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1 Introduction

In the present paper, we complete our program of finding Pieri-type formulas
for homogeneous spaces of the form G/P, where G is a classical semisimple
algebraic group and P is 2 maximal parabolic subgroup. The case G = SL(n)
was known classically. In [P-R 0-2], we established Pieri-type formulas for the
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Chow (or cohomology) rings of Lagrangian and odd orthogonal Grassmanni-
ans, i.e. in the cases G = Sp(2m) and G = SO(2m+1). In the present paper,
we give a Pieri-type theorem in the case of even orthogonal Grassmannians,
i.e. for G = S0(2m).

For an outline of the whole theory, we refer the reader to Section 6 of [P2].

To formulate our Pieri-type formula, we define “special” Schubert cycles
which generate multiplicatively the Chow rings of these Grassmannians and
describe how to multiply an arbitrary Schubert cycle by a special one. Tt
requires a different and more involved combinatorics than the one in the
odd-orthogonal and symplectic cases.

The idea of the proof of the main theoremn of this paper is like that in
[P-R2] and many propositions and lemmas from [P-R2] can be directly ap-
plied here. Sections 1 - 5 contain basic information about permutations with
even number of bars, shapes, reduced decompositions etc. In Section 6 we
examine configurations of D- and ~D-boxes which give “the vanishing” (that
is, the corresponding operator acting on a certain generating function gives
zero). In Section 7 we prove the main theorem by checking its validity in
four separate cases. Subsection 7.5 contains examples illustrating the main
theorem.

In the present paper, we treat the Grassmannians of non-maximal isotropic
subspaces. For the case of maximal isotropic subspaces, we refer the reader
to [P1, Section 6]. It is possible, however, to obtain a Pieri-type formula for
these Grassmannians using the methods of this work. This will be imple-
mented in the next version of the present paper.

It would be interesting (and valuable) to give a unified (group theoretic
?!1) proof of the main theorems of [P-R 0-2] and the present paper (see also
[P2, Section 6]), which does not depend on a particular root system chosen.

This research was carried out during the first author’s stay at the Max-
Planck Institut fiir Mathematik; he thanks the MPIfM for a generous hospi-
tality. The second author was partially supported by the R. Bosch Foundation
during the preparation of the present paper.

2 Preliminaries

We fix positive integers m > n. Suppose that H = SO(2m) is the orthogonal
group (of type D,,) over the field of complex numbers. Let us use the following
notation:

B - a fixed Borel subgroup of H, T' C B - a fixed maximal torus.

R - the root system of H associated with T,

Y ={a1,...,0n} the set of simple roots of R associated with B,



W - the Weyl group of (H,T),

W, - the subgroup of W generated by simple reflections associated with
the simple roots: {a1,...,am} \ {an}, where n < m,

P, - the maximal parabolic subgroup of H containing I3 and corresponding
to the above subset of simple roots,

F = H/B (an isotropic flag manifold),

G = H/P, (an isotropic Grassmannian).
In a standard Bourbaki [Bou] realization we have:

R={xe;te;:1<i<j<m} CR™" =@ Re,
Y={ay,...,an}={e1—€2,...,6u-1— €m,€m_1 +€en},
W =S8, x Z",

Wi = Sp X (Smp X Z271),

A typical element of W can be written as a pair (7,¢), where 7 € S,
and € = (e,...,€y) is a sequence of elements of Z; = {—1,1} such that
#{i : ¢ = —1} is even. Multiplication in W is given by

(r,€) (7/,€}) = (r07,6),

(1P

where “o” denotes the composition of permutations and d; = €,y - €. The
length function on the group W, is defined by the equality:

Hw) = Zai+ Z 2b;,
i=1 gi==1

where

ai=#{jlj>i A w(j) <w()}
and

b= #0517 <i A w(G) > wi)}.

The poset W of the minimal length left coset representatives of W, in W
can be decomposed into two disjoint subsets:

w® = w o w,
where:
Wl(n) = {(?/1,?}2, oo Yn—k Zhy Zh=15+ -5 215 U1y - o -Um—n) I k — 6?)671}

and 1 < ... <Yp-g; 2> ...> 21 and v; < ... < Upy—p;



Wg(n) ={(y1, 920 s Un-ki Zhy Zo—1, - -, 203015 - - - Vmena1, Umn) | & — 0dd}

and 9 < ... <Yn_g; % >...>zand v < ... < Up_pn_.

We refer to these sets as permutations of type 1 and of type 2 respectively.

Definition 2.1 A pair A = (A//AY) of strict partitions At and X® is called
a shape if A* C (m™™"), A C (m"), {(A®) is even and M _,_, > I(A\*) +1,
Mo > 1

If AL, > (M%) + 1, then we say that X is of type 1; if this is not true, then
we say that A is of type 2.

Denote the set of shapes by P,. It would be useful to display shapes with
the help of sets of boxes in the fourth quarter of the plane. Let D} and D§ be
the Ferrers’ diagrams of A* and A® (see [M]; also the other terminology related
to partitions, diagrams etc. is borrowed from loc. cit.). The diagram D, of
shape (A'//As) is the juxtaposition of DY and DY with rows of successive
lengths: A5, .. AL X8 LA E=1(N):

[} [ ]

type 2 type 1

For a given element wy, € W™ we define the corresponding shape A =
(At//A®) in the following way:

o Ifwe W™,
w = {(ylay2) . ':yﬂ—k;ikazk—l: ey 215U, -)Um—n) I k— GUGTL},

then
N=m+1—2z for j=1,2,...,k
M=m+l-v+d, for r=12,....m—n;d. =#{j | z; < v }.

e Ifwe Wén),

w= {(yl: Y2y s Yn—ks Zhy Zk=15- - -, 213 Vly 0 - svm—n—lyﬁm—n) I k_Odd}a



then
K=,  Aa={m+l-zs,...om+1-z,m+1-v,_,}and
A2 2 M

i\ﬁ:m-}—l—u,-l—&,; r=1,....m—n-1 and X, __ =1+dn_,,
d, = #{u € K |v, > u}.

Lemma 2.2 The correspondence described above is a bijection between W
and the poset of shapes P,. Moreover, if wy is of type 1 (resp. 2), then X is
of type 1 (resp. 2).

Proof. Suppose first w is of type 1. The sequences (z;) and (v,) are increasing
and (d,) is nondecreasing. Thus A® and X! are strict; A* C (m"), A* C (m™™").
Observe that

A >IN +1=k+1

because
m+1l—vy p+dpyn,=1+ (7” = Upp—n dm—n) > k-1

(For the proof of the last inequality, note that dm,—,, = #{j | 2; < m-n} and
M — Umen > #{J | 2; > Umn}). It follows that AL,_ > 1and M, _, |, >
[(A®%) 4 1. Moreover, [(\) = k is even.

Now, let w be of type 2. The same arguments as above show that A’ C
(m™) is strict, [(A\") is even, \* C (m™ ™) and A, > ... > Al _,_,. Moreover,

A > (M%) +1 (we use d instead of d). It remains to prove Al | >

m—n—1

AL .. This inequality is equivalent to
m+1—vp_na+ (_im—n—] >1+ EjEm—n:

or (m - vm—n—l) + (Em—n—l - am—ﬂ) > 0

Consider the following two cases:

® Up_pn_t > Up_n; then dp_ny > dnen (Vm_n €) and the inequality
holds;

® Upy_n > Upen—1; then m — vy_pn_1 > diney — di_n_1, because

d‘m—n - d‘m—n—l = #{b e K | Un—n-1 < b < Um—n} <
<H#{be K |vmn-1 <O<Up_p} <M —VUp_pn1.



It follows that if w is of type 1, then AL, _, > I(\;) + 1 and A is of type 1; if
w is of type 2, then X, <I(X) and A is of type 2.

Suppose that a shape A is given. Let us try to construct the permutation
wy. There are two possibilities:

(1) M._, = (A% + 1. We look for wy of type 1. First compute z; =
m+1-X8, j =1,2,... k. Define the numbers p, = Ai—(m—n—r+I(A®)+1),
r=1,2,...,m —n. We have p, > 0 because AL, _, > (X)) -+ 1 and AL >
(m—-—n—r+1AX)+1), 7 =12...,m—n The sequence (v;) can be
obtained in the following way : v, is the p,-th element (counting from right)
in the sequence (1,2,...,m) with removed {z; | 7 = 1,2,...,1(X)} and
Um—ns Umen—1,- - -, Ur41. Note that such a v, satisfies v, = m + 1 — AL + d,.
Indeed,

m—v, =#{alv, <a<m}=

= (pr — 1) + #{Vmeny -, Ve } +#{i [ 25 >0} =
=AM -(m-n—r+IM))+(m-n—-r)+(k-d-r)=

= No—d —1.
(2) AL_, S UA®). We look for wy of type 2. Since K = {A},...,0},,} =
{m+1—2z,....m+1—z,m+1—v,_,}and A, _, =1+ dp_n, we look

for the numbers:

fm+1-XN-1,....om+1-A,,}={a,-..,a51}

such that axy1 < ap < ... < ay. It is clear that w,,_, = a:  and the set
of remaining elements a; is equal to {2;}. Thus we can determine zi,..., 2

and v,;,—n. The elements v;, 7 < m —n, can be obtained in the same way as
in (1). O

Let
c: S (X(T)) = Z[z1,...,2m] — A*(Sp(2m,C)/B) = A*(F)
be the Borel characteristic map (see [B-G-G, D2]). The induced map
cc : R=A"(F)"™ — 4*(G)

after tensoring by Z[1/2] gives an isomorphism (sec [D1, D2]). More explicitly,
we have:

SP(@1, .., %) ® SP(zh 44, -, 7)) U]

R= :
(e;(z?,...,22), i<m, eu(t,...,Tm))

where U = z,41...%m, SP( ) denotes the ring of symmetric polynomials
in the indicated indeterminates and e;{ ) is the i-th elementary symmetric
polynomial in the indicated variables.
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Proposition 2.3 The Poincaré series of A*(G) is equal to:

B (1 _ t2(m—n)) o (1 _ t2(m—1))(1 _ tm)

P(t) =
®) (1—1%)...(1 =) (1 - tim=m)
Proof. The elements e;(z%,...,22),i=1,2,...,m -1, and en(z1,...,Zm)
are algebraically independent and have degrees 2,4,...,2(m — 1},m. The
Poincaré series of SP(zy,...,z,) and SP(z2,,...,22)[U] are equal to:
1 and 1
1-1)...1-t) % [T=)... (0= Zmn-D)( — ¢m-n)

respectively. Thus the Poincaré series of G is equal to:

(1 - tz(m-—n)) o (1 _ t2(m—1))(1 _ t'") B
T—0.. 0=t Q=1 ). (1= fZmn-D)(1 = gmn)

(1 ;m t2(m—n)) o (1 _ t2(m—1))(1 _ tm)
(1~t)...(1 —t)(1 — tlm—m))

a

Proposition 2.4 The elementary symmetric polynomials e;(x,...,2,), 1 =
1,2,...,n and the polynomial €y (Trg1, - - -, Tin) = TptiTnte - - - Ty generate
maultiplicatively the ring R.

Proof. The assertion follows from the proof of [P-R2, Theorem 1.5]. O

3 Main Theorem

Let G = H/P, be the Grassmannian of n-dimensional isotropic subspaces of
C?™ with respect to a nondegenerate orthogonal form on C?™ (recall that we
assume m > n).

Given a shape A, we denote by oy the Schubert cycle in A*(G) corre-
sponding to wy, i.e. the class of the closure of B~w)FP,/P,, where w, is the
element of the poset W™, associated with .

We denote by 0,7 =1,2,...n, and ¢ the Schubert cycles

clm—n+i,m-n—-1m-n—2,...,2,1//0)
and

(=)™ (a(m—-n+1, m—n,...,3,2//)—c(m—n+1,m—m,...,4,3,1//2, 1))



respectively. In the following pictures, the cycles ¢ and o, form =9, n =25
and p = 4, are displayed:

I |
— l —
| H
0 ‘ 0
If cg : R — A*(G)® Z[1/2] is the isomorphisin induced by the Borel charac-
teristic map (see Section 2), then o7, ..., 0, are the images of the elementary
symmetric functions e;(z,...,z,) € R and o is the image of Z,41Zny2 .. . T
By Proposition 2.4, the elements o1, ..., 0y, 0 generate A*(G) over Z.

