ON THE DIFFERENCE EQUATION OF THE POINCARÉ TYPE (Part 2)

L.A. Gutnik

Dedicated to the memory of Professor A.O. Gelfond.

Table of contents

§0. Foreword.

 $\S1$. Begin of the proof of Theorem 6.

§2. The general plan of the construction of the spaces V_m^{\vee} and V_m^{\wedge} .

§3. On some linear normed spaces of sequences of elements of a linear normed space.

 $\S4$. End of the proof of Theorem 6.

§0. Foreword.

Here I begin the presentation of the proof of Theorem 4, which was formulated in the Part 1 ([33]) and proved in [15]; this theorem plays important role in my work ([18] - [36]). With this aim I prove here the following auxiliary Theorem 6, which is proved in [14] as Theorem 1.

Theorem 6. Let us consider the following difference equation:

(1)
$$\sum_{k=0}^{n} a_k(\nu) y(\nu+k) = 0.$$

with $n \in \mathbb{N}$, $a_k(\nu) \in \mathbb{C}$ for $k = 0, \ldots, n$ and $\nu \in \mathbb{N} - 1$. Let

(2)
$$a_k^{\sim} \in \mathbb{C}, \ a_k(\nu) \in \mathbb{C}, \ a_n(\nu) = 1, \ a_k(\nu) - a_k^{\sim} = O(1/(\nu+1)),$$

where $k = 0, \ldots, n$ and $\nu \in \mathbb{N} - 1$. Let further

(3)
$$q \in [1,n] \cap \mathbb{Z}, \ p = n - q, \ a_q^{\sim} \neq 0,$$

(4)
$$T_1(z) = \sum_{k=0}^p a_{q+k}^{\sim} z^k$$

and suppose that the characteristic polynomial

(5)
$$T(z) = \sum_{k=0}^{n} a_k^{\sim} z^k$$

of the equation (1) satisfies the following equality:

(6)
$$T(z) = z^q T_1(z).$$

For $m \in \mathbb{N} - 1$, let V_m denote the \mathbb{C} -linear space of solutions $y = y(\nu)$ of the equation

(7)
$$\sum_{k=0}^{n} a_k(\nu) y(\nu+k) = 0,$$

where $\nu \in m - 1 + \mathbb{N}$, related to equation (1). Then there exist C > 0 and $m \in \mathbb{N}$ such that V_m splits into direct sum $V_m^{\wedge} \oplus V_m^{\vee}$ of two its subspaces V_m^{\wedge} and V_m^{\vee} , which have the following properties: a)

(8)
$$V_m^{\wedge} = \{ y \in V_m \colon y(\nu) = O(1)(C/\nu)^{\nu/q}) \};$$

b) if q = n, then

(9)
$$V_m^{\vee} = \{0\};$$

c) if q < n, then V_m^{\vee} coincides with the space of solutions of a difference equation of Poincaré type

(10)
$$\sum_{k=0}^{p} b_k(\nu) y(\nu+k) = 0,$$

where p = n - q, $b_k(\nu) \in \mathbb{C}$ for $k = 0, \ldots, p$ and $\nu \in m - 1 + \mathbb{N}$,

(11)
$$b_0(\nu) \neq 0, \ b_p(\nu) = 1,$$

for $\nu \in m - 1 + \mathbb{N}$,

(12)
$$b_k(\nu) - a_{q+k}^{\sim} = O(1/\nu),$$

where $k = 0, \ldots, p$ and $\nu \in m - 1 + \mathbb{N}$.

Acknowledgment. I express my deepest thanks

to Professor B.Z.Moroz,

- to Professor I.I. Piatetski-Shapiro,
- to Professor A.G.Aleksandrov,
- to Professor P.Bundshuh

and to Professor S.G.Gindikin for the support of my work.

§1. Begin of the proof of Theorem 6.

Lemma 1. Let $C_0 \ge 1$, $m \in \mathbb{N} - 1$, $m_0 = [nC_0] + m$ and for the coefficients of the equation (7) the following inequality holds:

(13)
$$|a_k(\nu)| \le \frac{C_0}{\nu+1},$$

where k = 0, ..., n-1 and $\nu \in m-1+\mathbb{N}$. Let further $C > enC_0$. Then for any solution $y(\nu)$ of the equation (7) the following inequality holds:

(14)
$$y(\nu) = O(1)(C/\nu)^{\nu/n},$$

where $\nu \in m - 1 + \mathbb{N}$.

Proof. If for some $\nu_0 \in m_0 - 1 + \mathbb{N}$ and all the $k = 0, \ldots, n - 1$ the following inequality holds,

$$|y(\nu_0+k)| \le \gamma,$$

then the inequality $\nu_0 > nC_0$ implies that the inequality $|y(\nu)| \leq \gamma$ will be fulfilled for all the $\nu \in \nu_0 - 1 + \mathbb{N}$. Therefore, if

$$|y(m_0+k)| \le \gamma_0,$$

where $k = 0, \ldots, n-1$ then, in view of (13),

$$|y(\nu)| \le \gamma_0$$

for $\nu \in m_0 - 1 + \mathbb{N}$,

$$|y(\nu)| \le \gamma_0 C_0 n / m_0$$

for $\nu \in m_0 - 1 + n + \mathbb{N}$,

$$|y(\nu)| \le \gamma_0 (C_0 n)^2 / (m_0 (m_0 + n))$$

for $\nu \in m_0 - 1 + 2n + \mathbb{N}$,

$$|y(\nu)| \le \gamma_0 (C_0)^{\kappa} / (m_0/n)_{\kappa} =$$
$$\gamma_0 (C_0)^{\kappa} \frac{\Gamma(m_0/n)}{\Gamma(m_0/n+\kappa)}$$

for $\nu \in m_0 - 1 + n\kappa + \mathbb{N}$. But $\kappa = \nu/n + O(1)$; therefore the equality (14) follows from the Stirling's formula.

Together with Lemma 1 we have proved the Theorem 6 for the case q = n. The following result was proved in [33] **Theorem 5.** Let the functin $\xi(x)$ is defined on $[0, +\infty)$, let $\xi(x)$ decreases together with increasing of the variable x in $[0, +\infty)$, let $\lim_{x\to\infty} (\xi(x)) = 0$ and let $\xi(x) > 0$ for $x \in [0, +\infty)$. Let

(15)
$$\xi(x/2) = O(\xi(x)),$$

when $x \to \infty$,

(16)
$$\lim_{x \to 0} (\log(\xi(x)))/x = 0.$$

Let $a_k(\nu) - a_k^{\sim} = O(\xi(\nu)), k = 0, \ldots, n$, when $\nu \to \infty$. Let further the characteristical polynomial (5) of the equation (1) may be represented in the form

(17)
$$T(z) = T_1(z)T_2(z),$$

where

(18)
$$T_1(z) = \sum_{\alpha=0}^p b_{\alpha}^{\sim} z^{\alpha}, \ T_2(z) = \sum_{\beta=0}^q u_{\beta}^{\sim} z^{\beta}, \\ b_p^{\sim} = u_q^{\sim} = a_n^{\sim} = 1$$

and absolute value of each root of $T_1(z)$ is greater than the absolute value of each root of $T_2(z)$.

Then there exist $m \in \mathbb{N}$,

$$b_{\alpha}(\nu) \in \mathbb{C}, \alpha = 0, \ldots, p, \nu \in \mathbb{N} + m - 1$$

and

$$u_{\beta}(\nu) \in \mathbb{C}, \ \beta = 0, \ldots, q, \ \nu \in \mathbb{N} + m - 1$$

such that

(19)
$$b_{\alpha}(\nu) - b_{\alpha}^{\sim} = O(\xi(\nu)), \ \alpha = 0, \dots, p, \ b_p(\nu) = 1, \ b_0(\nu) \neq 0,$$

(20)
$$u_{\beta}(\nu) - u_{\beta}^{\sim} = O(\xi(\nu)), \ \beta = 0, \dots, q, \ u_{q}(\nu) = 1,$$

where $\nu \in \mathbb{N} + m - 1$, and, moreover, the connected with the equation (1) the equation (7) is equivalent to the equation

(21)
$$\sum_{\alpha=0}^{p} b_{\alpha}(\nu) y(\nu+\alpha) = r(\nu),$$

where $\nu \in \mathbb{N} - 1 + m$ and $r(\nu)$ satisfies to the equation

(22)
$$\sum_{\beta=0}^{q} u_{\beta}(\nu) r(\nu+\beta) = 0$$

with $\nu \in \mathbb{N} - 1 + m$.

Lemma 2. Let the conditions of the Theorem 6 are fulfilled and q < n. Then there exist $m \in \mathbb{N}$,

$$b_{\alpha}(\nu) \in \mathbb{C}, \alpha = 0, \ldots, p, \nu \in \mathbb{N} + m - 1$$

and

$$u_{\beta}(\nu) \in \mathbb{C}, \ \beta = 0, \ldots, q, \ \nu \in \mathbb{N} + m - 1$$

such that

(23)
$$b_{\alpha}(\nu) - a_{q+\alpha}^{\sim} = O(1/\nu), \ \alpha = 0, \dots, p, \ b_p(\nu) = 1, \ b_0(\nu) \neq 0,$$

(24)
$$u_{\beta}(\nu) = O(1/\nu), \beta = 0, \dots, q, u_q(\nu) = 1,$$

where $\nu \in \mathbb{N} + m - 1$, and, moreover, the connected with the equation (1) the equation (7) is equivalent to the equation (21) where $\nu \in \mathbb{N} - 1 + m$ and $r(\nu)$ satisfies to the equation (22) with $\nu \in \mathbb{N} - 1 + m$.

