Stable Harmonic Maps from Pinched Manifolds

Y.L. PAN

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3

. '

.

.

:

MPI/88-59

Stable Harmonic Maps from Pinched Manifolds

Y.L. PAN

Abstract

In this paper, it is proved that for $n \ge 3$ there exists a constant $\delta(n)$ with $1/4 \le \delta(n) < 1$ such that if M is a simply connected Riemannian manifold of dimension n with $\delta(n)$ -pinched curvatures then for every Riemannian manifold N every stable harmonic map $\phi : M \longrightarrow N$ is constant. The proof is completely different from that of the author's previous paper and here the pinching constants are easy to compute by elementary functions.

Classification Numbers: 58E20, 53C20

Key words: stable harmonic map, pinched Riemannian manifold.

Stable Harmonic Maps from Pinched Manifolds

Y.L. PAN*

Max–Planck–Institut für Mathematik in Bonn, Gottfried–Claren–Straße 26, 5300 Bonn 3

and

Institute of Mathematics, Fudan University Shanghai, P.R. China

1. Introduction

A harmonic map is a critical point of the energy functional and a harmonic map is said to be stable if for any deformation vector field, its second variation is always non-negative.

As well known, when the source or the target manifold is the Euclidean sphere $S^{n}(n \ge 3)$, every stable harmonic map must be constant ([4], [8]). A natural question is "Does the above fact hold too for a simply connected δ -pinched Riemannian manifold ?". Here by a δ -pinched Riemannian manifold we mean a Riemannian manifold whose sectional curvatures are between the interval ($\delta K, K$] with constants K > 0 and $1 \ge \delta > 0$.

^{*} This work was supported by Max–Planck–Institut für Mathematik in Bonn.

For the case that the target manifold is a simply connected δ -pinched Riemannian manifold, Howard in 1985 proved that Let $n \geq 3$. There is a number $\delta(n)$ with $1/4 \leq \delta(n) < 1$ such that if M^n is a simply connected Riemannian manifold with $\delta(n)$ -pinched curvatures then for every compact Riemannian manifold N every stable harmonic map $\phi: N \longrightarrow M^n$ is constant on [3]. Recently, Okayasu obtains a dimension-independent pinching constant. He proves in [5] that Let M^n be a compact simply connected 0.83-pinched Riemannian manifold $(n \geq 3)$: Then for every compact Riemannian manifold N, any stable harmonic map $\phi: N \longrightarrow M^n$ is constant.

There is no result for the case that the source manifold is a simply connected δ -pinched Riemannian manifold up to now. Recently, the author in a previous paper [7] gives an affirmative answer to it with dimension-depending pinching constants. But there the pinching constants are difficult to compute. The aim of the present paper is to give a new proof of the above answer in a completely different way from which one can practically compute those pinching constants. We shall prove the following

<u>Main Theorem</u>. Let $n \ge 3$. There is a number $\delta(n)$ with $1/4 \le \delta(n) < 1$ such that if M^n is a simply connected Riemannian manifold with $\delta(n)$ -pinched curvatures then for any Riemannian manifold N every stable harmonic map $\phi: M^n \longrightarrow N$ is constant.

Some values of $\delta(n)$ are given in the following table.

n	.3	4	5	6	7	8	9	10	11	12
$\delta(n)$	0.94	0.95	0.95	0.96	0.96	0.97	0.97	0.97	0.97	0.98

2. Preliminaries

ł

ţ

From now on, we always assume that M is a compact simply connected δ -pinched Riemannian manifold of dimension n.

As in [2], we normalize the δ -pinched metric of M by multiplication with $(1+\delta)/2$. Put $E = TM \oplus \epsilon(M)$, where TM is the tangent bundle of M and $\epsilon(M)$ is a trivial line bundle on M with a metric. Thus E naturally becomes a Euclidean vector bundle on M. Let e be a section of length one in $\epsilon(M)$. We define a metric connection ∇^{μ} on E as follows:

$$\nabla_{\mathbf{X}}^{"}\mathbf{Y} = \nabla_{\mathbf{X}}\mathbf{Y} - \langle \mathbf{X}, \mathbf{Y} \rangle \cdot \mathbf{e} , \qquad (1)$$

$$\nabla_{\mathbf{X}}^{"} \mathbf{e} = \mathbf{X} , \qquad (2)$$

where X and Y are any vector fields on M, <, > and ∇ are the Riemannian metric and connection of M, respectively. As shown in [2], the curvature R" of ∇ " satisfies the following relations:

$$R''(X,Y)Z = R(X,Y)Z - \langle Y,Z \rangle X + \langle X,Z \rangle Y , \qquad (3)$$

$$R''(X,Y)e = 0 \tag{4}$$

where X,Y,Z are any vector fields on M and $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ is the curvature operator of ∇ .

