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In the present paper, we complete our prograIn of finrling Pieri-type formulas
for homogeneous spaces of the form G / P 1 wherc G is a classical semisimple
algebraic group anel P is a maxiInal parabolic subgroup. The case G = SL(n)
was known classically. In [P-R 0-2] l we established Pieri-type formulas for the
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Chow (or coholnology) rings of Lagrangian anel oelel orthogonal Grassmanni­
ans, Le. in the eases G = Sp(2m) and G = SO(2m+ 1). In thc present paper,
we give a Pieri-type theorem in the case of even orthogonal Grassmannians,
Le. for G = SO(2m).

For an outline of the whole theory, we refer the reader to Section 6 of [P2].
To formulate our Pieri-type formula, \ve define uspecial" Schubert cyc1es

which generate Inultiplicatively the Chow rings of these Grassmannians and
describe how to multiply an arbitrary Schubcrt cyc1e by a special oue. It
requires a different and more involved combinatorics than the one in the
odd-orthogonal and symplectic cases.

The idea of the proof of thc main thcorCII1 of this paper is like that in
[P-R2] and Inany propositions and lemmas frolll [P-R2] can be directly ap­
plied here. Sections 1 - 5 contain basic information about permutations with
even number of bars, shapes, reduced decompositions etc. In Section 6 we
examine configurations of D- and ,...., D-boxes whieh give Uthe vanishing" (that
is, the corresponding operator acting on a certain generating function gives
zero). In Section 7 we prove the main theorern by checking its validity in
foul' separate cases. Subsection 7.5 contains examples illustrating the main
theorem.

In the present paper, we treat the GrasslnanniallS of non-InaxiInal isotropie
subspaces. For the case of maximal isotropie subspaces, we refer the reader
to [PI, Seetion 6]. It is possible, however, to obtain a Pieri-type formula for
these Grasslnannians using the mcthods of this work. This will be imple­
Inented in the next version of the present paper.

It would be interesting (and valuable) to givc a unified (group theoretic
?!) proof of the main theorems of (P-R 0-2] anel the present paper (see also
(P2, Section 6]), which does not depend on a particulaI' root system chosen.

This research was carried out eIuring the first author's stay at the Max­
Planck Institut für Mathematik; he thanks thc MPIfM: for a generous hospi­
tality. The second author was partially supporteel by the R. Bosch Foundation
during the preparation of the present paper.

2 Preliminaries

We fix positive integcrs m > n. Suppose that H = SO(2m) is the orthogonal
group (oftype Dm) over the field of complex nurnbers. Let UB use the following
notation:

B - a fixed Borel subgroup of H, T C B - a fixed maximal torus.
R - the root system of H associated with T,
E = {al,"" O'm} the set of simple roots of R associated with B,
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W - the Weyl group of (H, T),
Wn - the subgroup of W generated by sitnple reHections associated with

the simple roots: {all"" O'm} \ {an}, where n < ffi,

Pn - the maximal parabolic subgroup of H containing Band corresponding
to the above subset of simple roots,

F = HIB (an isotropie Hag manifold),
G = HIPn (an isotropie Grassmanniall).

In a standard Bourbaki [Bou] realization we have:

E = {al,"" Ctm } = {eI - e2,···, em-l - em , em-l + em },

W = Sm t>< z;n-I ,

Wn ~ Sn X (Sm-n ~ z;n-n-I).

A typical element of W can be written as a pair (T, E), where T E Sm
and E = (EI,"" Em ) is a sequence of elements of Z2 = {-I, I} such that
#{i : Ei = -I} is even. Multiplication in VV is given by

where "0" denotes the eomposition of permutations and 6i = Er'(i) • €~. The
length funetion on the group W, is defined by the equality:

m

l(w) = Lai + L 2bj ,

i=l (j=-l

where
ai = #{j I j > i A w(j) < w(i)}

and
bj = #{i I j < i A w(j) > w(i)}.

The poset w(n) of the minimallength left eoset representatives of Wn in W
can be decomposed into two disjoint subsets:

w(n) = H'l(n) U l'VJn),

where:

k - even}

and Yl < ... < Yn-k; Zk > ... > Zl anel VI < ... < V m - n ;
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anel Yl < ... < Yn-k; Zk > ... > Zl anel VI < ... < Vm-n-I'

We refer to these sets as permutations 01 type 1 anel 01 type 2 respectively.

Definition 2.1 A pair A = (At // Ab) 01 striet partitions At and Abis ealled
a shape il At C (mm-n), Ab C (mn), l(Ab) is even and A~-n-l ~ l(Ab) + 1,

A:n-n ~ l.
11 A~_n ~ l(Ab) + 1, then we say that A is 01 type 1; il this is not tme, then
we say that A is of type 2.

Denote the set of shapes by Pn . It would be useful to display shapes with
the help of sets of boxes in the fourth quarter of the plane. Let Di alld D~ be
the Ferrers' eliagrams of At and Ab (see [1'.1]; also thc other terminology related
to partitions, diagrams etc. is borrowecl from loe. cit.). The diagram D>. of
shape (At / / Ab) is the juxtaposition of Di anel D~ with rows of suecessive
lengths: AL ... ,A~n-n, A~, ... , Ar, l = l(Ab):

I I \
I

I I I I
I I I

L..- l-

type 2

TT1
I

I

'--

type 1

For a given element w>. E w(n), we define the corresponding shape A =
(At // Ab) in the following way:

• If W E W[n),

then

A~ = m + 1 - Zj for j = 1,2, ... , k;

A~ = 771 + 1 - Vr + dr for r = 1,2, ... , m - n; clr = #{j I Zj < vr } .

• If W E wJn) ,
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then

]( := {A~, ... , A~+I} = {m + 1 - Zl , •.• l 111, + 1 - Zk, nt + 1 - Vm - n } anel

A~ 2: ... 2: A~+l;
t - t _ -

Ar = m + 1 - Vr + dr; r = 1, ... 1 'In - n - 1 allel Am- n - 1 + dm-n,
dr = # {u E ]( I V r > u}.

Lemma 2.2 The correspondence described abo'Vc 'is a bijeetion between w(n)

and the poset of shapes Pn. MoreoverJ ij 'lilA is 01 type 1 (resp. 2)J then A is
of type 1 (resp. 2).

Proof. Suppose first 'lil is of type 1. The sequellces (Zi) anel (vr ) are increasing
and (dr) is nondecreasing. Thus 'Ab and 'At are strict; 'AbC (rnn)1 'At C (mm-n ) .
Observe that

because

m + 1 - Vm-n + dm-n = 1 + (nt - Vm- n + dm-n) 2: k + 1.

(For the proof of the last inequality, note that dm-n = #{j I Zj < Vm- n} and
rn - Vm-n 2: #{j I Zj > Vm-n}). It follows that 'A~_n 2: 1 alld A~-n-l 2:
l('Ab) + 1. Moreover, l('Ab) = k is even.

Now, let 'lil be of type 2. The same arglllllcllts as above show that 'Ab C

(mn) is strict, l('A/J) is even, At C (mm-n) allcI A~ > ... > 'A~T1-n-l' Moreover,
A~-n-l 2: l('Ab) + 1 (we use Cl instead of d). It rcmains to prove A~-n-l >
A~_7l" This inequality is equivalent to

m + 1 - Vm-n-l + dm- n- l > 1 + dm-n,

or (m - Vm-n-I) + (dm-n-, - dm-n) > 0

Consider the following two cases:

• Vm-n-l > 'Um - n ; then dm- n- l > dm-n (vm-n E) anel the inequality
holds;

• Vm-n > Vm-n-I; then m - Vm-n-l > dm-n - dm-n-I, because
dm-n - Clrll-n-1 = #{b E ]( I Vm-n-l < b < 'Um-n} <

< #{b E ]( IVm-n-I < b< vm-n} < m - Vm-n-l'
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It follows that if w is of type 1, then A~'l-n 2: l(Ab) + 1 and A is of type 1; if
w is of type 2, then A~_n ::; l(Ab) anel A is of type 2.

Suppose that a shape ,.\ is given. Let us try to eonstruet thc permutation
w).. There are two possibilities:

(1) A~n-n 2: l(Ab) + 1. We look for w). of type 1. First compute Zj =
m+1-,.\~,j = l,2, ... ,k. OefinethenUlnbersPr = A~-(m-n-r+l(Ab)+l),

r = 1,2, ... , m - n. We have Pr > 0 beeause A~n-n 2: l(Ab) + 1 and A; 2:
(m - n - r + l(Ab) + 1), r = 1,2 ... , rn - n. The sequenee (Vr ) ean be
obtained in the following way : V r is the Pr-th elelnent (eounting from right)
in the sequenee (1,2, ... , m) with rell10ved {Zj I j = 1,2, ... , l(Ab)} and
Vm - n , Vm-n-l,"" Vr+l. Note that such a Vr satisfies Vr = m + 1 - A; + dr .

Indeed,
m - V r = # {a IVr < a ::; m} =

= (Pr - 1) + #{Vm - n '· .. , Vr+l} + #{j I Zj > vr } =
= (A; - (m - n - r + l (Ab) )) + (m - 'fl, - r) + (k - d - r) =

= A; - dr - 1.
(2) A~_n ::; l(Ab). We look for w). of type 2. Since]( = {A~, . .. , A~+l} =

{m + 1 - Z1, ... , m + 1 - Zk, m + 1 - Vm-n} and A~n-n = 1 + dm - n, we look
for the numbers:

{m + 1 - Ab -1, ... , m + 1 - At+l} = {al,"" ak+l}

such that ak+l < ak < ... < al' It is clear that vm--n = a).t and the set
m-n

of remaining elements ai is equal to {Zj}' Thus we can determine Zl, ... , Zk

and V m - n . The elements Vj, j < m - n, can be obtained in thc same way as
in (1). 0

Let

C : S·(X(T)) = Z[Xl' ... , Xm] -7 A*(Sp(21n, C)/B) = A*(F)

be the Borel charaeteristic map (see [B-G-G, 02]). The induced map

Ce : R = A*(F)Wn -t A*(G)

after tensoring by Z[1/2] gives an isomorphism (see [01,02]). More explieitly,
we have:

SP(Xl' ,xn ) ® SP(X~+I" .. ,x~J[U]
R = (ei(xf, ,x~), i < m, em(:cl"'" xm ))

where U = X n+l'" Xm, SP( ) denotes the ring of symmetrie polynomials
in the indieated indeterminates and ei( ) is thc i-th elelnentary symmetrie
polynomial in the indieated variables.
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Proposition 2.3 The Poincare series 01 A * (G) is equal to:

Praof. The elernents ei(xf, ... ,x~), i = 1,2, ... ,m - 1, and em(xl' ... ,xm )

are algebraically independent and have degrees 2,4, ... , 2(m - 1), m. The
Poineare series of SP(XI,' .. ,xn) and SP(X~+l" .. ,x;n)[U] are equal to:

1

(1 - t) ... (1 - t n )

1
and (1 _ t2 ) ... (1 _ t2(m-n-I))(1 _ t m- n)

respectively. Thus the Poincare series of G is equal to:

(1 - t) ... (1 - tn) . (1 - t 2)(1 - t'l) ... (1 - t 2(m-n-l))(1 - tm- n)

(1 - t 2(m-n)) ... (1 - t2(m-l))(1 - tm)
(1 - t) ... (1 - t n )(l - t(m-n))

o

Proposition 2.4 The elementar'l) syrnrnetric polynornials ei(xI, . .. ,xn ), i =

1,2, ... , n and the polynomial em- n(X n+l, ... ,xm) = Xn+lXn+2 ... Xm generate
multiplicatively the ring R.

Proof. The assertion follows from thc proof of [P-R2, Thcorenl 1.5]. 0

3 Main Tlleorem

Let G = H / Pn be the GrassInannian of n-dinlensional isotropie subspaces of
C 2m with respcct to a nondegenerate orthogonal form on C2m (recall that we
assume m > n).

Given a shape A, we denote by GA the Schubert cyclc in A*(G) eorre­
sponding to W A, i.e. the dass of the dosure of B-wAPn / Pn , where W A is the
element of the poset w(n), associated with A.

We denote by Gi, i = 1,2, ... n, anel 0 the Sehubert cycles

G (m - n + i, m - n - 1, 111 - n - 2, ... , 2, 1//0)

and

(_l)m-n (a(m-n+1, m-n, . .. ,3, 2//0)-G(1T~-n+1, rn-n, ... ,4,3,1//2,1))
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respectively. In the following picturcs, thc cydcs ° and 01" for m = 9, n = 5
and p = 4, are displayed:

[7-
o 0

If CG : R -t A*(G) 0 Z[I/2] is the isolllorphislll incluecd by the Borel eharae­
teristic map (see Section 2), then 01, . .. ,On are the images of the elementary
symmetrie functions ei(x1' ... ,xn ) E Rand ° is thc image of Xn+1Xn+2 . .. Xm .

By Proposition 2.4, the elements 011'." ern , er gCllcratc A*(G) over Z.
The main theorem of our paper gives a Pieri-type formula for the mul­

tiplication of an arbitrary Schubert cyde er(A) by the special cyc1es Gi,

i = 1, 2, ... , n and 0.

