Stable Harmonic Maps from Pinched Manifolds

Y.L. PAN

Max-Planck-Institutfür Mathematik
Gottfried-Claren-Str 26
5300 Bonn 3

Stable Harmonic Maps from Pinched Manifolds

Y.L. PAN

Abstract

In this paper, it is proved that for $n \geq 3$ there exists a constant $\delta(n)$ with $1 / 4 \leq \delta(\mathrm{n})<1$ such that if M is a simply connected Riemannian manifold of dimension n with $\delta(\mathrm{n})$-pinched curvatures then for every Riemannian manifold N every stable harmonic map $\phi: \mathrm{M} \longrightarrow \mathrm{N}$ is constant. The proof is completely different from that of the author's previous paper and here the pinching constants are easy to compute by elementary functions.

Classification Numbers: 58E20, 53C20
Key words: stable harmonic map, pinched Riemannian manifold.

Stable Harmonic Maps from Pinched Manifolds

Y.L. PAN ${ }^{*}$

Max-Planck-Institut für Mathematik in Bonn, Gottfried-Claren-Straße 26, 5300 Bonn 3
and
Institute of Mathematics, Fudan University Shanghai, P.R. China

1. Introduction

A harmonic map is a critical point of the energy functional and a harmonic map is said to be stable if for any deformation vector field, its second variation is always non-negative.

As well known, when the source or the target manifold is the Euclidean sphere $S^{n}(n \geq 3)$, every stable harmonic map must be constant ([4], [8]). A natural question is "Does the above fact hold too for a simply connected δ-pinched Riemannian manifold ?". Here by a δ-pinched Riemannian manifold we mean a Riemannian manifold whose sectional curvatures are between the interval $(\delta \mathrm{K}, \mathrm{K}]$ with constants $\mathrm{K}>0$ and $1 \geq \delta>0$.

[^0]For the case that the target manifold is a simply connected δ-pinched Riemannian manifold, Howard in 1985 proved that Let $n \geq 3$. There is a number $\delta(n)$ with $1 / 4 \leq \delta(\mathrm{n})<1$ such that if M^{n} is a simply connected Riemannian manifold with $\delta(\mathrm{n})$-pinched curvatures then for every compact Riemannian manifold N every stable harmonic map $\phi: \mathrm{N} \longrightarrow \mathrm{M}^{\mathrm{n}}$ is constant on [3]. Recently, Okayasu obtains a dimension-independent pinching constant. He proves in [5] that Let M^{n} be a compact simply connected 0.83 -pinched Riemannian manifold ($\mathrm{n} \geq 3$) : Then for every compact Riemannian manifold N, any stable harmonic map $\phi: N \longrightarrow M^{n}$ is constant.

There is no result for the case that the source manifold is a simply connected δ-pinched Riemannian manifold up to now. Recently, the author in a previous paper [7] gives an affirmative answer to it with dimension-depending pinching constants. But there the pinching constants are difficult to compute. The aim of the present paper is to give a new proof of the above answer in a completely different way from which one can practically compute those pinching constants. We shall prove the following

Main Theorem. Let $\mathrm{n} \geq 3$. There is a number $\delta(\mathrm{n})$ with $1 / 4 \leq \delta(\mathrm{n})<1$ such that if M^{n} is a simply connected Riemannian manifold with $\delta(\mathrm{n})$-pinched curvatures then for any Riemannian manifold N every stable harmonic map $\phi: M^{n} \longrightarrow N$ is constant. Some values of $\delta(\mathrm{n})$ are given in the following table.

n	3	4	5	6	7	8	9	10	11	12
$\delta(\mathrm{n})$	0.94	0.95	0.95	0.96	0.96	0.97	0.97	0.97	0.97	0.98

2. Preliminaries

From now on, we always assume that M is a compact simply connected δ-pinched Riemannian manifold of dimension n.

As in [2], we normalize the δ-pinched metric of M by multiplication with $(1+\delta) / 2$. Put $\mathrm{E}=\mathrm{TM} \oplus \epsilon(\mathrm{M})$, where TM is the tangent bundle of M and $\epsilon(\mathrm{M})$ is a trivial line bundle on M with a metric. Thus E naturally becomes a Euclidean vector bundle on M. Let e be a section of length one in $\epsilon(M)$. We define a metric connection $\nabla^{\prime \prime}$ on E as follows:

$$
\begin{align*}
& \left.\nabla_{\mathrm{X}}^{\prime \prime} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}-<\mathrm{X}, \mathrm{Y}\right\rangle \cdot \mathrm{e}, \tag{1}\\
& \nabla_{\mathrm{X}}^{\prime \prime}=\mathrm{X} \tag{2}
\end{align*}
$$

where X and Y are any vector fields on $\mathrm{M},<$,$\rangle and \nabla$ are the Riemannian metric and connection of M, respectively. As shown in [2], the curvature $R^{\prime \prime}$ of $\nabla^{\prime \prime}$ satisfies the following relations:

$$
\begin{align*}
& \mathrm{R}^{\prime \prime}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}-\langle\mathrm{Y}, \mathrm{Z}\rangle \mathrm{X}+\langle\mathrm{X}, \mathrm{Z}\rangle \mathrm{Y}, \tag{3}\\
& \mathrm{R}^{\prime \prime}(\mathrm{X}, \mathrm{Y}) \mathrm{e}=0 \tag{4}
\end{align*}
$$

where X, Y, Z are any vector fields on M and $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]}{ }^{Z}$ is the curvature operator of ∇.