Under the assumption on M, we can obtain a flat metric connection ∇ , close to ∇ " exactly as in [2]. To measure the closeness, we define

$$| | \overline{V'} - \overline{V''} | | := Max \left\{ | | \overline{V'_X} Y - \overline{V''_X} Y | |; X \in TM, | |X| | = 1, Y \in E, | |Y| | = 1 \right\}.$$

Note that our $||\nabla' - \nabla''||$ is half of $||\nabla' - \nabla''||$ in [1]. Set

$$\mathbf{k}_{1}(\delta) = \frac{4}{3} (1-\delta) \delta^{-1} \left[1 + (\delta^{1/2} \sin \frac{1}{2} \pi \delta^{-1/2})^{-1} \right] , \qquad (5)$$

$$\mathbf{k}_{2}(\delta) = [(1+\delta)/2]^{-1} \cdot \mathbf{k}_{1}(\delta),$$
 (6)

$$\mathbf{k}_{3}(\delta) = \mathbf{k}_{2}(\delta) \cdot \left\{ 1 + \left[1 - \frac{1}{24} \, \pi^{2} (\mathbf{k}_{1}(\delta))^{2}\right]^{-2} \right\}^{1/2}.$$
(7)

By [1, 4.13], we have

$$||\nabla' - \nabla''|| \leq \frac{1}{2} k_3(\delta).$$
(8)

Now let N be any Riemannian manifold of dimension m and $\phi: M \longrightarrow N$ any harmonic map from M into N. Choose local fields of orthonormal farmes $\{e_i\}$ and $\{e'_a\}$ in M and N, respectively. We shall make the following convention on the ranges of indices: $1 \le i, j, k, \dots, \le n$; $1 \le \alpha, \beta, \gamma, \dots, \le m$, and use the summation convention. Let $\phi_*: TM \longrightarrow TN$ be the tangential map of ϕ . We also can consider ϕ_* as a $\phi^{-1}TN$ valued 1-form $d\phi$, i.e., $d\phi(X) = \phi_*X$, for $X \in TM$. The induced bundle $\phi^{-1}TN \longrightarrow M$ possesses the induced Riemannian connection as follows

$$\nabla_{\mathbf{X}}(\mathbf{S} \circ \phi) = (\nabla_{\phi_* \mathbf{X}} \mathbf{S}) \circ \phi , \qquad (9)$$

where $X \in TM$, S is any section of $\phi^{-1}TN$, and ∇ is the Riemannian connection of N.

Set $\phi_* e_i = a_{\alpha i} e_{\alpha}^{\prime}$ and $e(\phi) = \sum_{\alpha, i} a_{\alpha i}^2$. Then the energy of ϕ is $E(\phi) = \frac{1}{2} \int_M e(\phi)^{*1} M$, and the tension field of ϕ is $\tau = \sum_{\alpha, i} a_{\alpha i i} e_{\alpha}^{\prime}$, where $a_{\alpha i j}$ is the covariant derivative of $a_{\alpha i}$. For a harmonic map ϕ , $\tau = 0$, i.e., $\sum_i a_{\alpha i i} = 0$.

For any section of E, say V, we denote by V^{T} and V^{e} the TM-component and the $\epsilon(M)$ -component of V, respectively. If we take $\phi_{*}V^{T}$ as the deformation vector field, the second variation formula of the energy can be reduced to the following form as shown in [6]:

$$I(\phi_* \mathbf{V}^T, \phi_* \mathbf{V}^T) = \int_{\mathbf{M}} \langle \mathrm{d}\phi(\nabla_{\mathbf{e}_i} \nabla_{\mathbf{e}_i} \mathbf{V}^T) - 2\nabla_{\mathbf{e}_i} (\mathrm{d}\phi(\nabla_{\mathbf{e}_i} \mathbf{V}^T)) - \phi_*(\mathrm{Ric}^{\mathbf{M}}(\mathbf{V}^T)), \phi_* \mathbf{V}^T \rangle_{\mathbf{N}}^{*1},$$
(10)

where Ric^M is the Ricci curvature operator of $\,M$, $\operatorname{Ric}^M(e_i)=\operatorname{R}_{ij}\!e_j$.

For any fixed point $p \in M$, choosing $\{e_i\}$ such that $\nabla_{e_i} e_j|_p = 0$, we make the following calculations

$$\nabla_{\mathbf{e}_{i}} \mathbf{V}^{\mathrm{T}} = (\nabla_{\mathbf{e}_{i}}^{"} \mathbf{V}^{\mathrm{T}})^{\mathrm{T}} = (\nabla_{\mathbf{e}_{i}}^{"} (\mathbf{V} - \langle \mathbf{V}, \mathbf{e} \rangle \mathbf{e}))^{\mathrm{T}}$$

$$= (\nabla_{\mathbf{e}_{i}}^{"} \mathbf{V}_{i}^{j} \mathbf{V}_{i}) - \langle \mathbf{V}, \mathbf{e} \rangle \mathbf{e}_{i}, \qquad (11)$$

$$\nabla_{\mathbf{e}_{i}} \nabla_{\mathbf{e}_{i}} \nabla_{\mathbf{e}_{i}} \mathbf{V}^{\mathrm{T}} = \nabla_{\mathbf{e}_{i}} (\nabla_{\mathbf{e}_{i}}^{"} \mathbf{V})^{\mathrm{T}} - (\nabla_{\mathbf{e}_{i}}^{} \langle \mathbf{V}, \mathbf{e} \rangle) \mathbf{e}_{i} - \langle \mathbf{V}, \mathbf{e} \rangle \nabla_{\mathbf{e}_{i}} \mathbf{e}_{i}$$