Let us define several nations which are necessary to state our theorem.
We reeall that all the tenninology related to partitions, Ferrers ' eliagrams anel
shifted diagraIns are borrowed from [M]. We use the following eonventions
for "strips":

Ai-strip is (an ordinary) horizontal strip (that is a skew eliagram with at
most one box in a fixed column) .

A 1/2-strip is a horizontal strip with pairwise disconnectecl rows. 1

A 3/2-strip is an almost horizontal strip in the tenninology of (P-R2,
Seetion 2]. That is , it is a (possibly) cliseollnected skew diagram with at
most two boxes in each coluIlln such that the set of highest boxes in columns
forms aI-strip alld the remaining boxes form a 1/2-strip. Every 3/2-strip has
a deeolnposition into connected componellts. The set of non-highest boxes in
eolumns of a eomponent forms a set called the excrescence of the component.
(Compare [P-R2, Section 2]).

A 2-strip is a skew diagram with exaetly two boxes in any (nonempty)
eolumn.

Adegenerate strip is a 1/2-strip with at Inost one box in a fixed row.
For i = 3/2,1, byan extended i-strip we unclerstancl a skew-cliagram whose

certain (nonempty) amount of initial coluInns is a 2-strip (we call this set of
boxes the 2-str'ip of thc extended i-strip) allel, rcstrictcd to the remaining
columns, it is an i-strip (we call this set of boxes the i-strip of the extended
i-strip). In the pictures below, examples of an cxtended 3/2-strip anel I-strip
are displayed:

I We say timt a skew diagram D is connccted if each of the sets {i I 3j (i, j) E D} and
{j I 3 i (i,j) E D} is an interval in the set of positive integcrs.
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a 3/2-strip

Suppose that fl,b = (J-Ll"'" Pk), wherc k is even. We define l - another
function of length in the following way: if J-lk > 1, then l(Dt) = k; if Pk = 1,

then l(Dt) = k - 1. Thc same definition is valid for thc diagram D~. (Here,

the function l( ) counts the number of nontrivial rows of Dt, that is, rows
which havc at least one box not marked with x - see Section 4.)

Now suppose that two shapes ,,\ and IL are given. In what follows, by a
row without further indications we will rnean a row in thc top part and by
the ,,\- (resp. p-part) of a row understancl its restrietion to Di (resp. Dt).

A row will be called exceptional if its 'x-part contains strictly its p-part.
By a componentwe will understand a connccted cOlllponent of Dt \ D~.

A component will be called extremal if it meets the leftmost column.(Note
that there exists at IUOst one extremal cOluponent).

We will say that a box t E Di U D~ lies over' a box bE D:L , 01' that blies
under t if t and the shifted b lie in the saIne cohulln. Sinülarly, a subset T of
Di U D~ lies over a subset B of D~ if every box of T lies over some box of
B. For a set T contained in one row, we will say that T ends over B if the
rightmost box of T (called the end 0/ T) lies over B.

Also, for boxcs b1 and b2 from Dt, we say that b1 lies over (resp. lies
under) b2 if the column of the shifted b1 is equal to thc column of the shifted
b2 and the row number of bl is smaller (resp. bigger) than the row number
of b2 in the increasing from top to bottOlll numbering of rows (see Section 4).

Supposc now that two subsets B l and B2 of Dt are given, appearing in
disjoint sets of rows of Dt. We will say that BI uppears/lies above B 2 (resp.
B 2 appears/lies uruler Bd if all thc row numbers of boxes of BI are smaller
than all the row numbers of boxes of B2 • In particular, this definition applies
to thc components.

The boxes frolll the difference D~ \ Di will bc called (J.L - "\)-boxes.
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If the J-L-part (resp. ,X-part) of the shortest (i.e. the (m - n)-th) row ends
over the leftmost box of some row of D~t (resp. Di), then the latter row will
be called the special J-L -row (resp. special'x -row) .

Let us remark that if there exists the special IJ,-row (resp. special 'x-row),
then J-L (resp. ,X) is of type 2; if the special row does not exist , then J-L (resp.
A) is of type 1.

I I
I

l) I I I
V I I

V
V

V
/ t- the special 1t-row

'--'--

In Definitions 3.1, 3.2, for technieal reasons, by Dt (resp. D~) we under­
stand the diagralll Dt (resp. D~) with the last row removecl provided it is of
length 1.

The eomponent meeting the special A-row will be eallecl the special com­
ponent.

Finally, in the present paper l the word " cliagram " Inay be used in a
wider sense than usually; namely, by a diagrarn we will mean a subset of DIl ,

which is the union of eonnected subsets of rows of D ,i , each starting from the
leftmost eolumn. Thus a diagram is uniquely cletennined by the specification
of the lengths of its consceutive rows (using the row-coorclinates explained in
Seetion 4).

Definition 3.1 J-L is cOlnpatible with A i] the ]ollowing conditions hold:

(1) Dt :> D~ and every component 0] Dt \ DiJ which lies above the special
one, is a 3/2-strip. Moreover, Dt \ Dl is a 1/2-strip.

(2) The A-part 0/ at most one row ends over a component. Such a pair
will be called related ( i. e. the row is related to the cornponent and the
component is related to the row).

(3) Each exceptional row is related to a c07nponent over' which its J-L-part
ends.

(4) I] a (J-L - A) -box lies over the cOlnponentJ then this component is nei­
ther extrernal nor related and tltis box lies over the leftmost box 01 the
component.
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(5) An excrescence can appear only in a related component} under the A­
part 0/ the related row; no box /rom the J-L-part 0/ the related row lies
over the component.

Moreover} /or the special component the /ollowing conditions are satisfied:

(i) 1/ w~ is 0/ type 1 and w>. is 0/ type 2, then the special component is a
I-strip and alt components below it form a 1/2-strip. Neither the special
component n01' the components below it are related.

(ii) I/ wIJ. is 0/ type 2 and w>. is 0/ type 1, then [(D~) - [(D>.) = 2; the
special component is an extended 3/2-strip. The lower I-strip 0/ its 2­
strip lies under the A-part 0/ a row, and the excrescence 0/ its 3/2-strip
is adegenerate strip appeanng below the special J-L-row.

(iii) // wIJ. and w>. are 0/ type 2, then the special component is a 3/2-strip
whose excrescence appears below the special tL-row and is adegenerate
strip.

Definition 3.2 A shape J--L is a-compatible with ).. i/ the /ollowing conditions
hold:

(1) Dt :) D~ and the components 0/ Dt \ Dt which lie above the special
one form a 1/2-strip. Moreover, Dt \ Di is adegenerate strip, and
Di \ D:, is a 1/2-strip.

(2) The boxes 0/ Di \ Dt lie over the com]Jonents 0/ Dt \ D~. 1f a A-row
ends over the component 0/ Dt \ Dt then its tL-part also ends over this
component.

(3) The set 0/ boxes 0/ a component 0/ Dt\Dt over which no box 0/ Di \D1
lies} is a set 0/ pairwise disjoint boxes, and it contains the leltmost box
0/ the component.

(4) I/ a (J-L - A)-box lies over a com]Jonent) then this cornponent is special
and this box lies over the leftmost box oJ the component.

Moreover} for the special and extremal components the Jollowing conditions
are satisfied:

(i) 1/w~ is 0/ type 1 (and w>. is 0/ type 1 or 2), then the special and extremal
components satis/y conditions (1)-(4).

11



(ii) 1/ wJi. is 0/ type 2 and w)... is 0/ type 1, then the special component is
extremal and it /om~s an extended I-strip. The A-part 0/ a row ends
over the riglLtmost box 0/ the lower I-strip 0/ the 2-strip, and its I-strip
satisfies (1)-(4)·

(iii) 1/ wJi. and w)... are 0/ type 2, then the extrernal component is special and
it forms al-strip.

Our main theorem asserts the following:

Theorem 3.3 For every A E Pn and]J = 1, ... l n,

(1)
a{A) . ap = L 2e()...,l t )a{tl),

where the sum is ouer all /-L which are cornpatible with A, I/-LI = lAI +
l{,i) -l{Ab)+p and e{A, !l) is the cardinality 0/ the set 0/ all components
appearing above the special one, which are not related and have no (!l­
A) -boxes ouer' thern.

(2) For every A E Pn ,

a{A) . a = L a{,t),

where the sum is aver allJ-L which are a-cornpatible with A with I!tl =
lAI + l{lJ,b) - l{Ab) + (m - n).

In Section 7 we prove part (I) of the theorem. A proof of part (2) is
siInilar hut much rnore easier than the proof of (I), and it is omitted.

Example 3.4 m = 7, n = 6
a{6//4, 2) . a2 = 2a(7//5, 2) + 2a(7//4, 3) + 2a{6//6, 2) + 22a{6//5, 3) +

a{5//7, 2) + a(5//6, 3) + a{4//6,4)

--- -j-j-I I--- -I--
--- -1-1---- -, I J--

---------- I I

--

- -
- -1-1-1--- -I 1--

Example 3.5 m = 7, n = 6
a(5//4, 2) . a3 = 2a{6//5, 3) + 2a(6//4, 3, 2,1) + 2a{5//6, 3) + a{5//5, 4) +

2a(5//5, 3, 2, 1) + a (4//6, 4) + a (4//5, 4, 2, 1)

--- -I-I I--- -I 1--
--- -I-I

- -- -I I I-- -----I---- 1

--
--- - ----- 1 I

--
12



--- -[-I I

--- -I--
I--I--

L-

--- -T-l

--- -I I--
>-- >--

>--

- - ---- - -- I

- -'"- I--

i--

Example 3.6 m = 7, n = 6
0'(2//4,2)-0'3 = 0'(5//4,2)+20'(4//5,2)+20'(3//6,2)+20'(3//5, 3)+20'(2//7, 2)+
20'(2//6,3) + 0'(2//5,4) + 0'(1//6,4) + 20'(2//5,3,2,1) + 20'(1//5,4,2,1)

-F-- ----- ~
------- fikrr------- •-------

-I- - -I-I I I-- ~
- 1J=tp-- ittfrr-

- -- - - - - - - - - --- -- --

Y- p=r-- - - - - -- -- - --
Example 3.7 7n = 7, n = 5
0'5 - 0' = 0 (jollows jrom hoth the roies)
0'(6,4//2,1) . 0' = 0'(7,5//2,1) + 0'(6,5//3,1) + 0'(7,4//3,1) + 0'(7,3//4,1) +
0'(6,3//5, 1) + 0'(5,3//6,1)

--- -1-1-1 I----
- -

T
~

--- -1-1-1----[ [

--c.!.

--- -]-]-]------ T T
~

--- -[-[-1 I

--- -I---'--

--- -1-1-

-- --.- I I I
•'--

4 Calculus of divided differences

Let tlS define "even orthogonal simple divided differences " which are opera-
tors Bi : Z[X] -1 Z[X], i = 1, ,m, of degree -1 acting on thc ring of poly-
nonlials Z[X] where .L'Y is a fixed set of indetcnninates X = (Xl, X2, .. - ,Xm )­

We denote by Si the transposition (i, i + 1) E Sm C W, 'i = 1,2, ... , m - 1,
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aeting on X by interehanging Xi anel Xi+l; anel by Sm - thc refleetion which
transposes Xm-l with X m anel ehanges the siglls of both the variables; thc
remaining variables are invariant. This action is extended multiplicatively to
the ring Z[X]. Simple divided differenees for the cven orthogonal group are
defined as fo11ows:

8i(!) = (! - Si!)/(Xi - xi+d, i = 1, ... ,1n - 1;

8m (/) = (I - sm!)/(Xm-l + ~rm).

For every I, 9 E Z[X], we have:

(1)

(a Leibniz-type fonnula).
For a given a = (Un~, am-I, ... , a2, ad E {-1, 0, l}m, we e1cfine the gener­

ating function:
m

Ea = TI (1 + aixi).
i:;:;:l

In particular, for a = (0, ... ,0,1, ... ,1), wherc 0 appcars (rn - n)-times and
1 oecurs n-tiInes, the resulting generating function, e1enoteel by E, is the
generating function for the elementary symmetrie polynoInials in Xl, ... , Xn-

Lemma 4.1 a} We have si(Ea ) = Ea " where

b) For i = 1, 2, ... , 1n - 1,

i < m,
1,=m.

ij Ui = {J,i+ I + d (d = -2, -1,0,1,2),

where a' = (um,"', 0, 0, ... ,ud is the .~equence a with Ui+l J ai re­
placed by zer'os. In particular ij .6. is a cornposition of some s- and
8-operations, then for every a, .6. (Ea) = (scalar) . Eal J where a' is
uniquely determined il this scalar is not zer'o.

Let 'W be an element of the Weyl group Hf anel let Si\ ' ..•. Sij be its reduced
decoluposition. Thcre exists an operator 8w := 8i1 o ... 0 8ij on Z[X] of degree
- l(w) whieh eloes not depend on thc rcdueccl deeomposition chosen and

allows us to give an explicit deseription of the characteristic map

c: Z[X] --+ A*(F)
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in terms of Schubert cycles:

c(j) = L 8w (j).Xw ,

l(w)=deg f

where f E Z[X] is homogeneous and X w = [B-wB / B] is the Schubert cycle in
A*(F) corresponding to w E W (see [B-G-G, D2] for details). The following
lemma holels:

Lemma 4.2 (1) For p = 1,2, ... , n J

(2)
( ) ( l)m-n(x X )C X n+l ..... X rn = - 8 1l ••••• Sm -2 . .'II m -l -.J sn ..... S m-3. S7n-2.Sm = a.