The main theorem of our paper gives a Pieri-type formula for the mul-
tiplication of an arbitrary Schubert cycle o{(A) by the special cycles oy,
1=1,2,...,n and o.

Let us define several notions which are necessary to state our theorem.
We recall that all the terminology related to partitions, Ferrers’ diagrams and
shifted diagrams are borrowed from [M]. We use the following conventions
for “strips”:

A I-strip is (an ordinary) horizontal strip (that is a skew diagram with at
most one box in a fixed column).

A 1/2-strip is a horizontal strip with pairwise disconnected rows.

A 3/2-strip is an almost horizontal strip in the terminology of [P-R2,
Section 2]. That is, it is a (possibly) disconnected skew diagram with at
most two boxes in each column such that the set of highest boxes in columns
forms a 1-strip and the remaining boxes form a 1/2-strip. Every 3/2-strip has
a decomposition into connected components. The set of non-highest boxes in
columns of a component forms a set called the ezcrescence of the component.
(Compare [P-R2, Section 2]).

A 2-strip is a skew diagram with exactly two boxes in any (nonempty)
column.

A degenerate strip is a 1/2-strip with at most one box in a fixed row.

Fori = 3/2,1, by an eztended i-strip we understand a skew-diagram whose
certain (nonempty) amount of initial columns is a 2-strip (we call this set of
boxes the 2-strip of the extended i-strip) and, restricted to the remaining
columns, it is an i-strip (we call this set of boxes the i-strip of the extended
i-strip). In the pictures below, examples of an extended 3/2-strip and 1-strip
are displayed:

1

'We say that a skew diagram D is connected if each of the sets {i | 3; (¢,j) € D} and
{7 | 3: (4,7) € D} is an interval in the set of positive integers.



u l—strip

|

a 3/2—strip

Suppose that p® = (j11,..., ug), where k is even. We define [ - another
function of length in the following way: if ;. > 1, then l(Dﬁ) =k;if uyp =1,

then [ (D%) = k — 1. The same definition is valid for the diagram D3. (Here,

the function I( ) counts the number of nontrivial rows of DY, that is, rows

which have at least one box not marked with x - see Section 4.)

Now suppose that two shapes A and p are given. In what follows, by a
row without further indications we will mean a row in the top part and by
the A- (resp. p-part) of a row understand its restriction to DY (resp. D).

A row will be called ezceptional if its A-part contains strictly its u-part.

By a component we will understand a connected component of Dz \ D5.

A component will be called extremal if it meets the leftmost column.(Note
that there exists at most one extremal component).

We will say that a box t € D} U DL lies overa box b € Dﬁ, or that b lies
under t if t and the shifted b lie in the same column. Similarly, a subset T of
Di U D}, lies over a subset B of Dj if every box of T lies over some box of
B. For a set T contained in one row, we will say that T ends over B if the
rightmost box of T' (called the end of T') lies over B.

Also, for boxes b; and by from Df“ we say that by lies over (resp. lies
under) by if the column of the shifted b, is equal to the column of the shifted
b, and the row number of b; is smaller (resp. bigger) than the row number
of by in the increasing from top to bottom numbering of rows (see Section 4).

Suppose now that two subsets B, and B, of Dﬁ are given, appearing in
disjoint sets of rows of D,’j. We will say that B, appears/lies above By (resp.
B, appears/lies under By) if all the row numbers of boxes of B, are smaller
than all the row numbers of boxes of Bs. In particular, this definition applies
to the components.

The boxes from the difference DY, \ Df will be called (u — A)-bozes.



If the p-part (resp. A-part) of the shortest (i.e. the (m — n)-th) row ends
over the leftmost box of some row of D’ (resp. D}), then the latter row will
be called the special p-row (resp. special A-row).

Let us remark that if there exists the special p-row (resp. special A-row),
then u (resp. A) is of type 2; if the special row does not exist, then p (resp.
A) is of type 1.

HEEEEEEE

 the special p—row

In Definitions 3.1, 3.2, for technical reasons, by D5, (resp. D}) we under-
stand the diagram Dﬁ (resp. DY) with the last row removed provided it is of
length 1.

The component meeting the special A-row will be called the special com-
ponent.

Finally, in the present paper, the word “ diagram ” may be used in a
wider sense than usually; namely, by ¢ diagram we will mean a subset of D,,,
which is the union of connected subsets of rows of D, each starting from the
leftmost column. Thus a diagram is uniquely determined by the specification
of the lengths of its consecutive rows (using the row-coordinates explained in
Section 4).

}

Definition 3.1 pu is compatible with A if the following conditions hold:

(1) DY, > D and every component of D}, \ D3, which lies above the special
one, is a 3/2-strip. Moreover, D)\ D is a 1/2-strip.

(2) The A-part of at most one row ends over a component. Such a pair
will be called related ( i.e. the row is related to the component and the
component is related to the row).

(8) Each ezceptional row is related to a component over which its p-part
ends.

(4) If a (. — A)-boz lies over the component, then this component is nei-
ther extremal nor related and this box lies over the leftmost bor of the
component.
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(5) An excrescence can appear only in a related component, under the A-

part of the related row; no boz from the p-part of the related row lies
over the component.

Moreover, for the special component the following conditions are satisfied:

(i) If w, is of type 1 and wy s of type 2, then the special component is a
1-strip and all components below it form a 1/2-strip. Neither the special
component nor the components below it are related.

(it) If w, is of type 2 and wy is of type 1, then I(D,) — [(Dy) = 2; the
special component is an extended 3/2-strip. The lower 1-strip of its 2-
strip lies under the A-part of a row, and the excrescence of its 3/2-strip
is a degenerate strip appearing below the special p-row.

(iit) If w, and wy are of type 2, then the special component is a 3/2-strip
whose ezcrescence appears below the special p-row and is a degenerate
strip.

Definition 3.2 A shape u is o-compafible with A if the following conditions
hold:

(1) DY, > DY and the components of D5, \ D}, which lic above the special

one form a 1/2-strip. Moreover, D}, \ D} is a degenerate strip, and
D\ Dy, is a 1/2-strip.

(2) The bozes of D5\ D), lie over the components of D, \ D}. If a A-row
ends over the component of Dz \ D%, then its p-part also ends over this
component.

(8) The set of bozes of a component of DI\DY, over which no bozx of D{\ D},
lies, 15 a set of pairwise disjoint bozes, and it contains the leftmost boz
of the component.

(4) If a (i — A)-bozx lies over a component, then this component is special
and this boz lies over the leftmost bozx of the component.

Moreover, for the special and extremal components the following conditions
are satisfied:

(1) If wy, is of type 1 (and wy is of type 1 or 2), then the special and extremal
components satisfy conditions (1)-(4).
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(it) If w, is of type 2 and wy is of type 1, then the special component is
extremal and it forms an eztended 1-strip. The A-part of a row ends
over the rightmost bozx of the lower 1-strip of the 2-strip, and its 1-strip

satisfies (1)-(4).

(iit) If w, and wy are of type 2, then the extremal component is special and
it forms a 1-strip.

Our main theorem asserts the following:

Theorem 3.3 For every A€ P, andp=1,...,n,

(1)
o(N) -0y = 2090 (),
where the sum is over all p which are compatible with A, |u| = |Al +
I{(®) = 1(X) +p and e(), ) is the cardinality of the set of all components
appearing above the special one, which are not related and have no (p—
A)-bozes over them.

(2) For every A € Py,
o(A)-o =3 o),
where the sum 1s over all p which are o-compatible with A with |u| =
IA| 4+ 1(%) — L(A®) + (m = n).

In Section 7 we prove part (1} of the theorem. A proof of part (2) is
similar but much more easier than the proof of (1}, and it is omitted.

Example 3.4 m=7n=20
a(6//4,2) - oy = 20(7//5,2) + 20(7//4,3) + 20(6//6,2) + 220(6//5,3) +
a(5//7,2) +o(5//6,3) + o(4//6,4)

ofejefefe]e] | e[efefelele] | 200000 oje[ale]eafe]
a0a0 elejele o[efele olelefe
a0 ole ole ole

elefefoje]e eolefefe[s]|e ejefejele o

elefe]e 1] o(efele ] olefefe]| | |

oo oo ofe

Example 3.5 m=7,n=6
a(5//4,2) - o3 = 20(6//5,3) + 20(6//4,3,2,1) + 20(5//6,3) + 0(5//5,4) +
20(5//5,3,2,1) + 0(4//6,4) + 0(4//5,4,2,1)

elofefefe]| | olo(e|e|e oolo|ee ool
elo(eje o|o|e|e ] ele|e|e olofae] | |
oo ole oo ole
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Example 3.6 m=7,n=6
0(2//4,2)-03 = 0(5//4,2)+20(4//5, 2)+20(3//6,2)+20(3//5,3)+20(2//7,2)+
20(2//6,3) +0(2//5,4) + o(1//6,4) + 20(2//5,3,2,1) + 20(1//5,4,2,1)

ole | a0 ele ele
o(efofe olefefe| | olejejo]| | | elefojo] |
ele ole ole s[e
a0 oo oo ag
elejejo] | | | elejejo| | | olojejo| | olejoje] | |
oo ole oo ole

oo ag

slejoo| | olefefe] |

ole oo

L L

Example 3.7 m=7,n=5

05 -a =0 (follows from both the rules)

a(6,4//2,1) - o = o(7,5//2,1) + 0(6,5//3,1) + 0(7,4//3,1) + o(7,3//4,1) +
a(6,3//5,1) + o(5,3//6,1)

ojejefefo]o] | 000000 olefefefe]o] |
olefe]e olefe]e 000

°[e oo oo

® . a
olefefefe]e] | 330000 ols/ofefe]e
eoejole elefele olefe]e

0 | ee T ] ole [ 1]
hd Ad Al

4 Calculus of divided differences

Let us define “even orthogonal simple divided differences ” which are opera-
tors 0; : Z[X] — Z[X],i=1,...,m, of degree —1 acting on the ring of poly-
nomials Z[X] where X is a fixed set of indeterminates X = (z1,22,...,Zm).
We denote by s; the transposition (3,i+1) € S,, CW,i=1,2,...,m — 1,

13



acting on X by interchanging z; and z;.,; and by s,, - the reflection which
transposes x,,—; with z,, and changes the signs of both the variables; the
remaining variables are invariant. This action is extended multiplicatively to
the ring Z[X]. Simple divided differences for the even orthogonal group are
defined as follows:

3,-(f)=(f—sif)/(:c,-—:n,-+1), "’::11"':7”_1;

On(f) = (f = 8 f)/(Tm=1 + 2m).
For every f, g € Z[X], we have:

0i(f - g) = f-(Big) + (0:f) - (s:9) (1)
(a Leibniz-type formula).
For a given a = (a,,, am-1, - - ., a2,a1) € {—1,0,1}™, we define the gener-

ating function:
E, = H(l + a,':l?i).
1=1
In particular, for a = (0,...,0,1,...,1), where 0 appears (rn — n)-times and
1 occurs n-times, the resulting generating function, denoted by E, is the
generating function for the elementary symmetric polynomials in zy, ..., ;.

Lemma 4.1 a) We have s;(Fa) = Ea, where

ar_{(a'm:--‘:ai+2!ai:ai+1:ai—l:°-':al) r<m
(—@m=1, =y, 1) i=1m.

b) Fori=1,2,...,m—1,
ai(Ea) =d- Ea’ Zf a; = 241 + d (d = _2: _110: 11 2)1

where a' = (ay,...,0,0,...,ay) 18 the sequence a with a4y, «; re-

placed by zeros. In particular if A is a composition of some s- and
0-operations, then for every a, A(E,) = (scalar) - Ey, where a' is
uniquely determined if this scalar is not zero.