$$= (\nabla_{e_i}^{"} (\nabla_{e_i}^{"} V)^{T})^{T} - \langle \nabla_{e_i}^{"} V, e \rangle e_i - \langle V, \nabla_{e_i}^{"} e \rangle e_i$$

$$= \left[\nabla_{e_{i}}^{"} (\nabla_{e_{i}}^{"} V - \langle \nabla_{e_{i}}^{"} V, e \rangle e_{i}) \right]^{T} - \langle \nabla_{e_{i}}^{"} V, e \rangle e_{i} - \langle V, e_{i} \rangle e_{i}$$

$$= \langle \nabla_{e_{i}}^{"} \nabla_{e_{i}}^{"} V, e_{j} \rangle \overset{e_{i}}{\longrightarrow} 2 \langle \nabla_{e_{i}}^{"} V, e \rangle e_{i} - \langle V, e_{i} \rangle e_{i} .$$
(12)

Noting $d\phi(e_i) = a_{\alpha i}e_{\alpha}^{i}$ and the harmonicity $a_{\alpha i i} = 0$, we have

$$d\phi(\nabla_{e_{i}}\nabla_{e_{i}}V^{T}) = \langle \nabla_{e_{i}}\nabla_{e_{i}}\nabla_{e_{i}}\nabla_{e_{i}}\nabla_{e_{i}} \rangle a_{\alpha j}e_{\alpha}' - 2\langle \nabla_{e_{i}}\nabla_{e_{i}}\nabla_{e_{i}}e_{\alpha}' - \langle \nabla_{e_{i}}e_{\alpha}'e_{\alpha}' \rangle a_{\alpha i}e_{\alpha}',$$
(13)

$$-2 \nabla_{e_{i}} (d\phi(\nabla_{e_{i}} V^{T})) = -2 \nabla_{e_{i}} (\langle \nabla_{e_{i}}^{"} V, e_{j} \rangle a_{\alpha j} e_{\alpha}^{"} - \langle V, e \rangle a_{\alpha i} e_{\alpha}^{"})$$

$$= -2 \langle \nabla_{e_{i}}^{"} \nabla_{e_{i}}^{"} V, e_{j} \rangle a_{\alpha j} e_{\alpha}^{"} + 2 \langle \nabla_{e_{j}}^{"} V, e \rangle a_{\alpha j} e_{\alpha}^{"}$$

$$-2 \langle \nabla_{e_{i}}^{"} V, e_{j} \rangle a_{\alpha j i} e_{\alpha}^{"} + 2 \langle \nabla_{e_{i}}^{"} V, e \rangle a_{\alpha i} e_{\alpha}^{"} + 2 \langle V, e_{i} \rangle a_{\alpha i} e_{\alpha}^{"}.$$

$$(14)$$

Thus, the second variation formula reduces to

$$I(\phi_* V^{\mathrm{T}}, \phi_* V^{\mathrm{T}}) = \int_{\mathrm{M}} Q^{*1} , \qquad (15)$$

where

$$\mathbf{Q} = -\langle \nabla_{\mathbf{e}_{i}}^{"} \nabla_{\mathbf{e}_{i}}^{"} \nabla_{\mathbf{e}_{i}} \nabla_{\mathbf{e}_{j}} \rangle \langle \nabla_{\mathbf{e}_{k}} \rangle \mathbf{a}_{\alpha j} \mathbf{a}_{\alpha k} + 2 \langle \nabla_{\mathbf{e}_{i}}^{"} \nabla_{\mathbf{e}_{i}} \nabla_{\mathbf{e}_{k}} \rangle \mathbf{a}_{\alpha j} \mathbf{a}_{\alpha k}$$

-

,

$$+ \langle \mathbf{V}, \mathbf{e}_{i} \rangle \langle \mathbf{V}, \mathbf{e}_{k} \rangle \mathbf{a}_{\alpha i} \mathbf{a}_{\alpha k} - 2 \langle \nabla_{\mathbf{e}_{i}}^{"} \mathbf{V}, \mathbf{e}_{j} \rangle \langle \mathbf{V}, \mathbf{e}_{k} \rangle \mathbf{a}_{\alpha j i} \mathbf{a}_{\alpha k} - \langle \mathbf{V}, \mathbf{e}_{j} \rangle \langle \mathbf{V}, \mathbf{e}_{k} \rangle \mathbf{R}_{i j} \mathbf{a}_{\alpha i} \mathbf{a}_{\alpha k}$$

$$(16)$$

3. Proof of the main theorem

We now define $\mathscr{V} = \{ V \in \Gamma(E) | \nabla V = 0 \}$, where $\Gamma(E)$ denotes the vector space consisting of all smooth sections of E. Then \mathscr{V} is isomorphic to \mathbb{R}^{n+1} and has a natural inner product and $I(\phi_* V^T, \phi_* V^T)$ is a quadratic form on \mathscr{V} . We compute the trace of $I(\phi_* V^T, \phi_* V^T)$ over \mathscr{V} and show for a appropriate chosen δ depending on n the rsult is negative if ϕ is not a constant harmonic map.