Note that

ap = X(I, ... ,n-p,n-p+2,... ,u+l;0;n-p+l,71+2,... ,m)

and

a = (-1)m-n (./Y(1 ,2,... ,n-l ,m;0;n,n+1, ... ,m-l) - X(1,2, ... ,71-1,m;0;n,n+1,... ,m-2,m-1)'

Suppose a shape tl is given, which corresponds to the permutation Ww

Let us use the following coordinates for boxes in D:l anel D~l:

rn m-l ... 2

rn-n

n

top

bott.mn

We associate with J.l a certain distinguisheel reduced decomposition of w1-1 E
W. First, let us modify the diagram D'l in thc following way:

• Remove froll1 D;l the set of boxes with coordinates (a, b) satisfying thc
illequality b - a ::; n. (this is the sa.me Inodification as in "B&C-case"
- see [P-R2, Section 3]).

• Relnove one box from each row of Dt : from rows \Vi th even number
remave the box in tbe rn-tb colunlll, and froln rows with add number
remave tbe box in the (m - l)-th colulnn.
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Vve display the removed boxes in thc picturc using the symbol x and
o

denote the so obtaincd diagram by D w
o

Assurne now, that a subset D C D JJ is given. A box belollging to D will be
called a D-box and a box fram the difference D Jt \ D will be called a rvD-box.

o

Definition 4.3 Read D JJ row by row f1'01n left to nght and from top to bottom.
Every D-box (resp. rv D-box) in the i-th colurnn gives 7l.S Si (resp. 8 i ). Then
8{/ is the composition of the resulting Si 's and 8i 's (the composition written
from nght to Zeft).

o

Definition 4.4 Read D JJ • Every D-box in the i-tlt column gives US Si' rvD-
boxes give no contribution. Then, r D is the word obtained by writing the
resulting Si 's from rigid to left. (In other words, one obtains r D by e1'asing alt

the 8i 's f1'om 8{/).

7 6 5 4 3 2 1
xx ---I I
x---x- I
x- -x
X -

m=7n=5

tl, = ((6, 4) // (5, 4, 2, 1))

o

Olle can easily prave that if D = D Jt then T D E R(wJJ 2 - this is our
distinguished reduced decompasitian of W w

8 7 6 5 4 3 2 1
x x- -1-1-1-1
x ---x - -1-1-1
x ---I-I
-x -~ c.!.

rn=8 n=6

11, = ((7,3)//(6,5,3,2))

'lU il = (1,5,8; 7, 4, 3; 2,6)

'W JJ = T DIJ = 87 . 8a • 8B . 84 • 8S . 86 . S7 . 83 . 84 . 8S . S6 . 88 • 86 . 87 . 82 . 83 . S4 • S5 • S6

Now we follow the same strategy as in (P-R2]; we choose a homogeneous

J>. E Z[1/2][X] such that c(J>.) = a(..\). Then, far w E vV, l(w) = 1.0>.1, one

2For a given w E W, we denote by R(w) tohe set of its reduced decompositions.
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x =1= Zj, ih < m;

:c =1= Zj, Vj and ih < m;

has 8w (f)..) =1= 0 Hf w = w).. and 8w >, (f)..) = 1. \,Ve want to find the coefficients
mJ1. in the expansion

Proposition 4.5 In the above notation,

o

where the SUffi is over' alt D c D J1 such that l'D E R(w)..) .

Proof. See [P-R2, Section 3J. 0

5 Ribbons

Let us fix an elelnent 'W).. E w(n). In this seetion we treat a given rcduced
decomposition w).. = Sit . Si'J ..... Sil as a sequence of simple transposition
operations, which produces w).. from the identity permutation:

'W).. = (, .. ((1, 2, ... , rn) , Si I) ... ) . Sij'

In thc followillg, the simple transpositions involved will be called "the Sih­

operations" (h = 1, ... , l).
For a given w).. E w(n), the following proposition holds: (compare [P-R2,

Proposition 4.1])

Proposition 5.1 (1) Suppose w).. = (YI,"" Yn-k; Zk,"" ZI; Vr, .. . , vm- n)
is 0/ type 1 (k is even). Every Sjh -operation appearing in a reduced
decomposition 0/ w).. belongs to one of the /ollowing types:

(i ) (..., Zi, x, . . .) ----t (. . . , x, Zi, . . .)

(ii ) ( , Vi, X, ... ) ----t (... , x, Vi, ... )

(iii) ( , a, b) -+ (... ,b, Ci)
(a, b) = (Zi' Zi+l), (Zj, V m - n ), (Vm - n , Zi), (Vm - ni Zi), (Zi' Vm - n );

(iv) (... ,Vm - n ' x, . ..) ----t (... ,x, Vm - n ' ... )

x =1= Vj, Zi and i h < m.

(2) Suppose w).. = (Yll ... ,Yn-k;Zk, ... ,ZI;VI, ... ,Vm-n-I,Vm - n ) E w(n) is
01 type 2 (k is odd). Every Sih -operation appearing in a reduced decom­
position 01 w).. belongs to one 0/ the following types:

(i ) (..., Zi, x, . . .) ----t (. . . , x, Zi, . . .)
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(ii) (... , 'Um-tl' X, ... ) ---t ( ... ,X, 'Um - n , ... ) x =f:. Zj and ih < m;

(iii) (... , 'Ui, X, . ..) ---t ( ... ,X, 'Ui, . .. )

X =f:. Zj, 'Uk, Vm - n and i h < m;

(iv) (... , a, b) ---t ( ... ,b, a)
(a, b) == (Zi, 'Um - n ), ('Um - n , Zi) ij Zi < 'Um-tl

or

(a,b) == (Z:,Z:+I) where {z~ < ... < Z~+I} = {ZI" ",Zk,'Um - n }

or

(a, b) == (Zi' 'Um-n-d, ('Um - n-l, Zi), (Vm - n-l' Zi),

(Zi, 'Um - n - 1 ), (Zi, 'Um - n ) ij 'Vm - 71 -} > 'Um - n ;

(v) (.. "Vm-n-l'X",,) -r (""x,Vm - 71-l".')
X =f:. Zj, Vm-n-I > 'Um - n and ih < m.

Proof. (1) Acting from right on the identity permutation (1,2, ... , m) we
want to obtain 10). == (YI, .. " Vn-k; Zkl ... , ZI; VI, ... ,'Um- n) (k is even). Let
us try first to COIllpute the number of simple transposition operations which
are necessary for this purpose. Remembering that SOIlle elements receive bars,
we omit, for the Illoment, writing theIn for brevity. It is clear that we must
transpose each pair (Zi' Vj) where Zi < Vj at least twice (Zi mllst reeeive a bar
and Zi precedes Vj in w,\); eaeh pair (Zi, Vj) where Zi > Vj at least onee (Vj

is preeeded by Zi in 10,\) and eaeh pair (Zi' Zj) where i < j at least onee (in
w). we have the ordering Zk, . .. , zd. Nloreover, wc IlluSt perform at least one
transposition (Yi, Zj) if Zj < Yi and (Yj, 'Vi) if Yj > Vi.

In surn we need at least:

2L #{(Zi' Vj) I Zi < Vj} + L #{(Zi, Vj) I Zi > Vj} +

+ L#{(Zi,Zj) I i < j} + L#{(Yi,Zj) I Zj < yJ +
m

+ L #{(Yj, Vi) I Yj > 'Vi} == 2 L aj + L bj == l(1O,\)
(j;:::-l j=1

operations. Here:
aj == #{10j I i > j 1\ 10j > Wj}

(
_ _ ) (EI 10m )

W). == Yl,· .. , Yn-k; Zk, ... , ZI; VI,···, Vm - n == Wl,···, W m ,

where (101,"" 10m) E Sm €j == ±1 and €i == -1 Ineans that Wj has a bar.
Therefore these transpositions exhaust all 8i

h
-operations. It follows that

ünly the füllowing pairs can be transposecl by 8ih -operations (recall that we
do not write bars für the moment):
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(i) (Zi' Vj) twiee if Zi < V{ firstly Zi moves forward (that is) toward the rn-th
plaee)) then Vj moves forward; anel Ollee if Zi > V{ Vj moves forward;

(i i) (Yi' Zj) ollee if Yi > Zj: Zj moves forward;

(iii) (Yj) vd onee if Yj > Vi: Vi nloves forward;

(iv) (Zi' Zj) onee if Zi < Zj.

Now let us take into aeeount bars. There is no possibility to make a
transposition (Vi, Vj); henee only vm - n ean reeeive a bar (and lose it before the
end of the proeess). There is no transposition (Yi' Yj) and every sih-operation
moves Yi baekward. It follows that Yi eannot receive a bar. Henee every
(Sih = Sm )-operation is of the form described in (1)(ii i). Frolll (iv) we know
that the transposition (Zi) Zj) ean be performed no luore than onee. It follows
that there is no transposition (Zi' Zj) exeept (... Zi, zi+d --+ (... Zi+ll Zi) or
( ... Zi, Zj, . .. ) ... ) --+ (... Zj) Zi . .. ). Thus) if Zi is luoved forward, then Sih­

operation, i h < rn, acts as in (l)(i).
If Vj is moved forward, then the eorresponding Sih -operation, ih < rn) is

of the fornl given in (l)(ii).
If Vm - n reeeives a bar, then it Inust lose it. The element vm - n must be

moved toward the rn-th place; for the same reasons as in (l)(ii)) we have

x #- Zi, Vj'

(2) Let us specify, as in (1)) all transpositions which must be perfarmed:

• eaeh pair (Zi' Vj), Zi < Vj, j = 1,2) ... ,711 - n - 1, must be transpased
at least twice;

• eaeh pair (Zi' vm - n ) must be transpased at least twiee if Zi < Vm - n and
anee if Zi > Vm - n ;

• eaeh pair (Zi) Zj) - at least anee if Zi < Zj;

• eaeh pair (Yi) Zj) - at least anee if Zj < Vi;

• eaeh pair (Yi' Vj) - at least anee if Vj < Vi;

• eaeh pair (Vi, V m - n ) - at least onee if Vi > V m - n ·

In sum we necd at least

2L #{(Zi' Vj) I Zi < Vj} + L #{(Zi' Zj) I Zi < Zj} +

+ L #{(Yi) Zj) I Yi > Zj} + L #{(J/i, Vj) 1 Yi > Vj} +
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+ L #{(Vi' Vm - n ) I Vi> V m - n } = 2 L (J,j + L bj l(w)..)
Ej=-l j=l

operations. Here:
aj = #{Wi I i > j 1\ Wi > Wj} bj = {Wi I i > j 1\ Wi < Wj}

( _ _ _ ) (q Ern )

W).. = Yl,·.·, Yn-k; Zk,···, Zl; VI,···) 'Um-n-l, V m - n = 'Uh,···, W m 1

where (Wl l "" W rn ) E Sm, Ei = ±1 and Ei = -1 mcans that Wi has a bar.
Therefore these transpositions exhaust all Sih -operations.
As in the proof of (1), we observe:

1° There are no transpositions (Vi,Vj), i,j i= 171, - n, (ZilZj), (YilYj).

2° Transpositions between Zi and Zj are (... Zi, Zj ... ) -r (... Zj, Zi . .. ).

3° If Zi Inoves forward and x goes backward, then x #- Zj. (This provcs
(2)(i).)

4° If Vi, i < nl, - n, moves forward and x goes backward, then x #- Zi, Vm-n'

5° If Vm - n > Vm-n-l, then for i = 1,2) .. . ,771, - n -1 we have no transposi­
tions (Vi, Vm - tl ) so 110 Vi, i < m - n, can receiVc a bar. If Vm-n < Vm-n-l,

then Vm-n-l can receive a bar. (This gives the operations in (2)(iv).)

6° If Vm-n-l receives a bar, then it lllUSt lose it - this gives the operations
froln (2)(v).

Corollary 5.2 (1) Let w).. be of type 1. The following changes can be caused

by Sih -operations:

(i) move z. forward and v* backward;

(ii) mave z. forward without moving any v*;

(iii) transpose, with changing the sign, a pair (a, b), where:

(a, b) = (Zi' zi+d, (Zil Vm-n), (Vm - n , Zi), (Zi' Vm-n)

a and b are on the (m - l)-th and rn-th place respectively;

(iv) move Vm-n forward without moving any z. or v*.

(2) Let w).. be of type 2. The following changes can be caused by 8ih ­

operations:

(i) move z. forward and v* backward;

(ii) move z. forward without moving any v*;

(iii) move Vi, i < m - n, forward without moving any z. or vm - n ;
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(iv) transpose with changing the ..,ign a pair (a, bL where:

(a, b) = (z~, Z:+l), {z~ < z; < ... < z~ < Z~+l} = {Zl" .. , Zk, vm - n }

or

(a, b) = (Zi' vm - n ), (vm - n , Zi) i/ Zi < Vm - n

or

(a, b) = (Zi' Vrn-n-l), (Vrn-n-l, Zi), (ZiJ vm - n ), (Vm-n-l, Zi)

i/ Vm-n-l > Vm - n .

