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Abstract

In this paper, it is proved that for n 2 3 there exists a constant &(n) with
1/4 € 6(n) <1 such thatif M is a simply connected Riemannian manifold of dimension
n with é(n)—pinched curvatures then for every Riemannian manifold N every stable
harmonic map ¢: M —— N is constant. The proof is completely different from that of the
author’s previous paper and here the pinching constants are easy to compute by elementary

functions.
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1. Introduction

A harmonic map is a critical point of the energy functional and a harmonic map is
said to be stable if for any deformation vector field, its second variation is always
non—negative.

As well known, when the source or the target manifold is the Euclidean sphere
$™(n > 3), every stable harmonic map must be constant ([4], [8])- A natural question is
"Does the above fact hold too for a simply connected d—pinched Riemannian manifold 7".
Here by a é—pinched Riemannian manifold we mean a Riemannian manifold whose
sectional curvatures are between the interval (6K,K] with constants K > 0 and

126>0.
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For the case that the target manifold is a simply connected é—pinched Riemannian
manifold, Howard in 1985 proved that Let n 2 3. There is a number §(n) with
1/4 < 8(n) < 1 such that if M" is a simply connected Riemannian manifold with
6(n)—pinched curvatures then for every compact Riemannian manifold N every stable
harmonic map ¢: N —— M" is constant on [3]. Recently, Okayasu obtains a
dimension—independent pinching constant. He proves.in [5] that Let M™ be a compact
simply connected 0.83—pinched Riemannian manifold (n 2 3): Then for every compact
Riemannian manifold N, any stable harmonic map ¢ : N — M™ is constant. |

There is no result for the case that the source manifold is a simply connected
é—pinched Riemannian manifold up to now. Recently, the author in a previous paper [7]
gives an affirmative answer to it with dimension—depending pinching constants. But there
the pinching constants are difficult to compute. The aim of the present paper is to give a
new proof of the abo;/e answer in a completely different way from which one can practically

compute those pinching constants. We shall prove the {ollowing

Main Theorem. Let n 2 3. There is a number é(n) with 1/4 < §(n) < 1 such that if

M" is a simply connected Riemannian manifold with 6(n)—pinched curvatures then for
any Riemannian manifold N every stable harmonic map ¢: M™ — N is constant.

Some values of 6(n) are given in the following table.

6(n)|0.94(0.95(0.95/0.96(0.96(0.97]0.97(0.97(0.97]0.98




2. Preliminaries

From now on, we always assume that M is a compact simply connected é—pinched
Riemannian manifold of dimension n.

Asin [2], we normalize the 6—pinched metric of M by multiplication with
(146)/2 . Put E=TM ® ¢(M) , where TM is the tangent bundleof M and (M) isa
trivial line bundle on M with a metric. Thus E naturally becomes a Euclidean vector
bundle on M. Let e be a section of length one in ¢(M) . We define a metric connection

V" on E as follows:
VEY = VY - <X,Y> - e, (1)
xe=X, (2)
where X and Y are any vector fieldson M, <, > and V are the Riemannian metric

and connection of M , respectively. As shown in [2], the curvature R" of V" satisfies

- the following relations:
R"(X,Y)Z = R(X,Y)Z - <Y,Z>X + <X,2>Y, (3)
R"(X,Y)e = 0 ‘ ' (4)
where X,Y,Z are any Yector fieldson M and R(X,Y)Z = VXVYZ - VYVXZ -V [X.Y) Z
is the curvature operator.of V.

Under the assumption on M , we can obtain a flat metric connection V' close to V"

exactly as in [2]. To measure the closeness, we define



| |V=V"| [ := Max {| | V3 Y-V3Y[|; X € TM, | |X||=1, Y €E, || Y] |=1} .

Note that our | |V'=V"|| ishalfof ||V=V"|| in [1]. Set

k,(6) = § (1-6)6* [14+(6Y %in & r67 /271 (5)

ky(6) = [(1+6)/2] 7" - ky(8) (6)
1/2

ky(6) = ky(8) - {1+ [t -3 «2(1«1(6))2]‘2} 2 (7

By [1, 4.13], we have
17971 | < 5kq(8) . (8)

Now let N be ahy Riemannian manifold of dimension m and ¢: M — N any
harmonic map from M into N . Choose local fields of orthonormal farmes {e;} and
{e"l} in M and N, respectively. We shall make the following convention on the ranges
of indices: 1 €i,jk,...<n; 1< a,87,.,{m,and use the summation convention. Let
$x : TM — TN be the tangential map of ¢ . We also can consider dy asa ¢_1TN
valued 1—form dg ,i.e., d¢(X) = 4sX , for X € TM . The induced bundle ¢ "IN — M

possesses the induced Riemannian connection as follows

vx(s °¢)= (V¢*XS) °d, (9)



where X € TM , S is any section of ¢_1TN ,and V is the Riemannian connection of N .

