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CHARACTERISTIC CLASSES OF SYMMETRIC PRODUCTS
OF COMPLEX QUASI-PROJECTIVE VARIETIES

SYLVAIN E. CAPPELL, LAURENTIU MAXIM, JÖRG SCHÜRMANN, JULIUS L. SHANESON,
AND SHOJI YOKURA

Abstract. We prove a generating series formula for the characteristic classes of sym-
metric powers of complexes of mixed Hodge modules on the corresponding symmetric
products of a complex quasi-projective variety. As a special case, we obtain a generating
series formula for the Brasselet–Schürmann–Yokura (intersection) homology Hirzebruch
classes of symmetric products. Moreover, after a suitable re-normalization procedure, we
recover as a corollary Ohmoto’s generating series formula for the rationalized MacPherson
homology Chern classes of symmetric products.
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1. Introduction

Some of the most interesting examples of orbifolds are the symmetric products of alge-
braic varieties. The n-th symmetric product of a space X is defined by

X(n) :=

n times︷ ︸︸ ︷
X × · · · ×X /Σn,

i.e., the quotient of the product of n copies of X by the natural action of the symmetric
group on n elements, Σn.

Date: September 22, 2010.
Key words and phrases. symmetric product, generating series, mixed Hodge module, characteristic

class, Adams operation.
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The standard approach for computing invariants I(X(n)) of symmetric products is to
encode the respective invariants of all symmetric products in a generating series, i.e., an
expression of the form

SI(X) :=
∑
n≥0

I(X(n)) · tn,

provided I(X(n)) can be defined for all n. This is analogous to the zeta function of a
variety over a finite field. The aim is to calculate such an expression solely in terms of
invariants of X, so I(X(n)) is just the coefficient of tn in the resulting expression.

There is a well-known formula due to Macdonald [Mac] for the generating series of the
topological Euler characteristic. A class version of this formula was recently obtained by
Ohmoto in [O] for the Chern classes of MacPherson [M]. Moonen [Mo] obtained generating
series for the arithmetic genus of symmetric products of a projective manifold and, more
generally, for the Baum–Fulton–MacPherson Todd classes of symmetric products of any
projective variety. In [Za], Hirzebruch and Zagier obtained such generating series for
the signature and L-classes of symmetric products of rational homology manifolds. Also,
Borisov–Libgober [BL] computed generating series for the Hirzebruch χy-genus and, more
generally, for elliptic genus of symmetric products of smooth compact varieties. Generating
series for the mixed Hodge numbers of complexes of mixed Hodge modules on symmetric
products of (possibly singular) quasi-projective varieties have been recently obtained in
[MSa] by relating symmetric group actions on exterior products to the theory of lambda
rings (e.g., see [Yau]), but see also [MSS] for an alternative approach.

In this paper we assume that X is a (possibly singular) complex quasi-projective variety,
so its symmetric products X(n) are quasi-projective varieties as well.

The invariants of symmetric products considered in this paper are the homology Hirze-
bruch classes Ty∗(X

(n)) of Brasselet–Schürmann–Yokura [BSY] (also see [SY, Sch2, Yo])

and, for X pure-dimensional, the intersection Hirzebruch classes ITy∗(X
(n)) studied by

Cappell–Maxim–Shaneson [CMS].
For any (pure-dimensional) complex algebraic variety Z the classes Ty∗(Z) and ITy∗(Z)

are defined as the images of certain distinguished elements by a natural transformation

Ty∗ : K0(MHM(Z))→ HBM
ev (Z)⊗Q[y±1],

where K0(MHM(Z)) is the Grothendieck group of the abelian category of algebraic mixed
Hodge modules on Z [Sa2], and HBM

ev (−) denotes the Borel–Moore homology in even
degrees. More precisely, by building on Saito’s functors (cf. [Sa2])

(1) grFp DR : DbMHM(Z)→ Db
coh(Z)

(for Db
coh(Z) the bounded derived category of sheaves of OZ-modules with coherent coho-

mology sheaves), one first defines a motivic Chern class transformation MHCy as follows:
the transformations grFp DR induce functors on the level of Grothendieck groups, and we
let

(2) MHCy : K0(MHM(Z))→ K0(Db
coh(Z))⊗ Z[y±1] = K0(Coh(Z))⊗ Z[y±1]
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be given by

(3) [M] 7→
∑
i,p

(−1)i[Hi(grF−pDR(M))] · (−y)p.

(This is well-defined since grFp DR(M) = 0 for almost all p and M fixed.) Then the

Hirzebruch class transformation Ty∗ : K0(MHM(Z)) → HBM
ev (Z) ⊗ Q[y±1] is defined by

the composition:

(4) Ty∗ := td∗ ◦MHCy,

with

(5) td∗ : K0(Coh(Z))→ HBM
ev (Z; Q),

the Baum–Fulton–MacPherson Todd class transformation [BFM] (linearly extended over
Z[y±1]). This transformation Ty∗ has good functorial properties, e.g., it commutes with
proper push-down. The above mentioned characteristic classes Ty∗(Z) and ITy∗(Z) are
then obtained by evaluating the transformation Ty∗ on the (class of the) constant Hodge
complex QH

Z ,

(6) Ty∗(Z) := Ty∗([Q
H
Z ]),

and, respectively, for pure-dimensional Z, on (a shift of) the intersection Hodge sheaf
ICH

Z :

