by its global
gections over t'_1(V)n‘U ( or equivalently that
'c'.,'.:su’ﬁ(z )aI;IB is generated by its global sections over

Vn t'(U)‘) for gome U6 U,

Assume that _E: is locally free ancd that Y is projective.
Then _I:‘ is wenkly positive over Y , if and only if

for all curves C , for all norphisms j:C —> Y

and for nll invertible quotient sheaves L of j*E

one hae degc(_I_J_) 2 0., B
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Proof: 1) follows i-mediately from the definition and 3)
is proven in {13], 3.2 . If F is an invertible sheaf
( 2and this iz the only situation where we need 3)) then

3) is obvious. 6) can be fouwnd in [11], 1,10 .

2) Let II be any zmple invertible sheaf on Y and &« > ¢
For 4 big enough both 1% _1:1'1 and & 2 are ampl
Ve can find 4> 0 ,by our assunption, such that

52'6'“"‘( F) @L’: ®L, is weakly positive with respect to !
some B,>0and UelU , 3" U is locally free and

S8 (52 8Pz ek Be1l o BM LT en% o 151 )8

-

is generated by its ~lobal sections over some U € U ,
Then c2°8°§ % p(py@ud-dM+dB g §2-B-dMed( 5y @y
as well are sfenerated by their global sections over U .,

4) For H ample on Y and y>0 we can find some .. >0
that S %(7 )e_H_'“ is generated by its global sections ov
some U ¢ U . Ve may acsume that F is locally free over

and each of the assumptiions gives an inclusion of t’(@’”(

SX"“(c"'I")m:"HA and hence a map @0, —> Sx.'“(‘\:"F)O c'g

surjective over z~'(U) . The shear ®0; 1is weakly posit
over Z and from 1) and 2) we obtain the weak positivity!

The other direction - if t is finite - is in [11], 1.7

‘H is amrle 2nd if T.’F is weakly positive we can find
for given o some B > 0 such that 82 Ml B(—’F Je t"HB
is generated by its global sections over ¢ 1(U) for somé
U e E . 7e hence have maps , surjective over U ,

O Her,y, —> 52 rren?Bar, ¢, —> 525(r)

For B8 big enough, the first sheaf is generated by its o
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sections.

-

5) Por siven H and ~ we have to find U eE and 2 > O
such that ¢’ 5% 5( F )a_IfB is generated by its global sections
over Vn ' (U) . Thi:s‘sheaf does not change, if we replace Y by
its biggest oven subvariety on which E is locally free. By 4)
we may replace Y by any birétioné.l Y' =—=> Y and assume

that T' 1is just a2 sequence of blowing-ups ( see for exemrle
[6],11,5.6.1 ) . Then - as in (3.2) - there is an effective
divisor I with support in the exceptional locus of =<' ,
such that O'Y(—.L) is relatively ample. In other words, for some
Y > 0 the sheaf t'*EY(-E) is ample.

Hence for 3' big enough and some U &€ U

‘d.vo. ' r tn B '
S 3 (3‘ ) e (t"E (-m))G is generated by its globel sections

over U . This sheaf is included in 8% '3'(F)e g’ 8’

isomorphic over V , and for B8 = y.8' we get 5),

Definition 4.4. An invertible sheaf L over a projective
| )

nonsingular variety Y is called arithmetically positive

if one of the following equivalent conditions is fulfilled:

a) L is weakly positive over Y .
b) For all curves C in Y we have degc(g c) > 0.

In fact, if j : C > Y is ony non trivial morphism

and s the degree of C over j(C), one has

degc(j*f‘,) = s.degj(c) (E 5(¢) )' and the equivalence of

a) and b) is (4.3,6)) .

For arithmetically positive invertible sheaves one has the

following vanishing theorem - using the notation introduced in
(3.10) .
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Theorem 4.5. Let Y be a nonsingular projective variety,

-2 2

D a normal croseing divisor and _E an invertible sheaf on

We assume that for some N > O the sheaf EN(-D) is

arithmetically positive, and we fix i > 0 and p > 0 .

Then HP(Y, _I:io &y ( - [;ﬁg] )ew, ) = 0 if ome of the folla

conditions is fulfilled:

i) The selfintersection number c1(LN (_D))dim(Y) > 0.
=/

ii) The " L - dimension " H(EN (-D)) = dim(Y) .

=

i11) The "L - dimemsion " K (L' (- [%2] )) = dim(Y) ,

i N> et i=N

This theorem was proven by Kawamata in [8 1 and indep~
in (10] . The conditions i) and ii) are equivalent and
they imply iii) ( see [10], 2.2 , 3.1 and 3.2 ). One possil
proof of (4.5) uses the covering-construction indicated in
(3.13), the symmetry of Hodge-numbers of projective varietie
and the closedness of global logarithmic differential forms.

Corollary 4.6. Let Y and X be nonsingular projective

3t 22— 3134

varieties and <©: ¥ =—»X a birational morphism.

For a normal crossing divisor D and an invertible sheaf

L on Y we assume that V(D) is arithmetically positiv

“

for some H > O . Then for all i > 0 and q > C

Rz, Wy y oLi( - [iﬁ-‘l])) =0 .

lioreover, if one of the conditions of (4.5) is fulfilled,

HP( X ,u,(wY/xcLi( - [3,72]))0% ) =0

for p> 0,
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Proof: The second statement follows from the first one

and (4.%) . In fact, the Leray-spectral-sequence gives
i.D < i i.D
Hp( Y, Ei( - [‘:L'N-])OWY) = Hp( L,t, (wY/x 031( - [T])wa) .

In order to show the vanishing of the higher direct images

of T we can use the projection formula ( {6] , page 253 )
and replace L by Lec*H for any ample invertible sheaf H
on X . Ispecially we may assume that |4(LN(-D)) = dim(Y) ,
that RIT.(w, QE’.i( -[%?]) Jowy 1is generated by its global

sections and that P (x, th.(wy/:{QLi( ‘[’ifrD])O‘”x ) = 0

for all p>C and q > O . In this situation the Leray-
-gpectral-sequence gives

gP(Y, .Iii( -142Dew, ) = B%(x, RP zu(Wy @ L '[%2])9‘”;{ ) .

Hence from (4.5) both sides must be zero and we obtain (4.6).

Corollary 4.7. Using the notations from (4.6) we assume L

et e - ]
SENEI_IT==IaNTS

e~

to be arithmetically positive itself. Then there exists a2

polynomial I(}) of degree at most dim(Y) -1 such that

for 2ll Y 2 O

n'(x,z. 1Y) ¢ P(3) .

Proof: Let H be a very ample divisor on Y such that
G’Y(H)au)§1 is ample . From (4.5) ( or from the usual
"Kodaira-Vanishing-Theorem" ) we know that HI(Y, Ll(H))

is zero for q > O . ho(H"El(H)EH ) 1s bounded by a polynominl
of degree dim(H) = din(Y) - 1 ahd using the exact sequence

1

0 — 1t — 1Y) — Yl — 0 we £ina n'(y,1d)
Y ~ hd [ [
to be bounded by the same polynominl. The Leray-spectral-sequence

gives an inclusion H' (X ,t.Ll) — H1(Y , Ll) .
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5.1. Let d be 2 n-tuple of natural numbers satisfying
d1 > d2 P cece P dl.‘l . Using the notations and assumptions
made in (2.6) we choose 2 birational morphism ¢ : P — (IP1)n

such that F is nonsingular and projective and such that

E = Im (T ———> efP)

L4

is invertible ( see (3.2)). Of course we can choose T to

be an isomorphism on t'1((lP1)n-' {31 s cee ’SL:} )

Again in %this section we have to assume that _a_('u) = a for

all M and we want (2,t,) to satisfy (1.6) and (3.4,1i)).

In order to distinguish the different factors of the

, (E’1)_n we number them: (P)P = P::: (P;x xP; .

For every subset I ={i1,..,is} :{1,...,11} we write

1

. ol 1 1
Wi N P1‘E2x s o6 XPn -—-—9 Pi

X ...)(IP;!L = (l.‘?")I

1
x P
i2 g

1

for the projection, TI'I = wi-c ’ ‘!l’l'c = and ﬂ’k = T

T .

(e} {x}
Notation 5.2. An open subvariety of P is called a product
open set if it is of the form T (Uyx Upx .eu xU )

for non-empty open subvarieties U, = I—‘l .

Instead of saying that some sheaf is weakly positive
with respect to the set of product open sets, we just say

that the sheaf is weakly positive over some product open set

In § 7 and § 8 we are going to prove ( Lenember that we

agsume E‘_‘,(d1"“’dn) to have a non trivial section ! )
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In addition to (5.1) we assume that for y ;

EEEEEEEsREES=S=S

and V= 1,...,n we have Sy # Sav Let

n
' o= vax{¥,2} znd a > 4 + (z..:'.-z)-}J:; 4
=1+

Then the invertible sheaf E(d{ s voe s dl'l)'is weakly positive

over some product open set,

LESSERES=EIf=sSs====

Corollary 5.4. Under the assumptions of (5.3) we assume th

~~

d',2,tx) setisfies (1.8) and (3.4,ii)) for all m .

