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trary exact category.
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1. REVIEW OF THE G-CONSTRUCTION

In [GG] Gillet and Grayson attached a simplicial set G A to any exact category
and proved that |G.2| is homotopy equivalent to Q|Q| ~ ©|S.%4|, the equivalence
being natural in 2. Thus one can take the formula

Kn(®) =7n(G2), m>0,

for a deﬁmtlon of the higher K —groups of A. -
An n-81mplex in G.2 is a pair.of trlangula.r dlagrams in 2 of the form

Pn/r';--l ’ | Pn/n—l
i N
Pz/{ — ...— Pap . Pp— o Py
. | - (1.1)
| R [ R I
Pyo = Pyo — ... — Pnjo. _ Pijo = Pyjp — ... = Pupo
[ N S |
Ph— P —- P, —-...— P, . P,— P — P — ... — P,

sub_]ect to the conditions:

- (i) the quotient index subtriangles in both dlagrams coincide;
(ii) all the squares commute; :
(iii) all the sequences of the-form- P; —-Pgx — Pyjy P| =P, — Py/;, and
P;/i = Pyji = Py with 1 < j < k are short exact sequences in 2L

In particular, a vertex in G.2 is a pair of objects (P, P'), and an edge connecting
(Po, P§) to (P1, P{) is a pair of short exact sequences (Fp — P, = Py, Py —
Pj = Pyp), with equal cokernels. The i-th face of (1 1) amounts to deleting all the -
objects whose indices contain 1.

Typeset by ApS-TEX
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For instance; the faces of a generic 2-simplex

- Py Por
| R 1
t=| Py —— Pyo Pijo —— Py (1.2)
I 1 [
[ Pp—— A — P B —— P — P

~ are given by _
dot = (P — Py— Py, P — Pj— Py1)
dit = (Po - Py = P_g/o, ' P6 — Pé — Pg/o)
dgt= (P(] *-)Pl —)Pl/o, P(')—)P{—)Pl/o)
Let 0 denote a distinguished zero object in 9, then we let (0,0) be the base point
“of G.A. Given A € 9, the standard edge e(A) from (0,0) to (4, A) is given by
e(A)=(0— A4S 4,045 4.
. 2. THE MAIN RESULT '

Let 2 be an exact category.

Definition. A double short ezact sequence in A (a dses. for short) is a pair of

short exact sequences 0 — A ELNY: JELNFoRu 0,0 A 24 B % C 5 0 on the
same objects. Given such data, we will write them in the form :

z=(A%;B£;C). @
2 93 : . : .

A é.Q( and.a-E Aut A,. we will associate t0 a two dses.’s
M =0=a4), (=40, @2
and in. this way a dses. shéuld be thought of aésa. generalization of an automof-‘
| phl;‘;l'. any ases. | of the form (2.1), we denote by e(l) the eglge from (A, A) to
(B.B) in G.2 given by . We associate to ! a loop g(l) in G.2 given by
(A,A) . e(l)  (B,B)

(2.23).

and let m(l) denote its class in K1 (%) = m,(G.2).
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' .Probosition 2.1. ([Ne2]) The elements m(l) are subject to the following two types
of relations in K, (2): _ ' " .
(i) If f1 = f2 and g1 = g2 in (2.1), then m(l) = 0 (in this case, we will say that
L is diagonal). ' ' - '
(11) Suppose we are given a diagram of the form

> A = A=
] l L |
. ; B 3 B ;m‘ | (2.3)
[ N
C 3 ¢ —=3 C"

which consists of siz double ‘short ezact sequences and is subject to the con-
dition: the first (the upper) arrows commiute with the first (the left) ones
and the second (the lower) arrois commute with the second (the. right)
ones. Let ly, lg, and lc (respectively, ', |, and l" ) denote the horizontal
(respectively, the vertical) dses.’s in (2.3). Then we have ‘

mi(la) = m(i5) + mlc) = m(l') — m(l) + m(1").

Definition. We define D(2) to be the abelian group with generators (I) for all
dses.’s I subject to the above relations (i) and (u) posed on the symbols (/) rather
' tha.n on the elements m(l) of K, ().