Proof. : This is just a list of necessary operations appearing in the proof of
Proposition 5.1. 0

Assume that a subset D C D,~ encodes a rcduced decolnposition of the
pennutation w).. (r D E R(w)..) ) . Boxes of D (D- boxes) correspond to 8 ih ­

operations appearing in rn. Corollary 5.2 allows us to definc the notion of a
mark. We will say that a D-box a has z-mark (resp. v-mark) j if Zj (resp.
Vj) is nontrivially involved in thc 8ih -operation associated with a. Also, we
say that a box a has v-mark j (j = rn - n, 'rn - 11 - 1) if Vj is nontrivially
involved in the 8ih -operation corresponding to a.

We say that a box a is a pure v-box (resp. a pure v-box with v-mark j) if
thc associatcd operation moves Vj (resp. Vj) forward (toward the rn-th place).
In a siInilar way, Cl is called a z-box if the corresponding Sih -operation moves
forward some Zj.

Definition 5.3 A z-ribbon (resp. v-ribbon, v -ribbon) with mark j is the set
0/ aU boxes 0/ D C D,~ whose z-marks (resp. v-rnarks, v-marks) are equal to
j. The sum 0/ v-ribbon and v-ribbon with maTk j (j = rn - n, m - n -1) will
be called a v /v-ribbon with mark j.

Proposition 5.4 (1) (Connectedness) The z-boxes, pure v-boxes and pure
v-boxes witk a fixed mark form connected sets in each row.

(2) (Separation) In a fixed row, any two sets 0/ D-boxes are disconnected
(i.e. there is at least one rvD-box between titern) provided:

• they are equipped with two different z-rnarks;

• they are pure v -boxes (or v -boxes) equipped with two different
marks;

• one 0/ them consists 0/ z-boxes with a fixed rnark and the second
0/ pure v- or v-boxes with a fixed rnark.
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,,: ..::~x,r.'\ .
(3) The z-ribbon with a fixed mark'j'· i.~. '~d~iai~~d '~~~'~;~lY in the bottom part

of Dp. and is of the forrn: ~"::"

(tm, m)(tm- 2 , m - 2)(tm- 3 , 1'n - 3) ... (tZj ' Zj)

or
(tm-I, m - 1) (tm- 2, 111 - 2) (tm-3, 771 - 3) (tZj ' Zj),

where tm ::; tm-2 ::; ... ::; tZj and tm-I::; tm-'2 ::; ::; tZj '

(4) The z-marks in a given column whose nurnber is s7naller than m, strictly
increase from top to bottom.

(5) In D~ only pure v-boxes or v-boxes appeaTJ and in a fixed column theil'
marks strictly increase from top to bott07n.

(6) If a D-box a appea,s in the m-th column, then it has z-marks i, i + 1 or
z-mark i and v-mark j (l'esp. v-mark j), where j = m - n, m - n - 1.
If b is a D-box in the m-th column und the row of a is above the row of
b, then the z-mark of 0 is smaller than the z-mark of b.

.-.' "',
.f . : '" r-·· ~~ -J

~ . ,~.::\ ',:., . '. ~ -., .

x •
x •.x
x· • •
x •

x·
x.
• x • •

Proof. Mimic the proof of [P-R2, Proposition 4.4 ] and use Corollary 5.2.
o

Proposition 5.4 describes the behavior of z-ribbons in Dt. It remains to
analyze thc pictur~ of v- and v-ribbons in Dt. Since boxes marked with x are
removed from Dt ' the v-ribbons are slightly irregular. For the convenience,
we sinlplify thc pictures of ribbons in D IJ and display theIn in the following
way:

areal ribbon the ribbon after" simpli.fying'.'·<'-
(We treat x-boxes as "reaP' boxes iIl Dt and "siInplify".. the ·ribbons.)

Usillg this convention we can state a proposition which clescribes v- and
v-ribbons:

P roposition 5.5 Read the bottom part 0 f v / v -r'ib bon with mark r. The graph
of the function:

x = the number of a box in y = the colurnn number of
H

the bottom part of the ribbon the box

for alt x such that y < m, has the following properties:
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10 It is the union of sets of points 0/ the form (which we will call a de­
c1'easing and increasing part 0/ the graph, respectively):

•
•

• 07' •

• •
• •

•

each 0/ ca1'dinality 2: 1. (Note that the set consisting of a single point
only can be botk an increasing 07' decrcasing part 0/ the graph).

2° No two decreasing (resp. increasing) parts of the graph can appear suc­
cessively.

3° The end and the beginning of two successive parts have the same y­

coordinate.

1f y = m fo1' sorrte x, then, for x + I, we have y = m - 1.
(Under this identification the function y(x) is decreasing on pure v-boxes

and increasing on non pure v-boxes}.

(Compare [P-R2) 1 note that we do not draw thc x-boxes and use the "siIn­
plifying" convention for ribbons explained above.)

Let us display typical pictures of ribbons of different kind:

r

a z-ribbon

a v-ribbon
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thc z-part

the tai!

The last picture shows the vm_n-ribbon when '/.V>.. is of type 2. In that case,
the vm_n-ribbon can be decomposeel into two parts: its z-part which looks
like an orelinary z-ribbon anel the relnaining part callecl the tail.

Propositions 5.4 and 5.5 allow us to control all diagrains D C D~ such
that TD E R(w>.).

At the end of this section we will show SOlne important, for this paper,
operations on boxes and ribbons of D. These operations transform D C DIJ
into a new diagralll D' C DIJ such that if TO E R(w)..) then TD' E R(w)..) .

• ("Push down") Assume that we have thc following configuration: the
i-th row is a z-ribbon with a fixed Inark.

Then we can Hpush down" thc i-th row inta the (i + 2)-th row and
obtain a new set of boxes D';

• ("Breaking a ribbon") Assume that the following configuration of D­
boxes appears: n cannat be in the rn-th 01' (m - l)-th column, b is a
rvD-box) or b is a x-box and c is a ......... D-box:

Such an a will be called a breaking box. Replace this configuration by:
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Using the Coxeter relations in W one easily shows that if rD E R(w>..), then,
after breaking a ribbon, we get rD J E R(w>..). In the casc of the push down
operation, it is clear that 1'D = rD',

The third transformation is "an exchangillg operation" and can be applied
only in case if w>.. is of type 2. In the definition below, wc treat the x-boxes
as "real" boxes in D/~ - i.e. we use the silnplifying convention for ribbons.
Suppose that w>. is of type 2, a11 z-ribbolls anel the z-part of the v-ribbon with
mark (m - n) are thc consecutive rows in D~ starting from the first row of
the bottom part anel the row of D~ corresponding to the 'v-ribbon with mark
(m - n) is not the first row of the bottom part. Thc following transfqrmation
of a diagram D C Dil will be called the exchanging operation provided the
resulting diagralll D' is contained in D,L :

- Transpose the z-part of the v-ribbon with 111ark (m - n) anel the row
of D>. appearing immediately above it.

- Add one D-box at the end of the z-part of the v-ribbon with mark
(m - n).

- Rerllove thc rightlnost D-box frolll the (1T~ - n)-th row of Dt to get D'.

1

*"* ""*-x -)I --- -I-I I
x- ~ -----I
*l>< * * * *
-x -2..

--+

1

1*"'*-x ~ ----
-I-I I

xl? ----- -I

x * * * * *
-x-
~

Lemma 5.6 1f D' is obtained /rom D via the exchanging operation then rD
and r D' are reduced decompositions 0/ the sarne elernent 01 IV.

Proof. Observe that rD anel rD' applied to the identity permutation give the
same barred pennutation. Moreover, thc cardinalitie8 of D anel D' are equal.
Thus thc assertion fo11ow8. 0

Definition 5.7 Assume that one is given a family of ribbons (01' parts 0/
ribbons) which form consecutive rows 0/ a diagr(Lrr~ D c Dw The maximal
deformation 0/ this /a7nily is the diagram obtained in the /ollowing way:

- Take the last ribbon 0/ the /arnily. Push it down as many times as
possible. Then choose the leftmost breaking box and break the ribbon.
Choose the next breaking box in the ribbon und continue this as long as
there exists a breaking box.
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• Apply these operations to the next ribbon.

6 Lemmas about vanishing

In this section, we describe configurations of D- and rv D-boxes in D~ for
which aJ~ (E) = O. We will 'say about a configuration with this property that
"it causes/gives thc vanishing". Let us start with a simple but usefullemma.

Lemma 6.1 Assurne that rD E R(w)..). The following configuration:

-~----1E,-----?-?--
(h)

cannot appear in Dt, where a, band c have the colurnn number h smaller
than m - 1 and:

1. a is a pure v -box witk mark smaller than (1'11, - n), b is a rv D -box and
c is a D-box, or

2. a is a pure v-box with mark (m - n), b is a rvD-box, c is a D-hox with
a nontrivial z-mark.

Proof.

1. Since a is a pure v-box with mark different from (rn - n), the operator
of a acts as:

(... v., x . .. ) -+ (... 2;, v• ...)

and x =j:. v•. But the operator of c moves x forward and x must be v.
or z. (b is a rvD-box, see Proposition 5.1); we get a contradiction.

2. The operator of a Inoves Vm - n forward anel a certain x gocs backward:

( •.• Vm - n1 X . •. ) -+ (... X, V m - n ...),

so x =j:. z*. But c has a nontrivial z-Inark and its operator moves x

forward so x must be z*, and wc get a contracliction again. 0

In almost all proofs in this section, we IllUSt apply compositions of the op­
erators of boxes of DJl to the generating functions Ea . The following example
shows how such operators act.
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Example 6.2 We apply the operators of boxes from left to right to E a and

obtain Eal" • denotes a D-box and empty boxes are rv D-boxes.

m=9

1. Action of the operators associated with a row in D:~:

9 8 7 6 5 4 3 2 1

Ixlxlxl·I-I-I·1 I I

2. Action of the operators associated with a row in D~~:

9 8 7 6 5 4 3 2 1

~

9 8 765 4 321

~

9 8 765 4 321

~

9 8 7 6 5 432 1

~

3. Action 01 the operators associated with rows 01 D-boxes in Dt:

a = (*,*,*,*,*,*,b,*,*) a = (*,*,*:b,*,*,*,*,*)
9 B 7 6 5 4 321 9 8 7 G 5 4 3 2 1
x

- ----~ -I-I
- x -- -I!l - -I
x

- -
.~

- -- x -I!J

- -

- x -I!I -- --I-I
x -I!J

- - - -
-I

~ x -----x ~ ~ [!] I!I Cl

The symbols ~ denote the operators which move b; in the second
picture, a' is obtained after applying alt operators 01 boxes preceding Cl.

Lemma 6.3 The Iollowing configurations 01 rv D-boxes in Dt give the van­
ishing:
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1.
~
~
~
~

2.

3.

o o

Lemma 6.4 The following configuration of rv D-boxes in Dt gives the van­
ishing:

---'-lo---itJ---

Lemma 6.5 1f a~ (E) #- 0, then the top segrnent of a v-ribbon (resp. the
vm_n-ribbon) is of the form:

Proof. See the proof of (P-R2, Lemma 5.5]. 0

Corollary 6.6 1f rv E R(w>.) and a~(E) #- 0, then

1. Dt C D~ is the diagram of astriet partition.

2. Dt \ D t is a 1/2-strip.
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Proof. 1. If D t is not strict, then there exists an Sih -operation which inter­
changes the pair (Vil Vj); but this is impossible ( see Proposition 5.1).

2. This follows froIn Lemmas 6.4 and 6.5. 0

Lemma 6.7 Let B~ (E) =I=- 0 and let ß be the operator corresponding to the
top part 0/ the diagram D C DIJ." Then .6.(E) = 1 . Ea , where the sequence a
is defined as /ollows:

if h is the column nurnber 0/ the end 0/ a row 0/ Dt
J

if h is the column number of a box in Dp. \ D,
in the iemaining case.

Proof. We know from Corollary 6.6 that D t is thc diagram of a strict partition
and D1 \ Dt is a 1/2-strip. Thc calculation fronl Example 6.2 applied to the
consecutive rows of D t gives the formula for a. 0

For a given box Cl, let 6.a be the con1position of operators of boxes pre­
ceding a in D IJ." It is clear that if a~ (E) = 0, then there exists a rv D-box Cl

such that .6.a(E) = c· Ea =I=- 0 and 8j (Ea ) = 0, where j is thc column number
of Cl. Such a box will be called bad. It follows that BI? (E) =I=- 0 Hf there
are no bad boxes in D1J. \ D. Corollary 6.6 gives a necessary and sufficient
condition for thc absence of bad boxes in D1. The next proposition allows us
to decide whether a given rvD-box is bad 01' not. Suppose that the following
configurations of boxes are given:

Proposition 6.8 (1) Suppose that the colurnn numbei of Cl is equal to h <
m. Then Cl is bad i/ and only i/ at least one 0/ the /ollowing conditions
holels:

• c and bare rv D-boxes Oi the rightrnost D-boxes in their rows;

• eisa rvD-box Oi the rightrnost D-vox in the row J andJ for sorne
i J Ci is a rvD-box Oi ~i is a rvD-box;
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• b is a '"'-'D-box or the rightmost D-box 'in the row , and, for some
j, Dj is a '"'-'D-box;

• There exist numbers i, j such that Ci and Dj, or I)i and "j, are
'"'-'D-boxes.