Let 1L'2") be the sheaf introduced in (2.6) and
T 2 P! e— (IP1)1'1 be _a birational morphism of nonsingular

rojective varieties, such that ' is an isomorphism over

gome_product open set, the fibres of r!-tr' are normal cros’

divisors for all v and L = Im(t"L'(Q') -—be”P,) is invert’
-y 1>

Then L (d1' y coe 5 dx'l) is erithmetically positive.
We start the proof of (5.4) with:

Clai= Z.5. 'I: (d;,...,d') is weakly positive over some

n
product open set.

Froof: If one of the tu = 0 we can leave away the point
¥u and replace i by -1 ., Therefore we can assume that

0 < t ="Tin {t1 y eae s 1::'.} and that there exists some 7 > |

such that Yot » tu for m=1,...,0 . (2.7) implies



\n

n

i ar
The polynorizl i = 21 E ('7,‘ » v A, -¥,,) has

multidesree ii-d' and a zero of type (a,tu+t) at 3..

(d',a,t,+t)
lloreover, in %, , i is in the ideal 1 .
M B

For «> O riven, (4.3,5)) applied to (5.3) shows the

existence of some £ > C such that

I."l'(d"..‘,d' )d.Bse’

B8
(d.' 9y oo d') =
o n @hyn 1T e

n

=t (. (d! , ..., d1)%8

) ) 1 B
- (a] M @6’&,(d1,...,dn) )

is generatec by its global sections over a product open set.

These sections of multidegree («x<8+B).d' have zeros of

type (2, u-B-t,‘) at T, . KEultiplying them with the fixed

. ")l'e : 2 1 -
polynomial """ , we get sections, generating the shezf over

some product open set, of

[’é‘ ((N+Y+1)'G‘Q',§,(«+Y).B.tﬂ"'y’B't)
1 ®
,‘:1 - 3"
(X+5+Y+1) «B
® e’(E1)n(d1',...,dr'l) .

This is contained ~ isomorphic over a product open set -

X.3 B

in ‘I:'(_d_')(d{’...,d;) @F fOr

L4

(d!

r= (@ N @ Jreee,ds

)1+I¢'.-X
~ - (%

T'* being richt exact, we find that

L(d{,...,dr'))""ﬁg(-c“‘F)I3 is generated by its global
w w

sections over a product open set,and hence it is weakly positive

over this set. (5.5) now followc from (4.3,2)).



Claim 5.6, If L = 1 , then (%5.4) is true.

Froof: From (2.3,ii)) we know thet in this situation

is generatec ty its global sections and hence the same is

true for E(:’.{,...,dé) .

In the gerieral case we prove (5.4) by induction on n.

For n =1 there is nothing to prove.

For simplicity we write T=¢' , P = E' and Ty, = wl'(-t .

Let C be any curve in P . /e have to show that

(5.7) degc(e(d;,...,dr'l)-c) > 0.

Case 5.8, T,(C) = IPl for all v .,

This just means that C meets every product open set U .

If not, C would be contained in one of the irreducible
components of @ - U , which are components of n;" (p) fo
gso..e 1"6[’1 .

Froa (4.3,5) applied to (5.5) we find for =211 Q> 0 sore
3> C such that L(df,...,a3)" e 0p(3,...,8) has

a section, which is non-zero in some points of C .
Hence o(-,’.%odegc( E(d{,...,dr'l) C) > = B-degc( 0'0(1,...,1)

for all &« > 0 and we find (5.7).

Case 5.9. Using the notation introduced :(Ln (2.5, assume ths!
d',e, )
z(C) 4is contained in the support of G — S for some

oM



(2.8) guarantees that <c©(C) does not meet the support of
(a',2,tu)

3
a | o (dha,ty)
degc(f(d;,...,d;l)lc) = deg.( Im(T l. — Cp) e o,(d],..

3.
cad))

c for m £ s and

8

We get (=.7) directly from (5.5).

Case 5,10, Tor some k 6{1,...,n} one has Tl‘k(C) = Pe P;{

(8',2,ty)
and z(C) ¢ Zupp( CS',. ) for any m .

T induces a norphism C —> (IE1)n which factors over
jesC ——-)11',?,'1 (p) = (IE’1)n"1 . Over some open subset of C

10 (& qar, ... a0
w

—-é 0’ (d' oo d')
n .u,é-‘l (P) Cc 1 ’ n.
is surjective and the image is nothing but L(d{,...,dr'l) .
w
C
As we have seen in (2.9) the sheer 1L'(d) -1 is
~ mLT (P)
H o (§,%,Tu)
again of the form () 1'5'-,-, ( on (B")21)
p=1 = op
and ( L'(-d-)(d yeosyd. ) )N has 2 nontrivial section.
*1 n =1
hd : ﬂ'k (P)

Replacing L(d{,...,dt'm) by some power, we may assume that
w
(d,tu) eond (d,4,Cu) satisfy the numerical conditions

(1.6), (1.6) end (3.4) end that X = 1 .

Let Y bve the proper trensform of vl'{‘1(1’) in ® .

By the induction hyposthesie we know that L(<’1',...,dr'!) y 1is
arithmeticrily positive, and wc get
degc((i‘(d{’...’dr'l)’Y)’c) = degC(E(d{"“’dI’l)'C) > 0] .



5.11. The proof of theorem 0.4.

As we hove seen in § 1 and § 2 , the existence of f
in (C.4) gsuernntees that H°(E,;(d1,...,dn)) 0.
The conclusion of (0.4) remains the same if we replace

'd by Fed nnd tu by Nete ( see (2.4,i)) and we can

assume that (1.6), (1.8) and (3.4) are fulfilled.
Choosing <t':Ef' —— (®"H® a8 in (5.4) - which is possible

(2.5) - we find that a(d;,...,dﬁ) is arithmetically posit’

n
for i} =d; + Zj=:1:+:1 (1-.'.'-2)-dj « By (3.5) and (4.7)

we know that for some polynomial P'(¥) of degree n-1
n'(@hH?, 1@ e, a0 ¢ PU®  forall ¥o>o.
P

o(F) | ; c (Fed?s2,F-tu)

5 . From (2.8) we get the
/l=1 M

Let

exact sequence

d v
0 — ;3'(" )(c";,....d,',)N - e'(p’)n(d%""dz'x)h —

(5.12) Ve find (Kedi+1)e ooo o(Nedl+1) ¢

s no(EH?,cWee

t L] H
(21)n(d1""’dn) ) +

+ h°((n=’)n,5'(9')@;,...,4;1)”) § (Medge1)eru e (Rearet) +

For some s 6{1,...,2.' }we forget the points 3, for mE S
i.e. we replace tu by O for M #£ s and find using (.12

(Tect,2,t_ok) |
nO((E"H)", Cg =8 e @

? * N
(E.')n(d,,...,\dn) )
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is bigger than
Tedt,n, et ) N
< 36(91)n(d1'”"’dr'1) ) +

N (I?.d:_'_“)O(T'dé+1)."'.(1-.d1;+1) -

- nocEH?, 1

]
w

Alltogether we obtair for some I(I") of degrese n-1

(04", 2,5 t,)

L'In-d1"...-c'r'] > Z (d{....-dﬁ-nn -ho(([P1)n,l? ®
p=1 w M

e

-, \E Oty 1 (E') ., .
(E1)n(°1""’an) )) + no((e") ,5 = (d1,...,dn) ) -

Using (2.4) we get slightly more than requested in (C.4):

5.13. Under the assumptions made in (C.4) one has

hL

are

2

— d1‘...’dn’Vol(I(_d_,_r—._‘._,t,.,))S Z d.;-...-d;]-Vol(I(g_',g_,t )) £
K= A=
¢ &feaaeedy = Lim HRn% (@D, (g, ..,a0 ) ¢

—=>eo w

"
[= "

'. L 4
1 L I dI!l L 4
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Theore:: 56.1. Let V and '/ Dbe nonsingular quasi-projective

o v > e ——- S s wa =
-4 2>

varieties anda f : V—>73 a surjective projective

morphism. Assume that for some open subvariety Wo of W

a) The restriction of f 1o f’1(W°) is smooth .

Then f»“’V/W is_weakly positive over W, .

Loreover, if

b) w-Wo is 2 normal crossing divisor,

Then f-“’V/T ig locally free.
Let r = dim(V) - dim(V7) . Studying the variation of

Hodge-structures on RTf.C and its degeneration

-1,
£7(7,)
along ¥ -, , Kawamata proved (6.1) in [7 ], Theorem 5 ,
under the additionel conditions:

¢) £~ '(w) is connected for wew ,

d) V and W are rrojective ,

e) the local monodromies of RY f. € around the

£ (7))

components of '/ - Uo are unipotent .