By Proposmon 2.1, we have a well-defined homomorphxsm

1wmmﬁmm)'mHﬁm

Consider the category DSES(Ql) of all dses.’s in . We can-make it an exact

category, a short-exact sequence- of dses:’s"being-a- dlagra.m of'theform--~~ - -

A’ 3 A —= 4"

(I

B 3 B. : 3 B . (2.4)
! | I

c' = C 3 C”

_Whe;‘e the columns are short exact sequences in 2 and the upper (the lower) hori-
zontal arrows commute with the upper (the lower) ones. We can regard (2.4) as a
particular case of (2.3) in which the vertical dses.’s are diagonal. Thus in the same
notation, we have in D(2) ' ' :

{da) = )+ (lc) =0, (2.5)
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for any diagram of the type (2.4), i.e., the symbol (I} is additive and we have a
well-defined map : v
' Ko(DSES(2)) — D().

Consider the exact category Aut(?) of pairs (A;a) with A € 2 and @ € Aut A.
We have an exact functor Aut(1) — DSES() given by a — I(a) (see (2.2)) which
yields a homomorphism Ko(Aut(2)) = K, O(DSES( )) Given two automorphisms
« ﬂ € Aut(A) consider the diagram - : o

0 b0 ;

Yu F
‘ 1

af
Jl o 1ﬂﬁ- .
0

1
y A ;

It is a particular case of (2.3), hence we get in D()

(eB) = W)+ @B, . @6
Tt follows that we ha.ve a well-defined’ homomorphlsm _
Ko(Aut@)/ ~ — D@,  aw (),

where the equivalence relation is. generated by (4;af) ~ (A;a) + (A; p) for all
A€ 2and o, € Aut A. The left hand side group is known as the.group K{° (%)
of H. Bass (cf. [Bal], [Ba2], and [Ge]), and the composite map K{¢* () — D(A). -
K (%) ia also well-known (for instance, see [Ge]). If every short exact sequence
in 2 splits, then K¢*() — K,(%) is an isomorphism ([We], [Sh1]). However, in
general this map need not be either surjective or injective (see [Ge]), i.e., K{° does
not provide a good algebraic substitute for K, in the general case. But D(Ql) does -
the job. .

Theéorem. For any ezact category 2, the map m: D(A) > K '1'(2[) i an isomor-
phism. : ' '

In [Nel] we have shown that for any element z € K,(2), there exists a dses.
| such that z = m(l) (we use the results of [Sh2] and [Sh3] in our proof of this
fact). Thus m is surjective. In the present paper, we construct a homomorphism
b: K,(2A) - D() and show that bo m'= idp(a), which implies injectivity of m.

3. SoME LEMMAS ABOUT K{**(2) AND D(2)

Lemma 3.1. Let A € A. In the notation (2.2), we have in D(2)
(i) {(a)) = (l(a)) for any a € AutA ’
(i) (0:¥A:M) ({a™'B) = ( (ﬁa_l)) (1(B)) — (i),

(A:MZZW) ((aﬁ‘l)) ({(Ba)) = (i{a)) - (i(B)),
for any o, pB € AutA
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Proof. (i)
, 0 — 0 3 0
I
A=—]3 4 —= 0
) : :
T
A== A )
(li.i)>use.(2.6) and the diagrams like '

0 3

Lo d

R —— N s
o= » = o

A — O
. ﬁa—l
Lemma 3.2. Let Ac 2.
(i) The class of the automorphism-
. ' 0 . 14 ) |
aq = (—1,4 0 ) € Aut(A® A) (3.1)
vanishs in K$*(2).
(i1) The class of the dses. . A ‘ .
| | (3 0. -
ASAm A S A | - (3.2)
O

"vanishs in D(Y).
Proof. (i) Observe that

w14 0N (la la)(1a 0 -
AT\ =14 14 0 1,4 —1a 14/’

The classes of ( la 0 0 )and (1A 1A) vanish in K{¢(2). For consider the

—14 1g4 0 14
short exact sequences in the category -Aut(2)
0 — 14 (°)"> (lA IA) OV, y 0
. 0 14

‘ '.’). 1 0 (1,0 : |
LY l Y A ' LY LY
0 7 ].A 4 ( ]_A ],A) 4 1A 4 0..
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(ii) It follows from the diagram
0 = (0 = 0

[ l

A ::gt A A :; A :
‘ t4) (~1,0) - : - (33)
1Ji 1 1 ﬂ asg 1 Jl 1 |
) (o) (0,1)
::':; APA —3 A
&) o

that the class of (3.2) in D(?) equals (I{(ca)), the latter vanishs by (1). O

Lemma 3.3. Let (A, B) be a vertez in the base point component of G (i.e [A]
[B] in Ko(Q)).- .

(i) The class of the automorphism
N - _ ' 0 ~1AeB . - :
_ 4B = (IA@B‘ 0 ) € Aut(A® B A® B) . (3.4)

vanishs in K det (94).
(i1) The class of the dses.