Set ¢«e, =a e’ and ¢(¢) = 2 agi . Then the energy of ¢ is
a,i
E(¢) = %J e( :,zi)"‘lM , and the tension field of ¢ is r = 2 a
M

a,i

, .
i’ , where aaij is the

covariant derivative of a,: - For a harmonic map ¢, =10, i.e,, 2 i = 0.
i
For any section of E , say V , we denote by VT and V® the TM—component and

the e(M)—component of V , respectively. If we take ¢*VT as the deformation vector
field, the second variation formula of the energy can be reduced to the following form as

shown in [6]:

1(gVT,6v7) = JM<d¢(Ve.Ve.VT)—2Ve.(dé(Ve'VT))—gz&*(chM(VT)),¢*VT>N*1 ,
' 1 1 1 1 .
: (10)

where RicM is the Ricci curvature operator of M, chM(ei) = Rijej .

For any fixed point p € M, choosing {e;} such that Ve.ej p= 0, we make the
. i

following calculations

i

= (V1 vy <Vie>e,, (11)
7N

VeiveiVT = Vei(V;iV)T — (‘7ei<\l,e>)ei - <V,e>'\7eiei

1 1" T T 1" "
=(Vei(VeiV) ) —<Vei‘\/,e>ei —<‘V,‘\?'eie>ei



- : T _
= [Vgi(VgiV- <VgiV,e>e)] - <V'€;iv,e>ei <V,e>e;

e.
— n gn v 1" _
= <VeiVeiV,ej%\ 2<Vei‘\/,e>ei <Vie>e . (12)

Noting dg(e;) = a e’ and the harmonicity a .. =0, we have

d¢(Ve.Ve.VT) = <Vg_Vg_V,e.>a e: —2<Vi Ve>a e’ —<Ve>a e’
1 1 1 1

]V a)ya € a ai"a’
(13)
Ty _ )
-2 Vei(dgﬁ(VeiV ) =-27, ( V" Vie>a,en —<Vie>ael)
_ " ’
= 2<V" V" Vv, £>a,80 + 2<V JV >,
_ 1 " '
2<Veiv,ej>a aiite ¥ 2<V V e>a e + 2<V,e>a el .
(14)
Thus, the second variation formula reduces to
oy e =] a, (15)

where

Q= —<V" V" \% € ><V, L >2 40k T 2<VgiV,e> <v’ek>aajaak



+<V,ei><V,ek>aaiaak 2<'\78.V,e.><V,ek>aajiaak <V,ej><V,ek>Rija

i aiak -

(16)

3. Proof of the main theorem

We now define %= {V €I'(E)|V’V = 0} , where I'(E) denotes the vector space

{Rn+1 and has a natural

consisting of all smooth sections of E . Then ¥ is isomorphic to
inner product and I{ ¢*VT,¢*VT) is a quadratic form on ¥ . We compute the trace of
I(¢*VT,¢*VT) over ¥ and show for a appropriate chosen 6 depending on n the rsult
is negative if ¢ is not a constant harmonic map.

Let {V',r=1,...n+1} be an orthonormal basis of ¥ . We get
tr (g5 V7,65V 7T) =J trQ*1 (17)
M
and
— _Ouge yl r ' nyl I
trQ = <VeiVeiV ,ej><V £ >a a  + 2<VeiV e><V DRI

aj a

I r T r T r
+<Vie><V ,ek>aaiaak-2<veiv ,ej><V £ >4 gk <V ,ej><V 'ek>Rijaaiaak‘

(18)



Lemma 1. It holds that

<V VEVES = <V VS VTS | (19)
1 1

and

n Yoyl 5 n gn yS yrf n yl gn S vy gnylie _
<V Ve.v Vo> + <Ve£Ve.V V> + <V VIV VS +<Ve \Y% ,Ve.V >=0.

e , e 6 A
(20)
(r,s =1,...,n + 1)
Proof. Since {Vr} is orthonromal to each other, we have <V’ V3> = 6rs .
Differentiating it, we get
0=V, <ViV5> = <V ViVS> 4 <V vEVis. (21)
1 1 1

It follows that (19) holds. Differentiating (21), we get (20).

q.e.d.

