ON THE DIFFERENCE EQUATION OF THE POINCARÉ TYPE (Part 2)

L.A. Gutnik

Dedicated to the memory of Professor A.O. Gelfond.

Table of contents

§0. Foreword.
$\S 1$. Begin of the proof of Theorem 6.
§2. The general plan of the construction of the spaces V_{m}^{\vee} and V_{m}^{\wedge}.
$\S 3$. On some linear normed spaces of sequenses of elements of a linear normed space.
$\S 4$. End of the proof of Theorem 6.

§0. Foreword.

Here I begin the presentation of the proof of Theorem 4, which was formulated in the Part 1 ([33]) and proved in [15]; this theorem plays important role in my work ([18] - [36]). With this aim I prove here the following auxiliary Theorem 6 , which is proved in [14] as Theorem 1.

Theorem 6. Let us consider the following difference equation:

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k}(\nu) y(\nu+k)=0 \tag{1}
\end{equation*}
$$

with $n \in \mathbb{N}, a_{k}(\nu) \in \mathbb{C}$ for $k=0, \ldots, n$ and $\nu \in \mathbb{N}-1$. Let

$$
\begin{equation*}
a_{k}^{\sim} \in \mathbb{C}, a_{k}(\nu) \in \mathbb{C}, a_{n}(\nu)=1, a_{k}(\nu)-a_{k}^{\sim}=O(1 /(\nu+1)), \tag{2}
\end{equation*}
$$

where $k=0, \ldots, n$ and $\nu \in \mathbb{N}-1$. Let further

$$
\begin{equation*}
q \in[1, n] \cap \mathbb{Z}, p=n-q, a_{q}^{\sim} \neq 0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
T_{1}(z)=\sum_{k=0}^{p} a_{q+k}^{\sim} z^{k} \tag{4}
\end{equation*}
$$

and suppose that the characteristic polynomial

$$
\begin{equation*}
T(z)=\sum_{k=0}^{n} a_{k}^{\sim} z^{k} \tag{5}
\end{equation*}
$$

of the equation (1) satisfies the following equality:

$$
\begin{equation*}
T(z)=z^{q} T_{1}(z) \tag{6}
\end{equation*}
$$

For $m \in \mathbb{N}-1$, let V_{m} denote the \mathbb{C}-linear space of solutions $y=y(\nu)$ of the equation

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k}(\nu) y(\nu+k)=0 \tag{7}
\end{equation*}
$$

where $\nu \in m-1+\mathbb{N}$, related to equation (1). Then there exist $C>0$ and $m \in \mathbb{N}$ such that V_{m} splits into direct sum $V_{m}^{\wedge} \oplus V_{m}^{\vee}$ of two its subspaces V_{m}^{\wedge} and V_{m}^{\vee}, which have the following propeties:
a)

$$
\begin{equation*}
\left.V_{m}^{\wedge}=\left\{y \in V_{m}: y(\nu)=O(1)(C / \nu)^{\nu / q}\right)\right\} \tag{8}
\end{equation*}
$$

b) if $q=n$, then

$$
\begin{equation*}
V_{m}^{\vee}=\{0\} ; \tag{9}
\end{equation*}
$$

c) if $q<n$, then V_{m}^{\vee} coincides with the space of solutions of a difference equation of Poincaré type

$$
\begin{equation*}
\sum_{k=0}^{p} b_{k}(\nu) y(\nu+k)=0 \tag{10}
\end{equation*}
$$

where $p=n-q, b_{k}(\nu) \in \mathbb{C}$ for $k=0, \ldots, p$ and $\nu \in m-1+\mathbb{N}$,

$$
\begin{equation*}
b_{0}(\nu) \neq 0, b_{p}(\nu)=1 \tag{11}
\end{equation*}
$$

for $\nu \in m-1+\mathbb{N}$,

$$
\begin{equation*}
b_{k}(\nu)-a_{q+k}^{\sim}=O(1 / \nu) \tag{12}
\end{equation*}
$$

where $k=0, \ldots, p$ and $\nu \in m-1+\mathbb{N}$.
Acknowledgment.I express my deepest thanks
to Professor B.Z.Moroz, to Professor I.I. Piatetski-Shapiro, to Professor A.G.Aleksandrov,
to Professor P.Bundshuh
and to Professor S.G.Gindikin for the support of my work.

§1. Begin of the proof of Theorem 6.

Lemma 1. Let $C_{0} \geq 1, m \in \mathbb{N}-1, m_{0}=\left[n C_{0}\right]+m$ and for the coefficients of the equation (7) the following inequality holds:

$$
\begin{equation*}
\left|a_{k}(\nu)\right| \leq \frac{C_{0}}{\nu+1} \tag{13}
\end{equation*}
$$

where $k=0, \ldots, n-1$ and $\nu \in m-1+\mathbb{N}$. Let further $C>e n C_{0}$. Then for any solution $y(\nu)$ of the equation (7) the following inequality holds:

$$
\begin{equation*}
y(\nu)=O(1)(C / \nu)^{\nu / n} \tag{14}
\end{equation*}
$$

where $\nu \in m-1+\mathbb{N}$.
Proof. If for some $\nu_{0} \in m_{0}-1+\mathbb{N}$ and all the $k=0, \ldots, n-1$ the following inequality holds,

$$
\left|y\left(\nu_{0}+k\right)\right| \leq \gamma
$$

then the inequality $\nu_{0}>n C_{0}$ implies that the inequality $|y(\nu)| \leq \gamma$ will be fulfilled for all the $\nu \in \nu_{0}-1+\mathbb{N}$. Therefore, if

$$
\left|y\left(m_{0}+k\right)\right| \leq \gamma_{0},
$$

where $k=0, \ldots, n-1$ then, in view of (13),

$$
|y(\nu)| \leq \gamma_{0}
$$

for $\nu \in m_{0}-1+\mathbb{N}$,

$$
|y(\nu)| \leq \gamma_{0} C_{0} n / m_{0}
$$

for $\nu \in m_{0}-1+n+\mathbb{N}$,

$$
|y(\nu)| \leq \gamma_{0}\left(C_{0} n\right)^{2} /\left(m_{0}\left(m_{0}+n\right)\right)
$$

for $\nu \in m_{0}-1+2 n+\mathbb{N}$,

$$
\begin{gathered}
|y(\nu)| \leq \gamma_{0}\left(C_{0}\right)^{\kappa} /\left(m_{0} / n\right)_{\kappa}= \\
\gamma_{0}\left(C_{0}\right)^{\kappa} \frac{\Gamma\left(m_{0} / n\right)}{\Gamma\left(m_{0} / n+\kappa\right)}
\end{gathered}
$$

for $\nu \in m_{0}-1+n \kappa+\mathbb{N}$. But $\kappa=\nu / n+O(1)$; therefore the equality (14) follows from the Stirling's formula.

Together with Lemma 1 we have proved the Theorem 6 for the case $q=n$. The following result was proved in [33]

Theorem 5. Let the functin $\xi(x)$ is defined on $[0,+\infty)$, let $\xi(x)$ decreases together with increasing of the variable x in $[0,+\infty)$, let $\lim _{x \rightarrow \infty}(\xi(x))=0$ and let $\xi(x)>0$ for $x \in[0,+\infty)$. Let

$$
\begin{equation*}
\xi(x / 2)=O(\xi(x)) \tag{15}
\end{equation*}
$$

when $x \rightarrow \infty$,

$$
\begin{equation*}
\lim _{x \rightarrow 0}(\log (\xi(x))) / x=0 \tag{16}
\end{equation*}
$$

Let $a_{k}(\nu)-a_{k}^{\sim}=O(\xi(\nu)), k=0, \ldots, n$, when $\nu \rightarrow \infty$. Let further the characteristical polynomial (5) of the equation (1) may be represented in the form

$$
\begin{equation*}
T(z)=T_{1}(z) T_{2}(z) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{1}(z)=\sum_{\alpha=0}^{p} b_{\alpha}^{\sim} z^{\alpha}, T_{2}(z)=\sum_{\beta=0}^{q} u_{\beta}^{\sim} z^{\beta}, b_{p}^{\sim}=u_{q}^{\sim}=a_{n}^{\sim}=1 \tag{18}
\end{equation*}
$$

and absolute value of each root of $T_{1}(z)$ is greater than the absolute value of each root of $T_{2}(z)$.

Then there exist $m \in \mathbb{N}$,

$$
b_{\alpha}(\nu) \in \mathbb{C}, \alpha=0, \ldots, p, \nu \in \mathbb{N}+m-1
$$

and

$$
u_{\beta}(\nu) \in \mathbb{C}, \beta=0, \ldots, q, \nu \in \mathbb{N}+m-1
$$

such that

$$
\begin{gather*}
b_{\alpha}(\nu)-b_{\alpha}^{\sim}=O(\xi(\nu)), \alpha=0, \ldots, p, b_{p}(\nu)=1, b_{0}(\nu) \neq 0 \tag{19}\\
u_{\beta}(\nu)-u_{\beta}^{\sim}=O(\xi(\nu)), \beta=0, \ldots, q, u_{q}(\nu)=1 \tag{20}
\end{gather*}
$$

where $\nu \in \mathbb{N}+m-1$, and, moreover, the connected with the equation (1) the equation (7) is equivqlent to the equation

$$
\begin{equation*}
\sum_{\alpha=0}^{p} b_{\alpha}(\nu) y(\nu+\alpha)=r(\nu) \tag{21}
\end{equation*}
$$

where $\nu \in \mathbb{N}-1+m$ and $r(\nu)$ satisfies to the equation

$$
\begin{equation*}
\sum_{\beta=0}^{q} u_{\beta}(\nu) r(\nu+\beta)=0 \tag{22}
\end{equation*}
$$

with $\nu \in \mathbb{N}-1+m$.
Lemma 2. Let the conditions of the Theorem 6 are fulfilled and $q<n$. Then there exist $m \in \mathbb{N}$,

$$
b_{\alpha}(\nu) \in \mathbb{C}, \alpha=0, \ldots, p, \nu \in \mathbb{N}+m-1,
$$

and

$$
u_{\beta}(\nu) \in \mathbb{C}, \beta=0, \ldots, q, \nu \in \mathbb{N}+m-1
$$

such that

$$
\begin{gather*}
b_{\alpha}(\nu)-a_{q+\alpha}^{\sim}=O(1 / \nu), \alpha=0, \ldots, p, b_{p}(\nu)=1, b_{0}(\nu) \neq 0, \tag{23}\\
u_{\beta}(\nu)=O(1 / \nu), \beta=0, \ldots, q, u_{q}(\nu)=1, \tag{24}
\end{gather*}
$$

where $\nu \in \mathbb{N}+m-1$, and, moreover, the connected with the equation (1) the equation (7) is equivalent to the equation (21) where $\nu \in \mathbb{N}-1+m$ and $r(\nu)$ satisfies to the equation (22) with $\nu \in \mathbb{N}-1+m$.