Under the assumption on M, we can obtain a flat metric connection ∇^{\prime} close to $\nabla^{\prime \prime}$ exactly as in [2]. To measure the closeness, we define

$$
\left\|\nabla^{\prime}-\nabla^{\prime \prime}\right\|:=\operatorname{Max}\left\{\left\|\nabla_{\mathrm{X}}^{\prime} \mathrm{Y}-\nabla_{\mathrm{X}}^{\prime} \mathrm{Y}| | ; \mathrm{X} \in \mathrm{TM},\right\| \mathrm{X}| |=1, \mathrm{Y} \in \mathrm{E},||\mathrm{Y}||=1\right\} .
$$

Note that our $\left\|\nabla^{\prime}-\nabla^{\prime \prime}\right\|$ is half of $\left\|\nabla^{\prime}-\nabla^{\prime \prime}\right\|$ in [1]. Set

$$
\begin{align*}
& \mathrm{k}_{1}(\delta)=\frac{4}{3}(1-\delta) \delta^{-1}\left[1+\left(\delta^{1 / 2} \sin \frac{1}{2} \pi \delta^{-1 / 2}\right)^{-1}\right] \tag{5}\\
& \mathrm{k}_{2}(\delta)=[(1+\delta) / 2]^{-1} \cdot \mathrm{k}_{1}(\delta) \tag{6}\\
& \mathrm{k}_{3}(\delta)=\mathrm{k}_{2}(\delta) \cdot\left\{1+\left[1-\frac{1}{24} \pi^{2}\left(\mathrm{k}_{1}(\delta)\right)^{2}\right]^{-2}\right\}^{1 / 2} . \tag{7}
\end{align*}
$$

By $[1,4.13]$, we have

$$
\begin{equation*}
\left|\mid \nabla \cdot-\nabla " \| \leq \frac{1}{2} \mathrm{k}_{3}(\delta) .\right. \tag{8}
\end{equation*}
$$

Now let N be any Riemannian manifold of dimension m and $\phi: M \longrightarrow N$ any harmonic map from M into N. Choose local fields of orthonormal farmes $\left\{e_{i}\right\}$ and $\left\{\mathrm{e}_{\alpha}^{\prime}\right\}$ in M and N , respectively. We shall make the following convention on the ranges of indices: $1 \leq \mathrm{i}, \mathrm{j}, \mathrm{k}, \ldots, \mathrm{n} ; 1 \leq \alpha, \beta, \gamma, \ldots, \mathrm{m}$, and use the summation convention. Let $\phi_{*}: \mathrm{TM} \longrightarrow \mathrm{TN}$ be the tangential map of ϕ. We also can consider ϕ_{*} as a $\phi^{-1} \mathrm{TN}$ valued 1 -form $d \phi$, i.e., $\mathrm{d} \phi(\mathrm{X})=\phi_{*} \mathrm{X}$, for $\mathrm{X} \in \mathrm{TM}$. The induced bundle $\phi^{-1} \mathrm{TN} \longrightarrow \mathrm{M}$ possesses the induced Riemannian connection as follows

$$
\begin{equation*}
\nabla_{X}(S \circ \phi)=\left(\nabla_{\phi_{*} X} S\right) \circ \phi, \tag{9}
\end{equation*}
$$

where $\mathrm{X} \in \mathrm{TM}, \mathrm{S}$ is any section of $\phi^{-1} \mathrm{TN}$, and ∇ is the Riemannian connection of N .
Set $\phi_{*} \mathrm{e}_{\mathrm{i}}=\mathrm{a}_{\alpha \mathrm{i}} \mathrm{e}_{\alpha}^{\prime}$ and $\mathrm{e}(\phi)=\sum_{\alpha, \mathrm{i}} \mathrm{a}_{\alpha \mathrm{i}}^{2}$. Then the energy of ϕ is $\mathrm{E}(\phi)=\frac{1}{2} \int_{\mathrm{M}} \mathrm{e}(\phi)^{*} 1_{\mathrm{M}}$, and the tension field of ϕ is $r=\sum_{\alpha, \mathrm{i}} \mathrm{a}_{\alpha \mathrm{ii}} \mathrm{e}_{\boldsymbol{\alpha}}$, , where $\mathrm{a}_{\alpha \mathrm{ij}}$ is the covariant derivative of $a_{\alpha i}$. For a harmonic map $\phi, \tau=0$, i.e., $\sum_{i} a_{\alpha i i}=0$.

