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§0. Foreword.

Here I begin the presentation of the proof of Theorem 4, which was formu-
lated in the Part 1 ([33]) and proved in [15]; this theorem plays important role
in my work ([18] - [36]). With this aim I prove here the following auxiliary
Theorem 6 , which is proved in [14] as Theorem 1.

Theorem 6. Let us consider the following difference equation:

n
∑

k=0

ak(ν)y(ν + k) = 0,(1)

with n ∈ N, ak(ν) ∈ C for k = 0, . . . , n and ν ∈ N− 1. Let

a∼k ∈ C, ak(ν) ∈ C, an(ν) = 1, ak(ν)− a∼k = O(1/(ν + 1)),(2)

where k = 0, . . . , n and ν ∈ N− 1. Let further

q ∈ [1, n] ∩ Z, p = n− q, a∼q 6= 0,(3)

T1(z) =

p
∑

k=0

a∼q+kz
k(4)
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and suppose that the characteristic polynomial

T (z) =
n
∑

k=0

a∼k z
k(5)

of the equation (1) satisfies the following equality:

T (z) = zqT1(z).(6)

For m ∈ N− 1, let Vm denote the C-linear space of solutions y = y(ν) of the
equation

n
∑

k=0

ak(ν)y(ν + k) = 0,(7)

where ν ∈ m − 1 + N, related to equation (1). Then there exist C > 0 and
m ∈ N such that Vm splits into direct sum V ∧

m ⊕ V ∨
m of two its subspaces V ∧

m

and V ∨
m , which have the following propeties:

a)

V ∧
m = {y ∈ Vm : y(ν) = O(1)(C/ν)ν/q)};(8)

b) if q = n, then

V ∨
m = {0};(9)

c) if q < n, then V ∨
m coincides with the space of solutions of a difference

equation of Poincaré type

p
∑

k=0

bk(ν)y(ν + k) = 0,(10)

where p = n− q, bk(ν) ∈ C for k = 0, . . . , p and ν ∈ m− 1 + N,

b0(ν) 6= 0, bp(ν) = 1,(11)

for ν ∈ m− 1 + N,

bk(ν)− a∼q+k = O(1/ν),(12)

where k = 0, . . . , p and ν ∈ m− 1 + N.
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§1. Begin of the proof of Theorem 6.

Lemma 1. Let C0 ≥ 1, m ∈ N − 1, m0 = [nC0] + m and for the
coefficients of the equation (7) the following inequality holds:

|ak(ν)| ≤
C0

ν + 1
,(13)

where k = 0, . . . , n− 1 and ν ∈ m− 1 +N. Let further C > enC0. Then for
any solution y(ν) of the equation (7) the following inequality holds:

y(ν) = O(1)(C/ν)ν/n,(14)

where ν ∈ m− 1 + N.
Proof. If for some ν0 ∈ m0 − 1 + N and all the k = 0, . . . , n − 1 the

following inequality holds,

|y(ν0 + k)| ≤ γ,

then the inequality ν0 > nC0 implies that the inequality |y(ν)| ≤ γ will be
fulfilled for all the ν ∈ ν0 − 1 + N. Therefore, if

|y(m0 + k)| ≤ γ0,

where k = 0, . . . , n− 1 then, in view of (13),

|y(ν)| ≤ γ0

for ν ∈ m0 − 1 + N,
|y(ν)| ≤ γ0C0n/m0

for ν ∈ m0 − 1 + n+ N,

|y(ν)| ≤ γ0(C0n)
2/(m0(m0 + n))

for ν ∈ m0 − 1 + 2n+ N,

|y(ν)| ≤ γ0(C0)
κ/(m0/n)κ =

γ0(C0)
κ Γ(m0/n)

Γ(m0/n+ κ)

for ν ∈ m0 − 1 + nκ + N. But κ = ν/n + O(1); therefore the equality (14)
follows from the Stirling’s formula. �

Together with Lemma 1 we have proved the Theorem 6 for the case q = n.
The following result was proved in [33]
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Theorem 5. Let the functin ξ(x) is defined on [0,+∞), let ξ(x) decreases
together with increasing of the variable x in [0,+∞), let lim

x→∞
(ξ(x)) = 0 and

let ξ(x) > 0 for x ∈ [0,+∞). Let

ξ(x/2) = O(ξ(x)),(15)

when x→ ∞,

lim
x→0

(log(ξ(x)))/x = 0.(16)

Let ak(ν) − a∼k = O(ξ(ν)), k = 0, . . . , n, when ν → ∞. Let further the
characteristical polynomial (5) of the equation (1) may be represented in the
form

T (z) = T1(z)T2(z),(17)

where

T1(z) =

p
∑

α=0

b∼α z
α, T2(z) =

q
∑

β=0

u∼β z
β, b∼p = u∼q = a∼n = 1(18)

and absolute value of each root of T1(z) is greater than the absolute value of
each root of T2(z).

Then there exist m ∈ N,

bα(ν) ∈ C, α = 0, . . . , p, ν ∈ N+m− 1,

and
uβ(ν) ∈ C, β = 0, . . . , q, ν ∈ N+m− 1

such that

bα(ν)− b∼α = O(ξ(ν)), α = 0, . . . , p, bp(ν) = 1, b0(ν) 6= 0,(19)

uβ(ν)− u∼β = O(ξ(ν)), β = 0, . . . , q, uq(ν) = 1,(20)

where ν ∈ N+m− 1, and, moreover, the connected with the equation (1) the
equation (7) is equivqlent to the equation

p
∑

α=0

bα(ν)y(ν + α) = r(ν),(21)

where ν ∈ N− 1 +m and r(ν) satisfies to the equation

q
∑

β=0

uβ(ν)r(ν + β) = 0(22)
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with ν ∈ N− 1 +m.
Lemma 2. Let the conditions of the Theorem 6 are fulfilled and q < n.