Proof The Lemma is direct corollary of the Theorem 5 . with $T_{2}(z)=z^{q}$ and $\xi(x)=1 /(x+1)$.

§2. The general plan of the construction of the spaces V_{m}^{\vee} and V_{m}^{\wedge}.

First we take on the role of m in the Theorem 6 the m of the Lemma 2. Let R_{m} be the linear over \mathbb{C} space of all the solutions of the equations (22). According the Lemma 1 , there exists $C>0$, such that

$$
\begin{equation*}
r(\nu)=O(1)(C / \nu)^{\nu / n} \tag{25}
\end{equation*}
$$

for $r(\nu) \in R_{m}$ and $\nu \in m-1+\mathbb{N}$. The connected with the equation (21) map

$$
\begin{equation*}
y(\nu) \rightarrow r(\nu)=\sum_{\alpha=0}^{p} b_{\alpha}(\nu) y(\nu+\alpha) \tag{26}
\end{equation*}
$$

is a \mathbb{C}-linear map of the space V_{m} onto R_{m} and the null-space V_{m}^{\vee} of this map is a \mathbb{C}-linear subspace of V_{m}, which coincides with the space of solutions of the equation (10). The Theorem 6 will be proved, if after replacement of m in the Lemma 2 by the bigger $m \in \mathbb{N}$ we will constructed a splitting monomorphism ξ_{m} of the space R_{m} into V_{m} with the property:

$$
\begin{equation*}
y(\nu)=O(1)(C / \nu)^{\nu / n} \tag{27}
\end{equation*}
$$

for $y(\nu) \in V_{m}^{\wedge}=\xi_{m}\left(R_{m}\right)$ and $\nu \in m-1+\mathbb{N}$.

§3. On some linear normed spaces of sequenses of elements of a linear normed space.

Let K be one of the fields \mathbb{R} or \mathbb{C} and L be a linear normed space over K with norm $p(x)$. In the case $L=K^{n}$ we fix as $p(x)$, wehre $x \in K^{n}$, the maximum of the absolute values of coordinates of x in the standard basis, i.e.

$$
\begin{equation*}
p(x)=h(x)=\sup \left(\left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}\right), \tag{28}
\end{equation*}
$$

where

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

If L is a Banach space with the norm p, then K-algebra of all the linear continuous operators acting in L will be denoted by $\mathfrak{M}^{\wedge}(L)$, and the norm on $\mathfrak{M}^{\wedge}(L)$, associated with the norm p will be denoted by p^{\sim}. So,

$$
p^{\sim}(A)=\sup (\{p(A X): X \in L, p(X) \leq 1\})
$$

It is well known that the associciated with h norm on $\operatorname{Mat}_{n}(\mathbb{C})$ is defined as follows

$$
\begin{equation*}
h^{\sim}(A)=\sup \left(\left\{\sum_{k=1}^{n}\left|a_{i, j}\right|: i=1, \ldots, n\right\}\right) \tag{29}
\end{equation*}
$$

where $A=\left(a_{i, k}\right) \in \operatorname{Mat}_{n}(\mathbb{C})$. The norms h and h^{\sim} coincide respectiely with with the norms q_{∞} and q_{∞}^{\sim} considered in section 6 of the paper [33].

Let $m \in \mathbb{N}$, and let $E_{m}(L)$ be the set $L^{m-1+\mathbb{N}}$ of all the maps of the set $m-1+\mathbb{N}$ into L. The set $E_{m}(L)$ is a linear space over K, where the muliplication of the elements by the number from K and addition of the elements is defined coordinate-wise. The subspace of $E_{m}(L)$ composed by all the constant maps is isomorphic to L, and we identify this subspace with L.

We denote by $\mathfrak{M}^{\vee}(\mathfrak{L})$ the space of all the K-linear maps of the space L in L. If $\phi \in \mathfrak{M}^{\vee}(\mathfrak{L})$ and $\psi \in \mathfrak{M}^{\vee}(\mathfrak{L})$, then $\phi \circ \psi$ denotes the composition of operators ϕ and ψ, so that $(\phi \circ \psi) f=\phi((\psi f))$ for each $f \in L$. For $x \in E_{m}(L)$ let

$$
p_{m, \infty}(x)=\sup (\{p(x(\nu)): \nu \in m-1+\mathbb{N}\} .
$$

Let further

$$
\begin{gathered}
E_{m, \infty}(L)=\left\{x \in E_{m}(L): p_{m, \infty}(x) \neq \infty\right\} \\
E_{m, 0}(L)=\left\{x \in E_{m}(L): \lim _{\nu \rightarrow \infty} p(x(\nu))=0\right\}, \\
E_{m}^{\rightarrow}(L)=L+E_{m, 0}(L)
\end{gathered}
$$

Clearly, the space $E_{m}^{\rightarrow}(L)$ consists of all the $y \in E_{m}(L)$, for which there exists

$$
\lim (y)=\lim _{\nu \rightarrow \infty}(y(\nu))
$$

Let $m \in \mathbb{N}-1, \mu \in m-1+\mathbb{N}$ and ler $r_{m, \mu}$ be the operator of restriction of the elements $y \in E_{m}(L)$ on te set $m-1+\mathbb{N}$. Clearly, the map $r_{m, \mu}$ is an epimorphism of the space $E_{m}(L)$ onto the space $E_{\mu}(L)$. If L is a K-algebra, then $E_{m}(L)$ is a K-algebra, where the muliplication and addition of the elements is defined coordinate-wise; so, in this case $r_{m, \mu}$ is an epimorphism of K-algebra $E_{m}(L)$ onto K-algebra $E_{\mu}(L)$.

If L be an algebra with unity, let L^{*} denotes the group of all its invertible elements. Then

$$
\left(L^{*}\right)^{m-1+\mathbb{N}} \subset L^{m-1+\mathbb{N}}
$$

we denote below $\left(L^{*}\right)^{m-1+\mathbb{N}}$ by $E_{m}\left(L^{*}\right)$. Clearly,

$$
E_{m}\left(L^{*}\right)=\left(E_{m}(L)\right)^{*}
$$

Let $L=\mathbb{C}^{n}, y \in E_{m}(L)$, and let $y_{i}(\nu)$ denotes the i-th coordinate of the element $y(\nu)$, where $i=1, \ldots, n, \nu \in m-1+\mathbb{N}$; then the space $\left(E_{m}(\mathbb{C})\right)^{n}$ contains an element $\omega(y)$, which has $y_{i}(\nu)$ as the value of its i-th coordinate at the point $\nu \in m-1+\mathbb{N}$. So we obtain the natural isomorphism ω of the algebra $E_{m}\left(\mathbb{C}^{n}\right)$ onto $\left(E_{m}(\mathbb{C})\right)^{n}$. This map ω induces an isomorphism of the algebra $E_{m}\left(\operatorname{Mat}_{n}(\mathbb{C})\right)$ onto $\operatorname{Mat}_{n}\left(E_{m}(\mathbb{C})\right)$.

Clearly, if L is a K-algebra, then each $a \in E_{m}(L)$ determines an acting on $E_{m}(L) K$-linear operator $\mu_{a} \in \mathfrak{M}^{\vee}\left(\mathfrak{E}_{\mathfrak{m}}(\mathfrak{L})\right)$, which turns any $y \in E_{m}(L)$ into $\mu_{a} y=a y$. On $E_{m}(L)$ acts also K-linear operator $\nabla \mathfrak{M}^{\vee}(\mathfrak{L})$, which turns any $y \in E_{m}(L)$ in the $\nabla y \in E_{m}(L)$ such that

$$
(\nabla y)(\nu)=y(\nu+1)
$$

for any $\nu \in m-1+\mathbb{N}$. Let us consider the subring $\mathfrak{A}_{m}(L)$ of the ring $\mathfrak{M}^{\vee}(\mathfrak{L})$ generated by the operator ∇ and by all the operators μ_{a}, where $a \in E_{m}(L)$. Clearly,

$$
\begin{equation*}
\mu_{a} \circ \nabla^{r} \circ \mu_{b} \circ \nabla^{s}=\mu_{a \nabla^{r} b_{k}} \circ \nabla^{r+s} \tag{30}
\end{equation*}
$$

where $\{r, s\} \subset \mathbb{N}-1,\{a, b\} \subset E_{m}(L)$. For each $\alpha \in \mathfrak{A}_{m}(L) \backslash\left\{0_{\mathfrak{A}_{m}(L)}\right\}$ are uniquelly defined the number $\operatorname{deg}(\alpha)$ and representation of α in the form

$$
\begin{equation*}
\alpha=\sum_{k=0}^{\operatorname{deg}(\alpha)} \mu_{a_{k}} \circ \nabla^{k} \tag{31}
\end{equation*}
$$

where $a_{k} \in E_{m}(L)$ for $k=0, \ldots, \operatorname{deg}(\alpha)$ and $a_{\operatorname{deg}(\alpha)} \neq 0_{E_{m}(L)}$. Clearly, (31) may be rewritn in the form

$$
\begin{equation*}
\alpha=\sum_{k=0}^{\infty} \mu_{a_{k}} \circ \nabla^{k} \tag{32}
\end{equation*}
$$

where $a_{k}=0_{E_{m}(L)}$ for $k \in \operatorname{deg}(\alpha)+\mathbb{N}$. It follows from (30) that $\mathfrak{A}_{m}(L)$ is a graduated algebra, and if

$$
\begin{align*}
\beta & =\sum_{r=0}^{p} \mu_{b_{r}} \circ \nabla^{r} \in \mathfrak{A}_{m}(L), \tag{33}\\
\gamma & =\sum_{s=0}^{q} \mu_{c_{s}} \circ \nabla^{s} \in \mathfrak{A}_{m}(L), \tag{34}
\end{align*}
$$