(7) ITy∗(Z) := Ty∗([IC
′H
Z ]),

with IC ′HZ := ICH
Z [−dim(Z)]. We point out that both classes Ty∗(Z) and ITy∗(Z) are ex-

tensions to the singular setting of the un-normalized cohomology Hirzebruch class Ty
∗(−)

appearing in the generalized Hirzebruch–Riemann–Roch theorem [H], which in Hirze-
bruch’s philosophy corresponds to the un-normalized or non-characteristic power series

Qy(α) = α(1+ye−α)
1−e−α ∈ Q[y][[α]]. In fact the associated normalized or characteristic power

series (which we need in §4) is Q̂y(α) := Qy(α(1+y))

1+y
= α(1+y)

1−e−α(1+y) − αy, which defines the

normalized cohomology Hirzebruch class T̂ ∗y (−). If we specialize the parameter y of T̂ ∗y (−)
to the three distinguished values y = −1, 0 and 1, we recover the cohomology Chern, Todd,
and L-class, respectively.

Moreover, as shown in [BSY, Theorem 3.1] and [Sch2, Example 5.2], the homology
Hirzebruch classes Ty∗(Z) and ITy∗(Z) contain only non-negative powers of y, so one is
allowed to specialize the parameter y to the above three distinguished values y = −1, 0
and 1, in particular to y = 0.

Over a point space Z = {pt}, the transformation Ty∗ (as well as its normalization defined
in §4 below) reduces to the χy-polynomial ring homomorphism

(8) χy : K0(mHsp)→ Z[y, y−1],
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which is defined on the Grothendieck groupK0(mHsp) of (graded) polarizable mixed Hodge
structures by:

(9) χy([H]) :=
∑
p

dimCGr
p
F (H ⊗ C) · (−y)p,

with F • the Hodge filtration on H ∈ mHsp. So, if Z is a compact variety, by pushing
down to a point the classes Ty∗(Z) and ITy∗(Z) (or their normalized counterparts from
§4), one gets that the degrees of their zero-dimensional components are the corresponding
Hodge polynomials χy(Z) and Iχy(Z), respectively, defined in terms of dimensions of the
graded parts of the Hodge filtration on the (intersection) cohomology of Z.

1.1. Statement of results. Let X be a complex quasi-projective variety, with n-th sym-
metric product X(n) and projection πn : Xn → X(n). For a complex of mixed Hodge
modules M∈ DbMHM(X), we let the n-th symmetric power of M be defined by:

(10) M(n) := (πn∗M�n)Σn ∈ DbMHM(X(n)),

whereM�n ∈ DbMHM(Xn) is the n-th exterior product ofM with the Σn-action defined
as in [MSS], and (−)Σn is the projector on the Σn-invariant sub-object. The action of
Σn on M�n is, by construction, compatible with the natural action on the underlying
Q-complexes (see [MSS] for details). In what follows, we regard the exterior productM�n

as an object in the category Db,ΣnMHM(Xn) of weakly Σn-equivariant complexes of mixed
Hodge modules on Xn (compare with [CMSS1, Appendix A]). As special cases of (10), it
was shown in [MSS] that for M = QH

X the constant Hodge sheaf on X, one obtains:

(11)
(
QH
X

)(n)
= QH

X(n) .

Also, for X pure-dimensional and M = IC ′HX := ICH
X [−dimX] the (shifted) intersection

Hodge sheaf on X, one has:

(12)
(
IC ′

H
X

)(n)

= IC ′
H
X(n) .

The main result of this paper is the following generating series formula for the Hirzebruch
classes of the symmetric powersM(n) ∈ DbMHM(X(n)) of a fixed complex of mixed Hodge
modules on the variety X:

Theorem 1.1. Let X be a complex quasi-projective variety and M∈ DbMHM(X). Then
the following identity holds in

∑
nH

BM
ev (X(n); Q[y±1]) · tn:

(13)
∑
n≥0

T(−y)∗(M
(n)) · tn = exp

(∑
r≥1

Ψr

(
dr∗T(−yr)∗(M)

)
· t

r

r

)
,

where

(a) dr : X → X(r) is the composition of the diagonal embedding ir : X ' ∆r(X) ↪→ Xr

with the projection πr : Xr → X(r).
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(b) Ψr is the r-th homological Adams operation, which on HBM
2k (X(r); Q) (k ∈ Z) is

defined by multiplication by 1
rk

(and is then linearly extended over the corresponding
coefficient ring).

(c) The multiplication on the right-hand side of (13) is with respect to the Pontrjagin
product induced by

X(m) ×X(n) → X(m+n), m, n ∈ N,

which in turn comes from the product Xm ×Xn = Xm+n, with Σm × Σn ⊂ Σm+n

acting on each factor. (Note that this Pontrjagin product is associative, commu-
tative, and with unit 1pt ∈ H0(pt), so that the exponential series on the right-hand
side of formula (13) makes sense (compare [Mo]).)

The proof of Theorem 1.1 makes use of the equivariant Hirzebruch classes of [CMSS1],
combined with the Lefschetz–Riemann–Roch theorem [BFQ, Mo], which in the context of
symmetric products is related to the singular Adams–Riemann–Roch transformation for
coherent sheaves (e.g., see [FL, Mo, N]).

If X is a projective variety, by pushing down to a point the result of Theorem 1.1,
we recover the generating series formula for the Hodge polynomials χy(X

(n),M(n)) (cf.
[MSa, MSS]), namely:

(14)
∑
n≥0

χ−y(X
(n),M(n)) · tn = exp

(∑
r≥1

χ−yr(X,M) · t
r

r

)
.

Indeed, over a point space, the map dr is the identity, and the r-th Adams operation Ψr

also becomes the identity transformation.