Proof The Lemma is direct corollary of the Theorem 5. with $T_2(z) = z^q$ and $\xi(x) = 1/(x+1)$.

§2. The general plan of the construction of the spaces V_m^{\vee} and V_m^{\wedge} .

First we take on the role of m in the Theorem 6 the m of the Lemma 2. Let R_m be the linear over \mathbb{C} space of all the solutions of the equations (22). According the Lemma 1, there exists C > 0, such that

(25)
$$r(\nu) = O(1)(C/\nu)^{\nu/n}$$

for $r(\nu) \in R_m$ and $\nu \in m - 1 + \mathbb{N}$. The connected with the equation (21) map

(26)
$$y(\nu) \to r(\nu) = \sum_{\alpha=0}^{p} b_{\alpha}(\nu) y(\nu+\alpha)$$

is a \mathbb{C} -linear map of the space V_m onto R_m and the null-space V_m^{\vee} of this map is a \mathbb{C} -linear subspace of V_m , which coincides with the space of solutions of the equation (10). The Theorem 6 will be proved, if after replacement of m in the Lemma 2 by the bigger $m \in \mathbb{N}$ we will constructed a splitting monomorphism ξ_m of the space R_m into V_m with the property:

(27)
$$y(\nu) = O(1)(C/\nu)^{\nu/n},$$

for $y(\nu) \in V_m^{\wedge} = \xi_m(R_m)$ and $\nu \in m - 1 + \mathbb{N}$.

§3. On some linear normed spaces of sequenses of elements of a linear normed space.

Let K be one of the fields \mathbb{R} or \mathbb{C} and L be a linear normed space over K with norm p(x). In the case $L = K^n$ we fix as p(x), where $x \in K^n$, the maximum of the absolute values of coordinates of x in the standard basis, i.e.

(28)
$$p(x) = h(x) = \sup(\{|x_1|, \dots, |x_n|\}),$$

where

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

If L is a Banach space with the norm p, then K-algebra of all the linear continuous operators acting in L will be denoted by $\mathfrak{M}^{\wedge}(L)$, and the norm on $\mathfrak{M}^{\wedge}(L)$, associated with the norm p will be denoted by p^{\sim} . So,

$$p^{\sim}(A) = sup(\{p(AX) \colon X \in L, \, p(X) \le 1\})$$

It is well known that the associciated with h norm on $Mat_n(\mathbb{C})$ is defined as follows

(29)
$$h^{\sim}(A) = sup\left(\left\{\sum_{k=1}^{n} |a_{i,j}|: i = 1, \dots, n\right\}\right),$$

where $A = (a_{i,k}) \in Mat_n(\mathbb{C})$. The norms h and h^{\sim} coincide respectively with with the norms q_{∞} and q_{∞}^{\sim} considered in section 6 of the paper [33].

Let $m \in \mathbb{N}$, and let $E_m(L)$ be the set $L^{m-1+\mathbb{N}}$ of all the maps of the set $m-1+\mathbb{N}$ into L. The set $E_m(L)$ is a linear space over K, where the muliplication of the elements by the number from K and addition of the elements is defined coordinate-wise. The subspace of $E_m(L)$ composed by all the constant maps is isomorphic to L, and we identify this subspace with L.

We denote by $\mathfrak{M}^{\vee}(\mathfrak{L})$ the space of all the *K*-linear maps of the space *L* in *L*. If $\phi \in \mathfrak{M}^{\vee}(\mathfrak{L})$ and $\psi \in \mathfrak{M}^{\vee}(\mathfrak{L})$, then $\phi \circ \psi$ denotes the composition of operators ϕ and ψ , so that $(\phi \circ \psi)f = \phi((\psi f))$ for each $f \in L$. For $x \in E_m(L)$ let

$$p_{m,\infty}(x) = \sup\{p(x(\nu)) \colon \nu \in m - 1 + \mathbb{N}\}.$$

Let further

$$E_{m,\infty}(L) = \{ x \in E_m(L) : p_{m,\infty}(x) \neq \infty \},\$$
$$E_{m,0}(L) = \{ x \in E_m(L) : \lim_{\nu \to \infty} p(x(\nu)) = 0 \},\$$
$$E_m^{\to}(L) = L + E_{m,0}(L).$$

L.A.Gutnik, On the difference equations of the Poincaré type (Part 2)

Clearly, the space $E_m^{\rightarrow}(L)$ consists of all the $y \in E_m(L)$, for which there exists

$$\lim(y) = \lim_{\nu \to \infty} (y(\nu)).$$

Let $m \in \mathbb{N} - 1$, $\mu \in m - 1 + \mathbb{N}$ and ler $r_{m,\mu}$ be the operator of restriction of the elements $y \in E_m(L)$ on te set $m - 1 + \mathbb{N}$. Clearly, the map $r_{m,\mu}$ is an epimorphism of the space $E_m(L)$ onto the space $E_{\mu}(L)$. If L is a K-algebra, then $E_m(L)$ is a K-algebra, where the multiplication and addition of the elements is defined coordinate-wise; so, in this case $r_{m,\mu}$ is an epimorphism of K-algebra $E_m(L)$ onto K-algebra $E_{\mu}(L)$.

If L be an algebra with unity, let L^* denotes the group of all its invertible elements. Then

$$(L^*)^{m-1+\mathbb{N}} \subset L^{m-1+\mathbb{N}}$$

we denote below $(L^*)^{m-1+\mathbb{N}}$ by $E_m(L^*)$. Clearly,

$$E_m(L^*) = (E_m(L))^*$$

Let $L = \mathbb{C}^n$, $y \in E_m(L)$, and let $y_i(\nu)$ denotes the *i*-th coordinate of the element $y(\nu)$, where $i = 1, ..., n, \nu \in m - 1 + \mathbb{N}$; then the space $(E_m(\mathbb{C}))^n$ contains an element $\omega(y)$, which has $y_i(\nu)$ as the value of its *i*-th coordinate at the point $\nu \in m - 1 + \mathbb{N}$. So we obtain the natural isomorphism ω of the algebra $E_m(\mathbb{C}^n)$ onto $(E_m(\mathbb{C}))^n$. This map ω induces an isomorphism of the algebra $E_m(Mat_n(\mathbb{C}))$ onto $Mat_n(E_m(\mathbb{C}))$.

Clearly, if L is a K-algebra, then each $a \in E_m(L)$ determines an acting on $E_m(L)$ K-linear operator $\mu_a \in \mathfrak{M}^{\vee}(\mathfrak{E}_{\mathfrak{m}}(\mathfrak{L}))$, which turns any $y \in E_m(L)$ into $\mu_a y = ay$. On $E_m(L)$ acts also K-linear operator $\nabla \mathfrak{M}^{\vee}(\mathfrak{L})$, which turns any $y \in E_m(L)$ in the $\nabla y \in E_m(L)$ such that

$$(\nabla y)(\nu) = y(\nu+1)$$

for any $\nu \in m-1+\mathbb{N}$. Let us consider the subring $\mathfrak{A}_m(L)$ of the ring $\mathfrak{M}^{\vee}(\mathfrak{L})$ generated by the operator ∇ and by all the operators μ_a , where $a \in E_m(L)$. Clearly,

(30)
$$\mu_a \circ \nabla^r \circ \mu_b \circ \nabla^s = \mu_{a \nabla^r b_k} \circ \nabla^{r+s},$$

where $\{r, s\} \subset \mathbb{N} - 1$, $\{a, b\} \subset E_m(L)$. For each $\alpha \in \mathfrak{A}_m(L) \setminus \{0_{\mathfrak{A}_m(L)}\}$ are uniquely defined the number deg (α) and representation of α in the form

(31)
$$\alpha = \sum_{k=0}^{\deg(\alpha)} \mu_{a_k} \circ \nabla^k,$$

where $a_k \in E_m(L)$ for $k = 0, ..., \deg(\alpha)$ and $a_{\deg(\alpha)} \neq 0_{E_m(L)}$. Clearly, (31) may be rewrith in the form

(32)
$$\alpha = \sum_{k=0}^{\infty} \mu_{a_k} \circ \nabla^k,$$

where $a_k = 0_{E_m(L)}$ for $k \in \deg(\alpha) + \mathbb{N}$. It follows from (30) that $\mathfrak{A}_m(L)$ is a graduated algebra, and if