then

$$
\begin{equation*}
\beta \gamma=\sum_{k=0}^{p+q} \sum_{\substack{\leq r \leq p \\ 0 \leq s \leq q \\ r+s=k}} \mu_{b_{r} \nabla^{r} c_{s}} \circ \nabla^{r+s} ; \tag{35}
\end{equation*}
$$

clearly, $\operatorname{deg}(\beta \gamma)=\operatorname{deg}(\beta)+\operatorname{deg}(\gamma)$, if $b_{p}(\nu)^{r} c_{q}(\nu+p)$ is different from 0 at least for one $\nu \in m-1+\mathbb{N}$. Let $\mathfrak{A}_{m}(L)$ be the ring generated by the operator ∇ and by all the operators μ_{a}, where $a \in E_{m}^{\vec{~}}(L)$. Since $\nabla a \in E_{m}^{\vec{m}}(L)$, if $a \in E_{m}^{\vec{~}}(L)$, it follows, in view of (30), that $\mathfrak{A}_{m}(L)$ is a graduated subalgebra $\mathfrak{A}_{m}(L)$ of the algebra $\mathfrak{A}_{m}(L)$, each $\alpha \in \mathfrak{A}_{m}(L) \backslash\left\{0_{\mathfrak{A}_{m}(L)}\right\}$ admits a representation in the form (31) with $a_{k} \in E_{m}^{\rightarrow}(L)$ for $k=0, \ldots, \operatorname{deg}(\alpha)$ and $a_{\operatorname{deg}(\alpha)} \neq 0_{E_{m}(L)}$; to each such α corresponds the limit operator

$$
\begin{equation*}
\lim (\alpha)=\sum_{k=0}^{\operatorname{deg}(\alpha)} \mu_{\lim \left(a_{k}\right)} \circ \nabla^{k} \tag{36}
\end{equation*}
$$

and polynomial

$$
\begin{equation*}
P(\alpha, z)=\sum_{k=0}^{\operatorname{deg}(\alpha)} \lim \left(a_{k}\right) z^{k} \in L[z] . \tag{37}
\end{equation*}
$$

If $\alpha=0_{\mathfrak{A}_{m}(L)}$, then we put

$$
\lim (\alpha)=0_{\mathfrak{A}_{m}(L)}, P(\alpha, z)=0_{L[z]}
$$

The equality (30) shows that the map

$$
\begin{equation*}
\alpha \rightarrow P(\alpha, z) \tag{38}
\end{equation*}
$$

is an epimorphism of the algebra $\mathfrak{A}_{m}(L)$ on on the algebra $L[z]$. We note that, if $\alpha \in \mathfrak{A}_{m}(\mathbb{C})$, then $\operatorname{Ker}(\alpha)$ coincides with the linear space of all the solutions of the equation (7); moreover if $\alpha \in \mathfrak{A}_{m}(\mathbb{C})$, then the corresponding
to α equation (7) is an equation of the Poincar'e type and $P(\alpha, z)$ is its characterictical polynomial.

Let L be an algebra with unity. The set of all the $\alpha \in \mathfrak{A}_{m}(L) \backslash\left\{0_{\mathfrak{A}_{m}(L)}\right\}$, which have the representation (31) with $a_{\operatorname{deg}(\alpha)} \in E_{m}\left(L^{*}\right)$ will be denoted further by $\mathfrak{A}_{m}(L)^{\circ}$. The set of all the $\alpha \in \mathfrak{A}_{m}(L) \backslash\left\{0_{\mathfrak{A}_{m}(L)}\right\}$, which have the representation (31) with $a_{\operatorname{deg}(\alpha)}=1_{E_{m}(L)}$ will be denoted further by $\mathfrak{A}_{m}(L)^{\vee}$. The set of all the $\alpha \in \mathfrak{A}_{m}(L) \backslash\left\{0_{\mathfrak{A}_{m}(L)}\right\}$, which have the representation (31) with $a_{0} \in E_{m}\left(L^{*}\right)$, will be denoted further by $\mathfrak{A}_{m}(L)^{\wedge}$. Let further

$$
\begin{gathered}
\mathfrak{A}_{m}(L)^{\circ \wedge}=\mathfrak{A}_{m}(L)^{\circ} \bigcap \mathfrak{A}_{m}(L)^{\wedge}, \mathfrak{A}_{m}(L)^{\vee \wedge}=\mathfrak{A}_{m}(L)^{\vee} \bigcap \mathfrak{A}_{m}(L)^{\wedge}, \\
\mathfrak{A}_{m}(L)^{\circ \rightarrow}=\mathfrak{A}_{m}(L)^{\circ} \bigcap \mathfrak{A}_{m}(L)^{\rightarrow}, \mathfrak{A}_{m}(L)^{\vee} \rightarrow=\mathfrak{A}_{m}(L)^{\vee} \bigcap \mathfrak{A}_{m}(L)^{\rightarrow}, \\
\mathfrak{A}_{m}(L)^{\circ \wedge \rightarrow}=\mathfrak{A}_{m}(L)^{\circ \wedge} \bigcap \mathfrak{A}_{m}(L)^{\rightarrow}, \mathfrak{A}_{m}(L)^{\vee \wedge \rightarrow}=\mathfrak{A}_{m}(L)^{\vee \wedge} \bigcap \mathfrak{A}_{m}(L)^{\rightarrow},
\end{gathered}
$$

Clearly, $\mathfrak{A}_{m}(L)^{\circ}$. consists of epimorphisms of the space $E_{m}(L)$ onto $E_{m}(L)$. The above map $r_{m, \mu}$ induces epimorphism $r_{m, \mu}^{\triangleright}$ of the algebra $\mathfrak{A}_{m}(L)$ on the algebra $\mathfrak{A}_{\mu}(L)$ defined as follows:
if $\alpha \in \mathfrak{A}_{m}(L)$,

$$
\begin{equation*}
\alpha=\sum_{k=0}^{n} \mu_{a_{k}} \circ \nabla^{k}, \tag{39}
\end{equation*}
$$

then

$$
\begin{equation*}
r_{m, \mu}^{\triangleright}(\alpha)=\sum_{k=0}^{n} \mu_{r_{m, \mu}\left(a_{k}\right)} \circ \nabla^{k} \tag{40}
\end{equation*}
$$

where the operator ∇ in (39) acts in $E_{m}(L)$ and the operator ∇ in (40) acts in $E_{\mu}(L)$. Clearly, $r_{m, \mu}^{\triangleright}$ surjectively maps
$\mathfrak{A}_{m}(L)^{\circ}$ onto $\mathfrak{A}_{\mu}(L)^{\circ}, \mathfrak{A}_{m}(L)^{\vee}$ onto $\mathfrak{A}_{\mu}(L)^{\vee}$,
$\mathfrak{A}_{m}(L)^{\wedge}$ onto $\mathfrak{A}_{m} u(L)^{\wedge}, \mathfrak{A}_{m}(L)^{\circ \wedge}$ onto $\mathfrak{A}_{\mu}(L)^{\circ \wedge}$,
$\mathfrak{A}_{m}(L)^{\vee \wedge}$ onto $\mathfrak{A}_{\mu}(L)^{\vee \wedge}, \mathfrak{A}_{m}(L)^{\circ \rightarrow}$ onto $\mathfrak{A}_{\mu}(L)^{\circ \rightarrow}$,
$\mathfrak{A}_{m}(L)^{\vee \rightarrow}$ onto $\mathfrak{A}_{\mu}(L)^{\vee \rightarrow}, \mathfrak{A}_{m}(L)^{\circ \wedge \rightarrow}$ onto $\mathfrak{A}_{\mu}(L)^{\circ \wedge \rightarrow}$,
$\mathfrak{A}_{m}(L)^{\vee \wedge \rightarrow}$ onto $\mathfrak{A}_{\mu}(L)^{\vee \wedge \rightarrow}$. Since the diagram

is commuative and therefore

$$
\begin{equation*}
r_{m, \mu} \alpha=r_{m, \mu}^{\triangleright}(\alpha) r_{m, \mu} \tag{41}
\end{equation*}
$$

it follows that $r_{m, \mu}$ surjectively maps $\operatorname{Ker}\left(r_{m, \mu} \alpha\right)$ onto

$$
\operatorname{Ker}\left(r_{m, \mu}^{\triangleright}(\alpha)\right) \supset r_{m, \mu} \operatorname{Ker}(\alpha)
$$

Lemma 3. If $\mu \in m-1+\mathbb{N}$ and $\alpha \in \mathfrak{A}_{m}(L)^{\wedge}$, then the operator α bijectively maps $\operatorname{Ker}\left(r_{m, \mu}\right)$ onto $\operatorname{Ker}\left(r_{m, \mu}\right)$.

Proof. For $m=\mu$ we have equality $\operatorname{Ker}\left(r_{m, \mu}\right)=0_{E_{m}(L)}$ and assertion of the Lemma is obvious. Let $\mu>m$. Clearly,

$$
\operatorname{Ker}\left(r_{m, \mu}\right)=\left\{x \in E_{m}(L): x(\nu)=0_{L}, \nu \in \mu-\mathbb{N}-1\right\} .
$$

Let $\alpha \in \mathfrak{A}_{m}(L)^{\wedge}$ has the form (39) with $a_{0}(\nu) \in L^{*}$. If $x \in \operatorname{Ker}\left(r_{m, \mu}\right)$, and

$$
\begin{equation*}
y=\alpha(x) \tag{42}
\end{equation*}
$$

then

$$
\begin{equation*}
y(\nu)=\sum_{k=0}^{n} a_{k}(\nu) x(\nu+k) \tag{43}
\end{equation*}
$$

and therefore $y(\nu)=0_{L}$ for $\nu \in \mu-1+\mathbb{N}$, if $x(\nu)=0_{L}$ for $\nu \in \mu-1+\mathbb{N}$. On the other hand for given $y \in \operatorname{Ker}\left(r_{m, \mu}\right)$ the coordinates $x(\nu)$ in (42) must be equal to 0_{L}, if $\nu \in \mu-1+\mathbb{N}$, and the equalities

$$
\begin{equation*}
\left.x(\mu-j)=\left(a_{0}\right)(\mu-j)\right)^{-1}\left(y(\mu-j)-\sum_{k=1}^{n} a_{k}(\mu-j) x(\mu-j+k)\right) \tag{44}
\end{equation*}
$$

determined successesvely and in the unique way the coordinatess $x(\mu-j)$ for $j \in[1, \mu-m] \bigcap \mathbb{Z}$.