C) am(Ea) = (am + l':Im—l) ) E(O,O,am_z,,,.,u])- o

Let w be an element of the Weyl group W and let s;, ... s;, be its reduced
decomposition. There exists an operator 9y, 1= d;, 0...0d;, on Z[X] of degree
— I{w) which does not depend on the reduced decomposition chosen and
allows us to give an explicit description of the characteristic map

c: Z[X] = A'(F)
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in terms of Schubert cycles:

cf)= 3 Gu(N)Xu,

{(w)=deg [

where f € Z[X] is homogeneous and X, = [B~wB/B] is the Schubert cycle in
A*(F) corresponding to w € W (see [B-G-G, D2] for details). The following
lemma holds:

Lemma 4.2 (1) Forp=1,2,...,n,
C(GP(I11 e ?:En)) = X3n-p+l'-~-'5n-l'sn = UP € AP(G)‘

(2)

C($11+1 T mm) = (“‘Um—n(Xsn---nsm_z-am_: - Xsnn-.-sm_a-sm_z-sm) =J0.

Note that

Jp = X(l,...,n—p,ﬂ—p+2,...,u+1;ﬂ;n—p+l,u+2,...,m)
and
a = (_1)m_"(X(1,2,...,n—l,m;@;n,n+l,-..,m—1) - X(1,2,...,n—1,m;9;n,n+1,...,m—2,m)-

Suppose a shape p is given, which corresponds to the permutation w,.
Let us use the following coordinates for boxes in D}, and Df;:

m'—n. top

1 bottom

We associate with p a certain distinguished reduced decomposition of w, €
W. First, let us modify the diagram D), in the following way:

¢ Remove from D, the set of boxes with coordinates (a, b) satisfying the
inequality b — ¢ < n. (this is the same modification as in ”B&C-case”
— see [P-R2, Section 3}).

¢ Remove one box from each row of Dz : from rows with even number
remove the box in the m-th column, and from rows with odd number
remove the box in the (rn — 1)-th columnn.

15



We display the removed boxes in the picture using the symbol x and
denote the so obtained diagram by D,,.

Assume now, that a subset D C D, is given. A box belonging to D will be
called a D-boz and a box from the difference D, \ D will be called a ~D-boz.

Definition 4.3 Read 107,‘ row by row from left to right and from top to bottom.
Fvery D-boz (resp. ~ D-boz) in the i-th column gives us s; (resp. 8;). Then
3,? is the composition of the resulting s;’s and 0;’s (the composition written
from right to left).

Definition 4.4 Read la')#. Every D-box in the i-th column gives us s;. ~ D-
bozes give no contribution. Then, rp is the word obtained by writing the

resulting s;’s from right to left.(In other words, one obtains rp by erasing all
the d;’s from 87 ).

7654321

X[ x[e]e]e] |

X|e|® m=7n=2>5
o[X|® |

X[e[ Te p=1((6,4)//54,2,1))
X

X

TD = 84865587 555653 54" 355
3,?‘—“37034035036033034035037034035085032033034035

One can easily prove that if D = D, then rp € R(w,) ? — this is our
distinguished reduced decomposition of w,.

87654321

X[x[e[e]e]e]e] m=8 n==6

X[e]®

o[x[ele]e]e] w=1{(7,3)//(6,5,3,2))

X|e[e[e]e o
| X|® Wy = (1)5:8;7741 3:2)6)
X|®

Wy =7'Dn = 8785854555687 83-5485-56"'58"86"87°582°83°84°85" 8¢
Now we follow the same strategy as in [P-R2]; we choose a homogeneous
fr € Z[1/2][X] such that ¢(fy) = o(A). Then, for w € W, l(w) = |D,|, one

2For a given w € W, we denote by R{(w) the set of its reduced decompositions.
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has 8,(fa) # 0 iff w = wy and 9, (fy) = 1. We want to find the coefficients
m, in the expansion

c(fr-ep(T1,. ., T0)) = Z Mo (pL).

Proposition 4.5 In the above notation,
my, = Zaf(ep(ml, ce Za)),
where the sum is over all D C lo)y such that rp € R(w,).

Proof. See [P-R2, Section 3}. O

5 Ribbons

Let us fix an element wy € W™ In this section we treat a given reduced
decomposition wy = sj, - i, - ... - 8, as a sequence of simple transposition
operations, which produces wy from the identity permutation:

wy=(..((1,2,...,m) - 5;,)...) 8.

In the following, the simple transpositions involved will be called “the s;, -
operations” (h=1,...,1).

For a given wy € W the following proposition holds: (compare [P-R2,
Proposition 4.1])

Proposition 5.1 (1) Suppose wy = (Y1, Un—k}Zky -+ s Z1Vls+ -+ s Um—n)
is of type 1 (k is even). FEvery s; -operation appearing in a reduced
decomposition of wy belongs to one of the following types:

G (..,z,z,...) —(..,2,z,...) T # zj,ih <My
i) (..,vnx,. ) — (o) T # zj,v; and iy < m;
(iii) (...,a,b) — (...,b,@)

(a: b) = (zia 2i41), (2, Vm-n)s (Vmens 2i), (Trnmn, 2i), (zi:ﬁm-—n);
(iv) (. Ty o) — (o, 2, Ty - - -

T # vj, 2 and i, < m.

(2) Suppose wy = (Y1, s Unk;Zhks- -+ 213V -+, Um—n—1, Um—n) € W® s
of type 2 (k is odd). Every s;, -operation appearing in a reduced decom-
position of wy belongs to one of the following types:

G .. zez,..) — (2,2, ) T F Zj, i <M

17



(1)) (. vmen @y o) — (T Uy - -2 T # z; and iy < My
(iii) (...,v,z,...) — (.., z,v;,.. )
T ?I: Zj:”k:ﬁm—n and ih. <m;
(iv) (...,a,0) — (...,b,a)
(a:b) = (ziavm—'n)) ('Um—m zi) if zi < Uy
or
(a,b) = (2}, 2i.,) where {2} < ... <z} ={z1,. ., 2k Umn}
or
(a: b) = (Z,‘, Um—n.—l): (Um—n—l ) Z,;), (;ﬁrn—n—l) zi):
(ziaﬁm—n—l): (Zia'um—n) Zf Urn—n—1 > Vin—n;
V) (- Tz ) — (o 2, Ty - - 1)
T # 24, Um—n—1 > Um—n 60d iy < M.

Proof. (1) Acting from right on the identity permutation (1,2,...,m) we
want to obtain wy = (Y1, ., Ynk}Zks -+ 21, VL, - -, Um—n) (k is even). Let
us try first to compute the number of simple transposition operations which
are necessary for this purpose. Remembering that some elements receive bars,
we omit, for the moment, writing them for brevity. It is clear that we must
transpose each pair (z;, v;) where z; < v; at least twice (2 must receive a bar
and z; precedes v; in w,); each pair (z;,v;) where z; > v; at least once (v,
is preceded by z; in w,) and each pair (z;, 2;) where ¢ < j at least once (in
wy, we have the ordering 2y, ..., 2;). Moreover, we must perform at least one
transposition (y;, z;) if z; < y; and (y;, vi) if y; > v;.
In sum we need at least:

22#{(2{,?)3') | Z,'<'Uj} + Z#{(Zi,ﬂj) | Z,'>’Uj} -}
+ Y (e z) | i<} + 2 #{(vz) | z<w} +
+ > #Hpu) | gy >l = 2.§1aj + ibj = U w,)

operations. Here:

a; = #{wi | 1> J Awi > w;} by ={w; | 1>jAw <wj}
wy = (yls . ":yﬂ—k;_z—k}"'1fl;vl1 . ..,’Um_n) = ('Ii)ll}--- 313:11) 3
where (wy,...,wy) € Sy € = £1 and ¢; = —1 means that w; has a bar.

Therefore these transpositions exhaust all s;,-operations. It follows that
only the following pairs can be transposed by s;, -operations (recall that we
do not write bars for the moment):

18



(i) (zi,v;) twice if z; < v;: firstly z; moves forward (that is, toward the m-th
place), then v; moves forward; and once if z; > v;: v; moves forward;

(ii) (v, z;) once if y; > z;: z; moves forward;
(iii) (y;, v:) once if y; > vt v; moves forward,;
(iv) (z;,2;) once if z; < z;.

Now let us take into account bars. There is no possibility to make a
transposition (v;, v;); hence only vy, _, can receive a bar (and lose it before the
end of the process). There is no transposition (y;,y;) and every s;, -operation
moves y; backward. It follows that y; cannot receive a bar. Hence every
(si, = Sm)-operation is of the form described in (1)(iii). From (iv) we know
that the transposition (z;, 2;) can be performed no more than once. It follows
that there is no transposition (z;,z;) except (...2, ziv1) — (... Ziy1,Zi) Or
(...2z:,Z4...)...) = (...Z;,2...). Thus, if z is moved forward, then s;, -
operation, i, < m, acts as in (1)(i).

If v; is moved forward, then the corresponding s;,-operation, i, < m, is
of the form given in (1)(ii).

If v,,_,, receives a bar, then it must lose it. The element 7,,_, must be
moved toward the m-th place; for the same reasons as in (1)(i1), we have
T # Zi, Vj-

(2) Let us specify, as in (1), all transpositions which must be performed:

e cach pair (2;,v;), zi <vj, j =1,2,...,m —n — 1, must be transposed
at least twice;

e cach pair (z;, v,,_,) must be transposed at least twice if z; < vpp—,, and
once if z; > vVy_yp;

e each pair (2, z;) - at least once if z; < zj;
e each pair (y;, 2;) - at least once if 2; < y;;
e cach pair (yi,v;) - at least once if v; < y;
e each pair (v;, U;u—p) - at least once if v; > vy,

In sum we need at least

25 #{(z,v) | m<v} + P #{(z,2) | <z} +
+ S #{wz) Vui>zy + Y # ) 1 w>u) +
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+ Z#{(Ut’:'vm—n) I 'Ui>Um—n} = 2 Z (g + ibj = l(w,\)
j=1

e;=—1

operations. Here:

a,-=#{w,—|z’>j/\wi>wj} b_,-:{w,«|i>j/\w,—<wj}
_ - _ € €m
Wy = ('.Uh s Ynaky Zky -3 213V1, - y’Um—n—lrvﬂl—ﬂ) = (u}l) s ,'I.Um),
where (wy, ..., Wy) € Sy, € = %1 and ¢; = —1 means that w; has a bar.

Therefore these transpositions exhaust all s;, -operations.
As in the proof of (1), we observe:

1 o
20
30

40
50

60

There are no transpositions (v;,v;), 1,7 # m —n, (2, 2;), (¥, ¥5)-
Transpositions between z; and Z; are (... 2,%Z;...) = (... Zj,2i...).

If z; moves forward and z goes backward, then z # z;. (This proves

(2)().)
If v;, i < m—mn, moves forward and z goes backward, then = # z;, vpy—n.

If vy > Uyn—n_1, thenfori=1,2,... . m—n—1 we have no transposi-
tions (vi, Um-n) SO N0 ¥, ¢ < m—n, can receive a bar. If vy, < vp_p-,
then v,,_,_, can receive a bar. (This gives the operations in (2)(iv).)

If v,,_,_1 receives a bar, then it must lose it - this gives the operations
from (2)(v).

Corollary 5.2 (1) Let wy be of type 1. The following changes can be caused

by s;, -operations:

(i) move 2z, forward and v, backward;
(ii) move z, forward without moving any v,;
(iii) transpose, with changing the sign, a pair (a,b), where:

(a’ b) = (Zg, zi+l): (zii vm—n)a (ﬁm-—m Zi), (Z,', ij—n)
a and b are on the (m — 1)-th and m-th place respectively,

(iv) move T,y forward without moving any 2z, or v,.

(2) Let wy be of type 2. The following changes can be caused by s, -

operations:

(i) move z, forward and v, backward;
(ii) move z, forward without moving any v.;

(iii) move 7;, i < m — n, forward without moving any 2, 07 Vpm_n;
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(iv) transpose with changing the sign o pair (a,b), where:

(a,b) = (2, z{1), {21 <2y < ... <z, <z } = {21, ..., 2k, Umn }
or

(a’ b) = (zisvm—n)’ (vm—n)zi) '&f Zi < Upp—n

or

(a, b) = (zi: Um—n-l)’ (Um—n——l: zi); (zi: ﬁm—n): ('ﬁm—n-l; Z;‘)
3f Um—n~1 > Um—n-

Proof. : This is just a list of necessary operations appearing in the proof of
Proposition 5.1. O

Assume that a subset D C D, encodes a reduced decomposition of the
permutation wy (rp € R(w,)). Boxes of D (D-boxes) correspond to s;,-
operations appearing in rp. Corollary §.2 allows us to define the notion of a
mark. We will say that a D-box a has z-mark (resp. v-mark) j if z; (resp.
v;) is nontrivially involved in the s;,-operation associated with a. Also, we
say that a box a has 7-mark j (j = m —n, m —n — 1) if 7; is nontrivially
involved in the s;, -operation corresponding to a.