(2) Suppose that the column number of a is equal to m. Then aisbad if and
only if at least one of the following conditions holds:

• c and bare '"'-'D-boxes or the rightmost boxes in their rows;

• c is a '"'-'D-box or the rightrnost box in the row, and, for some i, Di
is a '"'-'D-box;

• b is a '"'-' D-box or the rightmost box in the row, and, for some j,
Cj is a '"'-' D-box.

Proof. (1) Let Ea be the function obtained from E after applying the op­
erators of boxes of D~ and let Li.~ be the COillposit of all operators of boxes
preceding a in Dt. Vve want to calculate the components a~, a~+l in the se­
quence a' defined by .6~ (Ea) = c, Eal. elearly1 a is bad iff ah = a~+1. Assurne
that a = (... b . .. c ...), where b = as and c = fLt (s and t are equal to the
column numbers of band c, respectively). V\Te know that band c are equal
to 1 or 0 (Lemlna 6.7). Note that in .6n, only tbe operators of the D's have
an influence on c , and only the operators of thc I)'s and c's have an influence
on b. One has:

b = 0 iff b is '"'-'D-box or the rightrnost box in a row in D'l;
c = 0 iff C is '"'-'D-box or the rightmost box in a row in DJl'

Clearly, a~+l = a~ = 0 Hf:

1. b = c = 0;

2. b = 0 and 3i Di is a '"'-'D-box;

3. c = 0 and 3j Cj is a '"'-'D-box or I)j is a '"'-'D-box;

4. 3i,j Di is a '"'-'D-box and I)j is a '"'-'D-box, or Di is a '"'-'D-box and Cj is a
'"'-'D-box.

Observe that the operation associatecl with fh or 1)2 changes the sign of b
so a~ = -1 or 0 and ah+1 = 0 or 1 (see LenlIna 6.7 and Exalllpie 6.2). Thus
a~+l = a~ iff ah+1 = ah= O. Thus (1) is proved. The prüof of (2) is almost
the same and we omit it. 0

It is elear that if a~ (E) = c . Ea , then
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1. c is apower of 2 (see Section 4);

2. if there exists at IUost one D C Dll such that 8
J
?(E) # 0 and TD E

R(w).), then c is equal to the mllitiplicity 1nw

Suppose that .6.a(E) = Ea for a SOIue t'V D-box a. We will say that a
is essential if 8h (Ea ) = 2 . Ea, # 0, where 8h is the operator of a. As a
consequence of the proof of Proposition 6.8, we have the following corollary
(in the sit nation displayed in pictures before P roposition 6.8).

Carollary 6.9 A box a is essential i/ and only if:

1. The boxes c and bare D-boxes but not the rightmost boxes in their
1'OWS; the boxes Ci, ~j are D-boxes or x -boxes; and i)i are D-boxes (see
the picture be/are Proposition 6.8),.

2. The boxes c and bare D-boxes but not the T"ightmost boxes in their rows;
and the boxes i)j and ~i are D-boxes.

7 Proof of the main theorem

In this section, we asSUIUC tacitly that T D E R(w).) and freely use the notions
associated with such a D in the earlier sections.

7.1 Case 1: w JL and w).. are of type 1

Lemma 7.1 Suppose wll and w). are 01 type 1. 1/ a~ (E) #- 0, then there is
no Si,. - operation supplying v* with a bar.

Praof. Suppose that some v* receives a bar. Thcn it must lose it (there is
no v* with a bar in w>.). Then, the v-ribbon of v* looks like:

"Ve thus obtain the vanishing by Proposition 6.8. 0
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Lemma 7.2 1f a;(E) -# 0, then the set of z-bo:J:es D z C D~l is the maxirr~al

deformation of D,\ in Dt·

Proof. First observe that the indusion D~ c Dt follows frOln the properties
of ribbons. Suppose that Dz is not the Inaximal deformation. So Dz is some
deformation of D~ but not performed in the Inaximal way. The following
cases must be exalnined:

• There is a possibility of pushing down a row but we do not do it:

We have the following cases:

- We do nothing:

• x • • • • c I I
x a b I

x

x • • • • • c I I
n X b I
x

- We break the ribbon from the first to t.he second row:

• x • • I I
x • • c I
a X b

x • • • I I
a x • • c I
x b

- We deform the ribbon from the first to the third row, but not in the
maximal way:

• x • • 1 I
x c I
a X b • •

• x I I
x b c I
o x • • • •

x • I I
a x • • b I
x c • •

x • I I
o X b I
x c • • • •

In each case, rvD boxes Cl, b, c give the vanishing (see Lemma 6.3). The
existence ofthcse rvD-boxes follows from Lemma 6.1 and the separation
property far ribbons.
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- There is a possibility of breaking a row (01' a ribbon) but we do not do
it in tbe maxilllal way:

- 'vVe do notbing:

~
~
~
~

- We break tbe row but not in tbe maxitnal way:

As before, using Lemma 6.1, the separation property and the fact that
no v. can receive a bar, we get the vanishillg caused by a, b, c. It follows
that to avoid thc vanishing we lnust perfonn the maxilnal deformation
of D1.
(Ir wc do not break, in the lnaxitnal way, the ribbon which has been
already deformed, then thc situation is ahnost thc salne:

1-1-1-1-1

r----~
'---_?_-~

Here, n, b, c cause thc vanishing. D

Lemma 7.3 If a~(E) #- 0, then [(DJl) -[(D;d ~ l.

Proof. Suppose that [(DJl) -[(D>.) ~ 2. Thc following pictures, where only
thc boxcs in D J, \ D>. a.re marked, will help to end thc proof:

x 0 0 0 0

oxo
x
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After the maximal deformation, we Blust obtain:

b D

x
c X
X

Here, c is always a rvD-box. If 0 is a rvD-box, then Proposition 6.8 gives the
vanishing. If a is a D-box, then it is a v-box aud b is a v-box tao. So D is a
rvD-box and Proposition 6.8 gives thc vanishing again. 0

Corollary 7.4 There is no push down operation in the process of the maxi­
mal deformation.

Proof. The assertion follows from LelIllna 7.3: the push down requires the
inequality l(DJJ - l(D>.) 2: 2. 0

Proposition 7.5 1f a~(E) =1= 0, then the z-boxes with the same mark can
appear in at most two successive rows.

Proof. If some z-boxes with thc same lnark appear in three different rows,
then we have the following situation (cOInparc [P-R2, Proposition 6.2)):

CTIII••••••I:J
ITITJ••• ••1 D

Then some rv D-boxes 0, b, c cause thc vanishing. If some z-boxes appcar in
thc rows which are not successive, then wc havc:

7 7 •••••••••
7 7 •••••••• 1 c
? ? 00000 0 olalb
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and the ",-,D-boxes a, b, c cause the vanishing (see Lemma 6.3). In fact, this
proof is almost the same as the proof of Proposition 6.2 in [P-R2]. A possible
difference can appear only if the first breaking box of the z-ribbon is situated
in the rn-th or (m-l)-th column. But l(DJ-J) -L(D>.) :::; 1, and, ifthe z-ribbon
meets (at least) three rows, or if it meets two rows which are non-consecutive,
thell the first breaking box can lie neither in the m-th nor (m - 1)-th column.
Thus the pictures above show all situations which can actually happen. 0

Proposition 7.6 If a~ (E) i= 0, then D~ \ D~ is a 3/2-strip and its extremal
component is aI-strip.

Proof. The latter assertion follows easily frorn Lemma 7.2, the proof of
Lemma 7.3 and Lemma 6.3. The extremal deformed component looks like:

x
x

x
xo

xo
x

x
x

x
x 0

x
x

x

Therefore, before the deformation, it must be al-strip:

The former assertion can be proved directly in the same way as the first part
of [P-R2, Proposition 6.7]. 0

It follows from Proposition 7.6 that a typical nonextremal component
looks like (cf. [P-R2, the end of Section 3]):

the highest staircase -t roof

the staircase --+ D
t

c:=J+- the excrescence

A typical extremal component looks like in pictures (1) and (2) of the proof
of Proposition 7.6.
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Lemma 7.7 An excr~scence can apperLr only 1tndcr the roof 0/ a deformed
cornponent and there are no two boxes of the excrescence lying one over the
other. Moreover, the segment 0/ a row between the staircase box and the
excrescence must contain a z-box. (C07npare fP-R2, Lemma 6.8) and the
picture above.)

We have proved that if 8~ (E) #- 0, thcn thc positions of z-boxes are
uniquely determined. Now, we must dctcnninc thc positions of v-boxes. We
will show that the condition 8,?(E) #- 0 can be satisfied for at most one D
(that is, the positions of v-boxes are cleterminecl in a unique way too). We
will use Proposition 6.8 in the following situation:

••• • -I

Here, a is a rv D-box anel its column munber is h. D-boxes form apart of
a v-ribbon, and it is clear that 'öa(E) = Eu whcre ah = o. We need to
determine ah+l if we want to know whcthcr n is bad or not.

Lemma 7.8 No v-box can appear in an excrcscenee.

Proof. Use the separation property, thc reInark above anel Proposition 6.8.
o

Lemma 7.9 A /amily 0/ v-boxes ean appear only in the 1'00/ of a deformed
component and it /orms a segment starting /rorn the lejtmost box of the roof.
No two pure v-boxes with different marks ean appear in the same roof.

Proof. Use Proposition 6.8 again. 0

Proposition 7.10 No two different roof5 can contain pure v-boxes with the
sarne mark.

Proof. Analogous to that of [P-R2, Proposition 7.4]. 0

Corollary 7.11 The marks 0/ segments 0/ pur'e v-boxes in the roofs of con­
secutive de/orrned components increase from top to bottom.

(Compare [P-R2, Proposition 7.4])
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Theorem 7.12 For given two shapes A, /1, there exists at most one D C D Jj

such that 8,?(E) :I O.

Proof. Analogons to that of [P-R2, Theorenl 8.1]. 0

Recipe 7.13 (Compare [P-R2, Recipe 8.4].) Let A, J-l be two shapes satis/y­
ing the conditions:

(1) Dt ~ Dt Dt \ D~ is a 3/2-strip and I(DJl ) -[(D;..) ::; 1.

(2) The )..-part 0/ at most one row ends over a cornponent.

The recipe is:

(i) Per/orm the maximal deformation 0/ D~ in Dt·

(H) Shift the bottom part of DJJ together with the deformed D~. For every
shifted component 0/ Dt choose a TOW 0/ Di which ends over the com­
ponent. Subtract the segment 0/ the row, which ends over the roof and
push it down to the roof.

Lemma 7.14 /f a~(E) =I- 0, then:

(1) D:J \ Di is a 1/2-strip.

(2) No (J-l- )")-box lies over the staircase of a Tclated C01TtpOnent.

Proof. Analogous to the one of [P-R2, LemIua 8.5]. 0

Definition 7.15 Let w;.. and W Jj be 0f type 1. Th en J1 is compatible with A if

(1) Dt ~ D~ and Dt \ D~ is a 3/2-strip; D~ \ Di is a 1/2-strip.

(2) The A-part 0/ at most one row ends over' a Gomponent. // a row ends
over a component we say that they are related. A component which is
related to some row is called related. Sirnilady, a row which is related
to some component is called related.

(3) Each exceptional row is related to a component over which the J-L-part of
this row ends.

(4) /f a (J-l - A) -box lies over a component, then this C01TtpOn ent is not related
and this box lies over the leftmost box 01 the cornponent.

(5) An excrescence can appear only in a related component under the )..-part
of the related row; no box from the J-l-part 01 the related row lies over
the excrescence.
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Proposition 7.16 There exists (a unique) D C DJ, such that a~(E) =I=- 0 if
and only if J.-L is compatible mith A.

Proof. Suppose first that there exists D such that B,?(E) =I=- O. Vve will show
that J.-L is compatible with A. Note that:

(1) holds because of Proposition 7.6;
(2) is a consequence of condition (2) of Recipe 7.13;
(3) follows from Recipe 7.13 and D CD/,;
(4) follows froln Recipe 7.13 and Proposition 6.8;
(5) is a consequence of Proposition 6.8.
Assurne conversely, that (1) - (5) hold. vVc will provc that the set of

bad boxes is eIupty. First, observe that the extrclnal component is aI-strip
- this follows froln (1) and (5). Thus, the cleforIned cOlnponent looks like
in the piettlres preceding Lemma 7.7. It follows frOIn Proposition 6.8 that no
box fronl the staircase can be bad. Suppose that a component is not related.
This means that no A-row ends over a component and if a ",D-box lies over
a component, then this box lies over the highest staircase. Thus no box from
the roof can be bad. If a component is rclated, thcn 00 box in the roof cau
be bad (use (4) and Proposition 6.8), aud no box from thc cxcrescence can
be bad (use (5) and Proposition 6.8). Thcre are no bad boxes in thc extremal
component: this follows from (4) aod Proposition 6.8. 0

Let, for compatible J.-L and A, DA,/, denote thc unique D from the propo­
sition. ClearlYl rnß is the number clefincd by B,?>"/J (E) = rnJ, • E a . It follows
that rnß is equal to 2m (A",) where rn(A , l1,) is thc Illunber of essential boxes.