: nyl I :
In the following, we transform the bad term —2<VeiV 2> <V >0 gk into a

form in which the quantities can be estimated.

Noting 24ij = Bgji Ve have

o Oyl I
2<Vy v £><Ve>a

1 aji*ak



_ oyl
= -2 Ve_{<VeiV € it ak

T n gu yrl r
_1 ><Vie >a ., }+ 2<Ve.VeiV ,ej><V e, >a

. j

+2<V;_Vr,ej><Vg_Vr,ek>aaiaak —20<V! Vie><vie >a

.a
. ai” ak
i j i a

—2<Vg Vies><Vie>a .a .+ 2<V" V[,e-><Vr,ek>a i ki

i ) al a) € J al akj’ (22)

In the computation, since the computation is pointwisely done, we can omit the terms

in which Ve.ej appears.
i

By using the Ricci identity

Vevevi= V" V' v+ R"(ee)V"
J i

% i

2<V" V" Vie><Vv! £, >

J e ) ai®ak

= 2<V" V"JV e><Vr € >aa 2<R"(e e)V ¢; ><V! € >3 58

T T T T
= 2Vgi{<ngV ,ej><V e >a 2} + 2<V'éiv e><Vie >a .a .

.,2<V;.vf,ej><Vg Vr,ek>aaiaak + 2<V3_Vr,e.> <V e>e(¢)

j i i)



—11—

—2<ngVr,ej><Vr,ek>e( ¢),k + 2<R"(ej,ei)Vr,ej><Vr,ek>aaiaak .

(23)
Now we compute

—<V;jvr,ej> <Vr,ek>e( )y

_ r r r r
= Vek{<V'éjV e <Vie >e(d)} + <ngngV ,ej><V e, >e(9)

—<V Vie><Vie>e(d) + <V Vie><V! Vie >e(g) —n<V! Vie><Viese(d) .
j j e I ey 5
(24)

From (22)~(24) and using Stokes formula, we have

L n 1l T *
JM 2<VeiV ,ej><V L >By52 ok 1

—_ — n I r — " r " I
= JM{z(l n)<VeiV e><Vie >a a 2<Ve_v ,ej><VeiV ) >2

.3
k
j a’a

r r r r ¢ T I
+ (2—n)<ngV ,ej><V ,e>e(¢)+<ngngV ,ej><V ,ek>e(¢)—<VéjV e><V ,ej>e(¢-)

oyl n yrl nyl n oyl
+ <Ve_V ,ej><VekV_. e >e(@) + 2<Ve_V ,ej><Ve_V £ >8 i3y

J 1 J

_ nyrl I TRT23 T
2<Ve.V ,ej><V e>a .a .+ 2VeiV e><V L >80 gk

i ai”aj j]
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1 '
=3 (<V 'IV e + <V” 2 € >)a %k

I
=)

So (28) follows.
Noting (3) and Rij = <R(ek,ei)ej,ek> , we get (29).

q.e.d.
Concerning the second derivatives of V', we have
Lemma 3. It holds at each point p that
—<V" V" A ; ><V’ >3, o) = v VJ V" V >8,:3,k (30)

<ngV"JV ,ej><Vr,_ek> =— %R + %ﬂ(ﬂ—l) - %<V31VjsV3jVi> - 11,<v;jvi,v;ivi> ’
(31)

where R is the scalar curvatureof M.

Proof. Choose an orthonormal basis {V'} asin Lemma 2. Letting £ =i, r=k

and s = j and then multiplying 20 ak and summing over the indices, we get

2<V" V" ,e >0k t 2<V"l k gn '\/J>a,‘:!‘laak =0. (32)

Thus



—12 —

+ 2<R"(e;e)Vie><Viep>a a0 b * 1 (25)

J

Since the trace of Q is independent of the choice of an orthonormal basis for each
fibre of E and the computation is pointwisely done, at each point p € M we can choose
an orthonormal basis {Vl,...,V“,Vn+1} such that Vi = € ,i=1,..,n,and Vn+1

at the point p . Thus we have

Lemma 2. It holds at each point p that

<Vr,ei><Vr,ek>a.aiaak =e(g), (26)
<Vt ,eJ><V ,ek>RU 0itak = Rl.lamaaJ (27)
V"lV eJ><V 8> 520 =0, (28)

R“(e e)V €; >< V! e >aa = Rya a  —(n—1)e(d).