For any section of E, say V, we denote by V^{T} and V^{e} the TM-component and the $\epsilon(\mathrm{M})$-component of V , respectively. If we take $\phi_{*} \mathrm{~V}^{\mathrm{T}}$ as the deformation vector field, the second variation formula of the energy can be reduced to the following form as shown in [6]:

$$
\begin{equation*}
\mathrm{I}\left(\phi_{*} \mathrm{~V}^{\mathrm{T}}, \phi_{*} \mathrm{~V}^{\mathrm{T}}\right)=\int_{\mathrm{M}}<\mathrm{d} \phi\left(\nabla_{\mathrm{e}_{\mathrm{i}}} \nabla_{\mathrm{e}_{\mathrm{i}}} \mathrm{v}^{\mathrm{T}}\right)-2 \nabla_{\mathrm{e}_{\mathrm{i}}}\left(\mathrm{~d} \phi\left(\nabla_{\mathrm{e}_{\mathrm{i}}} \mathrm{v}^{\mathrm{T}}\right)\right)-\phi_{*}\left(\mathrm{Ric}^{\mathrm{M}}\left(\mathrm{~V}^{\mathrm{T}}\right)\right), \phi_{*} \mathrm{~V}^{\mathrm{T}}>_{\mathrm{N}}{ }^{*} \tag{10}
\end{equation*}
$$

where Ric^{M} is the Ricci curvature operator of $\mathrm{M}, \operatorname{Ric}^{M}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{ij}} \mathrm{e}_{\mathrm{j}}$.
For any fixed point $p \in M$, choosing $\left\{e_{i}\right\}$ such that $\left.\nabla_{e_{i}} e_{j}\right|_{p}=0$, we make the following calculations

$$
\begin{align*}
\nabla_{e_{i}} V^{T} & =\left(\nabla_{e_{i}^{\prime \prime}}^{\prime \prime} V^{T}\right)^{T}=\left(\nabla_{e_{i}^{\prime \prime}}^{\prime \prime}(V-<V, e>e)\right)^{T} \\
& \left.=\left(\nabla_{e_{i}^{\prime \prime}}^{\prime \prime} v\right)^{\Gamma}\right)_{i}-<V, e>e_{i} \tag{11}\\
\nabla_{e_{i}} \nabla_{e_{i}} V^{T} & =\nabla_{e_{i}}\left(\nabla_{e_{i}}^{\prime \prime} V\right)^{T}-\left(\nabla_{e_{i}}<V, e>\right) e_{i}-<V, e>\nabla_{e_{i}} e_{i} \\
& =\left(\nabla_{e_{i}^{\prime}}^{\prime \prime}\left(\nabla_{e_{i}}^{\prime \prime} V\right)^{T}\right)^{T}-<\nabla_{e_{i}}^{\prime \prime} V, e>e_{i}-<V, \nabla_{e_{i}}^{\prime \prime} e>e_{i}
\end{align*}
$$

$$
\begin{align*}
& =\left[\nabla_{e_{i}}^{\prime \prime}\left(\nabla_{e_{i}}^{\prime \prime} V-<\nabla_{e_{i}}^{\prime \prime} V, e>e\right)\right]^{T}-<\nabla_{e_{i}}^{\prime \prime} V, e>e_{i}-<V, e_{i}>e_{i} \\
& =\left\langle\nabla_{e_{i}}^{\prime \prime} \nabla_{e_{i}}^{\prime \prime} V, e_{j}\right\rangle X^{e_{j \prime}}-2<\nabla_{e_{i}}^{\prime \prime} V, e>e_{i}-<V, e_{i}>e_{i} \tag{12}
\end{align*}
$$

Noting $\mathrm{d} \phi\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{a}_{\alpha \mathrm{i}}{ }^{\mathrm{e}}{ }_{\alpha}$ and the harmonicity $\mathrm{a}_{\alpha \mathrm{aii}}=0$, we have

$$
\begin{equation*}
\mathrm{d} \phi\left(\nabla_{\mathrm{e}_{\mathrm{i}}} \nabla_{\mathrm{e}_{\mathrm{i}}} \mathrm{~V}^{\mathrm{T}}\right)=<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}, \mathrm{e}_{\mathrm{j}}>\mathrm{a}_{\alpha \mathrm{j}^{\mathrm{e}}}{ }_{\alpha}^{\prime}-2<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}, \mathrm{e}>\mathrm{a}_{\alpha \mathrm{i}_{\alpha}} \mathrm{e}_{\alpha}^{\prime}-<\mathrm{V}, \mathrm{e}_{\mathrm{i}}>\mathrm{a}_{\alpha \mathrm{i}_{\alpha}}^{\prime} \tag{13}
\end{equation*}
$$

$$
-2 \nabla_{\mathrm{e}_{\mathrm{i}}}\left(\mathrm{~d} \phi\left(\nabla_{\mathrm{e}_{\mathrm{i}}} \mathrm{~V}^{\mathrm{T}}\right)\right)=-2 \nabla_{\mathrm{e}_{\mathrm{i}}}\left(\left\langle\nabla_{\mathrm{e}_{\mathrm{i}}^{\prime \prime}}^{\prime \prime}, \mathrm{e}_{\mathrm{j}}>\mathrm{a}_{\alpha \mathrm{j}} \mathrm{e}_{\alpha}^{\prime}-\left\langle\mathrm{V}, \mathrm{e}>\mathrm{a}_{\alpha \mathrm{i}} \mathrm{e}_{\alpha}^{\prime}\right)\right.\right.
$$