We say that a box a is a pure v-boz (resp. a pure U-boz with v-mark j) if
the associated operation moves v; (resp. 7;) forward (toward the m-th place).
In a similar way, a is called a z-boz if the corresponding s;, -operation moves
forward some z;. '

Definition 5.3 A z-ribbon (resp. v-ribbon, T -ribbon) with mark j is the set
of all bozes of D C D,, whose z-marks (resp. v-marks, T-marks) are equal to
j. The sum of v-ribbon and T-ribbon with mark j (j=m—n,m—-n—-1) will
be called a T/v-ribbon with mark j.

Proposition 5.4 (1) (Connectedness) The z-bores, pure v-bozes and pure
T-bozes with o fired mark form connected sets in each row.

(2) (Separation) In a fired row, any two sets of D-bozes are disconnected
(i.e. there is at least one ~D-boi between them ) provided:
e they are equipped with two different z-marks;

e they are pure v-bozes (or T-bozes) equipped with two different
marks;

e one of them consists of z-boxes with a fired mark and the second
of pure v- or U-bozes with a fized mark.
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(3) The z-ribbon with a fized mari?jj'i.s"cdﬁ't-d;h‘éd enzi.‘r:ely in the bottom part
of D, and is of the form:  _:

(tm, M) (tmezym = 2)(tim_g, 0 — 3) ... (t5,, 2;)

or
Emetym = D)(Em—2,m = 2)(Tm—s,m = 3) ... (;;, 2;),
where ty, <ty o <. <ty and T, <tpop <. <.

(4) The z-marks in a given column whose number is smaller than m, strictly
increase from top to bottom.

(8) In Df‘ only pure v-bozes or T-bozes appear, and in a fixred column their
marks strictly increase from top to bottom.

(6) If a D-boz a appears in the m-th column, then it has z-marks 1,1+ 1 or
z-mark i and v-mark j (resp. T-mark j), where j =m —n, m—n—1.
If b is a D-bor in the m-th column and the row of a is above the row of
b, then the z-mark of a is smaller than the z-mark of b.

Proof. Mimic the proof of [P-R2, Proposition 4.4 | and use Corollary 5.2.
O

Proposition 5.4 describes the behavior of z-ribbons in Df". It remains to
analyze the picture of v- and T-ribbons in D;br Since boxes marked with x are
removed from Df" , the T-ribbons are slightly irregular. For the convenience,
we simplify the pictures of ribbons in D and display them in the following
way:

XL |® ®
X ® ®
O .
X|®|® LAL 21
X
*x|® D -
X|® D S
o (X|e|® . eo|o|ele . ) n;'-r._
a real ribbon the ribbon after “ simplifying”

(We treat x-boxes as “real” boxes in DY and ”simplify”. the ribbons.)
Using this convention we can state a proposition which describes v- and
T-ribbons:

Proposition 5.5 Read the bottom part of U/u-ribbon with mark r. The graph
of the function:

z = the number of a boz in y = the colummn number of
the bottom part of the ribbon the box

for all x such that y < m, has the following properties:
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1° It is the union of sets of points of the form (which we will call a de-
creasing and increasing part of the graph, respectively):

y » . or . [}
each of cardinality > 1. (Note that the set consisting of a single point

only can be both an increasing or decreasing part of the graph).

2° No two decreasing (resp. increasing) parts of the graph can appear suc-
cessively.

3° The end and the beginning of two successive parts have the same y-
coordinate.

If y = m for some x, then, for x + 1, we have y = m — 1.
(Under this identification the function y(z) is decreasing on pure v-bozes
and increasing on non pure v-bozes).

(Compare [P-R2] , note that we do not draw the x-boxes and use the “sim-
plifying” convention for ribbons explained above.)
Let us display typical pictures of ribbons of different kind:

L

a z-ribbon a T-ribbon

s 4

a v-ribbon a T/v-ribbon




ﬁ—‘—.—{l the tail

]
*o—oo

The last picture shows the v,,_,-ribbon when w) is of type 2. In that case,
the v,,_p-ribbon can be decomposed into two parts: its z-part which looks
like an ordinary z-ribbon and the remaining part called the tail.

Propositions 5.4 and 5.5 allow us to control all diagrams D C D, such
that rp € R(wy).

At the end of this section we will show some important, for this paper,
operations on boxes and ribbons of D. These operations transform D C D,
into a new diagram D’ C D, such that if rp € R(w)) then rp € R(wj).

e (“Push down”) Assume that we have the following configuration: the
i-th row is a z-ribbon with a fixed mark.

PV
)

olelelelele I
100191019

X
[ ]
L4
®
®
[]
o

X X
X . X

Then we can “push down” the i-th row into the (Z + 2)-th row and
obtain a new set of boxes D":

X

-

X

@ -

[ 1D,

@ -

X
®
®

£
N

e (“Breaking a ribbon”) Assume that the following configuration of D-
boxes appears: a cannot be in the m-th or (m — 1)-th column, b is a
~D-box) or b is a x-box and ¢ is a ~D-box:

?[7]? [ale]elelelelele] ]

?7lc|b

Such an a will be called a breaking boz. Replace this configuration by:

?]7]? [ ]
?71¢c|b »

L 4
¢
[ ]
[ J
[ J
[ ]
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Using the Coxeter relations in W one easily shows that if rp € R(w,), then,
after breaking a ribbon, we get rp € R(w,). In the case of the push down
operation, it is clear that rp = rp/.

The third transformation is “an exchanging operation” and can be applied
only in case if w) is of type 2. In the definition below, we treat the x-boxes
as “real” boxes in D, - i.e. we use the simplifying convention for ribbons.
Suppose that w, is of type 2, all z-ribbons and the z-part of the v-ribbon with
mark (m — n) are the consecutive rows in DY starting from the first row of
the bottom part and the row of D} corresponding to the v-ribbon with mark
(rm —n) is not the first row of the bottom part. The following transformation
of a diagram D C D, will be called the exchanging operation provided the
resulting diagram D' is contained in D,:

e Transpose the z-part of the v-ribbon with mark (m — n) and the row
of D, appearing immediately above it.

e Add one D-box at the end of the z-part of the v-ribbon with mark
(m —n).

e Remove the rightmost D-box from the (1m — n)-th row of D}, to get D',

[ 1] 1]

Felek bk
o|x|o(so|e|ele|o] | o|X|#[eo|e|e][eje|e] |
X{es|se|e[0]|e]e X| s e[ele[e]e]e
* ol Kol el LaX Ead Ka¥ KNl
P Rl KN T XE[E[REE
o[X|e e|X|e®
X! X

Lemma 5.6 If D' is obtained from D via the ezchanging operation then rp
and rp are reduced decompositions of the same element of W.

Proof. Observe that rp and rp applied to the identity permutation give the
same barred permutation. Moreover, the cardinalities of D and D’ are equal.
Thus the assertion follows. O '

Definition 5.7 Assume that one is given a family of ribbons (or parts of
ribbons) which form consecutive rows of a diagram D C D,. The mazimal
deformation of this family is the diagram obtained in the following way:

o Take the last ribbon of the family. Push it down as many limes as
possible. Then choose the leftmost breaking bor and break the ribbon.
Choose the next breaking boz in the ribbon and continue this as long as
there exists a breaking boz.
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e Apply these operations to the next ribbon.

6 Lemmas about vanishing

In this section, we describe configurations of D- and ~ D-boxes in D, for
which Bf(E) = 0. We will say about a configuration with this property that
“it causes/gives the vanishing”. Let us start with a simple but useful lemma.

Lemma 6.1 Assume that rp € R(wy). The following configuration:

-3

? <[o]

(h)

cannot appear in Dﬂ, where a,b and ¢ have the column number h smaller
than m — 1 and:

1. a is a pure v-boz with mark smaller than (m —n), b is a ~D-boz and
¢ is a D-boz, or

2. a 1s a pure v-boz with mark (m — n), b is a ~D-boz, ¢ is a D-bozx with
a nontrivial z-mark.

Proof.

1. Since a is a pure v-box with mark different from (m — n), the operator
of a acts as:
(ccvmz.. )= (z. )

and z # v,. But the operator of ¢ moves 2 forward and z must be v,
or z, (b is a ~D-box, see Proposition 5.1); we get a contradiction.

2. The operator of a moves v,,_, forward and a certain z goes backward:

(o Ve, o) 2 (T Ve - L),

so £ # z,. But ¢ has a nontrivial z-mark and its operator moves z
forward so z must be z,, and we get a contradiction again. O

In almost all proofs in this section, we must apply compositions of the op-
erators of boxes of D, to the generating functions E,. The following example
shows how such operators act.
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Example 6.2 We apply the operators of bozes from left to right to E. and
obtain E. ; e denotes a D-boz and empty bozes are ~D-bozes.

m=9 a= (ag,ag,a-,,ag,a5,a4,a3,a.2,a1)
1. Action of the operators associated with a row in Df‘ :

987 654321
’
iX[xlxl.I.l.!.l I I a = (ag,(13,(1(;,(15,04,0,3,0,0,0)

2. Action of the operators associated with a row in Df":

9 8 765 4321
1xlﬂ.l.|.!.1 | I I a’=((13,(17,(16,(15,(14,0,0,0,0)

987654321

’.le.l.l.l.l.l.l I a’=(—03,07,(L5,a5,a4,(13,0-2,0,0)
9 8 7 654321
I.IXI.I.].I.I.I.I.I a’: (—-aa,a7,(1,5,a5,(1,4,(13,(12,(1.1,—ag)

9 876054321
!
[xl.l.l.l |’[.| I.I a :(0'870'7,0'6)0,‘14)&31Oaalyo)

3. Action of the operators associated with rows of D-bozes in Df‘:

a:( *)*!*7*7*1b * ) az(*7*,*‘b)*)*)*l*?*)
9 B 765 4321 9 87 6543 21
X|elo|o|e[e]@ efe o[x|eo[®lje[o[o]0o]e]
o|[X|o|e[a|wie|e xX|o|®le|e[e]ele
X eo|o|o|oie|e @iX|o|e|oie|e
o[x[e]|@|e]e X |[@l|®i|@]|®]| a

a' = (%, %, b, %, %, %, % %, %} @' = (%, %, %, %, D, %, %, %, %)

The symbols ® denote the operators which move b; in the second
picture, a’ is obtained after applying all operators of bozes preceding a.

Lemma 6.3 The follouwing configurations of ~ D-bozes in Df" give the van-
wshing:
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o] o[x[o] x|ele]
[o] [o X|o o[X
2.
ojo]o]o]eo]o]
o
[5)
o)
5l [o]
3.
ofofoJoJo]o o[eJoJofe]o]
° the row's end ° the row's end 1
o o)
o [2)
X0 xX|o
o[x x|o
Q ]

Lemma 6.4 The following configuration of ~ D-bozes in Dﬁ gives the van-
wshing: -

oj

Jo

Lemma 6.5 If 97(E) # 0, then the top segment of a v-ribbon (resp. the
Upm_n-Tibbon) is of the form:

|o[e[s[a[e][e]e]

-

Proof. See the proof of [P-R2, Lemma 5.5]. O

Corollary 6.6 If rp € R(w,) and d2(E) # 0, then
1. Dt C DL is the diagram of a strict partition.

2. D)\ D" is a 1/2-strip.
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Proof. 1. If D! is not strict, then there exists an s;,-operation which inter-
changes the pair (v;,v;); but this is impossible ( seec Proposition 5.1).