A\EB B\\ In this notation, the regular
Yo s ' lines yield the first arrows and
A\E? B\@ AeB the dashed lines yield the second
ADB arrows of the dses.,

vanishs in D(%).

Proof, (i) Let (A = A" - N, B — B’ — N) be an edge in G.%. Then we have a .
short exact sequence in the category Aut(2),

0— A B - xA' B — AN N — 0.

10
' - Consider the 'matrix g [1) over Z. Since its determinant equals 1, it can
_ 0 0 :
be represented as a product of elementary matrices. Replacing the integer 1 by

1y € Aut N, we obtain the same representation for ay n. Now the short exact

sequences as in the proof of Lemma.3.2(i).show that.the. class of apn n.vanishs in . ..

K{e*(A). Thus the classes of ¢4 p and aar g are equal. Slnce we can connect
(A, B} to(0,0) by a sequence of edges, assertion (i) is proved.
(ii) follows from (i) by.a diagram similar to (3.3). O

: [
In the notation (2.1), we put [°P = (A =B ‘g_i_k C).
h o
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Lemma 3.4." (I°°) = —(l) in D(A) for any dses. L.
Proof. Consider the diagram '

v f @f \ @ ]
DA _IT?_t @& B ‘91:92; eC
}‘\\ hefs A\ adg:
A 11
-1\ -f \ A
! fa \ g2 \
A —]m B —/]m C
i, . N

The vertical dses.’s are of the type (3.2), hence we are done. O
Lemma 3.5.. Isomorphic dses.’s give rise to the same element of D(A).

Proof. It is an obvious particular case of the additivityr (2.5). O

4. THE INVERSE MAP b : K (™) — D()

Let G.2%° denote the base point component of G.2A. We will assign a dses. to
any combinatorial loop in G.2° and show that this leads to a well- deﬁned homo-
morphism K, () = m,(G.™A°) - D(XA). : '

A (combinatorial oriented) loop in a simplicial set is a circular sequence of edges
like - .

el €y
We attach plus or minus to an edge if its orientation mherlted from the simplicial
set structure coincides with (respectively, is opposite to) the orientation of the'loop.
Thus a loop is a sequence of edges e;,...,e, and signs €;,...,e, € {+,~} such
that foreachi=1,...,n '

doei = diejyr if ei=eq1=+ :

doe; = doe;pq if & =+, €it1 = - . (4.1)

die; = d165+1 if g, =-—, Ei+1 =+ )

die; =doeipr M g5 =641 = — .
under the convention e,y = €1, €n41 = €1. Condition (4.1) simply means that
the target of each edge coincides with the source of the next edge, where we use
. the words “source” and “target” in the sense of the loop orientation, and the four
cases in (4.1) mean that this"sense might be opposite to the sense inherited from

‘the simplicial set structure. We consider the source of e1 as the base point of such
a loop. ! :
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A free (combinatorial oriented) loop is a loop up to a cyclic permutatlon of
indices, i.e. without base pomt :

Ife=(P=S P —>,‘N,Q LA Q5 N) is an edge in G.2, we put et = e and

e” = (Q LN Q LA N,P 5 P =% N). (NB: we change the sign of v.)" Let
p=1(er,...,€n;€1,...,n) be aloop in G.2A with ¢; € {+,—} and

= (P 2% P 255 N, Qi 25 @ —>N)
Let . n
=@ @y
i=1 o '
i.e., we .take the term-wise direct sums of the first and the second short exact

sequences that appear in.e; or e acbordingly to € = + or —, over all :. We
introduce an explicit notation for the edge e(y),

e(u) = (P() = P'(5) = N(1),Q(w) = Q'(4) = N(w)). (4.3)

Thus for instance, P( ) is the direct sum of those F; for which ¢; = + and those

 Q; for which g; =

We claim that the ob_]ects P(u) ® Q'(u) and P'(u) & Q(p) are isomorphic. For
let 1 <i<nand (P,Q) dqnote the vertex between e; and e;;;. Then in each of the
four cases in (4.1), there is a copy of P and a copy of Q as a direct summand in both
expressions under question. (These copies correspond to the pair of indicés (i,7+1).
There might be other copies of P and @ in P(r) & Q'(x) and P'(i) & Q(u) if the
loop passes through the vertex (P Q) several times). For instance, in the third case

ei €i+41 :

(... )-We have ;=P =P, Qi = Qit+1 = Q,
(P,Q)
‘;@»Q+M£ﬂH+M) )
e = (P Pl 5 NG, Q5 Q= M),
.é.nd the claim is obvious. Let |

7(p): P(u) ® Q'(1) = P'(1) ® Q1)

denote the isomorphism‘ that takes those copies of P (respectively @) to each other,
for every vertex.