Let $\{V^{r}, r=1, ..., n+1\}$ be an orthonormal basis of \mathcal{V} . We get

$$\operatorname{tr} \operatorname{I}(\phi_* \operatorname{V}^{\mathrm{T}}, \phi_* \operatorname{V}^{\mathrm{T}}) = \int_{\mathrm{M}} \operatorname{tr} \operatorname{Q}^* 1 , \qquad (17)$$

and

$$trQ = -\langle \nabla_{e_{i}}^{"} \nabla_{e_{i}}^{"} V^{r}, e_{j} \rangle \langle V^{r}, e_{k} \rangle a_{\alpha j} a_{\alpha k} + 2 \langle \nabla_{e_{i}}^{"} V^{r}, e_{k} \rangle \langle V^{r}, e_{k} \rangle a_{\alpha k} a_{\alpha j}$$

$$+ \langle V^{r}, e_{i} \rangle \langle V^{r}, e_{k} \rangle a_{\alpha i} a_{\alpha k} - 2 \langle \nabla_{e_{i}}^{"} V^{r}, e_{j} \rangle \langle V^{r}, e_{k} \rangle a_{\alpha j i} a_{\alpha k} - \langle V^{r}, e_{j} \rangle \langle V^{r}, e_{k} \rangle R_{i j} a_{\alpha i} a_{\alpha k}$$

$$(18)$$

Lemma 1. It holds that

$$\langle \nabla_{e_i}^{"} V^{\mathbf{r}}, V^{\mathbf{s}} \rangle = -\langle \nabla_{e_i}^{"} V^{\mathbf{s}}, V^{\mathbf{r}} \rangle , \qquad (19)$$

and

$$\langle \nabla_{e_{\ell}}^{"} \nabla_{e_{i}}^{"} \nabla_{e_{i}}^{"$$

(r, s = 1, ..., n + 1)

Proof. Since $\{V^r\}$ is orthonromal to each other, we have $\langle V^r, V^s \rangle = \delta_{rs}$. Differentiating it, we get

$$0 = \nabla_{e_i} \langle V^r, V^s \rangle = \langle \nabla_{e_i}^u V^r, V^s \rangle + \langle \nabla_{e_i}^u V^s, V^r \rangle .$$
(21)

It follows that (19) holds. Differentiating (21), we get (20).

q.e.d.

In the following, we transform the bad term $-2 < \nabla_{e_i}^{"} V^{r}, e_j > < V^{r}, e_k > a_{\alpha j i} a_{\alpha k}$ into a form in which the quantities can be estimated.

Noting $a_{\alpha ij} = a_{\alpha ji}$, we have

 $\scriptstyle -2 < \nabla "_{e_i} V^r, e_j > < V^r, e_k > a_{\alpha j i} a_{\alpha k}$

$$= -2 \nabla_{e_{j}} \{\langle \nabla_{e_{i}}^{"} \nabla^{r}, e_{j} \rangle \langle \nabla^{r}, e_{k} \rangle a_{\alpha i} a_{\alpha k} \} + 2 \langle \nabla_{e_{j}}^{"} \nabla_{e_{i}}^{"} \nabla^{r}, e_{j} \rangle \langle \nabla^{r}, e_{k} \rangle a_{\alpha i} a_{\alpha k} \}$$

$$+ 2 \langle \nabla_{e_{i}}^{"} \nabla^{r}, e_{j} \rangle \langle \nabla_{e_{j}}^{"} \nabla^{r}, e_{k} \rangle a_{\alpha i} a_{\alpha k} - 2n \langle \nabla_{e_{i}}^{"} \nabla^{r}, e_{k} \rangle \langle \nabla_{e_{k}}^{"} a_{\alpha i} a_{\alpha k} \rangle$$

$$- 2 \langle \nabla_{e_{i}}^{"} \nabla^{r}, e_{j} \rangle \langle \nabla^{r}, e_{k} \rangle a_{\alpha i} a_{\alpha j} + 2 \langle \nabla_{e_{i}}^{"} \nabla^{r}, e_{j} \rangle \langle \nabla^{r}, e_{k} \rangle a_{\alpha i} a_{\alpha k j} . \qquad (22)$$

In the computation, since the computation is pointwisely done, we can omit the terms in which $\nabla_{e_i} e_j$ appears.

By using the Ricci identity

$$\nabla_{\mathbf{e}_{j}}^{"}\nabla_{\mathbf{e}_{i}}^{"}\mathbf{V}^{r} = \nabla_{\mathbf{e}_{i}}^{"}\nabla_{\mathbf{e}_{j}}^{"}\mathbf{V}^{r} + \mathbf{R}^{"}(\mathbf{e}_{j},\mathbf{e}_{i})\mathbf{V}^{r}$$

and
$$\mathbf{a}_{aii} = 0$$
, we have

$$2 < \nabla_{\mathbf{e}_{j}}^{\mathsf{u}} \nabla_{\mathbf{e}_{i}}^{\mathsf{u}} \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{j} > < \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{k} > \mathbf{a}_{\alpha i} \mathbf{a}_{\alpha k}$$