Then there exist m ∈ N,

bα(ν) ∈ C, α = 0, . . . , p, ν ∈ N+m− 1,

and
uβ(ν) ∈ C, β = 0, . . . , q, ν ∈ N+m− 1

such that

bα(ν)− a∼q+α = O(1/ν), α = 0, . . . , p, bp(ν) = 1, b0(ν) 6= 0,(23)

uβ(ν) = O(1/ν), β = 0, . . . , q, uq(ν) = 1,(24)

where ν ∈ N+m− 1, and, moreover, the connected with the equation (1) the
equation (7) is equivalent to the equation (21) where ν ∈ N− 1+m and r(ν)
satisfies to the equation (22) with ν ∈ N− 1 +m.

Proof The Lemma is direct corollary of the Theorem 5. with T2(z) = zq

and ξ(x) = 1/(x+ 1).�

§2. The general plan of the construction of the spaces
V ∨
m and V ∧

m .

First we take on the role of m in the Theorem 6 the m of the Lemma 2.
Let Rm be the linear over C space of all the solutions of the equations (22).
According the Lemma 1, there exists C > 0, such that

r(ν) = O(1)(C/ν)ν/n(25)

for r(ν) ∈ Rm and ν ∈ m − 1 + N. The connected with the equation (21)
map

y(ν) → r(ν) =

p
∑

α=0

bα(ν)y(ν + α)(26)

is a C-linear map of the space Vm onto Rm and the null-space V ∨
m of this

map is a C-linear subspace of Vm, which coincides with the space of solutions
of the equation (10). The Theorem 6 will be proved, if after replacement
of m in the Lemma 2 by the bigger m ∈ N we will constructed a splitting
monomorphism ξm of the space Rm into Vm with the property:

y(ν) = O(1)(C/ν)ν/n,(27)

for y(ν) ∈ V ∧
m = ξm(Rm) and ν ∈ m− 1 + N.
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§3. On some linear normed spaces of sequenses of
elements of a linear normed space.

Let K be one of the fields R or C and L be a linear normed space over
K with norm p(x). In the case L = Kn we fix as p(x), wehre x ∈ Kn, the
maximum of the absolute values of coordinates of x in the standard basis,
i.e.

p(x) = h(x) = sup({|x1|, . . . , |xn|}),(28)

where

x =







x1
...
xn






.

If L is a Banach space with the norm p, then K−algebra of all the linear
continuous operators acting in L will be denoted by M∧(L), and the norm
on M∧(L), associated with the norm p will be denoted by p∼. So,

p∼(A) = sup({p(AX) : X ∈ L, p(X) ≤ 1}).

It is well known that the associciated with h norm on Matn(C) is defined as
follows

h∼(A) = sup

({

n
∑

k=1

|ai,j| : i = 1, . . . , n

})

,(29)

where A = (ai,k) ∈ Matn(C). The norms h and h∼ coincide respectiely with
with the norms q∞ and q∼∞ considered in section 6 of the paper [33].

Let m ∈ N, and let Em(L) be the set Lm−1+N of all the maps of the
set m − 1 + N into L. The set Em(L) is a linear space over K, where the
muliplication of the elements by the number from K and addition of the
elements is defined coordinate-wise. The subspace of Em(L) composed by all
the constant maps is isomorphic to L, and we identify this subspace with L.

We denote by M∨(L) the space of all the K−linear maps of the space L
in L. If φ ∈ M∨(L) and ψ ∈ M∨(L), then φ ◦ ψ denotes the composition of
operators φ and ψ, so that (φ◦ψ)f = φ((ψf)) for each f ∈ L. For x ∈ Em(L)
let

pm,∞(x) = sup({p(x(ν)) : ν ∈ m− 1 + N}.

Let further
Em,∞(L) = {x ∈ Em(L) : pm,∞(x) 6= ∞},

Em,0(L) = {x ∈ Em(L) : lim
ν→∞

p(x(ν)) = 0},

E→
m (L) = L+ Em,0(L).
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Clearly, the space E→
m (L) consists of all the y ∈ Em(L), for which there exists

lim(y) = lim
ν→∞

(y(ν)).

Let m ∈ N − 1, µ ∈ m − 1 + N and ler rm,µ be the operator of restriction
of the elements y ∈ Em(L) on te set m− 1 + N. Clearly, the map rm,µ is an
epimorphism of the space Em(L) onto the space Eµ(L). If L is a K-algebra,
then Em(L) is a K-algebra, where the muliplication and addition of the
elements is defined coordinate-wise; so, in this case rm,µ is an epimorphism
of K-algebra Em(L) onto K-algebra Eµ(L).

If L be an algebra with unity, let L∗ denotes the group of all its invertible
elements. Then

(L∗)m−1+N ⊂ Lm−1+N;

we denote below (L∗)m−1+N by Em(L
∗). Clearly,

Em(L
∗) = (Em(L))

∗.