If we let M be the constant Hodge sheaf QH
X or the shifted intersection chain sheaf

IC ′HX , respectively, we obtain by (11) and (12) the following special cases of formula (13),
as announced in [MSb]:

Corollary 1.2. For any complex quasi-projective variety X the following identity holds

in
∑
n≥0

HBM
ev (X(n); Q[y]) · tn:

(15)
∑
n≥0

T(−y)∗(X
(n)) · tn = exp

(∑
r≥1

Ψr

(
dr∗T(−yr)∗(X)

)
· t

r

r

)
,

and, if X is pure-dimensional, then the identity

(16)
∑
n≥0

IT(−y)∗(X
(n)) · tn = exp

(∑
r≥1

Ψr

(
dr∗IT(−yr)∗(X)

)
· t

r

r

)
,

holds in
∑
n≥0

HBM
ev (X(n); Q[y]) · tn.
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If X is smooth and projective, the formulae of Corollary 1.2 specialize to Moonen’s gen-
erating series formula for his generalized Todd classes τy(X

(n)) (cf. [Mo, p.172]). Indeed,
as shown in [CMSS1], Moonen’s generalized Todd class τy(Y/G), which he could only de-
fine for a projective orbifold Y/G (with G a finite group of algebraic automorphisms of the
projective manifold Y ), coincides in this context with the Brasselet–Schürmann–Yokura
(un-normalized) Hirzebruch class Ty∗(Y/G) considered in this paper.

We conclude this introduction with a discussion on important special cases of the for-
mulae (15) and (16) of Corollary 1.2.

If y = 0, the formulae for the corresponding classes T0∗(−) and IT0∗(−) should be
compared with Moonen’s generating series formula for the Baum–Fulton–MacPherson
Todd classes td∗(X

(n)) of symmetric products of a projective variety (see [Mo, p.162–164]).
However, while these three classes satisfy the same generating series formula, they do not
coincide in general, except in very special cases, e.g., if X is smooth so that the symmetric
products X(n) have only rational (hence Du Bois) singularities (see [BSY, Example 3.2]).
If X is smooth and projective, by taking the degrees of the zero-dimensional components
in either (15) or (16), we recover Moonen’s generating series formula for the arithmetic
genus of symmetric products of a projective manifold (cf. [Mo, Corollary 2.7, p.161]):

(17)
∑
n≥0

χa(X
(n))tn = exp

(∑
r≥1

χa(X) · t
r

r

)
= (1− t)−χa(X).

Let us now consider the case y = −1, and assume that X is projective and pure-
dimensional. Then by taking the degree of the zero-dimensional components in (16), we
recover the generating series formula for the Goresky–MacPherson intersection cohomology
signature σ(X(n)) of the symmetric products of X 1, i.e.

(18)
∑
n≥0

σ(X(n)) · tn =
(1 + t)

σ(X)−χIH (X)
2

(1− t)
σ(X)+χIH (X)

2

,

with χIH(X) := χ([IH∗(X; Q)]) the intersection cohomology Euler characteristic of X,
see [MSa, MSS]. If, moreover, X is smooth, formula (18) was proved by Zagier [Za]. With
regard to characteristic classes, both formulae (15) and (16) specialize for X smooth and
projective to the generating series for Moonen’s class τ1∗(X

(n)) of symmetric products of
X. This differs from the Thom–Milnor homology L-class L∗(X

(n)) by a renormalization,
defined by multiplying in each even degree by a suitable power of 2. More precisely, for
any projective G-manifold Y , with G a finite group of algebraic automorphisms of Y , one
has (cf. [Mo, Corollary 2.10, p.171]):

Ψ2T1∗(Y/G) = Ψ2τ1∗(Y/G) = L∗(Y/G),

1Here we use Saito’s Hodge index theorem, which asserts that if Z is a pure-dimensional complex
projective variety, its Goresky–MacPherson (intersection cohomology) signature σ(Z) is obtained from
the intersection homology Hodge numbers of Z by the formula σ(Z) = Iχ1(Z), e.g., see [MSS] for an
abstract Hodge index theorem.
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with Ψ2 the second homological Adams operation (as defined in Theorem 1.1). A formula
for the Thom–Milnor L-classes of symmetric products was originally obtained by Zagier
[Za] in the manifold context, and then re-proved by Moonen in [Mo] in the complex
projective case.

If y = 1 and X is projective, by taking degrees in formula (15) we recover’s MacDonald’s
generating series formula for the Euler characteristics of symmetric products [Mac]:

(19)
∑
n≥0

χ(X(n))tn = exp

(∑
r≥1

χ(X) · t
r

r

)
= (1− t)−χ(X).

Similarly, by taking degrees in formula (16), we obtain the generating series formula for
the intersection cohomology Euler characteristic χIH(X(n)) of the symmetric products of
X, see [MSa, MSS]. Finally, after a suitable re-normalization (as explained in §4), formula
(15) specializes for the value y = 1 of the parameter to Ohmoto’s generating series formula
[O] for the rationalized MacPherson–Chern classes c∗(X

(n)) of the symmetric products of
X (see §4 for details):

(20)
∑
n≥0

c∗(X
(n)) · tn = exp

(∑
r≥1

dr∗c∗(X) · t
r

r

)
.