$$= 2 < \nabla_{\mathbf{e}_{i}}^{\mathsf{u}} \nabla_{\mathbf{e}_{j}}^{\mathsf{u}} \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{j} > < \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{k} > \mathbf{a}_{\alpha i} \mathbf{a}_{\alpha k} + 2 < \mathbf{R}^{\mathsf{u}}(\mathbf{e}_{j}, \mathbf{e}_{i}) \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{j} > < \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{k} > \mathbf{a}_{\alpha i} \mathbf{a}_{\alpha k}$$

$$= 2 \nabla_{\mathbf{e}_{i}}^{\mathsf{u}} \{ < \nabla_{\mathbf{e}_{j}}^{\mathsf{u}} \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{j} > < \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{k} > \mathbf{a}_{\alpha i} \mathbf{a}_{\alpha k} \} + 2 < \nabla_{\mathbf{e}_{i}}^{\mathsf{u}} \mathbf{V}^{\mathsf{r}}, \mathbf{e} > < \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{k} > \mathbf{a}_{\alpha i} \mathbf{a}_{\alpha k}$$

$$-2 < \nabla_{\mathbf{e}_{j}}^{\mathsf{u}} \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{j} > < \nabla_{\mathbf{e}_{i}}^{\mathsf{u}} \mathbf{V}^{\mathsf{r}}, \mathbf{e}_{k} > \mathbf{a}_{\alpha i} \mathbf{a}_{\alpha k} + 2 < \nabla_{\mathbf{e}_{j}}^{\mathsf{u}} \mathbf{V}^{\mathsf{r}}, \mathbf{e} > \mathbf{e}(\phi)$$

$$-2 < \nabla_{e_{j}}^{"} V^{r}, e_{j} > < V^{r}, e_{k} > e(\phi), + 2 < R^{"}(e_{j}, e_{i}) V^{r}, e_{j} > < V^{r}, e_{k} > a_{\alpha i} a_{\alpha k}$$
(23)

Now we compute

.

$$-\langle \nabla_{\mathbf{e}_{j}}^{"} \mathbf{V}^{\mathbf{r}}, \mathbf{e}_{j} \rangle \langle \mathbf{V}^{\mathbf{r}}, \mathbf{e}_{k} \rangle \langle \mathbf{v}^{\mathbf{r}}, \mathbf{v}^{\mathbf{r$$

From (22)~(24) and using Stokes formula, we have

$$\begin{split} &\int_{M} -2 < \nabla_{e_{i}}^{"} V^{r}, e_{j} > < V^{r}, e_{k} > a_{\alpha j i} a_{\alpha k}^{*1} \\ &= \int_{M} \{ 2(1-n) < \nabla_{e_{i}}^{"} V^{r}, e > < V^{r}, e_{k} > a_{\alpha i} a_{\alpha k} - 2 < \nabla_{e_{j}}^{"} V^{r}, e_{j} > < \nabla_{e_{i}}^{"} V^{r}, e_{k} > a_{\alpha i} a_{\alpha k} \\ &+ (2-n) < \nabla_{e_{j}}^{"} V^{r}, e_{j} > < V^{r}, e > e(\phi) + < \nabla_{e_{k}}^{"} \nabla_{e_{j}}^{"} V^{r}, e_{j} > < V^{r}, e_{k} > e(\phi) - < \nabla_{e_{j}}^{"} V^{r}, e > < V^{r}, e_{j} > e(\phi) \\ &+ < \nabla_{e_{j}}^{"} V^{r}, e_{j} > < \nabla_{e_{k}}^{"} V^{r}, e_{k} > e(\phi) + 2 < \nabla_{e_{i}}^{"} V^{r}, e_{j} > < \nabla_{e_{j}}^{"} V^{r}, e_{k} > a_{\alpha i} a_{\alpha k} \\ &- 2 < \nabla_{e_{i}}^{"} V^{r}, e_{j} > < V^{r}, e > a_{\alpha i} a_{\alpha j} + 2 \nabla_{e_{i}}^{"} V^{r}, e_{j} > < V^{r}, e_{k} > a_{\alpha i} a_{\alpha k}] \end{split}$$

- 11 -

~

$$= \frac{1}{2} \left(\langle \nabla_{\mathbf{e}_{i}}^{"} \mathbf{V}^{\mathbf{k}}, \mathbf{e}_{j} \rangle + \langle \nabla_{\mathbf{e}_{i}}^{"} \mathbf{V}^{\mathbf{j}}, \mathbf{e}_{k} \rangle \right) \mathbf{a}_{\alpha \mathbf{i}} \mathbf{a}_{\alpha \mathbf{j} \mathbf{k}}$$

= 0.

So (28) follows.

Noting (3) and $R_{ij} = \langle R(e_k,e_i)e_j,e_k \rangle$, we get (29).

q.e.d.