Let L = Cn, y ∈ Em(L), and let yi(ν) denotes the i-th coordinate of the
element y(ν), where i = 1, . . . , n, ν ∈ m− 1 + N; then the space (Em(C))

n

contains an element ω(y), which has yi(ν) as the value of its i-th coordinate
at the point ν ∈ m− 1 + N. So we obtain the natural isomorphism ω of the
algebra Em(C

n) onto (Em(C))
n. This map ω induces an isomorphism of the

algebra Em(Matn(C)) onto Matn(Em(C)).
Clearly, if L is a K − algebra, then each a ∈ Em(L) determines an acting

on Em(L) K-linear operator µa ∈ M∨(Em(L)), which turns any y ∈ Em(L)
into µay = ay. On Em(L) acts also K-linear operator ▽M∨(L), which turns
any y ∈ Em(L) in the ▽y ∈ Em(L) such that

(▽y)(ν) = y(ν + 1)

for any ν ∈ m− 1+N. Let us consider the subring Am(L) of the ring M∨(L)
generated by the operator ▽ and by all the operators µa, where a ∈ Em(L).
Clearly,

µa ◦ ▽
r ◦ µb ◦ ▽

s = µa▽rbk ◦ ▽
r+s,(30)

where {r, s} ⊂ N − 1, {a, b} ⊂ Em(L). For each α ∈ Am(L)�{0Am(L)} are
uniquelly defined the number deg(α) and representation of α in the form

α =

deg(α)
∑

k=0

µak ◦ ▽
k,(31)

where ak ∈ Em(L) for k = 0, . . . , deg(α) and adeg(α) 6= 0Em(L). Clearly, (31)
may be rewritn in the form

α =
∞
∑

k=0

µak ◦ ▽
k,(32)
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where ak = 0Em(L) for k ∈ deg(α) + N. It follows from (30) that Am(L) is a
graduated algebra, and if

β =

p
∑

r=0

µbr ◦ ▽
r ∈ Am(L),(33)

γ =

q
∑

s=0

µcs ◦ ▽
s ∈ Am(L),(34)

then

βγ =

p+q
∑

k=0

∑

≤r≤p
0≤s≤q
r+s=k

µbr▽rcs ◦ ▽
r+s;(35)

clearly, deg(βγ) = deg(β)+deg(γ), if bp(ν)
rcq(ν+p) is different from 0 at least

for one ν ∈ m−1+N. Let A→
m (L) be the ring generated by the operator▽ and

by all the operators µa, where a ∈ E→
m (L). Since ▽a ∈ E→

m (L), if a ∈ E→
m (L),

it follows, in view of (30), that A→
m (L) is a graduated subalgebra A→

m (L) of
the algebra Am(L), each α ∈ Am(L)�{0Am(L)} admits a representation in
the form (31) with ak ∈ E→

m (L) for k = 0, . . . , deg(α) and adeg(α) 6= 0Em(L);
to each such α corresponds the limit operator

lim(α) =

deg(α)
∑

k=0

µlim(ak) ◦ ▽
k,(36)

and polynomial

P (α, z) =

deg(α)
∑

k=0

lim(ak)z
k ∈ L[z].(37)

If α = 0Am(L), then we put

lim(α) = 0Am(L), P (α, z) = 0L[z].

The equality (30) shows that the map

α → P (α, z)(38)

is an epimorphism of the algebra A→
m (L) on on the algebra L[z]. We note

that, if α ∈ Am(C), then Ker(α) coincides with the linear space of all the
solutions of the equation (7); moreover if α ∈ A→

m (C), then the corresponding
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to α equation (7) is an equation of the Poincar’e type and P (α, z) is its
characterictical polynomial.

Let L be an algebra with unity. The set of all the α ∈ Am(L)�{0Am(L)},
which have the representation (31) with adeg(α) ∈ Em(L

∗) will be denoted
further by Am(L)

◦. The set of all the α ∈ Am(L)�{0Am(L)}, which have the
representation (31) with adeg(α) = 1Em(L) will be denoted further by Am(L)

∨.
The set of all the α ∈ Am(L)�{0Am(L)}, which have the representation (31)
with a0 ∈ Em(L

∗), will be denoted further by Am(L)
∧. Let further

Am(L)
◦∧ = Am(L)

◦
⋂

Am(L)
∧, Am(L)

∨∧ = Am(L)
∨
⋂

Am(L)
∧,

Am(L)
◦→ = Am(L)

◦
⋂

Am(L)
→, Am(L)

∨→ = Am(L)
∨
⋂

Am(L)
→,

Am(L)
◦∧→ = Am(L)

◦∧
⋂

Am(L)
→, Am(L)

∨∧→ = Am(L)
∨∧
⋂

Am(L)
→,

Clearly, Am(L)
◦. consists of epimorphisms of the space Em(L) onto Em(L).

The above map rm,µ induces epimorphism r⊲m,µ of the algebra Am(L) on the
algebra Aµ(L) defined as follows:

if α ∈ Am(L),

α =
n
∑

k=0

µak ◦ ▽
k,(39)

then

r⊲m,µ(α) =
n
∑

k=0

µrm,µ(ak) ◦ ▽
k,(40)

where the operator ▽ in (39) acts in Em(L) and the operator ▽ in (40) acts
in Eµ(L). Clearly, r

⊲

m,µ surjectively maps
Am(L)

◦ onto Aµ(L)
◦, Am(L)

∨ onto Aµ(L)
∨,

Am(L)
∧ onto Amu(L)

∧, Am(L)
◦∧ onto Aµ(L)

◦∧,
Am(L)

∨∧ onto Aµ(L)
∨∧, Am(L)

◦→ onto Aµ(L)
◦→,

Am(L)
∨→ onto Aµ(L)

∨→, Am(L)
◦∧→ onto Aµ(L)

◦∧→,
Am(L)

∨∧→ onto Aµ(L)
∨∧→. Since the diagram

Em(L)
rm,µ

−−→ Eµ(L)

α







y







y

r⊲m,µ(α)

Em(L) −−→
rm,µ

Eµ(L)

is commuative and therefore

rm,µα = r⊲m,µ(α)rm,µ,(41)
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it follows that rm,µ surjectively maps Ker(rm,µα) onto

Ker(r⊲m,µ(α)) ⊃ rm,µKer(α).