By similar arguments (as explained in §4), we get from Theorem 1.1 the following
generating series formula for the rationalized MacPherson–Chern classes of symmetric
products of a constructible sheaf complex F underlying a complex of mixed Hodge modules
M:

(21)
∑
n≥0

c∗(F (n)) · tn = exp

(∑
r≥1

dr∗c∗(F) · t
r

r

)
,

which, for F = QX the constant sheaf gives back formula (20).
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2. Proof of Theorem 1.1

An essential ingredient in the proof of Theorem 1.1 is the Atiyah–Singer class transfor-
mation (cf. [CMSS1])

Ty∗(−; g) : K0(MHMG(Z))→ HBM
ev (Zg)⊗ C[y±1],
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which is defined by combining Saito’s theory with the Lefschetz–Riemann–Roch transfor-
mation

td∗(−; g) : K0(CohG(Z))→ HBM
ev (Zg; C)

of Baum–Fulton–Quart [BFQ] and Moonen [Mo]. These transformations are defined
for any complex quasi-projective variety Z acted upon by a finite group G of alge-
braic automorphisms. Here K0(MHMG(Z)) denotes the Grothendieck group of equi-
variant mixed Hodge modules, which is identified with a suitable Grothendieck group
of “weakly” equivariant complexes of mixed Hodge modules (see [CMSS1, Appendix A]).
Also, K0(CohG(Z)) denotes the Grothendieck group of G-equivariant algebraic coherent
sheaves on Z. More details on the construction of the Atiyah–Singer class transformation
Ty∗(−; g) will be given in §3, as needed.

Let σ ∈ Σn have cycle partition λ = (k1, k2, · · · ), i.e., kr is the number of length r cycles
in σ and n =

∑
r r · kr. Let

πσ : (Xn)σ → X(n)

denote the composition of the inclusion of the fixed point set (Xn)σ ↪→ Xn followed by
the projection πn : Xn → X(n). For a cycle A of σ, we let |A| denote its length. Then

(Xn)σ '
∏

A= cycle in σ

(X |A|)A '
∏
r

((Xr)σr)kr '
∏
r

∆r(X)kr ' Xk1+k2+··· ,

where σr denotes a cycle of length r, and ∆r(X) is the diagonal in Xr. Also, (X |A|)A ' X,
diagonally embedded in X |A|. Here the inclusion X |A| ↪→ Xn is given by Xj1×Xj2×· · · , for
A = (j1, j2, · · · ) and with Xj on the j-th place in Xn. Then the projection πσ : (Xn)σ →
X(n) is the product (over cycles A of σ) of projections

πA : X → X(|A|)

defined by the composition

πA : X ' ∆|A|(X) ↪→ X |A| → X(|A|),

with ∏
A

X(|A|) → X(n)

induced by the Pontrjagin product. In the notations of Theorem 1.1, this amounts to
saying that πσ is the product of projections

dr : X ' ∆r(X)
ir
↪→ Xr πr→ X(r),

where each r-cycle contributes a copy of dr.

Theorem 1.1 is a consequence of the following sequence of reductions (compare with
[Mo] for a similar argument):
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Lemma 2.1. For M∈ DbMHM(X) and every n ≥ 0, we have:

(22) Ty∗(M
(n)) =

1

n!

∑
σ∈Σn

πσ∗Ty∗(M
�n;σ).

Proof. This follows directly from [CMSS1, Theorem 5.4], by regarding the exterior product
M�n with its Σn-action (as defined in [MSS]) as a weakly equivariant complex, i.e., as an
element in Db,ΣnMHM(Xn).

�

Lemma 2.2. If σ ∈ Σn has cycle-type (k1, k2, · · · ), then:

(23) Ty∗(M
�n;σ) =

∏
r

(
Ty∗(M

�r;σr)
)kr

.

Therefore,

(24) πσ∗Ty∗(M
�n;σ) =

∏
r

(
dr∗Ty∗(M

�r;σr)
)kr

Proof. This is a consequence of the multiplicativity property of the Atiyah–Singer class
transformation, see [CMSS1, Corollary 4.2].

�

Lemma 2.3. The following identification holds in HBM
ev (X)⊗Q[y±1] ⊂ HBM

ev (X)⊗C[y±1]:

(25) T(−y)∗(M
�r;σr) = ΨrT(−yr)∗(M),

with Ψr the r-th homological Adams operation, which is defined on HBM
2k (X; Q) (k ∈ Z)

by multiplication by 1
rk

and is then linearly extended over Q[y±1].

The proof of Lemma 2.3 is given in §3.

We now have all the ingredients for proving Theorem 1.1.

Proof. For a given partition Π = (k1, k2, · · · , kn) of n, i.e., n =
∑

r kr · r, denote by NΠ the
number of elements σ ∈ Σn of cycle-type Π. Then it’s easy to see that

NΠ =
n!

k1!k2! · · · 1k12k2 · · ·
.

Formula (13) follows now from the following sequence of identities:∑
n

T(−y)∗(M
(n)) · tn (22)

=
∑
n

tn · 1

n!