Proposition 7.17 A '" D-box aisessential ij and only i/ it is the highest
staircase box in a non-related component.

Proof. Use Corollary 6.9. 0

7.2 Case 2: wJI. is of type 1 and WA is of type 2.

Lemma 7.18 1/ a~(E) =I=- 0, then no Sih -operation supplies Vm-n-l witk a
bar.

Proof. Suppose that Vm-n-l receivcs a bar. It follows that the v/v-ribbon
with mark (m - n -1) must meet (at least) twice the rn-th column. Thus we
have the following picture of the v/v-ribbon:
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Here, a is a I'V D-box (w~ is of type 1 so a cannot belong to the v-ribbon
with lnark (m - n)) and b is a I'VD-box (use the separation property). Then
Proposition 6.8 applied to this configuration gives thc vanishing. 0

Assurne that D c D~ is such that a~(E) =1= 0. Let Dz C Dt be the set of
all z-boxes together with the z-part of the v-ribbon with Inark (m - n) (see
the picture after Proposition 5.5).

We will show that D z is determined in a unique way provided D does not
cause thc vanishing.

It is clear from Section 5 that by inverting the operations of breaking a
row and pushing down a row, we obtain thc eliagram, denoted by D', in which
all z-ribbons anel thc z-part of the v-ribbon with mark (ln - n) appear as
consecutivc rows. After applying the maximal deformation to D', we get a
certain new subset of Dt; denote it by D".

Proposition 7.19 11 Dz i:- D", then aJ~(E) = 0.

Proof. Analogous to that of LeInma 7.2. 0

Proposition 7.20 11 a~(E) i:- 0, then l(D,J -l(D>.) ::; 1.

Proof. Suppose that this is not true. Thell the extrenull component must
contain (after the deformation) one of the following two canfigurations:

o

a b
o

o

E a b
o

o
II X
X

It is clear that a and b belang to Dt (wJJ is of type 1).
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(1) Consider first the picture on thc left-hand siele. If c is a rvD-box, then
i) gives the vanishing. Thus C IllUSt be a D-box and c is a v-box. Moreover,
a belong to the salne v-ribbon and b is a rvD-box which gives the vanishing
because of i) (see Proposition 6.8).

(2) In the case of the picture on the right-hand siele, thc argument is
alInost tbc same: if c is a rv D-box, then i) givcs the vanishing. If c is a
D-box, it is a v-box and f is the rightmost v-box in the row: a anel bare
rvD-boxes. Therefore D gives tbe vanishing by Proposition 6.8. 0

Before stating the next proposition, suppose that:

Z1 < Z2 < ... < zp < V m - n < Zp+l < ... < Zk

anel let u be the length of tbe z-part of the vm_n-ribbon in D. The element
Vm - n IllUSt receive a bar before or together with Zp+l' It follows that the rows
of the e1iagram D' which is defined before Proposition 7.19, have lengths

m+1-z1 < m+1-z2 < ... < m+1-zq , u, rn+1-zq+1 < ... < m+1-zk

whcre q :::; p.

We have D' C Dt because rD E R(w)..). Let D~ be thc diagram (contained
in DZ) with tbe row-Icngths:

1n+1-z1 < m+1-z2 < ... < m+1-zp , U, m+1-zp+1 < ... < m+1-zk .

(Note tbat by inverting the exchanging operations, D~ is gotten from D'.)
Conversely, applying exchanging operations to D~ (in fact, it will be shown in
the next proposition, that we must perform all possible exchanging operations
to avoid the vanishing), we obtain thc diagraIn D'. Then we deform the
diagrmn D' (in the maximal way) and get D. We know (see Proposition
7.19) that D must be the maximal defonnation of D' (in the opposite case
we get the vanishing).

Proposition 7.21 /f a~(E) #- 0, then D is the 1'csult of following operations
applied to D~:

(1) Apply the exchanging operation to D~ as many times as possible to get
D'.

(2) Deform D' in the maxirnal way to obtain D.

Proof. Part (2) has been proved in Proposition 7.19.
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For the praof of (1), observe that no push down operation can be applied
here because l(DJ,) -l(D>.) ::; 1. Suppose that there is a possibility to perform
the exchanging operation and we do not do it:

~
~
~
~+-- the special row

~
~+--the special row

~
~

Then, after the nlaximal deformation, we get D in which thc following con­
figuration appears (this is guaranteed by the absence of the push down oper­
ation):

and the ",D-box a causes the vanishing ( see Proposition 6.8). 0

Proposition 7.22 The boxes of Dz can appear in at most two s'Uccessive
rows.

Proof. Analogons to that of Proposition 7.5. 0

Proposition 7.23 Dt \ D~ is a 3/2-stri]J, the special component is aI-strip
and all components below the special one fOTin a 1/2-stT'i,p.

Proof. For all COIuponents· above the special olle the proof is the same as that
of [P-R2, Proposition 6.7]. Since 7VJ, is of type 1, the length of (rn - n)-th
row of D~ is bigger than the number of rows in D~,. Hellce, there exists a
",D-box (01' the rightmost D-box) in thc (m - n)-row of D~ over every box
appearing in tbe rn-th column of Dt, in the special row 01' below it. In the
picturc, 1,2,3,4,5,6 are ",D-boxes and l,2,3,4,5lie ovcr 1',2',3',4',5'.

+-- the special >.-row

Gis a ,.,.j)-box (w~ is 01 type 1)

i lies over i'

For the special row and the rows belaw we call apply Proposition 6.8 and we
obtain:
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(1) The vm-n-ribbon is equal to its z-part (if this is not true, then the
rvD-box a causes the vanishing):

-

(2) The deforrned cOIuponent below the special one is contained in a single
row (if this is not true, then the following configuration of boxes, in the
deforrned cOillponent, causes the vanishing):

I-I-I-j-E!:@]-,--.--,--r-.
@l!]-I-I-I-I-I

It reInains to prove that the special cornponent is aI-strip. It follows frorn (1)
that D~ = D~. After applying the exchanging operations to D).., we obtain
D' C Dt and then we dcforrn D' to Dz . 0

Corollary 7.24 11 8ff (E) i= 0, then D~ C D~.

Praaf. Recall that rD E R(w)..) , and heuce Dz C Dt. Thus D' C Dt. Bince
D' is obtained frolll D~ = D~ by the exchanging operations, D~ c Dt. (In
fact, it is true that if rD E R(w)..) , then D~ C Dt without the assumption
8~(E) i= 0 but we do not ueed this reslllt..)

Let us return to the special componcnt. Look at the picture:

The component finst contain at least a horizontal strip; n is a rv D-box and
a must exist (C is connected). After thc exchanging operations we get:
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It is clcar that there is no deformation of rows (see (2) before Corollary 7.24).
Heuce a causes the vanishing. It follows that thc component C is aI-strip
and the special row is thc lowest raw in C. D

We have a cornplete description of the connected cornponents of Dt \ D~.

For the components appearing above thc special one, Leullnas 7.7, 7.8, 7.9,
Proposition 7.10 and Corollary 7.11 hold true.

Theorem 7.25 For given two shapes A, I-L such that w>. is 0/ type 2 and wJ.l is
o/type 1, there exists at most one D C D/o denoted D>',J.l, such that 8{l(E) i= 0
(and rv E R(w>.)).

Proof. It follows from Propositions 7.21 and 7.23 that Dz is uniquely de­
termined if a~(E) i= 0 and rD E R(w>.). Moreover, there are no v-boxes in
the special component and below it. Thus, arguing as in the proof of [P-R2,
Theorem 8.1], we infer that at most one D has thc needed properties. D

Recipe 7.26 (Cornpare [P-R2, Recipe 8.4j.) Let A, J-L be two shapes satis/y­
ing the conditions:

(1) Dt :) Dt Dt \ Di is a 3/2-strip anrlZ(D,t ) -Z(D>.) S; l.

(2) The A-part 0/ at rnost one row ends over a component.

The recipe is:

(i) Perform the exchanging operation to D>. as rnany times as possible to
obtain the diagrarrt D'.

(ii) Apply the maximal deformation to D' to obtain the set D".

(iii) Shijt the bottom part 0/ the diagraut Dt together with D". For every
(shijted de/ormed) component 0/ Dt choose a row 0/ D~, which ends
over the component. Subtraet the segment 01 the 1'ow whieh ends over
the roof of the component and push it down to the y·oo/.

Lemma 7.27 (Compare Lemma 7.14.) 1/ 8{l(E) i= 0, ihert:

(1) D~ \ Di is a 1/2 strip.

(2) No (J-L - '\)-box lies over the staircase of a related cornponent.

Proof. Analogons to that of [P-R2, Lenllna 8.5]. D

Definition 7.28 Let w>. be 0/ type 2 and w/ t be 0/ type 1. Then, J-L is com­
patible mith ,\ if
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(1) Dt ~ D~ and Dt \ D~ is a 3/2-strip; the special component is a 1­
strip; the components appearing below the special one foml, a 1/2-strip.
Moreover, D~ \ Di is a 1/2-strip.

(2) The Apart 0/ at most one row ends over a component, the special com­
ponerd and the components lying below it are not related.

(3) Each exceptional row is related to the component over which the J-L-part
0/ this row ends.

(4) If a (J-L - A) -box lies over a component, then this component is not related
and this box lies over the leftmost box of the component.

(5) An excrescence can appear only in a related component under the A-part
of the related row; no box from the JL-part of the related row lies over
the excrescence.

Proposition 7.29 8
J
?>',j-I (E) #- 0 if and only if JL is compatible with A.

Proof. We can almost repeat the proof of Proposition 7.16. The main dif­
ference between Definitions 7.15 and 7.28 is the addition to (1) and (2) the
conditions for the special component alld for the cornponents lying below
it. These modificatiolls are necessary by Proposition 7.23. The only thing
which must be proved is that (1)-(5) imply thc non~existence of bad boxes
in thc special component and in the compoIlcnts bclow it. But this is deal'
by Proposition 6.8. 0

Proposition 7.30 One has mJi. = 2m (>',l t
) , where m( A, J-L) is the cardinality

of the set of non-related components above the special component, with no
(tL - A) -boxes over tkem.

Proof. Each essential box gives thc multiplicity 2. Essential boxes are the
highest staircase boxes in non-related cOInponents, with no (J-L - A)-box over
them. No essential boxes cau appeal' in the special cOlnponent and below it
(see Proposition 6.8). 0

7.3 Case 3: wJj is of type 2 and w;\, is of type 1.

Lemma 7.31 If 8
1
?(E) i= 0, then the v/v-ribbon with mark (m - n) meets

the m-th column no 1TtOre than twice.
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Proof. Suppose that this is not true. Then the v/v-ribbon meets the rn-th
coluIlln at least foul' times (w>. is of type 1 anel W m - n has no bar).

The empty places in row A can be occllpied neither by v-boxes nor z-boxes
(in the opposite case we get the vanishing by Proposition 6.8). A "-'D-box in
row B must exist because Dt is the cliagram of a strict partition. But this
configuration gives thc vanishing by Proposition 6.8 applied again. 0

Now, let us consider separately thc following two situations. Firstly, as­
sume that V m - n can receive a bar in the process of transfonning the identity
permutation into the permutation w>..

Proposition 7.32 1/ the v/v-ribbon with mark (rn - n) meets the rn-th col­
umn twice and 8{!(E) =j=. 0, then the positions 0/ z-boxes in D~t are uniquely
detennined.

Proof. Assulne that the v/v-ribbon Ineets t.he rn-th colullln twice. This
means that Vm - n receives anel then loses a bar. A typkai situation is shown
in the picture:
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In thc i-th row, only D-boxes from the v/v-ribbon can appeal'; so if a{l(E) "#
0, then our configuration looks like:

f- the i-th row

*

There are no I"VD-boxes in the area luarked with "*" (this follows from the
properties of ribbons).
In area Al only D-boxes can appear.
In the area marked with "1", there is no more than one '"'-' D-box in a fixed
row (see Proposition 6.8).
If a I"V D-box n appears in "?" , then there is 110 I"V D-box over the leftmost
box of the row of a.
Therefore, if a~ (E) "# 0, thcn the part of thc diagrain D'l below the i-th row
looks like:

the i-th row

thc specialll-row

(The z-ribbons are rows, thc pure v-boxes with Inark (1Tt - n) appear in
precisely two rows (in the i-th row and some lower olle), single '"'-'D-boxes can
occupy rows below the i-th Olle alld the special J-L-row. We want to translate
these conditiolls into the initial shape-c1ata. Let HS reillove from the diagralll
all D-boxes with (pure) v-mark (m - n). Thc lengths of the z-ribbons are
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equal to the lengths of the rows of D).:

the i-th row

the special Jj-row

Therefore, the extremal component of Dt \ D~ is an extended 3/2-strip and
looks like:

the i-th row

tlle special Jj-row

Let us fix i as above.