Corollary 1. Let $\mu \in m-1+\mathbb{N}$ and let $\alpha \in \mathfrak{A}_{m}(L)^{\wedge}$. If

$$
\begin{gathered}
g \in E_{m}(L), x \in E_{\mu}(L), m \leq \mu, \alpha \in \mathfrak{A}_{m}(L)^{\wedge}, \\
r_{m, \mu}(g)=\left(r_{m, \mu}^{\triangleright}(\alpha)\right)(x),
\end{gathered}
$$

then there exists a unique $y \in E_{m}(L)$ such that

$$
\alpha(y)=g, r_{m, \mu}(y)=x
$$

Proof. Since $r_{m, \mu}$ is an epimorphism of $E_{m}(L)$ onto $E_{\mu}(L)$, it follows that there exists $z \in E_{m}(L)$ such that $r_{m, \mu}(z)=x$ In view of (41),

$$
r_{m, \mu}(\alpha(z))=\left(r_{m, \mu}^{\triangleright}(\alpha)\right)\left(r_{m, \mu}(z)\right)=\left(r_{m, \mu}^{\triangleright}(\alpha)\right)(x)=r_{m, \mu}(g) .
$$

Then $g-\alpha(z) \in \operatorname{Ker}\left(r_{m, \mu}\right)$. According to the Lemma 3, $\operatorname{Ker}\left(r_{m, \mu}\right)$ contains an element u such that $g-\alpha(z)=\alpha(u)$. Let $y=z+u$. Then

$$
\alpha(y)=g, r_{m, \mu}(y)=r_{m, \mu}(z)=x .
$$

If $\alpha(y)=r_{m, \mu}(y)=0_{E_{m}(L)}$, then $y \in \operatorname{Ker}\left(r_{m, \mu}\right)$, and the Lemma 3 implies the equality $y=0_{E_{m}(L)}$.

Corollary 2. Let $\mu \in m-1+\mathbb{N}$ and $\alpha \in \mathfrak{A}_{m}(L)^{\wedge}$. Then and $r_{m, \mu}$ bijectively maps $\operatorname{Ker}(\alpha)$ onto $\operatorname{Ker}\left(r_{m, \mu}^{\triangleright}(\alpha)\right)=r_{m, \mu}(\operatorname{Ker}(\alpha))$.

Proof. Let $x \in \operatorname{Ker}\left(r_{m, \mu}^{\triangleright}(\alpha)\right)$. Clearly, the conditions of the Corollary 1 are fulfilled for $g=0_{E_{m}(L)}$ and x. Therefore there exist a unique $y \in \operatorname{Ker}(\alpha)$ such that $r_{m, \mu}(y)=x$.

If for the equation (1) are fulfilled the conditions (2) then

$$
\begin{equation*}
a_{k}=\left(a_{k}(1), a_{k}(2), \ldots, a_{k}(\nu), \ldots\right) \in E_{1}^{\rightarrow}(\mathbb{C}) \tag{45}
\end{equation*}
$$

where $k=0, \ldots, n$. Moreover $a_{n}=1_{E_{1}(\mathbb{C})}$, for α in (39) $\operatorname{Ker}(\alpha)$ coincides with the linear over \mathbb{C} space of all the solutions of the equation (1), polynomial (5) is equal to $P(\alpha, z)=P\left(r_{0, m}^{\triangleright}(\alpha), z\right)$, where $m \in \mathbb{N}$, and $\operatorname{Ker}\left(r_{1, m}^{\triangleright}(\alpha)\right)$ coincides with linear over \mathbb{C} space V_{m} of all the solutions of the equation (7).

Let \mathfrak{v} be the element in $E_{0,0}$, for which

$$
\mathfrak{v}(\nu)=\frac{1}{\nu+1},
$$

where $\nu \in \mathbb{N}-1$. Clearly, $r_{0, m}(\mathfrak{v}) E_{m, \infty}(\mathbb{C}) \subset E_{m, 0}(\mathbb{C})$ for any $m \in \mathbb{N}-1$. Let

$$
E_{m, 0}^{\succ}(L)=r_{0, m}(\mathfrak{v}) E_{m, \infty}(L), E_{m}^{\succ}(L)=L+E_{m, 0}^{\succ}(L)
$$

Let us consider the ring $\mathfrak{A}_{m}^{\succ}(L)$ generated by the operator ∇ and by all the operators μ_{a}, where $a \in E_{m}(L)^{\succ}$ and let

$$
\mathfrak{I}_{m}^{\succ}(L)=\left\{\alpha \in \mathfrak{A}_{m}^{\succ}(L): P(\alpha, z)=0\right\} .
$$

The Lemma 2 may be reformulated now as follows:
Lemma 4. Let $\alpha \in \mathfrak{A}_{0}^{\succ}(\mathbb{C}) \bigcap \mathfrak{A}_{0}^{\vee}(\mathbb{C})$, and $P(\alpha, z)$ coincides with the polynomial $T(z)$ in (5) and (6).

Then there exist $m \in \mathbb{N}$ and representation of the oprator $r_{0, m}^{\triangleright}(\alpha)$ in the form

$$
\begin{equation*}
r_{0, m}^{\triangleright}(\alpha)=\psi \beta \tag{46}
\end{equation*}
$$

such that

$$
\begin{gather*}
\psi \in \mathfrak{A}_{m}^{\succ}(\mathbb{C}) \bigcap \mathfrak{A}_{m}^{\vee}(\mathbb{C}), \psi-\nabla^{q} \in \mathfrak{I}_{m}^{\succ}(\mathbb{C}), \tag{47}\\
\beta \in \mathfrak{A}_{m}^{\succ}(\mathbb{C}) \bigcap \mathfrak{A}_{m}^{\vee \wedge}(\mathbb{C}), \operatorname{deg}(\beta)=p=n-q, \tag{48}
\end{gather*}
$$

and $P(\beta, z)$ coincides with the polynomial $T_{1}(z)$ in (6).

Let $C>0, n \mathbb{N}$. Let $w_{C, n}$ denotes the element in $E_{0,0}(\mathbb{C})$, for which

$$
\begin{equation*}
w_{C, n}(\nu)=\left(\frac{C}{\nu+1}\right)^{\nu / n} \tag{49}
\end{equation*}
$$

where $\nu \in \mathbb{N}-1$. The Lemma 1 admits the following reformulation:
Lemma 5. Let $m \in \mathbb{N}$ and α from (31) belongs to $\mathfrak{A}_{m}^{\vee}(\mathbb{C})$ and

$$
\operatorname{deg}(\alpha)=n, a_{k} \in r_{m}(\mathfrak{v}) E_{m, \infty},
$$

where $k=0, \ldots, n-1$. Let further

$$
C_{0} \geq 1, q_{\infty}\left(\left(r_{m}(\mathfrak{v})\right)^{-1}\right) a_{n-k} \leq C_{0}
$$

where $k=0, \ldots, n-1$. Let

$$
\begin{equation*}
C>e n C_{0} \tag{50}
\end{equation*}
$$

Then $\operatorname{Ker}(\alpha) \subset r_{0, m}\left(w_{C, n}\right) E_{m, \infty}(\mathbb{C}) \subset E_{m, 0}(\mathbb{C})$.
Each $A \in E_{m}\left(\mathfrak{M}^{\vee}(L)\right)$ defines a linear operator $A^{\vee} \in \mathfrak{M}^{\vee}\left(E_{m}(L)\right)$, such that

$$
\left(A^{\vee} y\right)(\nu)=(A(\nu))(y(\nu))
$$

where $\nu \in m-1+\mathbb{N}, y \in E_{m}(L)$. The operator A^{\vee} is invertible if and only if, when the operator $A(\nu)$ is invertible for any $\nu \in m-1+\mathbb{N}$; in this case the map

$$
\nu \mapsto(A(\nu))^{-1},
$$

where $\nu \in m-1+\mathbb{N}$, will be denoted by A^{-1}. So,

$$
A^{-1}(\nu)=\left(A^{-1}\right)(\nu)
$$

where $\nu \in m-1+\mathbb{N}$. Clearly, $\left(A^{\vee}\right)^{-1}=\left(A^{-1}\right)^{\vee}$. For $\lambda>0$ let $T_{m, \lambda}(L)$ denotes the element of $E_{m}\left(\mathfrak{M}^{\vee}(L)\right)$, for which $\left(\left(T_{m, \lambda}(L)(\nu)\right) y\right)(\nu)=\lambda^{\nu} y(\nu)$, where $\nu \in m-1+\mathbb{N}$. Clearly,

$$
\begin{gather*}
\left(T_{m, \lambda}\left(\mathfrak{M}^{\vee}(L)\right) A\right)^{\vee}=\left(T_{m, \lambda}(L)\right)^{\vee} A^{\vee}=A^{\vee}\left(T_{m, \lambda}(L)\right)^{\vee}, \tag{51}\\
\left.\left.\left.\left.T_{m, 1}(L)\right)^{\vee}=1_{\mathfrak{M}^{\vee}\left(E_{m}(L)\right)}, T_{m, \lambda_{1} \lambda_{2}}(L)\right)^{\vee}=\left(T_{m, \lambda_{1}}(L)\right)^{\vee}\right)\left(T_{m, \lambda_{2}}(L)\right)^{\vee}\right),
\end{gather*}
$$

where $A \in E_{m}\left(\mathfrak{M}^{\vee}(L)\right), \lambda>0, \lambda_{1}>0$ and $\lambda_{2}>0$. Let

$$
E_{m, \lambda}(L)=\left\{y \in E_{m}(L): p_{m, \lambda}(y)=p_{m, \infty}\left(\left(T_{m, \lambda}(L)\right)^{-1} y\right)<+\infty\right\}
$$

Then $\left(E_{m, \lambda}(L), p_{m, \lambda}\right)$ is a Banach space, and

$$
E_{m, 1}(L)=E_{m, \infty}(L), p_{m, 1}=p_{m, \infty}
$$

Clearly, the map $T_{m, \lambda}(L)$ is an isometry of $E_{m, 1}(L)=E_{m, \infty}(L)$ onto $E_{m, \lambda}(L)$, and the map $T_{m, \lambda}(L) \nabla^{m}$ is an isometry of $\left(E_{0,1}(L), p_{0,1}\right)=\left(E_{0, \infty}(L), p_{0, \infty}\right)$ onto $\left(E_{m, \lambda}(L), p_{m, \lambda}\right)$.