In fact, he obtained the weak positivity of f..u)w._7 over

W itself ( using (4.3,6)). Choosing good compactifications,
we may always assure that d) is satisfied. Replacing

W by a finite coverin~ and V by the.normalization of the
fibre-procuct we may assume that each component of V
satisfies c) and e) ( see[ 7] and [12], §4 ).

(6.1) follows from 2 careful analysis of the behaviour of

f,qu/w under fibre-product and normalization ( [3],lemme 13
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and [12], 3.2 ) =and the properties (4.3,4) & 5)) of
weakly positive sheaves. The details can be found in [12],

Corollary 6.Z. { see elso [12], 5.1 ) Let f : V—>1

be a surjective projective morphism of nonsin ar gquasi-pr

jective varieties, D an _effective normal crossing divisor

on V . Assuve that for some invertible sheaf L and some

N > O one has an inclusion G’v(D) — BN » surjective

-

over f~ (U) for some non-trivial open subvariety U of

Then, for all i> 0 , f"(“’V/'.’I ogl( - [l‘ﬁ-q])) is weakl

positive over an open subvariety Y of 7 .

Froof: If 1 > K we replace D by veD ana N by v
for some v » 0 ,and hence we may assume that i < N .
By (3.12) we are allowed to replace V by any "blowing w'
as long as I remains a normal crossing divisor. In this -
we can assume that E.H = 0,(D') for a normal crossing div
D' > D . The natural inclusion

£y (w g ont- [LR]) — 20wy et [2] 0

is surjective over U and using (4.3,1)) we may assume tI
D' = D . As we have seen in (3.13) we can find 9: T =’

such that T is nonsingular and such that
oW = I@ i - [i.D])
Ve = 7 Wve o R
(6.1) applied to f-¢ gives the weak positivity of
€ q vy end using (4.3,1)) the weak positivity of the

direct summand £u(Wy/m .-I:i( - -j‘ﬁ-g] )) over an open subvé

of 7 .
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6.3. e want to 1ift the positivity statement of (6.2)
from the base to the total space, using (4.5), in the following

gsituation:

Let ;. : C =~—>T be a surjective, flat

morphisn of nonsingular projective varieties, k = dim(C) - dim(T)
Let I be arn ideal-sheaf and L and K invertible
-/ ~

oy
sheaves on C ., /e fix open subvarieties X of C and

Y of T and some K > QO . Ve assume:

M , ,
a) (LK@I) L™ generated by its global sections over
in p-1(}") for some M, »> C .

HAn '
b) K =~ iz enerated by its global sectionc for some /(? » 0
L -

end the "_ dimension™ K( K

"'1(1:)) = k for a point
w haud P

t € T in general position,

c) Por t € T in general position let x and x' be two
different points in p_1(t) n X . The there exists an effectiv
divisor A on p'1(t) such that x € A, x' & A

and such that € _ (A) 1is numerically equivalent to K .

Yty

d) Let <z': V > C be any birational morphism such that

.t-,""I.Uv = erv(-B ) for a normal crossing divisor 2 . Then

t,',wv/c( -[%—]) ) e—c;. is an isomorphism over X .

Proposition_5.4. Under the issumptionsmade ir (56.3), there

FrE it TPt Y T T T
22—+ 2122 -4

exists an open subvariety Y's T sucih that Leix<‘e We /i

is weekly positive over p°1(‘./') nZX.

Froof: It is enough to find ¥'< Y ané .aking X emaller

if necessery we may assume thet = s p~'(Y) . Further
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,.011.,012
replacing I Dby '5 cnd ¥ by /"1',/“2-1‘7 y We may assu

that f, = 1 and that ,-“? divides N .

By a) we can find a subsheaf I' of I , such that

I'fg =1 [x and such that 1Y I' is generated by its global
jons on C ., Since d) is independent of the blowing up che
(3.2) , one can define c' such that < ™ I's0y = O(-B")
for a divisor ~' containing B . Then r.""I_:Nmav(-B') is
generated by its global sections over V  and by d) one I
T, Cdv(-(%r:-) =CJC over X .

Let s be a seneral section of -c"ENat"gN'(kM)oe'v(-B') )
V(s) is reduced, intersects T©' properly and V(s) u B’

a normal croscing divisor ( use the theorem of Bertini

[6] , 1II 16.9 ) . ‘e have theretore
[Eaad] - H.;-] and from (6.2)

p.t',(t" (£Q§k+1)° e'v( -[%—] )ewV/T ) =
= p‘(g e§k+1° wC/TOt:‘(wv/c( - [%] ))

is weakly positive over some ¥Y'€ Y€ T . e have natural’

» 1'}:+1 / Bl ] “1
P p.(Lek e “’C/T""(“’V/c(‘[‘ﬂ' ) —los

o
rk+1 / B' 2 k+1

— Lok wy gociuy ol - [F]) —E5 pox™ewy,

From (4.3,4)) we get the we.l positivity of the image of

® = 8ye¥, over p'1(‘1") . N2 being an isomorphism over

X (6.4) follows from

Claim 6.5. ..n:ins ' smeller - if necessary - o, is sW

1

over p'1('£')n X .

Proof: (6.5) 1is Jjust saying that for ¢ € Y' 1in generzl
position the sheaf



K+ dt
L,® X Qowcgt.,,(w /C(-[ ]))
t t
is generated by its global sections over Xt , Where the index

" ;" Just denotes the restriction to the fibre ¢, = p-1(t)

t
1 \
and Vt =T (Ct/ .

Let X € “:t be a point and Q : t — Ct the
birational morphicm obtained by blowing up the maximal ideal
of x (2.1) . Let 3, be the reduced exceptional divisor of
o M O = 1 — - o "
€ . From (6]}, IT,x.5.5 we know that u)Cé/Ct = eCl((k 1):3.) .

Claim 6.5, ¢*K k”(-k-::}() is arithmetically positive and
w--K+1 . _ ‘
KR*R™ (~ke2)) =

Proof: Since k( .I.{,t ) = K(g“IL_) =k , it is enough to show

that g‘lit(--jx) is arithmetically positive.

In fact , K(s‘ ) = k 1is equivalent to the fact that g¢* K%

contains an ample subsheaf for some 8 >» O ( see for example

[12], 6.3 ). Hence Q*ng(g‘Kﬁg( -k-Ex))B contains an ample
'™ [ =)

subsheaf,

Now let [ be any curve in c{ . If () =x, then
degp(e"zit(-zx)) = degr.,(e.'cé(-Ex)) > 0 . If ¢(r) # x, then-

there existes by ¢) an effective divisor A_, numerically equiva -

lent to K, such that g(MNy & Ay and x e 4. Hence

deg‘,(s"g;t(.Ez))= P-(G’At-ax) 2 C since e“At-Ex is an

effective divisor not containing .

Ir order to #irirh the rroof of (6.5) we may assume that Vi

factors over 7 3 Vg — Cf , i.e. T =57 ,



YUrite

s

- =‘7’3x . The sheaf

1= 1:+1 N »r .
tt (.I'-'ta Et ) ©® e‘vt(-(“'k) Fx -B"t )

is arithmetically positive and of "L dimension" k .

We hence can apply (4.5) and we get a surjection

ok
H(Cy , Ly @ Ky" swg ) —> H%(C,, F ) where

%

! k+

] )) ——?e’ct)e}:togft

By the assumption d) , F‘ has its support in the poi
“iX

x. If 7 7ere zero,

w |-
L%

Bl

W, sc, "“'Fx’["ﬂt‘J) (2)

. = &
TE) T (R

for an effective divisor E with t;(E) = X .

“le wvould obtain a relative canonical divisor of the fomm

Bl
B+ k-F_+ 'Nt’] which contains the
proper transform of Ex under %7 with the multiplicity?

k , contradicting the description of COC'/C given above.
¥t

Hence for some non-trivial sky-scraper sheaf Fx y concel

in x we get a surjection

Y.
(A E‘t‘f’iw’“’ct) —> #%(c,, 7)) and hence (6.5).
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In §5 we forzulated the 'z2in Lemma under the conditions
introduced in Theore: C.4 . Lln this section, we consider a

slightly more general situation.

~3

.1 . Using the assu.ptions end notations introduced in (5.1)
and (5.2) , we cefine
:.-v= T{ZX{Z 9 I{s ; F=1,0oo,::}l} "'2 .
atde
/e consider (n+1)-tuples (g._(l“),t,,) e §°*H! .
If two poirts have the same v-th coordinate, i.e if

Su,w = S1,v y, for A #Y , we assume

2 T L

Ve assu:e moreover that the (n+1)-tuple satisfies (1.6).
Under this condition, one knows ((1.9) and (3.5,i)) that
W'Y ie full Tor all L >0 .