. Givenanedgee = (P 5P LNQ LN Q' LN N ) endowed with an isomorphism
. n:P®Q 5 P @ Q, consider the two short exact sequences

P @ Q QQIQ P,r @ Q (7 0) N ‘
oo (4.4)

PO %8 _1r0p PaQ —;“"‘,’?‘ N
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Replacmg the object P@Q’ in the second short exact sequence by P'&Q by means
- of 7 we obtain a double short exact sequence, -

' : adlq / (‘1.
lesn)=(PaQ——=3P aQ :_tN)

no(lp®B) "{0,8)on=1

We put I(u) = {(e(u); n(u)), and let b(p) = (I(u)) be its class in D(2), for any
loop i in.G.A. A cyclic permutation of indices gives rise to a permutation of the
direct summands in the whole procedure, therefore it leads to an isomorphic dses..
Thus by Lemma 3.5, b(¢) is well-defined for a free loop. : .

Let g1 and p; be free loops, and suppose that they have a common vertex (P, Q).

. We define the producf; of ,u‘l .end uz at (P, Q) by the right hand side of the above

. figure, i.e., we take the disjoint union of the sets of indices for x; and p, and put

them in the obvious cyclic order. Let 1 denote the resulting loop. It might happen
that g1 or uz passes through (P, Q) several times. In order to make the definition
correct, we fix a pair of indices (3,7 + 1) (respectively (4,7 + 1)) such that (P, Q)
is the vertex between the i-th and (z + 1)-th edges of u; and between the j-th and
(7 + 1)-th edges of Ha. :

Proposition 4.1. b(p )= b(121) + b(ua) provided all the three loops are in G.2A°.

Lemma 4.2:- Let: ev—-(P 2 PL L NG Q- ——>Q’ —J)N) -be- en~edge‘aﬁd¢r'- v

7,7 : P®Q — P &Q be isomorphisms. Let ¢ =17’ 69 7! € Aut{P' © Q). Then
in D(A) we have

(Uesm) = (e ') + (L))

Proof. .
: 0 = 0‘ e 4 0

L 4

a®lg (7,0)
PoQ —/——3 PoQ —/m—mm3m3 N

no(1p@P) (0,8)on~"
1 ﬂ 1 1.“’ ¢ 1 Jl -
a®lq (7,0)
PoQ —— = PoQ ——= N ]

n'o(1p@8) (08!
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Proof of the proposition. There is an obvious isomorphism

) @ e(u2) & e(u)

since both expressions consist of the same summands. The difference between
n(u1) @ n{us) and n(u) amounts essentially to the difference between the isomor-
phisms

PaQoPoQ . PaQaPaQ
| L e IS
POQoP®Q PoQoPaQ

accordingly to what we change at the point (P,Q) in Figure 1. By the lemma, -

(102)) + (Hu2)) = {1(w1) ®1(12)) = (1(1)) + (Hexp,)), Where ap,g s the matrix of
(3.4). Thus by Lemma 3.3 we are done. O :

" For any edge e = (P o pr N,Q E)'Q; 4 N), let u(e) denote the loop
(e, e; +,~) which goes along e to and back, : .

Lemma 4.3. Ife isan e(ige in G;Ql°, then b(u(e)) =0
Prbof. According to (4.2), we have e(u(e)) =e@e™ =

=(PeQ-%reqg NN, erﬂ%cgep e‘””N@N)
In the notation (4.3) |
P(u(e)) 0 Q' (u(e) = PEQOQ S P,  P(u(e) @Qu(e) = P 9 Q 8 Q& P,

and the isomorphism 7 is the obvious permutation of summands. According to
(4.4), we form two short exact sequences :

PeQeQ@Piﬁg@%V@@eQaP.ﬂ@ﬂi~N@N:
o X
PEBQ@Q@PM)P@Q@Q’@P’ (0'0169(‘\7)).N®N

~and proceed to the dses.