Concerning the second derivatives of V^{r} , we have

Lemma 3. It holds at each point p that

$$-\langle \nabla_{\mathbf{e}_{i}}^{"} \nabla_{\mathbf{e}_{i}}^{"} \nabla^{\mathbf{r}}, \mathbf{e}_{j} \rangle \langle \nabla_{\mathbf{r}}^{"}, \mathbf{e}_{k} \rangle \mathbf{a}_{\alpha j}^{a} \mathbf{a}_{k} = \nabla_{\mathbf{e}_{i}}^{"} \nabla_{\mathbf{e}_{i}}^{j} \nabla_{\mathbf{e}_{i}}^{"} \nabla^{\mathbf{k}} \rangle \mathbf{a}_{\alpha j}^{a} \mathbf{a}_{k} , \qquad (30)$$

$$< \nabla_{e_{k}}^{"} \nabla_{e_{j}}^{"} V^{r}, e_{j} > < V^{r}, e_{k} > = -\frac{1}{2}R + \frac{1}{2}n(n-1) - \frac{1}{2} < \nabla_{e_{i}}^{"} V^{j}, \nabla_{e_{j}}^{"} V^{i} > -\frac{1}{2} < \nabla_{e_{j}}^{"} V^{j}, \nabla_{e_{j}}^{"} V^{j} > ,$$
(31)

where R is the scalar curvature of M.

Proof. Choose an orthonormal basis $\{V^r\}$ as in Lemma 2. Letting $\ell = i$, r = kand s = j and then multiplying $a_{\alpha j} a_{\alpha k}$ and summing over the indices, we get

$$2 < \nabla_{e_i} \nabla_{e_i} \nabla_{e_i} V^k, e_j > a_{\alpha j} a_{\alpha k} + 2 < \nabla_{e_i} V^k, \nabla_{e_i} V^j > a_{\alpha j} a_{\alpha k} = 0.$$

$$(32)$$

Thus

+ 2j,e_j)V^r,e_j>r,e_k>a_{$$\alpha i$$}a _{αk} } * 1. (25)

Since the trace of Q is independent of the choice of an orthonormal basis for each fibre of E and the computation is pointwisely done, at each point $p \in M$ we can choose an orthonormal basis $\{V^1, ..., V^n, V^{n+1}\}$ such that $V^i = e_i$, i = 1, ..., n, and $V^{n+1} = e$ at the point p. Thus we have

Lemma 2. It holds at each point p that

$$\langle V^{\mathbf{r}}, e_{\mathbf{i}} \rangle \langle V^{\mathbf{r}}, e_{\mathbf{k}} \rangle a_{\alpha \mathbf{i}} a_{\alpha \mathbf{k}} = e(\phi) ,$$
 (26)

$$\langle \mathbf{V}^{\mathbf{r}}, \mathbf{e}_{\mathbf{j}} \rangle \langle \mathbf{V}^{\mathbf{r}}, \mathbf{e}_{\mathbf{k}} \rangle \mathbf{R}_{\mathbf{i}\mathbf{j}} \mathbf{a}_{\alpha \mathbf{i}} \mathbf{a}_{\alpha \mathbf{k}} = \mathbf{R}_{\mathbf{i}\mathbf{j}} \mathbf{a}_{\alpha \mathbf{i}} \mathbf{a}_{\alpha \mathbf{j}}, \qquad (27)$$

$$\langle \nabla \mathbf{e}_{i}^{\mathsf{v}} \mathbf{v}^{\mathsf{r}}, \mathbf{e}_{j} \rangle \langle \mathbf{v}^{\mathsf{r}}, \mathbf{e}_{k} \rangle a_{\alpha i} a_{\alpha k j} = 0 , \qquad (28)$$

$$<\mathbf{R}^{"}(\mathbf{e}_{j},\mathbf{e}_{i})\mathbf{V}^{\mathbf{r}},\mathbf{e}_{j}><\mathbf{V}^{\mathbf{r}},\mathbf{e}_{k}>\mathbf{a}_{\alpha i}\mathbf{a}_{\alpha k}=\mathbf{R}_{ik}\mathbf{a}_{\alpha i}\mathbf{a}_{\alpha k}-(n-1)\mathbf{e}(\phi).$$
(29)

Proof. Choose orthornormal basis $\{V^{r}\}$ as above. (26) and (27) are obvious. Letting r = k and s = j in (19), at the point p, we get $\langle \nabla_{e_{j}}^{"} \nabla_{e_{j}}^{k}, e_{j} \rangle = -\langle \nabla_{e_{j}}^{"} \nabla_{e_{j}}^{j}, e_{k} \rangle$. Thus we get

$$\langle \nabla_{\mathbf{e}_{\mathbf{i}}}^{"} \mathbf{V}^{\mathbf{r}}, \mathbf{e}_{\mathbf{j}} \rangle \langle \mathbf{V}^{\mathbf{r}}, \mathbf{e}_{\mathbf{k}} \rangle \mathbf{a}_{\alpha \mathbf{i}} \mathbf{a}_{\alpha \mathbf{k} \mathbf{j}} = \langle \nabla_{\mathbf{e}_{\mathbf{i}}}^{"} \mathbf{V}^{\mathbf{k}}, \mathbf{e}_{\mathbf{j}} \rangle \mathbf{a}_{\alpha \mathbf{i}} \mathbf{a}_{\alpha \mathbf{k} \mathbf{j}}$$
$$= \frac{1}{2} \left(\langle \nabla_{\mathbf{e}_{\mathbf{i}}}^{"} \mathbf{V}^{\mathbf{k}}, \mathbf{e}_{\mathbf{j}} \rangle \mathbf{a}_{\alpha \mathbf{i}} \mathbf{a}_{\alpha \mathbf{k} \mathbf{j}} + \langle \nabla_{\mathbf{e}_{\mathbf{j}}}^{"} \mathbf{V}^{\mathbf{j}}, \mathbf{e}_{\mathbf{k}} \rangle \mathbf{a}_{\alpha \mathbf{i}} \mathbf{a}_{\alpha \mathbf{j} \mathbf{k}} \right)$$