7.2 . Generzlizing the notations introduced in (C.7) , we

2 a
write F( -I:l,...,-—;-,l-) in the following case :
- .

a) all the 2; rre integers and if a, # 0 , ithere exists

an invertible sheaf Hi such taat
e’x(O’ e .A,1 [ ,'...’0_) = gir

b) Under this condition

a n a a
D) -Fel, e ... oH, °

gg;.g Lemma 7.3 : Under the s uuptions and notations of (T.1)

agsw:e that for d1 > d2> oo dn 32 , the sheaf

#(dy,...,d ) is weakly positive with respect to U . Then
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5@y Hiyedy g seees@etogtdp gy sd q000sdy)  is weakly posit

with respect to U.., , where U, is defined by

-1 e 1
Hk = {t (b1 X eoe X Uk"'1 x Vk) H Ui‘@i open nd

v e ! .1 -

V. & by X eeoxE open }
Corollary T1.4_: 1L ‘§(d1,...,dn) has 2 non frivial sect
then 1(d,...,d7) is wezkly positive ovar some product oper

set, where

. J=l+1‘ J

Iroof of the corollary : for k = 1 » Uy 1is nothing but

the set of 11 open subvarieties z=Y(V) for any open V
(IE1)n . Especiélly, U, contains all open sets in
P - ¢ {?1, o oo ,IH}) . The given section induces an
injection Op —> &de,...,dn) - So M(dy,...,d.) is
weakly positive with raspect to U, . Fow, (7.3) 4is just!
inductior ctep from k to k+1 .
For k+1 = n , one sees that gn is by definition the set
all product open sets, lience, (7.4) is true.

In order to prove (7.3), we need the following proposi'
which is a kind of "semi-stable reduction” in our special

gituation.

Propgsition 7.5 : For V= 1,...,n, ye choogg a point %
in general pos tion and write Uy = 91, -{3} preces Sv ¥
1 -9

Take an integer r > C . Then,_there exists a2 commutative
diagram of non singular varieties



/

-] o
C' = C1x...xcn : -
N‘, !
1 1 LS 1
F,!X nooXEn r$k+1x ...xE’n

such thai
1) §,: C, — P:, is 2 finite covering ,
$=8yx «eesS ™ = 41, ...,n) the projection,
é ic biratiopal and

6' is zeperically finite.
2) There ig o1 jinvertible sheatl E on C , an inclusion
¢ 'ut-e, —— ' , for all 1>0, which is surjective

Qvan ¢! (U1w con xUn) grgl, such that the following diagram

T'l —_§ 6‘. ;\Il __é g,l
o —— c'; O ——— &
(e")n ¢ e"hHe

is commutative ( as in (3.8) the second row consists of the naturcl

inclusion and the trace magz .

3) r _divideg the demree of @, . in other words, for all
éve{o,1} , there is s sheef

& €
1 n
Gc( -E:’aoo, '_.r’ )

4) p 1is flat with reduced fibers .

3) 6 iz &tale over U1 X ooe ”Un .

6) There is 2 natural inclusion

Wepp = o0y + F reees Bg + 55 0 4urey O)

which is sur . cctive over e 1(U1x coexUp) o
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The construction derends on r .

Cleiz 7.6 : Cne 22y zscume that r =1 .

Proolf : Tor ~ fix ve{1,...,n} , We cet

Sy = 3 ’zv}

v -';41,\!

I Sy T S,

Sv = {.r,u?,v ] Sf“l'\’}

for two distinct points

for F’—' 1,.00,2:- and

and otherwise

SHyav kg o
“e can finc cyclic coverings h, : F; . PJ of degree
where E} = &'1 , which is totally branched over .Sv and
étale outside of S, . Set h = hyx ..o*h .

For arbitrary points p,e F; , one has

*
h U(Ea)n( ;1,-‘0, &n) = U’(E1 )ncr'£1 .'p1,...,r‘.£n.pn) )

for £ic{0,1} . | o
flence, 3) is true for every finite covering factorizing over

-

The sei h™'( {Sﬂ,v TR 1,...,2.1} - S, ) consists of 7=
points . S0, 'n G) ,'we may aséume vhat r =1,

Ry comstructior. , h s ét__ale over _U1x coe X Un . So, in
we also .a “ssuune that »r = 1 . .

Now, let {3’, s ¥= 1,...,3}, be the points of
h'1({’51,..., 5,-) . One has ' |

—

e} m ", £y

I

h*

where, if h(3') =3, , the (n+1)-tuple (b‘¥),z,) ver
Ty = r't" ~nd

» .
&M ur 3,68,

b\(’y) =

R)

re a\(. otherwise .
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By (3.F) , one knows that there is a commutative diagram

L' =3 h, M\ m,, — 11
I i o ']l
o] — 0 O —
e U Ee @"?

Hence, in 2) , we can also assume that r = 1 .

7.7 « e cefine - non sinzular cyclic covering Sv: C, —-HFJ

by the follcwing concition :
3‘, "is raaifiecd in 3/l 9 with the ramification oi'der
?
I?'a(,,ﬂ)
S »w7here N 1is the smallest cormon multiple of
ﬂ
e .
"TF)‘ ,,'—'-’1,00.,1‘5;, v= 1,...,1’1 .

2y

This is possible by assumption ((7.1) end (1.6)). “oreover,

one nmay assuie that Y" is etale over Uv . Irn fact, choose
ta

a divisor D, = E ;C"T '3,«,\0 » Where the sum is taken ov.r
v

. 1
the different 3,,\» on B, . Choose an <% such that
D= D1 + 7 -z, is a divisor of degree YI.N for le N .

Applying the constructior (3.13) to L =0 . (2) and

™~ (F')

¥ -
L = & (D) we get .
~ ah ’ Sv
Set g =§1" ""gn and C'=C1x ...an .
One has the inclusion

3 m e n_,

~n -3

where the intersecti n is taker over all 3 ' in 5-1(3,,) ‘and

n

~3'

is the :w@exi:al ideal of 3 ' .
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Set I = ﬂ n-s."
wr -1 -
3'63 {{31$"09)?:})
Then , ore has t2 inclusion S*L' —— E' , and from (:

we know that for every blowing ub of C' making I

invertible, say § : C —> C,¥ ....»C, and $7'N'.e) =¥
N .t

we have the property (3.8) for o = g.r,

Clain 7.8 : Let C' = X x Y be the prodvet of two smooth
varieties of cizension k an (n-k) respectively and

p' : C' =>Y Dbe the projection, Let S be a firite sud
of points ¢ = (x,7) of C' , For all ¢ of S , one consi
a parameter system near x in X and near y in Y , sg

(X1,...,x

) ~nd (xk+1,...,xn) , cuch that the divisors

which are globally defined by X = C are smooth.

Define Ac,v by V(x") x ¥ if v¢k eoné by X x V(x,)

¥>k . Similarly d.fine ' by V(x,) if vk .
c,¥y b

Set A U A

c¢s
v =-1’¢o.,'r1

U a_,

¢S C»

c,V

AI

k+1,...,n

< 0

Cenote by Q) c.(A) the sheaf of n-holomorphic forms with

logarithmic poles along the normal crossing divisor A .
Then there exists a co.mutative diagrem of smooth vapieti

[
Y

——ﬂ
-—*’

§

Q€&&——Q

]

P

such that
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1) §7'A , S'“1A' are nor..zl crossing divisors
§'Q (0 - (F7'4)
Jv*w . (An)___ QT < S'-h’)

2) 8 , S' are birational

p is fl=2%t and has reduced fibers

3) O is er iso:orphis: outside of A

4) For each point c €S , § '1nc-06 is invertible, where

-t

n, is th: sheaf of naximal ideal at c¢ .,
Proof : Define §' : T—> Y to be the blowing up of all

the reduced coints y such that there exists x such that
(x,y) € 3 . .f‘;".ll ‘J the corresponding exceptional divisors.
Define T : C —» Xx T to be the blowing up of all reduced
varieties (x,‘sy) such that (x,y) € S . Now we may assume
the following conditions to be true.

a) Y = Spec{B) , where B is a local ring at y

b) T

X.. x, '
spec(e [ 222 ..., 2_|), & is cers
Spec | [ Tort 1 Tr 40 By is defined by x, _,

¢) X = Spec(A), where A is a local rirg at x such that
(x,y) € S
d) C is either

x e
1) s;-ec(,-\oB[i—?- eoes ::k*’ , =22, ;—n— ])
1 1 e+ 1e41

X4

*x Y Xn ] )

or ii) Spec\f'OB [—" s s e
Xt Tt Fipr T Xy

Fow , §' 1A' is cefined by

X b4
O(X, [} k+2).'..'( o-g—- )
x'k+1 Z+1 xk-c-T xk+1 xk_._1
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and is ~ ror:nl croscing c¢ivisor as well as § =14 which i:

defined by z:ther

}:2 k+1) (X k+1 .xk g) vee (x xk+1 xn

1) xqo(x gox=)eoea(xge
SRR IE B X

Xe-1 *r42
or by ii) (x.,,, ‘k+1)..” (xy,q° et ) E gt (X qe xk+1) (x,,

This co. putation shows moreover that S 130- ¢ 1s genera
'-
either by x. or by Xpq ond that S 160Y (A') is

cenerated by

-

X

k+2
d(xk+1) d(x"+1 Xper 1) A Ad(t}'«ﬂ xk_”)
- A s e e
k41 - xk+2 % . xn
‘k+1" yk+1 X+1 xk+1

which is : local generator of & ;¢ 814&) .
Cne sees sizil-rly that the inverse iiage by S of a local
generator of C\)C.(A> is a local generator of OC ) g

Since p has obviously reduced fibers, the only point to

show is that p 1is flat. So, one can assume B to be com

B = a:[[ xk+1,...,xnn . Then, one has

C = C1 x SPGC(c[[Xk+2,..o,Xn]],
T=7T, x Spec(cuxk+2,...,xn]})
p = p, X identity .