(33)
$$\beta = \sum_{r=0}^{p} \mu_{b_r} \circ \nabla^r \in \mathfrak{A}_m(L),$$

(34)
$$\gamma = \sum_{s=0}^{q} \mu_{c_s} \circ \nabla^s \in \mathfrak{A}_m(L),$$

then

(35)
$$\beta \gamma = \sum_{k=0}^{p+q} \sum_{\substack{\leq r \leq p \\ 0 \leq s \leq q \\ r+s=k}} \mu_{b_r \bigtriangledown^r c_s} \circ \bigtriangledown^{r+s};$$

clearly, $\deg(\beta\gamma) = \deg(\beta) + \deg(\gamma)$, if $b_p(\nu)^r c_q(\nu+p)$ is different from 0 at least for one $\nu \in m-1+\mathbb{N}$. Let $\mathfrak{A}_m^{\rightarrow}(L)$ be the ring generated by the operator ∇ and by all the operators μ_a , where $a \in E_m^{\rightarrow}(L)$. Since $\nabla a \in E_m^{\rightarrow}(L)$, if $a \in E_m^{\rightarrow}(L)$, it follows, in view of (30), that $\mathfrak{A}_m^{\rightarrow}(L)$ is a graduated subalgebra $\mathfrak{A}_m^{\rightarrow}(L)$ of the algebra $\mathfrak{A}_m(L)$, each $\alpha \in \mathfrak{A}_m(L) \setminus \{0_{\mathfrak{A}_m(L)}\}$ admits a representation in the form (31) with $a_k \in E_m^{\rightarrow}(L)$ for $k = 0, \ldots$, $\deg(\alpha)$ and $a_{\deg(\alpha)} \neq 0_{E_m(L)}$; to each such α corresponds the limit operator

(36)
$$\lim(\alpha) = \sum_{k=0}^{\deg(\alpha)} \mu_{\lim(a_k)} \circ \nabla^k,$$

and polynomial

(37)
$$P(\alpha, z) = \sum_{k=0}^{\deg(\alpha)} \lim(a_k) z^k \in L[z].$$

If $\alpha = 0_{\mathfrak{A}_m(L)}$, then we put

$$\lim(\alpha) = 0_{\mathfrak{A}_m(L)}, \ P(\alpha, z) = 0_{L[z]}.$$

The equality (30) shows that the map

(38)
$$\alpha \to P(\alpha, z)$$

is an epimorphism of the algebra $\mathfrak{A}_{m}^{\rightarrow}(L)$ on on the algebra L[z]. We note that, if $\alpha \in \mathfrak{A}_{m}(\mathbb{C})$, then $Ker(\alpha)$ coincides with the linear space of all the solutions of the equation (7); moreover if $\alpha \in \mathfrak{A}_{m}^{\rightarrow}(\mathbb{C})$, then the corresponding

to α equation (7) is an equation of the Poincar'e type and $P(\alpha, z)$ is its characterictical polynomial.

Let L be an algebra with unity. The set of all the $\alpha \in \mathfrak{A}_m(L) \setminus \{0_{\mathfrak{A}_m(L)}\}$, which have the representation (31) with $a_{\deg(\alpha)} \in E_m(L^*)$ will be denoted further by $\mathfrak{A}_m(L)^\circ$. The set of all the $\alpha \in \mathfrak{A}_m(L) \setminus \{0_{\mathfrak{A}_m(L)}\}$, which have the representation (31) with $a_{\deg(\alpha)} = 1_{E_m(L)}$ will be denoted further by $\mathfrak{A}_m(L)^{\vee}$. The set of all the $\alpha \in \mathfrak{A}_m(L) \setminus \{0_{\mathfrak{A}_m(L)}\}$, which have the representation (31) with $a_0 \in E_m(L^*)$, will be denoted further by $\mathfrak{A}_m(L)^{\wedge}$. Let further

$$\begin{aligned} \mathfrak{A}_m(L)^{\circ\wedge} &= \mathfrak{A}_m(L)^{\circ} \bigcap \mathfrak{A}_m(L)^{\wedge}, \ \mathfrak{A}_m(L)^{\vee\wedge} = \mathfrak{A}_m(L)^{\vee} \bigcap \mathfrak{A}_m(L)^{\wedge}, \\ \mathfrak{A}_m(L)^{\circ\rightarrow} &= \mathfrak{A}_m(L)^{\circ} \bigcap \mathfrak{A}_m(L)^{\rightarrow}, \ \mathfrak{A}_m(L)^{\vee\rightarrow} = \mathfrak{A}_m(L)^{\vee} \bigcap \mathfrak{A}_m(L)^{\rightarrow}, \\ \mathfrak{A}_m(L)^{\circ\wedge\rightarrow} &= \mathfrak{A}_m(L)^{\circ\wedge} \bigcap \mathfrak{A}_m(L)^{\rightarrow}, \ \mathfrak{A}_m(L)^{\vee\wedge\rightarrow} = \mathfrak{A}_m(L)^{\vee\wedge} \bigcap \mathfrak{A}_m(L)^{\rightarrow}, \end{aligned}$$

Clearly, $\mathfrak{A}_m(L)^\circ$. consists of epimorphisms of the space $E_m(L)$ onto $E_m(L)$. The above map $r_{m,\mu}$ induces epimorphism $r_{m,\mu}^{\triangleright}$ of the algebra $\mathfrak{A}_m(L)$ on the algebra $\mathfrak{A}_{\mu}(L)$ defined as follows:

if $\alpha \in \mathfrak{A}_m(L)$,

(39)
$$\alpha = \sum_{k=0}^{n} \mu_{a_k} \circ \nabla^k,$$

then

(40)
$$r_{m,\mu}^{\triangleright}(\alpha) = \sum_{k=0}^{n} \mu_{r_{m,\mu}(a_k)} \circ \nabla^k,$$

where the operator ∇ in (39) acts in $E_m(L)$ and the operator ∇ in (40) acts in $E_{\mu}(L)$. Clearly, $r_{m,\mu}^{\triangleright}$ surjectively maps

$$\begin{split} \mathfrak{A}_m(L)^\circ & \text{onto } \mathfrak{A}_\mu(L)^\circ, \mathfrak{A}_m(L)^\vee \text{ onto } \mathfrak{A}_\mu(L)^\vee, \\ \mathfrak{A}_m(L)^\wedge & \text{onto } \mathfrak{A}_m u(L)^\wedge, \mathfrak{A}_m(L)^{\circ \wedge} \text{ onto } \mathfrak{A}_\mu(L)^{\circ \wedge}, \\ \mathfrak{A}_m(L)^{\vee \wedge} & \text{onto } \mathfrak{A}_\mu(L)^{\vee \wedge}, \mathfrak{A}_m(L)^{\circ \rightarrow} \text{ onto } \mathfrak{A}_\mu(L)^{\circ \rightarrow}, \\ \mathfrak{A}_m(L)^{\vee \rightarrow} & \text{onto } \mathfrak{A}_\mu(L)^{\vee \rightarrow}, \mathfrak{A}_m(L)^{\circ \wedge \rightarrow} \text{ onto } \mathfrak{A}_\mu(L)^{\circ \wedge \rightarrow}, \\ \mathfrak{A}_m(L)^{\vee \wedge \rightarrow} & \text{onto } \mathfrak{A}_\mu(L)^{\vee \wedge \rightarrow}. \text{ Since the diagram} \end{split}$$

is commutive and therefore

(41)
$$r_{m,\mu}\alpha = r_{m,\mu}^{\triangleright}(\alpha)r_{m,\mu},$$

it follows that $r_{m,\mu}$ surjectively maps $Ker(r_{m,\mu}\alpha)$ onto

$$Ker(r_{m,\mu}^{\triangleright}(\alpha)) \supset r_{m,\mu}Ker(\alpha).$$

Lemma 3. If $\mu \in m - 1 + \mathbb{N}$ and $\alpha \in \mathfrak{A}_m(L)^{\wedge}$, then the operator α bijectively maps $Ker(r_{m,\mu})$ onto $Ker(r_{m,\mu})$.

Proof. For $m = \mu$ we have equality $Ker(r_{m,\mu}) = 0_{E_m(L)}$ and assertion of the Lemma is obvious. Let $\mu > m$. Clearly,

$$Ker(r_{m,\mu}) = \{ x \in E_m(L) \colon x(\nu) = 0_L, \ \nu \in \mu - \mathbb{N} - 1 \}$$

Let $\alpha \in \mathfrak{A}_m(L)^{\wedge}$ has the form (39) with $a_0(\nu) \in L^*$. If $x \in Ker(r_{m,\mu})$, and

(42)
$$y = \alpha(x),$$

then

(43)
$$y(\nu) = \sum_{k=0}^{n} a_k(\nu) x(\nu+k)$$

and therefore $y(\nu) = 0_L$ for $\nu \in \mu - 1 + \mathbb{N}$, if $x(\nu) = 0_L$ for $\nu \in \mu - 1 + \mathbb{N}$. On the other hand for given $y \in Ker(r_{m,\mu})$ the coordinates $x(\nu)$ in (42) must be equal to 0_L , if $\nu \in \mu - 1 + \mathbb{N}$, and the equalities

(44)

$$x(\mu - j) = (a_0)(\mu - j))^{-1} \left(y(\mu - j) - \sum_{k=1}^n a_k(\mu - j)x(\mu - j + k) \right).$$

determined successes vely and in the unique way the coordinatess $x(\mu - j)$ for $j \in [1, \mu - m] \bigcap \mathbb{Z}$.