∑
σ∈Σn

πσ∗T(−y)∗(M
�n;σ)

(24)
=

∑
n

tn

n!
·

∑
Π=(k1,k2,···kn)

NΠ

n∏
r=1

(
dr∗T(−y)∗(M

�r;σr)
)kr

=
∑
n

∑
Π=(k1,k2,···kn)

tk1·1+k2·2+···

k1!k2! · · · 1k12k2 · · ·

n∏
r=1

(
dr∗T(−y)∗(M

�r;σr)
)kr



10 S. E. CAPPELL, L. MAXIM, J. SCHÜRMANN, J. L. SHANESON, AND S. YOKURA

=
∑
n

∑
Π=(k1,k2,···kn)

n∏
r=1

tkr·r

kr!rkr
·
(
dr∗T(−y)∗(M

�r;σr)
)kr

=
∞∏
r=1

(
∞∑
kr=0

tkr·r

kr!rkr
·
(
dr∗T(−y)∗(M

�r;σr)
)kr)

=
∞∏
r=1

(
∞∑
kr=0

1

kr!
·
(
dr∗T(−y)∗(M

�r;σr) ·
tr

r

)kr)

=
∞∏
r=1

exp

(
dr∗T(−y)∗(M

�r;σr) ·
tr

r

)

= exp

(
∞∑
r=1

dr∗T(−y)∗(M
�r;σr) ·

tr

r

)
(25)
= exp

(
∞∑
r=1

Ψr

(
dr∗T(−yr)∗(M)

)
· t

r

r

)
,

where in the last equality we also use the functoriality with respect to proper push-down
of the homological Adams transformation Ψr.

�

3. Proof of Lemma 2.3

The aim of this section is to supply a proof of the technical Lemma 2.3. We begin by
recalling in §3.1 the construction of the Atiyah–Singer class transformation from [CMSS1].
In §3.2, we specialize to the case of symmetric products and study in §3.2.1 how Saito’s
functors grF∗ DR behave with respect to exterior powers (with the induced graded anti-
symmetric action). Before finishing the proof of Lemma 2.3, we indicate in §3.2.2 how the
Lefschetz–Riemann–Roch and Adams–Riemann-Roch transformations are related in the
context of symmetric products.

3.1. The Atiyah–Singer class transformation. Let Z be a (possibly singular) quasi-
projective variety acted upon by a finite group G of algebraic automorphisms. The Atiyah–
Singer class transformation

Ty∗(−; g) : K0(MHMG(Z))→ HBM
ev (Zg)⊗ C[y±1]

is constructed in [CMSS1] in two stages. First, by using Saito’s theory of algebraic mixed
Hodge modules [Sa2], we construct an equivariant version of the motivic Chern class
transformation of [BSY](see also [Sch2, Yo]), i.e., the equivariant motivic Chern class
transformation:

(26) MHCG
y : K0(MHMG(Z))→ K0(CohG(Z))⊗ Z[y±1],



CLASSES OF SYMMETRIC PRODUCTS 11

for K0(CohG(Z)) the Grothendieck group of G-equivariant algebraic coherent sheaves on
Z. Secondly, we employ the Lefschetz–Riemann–Roch transformation of Baum–Fulton–
Quart [BFQ] and Moonen [Mo]:

(27) td∗(−; g) : K0(CohG(Z))→ HBM
ev (Zg; C)

to obtain (localized) homology classes on the fixed-point set Zg.

In order to define the equivariant motivic Chern class transformation MHCG
y , we work in

the category Db,GMHM(Z) of G-equivariant objects in the derived category DbMHM(Z)

of algebraic mixed Hodge modules on Z, and similarly for Db,G
coh(Z), the category of G-

equivariant objects in the derived category Db
coh(Z) of bounded complexes of OZ-sheaves

with coherent cohomology. Let us recall that in both these cases, a G-equivariant element
M is just an element in the underlying additive category (e.g., DbMHM(Z)), with a
G-action given by isomorphisms

ψg :M→ g∗M (g ∈ G),

such that ψid = id and ψgh = g∗(ψh) ◦ ψg for all g, h ∈ G (see [MSa, Appendix A]). These
“weak equivariant derived categories” Db,G(−) are not triangulated in general. Neverthe-
less, one can define a suitable Grothendieck group, by using “equivariant distinguished
triangles” in the underlying derived category Db(−), and get isomorphisms (cf. [CMSS1,
Lemma 6.7]):

K0(Db,GMHM(Z)) = K0(MHMG(Z)) and K0(Db,G
coh(Z)) = K0(CohG(Z)).

The equivariant motivic Chern class transformation MHCG
y is defined by noting that

Saito’s natural transformations of triangulated categories (cf. [Sa2])

grFpDR : DbMHM(Z)→ Db
coh(Z)

commute with the push-forward g∗ induced by each g ∈ G, thus inducing equivariant
transformations (cf. [CMSS1, Example 6.6])

grFpDR
G : Db,GMHM(Z)→ Db,G

coh(Z).

Note that for a fixed M ∈ Db,GMHM(Z), one has that grFpDR
G(M) = 0 for all but

finitely many p ∈ Z. This yields the following definition (cf. [CMSS1]):

Definition 3.1. The G-equivariant motivic Chern class transformation

MHCG
y : K0(MHMG(Z))→ K0(Db,G

coh(Z))⊗ Z[y±1] = K0(CohG(Z))⊗ Z[y±1]

is defined by:

(28) MHCG
y ([M]) :=

∑
p

[
grF−pDR

G(M)
]
·(−y)p =

∑
i,p

(−1)i
[
Hi(grF−pDR

G(M))
]
·(−y)p.

The Atiyah–Singer class transformation is defined by the composition

(29) Ty∗(−; g) := td∗(−; g) ◦MHCG
y ,
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with

(30) td∗(−; g) : K0(CohG(Z))→ HBM
ev (Zg; C)

the Lefschetz–Riemann–Roch transformation (extended linearly over Z[y±1]).