Lemma 3. If µ ∈ m − 1 + N and α ∈ Am(L)
∧, then the operator α

bijectively maps Ker(rm,µ) onto Ker(rm,µ).
Proof. For m = µ we have equality Ker(rm,µ) = 0Em(L) and assertion of

the Lemma is obvious. Let µ > m. Clearly,

Ker(rm,µ) = {x ∈ Em(L) : x(ν) = 0L, ν ∈ µ− N− 1}.

Let α ∈ Am(L)
∧ has the form (39) with a0(ν) ∈ L∗. If x ∈ Ker(rm,µ), and

y = α(x),(42)

then

y(ν) =
n
∑

k=0

ak(ν)x(ν + k)(43)

and therefore y(ν) = 0L for ν ∈ µ− 1+N, if x(ν) = 0L for ν ∈ µ− 1+N. On
the other hand for given y ∈ Ker(rm,µ) the coordinates x(ν) in (42) must be
equal to 0L, if ν ∈ µ− 1 + N, and the equalities

x(µ− j) = (a0)(µ− j))−1

(

y(µ− j)−
n
∑

k=1

ak(µ− j)x(µ− j + k)

)

.

(44)

determined successesvely and in the unique way the coordinatess x(µ − j)
for j ∈ [1, µ−m]

⋂

Z. �
Corollary 1. Let µ ∈ m− 1 + N and let α ∈ Am(L)

∧. If

g ∈ Em(L), x ∈ Eµ(L), m ≤ µ, α ∈ Am(L)
∧,

rm,µ(g) = (r⊲m,µ(α))(x),

then there exists a unique y ∈ Em(L) such that

α(y) = g, rm,µ(y) = x;

Proof. Since rm,µ is an epimorphism of Em(L) onto Eµ(L), it follows that
there exists z ∈ Em(L) such that rm,µ(z) = x In view of (41),

rm,µ(α(z)) = (r⊲m,µ(α))(rm,µ(z)) = (r⊲m,µ(α))(x) = rm,µ(g).

Then g − α(z) ∈ Ker(rm,µ). According to the Lemma 3, Ker(rm,µ) contains
an element u such that g − α(z) = α(u). Let y = z + u. Then

α(y) = g, rm,µ(y) = rm,µ(z) = x.
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If α(y) = rm,µ(y) = 0Em(L), then y ∈ Ker(rm,µ), and the Lemma 3 implies
the equality y = 0Em(L). �

Corollary 2. Let µ ∈ m − 1 + N and α ∈ Am(L)
∧. Then and rm,µ

bijectively maps Ker(α) onto Ker(r⊲m,µ(α)) = rm,µ(Ker(α)).
Proof. Let x ∈ Ker(r⊲m,µ(α)). Clearly, the conditions of the Corollary 1

are fulfilled for g = 0Em(L) and x. Therefore there exist a unique y ∈ Ker(α)
such that rm,µ(y) = x.�

If for the equation (1) are fulfilled the conditions (2) then

ak = (ak(1), ak(2), . . . , ak(ν), . . . ) ∈ E→
1 (C),(45)

where k = 0, . . . , n. Moreover an = 1E1(C), for α in (39) Ker(α) coincides
with the linear over C space of all the solutions of the equation (1), polyno-
mial (5) is equal to P (α, z) = P (r⊲0,m(α), z), where m ∈ N, and Ker(r⊲1,m(α))
coincides with linear over C space Vm of all the solutions of the equation (7).

Let v be the element in E0,0, for which

v(ν) =
1

ν + 1
,

where ν ∈ N− 1. Clearly, r0,m(v)Em,∞(C) ⊂ Em,0(C) for any m ∈ N− 1. Let

E≻
m,0(L) = r0,m(v)Em,∞(L), E≻

m(L) = L+ E≻
m,0(L).

Let us consider the ring A≻
m(L) generated by the operator ▽ and by all the

operators µa, where a ∈ Em(L)
≻ and let

I≻
m(L) = {α ∈ A≻

m(L) : P (α, z) = 0}.

The Lemma 2 may be reformulated now as follows:
Lemma 4. Let α ∈ A≻

0 (C)
⋂

A∨
0 (C), and P (α, z) coincides with the

polynomial T (z) in (5) and (6).
Then there exist m ∈ N and representation of the oprator r⊲0,m(α) in the

form

r⊲0,m(α) = ψβ(46)

such that

ψ ∈ A≻
m(C)

⋂

A∨
m(C), ψ −▽q ∈ I≻

m(C),(47)

β ∈ A≻
m(C)

⋂

A∨∧
m (C), deg(β) = p = n− q,(48)

and P (β, z) coincides with the polynomial T1(z) in (6).
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Let C > 0, nN. Let wC,n denotes the element in E0,0(C), for which

wC,n(ν) =

(

C

ν + 1

)ν/n

,(49)

where ν ∈ N− 1. The Lemma 1 admits the following reformulation:
Lemma 5. Let m ∈ N and α from (31) belongs to A∨

m(C) and

deg(α) = n, ak ∈ rm(v)Em,∞,

where k = 0, . . . , n− 1. Let further

C0 ≥ 1, q∞((rm(v))
−1)an−k ≤ C0,

where k = 0, . . . , n− 1. Let

C > enC0.(50)

Then Ker(α) ⊂ r0,m(wC,n)Em,∞(C) ⊂ Em,0(C).
Each A ∈ Em(M

∨(L)) defines a linear operator A∨ ∈ M∨(Em(L)), such
that

(A∨y)(ν) = (A(ν))(y(ν)),

where ν ∈ m − 1 + N, y ∈ Em(L). The operator A∨ is invertible if and only
if, when the operator A(ν) is invertible for any ν ∈ m − 1 + N; in this case
the map