POQ®QOP
: _e ;')\\ “\ .
u(e) = Fod eQaeP
]
NeN

We keep using the way of displaying dses.’s as in Lemma 3.3. Each line here means
an obvious map, i.e., a, 3, 1p, etc.; —1 near a line means that we change the sign
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of the corresponding map; the collection of dotted lines yields the second arrows in
the dses., and the regular lines yield the first arrows.
Consnder the diagram

P\@QEBQGBP ::; P@Q Q@P 0" .
\\‘ E a’/. . \\ E ' ﬂ 4
A oo
'I“’:: - 1\‘1’ :
L I
P ‘\l,' . R Y N
N ‘V\ “\ R \A’ (
abfDldl 7$46,0,0
PG)QEBQQBP:__:;P’@Q’QQ@P NeN
Casfelel  \' (163600) v
\\ "
i
/ \‘,
1 r" "1'&
_0 = —3 N&N

The horizontal dses.’s here are diagonal. The middle vertical dses. is i{ufe)).
The right vertical dses. is I(an), it vanishs in D(%) by Lemma 3.2(i). The left

vertical dses. is isomorphic to i(apg)° (transpose the last copies of P and Q).
By Lemmas 3.5 and 3.3(i), its class vanishs in D(%), hence ({(1 (e))) =0. O

For any loop p let u~! denote the inverse loop (obtamed from x by changing
onentatlon)

-Corollary 4.4. If p i3 in G. Ql° then b(p=1) = —b(ﬂ.).

Proof. Let p = (e1,...,€n;€1,. ..,sn) and define the loops un,pn_l,,uﬂ_;_j,.... by
the pictures . '
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The sign ~ above means that we apply Proposition 4.1 and Lemma 4.3 and get

b(1) + b(5™) = bllun) = blpin—1) + bls(en))
‘ = blan-1) = b(tn—2) + blss(en-1)) "
= b(jtn-2) = b(kn3) + b(s{en-2))

=0

‘Next we want to show that b(x) vanishs provided p is the contour of a triangle.
We will prove a more general assertion concerning admissible triples of edges.

Definition. An admissible triple of edgesin G.2 is a trlple T = (ey, ez, e3) of the

form

ap,y

ay, 1/0

e1 = (P » Py

!
7 al.ﬂ

C _ &1.2\ az,3/1
 €p= (Pl ? P2 ?

ap,3,
€3z = (Po 4 Pz

a2,2/0

subject to the condition -

1 !
¢ o oy "1.1/0\
» Py —— Pyyp)

!
y %331

y P,

>P2/1) .

' )
a o
RN P! 2,2/0

. ' . -7 / t
Q12001 = gy and &y 9 00p 1 = Qp

It looks like

€2

and we let x(7) denote the loop formed by e, eg, and e3 with the orientation shown
in the figure:- Thus-in the notation-discussed- above,-el =ggr=-Fy€3 = -t ¢

We get two short exact sequences

az/0,2/1

P1/0 ?‘l/o:[gf P2/0 ;PZ/I
from the diagrams
P().i? P]_ il 1/0 PI/O

l 1 101,2 . lﬂllo,nfo

aop,2” a3 2/0
Po ) Pg e P2/0

l lﬂz.an ‘ 102/6.'2/1 )

0 —— Py —— Py

@1/0.2/0 a4y0.2/1
P1/0 — Pz/o — Py

f af a
‘ 0,1 / S,
Py —— P —— Py

l 1 l “’1 2 Jva‘uo.n/o

13
Qg2 2 2/0
P, —— P, —— P /0

l 1 O‘Iz.a/l la;/o.n/t

0 —— P2)1 —'*-*"L—") P2/1
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and we call o020 asjoan
)= (Pyyo ~:::; Py o :; Py1)
) @) o, 2/0 @3/0,2/1

the dses. assomated to the admissible triple .
Note that 7 provides the contour of a (uniquely determined) 2- sxmplex (see (1 2))
if and only if the associated dses. {(r) is diagonal, i.e., if @;/0,2/0 = @} /0,270 and

Q2/0,2/1 = a2/0,2/1 Admissible triples played an essentlal role in the. proof of
relation (i) for the elements m(l) in [Ne2]. ’

Proposition 4.5. Let 7 = (81,62,63) be an admissible triple in G.A°. Then

b(u(r)) = (1(). |
" Corollary 4.6. If v is the contour of a 2-simplez in G.2°, then b(u(r)) = 0.
Proof of the proposition. According to (4.2), we have e(ﬁ,(*r)) =e DerPey =

. . ,
ap, 190y 300y 4 1,1 /08a3,2/100, 4,

=(PRhOPL®GPy— " P OPOP, + Pyjo ® Payy @ Payo,
" ap Ba) ;Bag, o ®ay 4, B(—az,3/0)
p6$p£®p0M+P{eP2'$Pg Li/07 3.3/ }P]_/oePz/l @.Pg/o) .