Corollary 7.33
ponent.

1. The i-th row is the highest row of the extremal com-

2. In the diagram D C DJj' the positions of boxes of the vm-n-ribbon are
uniquely determined.

Arguing as in case 1, one can prove that for the remaining components of
Dt \ Dt, conditions (1)-(5) of Definition 3.1 hold truc.

Proposition 7.34 If the v/v-ribbon with mark (rn - n) meets the m-th col­
umn twice and, for sorne c, 8

J
?(E) = c· Ea =1= 0, then:

(1) D is uniquely determined.

(2) The extremal component 01 Dt \ D~ looks like the one in the picture
above, that is, it is an exlended 3/2-strip such that the excrescence of
the 3/2-strip appears below the special ti-row and is adegenerate strip.
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(3) The (m - Tl,) -th row ends over the extremal component and the rightmost
D-box of this row ends over the rigIdmost D-box of the lower I-strip of
the 2-strip (of the extremal C01TtpOnent).

(4) The remaining components satisfy conditions (1)-(5) 0/ Definition 3.1.

It is easy to see that conditions (2) - (5) of this proposition are sufficient
for the existence of a subset D C DJl which gives a non-zero multiplicity in
our formula.

Now we must examine the case when the v/v-ribbon with mark (rn - n)
does not meet the rn-th column. Observe that this is a situation similar to
case 1 when w lJ and w). are of type 1. The lnain difference is that the length
of the (m - n)-th row of D~ is smaller than l(Dt) + 1.

Proposition 7.35 1/8
J
?(E) =1= 0, then the set 0/ z-boxes Dz C Dt is the

maximal deformation of D~ in Dt.

Proof. Thc v-ribbon with mark (m - n) eioes not meet the rn-th column alld
all arguments of the proof of Lemma 7.2 can be repeateei. 0

Proposition 7.36 // 8~(E) =1= 0, then [(DJJ ) -[(D).) = 2.

Proof. The inequality [(DJJ ) -[(D).) > 2 IneallS that there exist at least three
rows with rv D-boxes in Dt \ D~. V\'e know froll1 Proposition 7.35 that, to
avoid the vanishing, we IUust perfonu thc InaxiInal clefonnation of D~ in D~j'

Moreover, thc following result holds:

Proposition 7.37 // 8~(E) #- 0, then the z-boxes with the same mark can
appear in at most two successive rows.

Proof. Analogous to that of Proposition 7.5. 0

Therefore, after the 11laximal deformatioll, we have the following configu­
ration of boxes:

(1) !----L---'--_+__'
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It follows froIn the properties of ribbons that thc v-boxes with mark (rn - n)
ean appeal' only in the i-th row. But thcn the j-th and i-th rows eonsist of
rvD-boxes (no v-boxes ean appeal' thcre) and wc get thc vanishing. 0

From Proposition 7.37, we infel':

Proposition 7.38 1/8{l(E) =f:. 0, tken every cOTrtIJOnent 0/ D~t \D~ appearing
above the special one is a 3/2-strip satis/ying the conditions 0/ Definition 3.l.

Proof. Analogous to that of Proposition 7.5 (use Propositions 7.35 anel 7.37).
o

It follows that l(D,t ) - [(DA) ~ 2. Suppose that l(D1,) - [(DA) < 2. In
this case, there is no push down operation in the process of the maximal
deformation. Since wJt is of type 2 and W A is of type 1, the (rn - n)-th row of
D~ is exeeptional. But the partitions Ji and Ab have equallengths and there is
no component of D~t over which this row ends. Henee it is inlpossible to obtain

D c DJt satisfying TD E R(w>J if l(DJt) -[(DA) ~ 2. Thus [(DJt) -l(DA) = 2.
o

Proposition 7.38 gives necessary conditions for the non-vanishing. Note
that an exeresccncc can appeal' also in the extrcInal component.

Proposition 7.39 1/ B{l(E) =f:. 0 and the V-l'ibbon with mark (rn - n) does
not meet the rn-th column then D is determined uniquely.

The proof of this proposition is the SaIl1C as the Olle of [P-R2, Theorem 8.1].
See also LeInmas 7.7 - 7.9, Proposition 7.10 anel Corollary 7.11. 0

It is clear that the unique D satisfying tbc condition: thc v-ribbon with
mark (rn-n) eloes not meet the rn-th column, can be obtained by performing
the operations of Reeipe 7.13 to shapes A, J-L for which:

1. Dt :=> Dt the extreInal componcut is spccial and fonns a 2-stripi the
remaining eomponents of Dt \ Di are 3/2-strips.

2. At most one row frOIn Dj" ends over a eOInponent.

(Compare with (1),(2) in Recipe 7.13.)

Theorem 7.40 There exists at most one D /01' which B,? (E) =f:. 0 {without
any assumptions on the v-ribbon with rnark (1n - n)).

Proof. Suppose that the extremal cOIllponent of D>, anel DJt looks like that
in the picture before Corollary 7.33. Apply Reeipe 7.13. "Ve get the following
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configuration of boxes:

This configuration gives the vanishing. Hence, it is impossible that the pair
DA, DJ-I. satisfies thc assumptions of Propo~ition 7.34 and, applying Recipe
7.13, we can find D' =I- D such that a~' (E) =I- O. 0

Definition 7.41 A shape J-L is compatible with A if

(1) We have Dt :> D~ and eve7iJ non-special component of Dt \ D~ is a
3/2-strip; moreover, D:~ \ Di is a 1/2-strip.

(2) The A-part of at most one row ends over' (L component. 1f the A-part of a
row ends over a component, then we say that the row and the component
are related. A component which is related to some row is called related.
Similarly, a row which is related to sorne component is called related.

(3) Each exceptional row is reZated to a com]Jonent over which the J-L-part 0/
this row ends.

(4) // a (,t - A) -box lies over a component, thcu this c01nponent is not related
and this box lies over the Zeftmost box 01 the com]JOnent.

(5) An excrescence can appear only in a related component under the A-part
0/ the related row; no box from the p-pa1't 0/ the related row lies over
the excrescence.

(6) The extremal component is special and is an extended 3/2-strip such that
the excrescence 0/ the 3/2-strip is adegenerate strip. The lower I-strip
0/ the 2-strip lies under the A-part 0/ a 1"07U.

It is easy to see that the extremal component has 110 influcnce on the
multiplicity mw

Theorem 7.42 11 w>. is 0/ type 1 and wJ-I. is 0/ type 2, then mJ-l. =I- 0 iiJ
/i is compatible witk A. In case (a) 0/ Definition 7.41, ffiJl = 2m (>.,J-I.) where
m(A, J-L) is the number 01 non-extremal components which are above the special
component and have no (J-L - A)-boxes over tILern.
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Proof. Observe that the only difference betwccn case 1 whcre w).. and w/-' are
of type 1 and the present situation, is that thc length of thc (711 - n)-th row
of D~ is sInaller then l(Dt) + 1 and the extreillal cOIllponent does not need to
be aI-strip. Hence (1) - (5) are necessary - the arguments are the same as
in case 1. In the dcfonncd diagram, the (rn - n)-th row of Di ends over the
leftmost box of the top row of the special componcnt and the (m - n)-th row
of D~ cnds over the special J-L-row. We concllldc the proof using Proposition
6.8. 0

7.4 Case 4 : w JL and W;x are of type 2

Lemma 7.43 // 8J~(E) #- 0, then no 8ih -operation can supply Vm-n-l with a
bar.

Proof. 8uppose that some 8ih -operation supplies Vm-n-l with a bar. Then
tbe v-ribbon with mark (rn - n -1) meets the rn-th column at least twice (in
the barred permutation w).., Vm-n-l has no bar):

We get the vanishing by Proposition 6.8. 0

Lemma 7.44 1/8{j(E) #- 0, then the vm _ 71 -ribbon meets the m-th column no
more than once.

Proof. Analogous to that of Lemma 7.31. 0

Now] let us assurne that D c DI-' is such that 8~(E) #- 0. Let D z be
the set of all z-boxes together with thc z-part of the v-ribbon with mark
(m - n). Let D' and D" be a.s in Subsectioll 7.2, between Lemma 7.18
and Proposition 7.19. We state the following proposition (whose proof is
analogous to Proposition 7.19).

Proposition 7.45 1/ Dz #- D", then 8
1
?(E) = O.
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Proposition 7.46 I/ a~(E) i= 0, then l(DIl ) -l(DA) :::; l.

Proof. Suppose that Z(DJi ) - Z(DA) ~ 2:

o
i) x
x

If c is a ........ D-box, then we get the vanishing. If c is a D-box, then it is a v-box
with mark (m - 11 - 1) but in this case ........ D-boxes from the (m - n - l)-th
row give the vanishing. 0

This present case and case 2 are quite similar; essentially the same argu­
ments show:

Proposition 7.47 I/ a~(E) i= 0, then Dz is thc 1'esult 0/ tILe /ollowing op­
erations applied to D~:

(1) Apply the exchanging operation as 1nany times as possible and denote the
so obtained diagram by D'.

(2) De/orrn D' in the maximal way to obtain D z .

(Compare Proposition 7.21)

Proposition 7.48 Dz-boxes can appear in at 1nost two s'Uccessive rows.

Proof. Analogons to that of Proposition 7.5. 0

Proposition 7.49 (1) An ordinary cornponent 01 Dt \ D~ is a 3/2-strip.
(2) The special component is a 3/2-strip whose excrescence appears between
the special J-L-row and the special A-row und is adegenerate strip.

Proof. The proof of (1) is the same as that of [P-R2, Proposition 6.7]. For
(2) let us divide the special component into two parts: thc "upper part"
consisting of boxes in the special A-row aud in rows above it; and the "lower
part" consisting of boxes below the special A-row. Perform the exchanging
operations (this is necessary to avoid thc vanishing - see Proposition 7.47).
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The set of boxes of the special compollcnt can break up (or not) into some
nUlnher of disconnected sets:

1006]
To oT

10 01
10 0 0 0]

10 0 01
10 0 oT

10 0 0 0 0 01
101

101
[

10 0 oT
[0 0 01

After the maximal deformation we get:

10 0 0 0 0 o[
]0]

]01
]

!o 0 0 0]

101 101

In general, from the lower part of the special componcnt, we get the set of
the form:

and the special ,,\-row ends over its roof. It fo11ows that thc taU of the v-ribbon
with mark (m - n) lUllst appcar in thc roof:

{-no v-boxes

{-v-boxe" tnust fill up the roof

Note the following two facts which are conscqucnces of Proposition 6.8:
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1. No rvD-box can appeal' in the part of row Iuarked with ((?" as weH no
rvD-box lies under a box marked with "?".

2. No rvD-boxes can appeal' in thc special row anel in the rows above it.

Hence, the following picture shows a special (dcfornlcd) cOIuponent without
bad boxes.

It follows that the nondeformed special component looks like:

o

Corollary 7.50 1/ aJ~(E) =I- 0 (and ro E R(w)..)), then D~ C Dt.

Proof. This follows fronl Proposition 7.49 allel the properties of z-ribbons.
o

Theorem 7.51 For given shapes A, J-L such that w).. and wjj are 0/ type 2,
there exists at most one D =: D)..,jj such thai aJ~ (E) -:j:. 0 (and rDER(w)..)).

Proof. It follows from Propositions 7.47 and 7.49 that the positions of z­
boxes and boxes of the v-ribbon with mark (1n - n) are uniquely determined.
Using the arguments as in the proof of (P-R2, Theorem 8.1], one proves that
the positions of v-boxes with mark different than (m - n) are also uniquely
detennined. 0

Recipe 7.52 Let A, J-L be two shapes satisjying lhe conditions:

(1) Dt ~ D~, Dt \ D~ is a 3/2-strip and l(DJi) -l(D)..) ::::; 1.

(2) At rnost one row /rom Dl ends over a component.
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The recipe is:

(i) Perform the exchanging operation as many tirnes as possible; calt the so
obtained set D'.

(H) Perform the maximal deformation of D' in Dt but do not change the
special ..\-row; denote by DI/ the result of ihis deformation.

(iii) Shijt the bottom part of the diagrarrL Dt =:> DI/. For every component,
choose a row 0/ D~ which ends over the corn]Jonent. Subtract the seg­
ment 0/ the row which ends over tILe roof and pusIL it down to the roof.

(iv) Repeat (iii) with the special A-row and the bott01n part of the special
component in Dt.

Lemma 7.53 1. // a~(E) t= 0, tILen D~ \ Di is a 1/2-strip.

I

2. No (J-l - ..\)-box lies over tILe staircase 01 a related component.

Proof. The assertions follow from Corollary 6.6, Lcruma 6.7 and Proposition
6.8. 0

Definition 7.54 Let w>. and W,t be 01 type 2. Then IL is compatible with A
if:

(1) Dt =:> D~ and Dt \D~ is a 3/2 -strip,. the special component is a 3/2-strip
whose excrescence appea, below the special JL-row and is a degenerate
strip; moreover, D~ \ Di is a 1/2-strip.