2. This follows from Lemmas 6.4 and 6.5. O

Lemma 6.7 Let 87 (E) # 0 and let A be the operator corresponding to the
top part of the diagram D C D,. Then A(E) =1 E,, where the sequence a
s defined as follows:

0 if h is the column number of the end of a row of DY,
ap = 0 if b is the column number of a boz in D, \ D,
1 n the remaining case.

Proof. We know from Corollary 6.6 that D' is the diagram of a strict partition
and D} \ D" is a 1/2-strip. The calculation from Example 6.2 applied to the
consecutive rows of D' gives the formula for a. O

For a given box a, let A, be the composition of operators of boxes pre-
ceding a in D,. It is clear that if 87(E) = 0, then there exists a ~D-box a
such that Ag(E) = ¢ By # 0 and 8;(E,) = 0, where j is the column number
of a. Such a box will be called bad. It follows that 67 (E) # 0 iff there
are no bad boxes in D, \ D. Corollary 6.6 gives a necessary and sufficient
condition for the absence of bad boxes in Df‘. The next proposition allows us
to decide whether a given ~D-box is bad or not. Suppose that the following
configurations of boxes are given:

(1) -
f5| 35|
€4 04 €4 [0
3 03 €3 (03
c2 02 c2 [0g
b1 01 X 1001
bzlbs [hq]a afx

Proposition 6.8 (1) Suppose that the column number of a is equal to h <
m. Then a is bad if and only if at least one of the following conditions
holds:

e ¢ and b are ~D-bozes or the rightmost D-bozes in their rows;

e ¢ is ¢ ~D-box or the rightmost D-box in the row , and, for some
1, ¢; 15 a ~D-box or b; is a ~D-boz;
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e b is a ~D-boz or the rightmost D-boz in the row , and, for some
7, 05 s a ~D-boz;

e There exist numbers i,j such that ¢; and 0;, or b; and ?;, are
~D-bozes.

(2) Suppose that the column number of a is equal to m. Then a is bad if and
only if at least one of the following conditions holds:

e ¢ and b are ~D-bozes or the rightmost bozes in their rows;

e ¢ 15 ¢ ~D-box or the rightmnost boz in the row, and, for some 1, 0;
18 a ~D-boz;

e b i5 a ~D-bozx or the rightmost bor in the row, and, for some j,
¢; is a ~D-boz.

Proof. (1) Let E, be the function obtained from E after applying the op-
erators of boxes of D;i and let A% be the composit of all operators of boxes
preceding a in Df. We want to calculate the components aj,,aj,, in the se-
quence a’ defined by A% (E,) = ¢- Ew. Clearly, a is bad iff @} = aj,,. Assume
that a = (...b...c...), where b = a, and ¢ = ¢, (s and ¢ are equal to the
column numbers of b and ¢, respectively). We know that b and ¢ are equal
to 1 or 0 (Lemma 6.7). Note that in A,, only the operators of the ?’s have
an influence on ¢, and only the operators of the h’s and ¢’s have an influence
on b. One has:

b= 0iff b is ~D-box or the rightmost box in a row in D;

¢ = 0 iff ¢ is ~D-box or the rightmost box in a row in D,{.
Clearly, aj,,, = a}, = 0 iff:

1. b=c=0;
2. b=0and 3; ?;is a ~D-box;
3. c=0and J; c¢;isa~D-box or b; is a ~D-box;

4. 3;; 0;is a ~D-box and b; is a ~D-box, or 0; is a ~D-box and ¢; is a
~D-box.

Observe that the operation associated with h; or b, changes the sign of b
soap, =—1or0andaj,, =0or1 (see Lemma 6.7 and Example 6.2). Thus
Ay = aj, iff aj,,, = @}, = 0. Thus (1) is proved. The proof of (2) is almost
the same and we omit it. O

It is clear that if 2 (E) = c- E, , then
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1. ¢ is a power of 2 (see Section 4);

2. if there exists at most one D C D, such that 97(E) # 0 and rp €
R{w,), then ¢ is equal to the multiplicity m,.

Suppose that A (E) = E, for a some ~ D-box a. We will say that a
is essential if Oy(Ea) = 2+ Eo # 0, where 0, is the operator of a. As a
consequence of the proof of Proposition 6.8, we have the following corollary
(in the situation displayed in pictures before Proposition 6.8).

Corollary 6.9 A boz a is essential if and only if:

1. The bozes ¢ and b are D-bozes but not the rightmost bozes in their
rows; the bozes ¢;, h; are D-bozes or x-bozes; and 9; are D-bozes (see
the picture before Proposition 6.8);

2. The bozes ¢ and b are D-bozes but not the rightmost bozes in their rows;
and the bozes ©; and b; are D-boxes.

7 Proof of the main theorem

In this section, we assume tacitly that rp € R(w,) and freely use the notions
associated with such a D in the earlier sections.

7.1 Case 1: w, and w, are of type 1

Lemma 7.1 Suppose w, and wy are of type 1. If BE(E) # 0, then there is
no s;, -operation supplying v, with a bar.

Proof. Suppose that some v, receives a bar. Then it must lose it (there is
no v, with a bar in w,). Then, the v-ribbon of v, looks like:

-
[sfele]o]o]o]0[0]0 jlol;

©

We thus obtain the vanishing by Proposition 6.8. O
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Lemma 7.2 If 0P (E) # 0, then the set of z-bozes Dz C DZ is the mazimal
deformation of D3 in DY,

Proof. First observe that the inclusion D§ C D,'j follows from the properties
of ribbons. Suppose that Dy is not the maximal deformation. So Dy is some
deformation of D% but not performed in the maximal way. The following
cases must be examined:

e There is a possibility of pushing down a row but we do not do it:

o|x|o[o[n]e | xX[e[e]ee]e |
X X
X X

We have the following cases:
- We do nothing:

o(x|[o|e|ofo]c] | X[e]e]oJo]o]c] |
Xl|a b a|X b
X X

— We break the ribbon from the first to the second row:

RO ] xX|e|o]e |
X [} 4 X ® ¢
a|X b X b

— We deform the ribbon from the first to the third row, but not in the
maximal way: '

o(x(o]® X[ ®
X ¢ a|X|e|®|b
a|x b|e|e X c|o]e®
ER J X|e
Xlbic a[X|h
aix|e|e|e|e X[c|ojo|o|e

In each case, ~D boxes a, b, ¢ give the vanishing (see Lemma 6.3). The
existence of these ~D-boxes follows from Lemma 6.1 and the separation
property for ribbons.
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e There is a possibility of breaking a row (or a ribbon) but we do not do
it in the maximal way:

xooooo_l oxoooo]

- We do nothing:

X|o[e]eo]e
a|x b X|a b

| J
-
L ]
X
L ]
[ ]
®
L J
-

— We break the row but not in the maximal way:

Xie[o|e]¢ | o[x[ele] |
a|Xx bje|e Xla ble|e

As before, using Lemma 6.1, the separation property and the fact that
no v, can receive a bar, we get the vanishing caused by a, b, c. It follows
that to avoid the vanishing we must perform the maximal deformation
of D},

(If we do not break, in the maximal way, the ribbon which has been
already deformed, then the situation is almost the same:

[e[e]e]e]
|’ o|lefofc
| ? a ble|e]e]e]

Here, a, b, ¢ cause the vanishing. O
Lemma 7.3 If 07 (E) # 0, then (D) ~1U(Dy) <1.

Proof. Suppose that {(D,) — [(D,) > 2. The following pictures, where only
the boxes in D, \ Dy are marked, will help to end the proof:

I |
[ | I I

olo]o]o]
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After the maximal deformation, we must obtain:

[ b[o] | b[0]

o] 1] af | ]

IX[~]X

Here, ¢ is always a ~D-box. If a is a ~D-box, then Proposition 6.8 gives the
vanishing. If a is a D-box, then it is a v-box and b is a v-box too. So 0 i1s a
~D-box and Proposition 6.8 gives the vanishing again. O

Corollary 7.4 There is no push down operation in the process of the mazi-
mal deformation.

Proof. The assertion follows from Lemma 7.3: the push down requires the
inequality {(D,) — (D)) 2 2. O

Proposition 7.5 If 8f(E) # 0, then the z-bores with the same mark can
appear in at most two successive rows.

Proof. If some z-boxes with the same mark appear in three different rows,
then we have the following situation (comparc [P-R2, Proposition 6.2}):

Y XX XY
7[7[6 & & & &
|
Y YN
[a]& & & &b
|
XYY

Then some ~ D-boxes q, b, ¢ cause the vanishing. If some z-boxes appear in
the rows which are not successive, then we have:

?

-~

2ddbdbobbiboa
ML X XXX X X INK
000000 90]a

717 b

XY XXXYYX)
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and the ~D-boxes a, b, ¢ cause the vanishing (see Lemma 6.3). In fact, this
proof is almost the same as the proof of Proposition 6.2 in [P-R2|. A possible
difference can appear only if the first breaking box of the z-ribbon is situated
in the m-th or (m—1)-th column. But I(D,)—I(D,) < 1, and, if the z-ribbon
meets (at least) three rows, or if it meets two rows which are non-consecutive,
then the first breaking box can lie neither in the m-th nor (m —1)-th column.
Thus the pictures above show all situations which can actually happen. O

Proposition 7.6 If 92(E) # 0, then D)\ D} is a 3/2-strip and its extremal
component 8 a 1-strip.

Proof. The latter assertion follows easily from Lemma 7.2, the proof of
Lemma 7.3 and Lemma 6.3. The extremal deformed component looks like:

X oloo]o]o]o] X olojo]ofc]o]
X o X o
X 0 | x| [o [
X|¢ X[ |©
x|o I_J X !—‘
X X |
X

Therefore, before the deformation, it must be a 1-strip:

o o] 0 0o

X[o X

The former assertion can be proved directly in the same way as the first part
of [P-R2, Proposition 6.7]. O

It follows from Proposition 7.6 that a typical nonextremal component
looks like (cf. [P-R2, the end of Section 3]):

the highest staircase — roof
the staircase = I:'
T

| J(— the excrescence

L]

A typical extremal component looks like in pictures (1) and (2) of the proof
of Proposition 7.6.
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Lemma 7.7 An excrescence can appear only under the roof of a deformed
component and there are no two bozes of the excrescence lying one over the
other. Moreover, the segment of a row between the staircase box and the
ezcrescence must contain a z-boz. (Compare [P-R2, Lemma 6.8] and the
picture above.)

We have proved that if 3:3 (E) # 0, then the positions of z-boxes are
uniquely determined. Now, we must determine the positions of v-boxes. We
will show that the condition 87(E} # 0 can be satisfied for at most one D
(that is, the positions of v-boxes are determined in a unique way too). We
will use Proposition 6.8 in the following situation:

&ooooo

Here, a is a ~ D-box and its column number is /i. D-boxes form a part of
a v-ribbon, and it is clear that A,(E) = E, where ap = 0. We need to
determine ay; if we want to know whether a is bad or not.

Lemma 7.8 No v-bor can appear in an ercrescence.

Proof. Use the separation property, the remark above and Proposition 6.8.
O

Lemma 7.9 A family of v-bozes can appear only in the roof of a deformed
component and it forms a segment starting from the leftmost boz of the roof.
No two pure v-bozes with different marks can appear in the same roof.

Proof. Use Proposition 6.8 again. O

Proposition 7.10 No two different roofs can contain pure v-bozes with the
same mark.

Proof. Analogous to that of [P-R2, Proposition 7.4]. O

Corollary 7.11 The marks of segments of pure v-bozes in the roofs of con-
secutive deformed components increase from top to bottom.

(Compare [P-R2, Proposition 7.4])
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Theorem 7.12 For given two shapes A, i, there exists at most one D C D,
such that 82 (E) # 0.

Proof. Analogous to that of [P-R2, Theorem 8.1]. O

Recipe 7.13 (Compare [P-R2, Recipe 8.4].) Let A, p be two shapes satisfy-
ing the conditions:

(1) D% > DY, D\ D} is a 3/2-strip and [(D,) — I(D,) < 1.
(2) The A-part of at most one row ends over a component.
The recipe 1s:

(i) Perform the mazimal deformation of DY in DY,

(ii) Shift the bottom part of D, together with the deformed DY. For every
shifted component of Dﬁ choose a row of D% which ends over the com-
ponent. Subtract the segment of the row, which ends over the roof and
push it down to the roof.