ν 7→ (A(ν))−1,

where ν ∈ m− 1 + N, will be denoted by A−1. So,

A−1(ν) = (A−1)(ν),

where ν ∈ m − 1 + N. Clearly, (A∨)−1 = (A−1)∨. For λ > 0 let Tm,λ(L)
denotes the element of Em(M

∨(L)), for which ((Tm,λ(L)(ν))y)(ν) = λνy(ν),
where ν ∈ m− 1 + N. Clearly,

(Tm,λ(M
∨(L))A)∨ = (Tm,λ(L))

∨A∨ = A∨(Tm,λ(L))
∨,(51)

Tm,1(L))
∨ = 1M∨(Em(L)), Tm,λ1λ2

(L))∨ = (Tm,λ1
(L))∨)(Tm,λ2

(L))∨),

where A ∈ Em(M
∨(L)), λ > 0, λ1 > 0 and λ2 > 0. Let

Em,λ(L) = {y ∈ Em(L) : pm,λ(y) = pm,∞((Tm,λ(L))
−1y) < +∞}.

Then (Em,λ(L), pm,λ) is a Banach space, and

Em,1(L) = Em,∞(L), pm,1 = pm,∞.
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Clearly, the map Tm,λ(L) is an isometry of Em,1(L) = Em,∞(L) onto Em,λ(L),
and the map Tm,λ(L)▽

m is an isometry of (E0,1(L), p0,1) = (E0,∞(L), p0,∞)
onto (Em,λ(L), pm,λ).

Lemma 6. Let m ∈ N− 1 and α from (31) belongs to A→
m (C) Then α is

bounded linear operator on the space Em,λ(C) and

p∼m,λ(α) ≤

deg(α)
∑

k=0

pm,1(ak)λ
k(52)

Proof. Since α ∈ A→
m (C), it follows that ak ∈ Em,1(C) for k = 0, . . . , n

In view of (31), if y ∈ Em,λ(C), then

(α(y))(ν) =

deg(α)
∑

k=0

ak(ν)λ
ν+kλ−ν−ky(ν + k) =

λν
deg(α)
∑

k=0

ak(ν)λ
kλ−ν−ky(ν + k)

and
∣

∣

∣

∣

∣

∣

deg(α)
∑

k=0

ak(ν)λ
kλ−ν−ky(ν + k)

∣

∣

∣

∣

∣

∣

≤(53)

pm,λ(y)

deg(α)
∑

k=0

pm,1(ak)λ
k.

The inequality (52) follows from (53). �
Lemma 7. If λ > 0, θ > 0,

A ∈ Em,θ/λ(M(L)),(54)

then A∨ turns Em,λ(L) in Em,θ(L), and

(p∼)m,θ/λ(A) = sup({pm,θ(A
∨y) : y ∈ Em,λ(L), pm,λ(y) ≤ 1}).

Proof. Let y ∈ Em,λ(L) and z = (Tm,λ(L))
−1y. Then

z ∈ Em,1(L), pm,λ(y) = pm,1(z).

Let B = (Tm,θ/λ(M(L)))−1A. Then

B ∈ Em,1(M(L)), (p∼)m,θ/λ(A) = (p∼)m,1(B).

Therefore, in view of (51),

B∨z ∈ Em,1(L), Tm,θ(L)(B
∨z) ∈ Em,θ(L),
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A∨y = A∨Tm,λz = A∨Tm,θ(L))Tm,λ/θ(L)z =

Tm,θ(L))A
∨Tm,λ/θ(L)z =

Tm,θ(L)(Tm,λ/θ(M(L))A)∨z =

Tm,θ(L))((Tm,θ/λ(M(L)))−1A)∨z ∈ Em,θ(L).

Further we have

(p∼)m,θ/λ(A) = sup({p∼((θ/λ)−νA(ν))) : ν ∈ m− 1 + N}) =

sup({p((θ/λ)−νA(ν)z(ν))) : z(ν) ∈ L, p(z(ν)) ≤ 1, ν ∈ m− 1 + N}) =

sup({p((θ−νA(ν)y(ν))) : y(ν) ∈ L, p(y(ν)) ≤ λν , ν ∈ m− 1 + N}) =

sup({p((θ−ν((A∨y)(ν))) : y(ν) ∈ L, λ−νp(y(ν)) ≤ 1, ν ∈ m− 1 + N}) =

sup({pm,θ(A
∨y) : y(ν) ∈ Em,λ(L), pm,λ(y)) ≤ 1}).

�

Corollary. If A ∈ Em,1(M(L)), then A∨ turns Em,λ(L) in Em,λ(L), and

(p∼)m,1(A) =(55)

sup({pm,λ(A
∨y) : y ∈ Em,λ(L), pm,λ(y)) ≤ 1}) = (pm,λ)

∼(A∨) = (p∼m,1)(A
∨).

Proof. The assertion of the Corollary follows directly from the assertion
of the Lemma for θ = λ. �

Clearly, if λ > 0, θ > 0, A ∈ Em,λ(M(L)), B ∈ Em,θ(M(L)), then AB is
contained in Em,λθ(M(L)). Clearly, ▽ maps Em,λ(L) in Em,λ(L) and

(pm,λ)
∼(▽) = λ.(56)

Clearly, for any k ∈ N− 1, A ∈ Em(M(L))

(▽ ◦ A∨)k = (
k
∏

κ=1

(▽κA)) ◦ ▽κ.(57)

Let L is a Banach space over th field K and A ∈ Em,1(M
∧(L)). Let further

there exists A−1 ∈ Em,1(M
∧(L)), and

(p∼)m,1(A
−1) = ρ < 1/λ.(58)

Then, clearly, M∧(Em,λ(L)) contains the linear operator

− (A−1)∨
∞
∑

k=0

(▽ ◦ (A−1)∨)k =(59)