$$\begin{split} - < \nabla_{e_{i}}^{"} \nabla_{e_{i}}^{"} V^{r}, e_{j} > < V^{r}, e_{k} > a_{\alpha j} a_{\alpha k} = - < \nabla_{e_{i}}^{"} \nabla_{e_{i}}^{"} V^{k}, e_{j} > a_{\alpha j} a_{\alpha k} \\ = < \nabla_{e_{i}}^{"} V^{k}, \nabla_{e_{i}}^{"} V^{j} > a_{\alpha j} a_{\alpha k} . \end{split}$$

It follows that (30) holds. In a similar way, letting $\ell = r = k$, i = s = j and summing over the indices, from the Ricci identity we get

$$2 < \nabla_{e_{k}}^{"} \nabla_{e_{j}}^{"} V_{e_{j}}^{k}, e_{j} > = -\frac{1}{2} R + \frac{1}{2} n(n-1) - \frac{1}{2} < \nabla_{e_{i}}^{"} V_{e_{j}}^{j}, \nabla_{e_{j}}^{"} V_{e_{j}}^{i} > -\frac{1}{2} < \nabla_{e_{i}}^{"} V_{e_{j}}^{i}, \nabla_{e_{j}}^{"} V_{e_{j}}^{j} >$$

$$(33)$$

and (31) follows from (33).

q.e.d.

Lemma 4. It holds at each point p that

$$< \nabla_{e_{j}}^{"} V^{r}, e > < V^{r}, e_{k} > = - < \nabla_{e_{j}}^{"} V^{r}, e_{k} > < V^{r}, e > .$$
 (34)

Proof. Since $\{e_1, \dots, e_n, e\}$ is a local orthonormal basis, we have $\langle e_k, e \rangle = 0$ and $\langle e_j, e_k \rangle = \delta_{jk}$, i.e., $\langle V^r, e_k \rangle \langle V^r, e \rangle = 0$ and $\langle V^r, e_j \rangle \langle V^r, e_k \rangle = \delta_{jk}$. Differentiating the first equality, we get

$$0 = \nabla_{e_{j}}(\langle V^{r}, e_{k} \rangle \langle V^{r}, e \rangle)$$

= $\langle \nabla_{e_{j}}^{"} V^{r}, e_{k} \rangle \langle V^{r}, e \rangle - \delta_{jk} \langle V^{r}, e \rangle \langle V^{r}, e \rangle + \langle \nabla_{e_{j}}^{"} V^{r}, e \rangle \langle V^{r}, e_{k} \rangle$

q.e.d.

Now, we integrate (18). By means of Lemma 2,3,4 and (25) we get

$$\operatorname{tr} \operatorname{I}(\phi_{*} \operatorname{V}^{\mathrm{T}}, \phi_{*} \operatorname{V}^{\mathrm{T}}) = \int_{\mathrm{M}} \operatorname{tr} \operatorname{Q}^{*1}$$

$$= \int_{\mathrm{M}} \{ \langle \nabla_{e_{i}}^{\mathrm{u}} \operatorname{V}^{j}, \nabla_{e_{i}}^{\mathrm{u}} \operatorname{V}^{k} \rangle a_{aj} a_{ak} + 2(3-n) \langle \nabla_{e_{j}}^{\mathrm{u}} \operatorname{V}^{r}, e_{k} \rangle a_{ak} a_{aj}$$

$$-2 \langle \nabla_{e_{j}}^{\mathrm{u}} \operatorname{V}^{r}, e_{j} \rangle \langle \nabla_{e_{i}}^{\mathrm{u}} \operatorname{V}^{r}, e_{k} \rangle a_{ai} a_{ak} + (3-n) \langle \nabla_{e_{j}}^{\mathrm{u}} \operatorname{V}^{r}, e_{j} \rangle \langle \operatorname{V}^{r}, e_{j} \rangle e(\phi)$$

$$-\frac{1}{2} \langle \nabla_{e_{i}}^{\mathrm{u}} \operatorname{V}^{j}, \nabla_{e_{j}}^{\mathrm{u}} \operatorname{V}^{i} \rangle e(\phi) - \frac{1}{2} \langle \nabla_{e_{i}}^{\mathrm{u}} \operatorname{V}^{i}, \nabla_{e_{j}}^{\mathrm{u}} \operatorname{V}^{j} \rangle e(\phi)$$

$$+ \langle \nabla_{e_{j}}^{\mathrm{u}} \operatorname{V}^{r}, e_{j} \rangle \langle \nabla_{e_{k}}^{\mathrm{u}} \operatorname{V}^{r}, e_{k} \rangle e(\phi) + 2 \langle \nabla_{e_{i}}^{\mathrm{u}} \operatorname{V}^{r}, e_{j} \rangle \langle \nabla_{e_{j}}^{\mathrm{u}} \operatorname{V}^{r}, e_{k} \rangle a_{ai} a_{ak}$$

$$+ \frac{1}{2} \operatorname{n}(n-1) e(\phi) - \frac{1}{2} \operatorname{R} e(\phi) + \operatorname{R}_{ij} a_{ai} a_{aj} - (2n-3) e(\phi) \}^{*1}.$$

$$(35)$$

Noting (8), we have the following estimations:

$$| < \nabla_{\mathbf{e}_i}^{"} \mathbf{v}^j, \nabla_{\mathbf{e}_i}^{"} \mathbf{v}^k > \mathbf{a}_{\alpha j}^{\mathbf{a}}_{\alpha k} | \leq \frac{1}{4} \mathbf{n} \mathbf{k}_3^2 \mathbf{e}(\phi) ,$$