Thus, the second variation formula reduces to

$$
\begin{equation*}
\mathrm{I}\left(\phi_{*} \mathrm{~V}^{\mathrm{T}}, \phi_{*} \mathrm{~V}^{\mathrm{T}}\right)=\int_{\mathrm{M}} \mathrm{Q}^{*} 1 \tag{15}
\end{equation*}
$$

where

$$
Q=-<\nabla_{e_{i}}^{\prime \prime} \nabla_{e_{i}}^{\prime \prime} V, e_{j}><V, e_{k}>a_{\alpha j}^{a} \alpha k+2<\nabla_{e_{i}}^{\prime \prime} V, e><V, e_{k}>a_{\alpha j}^{a} \alpha k
$$

$$
\begin{align*}
& =-2<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}, \mathrm{e}_{\mathrm{j}}>\mathrm{a}_{\alpha \mathrm{j}} \mathrm{e}_{\alpha}^{\prime}+2<\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \mathrm{V}, \mathrm{e}>\mathrm{a}_{\alpha \mathrm{j}} \mathrm{e}_{\alpha}^{\prime} \\
& -2<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}_{\mathrm{e}} \mathrm{e}_{\mathrm{j}}>\mathrm{a}_{\alpha \mathrm{ji}} \mathrm{e}_{\alpha}^{\prime}+2<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}, \mathrm{e}>\mathrm{a}_{\alpha \mathrm{i}} \mathrm{e}_{\alpha}^{\prime}+2<\mathrm{V}, \mathrm{e}_{\mathrm{i}}>\mathrm{a}_{\alpha \mathrm{i}} \mathrm{e}_{\alpha}^{\prime} . \tag{14}
\end{align*}
$$

3. Proof of the main theorem

We now define $\mathscr{V}=\{V \in \Gamma(E) \mid \nabla \cdot V=0\}$, where $\Gamma(E)$ denotes the vector space consisting of all smooth sections of E. Then \mathscr{V} is isomorphic to $\mathbb{R}^{\mathrm{n}+1}$ and has a natural inner product and $\mathrm{I}\left(\phi_{*} \mathrm{~V}^{\mathrm{T}}, \phi_{*} \mathrm{~V}^{\mathrm{T}}\right)$ is a quadratic form on \mathscr{V}. We compute the trace of $\mathrm{I}\left(\phi_{*} \mathrm{~V}^{\mathrm{T}}, \phi_{*} \mathrm{~V}^{\mathrm{T}}\right)$ over \mathscr{V} and show for a appropriate chosen δ depending on n the rsult is negative if ϕ is not a constant harmonic map.

Let $\left\{\mathrm{V}^{\mathrm{r}}, \mathrm{r}=1, \ldots, \mathrm{n}+1\right\}$ be an orthonormal basis of \mathscr{V}. We get

$$
\begin{equation*}
\operatorname{tr} \mathrm{I}\left(\phi_{*} \mathrm{~V}^{\mathrm{T}}, \phi_{*} \mathrm{~V}^{\mathrm{T}}\right)=\int_{\mathrm{M}} \operatorname{trQ}^{*} 1 \tag{17}
\end{equation*}
$$

and

$$
\begin{aligned}
& \operatorname{tr} Q=-<\nabla_{e_{i}}^{\prime \prime} \nabla_{e_{i}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><V^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}{ }_{\alpha j}{ }^{\mathrm{a}}{ }_{\alpha \mathrm{k}}+\dot{2}\left\langle\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}><V^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}{ }_{\alpha k}{ }^{\mathrm{a}}{ }_{\alpha j}\right.
\end{aligned}
$$

Lemma 1. It holds that

$$
\begin{equation*}
\left\langle\nabla_{e_{i}^{\prime \prime}}^{\prime \prime} V^{r}, V^{s}>=-<\nabla_{e_{i}^{\prime \prime}}^{\prime \prime} V^{s}, V^{r}>\right. \tag{19}
\end{equation*}
$$

and

$$
\begin{gather*}
\left\langle\nabla_{e_{\ell}}^{\prime \prime} \nabla_{e_{i}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{~V}^{\mathrm{s}}>+\left\langle\nabla_{\mathrm{e}_{\ell}}^{\prime \prime} \nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{s}}, \mathrm{~V}^{\mathrm{r}}>+\left\langle\nabla_{\mathrm{e}_{\ell}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{s}}\right\rangle+\left\langle\nabla_{\mathrm{e}_{\ell}}^{\prime \prime} \mathrm{V}^{\mathrm{s}}, \nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}>=0\right.\right.\right. \tag{20}\\
\quad(\mathrm{r}, \mathrm{~s}=1, \ldots, \mathrm{n}+1)
\end{gather*}
$$

Proof. Since $\left\{\mathrm{V}^{\mathrm{r}}\right\}$ is orthonromal to each other, we have $\left\langle\mathrm{V}^{\mathrm{r}}, \mathrm{V}^{\mathrm{s}}\right\rangle=\delta_{\mathrm{rS}}$.
Differentiating it, we get

$$
\begin{equation*}
0=\nabla_{e_{\mathrm{i}}}\left\langle\mathrm{~V}^{\mathrm{r}}, \mathrm{~V}^{\mathrm{s}}\right\rangle=\left\langle\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{~V}^{\mathrm{s}}\right\rangle+\left\langle\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{s}}, \mathrm{~V}^{\mathrm{r}}\right\rangle \tag{21}
\end{equation*}
$$

It follows that (19) holds. Differentiating (21), we get (20).
q.e.d.