−(A−1)∨(1M∧(Em,λ(L)) −▽ ◦ A−1)∨)−1 = (▽− A∨)−1,
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and in view of (56) and (59),

(pm,1)(▽− A∨)−1) ≤ ρ/(1− ρλ).(60)

According to (57), the equality (59) may be rewritten in the form

(▽− A∨)−1 = −(A−1)∨
∞
∑

k=0

(

k
∏

κ=1

(▽κ(A−1))∨

)

◦ ▽k.(61)

Lemma 8. ([21], Lemma 2, [15], Lemma 2) Let A ∈ Matn(C) an let
k is a maximal order of its Jordan blocks. Then there exists a constante
γ∗(A) > 0 with the following properties:

for any ε > 0 there exists a norm pA,ε on Cn such that

pA,ε ≤ γ∗(A)(max(1, 1/ε)k−1h,(62)

h ≤ γ∗(A)(max(1, ε)k−1pA,ε,(63)

(pA,ε)
∼ ≤ (γ∗(A))2(max(ε, 1/ε)k−1h∼,(64)

h∼ ≤ (γ∗(A))2(max(ε, 1/ε)k−1(pA,ε)
∼,(65)

‖A‖sp ≤ (pA,ε)
∼ ≤ ‖A‖sp + (sign(k − 1))ε,(66)

where ‖A‖sp denotes the maximum of the absolute values of eigenvalues of
the matrix A. If, moreover,

det(A) 6= 0,
∥

∥A−1
∥

∥

−1

sp
> (sign(k − 1))ε,(67)

then

∥

∥A−1
∥

∥

sp
≤ (pA,ε)

∼(A−1) ≤
(

∥

∥A−1
∥

∥

−1

sp
− (sign(k − 1))ε

)−1

(68)

Proof. Let C ∈Matn(C), det(C) 6= 0 and

J = C−1AC(69)

is a Jordan form of A. Let J is composed by s Jordan ki × ki-blocks Ji,

where i = 1, . . . , s and
s
∑

i=1

ki = n. Let ε > 0, and let T∧
m,ε denotes the

diagonal m × m−matrix, which i − th diagonal element is equal to εi−1,
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where i = 1, . . . , m. Let further T∨
ε denotes the n × n−diagonal matrix

composed by the blocks T∧
ki,ε
, where i = 1, . . . , s. Let

γ∗(A) = max(h∼(C−1), h(C)),(70)

pA,ε(X) = h((CT∨
ε )

−1X),(71)

where X ∈ Cn. Then

pA,ε(X) ≤ h∼(C)h∼((T∨
ε )

−1)h(X) ≤ γ∗(A)max(1, (1/ε)k−1)h(X)

(72)

for X ∈ Cn; therefore (62) holds. Clearly,

h(X) = h(CT∨
ε (CT

∨
ε )

−1X) ≤ h(C)h(T∨
ε )h(CT

∨
ε )

−1X) ≤(73)

γ∗(A)max(1, εk−1)pA,ε(X)

for X ∈ Cn; therefore (63) holds. In view of 71,

(pA,ε)
∼(B) = sup({pA,ε(BX) : X ∈ Cn, pA,ε(X) ≤ 1}) =(74)

sup({h((CT∨
ε )

−1BX) : X ∈ Cn, h((CT∨
ε )

−1X) ≤ 1}) =

sup({h((CT∨
ε )

−1BCT∨
ε Y ) : Y ∈ Cn, h(Y ) ≤ 1}) =

h∼(CT∨
ε )

−1BCT∨
ε ),

where B ∈Matn(C). The equalities (74) imply (64) and (66). It follows from
the equalities (74) that

h∼(B) = (pA,ε)
∼(CT∨

ε B(CT∨
ε )

−1),(75)

where B ∈ Matn(C). The equality (75) implies (65). Let det(A) 6= 0, and
let Λ is the diagonal n×n−matrix, which diagonal elements are equal to the
corresponding diagonal elements of the matrix J. If (67) holds, then

(T∨
ε )

−1)JT∨
ε = Λ(E −N),(76)

where E is the unit n× n-matrix, N is a nilpotent n× n-matrix and

h∼(N) ≤ ‖A−1‖sp(sign(k − 1))ε, h∼(Λ−1) = ‖A−1‖sp,

(T∨
ε )

−1)J−1T∨
ε = (E −N)−1Λ−1, (pA,ε)

∼(A−1) =

h∼(CT∨
ε )

−1A−1CT∨
ε ) = h∼((T∨

ε )
−1J−1T∨

ε ) ≤

‖A−1‖sp

∞
∑

κ=0

(‖A−1‖spsign(k − 1))ε)κ =
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‖A−1‖sp(1− ‖A−1‖sp(sign(k − 1))ε)−1 = ((‖A−1‖sp)
−1 − (sign(k − 1))ε)−1.

�

Corollary. If all the eigenvalues of the matrix A are symple, then

(pA,ε)
∼ = ‖A‖sp.(77)

If, moreover,

det(A) 6= 0,(78)

then

(pA,ε)
∼(A−1) =

(

∥

∥A−1
∥

∥

sp

)−1

.(79)

Proof. Since in this case k = 1, and, consequently, (78) implies (67), it
follows that the assertion of the Lemma follows directly from (66) - (68). �

Lemma 9. ([15], Lemma 2). Let are fulfilled all the conditions of the
Lemma 8 and let B ∈Matn(C), ε1 > 0,

(pA,ε)
∼(B − A) ≤ ε1,(80)

then

(pA,ε)
∼(B) ≤ ‖A‖sp + (sign(k − 1))ε+ ε1.(81)