-

$$| < \nabla_{e_{j}}^{"} V^{r}, e_{j} > < V^{r}, e_{k} > a_{\alpha k} a_{\alpha j} | \leq \frac{1}{2} k_{3} e(\phi) ,$$

$$| < \nabla_{e_{j}}^{"} V^{r}, e_{j} > < \nabla_{e_{i}}^{"} V^{r}, e_{k} > a_{\alpha i} a_{\alpha k} | \leq \frac{1}{4} n k_{3}^{2} e(\phi) ,$$

$$| < \nabla_{e_{j}}^{"} V^{r}, e_{j} > < V^{r}, e_{j} > | \leq \frac{1}{2} n k_{3} ,$$

$$| < \nabla_{e_{i}}^{"} V^{j}, \nabla_{e_{j}}^{"} V^{i} > | \leq \frac{1}{4} n^{2} k_{3}^{2} ,$$

$$| < \nabla_{e_{i}}^{"} V^{r}, e_{j} > < \nabla_{e_{k}}^{"} V^{r}, e_{k} > | \leq \frac{1}{4} n^{2} k_{3}^{2} ,$$

$$| < \nabla_{e_{i}}^{"} V^{r}, e_{j} > < \nabla_{e_{k}}^{"} V^{r}, e_{k} > | \leq \frac{1}{4} n^{2} k_{3}^{2} ,$$

$$(36)$$

Noting that we have normalized the $\delta-{\rm pinched}$ metric of $\,M$, we have

$$R \ge \frac{2\delta}{1+\delta} n(n-1) , \qquad (37)$$

and

•

$$R_{ij}a_{\alpha i}a_{\alpha j} \leq \frac{2}{1+\delta}(n-1) .$$
(38)

From $(36)\sim(38)$, we get the estimation:

tr I(
$$\phi_* V^T, \phi_* V^T$$
) $\leq \int_M e(\phi) \cdot \left\{ \frac{7n^2 + 10n}{8} \cdot k_3^2 + \frac{n^2 - n - 6}{2} k_3 \right\}$

,

$$+\frac{n^{2}-n+2-(n^{2}+3n-6)\delta}{2(1+\delta)}\right\} * 1$$
(39)

We observe that the RHS of (39) is a continous functions of δ and for any fixed $n \geq 3$ its value at $\delta = 1$ is

$$-(n-2)\int_{M} e(\phi)^{*}1 < 0$$
,

because $k_3(1) = 0$. Thus we can take

$$\delta(n) = \inf\{\frac{1}{4} < \delta < 1 \text{ s.t. the RHS of (39) is negative}\}$$
.

Now the main theorem is proved.

<u>Remark 1</u>. Since the values of $\delta(n)$ here are actually greater than 0.83. Okayasu's result holds for these $\delta(n)$ -pinched Riemannian manifolds too.

<u>Remark 2</u>. Unfortunately, $\lim_{n\to\infty} \delta(n) = 1$, and the pinching constant depends on the dimension of the manifold. It seems that there should exist a dimension-independent pinching constant.

<u>Acknowledgement</u>. The author would like to express his sincere thanks to the Max-Planck-Institut für Mathematik in Bonn for their warmly hospitality and to Prof. Karcher and Dr. Ohnita for helpful conversation with them.

References

- Grove, K., Karcher, H. and Ruh, E.A.: Jacobi fileds and Finsler metrics on compact Lie groups with an application to differentiable pinching problems, Math. Ann. 211 (1974), 7-21.
- [2] Grove, K., Karcher, H. and Ruh, E.A.: Group actions and curvatures, Inv. Math. 23 (1974), 31-48.
- [3] Howard, R.: The nonexistence of stable submanifolds, varifolds, and harmonic maps in sufficiently pinched simply connected Riemannian manifolds, Mich. Math. J. 32 (1985), 321-334.
- [4] Leung, P.F.: On the stability of harmonic maps, Lecture Notes in Mathematics, 949, Springer-Verlag, 1982, 122-129.
- [5] Okayasu, T.: Pinching and nonexistence of stable harmonic maps, Tohoku Math. J. 40 (1988), 213-220.
- [6] Pan, Y.L.: Some nonexistence theorems on stable harmonic mappings, Chin. Ann. of Math. 3 (4), 1982, 315-318.
- [7] Pan, Y.L.: Nonexistence of stable harmonic maps from sufficiently pinched simply connected Riemannian manifolds, to appear in J. London Math. Soc.
- [8] Xin, Y.L.: Some results on stable harmonic maps. Duke Math. J. 47 (3), 1980.