3.2. The case of symmetric products. In this section we develop the prerequisites
needed in the proof of Lemma 2.3.

3.2.1. Multiplicativity and equivariance of grF∗ DR.

Lemma 3.2. Let X be a complex quasi-projective variety and fixM∈ DbMHM(X). Then
there is a Σr-equivariant isomorphism of bounded graded objects in Db

coh(Xr):

(31) grF∗ DR(M�r) '
(
grF∗ DR(M)

)�r
,

where the left-hand side underlies the weakly equivariant complex grF∗ DR
Σr(M�r), and

the Σr-action on the right-hand side is the usual action on exterior products of graded
complexes.

Proof. Since X is quasi-projective, we can assume X is embedded in a smooth complex
algebraic variety M . We have DbMHM(X) ' DbMHMX(M), by using the identification
of the category MHM(X) of mixed Hodge modules on X with the category MHMX(M)
of mixed Hodge modules on M supported on X ([Sa2, §4]). In this case, Saito’s functor
grF∗ DR is given as the graded transformation associated to a filtered de Rham functor

DR : DbMHMX(M)→ Db
coh,XF (OM ,Diff)

taking values in Saito’s category of bounded filtered differential complexes on M whose
graded pieces have coherent cohomology sheaves of OX-modules ([Sa1, §2.2]). Moreover,
this filtered de Rham functor is induced from a corresponding functor of complexes

DR : CbMHM(M)→ CbF (DM)→ CbF (OM ,Diff),

associating to a complex of mixed Hodge modules on M the filtered de Rham complex of
the underlying complex of filtered right DM -modules.

By [MSS, Remark 1.6], for M∈ CbMHM(M) there is a canonical map

can : DR(M�r)→ DR(M)�r

commuting with the corresponding Σr-actions as defined in [MSS]. This induces a Σr-
equivariant map

gr(can) : grF∗ DR(M�r)→
(
grF∗ DR(M)

)�r
of the associated graded complexes. Moreover, gr(can) is a (graded) quasi-isomorphism, as
can be checked locally using a suitable “locally free” resolution as in [Sa1, Lemma 2.1.17]

ForM∈ CbMHMX(M), one has grFp DR(M) ∈ Db
coh(X) for all p, with grFp DR(M) ' 0

for all but finitely many p ∈ Z.
Finally, by the multiple Künneth formula for push-forwards of mixed Hodge modules

([MSS, §1.11]), the induced Σr-equivariant isomorphism (31) does not depend on the choice
of the embedding.

�



CLASSES OF SYMMETRIC PRODUCTS 13

3.2.2. Lefschetz–Riemann–Roch vs. Adams–Riemann–Roch. The following result is a gen-
eralization of a similar fact proved by Moonen in the case of (the class of) the structure
sheaf OX (see [Mo, Satz 2.4, p.162]).

Lemma 3.3. Let σr be an r-cycle. Then for any G ∈ Db
coh(X), the following identity

holds in HBM
ev (X; Q):

(32) td∗(
[
G�r

]
;σr) = Ψrtd∗([G]).

Here G�r ∈ Db,Σr
coh (Xr) is considered with the induced action of the symmetric group Σr,

and X ' (Xr)σr .

Moonen’s proof for the special case G = OX uses an embedding i : X ↪→ M into a
smooth complex algebraic variety M , together with a bounded locally free resolution F
of i∗G. Then ir : Xr → M r is a Σr-equivariant embedding, with F�r a Σr-equivariant
locally free resolution of (i∗G)�r ' ir∗(G�r). For the calculation of td∗(

[
G�r

]
;σr), one takes

suitable traces of the induced σr-action on the restriction of F�r to M ' (M r)σr . Such
traces are well-defined since σr acts trivially on the fixed point set M .

Starting with G ∈ Db
coh(X) instead of OX , Moonen’s proof applies therefore mutatis

mutandis to this more general context.

This leads to the following important consequence:

Proposition 3.4. With the above notations, the following identity holds:

(33) td∗([gr
F
p DR

Σr(M�r)];σr) =

{
Ψrtd∗([gr

F
q DR(M)]) , if p = q · r ,

0 , if p 6≡ 0 mod r.

Proof. By taking the degree p part in (31), we have that:

(34) grFp DR
Σr(M�r) =

⊕
∑r
j=1 qj=p

grFq1DR(M) � · · ·� grFqrDR(M),

where the action of the r-cycle σr on the right-hand side is the (graded anti-symmetric)
action by cyclic permutations of the factors in the multiple exterior product of complexes
(as explained e.g., in [MSS]).

Fix a multi-index (q1, · · · , qr) ∈ Zr, with
∑r

j=1 qj = p. If q1 = · · · = qr = q (with

p = q · r), we get by Lemma 3.3 that

(35) td∗([gr
F
q DR(M)�r];σr) = Ψrtd∗([gr

F
q DR(M)]).

Otherwise, the orbit of (q1, · · · , qr) under the permutation action of σr on Zr has length
r. This implies:

td∗

([
r⊕
j=1

Gσjr(q1) � · · ·� Gσjr(qr)

]
;σr

)
= 0 ,
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for Gq := grFq DR(M), q ∈ Z. This can be seen as follows: choose an embedding i :
X ↪→M into a smooth complex algebraic variety M , together with a bounded locally free
resolution Fq of i∗Gq (q ∈ Z). Then

r⊕
j=1

Fσjr(q1) � · · ·� Fσjr(qr)

is a σr-equivariant locally free resolution of

ir∗

(
r⊕
j=1

Gσjr(q1) � · · ·� Gσjr(qr)

)
.