In the following, we transform the bad term $\left.-2<\nabla_{e_{i}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}\right\rangle\left\langle V^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha j \mathrm{j}}{ }^{\mathrm{a}}{ }_{\alpha k}\right.$ into a form in which the quantities can be estimated.

$$
\begin{array}{r}
\text { Noting } \mathrm{a}_{\alpha i j}=\mathrm{a}_{\alpha j i} \text {, we have } \\
-2<\nabla_{e_{i}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha j i^{2}}{ }_{\alpha k}
\end{array}
$$

$$
\begin{align*}
& =-2 \nabla_{\mathrm{e}_{\mathrm{j}}}\left\{<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}}{ }^{\mathrm{a}}{ }_{\alpha \mathrm{k}}\right\}+2<\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}^{2}{ }^{\mathrm{a}}{ }_{a k},} \\
& +2<\nabla_{e_{i}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}^{2}}{ }_{\alpha \mathrm{k}}-2 \mathrm{n}<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}><V^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha i^{2}}{ }_{\alpha k} \\
& -2<\nabla_{e_{i}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><V^{\mathrm{r}}, \mathrm{e}>\mathrm{a}_{\alpha i^{2}}{ }_{\alpha j}+2<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><V^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha i^{2}}{ }_{\alpha k j} . \tag{22}
\end{align*}
$$

In the computation, since the computation is pointwisely done, we can omit the terms in which $\nabla_{\mathrm{e}_{\mathrm{i}}} \mathrm{e}_{\mathrm{j}}$ appears.

By using the Ricci identity

$$
\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \nabla_{\mathrm{e}_{\mathrm{i}}^{\prime \prime}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}=\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}+\mathrm{R}^{\prime \prime}\left(\mathrm{e}_{\mathrm{j}} \mathrm{e}_{\mathrm{i}}\right) \mathrm{V}^{\mathrm{r}}
$$

and $a_{\alpha \mathrm{ai}}=0$, we have

$$
\begin{aligned}
& 2<\nabla_{e_{j}}^{\prime \prime} \nabla_{e_{i}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{a i^{\mathrm{a}}}{ }_{a k} \\
& =2<\nabla_{e_{i}}^{\prime \prime} \nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>a_{\alpha i^{2}}{ }_{\alpha k}+2<R^{\prime \prime}\left(e_{j}, e_{i}\right) V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><V^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}^{\mathrm{a}} \alpha k}
\end{aligned}
$$

$$
\begin{aligned}
& -2<\nabla_{e_{j}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}^{\mathrm{a}}{ }_{\alpha k}+2<\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}>\mathrm{e}(\phi)}
\end{aligned}
$$

$$
\begin{equation*}
-2<\nabla_{e_{j}^{\prime \prime}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>e(\phi)_{,_{k}}+2<R^{\prime \prime}\left(e_{j,} e_{i}\right) V^{r}, e_{j}><V^{r}, e_{k}>a_{\alpha i^{2}}^{a} \alpha k \tag{23}
\end{equation*}
$$

Now we compute

$$
\begin{align*}
& -<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>e(\phi)_{{ }_{k}} \\
& =-\nabla_{e_{k}}\left\{<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>e(\phi)\right\}+\left\langle\nabla_{e_{k}}^{\prime \prime} \nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>e(\phi)\right. \\
& -<\nabla_{e_{j}}^{\prime \prime} V^{r}, e><V^{r}, e_{j}>e(\phi)+\left\langle\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><\nabla_{e_{k}}^{\prime \prime} V^{r}, e_{k}>e(\phi)-n<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e>e(\phi) .\right. \tag{24}
\end{align*}
$$

From (22)~(24) and using Stokes formula, we have

$$
\begin{aligned}
& \int_{M}-2<\nabla_{e_{i}^{\prime \prime}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha j \mathrm{j}^{\mathrm{a}}}{ }^{\mathrm{k}}{ }^{* 1}
\end{aligned}
$$

$$
\begin{aligned}
& +(2-n)<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e>e(\phi)+<\nabla_{e_{k}}^{\prime \prime} \nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>e(\phi)-<\nabla_{e_{j}}^{\prime \prime} V^{r}, e><V^{r}, e_{j}>e(\phi) \\
& +<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><\nabla_{e_{k}}^{\prime \prime} V^{r}, e_{k}>e(\phi)+2<\nabla_{e_{i}}^{\prime \prime} V^{r}, e_{j}><\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{k}>a_{\alpha i}{ }^{a} \alpha k \\
& -2<\nabla_{e_{i}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e>a_{\alpha i}{ }^{\mathrm{a}}{ }_{\alpha j}+2 \nabla_{e_{i}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>a_{\alpha i}{ }^{a}{ }_{\alpha k j}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\left\langle\nabla_{e_{i}}^{\prime \prime} v^{k}, e_{j}\right\rangle+\left\langle\nabla_{e_{i}}^{\prime \prime} V^{j}, e_{k}>\right) a_{\alpha i^{2}}^{a}{ }_{\alpha j}\right. \\
& =0
\end{aligned}
$$