If, moreover, the inequalities (67) hold and

∥

∥A−1
∥

∥

−1

sp
> (sign(k − 1))ε+ ε1,(82)

then

det(B) 6= 0, (pA,ε)
∼(B−1) ≤

(

∥

∥A−1
∥

∥

−1

sp
− (sign(k − 1))ε− ε1

)−1

(83)

Proof. The inequality (81) follows directly from (66) and (80). If, moreover,
all the inequalities (67) and (82) hold, then let us to represent B in the form

B = A(E − A−1(A− B));(84)

in view of (68), (80) and (82),

(pA,ε)
∼(A−1(A− B)) ≤

(

∥

∥A−1
∥

∥

−1

sp
− (sign(k − 1))ε

)−1

ε1 < 1;

therefore the matrices (E − A−1(A− B))−1,

B−1 = (E − A−1(A−B))−1A−1(85)
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exist and

(pA,ε)
∼(B−1) = (pA,ε)

∼((E − A−1(A−B))−1A−1) ≤

(pA,ε)
∼((E − A−1(A−B))−1)(pA,ε)

∼(A−1) ≤





1−

ε1
(

‖A−1‖sp

)−1

− (sign(k − 1))ε







−1

×

(

(

∥

∥A−1
∥

∥

sp

)−1

− (sign(k − 1))ε

)−1

=

(

(

∥

∥A−1
∥

∥

sp

)−1

− (sign(k − 1))ε− ε1

)−1

.

�

Corollary 1. Let are fulfilled all the conditions of the Lemma 9, and all
the eigenvalues of the matrix A are symple. Then

(pA,ε)
∼(B) ≤ ‖A‖sp + ε1.(86)

If, moreover,

det(A) 6= 0,
∥

∥A−1
∥

∥

−1

sp
> ε1,(87)

then

det(B) 6= 0, (pA,ε)
∼(B−1) ≤

(

∥

∥A−1
∥

∥

−1

sp
− ε1

)−1

.(88)

Proof. Since in this case k = 1, and, consequently, (87) implies (82), it
follows that the assertions of the Lemma follows directly from (81) - (83). �

Corollary 2. ([14], Lemma 3). Let are fulfilled all the conditions of the
Lemma 8, det(A) 6= 0,

0 < ε <
(

∥

∥A−1
∥

∥

sp

)−1

/2(89)

and let B ∈Matn(C),

(pA,ε)
∼(B − A) ≤ ε,(90)

then

(pA,ε)
∼(B) ≤ ‖A‖sp + 2ε,(91)

the matrix B−1 exists and

(pA,ε)
∼(B−1) ≤

(

∥

∥A−1
∥

∥

−1

sp
− 2ε

)−1

.(92)

Proof. Let us take ε1 = ε. Then (82) follows from (88) and (89). �
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§4. End of the proof of Theorem 6.

Let in accordance with (10)

▽p +

p−1
∑

k=0

µbk ◦ ▽
k,(93)

where bk ∈ C+ (r0,mv)Em,1C for k = 0, . . . , p− 1. In view of (23),

lim(bk) = aq+k(94)

where k = 0, . . . , p− 1. Let

B1 =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1

−b0 −b1 −b2 . . . −bp−1















,

B = ω−1(B1), where ω is the above isomorphism of the algebra Em(Matp(C))
onto Matp(Em(C)), and let

B∼ =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1

−a∼q −a∼q+1 −a∼q+2 . . . −a∼q+p−1















We take now on the role of the matrix A in the Lemma 8 and Lemma 9
the matrix B∼. Since, in view of (3) a∼q 6= 0, it follows that (B∼)−1 exists.
We take now on the role ε in the Lemmata 8 and 9 and their corollaries the
number

ε0 =
(

∥

∥(B∼)−1
∥

∥

sp

)−1

/3,(95)

and we take
q = pB,ε0 .

Since lim(B) = B∼, it follows that we can (making use the operator rm,µ)
replace the number m on some bigger m, such that for C from (49) and (50)
the inequality

m ≥ Cmax
(

1,
(

6
∥

∥(B∼)−1
∥

∥

sp

)q)

,(96)
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holds and

q(B(ν)− B∼) ≤ ε0,(97)

where ν ∈ m− 1 + N. It follows from (95) and (97) that for B∼ and B(ν)
with ν ∈ m− 1 + N are fulfilled all the conditions of the Corrollary 2 of the
Lemma 9; therefore there exists (B(ν))−1 for ν ∈ m− 1 + N and

q∼((B(ν))−1) ≤ (3ε0 − 2ε0)
−1 = 3

∥

∥(B∼)−1
∥

∥

sp
.

Consequenty, there exists B−1 ∈ Em,1(Matp(C)) and

(q∼)m,1(B
−1) ≤ 3

∥

∥(B∼)−1
∥

∥

sp
.(98)

In view of (96) and (49),

(wC,q(ν))
1/ν =

(

C

ν + 1

)1/q

<(99)

min

(

1,
(

∥

∥(B∼)−1
∥

∥

sp

)−1

/6

)

= min (1, ε0/2) ,

where ν ∈ m− 1 + N. In accordance with (58)-(61), (96),(98) and (99), if

3
∥

∥(B∼)−1
∥

∥

sp
≤

1

2λ
,(100)

then

ρ = (q∼)m,1(B
−1) ≤ 3

∥

∥(B∼)−1
∥

∥

sp
≤

1

2λ
<

1

λ
,(101)

the algebra M∧(Em,λ(C
p)) contains the linear operator

− ((B−1))∨
∞
∑

k=0

(▽ ◦ (B−1)∨)k =(102)

−(B−1)∨(1M(Em,λ(C)) −▽ ◦B−1)∨)−1 = (▽−B∨)−1,

and, in view of the Lemma 7, its corollary, Lemma 6, (98),(60)

(qm,λ)
∼((▽−B∨)−1) ≤ ρ/(1− ρλ) ≤(103)

3
∥

∥(B∼)−1
∥

∥

sp
/(1− 3

∥

∥(B∼)−1
∥

∥

sp
λ) ≤ 6

∥

∥(B∼)−1
∥

∥

sp
.