Lemma 6. Let $m \in \mathbb{N}-1$ and α from (31) belongs to $\mathfrak{A}_{m}(\mathbb{C})$ Then α is bounded linear operator on the space $E_{m, \lambda}(\mathbb{C})$ and

$$
\begin{equation*}
p_{m, \lambda}^{\sim}(\alpha) \leq \sum_{k=0}^{\operatorname{deg}(\alpha)} p_{m, 1}\left(a_{k}\right) \lambda^{k} \tag{52}
\end{equation*}
$$

Proof. Since $\alpha \in \mathfrak{A}_{m}(\mathbb{C})$, it follows that $a_{k} \in E_{m, 1}(\mathbb{C})$ for $k=0, \ldots, n$ In view of (31), if $y \in E_{m, \lambda}(\mathbb{C})$, then

$$
\begin{gathered}
(\alpha(y))(\nu)=\sum_{k=0}^{\operatorname{deg}(\alpha)} a_{k}(\nu) \lambda^{\nu+k} \lambda^{-\nu-k} y(\nu+k)= \\
\lambda^{\nu} \sum_{k=0}^{\operatorname{deg}(\alpha)} a_{k}(\nu) \lambda^{k} \lambda^{-\nu-k} y(\nu+k)
\end{gathered}
$$

and

$$
\begin{gather*}
\left|\sum_{k=0}^{\operatorname{deg}(\alpha)} a_{k}(\nu) \lambda^{k} \lambda^{-\nu-k} y(\nu+k)\right| \leq \tag{53}\\
p_{m, \lambda}(y) \sum_{k=0}^{\operatorname{deg}(\alpha)} p_{m, 1}\left(a_{k}\right) \lambda^{k} .
\end{gather*}
$$

The inequality (52) follows from (53).
Lemma 7. If $\lambda>0, \theta>0$,

$$
\begin{equation*}
A \in E_{m, \theta / \lambda}(\mathfrak{M}(L)), \tag{54}
\end{equation*}
$$

then A^{\vee} turns $E_{m, \lambda}(L)$ in $E_{m, \theta}(L)$, and

$$
\left(p^{\sim}\right)_{m, \theta / \lambda}(A)=\sup \left(\left\{p_{m, \theta}\left(A^{\vee} y\right): y \in E_{m, \lambda}(L), p_{m, \lambda}(y) \leq 1\right\}\right)
$$

Proof. Let $y \in E_{m, \lambda}(L)$ and $z=\left(T_{m, \lambda}(L)\right)^{-1} y$. Then

$$
z \in E_{m, 1}(L), p_{m, \lambda}(y)=p_{m, 1}(z)
$$

Let $B=\left(T_{m, \theta / \lambda}(\mathfrak{M}(L))\right)^{-1} A$. Then

$$
B \in E_{m, 1}(\mathfrak{M}(L)),\left(p^{\sim}\right)_{m, \theta / \lambda}(A)=\left(p^{\sim}\right)_{m, 1}(B) .
$$

Therefore, in view of (51),

$$
B^{\vee} z \in E_{m, 1}(L), T_{m, \theta}(L)\left(B^{\vee} z\right) \in E_{m, \theta}(L)
$$

$$
\begin{gathered}
\left.A^{\vee} y=A^{\vee} T_{m, \lambda} z=A^{\vee} T_{m, \theta}(L)\right) T_{m, \lambda / \theta}(L) z= \\
\left.T_{m, \theta}(L)\right) A^{\vee} T_{m, \lambda / \theta}(L) z= \\
T_{m, \theta}(L)\left(T_{m, \lambda / \theta}(\mathfrak{M}(L)) A\right)^{\vee} z= \\
\left.T_{m, \theta}(L)\right)\left(\left(T_{m, \theta / \lambda}(\mathfrak{M}(L))\right)^{-1} A\right)^{\vee} z \in E_{m, \theta}(L) .
\end{gathered}
$$

Further we have

$$
\begin{gathered}
\left.\left(p^{\sim}\right)_{m, \theta / \lambda}(A)=\sup \left(\left\{p^{\sim}\left((\theta / \lambda)^{-\nu} A(\nu)\right)\right): \nu \in m-1+\mathbb{N}\right\}\right)= \\
\left.\sup \left(\left\{p\left((\theta / \lambda)^{-\nu} A(\nu) z(\nu)\right)\right): z(\nu) \in L, p(z(\nu)) \leq 1, \nu \in m-1+\mathbb{N}\right\}\right)= \\
\sup \left(\left\{p\left(\left(\theta^{-\nu} A(\nu) y(\nu)\right)\right): y(\nu) \in L, p(y(\nu)) \leq \lambda^{\nu}, \nu \in m-1+\mathbb{N}\right\}\right)= \\
\sup \left(\left\{p\left(\left(\theta^{-\nu}\left(\left(A^{\vee} y\right)(\nu)\right)\right): y(\nu) \in L, \lambda^{-\nu} p(y(\nu)) \leq 1, \nu \in m-1+\mathbb{N}\right\}\right)=\right. \\
\left.\sup \left(\left\{p_{m, \theta}\left(A^{\vee} y\right): y(\nu) \in E_{m, \lambda}(L), p_{m, \lambda}(y)\right) \leq 1\right\}\right)
\end{gathered}
$$

Corollary. If $A \in E_{m, 1}(\mathfrak{M}(L))$, then A^{\vee} turns $E_{m, \lambda}(L)$ in $E_{m, \lambda}(L)$, and

$$
\begin{equation*}
\left(p^{\sim}\right)_{m, 1}(A)= \tag{55}
\end{equation*}
$$

$\left.\sup \left(\left\{p_{m, \lambda}\left(A^{\vee} y\right): y \in E_{m, \lambda}(L), p_{m, \lambda}(y)\right) \leq 1\right\}\right)=\left(p_{m, \lambda}\right)^{\sim}\left(A^{\vee}\right)=\left(p_{m, 1}^{\sim}\right)\left(A^{\vee}\right)$.
Proof. The assertion of the Corollary follows directly from the assertion of the Lemma for $\theta=\lambda$.

Clearly, if $\lambda>0, \theta>0, A \in E_{m, \lambda}(\mathfrak{M}(L)), B \in E_{m, \theta}(\mathfrak{M}(L))$, then $A B$ is contained in $E_{m, \lambda \theta}(\mathfrak{M}(L))$. Clearly, ∇ maps $E_{m, \lambda}(L)$ in $E_{m, \lambda}(L)$ and

$$
\begin{equation*}
\left(p_{m, \lambda}\right)^{\sim}(\nabla)=\lambda \tag{56}
\end{equation*}
$$

Clearly, for any $k \in \mathbb{N}-1, A \in E_{m}(\mathfrak{M}(L))$

$$
\begin{equation*}
\left(\nabla \circ A^{\vee}\right)^{k}=\left(\prod_{\kappa=1}^{k}\left(\nabla^{\kappa} A\right)\right) \circ \nabla^{\kappa} \tag{57}
\end{equation*}
$$

Let L is a Banach space over th field K and $A \in E_{m, 1}\left(\mathfrak{M}^{\wedge}(L)\right)$. Let further there exists $A^{-1} \in E_{m, 1}\left(\mathfrak{M}^{\wedge}(L)\right)$, and

$$
\begin{equation*}
\left(p^{\sim}\right)_{m, 1}\left(A^{-1}\right)=\rho<1 / \lambda \tag{58}
\end{equation*}
$$

Then, clearly, $\mathfrak{M}^{\wedge}\left(E_{m, \lambda}(L)\right)$ contains the linear operator

$$
\begin{gather*}
-\left(A^{-1}\right)^{\vee} \sum_{k=0}^{\infty}\left(\nabla \circ\left(A^{-1}\right)^{\vee}\right)^{k}= \tag{59}\\
\left.-\left(A^{-1}\right)^{\vee}\left(1_{\mathfrak{M}^{\wedge}\left(E_{m, \lambda}(L)\right)}-\nabla \circ A^{-1}\right)^{\vee}\right)^{-1}=\left(\nabla-A^{\vee}\right)^{-1},
\end{gather*}
$$

and in view of (56) and (59),

$$
\begin{equation*}
\left.\left(p_{m, 1}\right)\left(\nabla-A^{\vee}\right)^{-1}\right) \leq \rho /(1-\rho \lambda) \tag{60}
\end{equation*}
$$

According to (57), the equality (59) may be rewritten in the form

$$
\begin{equation*}
\left(\nabla-A^{\vee}\right)^{-1}=-\left(A^{-1}\right)^{\vee} \sum_{k=0}^{\infty}\left(\prod_{\kappa=1}^{k}\left(\nabla^{\kappa}\left(A^{-1}\right)\right)^{\vee}\right) \circ \nabla^{k} \tag{61}
\end{equation*}
$$

Lemma 8. ([21], Lemma 2, [15], Lemma 2) Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$ an let k is a maximal order of its Jordan blocks. Then there exists a constante $\gamma^{*}(A)>0$ with the following properties:
for any $\varepsilon>0$ there exists a norm $p_{A, \varepsilon}$ on \mathbb{C}^{n} such that

$$
\begin{gather*}
p_{A, \varepsilon} \leq \gamma^{*}(A)\left(\max (1,1 / \varepsilon)^{k-1} h\right. \tag{62}\\
h \leq \gamma^{*}(A)\left(\max (1, \varepsilon)^{k-1} p_{A, \varepsilon}\right. \tag{63}\\
\left(p_{A, \varepsilon}\right)^{\sim} \leq\left(\gamma^{*}(A)\right)^{2}\left(\max (\varepsilon, 1 / \varepsilon)^{k-1} h^{\sim}\right. \tag{64}\\
h^{\sim} \leq\left(\gamma^{*}(A)\right)^{2}\left(\max (\varepsilon, 1 / \varepsilon)^{k-1}\left(p_{A, \varepsilon}\right)^{\sim}\right. \tag{65}\\
\|A\|_{s p} \leq\left(p_{A, \varepsilon}\right)^{\sim} \leq\|A\|_{s p}+(\operatorname{sign}(k-1)) \varepsilon \tag{66}
\end{gather*}
$$

where $\|A\|_{s p}$ denotes the maximum of the absolute values of eigenvalues of the matrix A. If, moreover,

$$
\begin{equation*}
\operatorname{det}(A) \neq 0,\left\|A^{-1}\right\|_{s p}^{-1}>(\operatorname{sign}(k-1)) \varepsilon \tag{67}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|A^{-1}\right\|_{s p} \leq\left(p_{A, \varepsilon}\right)^{\sim}\left(A^{-1}\right) \leq\left(\left\|A^{-1}\right\|_{s p}^{-1}-(\operatorname{sign}(k-1)) \varepsilon\right)^{-1} \tag{68}
\end{equation*}
$$