So (28) follows.
Noting (3) and $\mathrm{R}_{\mathrm{ij}}=\left\langle\mathrm{R}\left(\mathrm{e}_{\mathrm{k}}, \mathrm{e}_{\mathrm{j}}\right) \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right\rangle$, we get (29).
q.e.d.

Concerning the second derivatives of V^{r}, we have

Lemma 3. It holds at each point p that

$$
\begin{gather*}
-<\nabla_{e_{i}}^{\prime \prime} \nabla_{e_{i}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>a_{\alpha j}{ }_{\alpha k}=\nabla_{e_{i}}^{\prime \prime} V^{j}, \nabla_{e_{i}}^{\prime \prime} V^{k}>a_{\alpha j}{ }^{a} \alpha k \tag{30}\\
\left\langle\nabla_{e_{k}}^{\prime \prime} \nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>=-\frac{1}{2} R+\frac{1}{2} n(n-1)-\frac{1}{2}<\nabla_{e_{i}}^{\prime \prime} V^{j}, \nabla_{e_{j}}^{\prime \prime} V^{i}>-\frac{1}{2}<\nabla_{e_{j}}^{\prime \prime} V^{j}, \nabla_{e_{i}}^{\prime \prime} V^{i}>,\right. \tag{31}
\end{gather*}
$$

where R is the scalar curvature of M.

Proof. Choose an orthonormal basis $\left\{\mathrm{V}^{\mathrm{r}}\right\}$ as in Lemma 2. Letting $\ell=\mathrm{i}, \mathrm{r}=\mathrm{k}$ and $s=j$ and then multiplying $a_{\alpha j}{ }_{\alpha k}$ and summing over the indices, we get

$$
\begin{equation*}
2<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \nabla_{\mathrm{e}_{\mathrm{i}}^{\prime \prime}}^{\prime \prime} \mathrm{v}^{\mathrm{k}}, \mathrm{e}_{\mathrm{j}}>\mathrm{a}_{\alpha \mathrm{j}}^{\mathrm{a}} \alpha \mathrm{k}+2<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{v}^{\mathrm{k}}, \nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{v}^{\mathrm{j}}>\mathrm{a}_{\alpha \mathrm{j}}{ }_{\alpha \mathrm{k}}=0 \tag{32}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left.+2<R^{\prime \prime}\left(e_{j^{\prime}} e_{j}\right) V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}^{\mathrm{a}}}{ }^{\mathrm{k}}\right\}^{*} 1 \tag{25}
\end{equation*}
$$

Since the trace of Q is independent of the choice of an orthonormal basis for each fibre of E and the computation is pointwisely done, at each point $p \in M$ we can choose an orthonormal basis $\left\{V^{1}, \ldots, V^{n}, V^{n+1}\right\}$ such that $V^{i}=e_{i}, i=1, \ldots, n$, and $V^{n+1}=e$ at the point p. Thus we have

Lemma 2. It holds at each point p that

$$
\begin{align*}
& \left\langle V^{r}, e_{i}><V^{r}, e_{k}>a_{\alpha i}{ }_{\alpha k}=e(\phi),\right. \tag{26}
\end{align*}
$$

$$
\begin{align*}
& <\nabla_{e_{i}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{I}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}^{2}}{ }_{\alpha k j}=0, \tag{28}\\
& <R^{\prime \prime}\left(e_{j}, e_{j}\right) V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{I}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}^{\mathrm{a}}{ }_{\alpha k}=\mathrm{R}_{\mathrm{ik}}{ }^{\mathrm{a}}{ }_{\alpha \mathrm{i}^{\mathrm{a}}}{ }_{\alpha \mathrm{k}}-(\mathrm{n}-1) \mathrm{e}(\phi) .} \tag{29}
\end{align*}
$$

Proof. Choose orthornormal basis $\left\{\mathrm{V}^{\mathrm{r}}\right\}$ as above. (26) and (27) are obvious. Letting $r=k$ and $s=j$ in (19), at the point p, we get $\left\langle\nabla_{e_{i}}^{\prime \prime} v^{k}, e_{j}\right\rangle=-\left\langle\nabla_{e_{i}}^{\prime \prime} V^{j}, e_{k}\right\rangle$. Thus we get