Since '1'1 iz 1-dizensional, Py is flat , as well as 7

7.9 . e prove that (7.8) izplies (7.5) .

61 sy o | 1 1
We take j H Y Ck+1" eoe ’cn emn—l Pk+1 oooxEn a

x = 01‘ eoeosoe "Cn
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S = 3‘1{31,..., Su > (z1,...,zn)J

For a roint c €S , rite ¢ = (c1,...,cn) and define

Ac,v

: ' = x o eo ok .
A c'\’ Ck’? vy Cyl Cn

1}

C1' coa® cyx...xcn

we consider the divisors

b n
D=H1 U o, U o,

y =1
wnere
_ 1 1 1
Dﬁ,v = &1' ...’Ev-1‘ ;”,x lP)_'_.]x...len
D = Lrj E1r 4 w1 ¥ z E’ v ¢P1
z v =1 1 L 2N I ) v-1 v' v+1 LR X 2 n
and
I r u
D' = D D
H vk;{( +1 MY z!
where
n 1 1
DZ' = y¥1 Pk"", Neoook ZVXOOCO‘Pn

Since D and L' contzin the discrininants of S: and g’

-1 v
one has _COC,<§ D> =¢ 0(@ n$ D2

h

=S* er(@1)n( M4l 00l 41 )

\

and @ <e oy - ortyy . < D'
Ck+1 X eoe R cn g - S (E )n-k >
=g"e' (Frsatlyen i +1)
(P1)n-k <+1 ! 140

By construction, one -3 ~1p = rnd $ =l pr 2 A



- '7010 -

One has the inclusions
=1 : 4 -1 -1
wC/T —'—?COC(S A O pQ)T(Sv a v
from (7.5,2) , and
F
¥ , -1
@ /T __,S(QC'(A)Q p'w'ck+1x < A > )

....xcn

36' e’ (I\: +1,0.0,E‘£ "'1,0,.-0'0)
(P1)n 1 A k

from (7.8,1) .

Hence, (7.5,5) is smtisfied and the other points of (7.5)

are trivially fulfilled.
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P T L T T P T R T b T TPyt s N A
-t r r 5 -t ¥

Je return now to the situation considered in (7.1), (7.2)

and (7.3) .

Claim £.1., In order to prove (7.3) we may assume that

&(d1-1,d2-1,...,dn-1) is generated by its global sections

over some U e Uk .
-

Proof: For 211 &« > 0 we find - by (4.3,5))~ some B8 > 0
such that ;N'B(d-ﬂ-d1 + B, eee ,V-B-dn4-B ) is generated by

its global sections over some U € U, -

If we consider = B

L4

Ty

and d,, = x<Bed,+8+1 for
V=1,...,0 , the sheaf ;5(31""'311) fulfilles the condition
we ask for in (5.1).

If, however, 5:(31 + -Ek+1 s see Ek+r:k-ak+1 , ak+1 y eeesQ ) =

1 n

1 ar -8 B+1
E(d1+.u1 'd!:+1, ooo,d':+mk‘dk+1,dk+1 Py Qoo’dn) °6P(1,ooo 0’1)

e&(r1,...,mk,o,...,o)3+1

is weakly positive with respect to U,

k1 0 e

obtain (7.3) from (4.3,2)).

Wle choose a birational morphism g 2 ~———>3P ,
Z nonsingulor , such that for a normal crossing divisor D
the sheaf g‘g(d1-1,...,dn-1)a Ok(—D) is generated by its
global sections. After (6.1) this is possible and moreover
we can choose D in such 2 way that g(D) & P - U for
sone U e B‘{ . Of course, g’&(d“...,dn)oez(—D) is also

generated by its global sections and moreover of "L dimension”

hol
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\

e

Definition 8.2, e write

Cy = Supp( Coker(z, g.(w'f/ @’ )n° &, (- [i%] ) — )

(%

and 4y, =z"in{i’ 1 @hH? - C.. contains a product open s

a

R

Proof: Cf course CIZ = C,:. for ¥'< K , and we have to

prove that (E”n - C4 does contain some product open
k+1

Lssume this iIs not the case.

Then we can Tinc on irreducible component C of Cd g
X+1

that (€')"- ¢ does not contain any product open set, and
can choose ¢ 1in such a way that d4dim(C) is maximeal.

Let us prove first , using the notation of (5.1):

Claim E.4, There exists a2 subset I < {1,...,n} suci that
1) {::H,...,n]#I

2) lrI'Ic iz generically finite over (!F1)I ( this neans

just that |I| = dim(c) and wC) = (NHT),

Froof: e have the inclusion € & T.g(D) & (@)P -

for some U & gk . 'lence C is contaired in the union of
T
{k,...,n}(:’) with fibres of =« for v= 1,.,.,k-1 for*®

divisor B in E,;x coe xE; . C mneets every product ope’

=1 ()
{k, cee ,n}

There existc zome v, & {k-m,...,n} suca that

set and, beirg irreducible, it must lie in

dim(C) = dia( W' (C)) . Otherwise, for y= k+s

{1,.ccon}-{y,}



{_1 y o ..,n}-{“}

one could write C = C,«x [-\1, for Cy € (")

ond C -would e of the form C'x r,jmx xE; for

RIS | .
Cre (k') . Por dimension reasons this is only

possible if Fx® ,x ...xB. for a point EcE ,

o+
contradictir~ the ~csuaption, that C meets every
product open set. Usinga similar argument, we can find

- if necessary - ctep by step subsets
{1,...,1’!}2{\’1,...,\:5}2 i"v“'"’s-d 2 ... 2 {\21} ,

dim( (C))

such that ciz(C)
{1’ .oo’n}-{v.', ...,\)s_s

fOI‘ 8 = 2 9 ees o n - dim(C) .

€.5. ‘e write I' = {1,...,n} ~ I and - for a sufficiently

general point T € (®")! we have

' - L -
(P1)I = g 1(P) = ’TI1(I—) since we assumed T | %o

be an isomorphism outside the points ‘51 ) voe s '5M .

Let Y=g T7'm~(F) and denote g-T| = .

vwe have:

A) s‘a(d‘l’ooo,dn)lY = J..O’ 1)I'(d31,ooo,d-

(E Js) = O'Y(dj ,o-o,d. )

1 Jg
1f I' ={J;seee5dgls

B) Oy(d; y.c0y6; )@, (-D| ) 1is generated by its sections
J1 Jg Y Y

and DY = Dl is a normal crossing divisor.

contains the isolated points C

@hHT’
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7e choose some 7 » C such that "'dk-l-‘l > d:j for
v

Y= 1,.00,5-1 . By the choice of I in (£€.4) we have

g > k+1 ané ¢y ., > djs . Hence it follows from B)

that O, (7C_ 4,74y qyreeer?dy 4,9, )0 8(-Dy) is
also generated by its global sections. koreover, P being

in general position, this sheaf has the ﬁg dimension" s .

(4.6) applied to the exact sequence

D
O—-)O’ '(7,000,7,1)8 ] j,, l(- L])
()} T Yy @) [dm

— & l(’?,‘oO 1)0(4) ' — F — 0
(chy? 70100 ey ~

gives a surjection

eI, ¢ . L, (7-2,...,7-2,-1)) — oM, ) .
(3 k

-’

By construction Supp( F ) = Cd contains some

isolated points, hence g contains a sky-scraper sheaf

and E°((ENHI', P) £ 0 . However, 0}91)1.(7-2....,7—2,4

st

can not have non-trivial sections and this contradiction

proves (&.3).

8,6, For a fixed r' » k+2 we set T = r'2-Jk+1 and wé

c R - T
u/f//,
C' =C1x oooxcn d sﬂ
§ v 1
1 A 1 ¥’ . |
P1¥ooo ”Fn . 4 Pk+1x..oxn



to be the diagram ( depending on x ) of (7.5). Let

Ujx ... xU be the product open set over which & is &tale.