Corollary 1. Let $\mu \in m - 1 + \mathbb{N}$ and let $\alpha \in \mathfrak{A}_m(L)^{\wedge}$. If

$$g \in E_m(L), x \in E_\mu(L), m \le \mu, \alpha \in \mathfrak{A}_m(L)^{\wedge},$$

$$r_{m,\mu}(g) = (r_{m,\mu}^{\rhd}(\alpha))(x),$$

then there exists a unique $y \in E_m(L)$ such that

$$\alpha(y) = g, \, r_{m,\mu}(y) = x;$$

Proof. Since $r_{m,\mu}$ is an epimorphism of $E_m(L)$ onto $E_{\mu}(L)$, it follows that there exists $z \in E_m(L)$ such that $r_{m,\mu}(z) = x$ In view of (41),

$$r_{m,\mu}(\alpha(z)) = (r_{m,\mu}^{\triangleright}(\alpha))(r_{m,\mu}(z)) = (r_{m,\mu}^{\triangleright}(\alpha))(x) = r_{m,\mu}(g).$$

Then $g - \alpha(z) \in Ker(r_{m,\mu})$. According to the Lemma 3, $Ker(r_{m,\mu})$ contains an element u such that $g - \alpha(z) = \alpha(u)$. Let y = z + u. Then

$$\alpha(y) = g, r_{m,\mu}(y) = r_{m,\mu}(z) = x.$$

If $\alpha(y) = r_{m,\mu}(y) = 0_{E_m(L)}$, then $y \in Ker(r_{m,\mu})$, and the Lemma 3 implies the equality $y = 0_{E_m(L)}$.

Corollary 2. Let $\mu \in m - 1 + \mathbb{N}$ and $\alpha \in \mathfrak{A}_m(L)^{\wedge}$. Then and $r_{m,\mu}$ bijectively maps $Ker(\alpha)$ onto $Ker(r_{m,\mu}^{\triangleright}(\alpha)) = r_{m,\mu}(Ker(\alpha))$.

Proof. Let $x \in Ker(r_{m,\mu}^{\triangleright}(\alpha))$. Clearly, the conditions of the Corollary 1 are fulfilled for $g = 0_{E_m(L)}$ and x. Therefore there exist a unique $y \in Ker(\alpha)$ such that $r_{m,\mu}(y) = x$.

If for the equation (1) are fulfilled the conditions (2) then

(45)
$$a_k = (a_k(1), a_k(2), \dots, a_k(\nu), \dots) \in E_1^{\to}(\mathbb{C}),$$

where k = 0, ..., n. Moreover $a_n = 1_{E_1(\mathbb{C})}$, for α in (39) $Ker(\alpha)$ coincides with the linear over \mathbb{C} space of all the solutions of the equation (1), polynomial (5) is equal to $P(\alpha, z) = P(r_{0,m}^{\triangleright}(\alpha), z)$, where $m \in \mathbb{N}$, and $Ker(r_{1,m}^{\triangleright}(\alpha))$ coincides with linear over \mathbb{C} space V_m of all the solutions of the equation (7).

Let \mathfrak{v} be the element in $E_{0,0}$, for which

$$\mathfrak{v}(\nu) = \frac{1}{\nu+1},$$

where $\nu \in \mathbb{N} - 1$. Clearly, $r_{0,m}(\mathfrak{v}) E_{m,\infty}(\mathbb{C}) \subset E_{m,0}(\mathbb{C})$ for any $m \in \mathbb{N} - 1$. Let

$$E_{m,0}^{\succ}(L) = r_{0,m}(\mathfrak{v})E_{m,\infty}(L), \ E_m^{\succ}(L) = L + E_{m,0}^{\succ}(L).$$

Let us consider the ring $\mathfrak{A}_m^{\succ}(L)$ generated by the operator \bigtriangledown and by all the operators μ_a , where $a \in E_m(L)^{\succ}$ and let

$$\mathfrak{I}_m^{\succ}(L) = \{ \alpha \in \mathfrak{A}_m^{\succ}(L) \colon P(\alpha, z) = 0 \}$$

The Lemma 2 may be reformulated now as follows:

Lemma 4. Let $\alpha \in \mathfrak{A}_0^{\succ}(\mathbb{C}) \cap \mathfrak{A}_0^{\vee}(\mathbb{C})$, and $P(\alpha, z)$ coincides with the polynomial T(z) in (5) and (6).

Then there exist $m \in \mathbb{N}$ and representation of the oprator $r_{0,m}^{\triangleright}(\alpha)$ in the form

(46)
$$r_{0,m}^{\triangleright}(\alpha) = \psi\beta$$

such that

(47)
$$\psi \in \mathfrak{A}_m^{\succ}(\mathbb{C}) \bigcap \mathfrak{A}_m^{\vee}(\mathbb{C}), \ \psi - \bigtriangledown^q \in \mathfrak{I}_m^{\succ}(\mathbb{C}),$$

(48)
$$\beta \in \mathfrak{A}_m^{\succ}(\mathbb{C}) \bigcap \mathfrak{A}_m^{\vee \wedge}(\mathbb{C}), \deg(\beta) = p = n - q,$$

and $P(\beta, z)$ coincides with the polynomial $T_1(z)$ in (6).

Let C > 0, $n\mathbb{N}$. Let $w_{C,n}$ denotes the element in $E_{0,0}(\mathbb{C})$, for which

(49)
$$w_{C,n}(\nu) = \left(\frac{C}{\nu+1}\right)^{\nu/n},$$

where $\nu \in \mathbb{N} - 1$. The Lemma 1 admits the following reformulation:

Lemma 5. Let $m \in \mathbb{N}$ and α from (31) belongs to $\mathfrak{A}_m^{\vee}(\mathbb{C})$ and

$$\deg(\alpha) = n, \, a_k \in r_m(\mathfrak{v}) E_{m,\infty},$$

where $k = 0, \ldots, n-1$. Let further

$$C_0 \ge 1, \ q_{\infty}((r_m(\mathfrak{v}))^{-1})a_{n-k} \le C_0,$$

where k = 0, ..., n - 1. Let

(50)
$$C > enC_0.$$

Then $Ker(\alpha) \subset r_{0,m}(w_{C,n})E_{m,\infty}(\mathbb{C}) \subset E_{m,0}(\mathbb{C}).$

Each $A \in E_m(\mathfrak{M}^{\vee}(L))$ defines a linear operator $A^{\vee} \in \mathfrak{M}^{\vee}(E_m(L))$, such that

$$(A^{\vee}y)(\nu) = (A(\nu))(y(\nu)),$$

where $\nu \in m - 1 + \mathbb{N}$, $y \in E_m(L)$. The operator A^{\vee} is invertible if and only if, when the operator $A(\nu)$ is invertible for any $\nu \in m - 1 + \mathbb{N}$; in this case the map

$$\nu \mapsto (A(\nu))^{-1}$$

where $\nu \in m - 1 + \mathbb{N}$, will be denoted by A^{-1} . So,

$$A^{-1}(\nu) = (A^{-1})(\nu),$$

where $\nu \in m - 1 + \mathbb{N}$. Clearly, $(A^{\vee})^{-1} = (A^{-1})^{\vee}$. For $\lambda > 0$ let $T_{m,\lambda}(L)$ denotes the element of $E_m(\mathfrak{M}^{\vee}(L))$, for which $((T_{m,\lambda}(L)(\nu))y)(\nu) = \lambda^{\nu}y(\nu)$, where $\nu \in m - 1 + \mathbb{N}$. Clearly,

(51)
$$(T_{m,\lambda}(\mathfrak{M}^{\vee}(L))A)^{\vee} = (T_{m,\lambda}(L))^{\vee}A^{\vee} = A^{\vee}(T_{m,\lambda}(L))^{\vee},$$

$$T_{m,1}(L))^{\vee} = 1_{\mathfrak{M}^{\vee}(E_m(L))}, T_{m,\lambda_1\lambda_2}(L))^{\vee} = (T_{m,\lambda_1}(L))^{\vee})(T_{m,\lambda_2}(L))^{\vee}),$$

where $A \in E_m(\mathfrak{M}^{\vee}(L)), \lambda > 0, \lambda_1 > 0$ and $\lambda_2 > 0$. Let

$$E_{m,\lambda}(L) = \{ y \in E_m(L) : p_{m,\lambda}(y) = p_{m,\infty}((T_{m,\lambda}(L))^{-1}y) < +\infty \}.$$

Then $(E_{m,\lambda}(L), p_{m,\lambda})$ is a Banach space, and

$$E_{m,1}(L) = E_{m,\infty}(L), \ p_{m,1} = p_{m,\infty}.$$

Clearly, the map $T_{m,\lambda}(L)$ is an isometry of $E_{m,1}(L) = E_{m,\infty}(L)$ onto $E_{m,\lambda}(L)$, and the map $T_{m,\lambda}(L) \bigtriangledown^m$ is an isometry of $(E_{0,1}(L), p_{0,1}) = (E_{0,\infty}(L), p_{0,\infty})$ onto $(E_{m,\lambda}(L), p_{m,\lambda})$.