$$
\begin{aligned}
& \left\langle\nabla_{e_{i}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>a_{\alpha i}{ }^{\mathrm{a}} \alpha k j=<\nabla_{e_{i}}^{\prime \prime} V^{\mathrm{k}}, \mathrm{e}_{\mathrm{j}}>\mathrm{a}_{\alpha \mathrm{i}^{\mathrm{a}}}{ }_{\alpha k j}\right. \\
& =\frac{1}{2}\left(<\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{k}}, \mathrm{e}_{\mathrm{j}}>\mathrm{a}{ }_{\alpha \mathrm{i}}{ }^{\mathrm{a}}{ }_{\alpha \mathrm{kj}}+\left\langle\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}{ }_{\alpha \mathrm{i}^{\mathrm{a}}}{ }_{\alpha \mathrm{jk}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -<\nabla_{e_{i}}^{\prime \prime} \nabla_{e_{i}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e_{k}>a_{\alpha j}{ }^{a} \alpha k=-<\nabla_{e_{i}}^{\prime \prime} \nabla_{e_{i}}^{\prime \prime} V^{k}, e_{j}>a_{\alpha j}{ }^{a} \alpha k \\
& =\left\langle\nabla_{e_{i}}^{\prime \prime} V^{k}, \nabla_{e_{i}}^{\prime \prime} V^{j}>a_{\alpha j}{ }^{a} \alpha k .\right.
\end{aligned}
$$

It follows that (30) holds. In a similar way, letting $\ell=r=k, i=s=j$ and summing over the indices, from the Ricci identity we get

$$
\begin{equation*}
2<\nabla_{e_{k}^{\prime \prime}}^{\prime \prime} \nabla_{e_{j}}^{\prime \prime} V^{k}, e_{j}>=-\frac{1}{2} R+\frac{1}{2} n(n-1)-\frac{1}{2}<\nabla_{e_{i}}^{\prime \prime} V^{j}, \nabla_{e_{j}}^{\prime \prime} V^{i}>-\frac{1}{2}<\nabla_{e_{i}}^{\prime \prime} V^{i}, \nabla_{e_{j}}^{\prime \prime} V^{j}> \tag{33}
\end{equation*}
$$

and (31) follows from (33).
q.e.d.

Lemma 4. It holds at each point p that

$$
\begin{equation*}
\left\langle\nabla_{e_{j}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>=-\left\langle\nabla_{\mathrm{e}_{\mathrm{j}}^{\prime \prime}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}>\right.\right. \tag{34}
\end{equation*}
$$

Proof. Since $\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}, \mathrm{e}\right\}$ is a local orthonormal basis, we have $\left\langle\mathrm{e}_{\mathrm{k}}, \mathrm{e}\right\rangle=0$ and $\left\langle\mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{k}}\right\rangle=\delta_{\mathrm{jk}}$, i.e., $\left\langle\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}\right\rangle\left\langle\mathrm{V}^{\mathrm{r}}, \mathrm{e}\right\rangle=0$ and $\left\langle\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}\right\rangle\left\langle\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}\right\rangle=\delta_{\mathrm{jk}}$. Differentiating the first equality, we get

$$
\begin{aligned}
0 & =\nabla_{e_{j}}\left(\left\langle V^{r}, e_{k}><V^{r}, e\right\rangle\right) \\
& =\left\langle\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{k}\right\rangle\left\langle V^{r}, e\right\rangle-\delta_{j k}\left\langle V^{r}, e\right\rangle\left\langle V^{r}, e>+\left\langle\nabla_{e_{j}}^{\prime \prime} V^{r}, e\right\rangle\left\langle V^{r}, e_{k}\right\rangle\right.
\end{aligned}
$$

$$
\begin{gathered}
+\left\langle V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}\right\rangle \\
=\left\langle\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}\right\rangle+\left\langle\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>.\right.
\end{gathered}
$$

q.e.d.

Now, we integrate (18). By means of Lemma 2,3,4 and (25) we get

$$
\begin{align*}
& \operatorname{tr} \mathrm{I}\left(\phi_{*} \mathrm{~V}^{\mathrm{T}}, \phi_{*} \mathrm{~V}^{\mathrm{T}}\right)=\int_{\mathrm{M}} \operatorname{tr}^{*} 1 \\
& =\int_{M}\left\{\left\langle\nabla_{e_{i}}^{\prime \prime} V^{j}, \nabla_{e_{i}}^{\prime \prime} V^{k}>a_{\alpha j}{ }^{a} \alpha k+2(3-n)<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{k}>a_{\alpha k}{ }_{\alpha j}\right.\right. \\
& -2<\nabla_{e_{j}}^{\prime \prime} V^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\nabla_{\mathrm{e}_{\mathrm{i}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}_{\alpha \mathrm{i}^{\mathrm{a}}}{ }_{\alpha \mathrm{k}}+(3-\mathrm{n})<\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{j}}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}>\mathrm{e}(\phi) \\
& -\frac{1}{2}<\nabla_{e_{i}}^{\prime \prime} V^{j}, \nabla_{e_{j}}^{\prime \prime} V^{i}>e(\phi)-\frac{1}{2}<\nabla_{e_{i}}^{\prime \prime} V^{i}, \nabla_{e_{j}}^{\prime \prime} V^{j}>e(\phi) \\
& +<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><\nabla_{e_{k}}^{\prime \prime} v^{r}, e_{k}>e(\phi)+2<\nabla_{e_{i}}^{\prime \prime} v^{r}, e_{j}><\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{k}>a_{\alpha i}{ }^{a} \alpha k \\
& \left.+\frac{1}{2} \mathrm{n}(\mathrm{n}-1) \mathrm{e}(\phi)-\frac{1}{2} \mathrm{Re}(\phi)+\mathrm{R}_{\mathrm{ij}} \mathrm{a}^{\mathrm{a}} \mathrm{i}^{\mathrm{a}}{ }_{\alpha \mathrm{j}}-(2 \mathrm{n}-3) \mathrm{e}(\phi)\right\}^{*} 1 . \tag{35}
\end{align*}
$$