Proof. Let $C \in \operatorname{Mat}_{n}(\mathbb{C}), \operatorname{det}(C) \neq 0$ and

$$
\begin{equation*}
J=C^{-1} A C \tag{69}
\end{equation*}
$$

is a Jordan form of A. Let J is composed by s Jordan $k_{i} \times k_{i}$-blocks J_{i}, where $i=1, \ldots, s$ and $\sum_{i=1}^{s} k_{i}=n$. Let $\varepsilon>0$, and let $T_{m, \varepsilon}^{\wedge}$ denotes the diagonal $m \times m$-matrix, which $i-t h$ diagonal element is equal to ε^{i-1},
where $i=1, \ldots, m$. Let further T_{ε}^{\vee} denotes the $n \times n$-diagonal matrix composed by the blocks $T_{k_{i}, \varepsilon}^{\wedge}$, where $i=1, \ldots, s$. Let

$$
\begin{gather*}
\gamma^{*}(A)=\max \left(h^{\sim}\left(C^{-1}\right), h(C)\right), \tag{70}\\
p_{A, \varepsilon}(X)=h\left(\left(C T_{\varepsilon}^{\vee}\right)^{-1} X\right) \tag{71}
\end{gather*}
$$

where $X \in \mathbb{C}^{n}$. Then

$$
\begin{equation*}
p_{A, \varepsilon}(X) \leq h^{\sim}(C) h^{\sim}\left(\left(T_{\varepsilon}^{\vee}\right)^{-1}\right) h(X) \leq \gamma^{*}(A) \max \left(1,(1 / \varepsilon)^{k-1}\right) h(X) \tag{72}
\end{equation*}
$$

for $X \in \mathbb{C}^{n}$; therefore (62) holds. Clearly,

$$
\begin{gather*}
\left.h(X)=h\left(C T_{\varepsilon}^{\vee}\left(C T_{\varepsilon}^{\vee}\right)^{-1} X\right) \leq h(C) h\left(T_{\varepsilon}^{\vee}\right) h\left(C T_{\varepsilon}^{\vee}\right)^{-1} X\right) \leq \tag{73}\\
\gamma^{*}(A) \max \left(1, \varepsilon^{k-1}\right) p_{A, \varepsilon}(X)
\end{gather*}
$$

for $X \in \mathbb{C}^{n}$; therefore (63) holds. In view of 71 ,

$$
\begin{gather*}
\left(p_{A, \varepsilon}\right)^{\sim}(B)=\sup \left(\left\{p_{A, \varepsilon}(B X): X \in \mathbb{C}^{n}, p_{A, \varepsilon}(X) \leq 1\right\}\right)= \tag{74}\\
\sup \left(\left\{h\left(\left(C T_{\varepsilon}^{\vee}\right)^{-1} B X\right): X \in \mathbb{C}^{n}, h\left(\left(C T_{\varepsilon}^{\vee}\right)^{-1} X\right) \leq 1\right\}\right)= \\
\sup \left(\left\{h\left(\left(C T_{\varepsilon}^{\vee}\right)^{-1} B C T_{\varepsilon}^{\vee} Y\right): Y \in \mathbb{C}^{n}, h(Y) \leq 1\right\}\right)= \\
\left.h^{\sim}\left(C T_{\varepsilon}^{\vee}\right)^{-1} B C T_{\varepsilon}^{\vee}\right),
\end{gather*}
$$

where $B \in \operatorname{Mat}_{n}(\mathbb{C})$. The equalities (74) imply (64) and (66). It follows from the equalities (74) that

$$
\begin{equation*}
h^{\sim}(B)=\left(p_{A, \varepsilon}\right)^{\sim}\left(C T_{\varepsilon}^{\vee} B\left(C T_{\varepsilon}^{\vee}\right)^{-1}\right), \tag{75}
\end{equation*}
$$

where $B \in \operatorname{Mat}_{n}(\mathbb{C})$. The equality (75) implies (65). Let $\operatorname{det}(A) \neq 0$, and let Λ is the diagonal $n \times n$-matrix, which diagonal elements are equal to the corresponding diagonal elements of the matrix J. If (67) holds, then

$$
\begin{equation*}
\left.\left(T_{\varepsilon}^{\vee}\right)^{-1}\right) J T_{\varepsilon}^{\vee}=\Lambda(E-N) \tag{76}
\end{equation*}
$$

where E is the unit $n \times n$-matrix, N is a nilpotent $n \times n$-matrix and

$$
\begin{gathered}
h^{\sim}(N) \leq\left\|A^{-1}\right\|_{s p}(\operatorname{sign}(k-1)) \varepsilon, h^{\sim}\left(\Lambda^{-1}\right)=\left\|A^{-1}\right\|_{s p} \\
\left.\left(T_{\varepsilon}^{\vee}\right)^{-1}\right) J^{-1} T_{\varepsilon}^{\vee}=(E-N)^{-1} \Lambda^{-1},\left(p_{A, \varepsilon}\right)^{\sim}\left(A^{-1}\right)= \\
\left.h^{\sim}\left(C T_{\varepsilon}^{\vee}\right)^{-1} A^{-1} C T_{\varepsilon}^{\vee}\right)=h^{\sim}\left(\left(T_{\varepsilon}^{\vee}\right)^{-1} J^{-1} T_{\varepsilon}^{\vee}\right) \leq \\
\left.\left\|A^{-1}\right\|_{s p} \sum_{\kappa=0}^{\infty}\left(\left\|A^{-1}\right\|_{s p} \operatorname{sign}(k-1)\right) \varepsilon\right)^{\kappa}=
\end{gathered}
$$

$$
\left\|A^{-1}\right\|_{s p}\left(1-\left\|A^{-1}\right\|_{s p}(\operatorname{sign}(k-1)) \varepsilon\right)^{-1}=\left(\left(\left\|A^{-1}\right\|_{s p}\right)^{-1}-(\operatorname{sign}(k-1)) \varepsilon\right)^{-1} .
$$

Corollary. If all the eigenvalues of the matrix A are symple, then

$$
\begin{equation*}
\left(p_{A, \varepsilon}\right)^{\sim}=\|A\|_{s p} . \tag{77}
\end{equation*}
$$

If, moreover,

$$
\begin{equation*}
\operatorname{det}(A) \neq 0 \tag{78}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(p_{A, \varepsilon}\right)^{\sim}\left(A^{-1}\right)=\left(\left\|A^{-1}\right\|_{s p}\right)^{-1} . \tag{79}
\end{equation*}
$$

Proof. Since in this case $k=1$, and, consequently, (78) implies (67), it follows that the assertion of the Lemma follows directly from (66) - (68).

Lemma 9. ([15], Lemma 2). Let are fulfilled all the conditions of the Lemma 8 and let $B \in \operatorname{Mat}_{n}(\mathbb{C}), \varepsilon_{1}>0$,

$$
\begin{equation*}
\left(p_{A, \varepsilon}\right)^{\sim}(B-A) \leq \varepsilon_{1}, \tag{80}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(p_{A, \varepsilon}\right)^{\sim}(B) \leq\|A\|_{s p}+(\operatorname{sign}(k-1)) \varepsilon+\varepsilon_{1} . \tag{81}
\end{equation*}
$$

If, moreover, the inequalities (67) hold and

$$
\begin{equation*}
\left\|A^{-1}\right\|_{s p}^{-1}>(\operatorname{sign}(k-1)) \varepsilon+\varepsilon_{1} \tag{82}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{det}(B) \neq 0,\left(p_{A, \varepsilon}\right)^{\sim}\left(B^{-1}\right) \leq\left(\left\|A^{-1}\right\|_{s p}^{-1}-(\operatorname{sign}(k-1)) \varepsilon-\varepsilon_{1}\right)^{-1} \tag{83}
\end{equation*}
$$

Proof. The inequality (81) follows directly from (66) and (80). If, moreover, all the inequalities (67) and (82) hold, then let us to represent B in the form

$$
\begin{equation*}
B=A\left(E-A^{-1}(A-B)\right) \tag{84}
\end{equation*}
$$

in view of (68), (80) and (82),

$$
\left(p_{A, \varepsilon}\right)^{\sim}\left(A^{-1}(A-B)\right) \leq\left(\left\|A^{-1}\right\|_{s p}^{-1}-(\operatorname{sign}(k-1)) \varepsilon\right)^{-1} \varepsilon_{1}<1 ;
$$

therefore the matrices $\left(E-A^{-1}(A-B)\right)^{-1}$,

$$
\begin{equation*}
B^{-1}=\left(E-A^{-1}(A-B)\right)^{-1} A^{-1} \tag{85}
\end{equation*}
$$

exist and

$$
\begin{gathered}
\left(p_{A, \varepsilon}\right) \sim\left(B^{-1}\right)=\left(p_{A, \varepsilon}\right)^{\sim}\left(\left(E-A^{-1}(A-B)\right)^{-1} A^{-1}\right) \leq \\
\left(p_{A, \varepsilon}\right)^{\sim}\left(\left(E-A^{-1}(A-B)\right)^{-1}\right)\left(p_{A, \varepsilon}\right)^{\sim}\left(A^{-1}\right) \leq \\
\left(1-\frac{\varepsilon_{1}}{\left(\left\|A^{-1}\right\|_{s p}\right)^{-1}-(\operatorname{sign}(k-1)) \varepsilon}\right)^{-1} \times \\
\left(\left(\left\|A^{-1}\right\|_{s p}\right)^{-1}-(\operatorname{sign}(k-1)) \varepsilon\right)^{-1}= \\
\left(\left(\left\|A^{-1}\right\|_{s p}\right)^{-1}-(\operatorname{sign}(k-1)) \varepsilon-\varepsilon_{1}\right)^{-1} .
\end{gathered}
$$

Corollary 1. Let are fulfilled all the conditions of the Lemma 9, and all the eigenvalues of the matrix A are symple. Then

$$
\begin{equation*}
\left(p_{A, \varepsilon}\right) \sim(B) \leq\|A\|_{s p}+\varepsilon_{1} . \tag{86}
\end{equation*}
$$

If, moreover,

$$
\begin{equation*}
\operatorname{det}(A) \neq 0,\left\|A^{-1}\right\|_{s p}^{-1}>\varepsilon_{1} \tag{87}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{det}(B) \neq 0,\left(p_{A, \varepsilon}\right)^{\sim}\left(B^{-1}\right) \leq\left(\left\|A^{-1}\right\|_{s p}^{-1}-\varepsilon_{1}\right)^{-1} \tag{88}
\end{equation*}
$$

Proof. Since in this case $k=1$, and, consequently, (87) implies (82), it follows that the assertions of the Lemma follows directly from (81) - (83).