Let ∆r : M →M r denote the diagonal embedding, with ∆r(M) ' (M r)σr . Then

∆∗r

(
r⊕
j=1

Fσjr(q1) � · · ·� Fσjr(qr)

)
is a complex, whose components are direct sums of terms of the form(

Fk1q1 ⊗ · · · ⊗ F
kr
qr

)
⊗
(
⊕rj=1OM

)
,

for Fkq the k-th degree component of the complex Fq, and with σr acting (up to suitable
signs) by cyclic permutation of order r on the summands in ⊕rj=1OM . So the corresponding
trace is zero.

Together with the additivity of td∗(−;σr), this yields (33).
�

3.3. Proof of Lemma 2.3. We now have all the ingredients for proving Lemma 2.3.

Proof.

T(−y)∗(M
�r;σr) := td∗(−;σr) ◦MHCΣr

−y(M�r)

:= td∗(−;σr)

(∑
p

[grF−pDR
Σr(M�r)] · yp

)
=

∑
p

td∗([gr
F
−pDR

Σr(M�r)];σr) · yp

(33)
=

∑
q

Ψrtd∗([gr
F
−qDR(M)]) · (yr)q

= Ψrtd∗

(∑
q

[grF−qDR(M)] · (yr)q
)

= Ψr (td∗ ◦MHC−yr(M))

= ΨrT(−yr)∗(M).

�
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4. Comparison with Ohmoto’s Chern class formula

In this section we show how Ohmoto’s generating series formula (20) for the MacPherson–
Chern classes of symmetric products can be derived as a special case of a suitable re-
normalization of our formula (15). We begin with a general discussion on normalized
Hirzebruch classes.

The power series Qy(α) = α(1+ye−α)
1−e−α ∈ Q[y][[α]] mentioned in the introduction is not

normalized, as its zero-degree part is 1+y, instead of 1. So one can consider the normalized
power series

(36) Q̂y(α) :=
Qy (α(1 + y))

1 + y
=

α(1 + y)

1− e−α(1+y)
− αy

which defines the normalized cohomology Hirzebruch class T̂ ∗y (−). This specializes to the
cohomology Chern, Todd, and L-class, for y = −1, 0 and 1, respectively.

In the singular context, the corresponding normalized homology Hirzebruch class trans-

formation T̂y∗ is obtained from the transformation Ty∗ defined in (4) by a simple re-
normalization procedure (e.g., see [BSY]). More precisely, for a complex algebraic variety

Z we let T̂y∗ be defined by the composition

(37) T̂y∗ : K0(MHM(Z))
Ty∗→ HBM

ev (Z)⊗Q[y±1]
Ψ(1+y)→ HBM

ev (Z)⊗Q[y±1, (1 + y)−1],

with the normalization functor Ψ(1+y) given in degree 2k by multiplication by (1+y)−k. The
corresponding (normalized) characteristic classes associated to the (classes of) complexes

QH
Z and IC ′HZ will be denoted here by T̂y∗(Z) and ÎT y∗(Z), respectively. As shown in [Sch2,

Proposition 5.21], the transformation T̂y∗ of (37) takes in fact values in HBM
ev (Z)⊗Q[y±1],

so one is allowed to specialize the parameter y of the transformation to the values y = ±1.

It follows from [BSY] that T̂y∗(Z) ∈ HBM
ev (Z)⊗Q[y]. Moreover, by loc. cit., if y = −1

one gets that

(38) T̂−1∗(Z) = c∗(Z)⊗Q

is the rationalized homology Chern class of MacPherson [M]. Also, for a variety Z with
at most “Du Bois singularities” (e.g., rational singularities), we have by [BSY, Example
3.2] that

(39) T̂0∗(Z) = td∗(Z),

the Baum–Fulton–MacPherson homology Todd class [BFM]. And it is only conjectured
that if Z is a compact algebraic variety, then

(40) ÎT 1∗(Z) = L∗(Z)

is the Goresky–MacPherson L-class of Z (cf. [BSY, Remark 5.4]). This conjecture is
known to hold in some special cases, e.g., if Z has a small resolution (cf. [Sch2, §5.1]),
or if Z = Y/G is a global projective orbifold (cf. [CMSS1, Corollary 1.2]), or if Z is
a compact complex algebraic variety with only isolated singularities, which is a rational
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homology manifold that can be realized as a global hypersurface in a complex algebraic
manifold (cf. [CMSS2, §4]).

For simplicity, the main results of this note are formulated only in terms of the un-
normalized Hirzebruch class transformation of (4). However, for the purpose of comparing
our formula (15) with Ohmoto’s generating series formula (20) for the MacPherson-Chern
classes of symmetric products of a quasi-projective variety [O], we need to say a few words
about the normalized version of our formula (15).

By applying the normalization functor Ψ(1−y) (note that due to our indexing conven-
tions, y is replaced here by −y) to the left-hand side of (15), we get the generating series∑

n≥0 T̂(−y)∗(X
(n)). Applying the same procedure to the right-hand side of (15), we first

note that the normalization functor Ψ(1−y) commutes with push-forward for proper maps,
as well as with exterior products, therefore Ψ(1−y) also commutes with the Pontrjagin
product and the exponential; finally, it also commutes with the homological Adams op-

eration Ψr of Theorem 1.1. But Ψ(1−y)T(−yr)∗(X) is not in general equal to T̂−t∗(X)|t=yr .
Only in the case y = 1 we get the following:

Lemma 4.1. With the above notations, the following identification holds:

(41) lim
y→1

Ψ(1−y)ΨrT(−yr)∗(X) = T̂−1∗(X) = c∗(X)⊗Q.