The choice of 5.{+1 allows us to choose a product open
subset U of (U;x ...xU)n ((BHP-C, ) .
! n 61c+1

Ve write I = - (U) . Prom (7.5,2)) we have an inclusion

-1

[ 'E'(d‘l""’dn)'cc —_— §(d1,...,dn) and this is an

-r

isomorphism over X .

. Then there exists

Claim €.7. Let cy,= (K, +k+3)- 4,

an open cubvariety y! in T such that
. c, ) Cyc
‘I;(d1+l-1'5k+1+'£‘-r’ o e e ,dk+t.;k’61(+1+? 9 d1{+1 ,.7.., dn)

. is weakly positive over an"’1 (') .

Before we start to prove (8.7) we want to show that
(8.7) implies (7.3):

/e may assume that Y' = &~ (V) for some open subvariety

V of E11c+1" ...xP; . Prom (4.3,5)) we know that for

every &« > ¢ there exists some. 8 > 0 such that

r .- £, .
(E (1:‘-d1 + 1..1-Jk+1-r + CyeT'edy g s ees , Tedy + By Jk+1 T+

+ ck'r'";kﬂ , Tr+d » ey Tedy )2 X8

Y+1 ®

@ 9'0(1,...,1)13

is generated by its global sections over an°1(Y') .

Using (7.5,2)) we findé 2 map , surjective over Un ‘lr"'1(V)

?



~

[ ]
(o))
l

@e', eC — (i':'r(r°d1 + ‘~1 'Jk+1 o+ 01 'r'°ék+1 9 oo o r'dk"l-

.- 2N
+ Uy edy T ck-r'-JkH s Tody, g9 eoey r-dn))

® (Byee.,B8)

&
@"He

For B3 ©big enough the sheaf Gg;@‘coe’ (By.e

(3%
is generatec by its global sections and , applying
we find that
,—r »-
(E (I"d1 +2«1’61{+1 oT 4+ C."I‘" k+1 g soe g r’dk+rtik0 k+1 LD o 3

oo
+ c,{'r" k+1 9 I"dk+1 g ooce g r'dn))z B -

&

L4 39(1’...’1)2°B

is generated by its global sections over 3'1( Taw™] (v),

which is an element of Bkﬂ .

By definition (4.2) +the sheaf

. s - r“r"JkH
E’;(d1+r“1"k+1’ ""d1(+hk.6k+1’dk+1 """dn) e

r'ed
® &9(01,0.0,01{,0,000’0) k+1

is weakly positive with respect to U, , and using (4.3.2)
we obtain the weak positivity of

E(d1 +I~.l104k+1 9 ove dk+r”:k"k+1 ’ dk+1 s ooy dn) with

respect to ng .

By (8.3) 4., € 4., and we get (7.3) .
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‘e return to the situation described at the beginning of this

section. e can find sections Sq300e8y of
giE(d1-1,...,dn—1) such that V(sv) = D+ V(s!, )
for sections =], generating the sheaf

g '£(d1-1 seeeyd -1) @ O,(-D) .

These sections induce sections of g(d1-1,...,dn—1)

under the n-~tur:i inclusion

HO(Z, g.£(61-1,...’dn-1)) = Ho((P1)n ’5'(d1-1!'oo’dn-1)) —

__>H°((E1)n,G.S(d1-1,...,dn-1)) and we choose I to be

the ideal-sheaf on C such that §ldy-1,...,d ~1)e I

is generated exactly by the global sections obtained in this
way.

Claim £€.8. Let ' : V—>C be 2any birational morphism

such that <' "11-dv = Oo(-B) for & rormal crossing divisor B

Then < (wy/q(- [73—-] )) ——>©, is an isomorphism

k+1

over X .

Proof: PFrom (3.12) we know that (8.58) is independent
of the birational morphism <«' choosen. e therefore can

assume that we have a commutative diagram

x S C

C'g N (F1)n

Over t"1 (X) one has n =g"*(D) and for
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simplicity we can ~ssume that both are equal everywhere.

I oreover we can choose V cuch that c'“‘ _1( is &tale.
z! X
Then we have W _, =g"™w 1.n -1 and
T ()/X z/ (@) T (X)

2 = e D
[xz:w ] Iv T & [‘k+1]

Te apply "flat bzce chnange® ( [6], ITI.9.3 ) to obtain

o~ 1(x)

8 £

e*(r-g) W (-2 |) T @"” -,[D ]
5% et [3k+1] ‘ « & wzmr’)n( &t

o‘ w ( - B ]
° v/c [31-:4-1 ) L

By the choice of I |, &() does not meet Cs

k+1
whick i.plies (£.C) .
8.9. Je édefine ( for r = r! -J§+1 )
F =@ M, k2 Sk, ke2 0 0)
LR R i A SEEEE i bl MILRER
and
LW

Y=indm ; E(d1 1eeerd )OO F is weakly positive witl

respect to {Knp-1(Y) ; Y T open , Y # ﬁ}

This definition makes sense . In ract, if we consider

E'(d1+7""’dk+7’dk+1""’dn) for 7» 0 , then this
sheaf is generated by its global sections over

- ? . '
‘Il"{",..”k}( L1‘ocoxuk) . Therefore §(d1+7,....dlc+,’dk+1"

is generrted by its global sections over X for % » O .
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Y"Sk-ﬂ
The sheaf Ei(d1 yoae ’dn) ®F is weakly positive

with respect to the set of open subvarieties of the form

I{r\p‘1 (¢7) . Hence some power ot the sheaf

£ d a1
( H(d.',...,d,,,)og k+1) K+l e €c(1,...,1) is generated by its

rlobal sectiors over }:np'1(’f) s for some open Y in T .

In tact, €.,(1,...,1) is ample and we can apply (4.3,5))

to the morphism § .

By our choice of I some power of
o

¥4
( E(d,',...,c’-.n)ag

1
Og(d.‘,ooo,dn)‘ I-=

-

k+1 ) 6k+1 -

. . ¥-(&
( E(Ca“...,cn)ag

é,

K41 ) ) k+1

®I

"~
is generated by its global sections over ZXap~ (Y) .

Let us choose £= ﬁc( -11: goees % +y O yeee, C) , where

the first zero occurs on the (k+1)-st place,

Claim 8.1C. If we tnke I =&, , and
v (61{4-1 -1)
E = K(d1,...,dn)@F then the assumptions made in
(6.3) are satified.
Proof: ‘e just verified =2), and b) 1is obvious by the choice

of K . The condition d) in (5.3) is nothing but (8.8).
Eence we are orly left with «c¢) .

Let x =2nd ' be two points out of p'1(t)°‘ C1x...ka

for sufficiently ceneral t € T . 'je can find some

V€{1,...,k}and vy X, €C,, such thet Xy # X!, and

X € C1xooo' xvlooo’((lk ’ x!' € C1x...x:::,x...xck .
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3y the choice of K we have degy (K| ) > 1 and
v CV :
- up to nurericzl equivalence- _I_{' is equal to the sum of

CyX coox Xy ens ka and some divisor in general position.

So we can use (6.4) and we find some open subvariety
Y' of T such that Loljkﬂg W is weakly positive ¢

—1 -- xr — > 2 1.
- (¥')nX . From (7.5,6)) we get on inclusion - isomorphi

over s -
SK+1 - k+2 - 42
wC/TQL —— C'C(IA""—_r ’ooo,r-k""-;—,O, coo,O)
o . ! o‘ )
. i< k+1 In s -
and wC/T oL —_— F y isomorphic over X .

In other words,.

x'(ékﬂ =)+ 'J’{+1

E(d1 seee ,dn) ® ;E‘ - is weakly positive ove

Xnp~'(r') , which by definition of ¥ 1is only possible if

Yelbypy =1) +v'edy 0 > (=18, ., or f < (r'+1

(r'+1) 62
Hence £(d1,...,dn)OF k+1 =
IHype(xr+1)4, (k+2)-(r'+1)-6‘k+1
N(d, + = + - y eee
[ 4
r
lko(r'+1)-6k+1 (k+2)-(r'+1).6'k+1 d
eovey dk+ ! + r ’ dk+1 geeey

r'

is weakly positive over an"(l") . Cowsver

Kye(rt+1) I, +k+2
Ad ke2)(r'+1) _ - v k+2 ¢

- y+k+3
then [+ —s7— for r'y»k+2 ond we obtain (8.7).



1t's well knovn to the specialists how to obtain
Roth's theorem assuning (0.4) : one constructs by a
"pigeon-hole-principle” ( or Siegel-type-lemma ) an
auxiliary polynoaial fe¢ OI:K1,...,Xn] with an high order
vanishing 2t the point (¥%,...,®) and a relatively small
height. Lyson's lem:a, applied in 211 the conjugates of

(Xyeeey X) nnd in an azprroximation point

ol

p
( 1 sesesr T ) says that the vanishing order of f
1 n

~t the arproximation point has to be small.
Recall that (d;-...-d <Vol(I(d,a,t))) expresses
pointirise the number of conditions for f to be

of multidegree d ond to have a zero of type (a,t) . Cne
needs the following technical estimation of it.