Lemma 6. Let $m \in \mathbb{N} - 1$ and α from (31) belongs to $\mathfrak{A}_m^{\rightarrow}(\mathbb{C})$ Then α is bounded linear operator on the space $E_{m,\lambda}(\mathbb{C})$ and

(52)
$$p_{m,\lambda}^{\sim}(\alpha) \le \sum_{k=0}^{\deg(\alpha)} p_{m,1}(a_k)\lambda^k$$

Proof. Since $\alpha \in \mathfrak{A}_m^{\rightarrow}(\mathbb{C})$, it follows that $a_k \in E_{m,1}(\mathbb{C})$ for $k = 0, \ldots, n$ In view of (31), if $y \in E_{m,\lambda}(\mathbb{C})$, then

$$(\alpha(y))(\nu) = \sum_{k=0}^{\deg(\alpha)} a_k(\nu) \lambda^{\nu+k} \lambda^{-\nu-k} y(\nu+k) = \lambda^{\nu} \sum_{k=0}^{\deg(\alpha)} a_k(\nu) \lambda^k \lambda^{-\nu-k} y(\nu+k)$$

and

(53)
$$\left|\sum_{k=0}^{\deg(\alpha)} a_k(\nu) \lambda^k \lambda^{-\nu-k} y(\nu+k)\right| \leq \det(\alpha)$$

$$p_{m,\lambda}(y)\sum_{k=0}^{\operatorname{deg}(\alpha)}p_{m,1}(a_k)\lambda^k.$$

The inequality (52) follows from (53). **Lemma 7.** If $\lambda > 0$, $\theta > 0$,

(54)
$$A \in E_{m,\theta/\lambda}(\mathfrak{M}(L)),$$

then A^{\vee} turns $E_{m,\lambda}(L)$ in $E_{m,\theta}(L)$, and

$$(p^{\sim})_{m,\theta/\lambda}(A) = \sup\{\{p_{m,\theta}(A^{\vee}y) \colon y \in E_{m,\lambda}(L), \ p_{m,\lambda}(y) \le 1\}\}.$$

Proof. Let $y \in E_{m,\lambda}(L)$ and $z = (T_{m,\lambda}(L))^{-1}y$. Then

$$z \in E_{m,1}(L), \ p_{m,\lambda}(y) = p_{m,1}(z).$$

Let $B = (T_{m,\theta/\lambda}(\mathfrak{M}(L)))^{-1}A$. Then

$$B \in E_{m,1}(\mathfrak{M}(L)), \ (p^{\sim})_{m,\theta/\lambda}(A) = (p^{\sim})_{m,1}(B)$$

Therefore, in view of (51),

$$B^{\vee}z \in E_{m,1}(L), T_{m,\theta}(L)(B^{\vee}z) \in E_{m,\theta}(L),$$

$$A^{\vee}y = A^{\vee}T_{m,\lambda}z = A^{\vee}T_{m,\theta}(L)T_{m,\lambda/\theta}(L)z =$$
$$T_{m,\theta}(L)A^{\vee}T_{m,\lambda/\theta}(L)z =$$
$$T_{m,\theta}(L)(T_{m,\lambda/\theta}(\mathfrak{M}(L))A)^{\vee}z =$$
$$T_{m,\theta}(L))((T_{m,\theta/\lambda}(\mathfrak{M}(L)))^{-1}A)^{\vee}z \in E_{m,\theta}(L).$$

Further we have

$$(p^{\sim})_{m,\theta/\lambda}(A) = \sup(\{p^{\sim}((\theta/\lambda)^{-\nu}A(\nu))) : \nu \in m-1+\mathbb{N}\}) = \\ \sup(\{p((\theta/\lambda)^{-\nu}A(\nu)z(\nu))) : z(\nu) \in L, \ p(z(\nu)) \leq 1, \ \nu \in m-1+\mathbb{N}\}) = \\ \sup(\{p((\theta^{-\nu}A(\nu)y(\nu))) : y(\nu) \in L, \ p(y(\nu)) \leq \lambda^{\nu}, \ \nu \in m-1+\mathbb{N}\}) = \\ \sup(\{p((\theta^{-\nu}((A^{\vee}y)(\nu))) : y(\nu) \in L, \ \lambda^{-\nu}p(y(\nu)) \leq 1, \ \nu \in m-1+\mathbb{N}\}) = \\ \sup(\{p_{m,\theta}(A^{\vee}y) : y(\nu) \in E_{m,\lambda}(L), \ p_{m,\lambda}(y)) \leq 1\}).$$

Corollary. If $A \in E_{m,1}(\mathfrak{M}(L))$, then A^{\vee} turns $E_{m,\lambda}(L)$ in $E_{m,\lambda}(L)$, and

(55)
$$(p^{\sim})_{m,1}(A) =$$

 $\sup(\{p_{m,\lambda}(A^{\vee}y) \colon y \in E_{m,\lambda}(L), \, p_{m,\lambda}(y)) \le 1\}) = (p_{m,\lambda})^{\sim}(A^{\vee}) = (p_{m,1}^{\sim})(A^{\vee}).$

Proof. The assertion of the Corollary follows directly from the assertion of the Lemma for $\theta = \lambda$.

Clearly, if $\lambda > 0$, $\theta > 0$, $A \in E_{m,\lambda}(\mathfrak{M}(L))$, $B \in E_{m,\theta}(\mathfrak{M}(L))$, then AB is contained in $E_{m,\lambda\theta}(\mathfrak{M}(L))$. Clearly, ∇ maps $E_{m,\lambda}(L)$ in $E_{m,\lambda}(L)$ and

(56)
$$(p_{m,\lambda})^{\sim}(\nabla) = \lambda.$$

Clearly, for any $k \in \mathbb{N} - 1$, $A \in E_m(\mathfrak{M}(L))$

(57)
$$(\bigtriangledown \circ A^{\vee})^k = (\prod_{\kappa=1}^k (\bigtriangledown^{\kappa} A)) \circ \bigtriangledown^{\kappa}.$$

Let L is a Banach space over th field K and $A \in E_{m,1}(\mathfrak{M}^{\wedge}(L))$. Let further there exists $A^{-1} \in E_{m,1}(\mathfrak{M}^{\wedge}(L))$, and

(58)
$$(p^{\sim})_{m,1}(A^{-1}) = \rho < 1/\lambda.$$

Then, clearly, $\mathfrak{M}^{\wedge}(E_{m,\lambda}(L))$ contains the linear operator

(59)
$$- (A^{-1})^{\vee} \sum_{k=0}^{\infty} (\bigtriangledown \circ (A^{-1})^{\vee})^{k} = -(A^{-1})^{\vee} (1_{\mathfrak{M}^{\wedge}(E_{m,\lambda}(L))} - \bigtriangledown \circ A^{-1})^{\vee})^{-1} = (\bigtriangledown - A^{\vee})^{-1},$$

and in view of (56) and (59),

(60)
$$(p_{m,1})(\nabla - A^{\vee})^{-1}) \le \rho/(1 - \rho\lambda).$$

According to (57), the equality (59) may be rewritten in the form

(61)
$$(\nabla - A^{\vee})^{-1} = -(A^{-1})^{\vee} \sum_{k=0}^{\infty} \left(\prod_{\kappa=1}^{k} (\nabla^{\kappa} (A^{-1}))^{\vee} \right) \circ \nabla^{k}.$$

Lemma 8. ([21], Lemma 2, [15], Lemma 2) Let $A \in Mat_n(\mathbb{C})$ an let k is a maximal order of its Jordan blocks. Then there exists a constante $\gamma^*(A) > 0$ with the following properties:

for any $\varepsilon > 0$ there exists a norm $p_{A,\varepsilon}$ on \mathbb{C}^n such that

(62)
$$p_{A,\varepsilon} \le \gamma^*(A)(\max(1,1/\varepsilon)^{k-1}h)$$

(63)
$$h \le \gamma^*(A)(\max(1,\varepsilon)^{k-1}p_{A,\varepsilon},$$

(64)
$$(p_{A,\varepsilon})^{\sim} \leq (\gamma^*(A))^2 (\max(\varepsilon, 1/\varepsilon)^{k-1} h^{\sim},$$

(65)
$$h^{\sim} \leq (\gamma^*(A))^2 (\max(\varepsilon, 1/\varepsilon)^{k-1} (p_{A,\varepsilon})^{\sim},$$

(66)
$$||A||_{sp} \le (p_{A,\varepsilon})^{\sim} \le ||A||_{sp} + (sign(k-1))\varepsilon$$

where $||A||_{sp}$ denotes the maximum of the absolute values of eigenvalues of the matrix A. If, moreover,

(67)
$$\det(A) \neq 0, \ \left\|A^{-1}\right\|_{sp}^{-1} > (sign(k-1))\varepsilon,$$

then

(68)
$$||A^{-1}||_{sp} \le (p_{A,\varepsilon})^{\sim} (A^{-1}) \le \left(||A^{-1}||_{sp}^{-1} - (sign(k-1))\varepsilon \right)^{-1}$$

Proof. Let $C \in Mat_n(\mathbb{C})$, $det(C) \neq 0$ and

$$(69) J = C^{-1}AC$$

is a Jordan form of A. Let J is composed by s Jordan $k_i \times k_i$ -blocks J_i , where $i = 1, \ldots, s$ and $\sum_{i=1}^{s} k_i = n$. Let $\varepsilon > 0$, and let $T_{m,\varepsilon}^{\wedge}$ denotes the diagonal $m \times m$ -matrix, which i - th diagonal element is equal to ε^{i-1} , where i = 1, ..., m. Let further T_{ε}^{\vee} denotes the $n \times n$ -diagonal matrix composed by the blocks $T_{k_i,\varepsilon}^{\wedge}$, where i = 1, ..., s. Let