Corollary 2. ([14], Lemma 3). Let are fulfilled all the conditions of the Lemma 8, $\operatorname{det}(A) \neq 0$,

$$
\begin{equation*}
0<\varepsilon<\left(\left\|A^{-1}\right\|_{s p}\right)^{-1} / 2 \tag{89}
\end{equation*}
$$

and let $B \in \operatorname{Mat}_{n}(\mathbb{C})$,

$$
\begin{equation*}
\left(p_{A, \varepsilon}\right) \sim(B-A) \leq \varepsilon, \tag{90}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(p_{A, \varepsilon}\right)^{\sim}(B) \leq\|A\|_{s p}+2 \varepsilon \tag{91}
\end{equation*}
$$

the matrix B^{-1} exists and

$$
\begin{equation*}
\left(p_{A, \varepsilon}\right)^{\sim}\left(B^{-1}\right) \leq\left(\left\|A^{-1}\right\|_{s p}^{-1}-2 \varepsilon\right)^{-1} \tag{92}
\end{equation*}
$$

Proof. Let us take $\varepsilon_{1}=\varepsilon$. Then (82) follows from (88) and (89).

§4. End of the proof of Theorem 6.

Let in accordance with (10)

$$
\begin{equation*}
\nabla^{p}+\sum_{k=0}^{p-1} \mu_{b_{k}} \circ \nabla^{k} \tag{93}
\end{equation*}
$$

where $b_{k} \in \mathbb{C}+\left(r_{0, m} \mathfrak{v}\right) E_{m, 1} \mathbb{C}$ for $k=0, \ldots, p-1$. In view of (23),

$$
\begin{equation*}
\lim \left(b_{k}\right)=a_{q+k} \tag{94}
\end{equation*}
$$

where $k=0, \ldots, p-1$. Let

$$
B_{1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-b_{0} & -b_{1} & -b_{2} & \ldots & -b_{p-1}
\end{array}\right)
$$

$B=\omega^{-1}\left(B_{1}\right)$, where ω is the above isomorphism of the algebra $E_{m}\left(\operatorname{Mat}_{p}(\mathbb{C})\right)$ onto $\operatorname{Mat}_{p}\left(E_{m}(\mathbb{C})\right.$), and let

$$
B^{\sim}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-a_{q}^{\sim} & -a_{q+1}^{\sim} & -a_{q+2}^{\sim} & \cdots & -a_{q+p-1}^{\sim}
\end{array}\right)
$$

We take now on the role of the matrix A in the Lemma 8 and Lemma 9 the matrix B^{\sim}. Since, in view of (3) $a_{q}^{\sim} \neq 0$, it follows that $\left(B^{\sim}\right)^{-1}$ exists. We take now on the role ε in the Lemmata 8 and 9 and their corollaries the number

$$
\begin{equation*}
\varepsilon_{0}=\left(\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}\right)^{-1} / 3 \tag{95}
\end{equation*}
$$

and we take

$$
\mathfrak{q}=p_{B, \varepsilon_{0}}
$$

Since $\lim (B)=B^{\sim}$, it follows that we can (making use the operator $r_{m, \mu}$) replace the number m on some bigger m, such that for C from (49) and (50) the inequality

$$
\begin{equation*}
m \geq C \max \left(1,\left(6\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}\right)^{q}\right) \tag{96}
\end{equation*}
$$

holds and

$$
\begin{equation*}
\mathfrak{q}\left(B(\nu)-B^{\sim}\right) \leq \varepsilon_{0}, \tag{97}
\end{equation*}
$$

where $\nu \in m-1+\mathbb{N}$. It follows from (95) and (97) that for B^{\sim} and $B(\nu)$ with $\nu \in m-1+\mathbb{N}$ are fulfilled all the conditions of the Corrollary 2 of the Lemma 9; therefore there exists $(B(\nu))^{-1}$ for $\nu \in m-1+\mathbb{N}$ and

$$
\mathfrak{q}^{\sim}\left((B(\nu))^{-1}\right) \leq\left(3 \varepsilon_{0}-2 \varepsilon_{0}\right)^{-1}=3\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p} .
$$

Consequenty, there exists $B^{-1} \in E_{m, 1}\left(\operatorname{Mat}_{p}(\mathbb{C})\right)$ and

$$
\begin{equation*}
\left(\mathfrak{q}^{\sim}\right)_{m, 1}\left(B^{-1}\right) \leq 3\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p} . \tag{98}
\end{equation*}
$$

In view of (96) and (49),

$$
\begin{gather*}
\left(w_{C, q}(\nu)\right)^{1 / \nu}=\left(\frac{C}{\nu+1}\right)^{1 / q}< \tag{99}\\
\min \left(1,\left(\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}\right)^{-1} / 6\right)=\min \left(1, \varepsilon_{0} / 2\right)
\end{gather*}
$$

where $\nu \in m-1+\mathbb{N}$. In accordance with (58)-(61), (96),(98) and (99), if

$$
\begin{equation*}
3\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p} \leq \frac{1}{2 \lambda}, \tag{100}
\end{equation*}
$$

then

$$
\begin{equation*}
\rho=\left(q^{\sim}\right)_{m, 1}\left(B^{-1}\right) \leq 3\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p} \leq \frac{1}{2 \lambda}<\frac{1}{\lambda}, \tag{101}
\end{equation*}
$$

the algebra $\mathfrak{M}^{\wedge}\left(E_{m, \lambda}\left(\mathbb{C}^{p}\right)\right)$ contains the linear operator

$$
\begin{gather*}
-\left(\left(B^{-1}\right)\right)^{\vee} \sum_{k=0}^{\infty}\left(\nabla \circ\left(B^{-1}\right)^{\vee}\right)^{k}= \tag{102}\\
\left.-\left(B^{-1}\right)^{\vee}\left(1_{\mathfrak{M}\left(E_{m, \lambda}(\mathbb{C})\right)}-\nabla \circ B^{-1}\right)^{\vee}\right)^{-1}=\left(\nabla-B^{\vee}\right)^{-1},
\end{gather*}
$$

and, in view of the Lemma 7, its corollary, Lemma 6, (98),(60)

$$
\begin{gather*}
\left(\mathfrak{q}_{m, \lambda}\right)^{\sim}\left(\left(\nabla-B^{\vee}\right)^{-1}\right) \leq \rho /(1-\rho \lambda) \leq \tag{103}\\
3\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p} /\left(1-3\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p} \lambda\right) \leq 6\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}
\end{gather*}
$$

For any $y \in E_{m}(\mathbb{C})$ and $n \in \mathbb{N}$ let $Y_{n, y}$ and $Y_{n, y}^{\#}$ denote the elements in the space $E_{m}\left(\mathbb{C}^{n}\right)$, wich are determined respectively by means the following equalities:

$$
Y_{n, y}(\nu)=\left(\begin{array}{c}
y(\nu) \tag{104}\\
\vdots \\
y(\nu+n-1)
\end{array}\right)
$$

$$
Y_{n, y}^{\#}(\nu)=\left(\begin{array}{c}
0 \tag{105}\\
\vdots \\
0 \\
y(\nu)
\end{array}\right)
$$

where $\nu \in m-1+\mathbb{N}$. Clearly,

$$
\begin{gather*}
p_{\lambda}(y)=h_{\lambda}(y)=p_{\lambda}\left(Y_{n, y}^{\#}\right)=h_{\lambda}\left(Y_{n, y}^{\#}\right) \leq h_{\lambda}\left(Y_{n, y}\right) \leq \tag{106}\\
\max \left(1,|\lambda|^{n-1}\right) h_{\lambda}\left(Y_{n, y}^{\#}\right),
\end{gather*}
$$

where $y \in E_{m}(\mathbb{C})$. If

$$
\begin{equation*}
|\lambda| \leq 1, \tag{107}
\end{equation*}
$$

then all the inequalities (106) turn into equalities. Let

$$
\lambda(\nu)=\left(w_{C, q}(\nu)\right)^{1 / \nu}
$$

where $\nu \in m-1+\mathbb{N}$. In view of (99, for $\lambda=\lambda(\mu)$ with $\mu \in m-1+\mathbb{N}$ are fulfilled all the conditions (100) and (107). Let $z \in\left(r_{o, m}\left(w_{C, q}\right) E_{m, \infty}(\mathbb{C})\right.$ and

$$
p_{m, 1}\left(r_{0, m}\left(w_{C, q}\right)^{-1} z\right)=h_{m, 1}\left(r_{0, m}\left(w_{C, q}\right)^{-1} z\right)=\gamma
$$