Lemma 7.14 If 82 (E) # 0, then:

(1) Di\ Dj is a 1/2-strip.

(2) No (i — A)-boz lies over the staircase of a related component.

Proof. Analogous to the one of [P-R2, Lemma 8.5]. O

Definition 7.15 Let wy and w, be of type 1. Then u is compatible with A if
(1) D% > D} and D%\ D3 is a 3/2-strip; D}, \ D§ is a 1/2-strip.

(2) The A-part of at most one row ends over a component. If a row ends
over a component we say that they are related. A component which is
related to some row 1s called related. Similarly, a row which is related
to some component 18 called related.

(3) Each exceptional row is related to a component over which the p-part of
this row ends.

(4) If a (u— N)-boz lies over a component, then this component is not related
and this bozx lies over the leftmost bozx of the component.

(5) An excrescence can appear only in a related component under the A-part
of the related row; no box from the p-part of the related row lies over
the ezcrescence.
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Proposition 7.16 There ezists (a unique) D C D, such that BE(E) # 0 if
and only if p is compatible unth A.

Proof. Suppose first that there exists D such that 97 (E) # 0. We will show
that p is compatible with A. Note that:

(1) holds because of Proposition 7.6;

(2) is a consequence of condition (2) of Recipe 7.13;

(3) follows from Recipe 7.13 and D C D,;

(4) follows from Recipe 7.13 and Proposition 6.8;

(5) is a consequence of Proposition 6.8.

Assume conversely, that (1) — (5) hold. We will prove that the set of
bad boxes is empty. First, observe that the extremal component is a 1-strip
— this follows from (1) and (5). Thus, the deformed component looks like
in the pictures preceding Lemma 7.7. It follows from Proposition 6.8 that no
box from the staircase can be bad. Suppose that a component is not related.
This means that no A-row ends over a component and if a ~D-box lies over
a component, then this box lies over the highest staircase. Thus no box from
the roof can be bad. If a component is related, then no box in the roof can
be bad (use (4) and Proposition 6.8), and no box from the excrescence can
be bad (use (5) and Proposition 6.8). There are no bad boxes in the extremal
component: this follows from (4) and Proposition 6.8. O

Let, for compatible z and A, D** denote the unique D from the propo-
sition. Clearly, m,, is the number defined by a;’f*'“(E) =m, - Ea. It follows

that m, is equal to 2™*#) where m(), 1) is the number of essential boxes.

Proposition 7.17 A ~ D-boz a is essential if and only if it is the highest
staircase box in a non-related component.

Proof. Use Corollary 6.9. O

7.2 Case 2: w, is of type 1 and w, is of type 2.

Lemma 7.18 If 37(E) # 0, then no s;, -operation supplies vm_n_1 with a
bar.

Proof. Suppose that v,,.,—; receives a bar. It follows that the T/v-ribbon
with mark (m —n — 1) must meet (at least) twice the m-th column. Thus we
have the following picture of the 7/v-ribbon:
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Here, a is a ~ D-box (w,, is of type 1 so a cannot belong to the v-ribbon
with mark (m —n)) and b is a ~D-box (use the separation property). Then
Proposition 6.8 applied to this configuration gives the vanishing. O

Assume that D C D, is such that 02(E) # 0. Let Dy C D% be the set of
all z-boxes together with the z-part of the v-ribbon with mark (m — n) (see
the picture after Proposition 5.5).

We will show that Dy is determined in a unique way provided D does not
cause the vanishing.

It is clear from Section 5 that by inverting the operations of breaking a
row and pushing down a row, we obtain the diagram, denoted by IV, in which
all z-ribbons and the z2-part of the v-ribbon with mark (m — n) appear as
consecutive rows. After applying the maximal deformation to D', we get a
certain new subset of D%; denote it by D".

Proposition 7.19 If Dy # D", then 82(E) = 0.
Proof. Analogous to that of Lemma 7.2, O
Proposition 7.20 If 9P(E) # 0, then I(D,) — [(D,) < 1.

Proof. Suppose that this is not true. Then the extremal component must
contain (after the deformation) one of the following two configurations:

[ alb] | clafb]
) o
o o

ofe olc]]

It is clear that a and b belong to D}, (w, is of type 1).
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(1) Consider first the picture on the left-hand side. If ¢ is a ~D-box, then
0 gives the vanishing. Thus ¢ must be a D-box and ¢ is a v-box. Moreover,
a belong to the same v-ribbon and b is a ~D-box which gives the vanishing
because of @ (see Proposition 6.8).

(2) In the case of the picture on the right-hand side, the argument is
almost the same: if ¢ is a ~ D-box, then ? gives the vanishing. If ¢ is a
D-box, it is a v-box and € is the rightmost v-box in the row: a and b are
~D-boxes. Therefore d gives the vanishing by Proposition 6.8. O

Before stating the next proposition, suppose that:
21 <2 <...<2p<VUpn < 2pt1 < ... < 2

and let u be the length of the z-part of the v,,_,-ribbon in D. The element
Um—n Must receive a bar before or together with z,,,. It follows that the rows
of the diagram D’ which is defined before Proposition 7.19, have lengths

m+l—z1<m+l-z<...<m+l-2z5 u, m+l—2zg <...<m+1-2

where ¢ < p.

We have D' C DY, because rp € R(wj). Let Dy be the diagram (contained
in D) with the row-lengths:

m+l—zi<m+l-z <...<m+1l-2p, u, m+l-—z,p <...<mM+1—2.

(Note that by inverting the exchanging operations, D) is gotten from D'.)
Conversely, applying exchanging operations to D} (in fact, it will be shown in
the next proposition, that we must perform all possible exchanging operations
to avoid the vanishing), we obtain the diagram D’. Then we deform the
diagram D’ (in the maximal way) and get D. We know (see Proposition
7.19) that D must be the maximal deformation of D' (in the opposite case
we get the vanishing).

Proposition 7.21 If 85 (E) # 0, then D is the result of following operations
applied to D):

(1) Apply the exchanging operation to D) as many times as possible to get
D'

(2) Deform D' in the mazimal wey to obtain D.

Proof. Part (2} has been proved in Proposition 7.19.
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For the proof of (1), observe that no push down operation can be applied

here because I{D,)—1(D,) < 1. Suppose that there is a possibility to perform
the exchanging operation and we do not do it:

xX|ejele]e]e]e]o[0]0] e[X[e]eje|e]e]0]0]0]
o|x|eo|e|e|o|O Xlie|e|®|®|O|O €— the spectal row

Then, after the maximal deformation, we get D in which the following con-
figuration appears (this is guaranteed by the absence of the push down oper-
ation):

}MOooogeE 1 1] eo[x[e]e]e]o 11
o|x|e|®|a Xo|o(o|a <— the special row

and the ~D-box a causes the vanishing ( see Proposition 6.8). O

Proposition 7.22 The bozes of D; can appear in at most two successive
TOWS.

Proof. Analogous to that of Proposition 7.5. O

Proposition 7.23 Dz \ D} is a 3/2-strip, the special component is a 1-strip
and all components below the special one form a 1/2-strip.

Proof. For all components above the special one the proof is the same as that
of [P-R2, Proposition 6.7 ]. Since w,, is of type 1, the length of (m — n)-th
row of Df‘ is bigger than the number of rows in Dﬂ. Hence, there exists a
~D-box (or the rightmost D-box) in the (m — n)-row of D}, over every box
appearing in the m-th column of Dﬂ, in the special row or below it. In the
picture, 1,2,3,4,5,6 are ~D-boxes and 1,2, 3,4, 5 lie over 1/,2', 3" 4", 5".

ofelel1[2[3]4[5]6]

¢

lolelele] | & the special A—row

lf

2'

3f

4] [—I_f 613 a ~D—boz (wy is of type 1)
5 ilies over ¢/

For the special row and the rows below we can apply Proposition 6.8 and we
obtain:
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(1) The wvy,_p-ribbon is equal to its z-part (if this is not true, then the
~D-box a causes the vanishing):

[o]e]e]e]e]e]0]

njelelefe]e]e]

(2) The deformed component below the special one is contained in a single
row (if this is not true, then the following configuration of boxes, in the
deformed component, causes the vanishing):

[e]e]e]e]e]O
Ole|aje[e]e]e]

It remains to prove that the special component is a 1-strip. It follows from (1)
that D} = DY. After applying the exchanging operations to D, we obtain
D' c Dfl and then we deform D' to D,. O

Corollary 7.24 If 0P (E) #0, then D} C D,

Proof. Recall that rp € R(w,), and hence Dy C Dfx' Thus D' C Dz. Since
D' is obtained from D} = D} by the exchanging operations, D% C Df,. (In
fact, it is true that if rp € R{w), then D C D% without the assumption
d2(E) # 0 but we do not need this result.)

Let us return to the special component. Look at the picture:

H—.—.—H—.-H-O—.—.—.—.—-—HOOO'
*0909-90900000 000900

(= = = = = = = — Jielel + the special row

The component must contain at least a horizontal strip; a is a ~D-box and
a must exist (C is connected). After the exchanging operations we get:

0 00 0 0

&>—8—8—0-—0-—0—0—-0—0-0
o9 990

®
® 9|0
® @®OC

4
4
4
4
4
)y
;
4
4
4
®
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It is clear that there is no deformation of rows (see (2) before Corollary 7.24).
Hence a causes the vanishing. It follows that the component C is a 1-strip
and the special row is the lowest row in C. O

We have a complete description of the connected components of Dz \ Db,
For the components appearing above the special one, Lemmas 7.7, 7.8, 7.9,
Proposition 7.10 and Corollary 7.11 hold true.

Theorem 7.25 For given two shapes A, i such that wy 1s of type 2 and wy, 1s
of type 1, there ezists at most one D C D,,, denoted D**, such that 92(E) # 0
(and rp € R(w,)).

Proof. It follows from Propositions 7.21 and 7.23 that Dy is uniquely de-
termined if 87(E) # 0 and rp € R(wy). Moreover, there are no v-boxes in
the special component and below it. Thus, arguing as in the proof of [P-R2,
Theorem 8.1], we infer that at most one D has the needed properties. O

Recipe 7.26 (Compare [P-R2, Recipe 8.4].) Let A, u be two shapes satisfy-
ing the conditions:

(1) D4 > DY, DY\ D is a 3/2-strip and I(D,) — I(Dy) < 1.
(2) The A-part of at most one row ends over a component.
The recipe 1s:

(1) Perform the exchanging operation to Dy as many times as possible to
obtain the diagram D'

(ii) Apply the mazimal deformation to D' to obtain the set D".

(iii) Shift the bottom part of the diagram DY together with D". For every
(shifted deformed) component of Dz choose a row of D}, which ends
over the component. Subtract the segment of the row which ends over
the roof of the component and push it down to the roof.

Lemma 7.27 (Compare Lemma 7.14.) If 02(E) #0, then:

(1) D, \ D5 is a 1/2 strip.

(2) No (u — A)-boz lies over the staircase of a related cornponent.
Proof. Analogous to that of [P-R2, Lemma 8.5 ].

Definition 7.28 Let wy be of type 2 and w, be of type 1. Then, p is com-
patible with A if
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(1) D% > D§ and D%\ D§ is a 3/2-strip; the special component is a 1-
strip; the components appearing below the special one form a 1/2-strip.
Moreover, D!, \ D} is a 1/2-strip.

(2) The X part of at most one row ends over a component, the special com-
ponent and the components lying below it are not related.

(3) Each ezceptional row is related to the component over which the p-part
of this row ends.

(4) If a (n— A)-boz lies over a component, then this component is not related
and this boz lies over the leftmost boz of the component.

(5) An ezcrescence can appear only in a related component under the A-part
of the related row; no box from the p-part of the related row lies over
the excrescence.

Proposition 7.29 (9,?”‘ (E) # 0 if and only if u is compatible with .

Proof. We can almost repeat the proof of Proposition 7.16. The main dif-
ference between Definitions 7.15 and 7.28 is the addition to (1) and (2) the
conditions for the special component and for the components lying below
it. These modifications are necessary by Proposition 7.23. The only thing
which must be proved is that (1)-(5) imply the non-existence of bad boxes
in the special component and in the components below it. But this is clear
by Proposition 6.8. O

Proposition 7.30 One has m, = 2™ where m(A, i) is the cardinality
of the set of non-related components above the special component, with no
(1t — A)-bozes over them.