(70)
$$\gamma^*(A) = \max(h^{\sim}(C^{-1}), h(C)),$$

(71)
$$p_{A,\varepsilon}(X) = h((CT_{\varepsilon}^{\vee})^{-1}X),$$

where $X \in \mathbb{C}^n$. Then

(72)

$$p_{A,\varepsilon}(X) \le h^{\sim}(C)h^{\sim}((T_{\varepsilon}^{\vee})^{-1})h(X) \le \gamma^*(A)\max(1,(1/\varepsilon)^{k-1})h(X)$$

for $X \in \mathbb{C}^n$; therefore (62) holds. Clearly,

(73)
$$h(X) = h(CT_{\varepsilon}^{\vee}(CT_{\varepsilon}^{\vee})^{-1}X) \le h(C)h(T_{\varepsilon}^{\vee})h(CT_{\varepsilon}^{\vee})^{-1}X) \le$$
$$\gamma^{*}(A)\max(1,\varepsilon^{k-1})p_{A,\varepsilon}(X)$$

for $X \in \mathbb{C}^n$; therefore (63) holds. In view of 71,

(74)
$$(p_{A,\varepsilon})^{\sim}(B) = \sup(\{p_{A,\varepsilon}(BX) \colon X \in \mathbb{C}^n, \, p_{A,\varepsilon}(X) \le 1\}) = \sup(\{h((CT_{\varepsilon}^{\vee})^{-1}BX) \colon X \in \mathbb{C}^n, \, h((CT_{\varepsilon}^{\vee})^{-1}X) \le 1\}) = \sup(\{h((CT_{\varepsilon}^{\vee})^{-1}BCT_{\varepsilon}^{\vee}Y) \colon Y \in \mathbb{C}^n, \, h(Y) \le 1\}) = h^{\sim}(CT_{\varepsilon}^{\vee})^{-1}BCT_{\varepsilon}^{\vee}),$$

where $B \in Mat_n(\mathbb{C})$. The equalities (74) imply (64) and (66). It follows from the equalities (74) that

(75)
$$h^{\sim}(B) = (p_{A,\varepsilon})^{\sim}(CT_{\varepsilon}^{\vee}B(CT_{\varepsilon}^{\vee})^{-1}),$$

where $B \in Mat_n(\mathbb{C})$. The equality (75) implies (65). Let $det(A) \neq 0$, and let Λ is the diagonal $n \times n$ -matrix, which diagonal elements are equal to the corresponding diagonal elements of the matrix J. If (67) holds, then

(76)
$$(T_{\varepsilon}^{\vee})^{-1})JT_{\varepsilon}^{\vee} = \Lambda(E-N),$$

where E is the unit $n \times n$ -matrix, N is a nilpotent $n \times n$ -matrix and

$$\begin{split} h^{\sim}(N) &\leq \|A^{-1}\|_{sp}(sign(k-1))\varepsilon, h^{\sim}(\Lambda^{-1}) = \|A^{-1}\|_{sp}, \\ (T_{\varepsilon}^{\vee})^{-1})J^{-1}T_{\varepsilon}^{\vee} &= (E-N)^{-1}\Lambda^{-1}, (p_{A,\varepsilon})^{\sim}(A^{-1}) = \\ h^{\sim}(CT_{\varepsilon}^{\vee})^{-1}A^{-1}CT_{\varepsilon}^{\vee}) &= h^{\sim}((T_{\varepsilon}^{\vee})^{-1}J^{-1}T_{\varepsilon}^{\vee}) \leq \\ \|A^{-1}\|_{sp}\sum_{\kappa=0}^{\infty} (\|A^{-1}\|_{sp}sign(k-1))\varepsilon)^{\kappa} = \end{split}$$

$$\|A^{-1}\|_{sp}(1-\|A^{-1}\|_{sp}(sign(k-1))\varepsilon)^{-1} = ((\|A^{-1}\|_{sp})^{-1} - (sign(k-1))\varepsilon)^{-1}.$$

Corollary. If all the eigenvalues of the matrix A are symple, then

(77)
$$(p_{A,\varepsilon})^{\sim} = \|A\|_{sp}.$$

If, moreover,

(78)
$$\det(A) \neq 0,$$

then

(79)
$$(p_{A,\varepsilon})^{\sim}(A^{-1}) = \left(\left\| A^{-1} \right\|_{sp} \right)^{-1}.$$

Proof. Since in this case k = 1, and, consequently, (78) implies (67), it

follows that the assertion of the Lemma follows directly from (66) - (68). **Lemma 9.** ([15], Lemma 2). Let are fulfilled all the conditions of the Lemma 8 and let $B \in Mat_n(\mathbb{C})$, $\varepsilon_1 > 0$,

(80)
$$(p_{A,\varepsilon})^{\sim}(B-A) \le \varepsilon_1,$$

then

(81)
$$(p_{A,\varepsilon})^{\sim}(B) \leq ||A||_{sp} + (sign(k-1))\varepsilon + \varepsilon_1.$$

If, moreover, the inequalities (67) hold and

(82)
$$\|A^{-1}\|_{sp}^{-1} > (sign(k-1))\varepsilon + \varepsilon_1,$$

then

(83)

$$\det(B) \neq 0, (p_{A,\varepsilon})^{\sim}(B^{-1}) \leq \left(\left\| A^{-1} \right\|_{sp}^{-1} - (sign(k-1))\varepsilon - \varepsilon_1 \right)^{-1}$$

Proof. The inequality (81) follows directly from (66) and (80). If, moreover, all the inequalities (67) and (82) hold, then let us to represent B in the form

(84)
$$B = A(E - A^{-1}(A - B));$$

in view of (68), (80) and (82),

$$(p_{A,\varepsilon})^{\sim}(A^{-1}(A-B)) \leq \left(\left\| A^{-1} \right\|_{sp}^{-1} - (sign(k-1))\varepsilon \right)^{-1} \varepsilon_1 < 1;$$

therefore the matrices $(E - A^{-1}(A - B))^{-1}$,

(85)
$$B^{-1} = (E - A^{-1}(A - B))^{-1}A^{-1}$$

exist and

$$\begin{split} (p_{A,\varepsilon})^{\sim}(B^{-1}) &= (p_{A,\varepsilon})^{\sim}((E - A^{-1}(A - B))^{-1}A^{-1}) \leq \\ (p_{A,\varepsilon})^{\sim}((E - A^{-1}(A - B))^{-1})(p_{A,\varepsilon})^{\sim}(A^{-1}) \leq \\ \left(1 - \frac{\varepsilon_1}{\left(\|A^{-1}\|_{sp}\right)^{-1} - (sign(k - 1))\varepsilon}\right)^{-1} \times \\ \left(\left(\|A^{-1}\|_{sp}\right)^{-1} - (sign(k - 1))\varepsilon\right)^{-1} &= \\ \left(\left(\|A^{-1}\|_{sp}\right)^{-1} - (sign(k - 1))\varepsilon - \varepsilon_1\right)^{-1}. \end{split}$$

Corollary 1. Let are fulfilled all the conditions of the Lemma 9, and all the eigenvalues of the matrix A are symple. Then

(86)
$$(p_{A,\varepsilon})^{\sim}(B) \le ||A||_{sp} + \varepsilon_1$$

If, moreover,

(87)
$$det(A) \neq 0, ||A^{-1}||_{sp}^{-1} > \varepsilon_1,$$

then

(88)
$$\det(B) \neq 0, (p_{A,\varepsilon})^{\sim}(B^{-1}) \le \left(\left\| A^{-1} \right\|_{sp}^{-1} - \varepsilon_1 \right)^{-1}.$$

Proof. Since in this case k = 1, and, consequently, (87) implies (82), it follows that the assertions of the Lemma follows directly from (81) - (83).

Corollary 2. ([14], Lemma 3). Let are fulfilled all the conditions of the Lemma 8, $det(A) \neq 0$,

(89)
$$0 < \varepsilon < \left(\left\| A^{-1} \right\|_{sp} \right)^{-1} / 2$$

and let $B \in Mat_n(\mathbb{C})$,

(90)
$$(p_{A,\varepsilon})^{\sim}(B-A) \le \varepsilon,$$

then

(91)
$$(p_{A,\varepsilon})^{\sim}(B) \le ||A||_{sp} + 2\varepsilon,$$

the matrix B^{-1} exists and

(92)
$$(p_{A,\varepsilon})^{\sim}(B^{-1}) \leq \left(\left\| A^{-1} \right\|_{sp}^{-1} - 2\varepsilon \right)^{-1}.$$

Proof. Let us take $\varepsilon_1 = \varepsilon$. Then (82) follows from (88) and (89).

§4. End of the proof of Theorem 6.