Then

$$
\begin{gather*}
p_{\mu, \lambda(\mu)}\left(r_{m, \mu} z\right)=h_{\mu, \lambda(\mu)}\left(r_{m, \mu} z\right)= \tag{108}\\
\sup \left\{(\lambda(\mu))^{-\nu}\left|\left(r_{m, \mu} z\right)(\nu)\right|: \nu \in \mu-1+\mathbb{N}\right\}= \\
\sup \left\{\left(\frac{\lambda(\nu)}{\lambda(\mu)}\right)^{\nu}(\lambda(\nu))^{-\nu}\left|\left(r_{m, \mu} z\right)(\nu)\right|: \nu \in \mu-1+\mathbb{N}\right\}= \\
\sup \left\{\left(\frac{1+\mu)}{1+\nu)}\right)^{\nu}(\lambda(\nu))^{-\nu}\left|\left(r_{m, \mu} z\right)(\nu)\right|: \nu \in \mu-1+\mathbb{N}\right\} \leq \\
\sup \left\{(\lambda(\nu))^{-\nu}\left|\left(r_{m, \mu} z\right)(\nu)\right|: \nu \in \mu-1+\mathbb{N}\right\} \leq \\
\sup \left\{(\lambda(\nu))^{-\nu}\left|\left(r_{m, \mu} z\right)(\nu)\right|: \nu \in m-1+\mathbb{N}\right\}= \\
h_{m, 1}\left(\left(r_{0, m}\left(w_{C, q}\right)^{-1} z\right)=p_{m, 1}\left(\left(r_{0, m}\left(w_{C, q}\right)^{-1} z\right)=\gamma,\right.\right.
\end{gather*}
$$

where $\mu \in m-1+\mathbb{N}$; consequently $r_{m, \mu} z \in E_{\mu, \lambda(\mu)}$, where $\mu \in m-1+\mathbb{N}$. In view of (108),

$$
p_{\mu, \lambda(\mu)}\left(Y_{q, r_{m, \mu} z}^{\#}\right)=h_{\mu, \lambda(\mu)}\left(Y_{q, r_{m, \mu} z}^{\#}\right) \leq \gamma,
$$

where $\mu \in m-1+\mathbb{N}$. Therefore, in view of (62),

$$
\mathfrak{q}_{\mu, \lambda(\mu)}\left(Y_{q, r_{m, \mu} z}^{\#}\right) \leq
$$

$$
\begin{gathered}
\gamma^{*}\left(B^{\sim}\right)\left(\max \left(1,1 / \varepsilon_{0}\right)\right)^{p-1} h_{\mu, \lambda(\mu)}\left(Y_{q, r_{m, \mu} z}^{\#}\right) \leq \\
\gamma^{*}\left(B^{\sim}\right)\left(\max \left(1,1 / \varepsilon_{0}\right)\right)^{p-1} \gamma,
\end{gathered}
$$

where $\mu \in m-1+\mathbb{N}$. Consequently, in view of (103),

$$
\begin{gather*}
\left.\mathfrak{q}_{\mu, \lambda(\mu)}\left(\left(\nabla-B^{\vee}\right)^{-1}\right) Y_{q, r_{m, \mu} z}^{\#}\right) \leq \tag{109}\\
6 \gamma \gamma^{*}\left(B^{\sim}\right)\left(\max \left(1,1 / \varepsilon_{0}\right)\right)^{p-1}\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}
\end{gather*}
$$

where $\mu \in m-1+\mathbb{N}$. In view of (109) and (63),

$$
\begin{align*}
& h\left((\lambda(\mu))^{-\nu}\left(\left(\left(\nabla-B^{\vee}\right)^{-1}\right) Y_{q, r_{m, \mu} z}^{\#}\right)(\nu)\right) \leq \tag{110}\\
& 6 \gamma\left(\gamma^{*}\left(B^{\sim}\right)\right)^{2}\left(\max \left(\varepsilon_{0}, 1 / \varepsilon_{0}\right)\right)^{p-1}\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}
\end{align*}
$$

where $\mu \in m-1+\mathbb{N}$ and $\nu \in \mu-1+\mathbb{N}$. It follows from the inequality (110) for $\nu=\mu \in m-1+\mathbb{N}$ that

$$
\begin{align*}
& h\left((\lambda(\mu))^{-\nu}\left(\left(\left(\nabla-B^{\vee}\right)^{-1}\right) Y_{q, r_{m, \mu} z}^{\#}\right)(\nu)\right) \leq \tag{111}\\
& 6 \gamma\left(\gamma^{*}\left(B^{\sim}\right)\right)^{2}\left(\max \left(\varepsilon_{0}, 1 / \varepsilon_{0}\right)\right)^{p-1}\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}
\end{align*}
$$

For any $X \in \mathbb{C}^{q}$ let $\pi(X)$ denotes the first coordiate of the column X, and let π be the map of \mathbb{C}^{q} on \mathbb{C}, which turns each $X \in \mathbb{C}^{q}$ into $\pi(X)$. In view of (111),

$$
\begin{align*}
& \left.h\left((\lambda(\nu))^{-\nu}\left(\pi\left(\left(\nabla-B^{\vee}\right)^{-1}\right) Y_{q, r_{m, \nu} z}^{\#}\right)(\nu)\right)\right) \leq \tag{112}\\
& 6 \gamma\left(\gamma^{*}\left(B^{\sim}\right)\right)^{2}\left(\max \left(\varepsilon_{0}, 1 / \varepsilon_{0}\right)\right)^{p-1}\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}
\end{align*}
$$

where $\nu \in m-1+\mathbb{N}$. Let \mathfrak{p} denotes the norm on $\left(r_{0, m}\left(w_{\mathbb{C}, q}\right)\right) E_{m, \infty}(\mathbb{C})$, defined by means the equality $\mathfrak{p}(z)=p_{m, \infty}\left(\left(r_{0, m}\left(w_{\mathbb{C}, q}\right)\right)^{-1} z\right)$, and let ϕ be the map of the space $\left(r_{0, m}\left(w_{\mathbb{C}, q}\right)\right) E_{m, \infty}(\mathbb{C})$ in $E_{m, \infty}(\mathbb{C})$, such that

$$
\left.(\phi(z))(\nu)=\pi\left(\left(\left(\nabla-B^{\vee}\right)^{-1}\right) Y_{q, r_{m, \nu} z}^{\#}\right)(\nu)\right)
$$

for any $z \in\left(r_{0, m}\left(w_{\mathbb{C}, q}\right)\right) E_{m, \infty}(\mathbb{C})$ and any $\nu \in m-1+\mathbb{N}$. It follows now from (112) that ϕ maps $\left(r_{0, m}\left(w_{\mathbb{C}, q}\right)\right) E_{m, \infty}(\mathbb{C})$ into $\left(r_{0, m}\left(w_{\mathbb{C}, q}\right)\right) E_{m, \infty}(\mathbb{C})$, is a bounded linear operator on $\left(r_{0, m}\left(w_{\mathbb{C}, q}\right)\right) E_{m, \infty}(\mathbb{C})$, and

$$
\mathfrak{p}^{\sim}(\phi) \leq 6 \gamma\left(\gamma^{*}\left(B^{\sim}\right)\right)^{2}\left(\max \left(\varepsilon_{0}, 1 / \varepsilon_{0}\right)\right)^{p-1}\left\|\left(B^{\sim}\right)^{-1}\right\|_{s p}
$$

So, we can take now on the role of the mentioned in the section 2 the splitting homomorphism ξ_{m} the restriction of the map ϕ on the subspace $\operatorname{Ker}(\psi)$ of the space $\left(r_{0, m}\left(w_{\mathbb{C}, q}\right)\right) E_{m, \infty}(\mathbb{C})$, where ψ is a homomorpism in (46).

References.

[1] O.Perron, Über die Poincaresche Differenzengleichumg, Journal für die reine und angewandte mathematik, 1910, 137, 6 - 64;
[2] A.O.Gelfond, Differenzenrechnung (in Russian), 1967, Nauka, Moscow.
[3] A.O.Gelfond and I.M.Kubenskaya, On the theorem of Perron in the theory of differrence equations (in Russian), IAN USSR, math. ser., $1953,17,2,83-86$.
[4] M.A.Evgrafov, New proof of the theorem of Perron (in Russian),IAN USSR, math. ser., 1953, 17, 2, $77-82$.
[5] G.A.Frejman, On theorems of of Poincaré and Perron (in Russian), UMN, 1957, 12, 3 (75), 243-245.
[6] N.E.Nörlund, Differenzenrechnung, Berlin: Springer Verlag, 1924.
[7] I.M.Vinogradov, Foundtions of the Number Theory (in Russian), 1952, GIT-TL.
[8] CH.-J. de la Vallée Poussin, Course d'analyse infinitésimale, Russian translation by G.M.Fikhtengolts, GT-TI, 1933.
[9] L.A.Gutnik, On the decomposition of the difference operators of Poincaré type (in Russian), VINITI, Moscow, 1992, 2468-92, 1-55.
$[10] \quad$, On the decomposition of the difference operators of Poincaré type in Banach algebras (in Russian), VINITI, Moscow, 1992, 3443-92, 1 - 36.
$[11]$, On the difference equations of Poincaré type (in Russian), VINITI, Moscow 1993, 443 -B93, 1 - 41.
$[12] \ldots$, On the difference equations of Poincaré type in normed algebras (in Russian), VINITI, Moscow, 1994, 668 -B94, 1 - 44.
[13] \ldots, On the decomposition of the difference equations
of Poincaré type (in Russian),
VINITI, Moscow, 1997, 2062 -B97, 1 - 41.
$[14]$, The difference equations with of Poincaré type characteristic polynomial having roots equal to zero (in Russian), VINITI, Moscow, 1997, 2418-97, $1-20$.
[15] \quad, On the behavior of solutions of difference equations of Poincaré type (in Russian),
VINITI, Moscow, 1997, 3384-B97, 1-41.
$[16] \ldots$ On the variability of solutions of difference equations of Poincaré type (in Russian),
VINITI, Moscow, 1999, 361-B99, 1 - 9.
$[17] \ldots$, To the question of the variability of solutions of difference equations of Poincaré type (in Russian),
VINITI, Moscow, 2000, 2416-B00, 1 - 22.
[18] \longrightarrow, On linear forms with coefficients in $\mathbb{N} \zeta(1+\mathbb{N})$, Max-Plank-Institut für Mathematik, Bonn, Preprint Series, 2000, 3, 1-13.

[34] \qquad On the dimension of some linear spaces over \mathbb{Q}, (part 4) Max-Plank-Institut für Mathematik, Bonn, Preprint Series, 2003, 73, 1-37.
[35] \qquad On linear forms with coefficients in $\mathbb{N} \zeta(1+\mathbb{N})$ (the detailed version, part 5), Max-Plank-Institut für Mathematik, Bonn, Preprint Series, 2003, 83, 1-13.
$[36] \ldots$ On linear forms with coefficients in $\mathbb{N} \zeta(1+\mathbb{N})$ (the detailed version, part 6),
Max-Plank-Institut für Mathematik, Bonn, Preprint Series, 2003, 99, 1-33.

Moscow State Institute
of Electronics and Mathematics
Bolshoi Trekhsvyatitelskij pereulok, 1-3/12, str. 8
Moscow 109028
Russian Federation
E-mail: gutnik@gutnik.mccme.ru