Before giving the proof, we need to recall from [BSY] that, if Z is a complex algebraic
variety, then the class of the constant Hodge sheaf [QH

Z ] is in the image of the natural
group homomorphism

(42) χHdg : K0(var/Z)→ K0(MHM(Z)) , [f : Y → Z] 7→ [f!QH
Y ] ,

defined on the relative Grothendieck group K0(var/Z) of complex algebraic varieties over
Z. Indeed, χHdg([idZ ]) = [QH

Z ]. Therefore, the corresponding homology Hirzebruch class
Ty∗(Z) can be regarded as the image of the distinguished element [idZ ] ∈ K0(var/Z) under
the natural motivic Hirzebruch transformation (cf. [BSY])

(43) Ty∗ : K0(var/Z)→ HBM
ev (X; Q[y])

defined by pre-composing (4) with the group homomorphism χHdg. Similarly, one can

consider the normalized motivic Hirzebruch transformation T̂y∗ := Ψ(1+y) ◦ Ty∗, which

maps [idZ ] to the corresponding normalized Hirzebruch class T̂y∗(Z) := T̂y∗([idZ ]).
We next recall that the MacPherson–Chern class of an algebraic variety Z is defined by

c∗(Z) := c∗(1Z), with c∗ : F (Z)→ HBM
ev (Z) the Chern class transformation of MacPherson

[M] defined on the group F (Z) of complex algebraically constructible functions.
Lemma 4.1 follows by applying the following identity of transformations to the distin-

guished element [idX ] ∈ K0(var/X).

Lemma 4.2. With the above notations, the following identification of transformations
holds:

(44) lim
y→1

Ψ(1−y)ΨrT(−yr)∗(−) = T̂−1∗(−) : K0(var/X)→ HBM
ev (X; Q) .
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Proof. Since both sides of (44) are defined by functorial group homomorphisms, this iden-
tity can be checked on generators. So, by functoriality for proper push-downs, it suffices
to check it in the case when X is smooth. In this case, we can perform our calculations
dually, in cohomology. Formula (44) follows now from a simple manipulation with power
series, the main steps of which are sketched below.

The un-normalized cohomology Hirzebruch class T ∗y (X) is defined by the power series

Qy(α) = α(1+ye−α)
1−e−α , hence T ∗(−yr)(X) corresponds to the power series Q(−yr)(α). By applying

the cohomological r-th Adams operation to Q(−yr)(α), we get the power series f(α) :=
α(1−yre−rα)

1−e−rα . The cohomological version of the normalization coming from the left-hand

side of formula (15) amounts to replacing f(α) with the power series f(α(1−y))
1−y . The limit

of the latter, as y → 1, yields by l’Hôpital’s rule:

lim
y→1

α
(
1− yre−rα(1−y)

)
1− e−rα(1−y)

= lim
y→1

α (−ryr−1 − rαyr) e−rα(1−y)

−rαe−rα(1−y)
=
−r − rα
−r

= 1 + α

i.e. the power series defining the total Chern class in cohomology. This finishes the proof
of (44).

�

Therefore, by specializing to y = 1 in our formula (15), we recover as a corollary
Ohmoto’s Chern class formula [O]:

Corollary 4.3. For any quasi-projective complex algebraic variety X, the following for-
mula holds in

∑
n≥0H

BM
ev (X(n); Q) · tn:

(45)
∑
n≥0

c∗(X
(n)) · tn = exp

(∑
r≥1

dr∗c∗(X) · t
r

r

)
,

with c∗(−) denoting the rationalized homology Chern classes of MacPherson [M].

The above arguments can be extended to obtain a generating series formula for the
rationalized MacPherson–Chern classes of symmetric products of a constructible sheaf
complex F underlying a complex of mixed Hodge modules M. For this, we use the
commutativity of the following diagram (see [Sch2, Proposition 5.21]):

(46)

K0(MHM(X))
rat−−−→ K0(Db

c(X))

T̂−1∗

y yχstalk

HBM
ev (X; Q) ←−−−

c∗⊗Q
F (X)

Here, rat : DbMHM(X) → Db
c(X) is the forgetful functor associating to a complex of

mixed Hodge modules the underlying constructible sheaf complex, and χstalk is defined by
taking the Euler characteristics of the stalk complexes. Then we have:
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Corollary 4.4. For any quasi-projective complex algebraic variety X and F = rat(M)
the underlying constructible sheaf complex of a complex of mixed Hodge modules M ∈
DbMHM(X), the following formula holds in

∑
n≥0H

BM
ev (X(n); Q) · tn:

(47)
∑
n≥0

c∗(F (n)) · tn = exp

(∑
r≥1

dr∗c∗(F) · t
r

r

)
,

with c∗(F) := c∗(χstalk(F)).

The proof is exactly the same as above, based on the fact that the functor rat commutes
with symmetric products (see [MSS]), together with the identification of transformations:

(48) lim
y→1

Ψ(1−y)ΨrT(−yr)∗(−) = T̂−1∗(−) : K0(MHM(X))→ HBM
ev (X; Q)

which follows from combining (44) with the proof of [Sch2, Proposition 5.21].

Finally, by using the localized Chern class transformation

c∗(−; g) : K0(Db,G
c (Z; C))→ HBM

ev (Xg; C)

of [Sch1][Ex.1.3.2], with Db,G
c (Z; C) the category of G-equivariant objects in the derived

category of constructible sheaf complexes of C-vector spaces, one can formally adapt our
proof of Theorem 1.1 to give a direct proof of formula (47) for any constructible sheaf
complex F ∈ Db

c(X; C) on a quasi-projective algebraic variety X. Details of this will be
discussed elsewhere.
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