Proof. Each essential box gives the multiplicity 2. Essential boxes are the
highest staircase boxes in non-related components, with no (¢ — A)-box over
them. No essential boxes can appear in the special component and below it
(see Proposition 6.8). O

7.3 Case 3: w, is of type 2 and w, is of type 1.

Lemma 7.31 If 87 (E) # 0, then the T/v-ribbon with mark (m — n) meets
the m-th column no more than twice.
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Proof. Suppose that this is not true. Then the T/v-ribbon meets the m-th
column at least four times (w, is of type 1 and w,,_, has no bar).

[o]oJofo]o]o] 4+ A

[0] « B

The empty places in row A can be occupied neither by v-boxes nor z-boxes
(in the opposite case we get the vanishing by Proposition 6.8). A ~D-box in
row B must exist because Df‘ is the diagram of a strict partition. But this
configuration gives the vanishing by Proposition 6.8 applied again. O

Now, let us consider separately the following two situations. Firstly, as-
sume that v,,_, can receive a bar in the process of transforming the identity
permutation into the permutation w,.

Proposition 7.32 If the 5/v-ribbon with mark (m — n) meets the m-th col-
umn twice and 8£ (EY} # 0, then the positions of z-bozes in Df‘ are uniquely
determined.

Proof. Assume that the ¥/v-ribbon meets the m-th column twice. This
means that v,,_, receives and then loses a bar. A typical situation is shown
in the picture:

le]e[e]e] Athe i—th row
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In the i-th row, only D-boxes from the 7/v-ribbon can appear; so if 97 (E) #
0, then our configuration looks like:

< the i—th row

There are no ~ D-boxes in the area marked with “x” (this follows from the
properties of ribbons).

In area A, only D-boxes can appear.

In the area marked with “?”, there is no more than one ~ D-box in a fixed
row (see Proposition 6.8).

If a ~D-box a appears in “?” | then there is no ~ D-box over the leftmost
box of the row of a.

Therefore, if 6:? (E) # 0, then the part of the diagram D, below the i-th row
looks like:

— of[oJoJoJo]ofo]oJo]o]o]Jo[o]o]o]o]  the i—throw

the special p—row

(The z-ribbons are rows, the pure v-boxes with mark (m — n) appear in
precisely two rows (in the i-th row and some lower one), single ~D-boxes can
occupy rows below the i-th one and the special y-row. We want to translate
these conditions into the initial shape-data. Let us remove from the diagram
all D-boxes with (pure) v-mark (m — n). The lengths of the z-ribbons are
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equal to the lengths of the rows of D;:

oloJo[o]olo]c]o]olo[o]o]e]o]o]o]o[o]e]o]o]o]  the i—th row

the special u—row

ofo|o]o]o[o|o]ofolo|o]o]o]

—

Therefore, the extremal component of D? \ D is an extended 3/2-strip and
looks like:

_l the i—th row

the special p—row

&)

o] a 3/2-strip

Let us fix ¢ as above.

Corollary 7.33 1. The i-th row is the highest row of the extremal com-
ponent.

2. In the diagram D C D, the positions of bozes of the vy,_p-ribbon are
uniquely determined.

Arguing as in case 1, one can prove that for the remaining components of
D} \ D}, conditions (1)-(5) of Definition 3.1 hold true.

Proposition 7.34 If the T/u-ribbon with mark (m — n) meets the m-th col-
umn twice and, for some ¢, OF (E) = ¢ Ea # 0, then:

(1) D is uniquely determined.

(2) The estremal component of D% \ D} looks like the one in the picture
above, that is, it is an eztended 3/2-strip such that the ezcrescence of
the 3/2-strip appears below the special p-row and is a degenerate strip.
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(3) The (m—n)-th row ends over the extremal component and the rightmost
D-boz of this row ends over the rightmost D-boz of the lower 1-strip of
the 2-strip (of the extremal component).

(4) The remaining components satisfy conditions (1)-(5) of Definition 8.1.

It is easy to see that conditions (2) — (5) of this proposition are sufficient
for the existence of a subset D C D, which gives a non-zero multiplicity in
our formula.

Now we must examine the case when the 7/v-ribbon with mark (m — n)
does not meet the m-th column. Observe that this is a situation similar to
case 1 when w, and w, are of type 1. The main difference is that the length
of the (m — n)-th row of D! is smaller than I(D},) + 1.

Proposition 7.35 If 07(E) # 0, then the set of z-bozes Dy C DY, is the
mazimal deformation of DY in D},

Proof. The v-ribbon with mark (m —n) does not meet the m-th column and
all arguments of the proof of Lemma 7.2 can be repeated. O

Proposition 7.36 If 9°(E) # 0, then I(D,) — I(D,) = 2.

Proof. The inequality [(D,) —I(D,) > 2 means that there exist at least three
rows with ~ D-boxes in D\ D}. We know from Proposition 7.35 that, to
avoid the vanishing, we must perform the maximal deformation of DY in D},
Moreover, the following result holds:

Proposition 7.37 If GE(E) # 0, then the z-bozes with the same mark can
appear in at most two SUCCESSIVE TOWS.

Proof. Analogous to that of Proposition 7.5. O
Therefore, after the maximal deformation, we have the following configu-
ration of boxes:

o[o[o]o[c]o]0] ](i) oJoJoJoJofo]o] I
o 0
x[o [ o[X [
o|x|oJelolo]o] (7) [X]e[o]e]e]e}o]
[ [
?[7]o]o] 0 [212]o]o]
[ I
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It follows from the properties of ribbons that the v-boxes with mark (m —n)

can appear only in the z-th row. But then the j-th and [-th rows consist of

~D-boxes (no v-boxes can appear there) and we get the vanishing. O
From Proposition 7.37, we infer:

Proposition 7.38 If92(E) # 0, then every component of D)\ D} appearing
above the special one is a 3/2-strip satisfying the conditions of Definition 8.1.

Proof. Analogous to that of Proposition 7.5 (use Propositions 7.35 and 7.37).
O

Tt follows that I(D,) — I(Dy) < 2. Suppose that I(D,) — I(D,) < 2. In
this case, there is no push down operation in the process of the maximal
deformation. Since w,, is of type 2 and w, is of type 1, the (m — n)-th row of
DL is exceptional. But the partitions u® and A® have equal lengths and there is
no component of D'f‘l over which this row ends. Hence it is impossible to obtain
D ¢ D, satisfying rp € R(wy) if {(D,) = (D)) < 2. Thus I(D,) —I(D,) = 2.
(]}

Proposition 7.38 gives necessary conditions for the non-vanishing. Note
that an excrescence can appear also in the extremal component.

Proposition 7.39 If 7(E) # 0 and the v-ribbon with mark (m — n) does
not meet the m-th column then D is determined uniquely.

The proof of this proposition is the same as the one of [P-R2, Theorem 8.1].
See also Lemmas 7.7 — 7.9, Proposition 7.10 and Corollary 7.11. O

It is clear that the unique D satisfying the condition: the v-ribbon with
mark (m—mn) does not meet the m-th column, can be obtained by performing
the operations of Recipe 7.13 to shapes A, p for which:

1. D% > Dj; the extremal component is special and forms a 2-strip; the
remaining components of Dz \ Df are 3/2-strips.

2. At most one row from D} ends over a component.

(Compare with (1),(2) in Recipe 7.13.)

Theorem 7.40 There ezists at most one D for which 97(E) # 0 (without
any assumptions on the v-ribbon with mark (m — n)).

Proof. Suppose that the extremal component of D, and D, looks like that
in the picture before Corollary 7.33. Apply Recipe 7.13. We get the following
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configuration of boxes:

o[eJeTefeteTelolo[c olo[o]o]
o]
o] o]
o [o]
o[x
xX|o OIOIO 0]0]0 +the rightmnost boz of the 2—strip

This configuration gives the vanishing. Hence, it is impossible that the pair
Dy, D, satisfies the assumptions of Proposition 7.34 and, applying Recipe
7.13, we can find D' # D such that 82 (E) #0. D

Definition 7.41 A shape p is compatible with A if

(1) We have DY D D5 and every non-special component of D\ DY is a
3/2-strip; moreover, D}, \ DY is a 1/2-strip.

4

(2) The A-part of at most one row ends over a component. If the A-part of a
row ends over a component, then we say that the row and the component
are related. A component which is related to some row s called related.
Similarly, a row which is related to some component is called related.

(3) Each ezceptional row s related to a component over which the p-part of
this row ends.

(4) If a (1e— A)-boz lies over a component, then this component is not related
and this boz lies over the leftmost box of the component.

(5) An excrescence can appear only in o related component under the A-part
of the related row; no box from the p-part of the related row lies over
the excrescence.

(8) The eztremal component is special and is an extended 3/2-strip such that
the excrescence of the 3/2-strip is o degenerate strip. The lower 1-strip
of the 2-strip lies under the A-part of a row.

It is easy to see that the extremal component has no influence on the
multiplicity m,,.

Theorem 7.42 If wy is of type 1 and w, s of type 2, then m, # 0 iff
i is compatible with X. In case (a) of Definition 7.41, m, = 2" where
m(A, ) is the number of non-extremal components which are above the special
component and have no (jn — X)-bozes over them.
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Proof. Observe that the only difference between case 1 where wy and w, are
of type 1 and the present situation, is that the length of the (m — n)-th row
of D}, is smaller then I(D%)+1 and the extremal component does not need to
be a 1-strip. Hence (1) — (5) are necessary ~ the arguments are the same as
in case 1. In the deformed diagram, the (m — n)-th row of D ends over the
leftmost box of the top row of the special component and the (m — n)-th row
of D:‘ ends over the special pu-row. We conclude the proof using Proposition
6.8. O

7.4 Case 4 : w, and w) are of type 2

Lemma 7.43 If 3}2(5)) # 0, then no s, -operation can supply vy_,—; with a
bar.

Proof. Suppose that some s;,-operation supplies vp,_,-; with a bar. Then
the v-ribbon with mark (m —n — 1) meets the m-th column at least twice (in
the barred permutation wy, ¥m—p—1 has no bar):

eleJoJoJoJo]0]
_/ 7]
BN
|

We get the vanishing by Proposition 6.8. O

Lemma 7.44 If 07 (E) # 0, then the vy, _,-ribbon meets the m-th column no
more than once.

Proof. Analogous to that of Lemma 7.31. O

Now, let us assume that D C D, is such that 87(E) # 0. Let Dy be
the set of all z-boxes together with the z-part of the v-ribbon with mark
(m — n). Let D' and D" be as in Subsection 7.2, between Lemma 7.18
and Proposition 7.19. We state the following proposition {whose proof is
analogous to Proposition 7.19).

Proposition 7.45 If Dz # D", then 37(E) = 0.
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Proposition 7.46 If 92(E) # 0, then I(D,) — I(Dy) < 1.

Proof. Suppose that [(D,) — I[(Dy) > 2:

X|o
X
</
X

If ¢ is a ~D-box, then we get the vanishing. If ¢ is a D-box, then it is a v-box
with mark (m —n — 1) but in this case ~D-boxes from the (m —n — 1)-th
row give the vanishing. O

This present case and case 2 are quite similar; essentially the same argu-
ments show:

Proposition 7.47 If Bf(E) # 0, then Dy 1s the result of the following op-
erations applied to D :

(1) Apply the exchanging operation as many times as possible and denote the
so obtained diagram by D'.

(2) Deform D' in the mazimal way to obtain Dy.

(Compare Proposition 7.21)
Proposition 7.48 Dz-bozes can appear in at most two successive rows.
Proof. Analogous to that of Proposition 7.5. O

Proposition 7.49 (1) An ordinary component of D5, \ DY is a 3/2-strip.
(2) The special component is a 3/2-strip whose ezcrescence appears between
the special p-row and the special A-row and is ¢ degenerate strip.