Let in accordance with (10)

(93)
$$\nabla^p + \sum_{k=0}^{p-1} \mu_{b_k} \circ \nabla^k,$$

where $b_k \in \mathbb{C} + (r_{0,m}\mathfrak{v})E_{m,1}\mathbb{C}$ for $k = 0, \ldots, p-1$. In view of (23),

(94)
$$\lim(b_k) = a_{q+k}$$

where k = 0, ..., p - 1. Let

$$B_1 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -b_0 & -b_1 & -b_2 & \dots & -b_{p-1} \end{pmatrix},$$

 $B = \omega^{-1}(B_1)$, where ω is the above isomorphism of the algebra $E_m(Mat_p(\mathbb{C}))$ onto $Mat_p(E_m(\mathbb{C}))$, and let

$$B^{\sim} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_q^{\sim} & -a_{q+1}^{\sim} & -a_{q+2}^{\sim} & \dots & -a_{q+p-1}^{\sim} \end{pmatrix}$$

We take now on the role of the matrix A in the Lemma 8 and Lemma 9 the matrix B^{\sim} . Since, in view of (3) $a_q^{\sim} \neq 0$, it follows that $(B^{\sim})^{-1}$ exists. We take now on the role ε in the Lemmata 8 and 9 and their corollaries the number

(95)
$$\varepsilon_0 = \left(\left\| (B^{\sim})^{-1} \right\|_{sp} \right)^{-1} / 3,$$

and we take

$$\mathfrak{q} = p_{B,\varepsilon_0}.$$

Since $\lim(B) = B^{\sim}$, it follows that we can (making use the operator $r_{m,\mu}$) replace the number m on some bigger m, such that for C from (49) and (50) the inequality

(96)
$$m \ge C \max\left(1, \left(6 \left\| (B^{\sim})^{-1} \right\|_{sp}\right)^q\right),$$

holds and

(97)
$$q(B(\nu) - B^{\sim}) \le \varepsilon_0,$$

where $\nu \in m - 1 + \mathbb{N}$. It follows from (95) and (97) that for B^{\sim} and $B(\nu)$ with $\nu \in m - 1 + \mathbb{N}$ are fulfilled all the conditions of the Corrollary 2 of the Lemma 9; therefore there exists $(B(\nu))^{-1}$ for $\nu \in m - 1 + \mathbb{N}$ and

$$\mathfrak{q}^{\sim}((B(\nu))^{-1}) \le (3\varepsilon_0 - 2\varepsilon_0)^{-1} = 3 \| (B^{\sim})^{-1} \|_{sp}$$

1 /

Consequenty, there exists $B^{-1} \in E_{m,1}(Mat_p(\mathbb{C}))$ and

(98)
$$(\mathfrak{q}^{\sim})_{m,1}(B^{-1}) \leq 3 \left\| (B^{\sim})^{-1} \right\|_{sp}.$$

In view of (96) and (49),

(99)
$$(w_{C,q}(\nu))^{1/\nu} = \left(\frac{C}{\nu+1}\right)^{1/q} < \min\left(1, \left(\left\|(B^{\sim})^{-1}\right\|_{sp}\right)^{-1}/6\right) = \min\left(1, \varepsilon_0/2\right)$$
where $\mu \in m$, $1 + \mathbb{N}$. In accordance with (58) (61), (06) (08)

where $\nu \in m - 1 + \mathbb{N}$. In accordance with (58)-(61), (96),(98) and (99), if

(100)
$$3 \| (B^{\sim})^{-1} \|_{sp} \le \frac{1}{2\lambda},$$

then

(101)
$$\rho = (q^{\sim})_{m,1}(B^{-1}) \le 3 \left\| (B^{\sim})^{-1} \right\|_{sp} \le \frac{1}{2\lambda} < \frac{1}{\lambda},$$

the algebra $\mathfrak{M}^{\wedge}(E_{m,\lambda}(\mathbb{C}^p))$ contains the linear operator

(102)
$$-((B^{-1}))^{\vee} \sum_{k=0}^{\infty} (\bigtriangledown \circ (B^{-1})^{\vee})^{k} = \\ -(B^{-1})^{\vee} (1_{\mathfrak{M}(E_{m,\lambda}(\mathbb{C}))} - \bigtriangledown \circ B^{-1})^{\vee})^{-1} = (\bigtriangledown - B^{\vee})^{-1}$$

and, in view of the Lemma 7, its corollary, Lemma 6, (98),(60)

(103)
$$(\mathfrak{q}_{m,\lambda})^{\sim} ((\nabla - B^{\vee})^{-1}) \leq \rho/(1 - \rho\lambda) \leq 3 \left\| (B^{\sim})^{-1} \right\|_{sp} / (1 - 3 \left\| (B^{\sim})^{-1} \right\|_{sp} \lambda) \leq 6 \left\| (B^{\sim})^{-1} \right\|_{sp}$$

For any $y \in E_m(\mathbb{C})$ and $n \in \mathbb{N}$ let $Y_{n,y}$ and $Y_{n,y}^{\#}$ denote the elements in the space $E_m(\mathbb{C}^n)$, which are determined respectively by means the following equalities:

(104)
$$Y_{n,y}(\nu) = \begin{pmatrix} y(\nu) \\ \vdots \\ y(\nu+n-1) \end{pmatrix},$$

(105)
$$Y_{n,y}^{\#}(\nu) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ y(\nu) \end{pmatrix},$$

where $\nu \in m - 1 + \mathbb{N}$. Clearly,

(106)
$$p_{\lambda}(y) = h_{\lambda}(y) = p_{\lambda}(Y_{n,y}^{\#}) = h_{\lambda}(Y_{n,y}^{\#}) \le h_{\lambda}(Y_{n,y}) \le \max(1, |\lambda|^{n-1})h_{\lambda}(Y_{n,y}^{\#}),$$

where
$$y \in E_m(\mathbb{C})$$
. If

$$(107) |\lambda| \le 1,$$

then all the inequalities (106) turn into equalities. Let

$$\lambda(\nu) = (w_{C,q}(\nu))^{1/\nu},$$

where $\nu \in m - 1 + \mathbb{N}$. In view of (99, for $\lambda = \lambda(\mu)$ with $\mu \in m - 1 + \mathbb{N}$ are fulfilled all the conditions (100) and (107). Let $z \in (r_{o,m}(w_{C,q})E_{m,\infty}(\mathbb{C}))$ and

$$p_{m,1}(r_{0,m}(w_{C,q})^{-1}z) = h_{m,1}(r_{0,m}(w_{C,q})^{-1}z) = \gamma$$

Then

$$\sup\{(\lambda(\mu))^{-\nu} | (r_{m,\mu}z)(\nu)| \colon \nu \in \mu - 1 + \mathbb{N}\} = \\ \sup\{\left(\frac{\lambda(\nu)}{\lambda(\mu)}\right)^{\nu} (\lambda(\nu))^{-\nu} | (r_{m,\mu}z)(\nu)| \colon \nu \in \mu - 1 + \mathbb{N}\}\} = \\ \sup\{\left(\frac{1+\mu}{1+\nu}\right)^{\nu} (\lambda(\nu))^{-\nu} | (r_{m,\mu}z)(\nu)| \colon \nu \in \mu - 1 + \mathbb{N}\}\} \leq \\ \sup\{(\lambda(\nu))^{-\nu} | (r_{m,\mu}z)(\nu)| \colon \nu \in \mu - 1 + \mathbb{N}\} \leq \\ \sup\{(\lambda(\nu))^{-\nu} | (r_{m,\mu}z)(\nu)| \colon \nu \in m - 1 + \mathbb{N}\} = \\ h_{m,1}((r_{0,m}(w_{C,q})^{-1}z) = p_{m,1}((r_{0,m}(w_{C,q})^{-1}z) = \gamma, \end{cases}$$

where $\mu \in m - 1 + \mathbb{N}$; consequently $r_{m,\mu}z \in E_{\mu,\lambda(\mu)}$, where $\mu \in m - 1 + \mathbb{N}$. In view of (108),

$$p_{\mu,\lambda(\mu)}\left(Y_{q,r_{m,\mu}z}^{\#}\right) = h_{\mu,\lambda(\mu)}\left(Y_{q,r_{m,\mu}z}^{\#}\right) \leq \gamma,$$

where $\mu \in m - 1 + \mathbb{N}$. Therefore, in view of (62),

$$\mathfrak{q}_{\mu,\lambda(\mu)}\left(Y_{q,r_{m,\mu}z}^{\#}\right) \leq$$

L.A.Gutnik, On the difference equations of the Poincaré type (Part 2)

$$\gamma^*(B^{\sim})(\max(1,1/\varepsilon_0))^{p-1}h_{\mu,\lambda(\mu)}\left(Y_{q,r_{m,\mu}z}^{\#}\right) \leq \gamma^*(B^{\sim})(\max(1,1/\varepsilon_0))^{p-1}\gamma,$$

where $\mu \in m - 1 + \mathbb{N}$. Consequently, in view of (103),

(109)
$$\mathfrak{q}_{\mu,\lambda(\mu)}\left((\nabla - B^{\vee})^{-1})Y_{q,r_m,\mu z}^{\#}\right) \leq$$

$$6\gamma\gamma^*(B^{\sim})(\max(1,1/\varepsilon_0))^{p-1} ||(B^{\sim})^{-1}||_{sp},$$

where $\mu \in m - 1 + \mathbb{N}$. In view of (109) and (63),

(110)
$$h\left((\lambda(\mu))^{-\nu}\left(((\nabla - B^{\vee})^{-1})Y_{q,r_{m,\mu}z}^{\#}\right)(\nu)\right) \leq 6\gamma(\gamma^*(B^{\sim}))^2(\max(\varepsilon_0, 1/\varepsilon_0))^{p-1} \left\|(B^{\sim})^{-1}\right\|_{sp},$$

where $\mu \in m - 1 + \mathbb{N}$ and $\nu \in \mu - 1 + \mathbb{N}$. It follows from the inequality (110) for $\nu = \mu \in m - 1 + \mathbb{N}$ that

(111)
$$h\left((\lambda(\mu))^{-\nu}\left(((\nabla - B^{\vee})^{-1})Y_{q,r_{m,\mu}z}^{\#}\right)(\nu)\right) \leq 6\gamma(\gamma^{*}(B^{\sim}))^{2}(\max(\varepsilon_{0}, 1/\varepsilon_{0}))^{p-1} \left\|(B^{\sim})^{-1}\right\|_{sp}.$$