Lemna_ _9.1. Under the assumptions

8..v=i—)-) 9’22 t$§
one has

Vol(I(d,8,t)) € exp(- 6.n-s/c)
where ¢t = (1/2 - g)en

and c =4 Z = (1 + ] )2
-n a-;

Proof ( copied from a manuscript by l.. l.igrotte, Fublica-

tions d'Orsay n® 77-74 ) . e in 2.4, ii) , one writes

Vol(I(g,z,t)) = lim (¢yeeuaec)™1.3(Q)
dy=>®©



where J(:) i the mmber of intesral rpoints i verifyi

o i, 1
c § i, ¢, oxd )3 E;g(z--s)m.

v=1

If one replaces i, by d, - i, one finds J(d) to be:
the number of integral points i verifying

n_ i, 1
0¢ i, ¢ 4, and > a—v;(z-o-s)-n.
V=

dy s
For  F,(w) = Z‘Ts exp(u-(a-% -%) and
5= ;

F(u) = F1(u)-...‘Fn(u) one finds for u > 0O that

J(g)eemp(ceuen) ¢ T(u) .

. 2
. £
Acgirs vp -~nd usiag 1 < galv) ¢ exp( %— ) ,one gets

v
u-(d,+1) u -1
F,(u) = T )+ ( sh( RY. ™ ))
e (d,+1) 2.4,

¢leyrt)esh g ) TGy

us(d,+1) 5 ,
é(fv*")'exp((_'{.'d'v_) ‘z) .

For u = one finds the inequality wanted.

From now on we consider a fixed number field K of

degree ¢ 32 . In [1], page 279 , one finds:

2525:‘2;252%;%]52@32 Let K , Y and 4 be positive

integers verifying I > de.' . Consider I 1linear {of
l; with coefficients inm K .

Then there exists 2 non-zero vector =z e 2" such that

11(5) = 0 fOI' i = 1’000,1: and
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d‘.'.: d
T U ~rp
n(z) § co(c.m)H0H .(iﬂ-1 h(3;))"

where h 4is the height znd ¢ depends only on K .

The proof is & "box" or "pigeon-hole" principla

applied to tne conjugates of the forms li .

Corollary 9.3 . ( see {11, leoma 6 ) Take Ay s V=1,..4,n,
such that % = Q(e,) for all ¥ , 2nd call

A (=y) = log h(%y) the logarithmic height. Take

(d,a,t) such that d-Vol(I(d,a,t)) < 1 . Then there

exists 2 polynomial fe Q[X,,...,X ] of mutidegree g
having 2 zero of type (a,%) in g = (X400, x )

verifyings

d-Vol(I(d,a,t))
A () = log ()€ VoI(i(g, 5, 07 ! Z: dy A ()

n
+ (log 2)- d
g y; )

+ o(d1+...+dn)

To prove it (see [1J ), one applies Siecel's lemma
to the number of polynomials N = (d1+1)-...°(dn+1) of

degree d and the nu'ber of conditions
L: = d1 ® o0 .Odn'VOI(l(g,é,t)) .

~eeping the notations (9.3) , we take X=X, =,,.= X

Let < be a positive number such that
(9.5) ,«- l’-l § &"
q q
has infinitely many solutions.
Here : l denotes the usual absolue value in € and we
fix an embedding of K in € . Roth's theorem, as stated

in the introduction seys that K¢ 2 .
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For any n€ ® 2nd 2z given constant Q> 1 we can choo-

-
3 P
solutions ol y see -2  such that we have
Assuintion 2.6,
i) Qn? qn_1>/ .2 Q1>/Q_

11} For 2ll nctural numbers KN 2 2-log(qn) let

- u =1
~~v'[r3§ta,7] » By=dy and

n
=4+ (d=1)e. Z di . Then we assume that
1=y +1

S
Y

™y

+

1
1‘;'000"1;1 \< ( 1 +m)‘d1'ooo.dn .

d logl(a
Y & 20—

“i) c-n te fulfilled since one hes $
d))-| 1°g(q

independently of I' . In the seconé half of this paragrey

we prove :

Lemma .7. Asgsume that for t > 1

¢eVol(I(d,a,t)) = 1 - ?11_5!' . Then one has the inequalil

roKe(8=1) > -ne (4t (M) +10g(2)) + Log(u|+ 2)) =

The assumption on t 1is verified for n big enough

On the other hand, Vol(I(_d_,g,g-)) = % and d » 2,

which implies t ¢ § . (9.1) gives

T - zmT = Vol(I(d,a,t)) ¢ exp(~6-n-s.c™")

or ( if ¢ 1is big enough and 6 » ¢ )

1

1
- log( -d- - 2+den!

ol _t,2
)>n(? =)
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(9.7) being true vor all ) we have

The limit for n—> o0 gives K € 2.

Proof of 2.7. Let f be the polynomial of (9.3), applied

to the deta & , ¢ and t , introduced in (9.6).

f has 2 zero of type (2,t) at («',...,«') for all the
conjugates o' of &« . Let z be the biggest real
number such that f has a2 zero of type (g,t) at

- n

(1 yeeey == ) . Theorem 0.4. gives

d'....'d'
Vol(I(d,z,z)) 4 H - Vol(I(d,a,t))-d ¢ ﬁlr
n !

and hence T £ 1 . This means that we can find

- o e n_ i,
i & ™ <uch that Z = T 1 and
i — I, <
i o Pn
c = AT £ T ) £ 0 where we use the notation
1 n
. i
A-’-‘- _ 1 o~
i r.ooo’I T. i 1 *
1 2, aia
ags., seo ax

By (9.6,ii) we have i, -4, > -4, > - N-log(q\,)-1 .

i \
A~ does not introduce mew denominators and hence

i,-d i -d
9.8) Jcl>aq;" Teeeieq® Pen(®)™! > exp(nm) -n(e)"

On the other hondé, the Taylor expansion at («,...,x) of

i
A" f gives



- 1,5 =

i I
c - s A*pR fce_f)-(-:-l -«)j’-...-(-f;&-mjn
jea’ ! no )

d AL
Let j be 2 n-tuple with A A f(x) # 0 . Then

1 - 5 log(a) » S U >
— Jy-log(q
F-log(q,) V=T vi' " $7 0§ By
Togla,)
> = -j\, > t do
g v:; E—\; - -t } -
and (3.5) rlies
. Jq In . .
e J Jn, =K
- — e . - ——rl 1. . n
o q1 ves >4 qn 4 (q1 eo e qn ) é
& exp( =xe(t-1)«(HW-1logl
d4d
For 2= 3 A A f(x)| we obtain
jea™
(9.9) el ¢ empC -K-(t-1)+(¥-1loglq))) R .

In order to bound R we consider |f |, the polynomial

obtained from £ by replacing the coefficients by their
absolute value, the Taylor expansion of |£] at

,gl."l:(‘.o‘:""‘, coe ,'(X|+1)

end the Taylor expansid
i
of AT|£] at |ui:

k
Telcst+2) = T AT Ielg1+ 1) >
keR®

b A'i']lflqgl +1)) = Z:_ AJ'Ai "fi(l%
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On the other hand [[f](la|+ 2 ) is bounded by

)d1+. L .+dn

el -+ 2 <

d1+...+dn
< (d1+1)-...°(dn+1)-h(f)'(|d|+ 2) .

Ilence (9.7) =an¢ (9.9) imply

- Ke(t=1)+(=loz(q,)) + A(D) + log(lo('+2)-(d1 teeotd ) +

+ 0(d1'P...+dn) ) -n'N - l(f) .

" Using (2.3) and replacing
GeVol(T (¢, ,t)) (1 = Vol(I(d,2,t)))”" by the upper bound

2.n! we obtain

> = 4ent-(A() +1og(2)) + Log(lat[+ 2)).rn_; a,
y=

Our choice of d gives I > d, forall v and

;
loz(2)

the right hand side of the inequality is bigger than

=N-( 2ent.(A(xX) + Log(2)) + Log(|« |+ 2)) *ne

]
log() °
These inequalities are true for all & > 2olog(qn)

and hence we obtain (9.7).
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8§10 Remarks about possible_ameliorations_of (0.4)

e 2 cam T A Th e W o A e A A S D A oD L WD > e e o i e it e e e n e s v = -

R R RN I R N N I S . S N S S S S S s S RN I T NS m s m et

In the proof of (0.4) we did not try to obtain the
"optimal®™ inequality. In this section we want to give just
some hints liow one might obtain a better bound for the
volumes 1f the points are in special positions. We work out
further improvements in the two variable case. In the higher
dimensional :zituction one would have to do quite a lot of
calculatiorc to get similar improvements and - since we
do not see any cpplications where this would be of any
advantage - we ¢id not try to do them. it the end of this

section we discuss the necessity of assunption a) and b) in (C.4).