Proof. The proof of (1) is the same as that of [P-R2, Proposition 6.7]. For
(2) let us divide the special component into two parts: the “upper part”
consisting of boxes in the special A-row and in rows above it; and the “lower
part” consisting of boxes below the special A-row. Perform the exchanging
operations (this is necessary to avoid the vanishing - see Proposition 7.47).
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The set of boxes of the special component can break up (or not) into some
number of disconnected sets:

jo o 0

[ o]

0 of

Joooo

o 0O
i

[c o000 00]
o

fo

o 00

After the maximal deformation we get:

[oc o oo o0 o]
o]

lo

]

0 0 O O]
lof |of

In general, from the lower part of the special component, we get the set of
the form:

oJoJo]c]o]ofo]e]o]0]
[

and the special A-row ends over its roof. It follows that the tail of the v-ribbon
with mark (m — n) must appear in the roof:

oo oo o9 o-oel9/0[0[0[0[0|0]| +nov—boxes

NHEE +v—bozes must fill up the roof

Note the following two facts which are consequences of Proposition 6.8:
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1. No ~D-box can appear in the part of row marked with “?” as well no
~D-box lies under a box marked with “7”.

2. No ~D-boxes can appear in the special row and in the rows above it.

Hence, the following picture shows a special (deformed) component without

bad boxes.
eleere e e alelelele/0[0[0[0[0[0[0[0[0]

=

o|ejele|

0

° [

of |

It follows that the nondeformed special component looks like: -

[ 1]

«— the special p—row

o]

o]

+ the special A—row

O
Corollary 7.50 If 0P (E) # 0 (and rp € R(wy)), then D} C D,

Proof. This follows from Proposition 7.49 and the properties of z-ribbons.
O

Theorem 7.51 For given shapes A, p such that wy and w, are of type 2,
there exists at most one D =: D** such that 37 (E) # 0 (and rp € R(wy)).

Proof. It follows from Propositions 7.47 and 7.49 that the positions of z-
boxes and boxes of the v-ribbon with mark (m — n) are uniquely determined.
Using the arguments as in the proof of [P-R2, Theorem 8.1], one proves that
the positions of v-boxes with mark different than (m — n) are also uniquely
determined. O

Recipe 7.52 Let A, pu be two shapes satisfying the conditions:
(1) D% > DY, D%\ DY is a 3/2-strip and (D) — (D) < 1.

(2) At most one row from DY ends over a component.
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The recipe is:

(i) Perform the exchanging operation as many times as possible; call the so
obtained set D'.

(ii) Perform the mazimal deformation of D' in Dﬁ but do not change the
spectal A-row; denote by D" the result of this deformation.

(iii) Shift the bottom part of the diagram Df’ D D", For every component,

i
choose a row of DL which ends over the commponent. Subtract the seg-

ment of the row which ends over the roof and push it down to the roof.

(iv) Repeat (iit) with the special A-row and the bottom part of the special
component in Df:.

Lemma 7.53 1. If02(E) #0, then D]\ DY is a 1/2-strip.
2. No (i — A)-bozx lies over the staircase of a related component.

Proof. The assertions follow from Corollary 6.6, Lemma 6.7 and Proposition
6.8. O

Definition 7.54 Let wy and w, be of type 2. Then p is compatible with A
if:

(1) Db > DY and D\ DY is a 3/2-strip; the special component is a 3/2-strip
whose excrescence appear below the special ji-row and is a degenerate
strip; moreover, D! \ D 1s a 1/2-strip.

(2) The A-part of at most one row ends over a component. The special
component is not related.

(3) FEach exceptional row is related to a component over which the u-part of
this row ends.

(4) If a (11— A)-boz lies over a component, then this component is not related
and this boz lies over the leftmost boz of the component.

(5) An ezcrescence in a non-special component can appear only in a related
component under the A-part of the related row; no box from the pu-part
of the related row lies over the excrescence.

Proof. Observe that the only difference between this case and case 2 is the
condition about the absence of bad boxes in a deformed component. O
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Theorem 7.55 One has 3fﬂ'A(E) # 0 if and only if ;1 is compatible with
A. In this case, the multiplicity m, is equal to the number of non-related
components above the special component, with no (u — X)-bozes over them.

End of the proof

Observe that the differences between results for cases 1-4 occur only for
the special component and components lying below the special one. The
equivalence of Definition 3.1 and the definitions of compatibility for cases 1-4
is obvious.

Remark 7.56 In [S], the author, using the linear algebra methods, proves
some partial result about the intersection theory of G: the so called “triple
intersection formula”. His theorem gives necessary (but not sufficient) con-
ditions for a nontrivial intersection of two arbitrary Schubert cycles with the
special one (special cycles in [S] are equal to the Chern classes of the univer-
sal quotient boundle on G). This result, however, gives no information about
the multiplicities occuring in the intersection and does not imply a Pieri-type
formula.

7.5 Examples

In this subsection we will show the examples of pairs of compatible diagrams
DY, and Df in cases 1 — 4. We also display the resulting deformed diagrams
D C Dy, such that 8P (E) # 0 and 7p € R(wy).

(1) Case 1: w, and w, are of type 1.

A = ((21,11)//(22,20,17,15,13, 12,8, 6, 3)),
p=((18,11)//(23,22,19,17,16,12,11,8,6, 3)),
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We perform the maximal deformation of D in D?:

"o

olelelelelelelelelelelealealelelele-o o

g

L 28 Bl Bl Bl Bl Bl Bl Bl B

a3

X|X| 810161018010 01¢ il Bl Bl Bl Bl Bl Bl g

X | oteoleoieo oo 0oleloie

s-leleleleleleleleilieolelelelelelslelelelae

wielse!'seslelelelselelelelelele!leleale!ls!lels
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ot vlelelealelslelelelelels
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L Airaue 4
X16161918
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elvwlelea

L 4

The final deformation of the v-ribbons looks like:
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(2) Case 2: w, is of type 1 and wj is of type 2.

(24,7)//(24,21,18,17,15,13, 11,9, 4)),

(
(

= ((21,11)//(24, 23, 22,17,16,15,13,9,7, 3)),

A
7
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We perform the exchanging operation:
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(3) Case 3: w,, is of type 2 and w, is of type 1.

T/v-ribbon meets the m-th column twice.

First part of case 3 :

(22,15)//(24,23,19,17, 14,13, 10,8, 4,2)),

(
(

= ((24,5)//(22,20,17,14,11,8,4,2)),
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The resulting deformed diagram looks like:

((19,13)//(20, 16, 14, 11, 10,9, 6, 3)),
= ((23,9)//(20,19,16,15,11,9,7,9,6,4, 3)),

The second part of case 3: v,,—, does not receive a bar.

oleoleleleleoleo—o—oa——e

A 4

A 4

. 4

>

g

@

*

N g

N

ad

@

.

A
7

olelelelelele

bl Bt Bl el Bl Bl Bl Bl Bl Bl Bl Bl Bl B 4

L an A0 S0 A5 4 5d Bud B Bodih . g J

‘Lelelele

XX

X oleleleoleleoioloieoooe

ol ileleleoiolelelelelelelelelelelelelele
L AFas e A A0 S0 05 8 b BBl Bl Bl Bl Bl Bl Bl Bl Bl Bl Bl B

seleolelolo-lo-le-leolelelelelelelele

X118 1919191810100

ebdlelelelelelelelelelelele

LaF YR AR an an an o an g

Ywlelele eolelelelelele
XTOT81 9191918

el vlelelelelelelele
L 2 Vel Bl Bl Bl Bl Bl Bl B

vele-lelo-olelelele
X1 rere e e

haffl E4

We perform the push down operation:

oleleleleleleleleleleolelele—o-o-o

9

L 2R 8l B B Bl Bl Bl B

LA AR AR SR SR s an an an

slelelelelelelele

X[ X[o[eTeelele e oo oo e o]eo-o-o

x| o{o+o1o oo leoieoleo o oo

slyvwle'lelelelelelelels!'s!le!leslslelelolele

VAT F P rrrSrr r r r rNrerIrary

vl o-l-ol-oloielelelelelelelelelels
EaS Al el B B Bl Bl Bl Bl Bl Bl Bl Bl Bl B
b leleleieiolelelelelelele

L ar Sn an an Sn Sl an n

wvleleleleleleleleleles

TN

wleolele!lelelelele
D Bl Bl B B Bl Bl Bl B
L ar.us an an an J

etvwlelelele
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We break the ribbons:

o]
o |e
s |é
® [ ]
¢ |é
(¢] ¢
4] [¢ ’
(4]0 8]
$lo o]
$loleé[¢]e
ole[e[¢[¢[e]e
eje|é[e[e[do[e
sle[e[e[d[é]é]e
sje[e[d[e[é]e]e
sjel(e[é[o[é[[e] [o
slele[é[e[é[o]e] [¢
slelelé[d[élo[e] (¢
olo[e[eidlé[d]e b
x|é kel kleX[e
X|X|e|X|o|X|®|X x

We deform the v-ribbon from D*:

olelelele
L an an an an 4

e

9

Sl lelela

91919

olelslele
g

¢lolele

Lo Bl Bl Bl Bl Bl Sl B Bl Bl Bl B |

xx------g-l-]-l-l-l I

X[elelelelolololy

@111 8T
wvielelsleleles
P Bl Bl Bl Bl Bl B

-l elelele
L arava on ok o g

Yilelelele
X1 181918

a-ile-le
Larien an g

XTeTe e e e

4) Case 4: w, and w), are of type 2.
'

|

e

¢

¢

4] [e

¢ e

4] [

¢] [e]e

&) [e]e]e

(o] [¢]¢]e

o [¢]e]@

| [¢[¢[¢]e

o] [d[e[e]e

6| [¢[e[eie]e

ol [¢]o[e|e[e

¢ [o/é|¢]|e[e]e

& [¢[e]e[e(e]®

4| [¢|e(d[¢[d({e{e

¢ [old[e[é[e]d]e
¢l(olejd(eié[e[d]é[0
¢siele[die(ee[dd|e]e
s[elejoNje[e(e(o[d]d
sjele[s]d[N]e[ele]e]e
ejeléle[e[d[Nele[e]e
Xio|X|e|X|®|X X|® X
XIX|® | X|®|X|e]|X|e|Xe®
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We apply the exchanging operation:

fo]

&1 [ ]

o] [ |

& e

& [¢

4] [¢

4] [o]e

4] [¢]é]e

(o] [e¢[¢]e

¢! [o]e]e

4] [e[e]e] [o
CIMCICICIEL)

(o] [¢[e]e] [¢]e

4] [¢]e][e[e]é]d
CImCICICICICILIN)
CIMCICICICICICIE)
CINCICICIEICILIE)
EIRCICICICICILIE)

o) |e[e|ole[e]e(e]e
6] [¢]¢]oie[e]e[e[e]e
¢ [e[d[o]e[o|e]o]e|e
¢lolele[o(¢[d[0]s|e]e
L 2T AL ] LILICIL AL AL AL
Xjex|ek|e[X|e[Xx]|¢lX
XiX|e|X{eo[|X|®|X|@®|X|®

We apply the maximal deformation:

1]

L an an an an /

L A0 A0 AL AL AL AR AL AR AR SR S SR SR AR 4

alelelelelelelelelelelelelelele
L AR 4N G2 SR S8 AR SR aa an an an an an s an )

EA)

X[l le el [eTele[e[sTe o Telelo[sToToTol0]

x|eTely

ebileleleleleielelelelelelelelelelelele

XTO1019181ee

ol vlelelelelelelelelelelelele

L e Bl Bl Bl ol Bt

wlelslelelelieleoleoleleole+e

AT 191918199191 919019

eoblelelelelelelelele

ST 9191818919191 9

wlelele'le
XTeo1e&

We deform the v,,_,-ribbon:

[ ]

.

[

910191911 eee

oleolelelel'esl eoleolelelelelel elele

019191910000

o

olelelelelelelelelelelelelelele

Za)

X[X[eelelelels[ofels[e s o s [s]o s o To[s[o1o3]

x{otote

o-bdleleleleleileleleleolelelelelelsle

obileleleleleleldlelelelelele

XXT8191®
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wielelelelels
KT T8 1081010

el lelelele

OO0+ 0101 01 §,06.00

vlelelele
XTe1 e

el ele
w75
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