For any $X \in \mathbb{C}^q$ let $\pi(X)$ denotes the first coordiate of the column X, and let π be the map of \mathbb{C}^q on \mathbb{C} , which turns each $X \in \mathbb{C}^q$ into $\pi(X)$. In view of (111),

(112)
$$h\left((\lambda(\nu))^{-\nu}\left(\pi\left((\nabla - B^{\vee})^{-1}\right)Y_{q,r_{m,\nu}z}^{\#}\right)(\nu)\right)\right) \leq 6\gamma(\gamma^{*}(B^{\sim}))^{2}(\max(\varepsilon_{0}, 1/\varepsilon_{0}))^{p-1}\left\|(B^{\sim})^{-1}\right\|_{sp},$$

where $\nu \in m-1+\mathbb{N}$. Let \mathfrak{p} denotes the norm on $(r_{0,m}(w_{\mathbb{C},q}))E_{m,\infty}(\mathbb{C})$, defined by means the equality $\mathfrak{p}(z) = p_{m,\infty}((r_{0,m}(w_{\mathbb{C},q}))^{-1}z)$, and let ϕ be the map of the space $(r_{0,m}(w_{\mathbb{C},q}))E_{m,\infty}(\mathbb{C})$ in $E_{m,\infty}(\mathbb{C})$, such that

$$(\phi(z))(\nu) = \pi \left(\left((\nabla - B^{\vee})^{-1}) Y_{q, r_{m, \nu} z}^{\#} \right) (\nu) \right)$$

for any $z \in (r_{0,m}(w_{\mathbb{C},q}))E_{m,\infty}(\mathbb{C})$ and any $\nu \in m-1+\mathbb{N}$. It follows now from (112) that ϕ maps $(r_{0,m}(w_{\mathbb{C},q}))E_{m,\infty}(\mathbb{C})$ into $(r_{0,m}(w_{\mathbb{C},q}))E_{m,\infty}(\mathbb{C})$, is a bounded linear operator on $(r_{0,m}(w_{\mathbb{C},q}))E_{m,\infty}(\mathbb{C})$, and

$$\mathfrak{p}^{\sim}(\phi) \le 6\gamma(\gamma^*(B^{\sim}))^2(\max(\varepsilon_0, 1/\varepsilon_0))^{p-1} \left\| (B^{\sim})^{-1} \right\|_{sp}$$

So, we can take now on the role of the mentioned in the section 2 the splitting homomorphism ξ_m the restriction of the map ϕ on the subspace $Ker(\psi)$ of the space $(r_{0,m}(w_{\mathbb{C},q}))E_{m,\infty}(\mathbb{C})$, where ψ is a homomorphism in (46).

References.

[1] O.Perron, Über die Poincaresche Differenzengleichumg, Journal für die reine und angewandte mathematik.			
1910, 137, 6-64;			
[2] A.O.Gelfond, Differenzenrechnung (in Russian),			
1967, Nauka, Moscow.			
[3] A.O.Gelfond and I.M.Kubenskaya, On the theorem of Perron			
in the theory of differrence equations (in Russian),			
IAN USSR, math. ser., 1953, 17, 2, 83 – 86.			
[4] M.A.Evgrafov, New proof of the theorem of Perron			
(in Russian), IAN USSR, math. ser., 1953, 17, 2, 77 – 82.			
[5] G.A.Frejman, On theorems of of Poincaré and Perron			
(in Russian), UMN, 1957, 12, 3 (75), $243 - 245$.			
[6] N.E.Nörlund, Differenzenrechnung,			
Berlin: Springer Verlag, 1924.			
[7] I.M.Vinogradov, Foundtions of the Number Theory			
(in Russian), 1952, GIT-TL.			
[8] CHJ. de la Vallée Poussin, Course d'analyse infinitésimale,			
Russian translation by G.M.Fikhtengolts,			
$G_{1-11}, 1933.$			
[9] L.A.Gutnik, On the decomposition of the difference operators			
of Poincare type (in Russian),			
VIN111, Moscow, 1992, 2468 - 92, 1 - 55.			
[10], On the decomposition of the difference operators			
of Poincare type in Banach algebras (in Russian),			
(11111, MOSCOW, 1992, 3443 - 92, 1 - 30.			
UNITE Measure 1002 442 D02 1 41			
[12] VINIII, MOSCOW 1995, $445 - D95$, $1 - 41$.			
[12], On the unifience equations			
VINITI Moscow 1004 668 $B04 = 44$			
(13) On the decomposition of the difference equations			
of Poincaré type (in Bussian)			
VINITI Moscow 1997 2062 - $B97 = 1 - 41$			
[14] The difference equations with of Poincaré type			
characteristic polynomial having roots equal to zero			
(in Russian). VINITI, Moscow, 1997, 2418 - 97, $1 - 20$.			
[15] On the behavior of solutions of difference equations			
of Poincaré type (in Russian).			
VINITI, Moscow, 1997, 3384-B97, 1 - 41.			
[16], On the variability of solutions of difference equations			
of Poincaré type (in Russian).			
VINITI, Moscow, 1999, 361-B99, 1 – 9.			
[17], To the question of the variability of solutions			
of difference equations of Poincaré type (in Russian),			
VINITI, Moscow, 2000, 2416-B00, $1-22$.			
[18], On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$,			
Max-Plank-Institut für Mathematik,			
Bonn, Preprint Series, 2000, 3 , $1 - 13$.			

[19]	, On the Irrationality of Some Quantities Containing $\zeta(3)$,
	Eleven papers translated from the Russian,
	American Mathematical Society, 1988, 140, 45 - 56.
[20]	, Linear independence over \mathbb{Q} of dilogarithms at rational points
	(in Russian), UMN, 37 (1982), 179-180;
	english transl. in Russ. Math. surveys 37 (1982), 176-177.
[21]	, On a measure of the irrationality of dilogarithms at rational points
	(in Russian), VINITI, 1984, 4345-84, 1 – 74.
[22]	To the question of the smallness of some linear forms
	(in Russian), VINITI, 1993, 2413-B93, 1 – 94.
[23]	, About linear forms, whose coefficients are logarithms
	of algebraic numbers (in Russian).
	VINITI, 1995, 135-B95, 1 – 149.
[24]	. About systems of vectors.
	whose coordinates are linear combinations
	of logarithms of algebraic numbers
	with algebraic coefficients (in Bussian)
	VINITI 1994 3122-B94 $1 - 158$
[25]	About linear forms whose coefficients
[=0]	are \mathbb{O} -proportional to the number log 2 and the values
	of $\zeta(s)$ for integer s (in Russian)
	VINITI 1996 3258-B96 $1 - 70$
[26]	The lower estimate for some linear forms
	, The lower coefficients of which are proportional to the values
	of $\zeta(s)$ for integer s (in Russian)
	VINITI 1997 3072 -B97 $1 - 77$
[97]	On linear forms with coefficients in $\mathbb{N}/(1+\mathbb{N})$
[-•]	(the detailed version part 1) Max-Plank-Institut für Mathematik
	Bonn Preprint Series 2001 15 1 – 20
[28]	On linear forms with coefficients in $\mathbb{N}((1 + \mathbb{N}))$
[=0]	(the detailed version part 2) Max-Plank-Institut für Mathematik
	Bonn Preprint Series 2001 104 $1 - 36$
[29]	On linear forms with coefficients in $\mathbb{N}/(1+\mathbb{N})$
[20]	(the detailed version part 3)
	Max-Plank-Institut für Mathematik
	Bonn Preprint Series 2002 57 1 – 33
[30]	On linear forms with coefficients in $\mathbb{N}((1 + \mathbb{N}))$
[90]	(the detailed version part 4)
	Max-Plank-Institut für Mathematik Bonn
	Preprint Series 2002 142 $1 - 27$
[31]	On the dimension of some linear spaces
[01]	over finite extension of \mathbb{O} (part 3)
	Max-Plank-Institut für Mathematik Bonn
	Preprint Series 2002 107 $1 - 37$
[32]	On the dimension of some linear spaces over \mathbb{O} (part 3)
	Max-Plank-Institut für Mathematik Bonn
	Preprint Series 2003 16 $1 - 45$
[33]	On the difference equation
[30]	of Poincaré type (Part 1)
	Max-Plank-Institut für Mathematik Bonn
	Preprint Series 2003 52 1 – 43
	1 reprint berres, 2009, 92, 1 49.

L.A.Gutnik, On the difference equations of the Poincaré type (Part 2)

$[34]$, On the dimension of some linear spaces over \mathbb{Q} , (p.	
Max-Plank-Instit	ut für Mathematik, Bonn,
Preprint Series, 2	003,73,1-37.
[35], On linear forms wi	th coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
(the detailed vers	ion, part 5),
Max-Plank-Instit	ut für Mathematik, Bonn,
Preprint Series, 2	003, 83, 1 - 13.
[36], On linear forms wi	th coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
(the detailed vers	ion, part 6),
Max-Plank-Instit	ut für Mathematik, Bonn,
Preprint Series, 2	003, 99, 1 - 33.

Moscow State Institute of Electronics and Mathematics Bolshoi Trekhsvyatitelskij pereulok, 1-3/12, str.8 Moscow 109028 Russian Federation *E-mail:* gutnik@gutnik.mccme.ru