10 .7, 1In the proof of (7.3) in § 3 +we introcuced some

number d,.., and it was only et the end ( after (C.7))

that we replcced d by the big~er rurber & ( cec

K+ k+1

(C.3)). oreover in the definitior of ‘Szm in (£.2) it

is enough to take :

ék+1 = I:Tin{?‘. > 1 @E- Cyp contains an element of U‘c+1} .

e

Kevertheleés it seems to be quite difficult to improve

the inequelit; for &,

+1 in special cases. Only for k = 1

we have:

Cleim 10 .2, .ssume that the polynomia f in (0.4)

m
has the deco:pocition f = h(x1)-g1(x1.--.,xn) Yol
'Ss(x1,...,xn)us

where the Gy are irreducible end two by two distinet,

then Jz-1§msmax{m1'...,ms‘}0
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Froof: e just hove to show that (E‘1)n--Cm+1 cortains

an element of U2 s i.e. 2n open set of the form

UsV where U< F! end sz1x...,u-'; .

2
Ve can talke , for example , U = E: - X4 and
v= T ( Sin~( b.__ . )) +here D is the zero-set
{"“,.."n} Lea

of £ in (L)%,
In (7.3) (for k = 2 ) we can replace d, by m+l o

corying the limit process of (8.1) even by m ( Just replac

f by fI'I , 2nGd 1m+1 by Nem+1 ). As in § 5 one gets

Corollary 10 .2. Under the assumptions of (0.4) one has

= oo I .y ¢y
g;; Vol(I(L,z,t,)) € (1 + (1'-2)-37 *-1= ( -2)-3% )e

4 n_ d,
. I 12 E -
b (1+ ( ) %=J+1 ag )

- (@ eenied ) -Ig:_i;malf'n-ho((@1)n,_I:'(-c-:?')(d{,...,dﬁ)E) :

Of course, one can replace the obvious bound m ¢ d,

by a better bound only if one Xnows something about the posi

of the points 3, , ..., 3M .

In the proof of (C.4) we rerlacec the term
1in X7l h)® ,L'(Q')(d',...,d')r) by 2zero. Cne can do
N>~ o ! n |

better,as we want to explnin in the proof of
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__heorem 10 .4, ( sce [1]1) issune that for n = 2 the assumptions

- e W o ——
|mMIERETREZIZE=R==RS

of (C.4) ore satified. Then

- . d
= - M ' -2 L ] ———
;=1 Vol(I(g,;,pﬂ)) ¢ 1+ =53

Proof: Let T e P1

] 1 be 2 point in general position.

If, using tihe notetion introduced in (2.5), T"1(P ) meets

1 1
(Q’ _a-’ t\" )

the support of C , them =2 ,+d, < t_ . We may
Sy 1 5

( replacing f Dby sone power of f ) assume that

a2 divides t, and d1 and we can find some natural number

s such that r1cd1 = tK -a,°s and (xz-s ) divides £ .

Y,2

The polyncmizl T = f£+( x )% is of multidegree

2 " Oy,2

(51 =d,, jé = d2"5) and has a zero of type (2,Tu) at

S, , where Ty = ty-s-a, and Tp =t for uf v,

Ve have a,+d, = T, and ( using (2.7)) az'dé >Tu  for
p#EY o .ifter the description of the volumes in (2.4,ii))
this implies that for u # ¥

51-6?-V01(I(é,g,§u)) = d,y+d,°701(1(4,2,t.)) =and moreover

4y -8,-701(1(g,2,T9)) < dy+dy-Vol(I(d,z,ty)) - sed, .

Together we finc that the inequality(10.4) for the tuples
(d,2,%w) irvplies the inequality for (d,a,tn) .

Hence we mey acssume that the support of

(iaittr) , =1
CS% coes not meet Wi (F,) for = 1,...,1,
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Using the notations of (5.4) the sheaf L(d4;,d}) on €'
w

is arithmetically positive. By (4.7) (or {10} 3.1), for

T

n(e',L(d:,c2)”) is bounded from above by a linear polyr
-

in I and the Riemann - Roch - Theoren for surfaces implies

that ( see (6] , . 332)

> e
. --"2 “ ] T 1
= lim TR, 1eq,a0T) = geeg (Bay,a30)2

”
where c1()“ cenotes the selfintersection-number.

The aritumetical pocitivity implies that c1(L(d{,dé))-Bi
w

for every effective divisor E on E' .

Let H = 1s"n;‘1(r1) . The condition on the support of

(¢,2,t,)
Cs implies that c1(l_3'(d.;,d2',))-H =d} =d

F 2 °

f induces a section of L(d;,dé) whose zero-set is of the

-

form 3D + ("—2)'dsz for an effective divisor B .

Hence c1(B(d{,dé))2 > o (L(d],d8))((i1-2)dpeH) = (L'

The inequality giver in(10.3) or (5.13) implies therefore
(10 .4),
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10.5. In Theorem (C.4) we made two quite restrictive assumptions:

vy must be two by two

a) the coordirates 3, / , ..., ¥
? .

distinct,

b) the hyperplanes are given by (A a2 for all . .

The "wenk positivity statement" (5.3) or (7.4) wes obtained

however unier the hypothesis

~') if 'S,“,v = Sx,v , for p#y eand soze v , one has
. (B .. ()
\’,‘ ctx = Sy ’t",

without using b).

Simple examples ( for n = 2 one can take polynomials of the
form f1(x1)-f7(x2) ) show that neither (5.4) nor the in-
equalities (C.4) or (5.13) remain true if we replace a) by
a') or if we leave out the assumption b). The reason is that
in the proof of (5.4) ( case (5.9) and case (5.10)) we had to
use the combinatorial statements obtained in § 2 . To be more

<

precise, the arpuments given in § 5 show

o e e e an o . T e e o e e
2=~

we_assume_thot the hypothesis a') given above is satisfied

and moreover_ that

. — (a2, ) (2,2,
i) For pm#vy Su p(Cqﬁ )} n Supp(C

I

)= 6

3,
ii) Por any subcet I= {*.1,...,ie}9 {1,...,:1} ard for

. 1 {1,0-.,1]}-1
any point 1€ (E) let

B =8 . : (")] —— (B")® be the netursl embedding.

Then we 2ssune that

)T, Im( D) s 1)e¢®

(d;, ,e..,d; 0.
~ D Iy ls)) g
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Then for o, = f.-;ax{z ’ ‘{sﬂ s M= 1,...,3’1” }-2 and

'Y
n
' = I - ® o . 3
di = di + Jz=i+1 Fs GJ one has the inequality

d1'00o'd“"."TOI(I(i,E("),t,‘)) ‘ d‘;.....d;] .
,‘=1 . [

dowever, even if the hypothesis a) given in (10.5) i
satisfied, the only cases where one can verify (10.6) i)

without usirz (2.7) and (2.9) are:

1z My t, for all » and w , i.e. if i’ =1

- If f"(,u) =2 Tor p= 1,...,7°=1 and if ‘l:I is very s

The assumption (1C.5,i) is not only used in (5.9) b
in (5.11) where it enables us to count the dimension of @
certain cokernel pointwise. Hence without this assumption
one can not expecf to find an inequality similar to (0.4)
or (10.56). The reason is, that without (1C.6,i) the condit
which force 2 polynonizl to have a zero of type (g,t,) a

the point 3

s depend too much on those for the other poirt

The arzu.ent given in (S.7) carries over to the case
where one corciders good approximatiors of different alge
numbers ®,,...,«, € K , as long ~s eech of them is a g
of X ( thic just implies the condition a) in (0.4) or ('
In order to use good approximations of Xyyees™) to bour
approximatiore of &, .,,..,%  one would like to get rid
this condition and to be eble to cohsider numbers out of
smaller numberflelds too. In this special case, the depend

of the conditions,uentioned sbove, also appears in Siegel®
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Lemma ( see (9.2) =nd [1] , page 279 ) where the rank of the map
é defined by the linear forms ii and all there conjugates

can be bounded by a constant smeller than d.i (using the notation
of (9.2)). Hence in order to generazlise (9.7), it might be easier
to try to use (7.4) 2nd arguments similar to the ones given

in § 5 to bound the sum of the rank of @§ and the volume
corresponding to the zero of f at the aprroximation point

directly.

If one weznts to obtain the theorems of 7.0, Schmidt
about zinultanzous rpproximations in a way similar to our
proof of the theorain of loth, one seems to have to consider
(P™)?  instead of ([F")n » and to generalize Dyson's Lemma to
this situation. The problem turns out to be (6.2) where one

would need a2 cescription of the open subvariety Y .
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