(2) The A-part 0/ at most one row ends over a component. The special
component is not related.

(3) Each exceptional row is related to a component over which the J-l-part 0/
this row ends.

(4) // a (Il - A) -box lies over a component, then this cornponent is not related
and this box lies over the lejtmost box of the component.

(5) An excrescence in a non-special cornponent can appear only in a related
component under the A-part 0/ the related row; no box f,om the j.L-part
0/ the related row lies over the excrescence.

Proof. Observe that the only difference between this case and case 2 is the
conditioll about the absence of bad boxes in a dcformed component. 0
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Theorem 7.55 One has 8[j1i,>' (E) #. 0 ij and only i/li is compatible witk
A. In this case, the multiplicity mJ, is equal to the nurnber 0/ non-related
components above the special component, with no (ti - A) -boxes over them.

End of the proof
Observe that the differences between results for cases 1-4 occur only for
tbe special component and components lying below thc special one. The
equivalence of Definition 3.1 and tbe definitions of compatibility for cases 1-4
is obvious.

Remark 7.56 In [8], the author, using the linear algebra methods, proves
sorne partial result about the intersectioll theory of G: the so called "tripie
intersection formula". His theorem gives necessary (but not sufficient) con­
ditions for a nontrivial intersection of two arbitrary Schubert cycles with the
special one (special cycles in [S] are equal to thc ehern classes of the univer­
sal quotient boundle on G). This result, however, gives no information about
the multiplicities occuring in the intersection and does not imply a Pieri-type
formula.

7.5 Examples

In this subsection we will show the exalnples of pairs of compatible diagrams
Dt and D~ in cases 1 - 4. We also display tbe reslliting deformed diagrams
D C DJ, such that 8J?(E) =I- °and TD E R(w).,).

(1) Case 1: w
J
' and w)., are of type 1.

A = ((21,11)//(22,20,17,15,13,12,8,6,3)),
tt = ((18,11)//(23,22,19,17,16,12,11,8,6,3)),

x x .... .... .... .... - - - - - - - - - - - - - - -- - -
x - - - - - - - - - -

1 " 1 1- - - - - - - - - - - - - - - - - - -I 1 1
" - - - - - - - - - - - - - - - -

1 "

, - - - - - - - - - - - - - -- I ... " - - - - - - - - - - -
1 '

" - - - - - - - - ........ -,
_I, - - - - - -

1 '

, - - - - -
1 "..f* ...
x
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We perform the maxirnal deformation of Di 111 D~:

xx .. .. .. .. .. .. ... ... ... -
x ... - - - ... - - - - -- - - - - - -- - - - - - - - - - - .. .. - .. .. .. .. - -.I 1 1- - - -.. .. - - .. .. .. .. .. .. ..

1 1'-1.. .. .. .. .. .. .. ..
"... - - ... ... ... ... ... ... - ... - - .. ....

- - - - - - - - - - - - ....I ........ - - -- - - - - - - - - - -, - - - -- , - ..
I ........ '"I~~re.- I"- - - -

•~ r--~r-e
x I'-

The final deformation of the v-ribbons looks like:

xx - - ---- ..
x - - - - - - .. .. - - I
_I" ----------- ..J I I1 ,,,- .. .. .. - - - - .. .. .. .. .. .. .. -' - - -I fa!I' - - - -- , .. .. .. - - - ... .. .. .. .. .. .. ...~ f-e-I ........ - - - - '".. .. .. .. ... ... .. .. .. .. .. .. .. r--f-eI' - -
.- 1 ", .. .. .. ... .. .. .. .. .. .. .. ....
- I'" - - -.. .. .. .. ... ... ... ... .. .. ..

I'... 1 ", .. ..
1 ,,,

I~~re.- I"- .- .- .-..rx. r--~~
x I-

(2) Case 2: w/-, is of type 1 and w), is of type 2.

;\ = ((24,7)//(24,21,18,17,15,13,11,9,4)),
J-l = ((21,11)//(24,23,22,17,16,15,13,9,7,3)),

x x .. .. .. .. .. .. .. .. .. .. .. .. - .. - .. .. .. .. .. - ..- -
x .. .. ..
.. - .. .. .. .I. .. - - - - - - .. .. .. - .. - .. - - -II/"- .. .. - - - - - - - - - - - - .. .. - .. - 1I/"- - .. - .. - - - - - - - - - - .. -I/"- .. - - - - - - .. - - - - - .. ..
- - .. .. - - .. .. .. - .. .. - ...

- .. .. .. .. - - - - - - ...
... ... ... ... - .. .. ..

-1/ - - -.. .. ... .. ... - - .., - - - - -- I'J ... -- I ........ - -
X
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A­
J-L

We perfonn the exchanging operation:

x x - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -
x - - - -

.... - - - - - - - - - - - - - - I
.~ -- -' ---- ----- - -- - - - - - I."- -"- - - - - - - - - - - - - - - -

-" - - --- - -- - -- - - --."
-" - - - - - - - - - - -- - - - - - - - - - - - - -"' - - - - - - - - - -- - - - - - - - - - - -- - - - - - - -- - - - - - - -- ,,~ --
x

We defonn the z-ribbons and the v-ribbon froIn D t :

xx - - - -- --- ----------
x- - - -- - T- - _ .L. - - - - - - - - - - - - - - - - : :1- I_ - -LI"'" - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - n..~~I- - - - - - - - - - - r--~I~" LI"

-" - - - - - - - - - - - - -- -
_

LI"'" -
.- ~ - - - - - - - - - - -Ir\. -- - - - - - - - - - - - - -
_

- -- - - - - - - - - - - -Ir\. - - - - -- - - - - - - -- - -,

x

(3) Case 3: wp. is of type 2 and w). is of type 1.

First part of case 3 : VIv-ribboll meets the rn-th column twice.

((24,5)1/(22,20,17,14,11,8,4,2)),
((22, 15)11 (24, 23, 19, 17, 14, 13, 10,8,4,2)),

x x - - - - - - - -
x - - - --I ...... - I I II ~- - - - - - - - - - - - - - :1 I I 1-
- I, - - - - - - - - - - - - - - -- - - - -- - - - - - - - - - - - -- - - - - - - - - -- - - - - - - - - -- - - - - - -I'- - -
~ ...

x
~ -
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Thc resulting deformed diagram looks like:

xx - - - ... ... - ... - - - - - - - - - - - -I
x ..~ \- I", ... - ... ... ------ ... ... ... ... --- --=-.I l--rel1 ,,, LI"
~ - ... ... - - - - - - - ... ... ... ... ... ... ... -I fWl I;' LI"'

~ , ... ... ...- I'" - - -...... ... ... ... ... ... ... ... ... ... .. .. .. .. ..
- - - - - - - - - - - -" - - - - - - - -

- - - -

I'"
1;+t!-

The second part of case 3: Vm - n does not receive a bar.

,\ = ((19, 13) //(20, 16, 14, 11, 10,9, 6,3)),
J-L = ((23, 9) // (20, 19, 16, 15, 11, 9, 7, 9, 6,4, 3)),

xx - - - - - - -
x - - - -

- - - - - - - - -I
- - - - - - - - - - - - .. I 1 1- - - - -- - - - - - - - - - - .. ..- - - - -- - - - - - - - -

- - - - - -
- - -..

~ .... ...
x

x

We perform the push down operation:

x x- - - - - - - - - - ... ... ... .. .. - -
x - - - - - - - - - - - -

- - - - - ... - ... ... -I"- - - - - - - - - - - - - - - I 1 11 ,,,- 1 ", ------ - - - -I'"
1 ", -- ... - - - - - - -

"- - - - - - - - -
1 '

1 ", - ... - -----1 ,,,.. I", .. ... .. ..
-I'" - -
X

X
>E-~ ...
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We break the ribbons:

xx~ - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - -
x - - - - - - - - - - - -.- - - - - - - - - - - -- , - - - - - - - - - - - - - - - - - -II ....... - -
, - - - - - -. - -. - - - - I I II ....... - - - - - - '""- I" - - - - - -. -. - - - ....~-I ....... - - '"I" - - - - - - -. - - - ..~I ....... - -

- I, - - - - - - ---I ....... - - - - - - -- - - - - - - -- -
• fX
x I"- - -. -.- - - -

X
I>E-~~

vVe deforrn the v-ribbon from Dt :

x x - - - - - - - - - -
x - - - - - - - -- J _ - - -II'

I" - -. ---- .I -----. - - -I 1I"- " --. .- - - - - •~~I'

I" - -. -- .I ----- I.-~I"
- I, -. _ .I - - - - -.-,

I, - - .1_ - - - -I'" -
• -K .L. - - -
x '- - - -

X
>E-......

(4) Case 4: w Jl and w), are of type 2.

,\ ((25,7)//(22,19,18,15,13,11,9,7,6,3)),
~ ((25,8)//(24,22,18,16,15,14,12,9,7,6)),

x x - - - - - - - - - -- - _1_ ~ ~ ~ ~ ~ ~ - -. -I
x -- - - -
-.

" - -- - - - - - - -I 1 1- - - --' ------ - - - - - - -I 1 I 1-, LI"- - - -' -. - - ------ - - - -LI"- - -' - - - - -. ------r LI"- -' -. - -. -. ------Ir LI""
-' - - - - - - - -. -.- - - - -

-'I~ - - - - -,- - - - - -.
Ir - - - - - -- - - - -
I>E-~~
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We apply the exchanging operation:

x x - - - - - - - - - - - - - - - - - - - - 1

x •~~-I,,, - .... - ... - - -- ... - - - - ... - - - - - -I 1 II'" LI'- -' - - - - - - - - - - - - - - - -I 1 1 1Ir - Ir - - - - - -- - - - ... ... - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - -
- - - - - - - - - - - - - -I ~

I,,, ... ... -I ~,- .~ - - - - - - - - -~... - - - - -
- - - - -
I~ .....

We apply the maxiInal deformation:

x x- - - ... - - - - 1

x • ....,
- - .... - - - - - - - - - - - - - --" 1 1 1 1- - - - - - - - - - - -- -" - - - - - - - - - - - - - - - -I r-tel- - - - - - - - - -- - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - -- - - - - - - - - - - - - -- - - - - - -- - - - - - - - - - - --- - - - - - - - - --- - - -.....- ... ... r--~~ '"~ ..... :-.-~

We deform the vrn_n-ribbon:

xx - - - - - - - - - - - - - - - - - : : : : : :1- - - - - - -x.~~- .... - - - - - - - - - - - - - - -" I I 1 1- - - - -... - - - - - - - - - - - - - - - :1 1.,..1- - - -- - - - - - - - - - - - - - - - -- - - - - - - - -
/- - - - - - - -- - - - T- ~ - - - - - - .... - - - - - -- I" - - - - - -~ - - - -- - - - - - -" - - - - -,
- - - - - -" - - - -

- - - - .. ......,-I,,, ... ... ....I ~,

I~~~ ......

61



References

[B-G-G]

[Bau]

[DI]

[D2]

[M]

[PI]

[P2]

[P-RO]

[P-R1]

[P-R2]

[S]

L M. Bernstein, I. M. Gel'fand, S. L Gel'fand, Sehubert eells and
cohomology oJ the spaces G j P, Russiall Math. Surveys 28, pp.
1-26.

N. Bourbaki, Groupes et Algebres de Lie, Chapters 4,5 and 6,
Herrmann Paris, 1968.

M. DeInazure, Invariants syrnetriques entiers des groupes de Weyl
et torsion, Inventiones Math. 21, (1973), pp. 287-301.

M. DeInazure, Desingularisation des varietes de Schubert genera­
lisees, Ann. Seient. Be. Nafln. Sup. 7, (1974), pp. 53-88.

LG. tvlaedonald, Symmetrie Junetions and Hall polynomials, Ox­
fard Univ. Press 1979.

P. Pragacz, Algebro-geometrie applieations oJ Schur S- and Q­
polynomials, in Seminaire d'Algebre Dubreil-Malliavin 1989-1990,
Springer Lecture Notes in 11ath. 1478, (1991), pp. 130-191.

P. Pragacz, Symmetrie polynomials and divided differenees in Jor­
mulas oJ interseetion theoTY, in "ParaIncter Spaces" , Banaeh Cen­
ter Publications 36, (1996), pp. 125-177.

P. Pragacz, J. Ratajski, Picr'i type JOT7nula Jor' isotropie Grass­
mannians; the operator approach, Manuscripta Math. 79, (1993),
pp. 127-151.

P. Pragacz, J. Ratajski, A Pieri type Jormula Jor Sp(2m)jP and
80(211"1, + 1)/P, C.R. Acad. Sei. Paris t. 317, Serie I (1993), pp.
1035-1040.

P. Pragacz, J. Ratajski, A Pieri type Jorrnula Jor Lagrangian and
add Orthogonal Grassmannians, ß1ax-Planck Institut für Math­
ematik Preprint 94-15, to appeal' in J. reine angew. Math. 476
(1996).

S. Sertöz, A triple intersection theoT'ern Jor the spaces SO(n)/ Pd,
Fund. Math. 142, (1993), pp. 201-220.

62