Thus in notaticn (4.3),

Pt o Qu(r)) =P oPLdPy® P, &P, e P,
P(u(r) @ Qu(r)) = P& P, ® P,® Py® P, & P,

and the isomorphism 7 is the obvious pierm'utation of summands. We form two
short exact sequences as in (4.4),

Po®PLOP,@P,®PI®Py ——— PIOPy@®PJOP{OP[®Py —— Py /0@ Py1®Py 0

Pﬁ@P1®P6®P6€BP{®PO IEm— PO$P1@P6@P{®P£@P2 — P1/0$P2/1$P2/0
and get the resulting dses.

-

-

l(u(r) = Heﬂeﬁ®ﬂepe&

NGO

-

5 P1/0€9P5/1®P2/0 i

There are many ways to show that (I(u(r))) = (I(r)) in D() by constructing
diagrams of the form (2.3). Here is.one of them.
Consider the diagram
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. PoGEPoGBPP&P'@P’GBPo ‘::? PD@P1G3P'®P6®P1$P

~ [y . “'

f) (’l N .\ ‘f‘ll"
L Y ‘l 1y F L
' Y s / bR \' "‘
' ’
! 2% \ B . r‘ \
i 153 \ B i \
I B \ ! ’ e \
l' s \\\ 'J , A \\
, .’ SN \ i k , A \
' /I I \ S - ‘ s

s - /

. 0 ss— P1/0®P2/1®P2/0 prom— { P1/0$P2/1@P2/0

Here the middle vertical dses. is l.( (7)) and the horizontal dses.’s are diagonal,
with the obvious arrows that do not change the order of summands Let I’ and {”
denote the left and the right vertical dses. respectlvely

Lemma 4.7. (I')'=0-

' ' 010 "foo01
Proof. This dses. amounts to the direct sum of the matrices (o 0 1) and (1 0 0)

100 010
(the Pp- and Pg-part, respectively), under the map K det(9f) — D(2A). Both auto-

morphisms vanish in K d"”(Ql) by the argument as in the proof of Lemmas 3.2 and
3.3. 0O -

Lemma 4.8. 1" = (U(r)).
Proof. Consider the diagram

12,251

Y
S
@
:U
~
L=

~

0::3

121,22

1.
i""

Sl o

\
1
L}
l
I
1
1
1
1

1-+1,243,3=44,4—2 !

— Prjo®P1jo® Pz/o ® Pz/o
1-1, 2—»4 343,4—2

0 == P1/06P2/1®P2/0 e Pijo® P21 ® Payo

The notation at the horizontal arrows shows the permutation of the direct sum-
mands —~1 means the change of the sign of the corresponding identity map. The

upper horizontal dses. amounts to ( 01 0) and vanishs in D(9) by Lemma 3.2.
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The horizontal dses: in the middle is isomorphic to the direct sum of a.diagonal
dses. (the Pjjp-part) and a dses. which amount.to 1 0
Thus (I} equals to the class of the right vertical dses.. The latter is the direct
sum of a dses. of the form (3.2) (the Py/o-part), a dlagonal one (the P2/0 part),

and /(7). The lemma and the proposition are proved. O O- '

1) (the P, /o-part).

Let ¢ be a 2-simplex in G.2°, and let e be one of its edges. Suppose that a loop
4 contains e. Let u' be the loop obtained from I by replacmg € by the other two
- edges of ¢ in the obvious way.

‘Lemma 4.9. b(u) = b(y').
Proof.

By the above lemmas, b(s) = b(u) + D) = b3m) = b() + biu(e)) =
b)) O o ' '

Accordmg to the well-known combinatorial descrlptlon for the fundamental group
" of a simplicial set, it follows from the above lemmas that we have a well-defined
homomorphism

b: Kl(ﬁl) = ’JTl(G.Qlo) - D(Ql)
Prbposition 4.10. bo m= idp(g).

Proof. Let | be a dses., then b(m((l))) = b(u(l)), where u(l) is the loop defined by
(2.21). We can regard p(l) as an admissible triple of edges, the associated dses
being {. By Proposition 4.5, b(u(l)) = (I) and we are done. O ‘

This completes the proof of the theorem.
Remark. The diagrams in the proof of Proposition 4.5 are less complicated in

the case of u(!) than for an arbitrary admissible triple. We leave it to reader to
show directly that b(u(l)) = (1). -
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