(29)

Tool. oose orthornorm as:s as above. an are obvious.
Proof. Ch } al basis {V’ bove. (26) and (27 bvi

Letting r =k and s = j in (19), at the point p, we get <Vg.Vk,ej> = —<V;_V-',ek> .
i i

Thus we get

nyl I - n
<VeiV ,ej><V ’ek>aaiaakj <V V e>a aak_]

1 1] n
5(<V V > ki F <Vy V £y >2 .2 a_]k)
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n Yn yI I — g gn k

— “|| k n J
= <Ve_V ,Veiv >a

; ajaak :

It follows that (30) holds. In a similar way, letting £ =r=k,i=8=j and

summing over the indices, from the Ricci identity we get

k _ 1 1, .1 Jgnyie 1 i i
2<Vy Vi Vie> = —5R + gn(n-1) §<V'éiv Vo v> 2<v2’iv ,ngv >

% & i
(33)
and (31) follows from (33).
g.e.d.
Lemma 4. It holds at each point p that
1yt I _ r r
<ViVie><Vig>=-<VlVie><Vie>. (34)

J J

Proof. Since {el,...,en,e} is a local orthonormal basis, we have <e,e> = 0 and

. r I - I I _ . L
<ej,ek> = 6jk yie, <Vi,e ><Vie>=0 and <V ,ej><V > = 6jk . Differentiating

the first equality, we get

0=V (<Vie ><Vie>)
ej k .

— T I _ r i r ’ . .
= <ngV e ><Vi,e> — 8y <Vie><Vie> + <V'éjV e><V' e, >
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+ <Vr,ej> <Vr,ek>

— nwyl r nwul r
= <Vejv e ><Vie> + <Véjv e><Vie > .

Now, we integrate (18). By means of Lemma 2,3,4 and (25) we get
tr (s VT, 4, VT) = J rQ*1
M

- JM{<Vg'vj,Vg_vk>a .
1 1

_ n vyl
aifak ¥ 2(3 n)<VejV £ >2 2

aj

L uyl r _ L 1T r
2<VejV ,ej><VgiV e >a i + (3 n)<VéjV ,ej><V e>e( @)

- %<Vgivj,v;jvi>e( $) - %<Vgivi,v;;jvi>e(¢)

e.> <Vg.Vr,ek>a.

n oyl n yI n oyl
+ <Ve_V ,ej><Ve Ve, >e(g) + 2<Ve.V & J aitak

J k 1

1 1
+ zu(n-1)e(¢) — 3R e(¢) + Rija'aiaaj — (2n-3)e( @) }*1 .
Noting (8), we have the following estimations:

' k 1,2
|<VgivJ,Vgiv ~>aajaak| < g kge(d),

g.e.d.

(35)
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1
| <ngvr'e><vt'ek>aakaaj| < 5 kqee(4)

1 .2
|<ngVr,ej><Vgin,ek>aaiaak| < g0 kge(4)

r r 1 |
|<ngV ,ej><V e>| $anky,

|<V" v AN V’>] <7 1 21(2
J

|<V"V € ><V" V > | < k2

.l

1 2
|<Vgivr,ej><ngVr,ek>| < go(n+1)k3 . (36)

Noting that we have normalized the é—pinched metric of M , we have

28

and
2
Rija.aia.aj S m(n—l) . (38)

From (36)~(38), we get the estimation:

2
T T 10 92 . n%-n—6
tr I(s V', gaV )SJMGW) : {&g_nk R
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n2—n+2—( n 2+3n-6)6} 1

+ N+5)

(39)

We observe that the RHS of (39) is a continous functions of é and for any fixed

n2 3 itsvalueat =1 is
~n-2)[ e(d)1<0,
M
because k3(1) = 0. Thus we can take
é(n) = inf{i— < 6 <1 s.t. the RHS of (39) is negative} .
Now the main theorem is proved.

Remark 1. Since the values of §(n) here are actually greater than 0.83. Okayasu’s result

holds for these §(n)—pinched Riemannian manifolds too.

Remark 2. Unfortunately, lim é(n) = 1, and the pinching constant depends on the
n-m

dimension of the manifold. It seems that there should exist a dimension—independent

pinching constant.
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