For any y ∈ Em(C) and n ∈ N let Yn,y and Y #
n,y denote the elements in

the space Em(C
n), wich are determined respectively by means the following

equalities:

Yn,y(ν) =







y(ν)
...

y(ν + n− 1)






,(104)
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Y #
n,y(ν) =











0
...
0

y(ν)











,(105)

where ν ∈ m− 1 + N. Clearly,

pλ(y) = hλ(y) = pλ(Y
#
n,y) = hλ(Y

#
n,y) ≤ hλ(Yn,y) ≤(106)

max(1, |λ|n−1)hλ(Y
#
n,y),

where y ∈ Em(C). If

|λ| ≤ 1,(107)

then all the inequalities (106) turn into equalities. Let

λ(ν) = (wC,q(ν))
1/ν ,

where ν ∈ m − 1 + N. In view of (99, for λ = λ(µ) with µ ∈ m − 1 + N are
fulfilled all the conditions (100) and (107). Let z ∈ (ro,m(wC,q)Em,∞(C) and

pm,1(r0,m(wC,q)
−1z) = hm,1(r0,m(wC,q)

−1z) = γ

Then

pµ,λ(µ)(rm,µz) = hµ,λ(µ)(rm,µz) =(108)

sup{(λ(µ))−ν |(rm,µz)(ν)| : ν ∈ µ− 1 + N} =

sup

{(

λ(ν)

λ(µ)

)ν

(λ(ν))−ν |(rm,µz)(ν)| : ν ∈ µ− 1 + N

}

=

sup

{(

1 + µ)

1 + ν)

)ν

(λ(ν))−ν |(rm,µz)(ν)| : ν ∈ µ− 1 + N

}

≤

sup
{

(λ(ν))−ν |(rm,µz)(ν)| : ν ∈ µ− 1 + N
}

≤

sup
{

(λ(ν))−ν |(rm,µz)(ν)| : ν ∈ m− 1 + N
}

=

hm,1((r0,m(wC,q)
−1z) = pm,1((r0,m(wC,q)

−1z) = γ,

where µ ∈ m− 1+N; consequently rm,µz ∈ Eµ,λ(µ), where µ ∈ m− 1+N. In
view of (108),

pµ,λ(µ)

(

Y #
q,rm,µz

)

= hµ,λ(µ)

(

Y #
q,rm,µz

)

≤ γ,

where µ ∈ m− 1 + N. Therefore, in view of (62),

qµ,λ(µ)

(

Y #
q,rm,µz

)

≤
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γ∗(B∼)(max(1, 1/ε0))
p−1hµ,λ(µ)

(

Y #
q,rm,µz

)

≤

γ∗(B∼)(max(1, 1/ε0))
p−1γ,

where µ ∈ m− 1 + N. Consequently, in view of (103),

qµ,λ(µ)

(

(▽− B∨)−1)Y #
q,rm,µz

)

≤(109)

6γγ∗(B∼)(max(1, 1/ε0))
p−1
∥

∥(B∼)−1
∥

∥

sp
,

where µ ∈ m− 1 + N. In view of (109) and (63),

h
(

(λ(µ))−ν
(

((▽−B∨)−1)Y #
q,rm,µz

)

(ν)
)

≤(110)

6γ(γ∗(B∼))2(max(ε0, 1/ε0))
p−1
∥

∥(B∼)−1
∥

∥

sp
,

where µ ∈ m− 1+N and ν ∈ µ− 1+N. It follows from the inequality (110)
for ν = µ ∈ m− 1 + N that

h
(

(λ(µ))−ν
(

((▽−B∨)−1)Y #
q,rm,µz

)

(ν)
)

≤(111)

6γ(γ∗(B∼))2(max(ε0, 1/ε0))
p−1
∥

∥(B∼)−1
∥

∥

sp
.

For any X ∈ Cq let π(X) denotes the first coordiate of the column X, and
let π be the map of Cq on C, which turns each X ∈ Cq into π(X). In view
of (111),

h
(

(λ(ν))−ν
(

π
(

(▽−B∨)−1)Y #
q,rm,νz

)

(ν)
))

≤(112)

6γ(γ∗(B∼))2(max(ε0, 1/ε0))
p−1
∥

∥(B∼)−1
∥

∥

sp
,

where ν ∈ m−1+N. Let p denotes the norm on (r0,m(wC,q))Em,∞(C), defined
by means the equality p(z) = pm,∞((r0,m(wC,q))

−1z), and let φ be the map of
the space (r0,m(wC,q))Em,∞(C) in Em,∞(C), such that

(φ(z))(ν) = π
((

(▽− B∨)−1)Y #
q,rm,νz

)

(ν)
)

for any z ∈ (r0,m(wC,q))Em,∞(C) and any ν ∈ m − 1 + N. It follows now
from (112) that φ maps (r0,m(wC,q))Em,∞(C) into (r0,m(wC,q))Em,∞(C), is a
bounded linear operator on (r0,m(wC,q))Em,∞(C), and

p∼(φ) ≤ 6γ(γ∗(B∼))2(max(ε0, 1/ε0))
p−1
∥

∥(B∼)−1
∥

∥

sp
,

So, we can take now on the role of the mentioned in the section 2 the splitting
homomorphism ξm the restriction of the map φ on the subspace Ker(ψ) of
the space (r0,m(wC,q))Em,∞(C), where ψ is a homomorpism in (46). �
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