Noting (8), we have the following estimations:

$$
\left|<\nabla_{e_{i}}^{n} V^{j} \nabla_{e_{i}}^{j} \nabla^{\prime \prime} v^{k}>a_{\alpha j}{ }^{\mathrm{a}} \alpha \mathrm{k}\right| \leq \frac{1}{4} \mathrm{k}_{3}^{2} e(\phi),
$$

$$
\begin{align*}
& \left|<\nabla_{\mathrm{e}_{\mathrm{j}}}^{\prime \prime} \mathrm{V}^{\mathrm{r}}, \mathrm{e}><\mathrm{V}^{\mathrm{r}}, \mathrm{e}_{\mathrm{k}}>\mathrm{a}{ }_{a \mathrm{k}}{ }^{\mathrm{a}}{ }_{\alpha \mathrm{j}}\right| \leq \frac{1}{2} \mathrm{k}_{3} \mathrm{e}(\phi), \\
& \left|<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><\nabla_{e_{i}}^{\prime \prime} V^{r}, e_{k}>a_{\alpha i}{ }^{a} \alpha k\right| \leq \frac{1}{4} n k_{3}^{2} e(\phi), \\
& \left|<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}><V^{r}, e>\right| \leq \frac{1}{2}{ }^{n} k_{3}, \\
& \left|<\nabla_{e_{i}}^{\prime \prime} V^{j}, \nabla_{e_{j}}^{\prime \prime} V^{i}>\right| \leq \frac{1}{4} n^{2} k_{3}^{2}, \\
& \left|<\nabla_{e_{j}}^{\prime \prime} V^{r}, e_{j}\right\rangle<\nabla_{e_{k}}^{\prime \prime} V^{r}, e_{k}>\left\lvert\, \leq \frac{1}{4} n^{2}{ }_{3}^{2}\right., \\
& \left|<\nabla_{e_{i}}^{\prime \prime} V^{r}, e_{j}><\nabla_{. e_{j}^{\prime \prime}}^{\prime \prime} V^{r}, e_{k}>\right| \leq \frac{1}{4} n(n+1) k_{3}^{2} . \tag{36}
\end{align*}
$$

Noting that we have normalized the δ-pinched metric of M, we have

$$
\begin{equation*}
\dot{\mathrm{R}} \geq \frac{2 \delta}{1+\delta} \mathrm{n}(\mathrm{n}-1) \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij}} \mathrm{a}_{\alpha \mathrm{j}}{ }^{\mathrm{a}}{ }_{\alpha \mathrm{j}} \leq \frac{2}{1+\delta}(\mathrm{n}-1) \tag{38}
\end{equation*}
$$

From (36)~(38), we get the estimation:
$\operatorname{tr} \mathrm{I}\left(\phi_{*} \mathrm{~V}^{\mathrm{T}}, \phi_{*} \mathrm{~V}^{\mathrm{T}}\right) \leq \int_{\mathrm{M}} \mathrm{e}(\phi) \cdot\left\{\frac{7 \mathrm{n}^{2}+10 \mathrm{n}}{8} \cdot \mathrm{k}_{3}^{2}+\frac{\mathrm{n}^{2}-\mathrm{n}-6}{2} \mathrm{k}_{3}\right.$

$$
\begin{equation*}
\left.+\frac{\mathrm{n}^{2}-\mathrm{n}+2-\left(\mathrm{n}^{2}+3 \mathrm{n}-6\right) \delta}{2(1+\delta)}\right\} * 1 \tag{39}
\end{equation*}
$$

We observe that the RHS of (39) is a continous functions of δ and for any fixed $\mathrm{n} \geq 3$ its value at $\delta=1$ is

$$
-(\mathrm{n}-2) \int_{\mathrm{M}} \mathrm{e}(\phi)^{*} 1<0,
$$

because $k_{3}(1)=0$. Thus we can take

$$
\delta(\mathrm{n})=\inf \left\{\frac{1}{4}<\delta<1 \text { s.t. the RHS of (39) is negative }\right\}
$$

Now the main theorem is proved.

Remark 1. Since the values of $\delta(\mathrm{n})$ here are actually greater than 0.83 . Okayasu's result holds for these $\delta(\mathrm{n})$-pinched Riemannian manifolds too.

Remark 2. Unfortunately, $\lim _{\mathrm{n} \rightarrow \infty} \delta(\mathrm{n})=1$, and the pinching constant depends on the dimension of the manifold. It seems that there should exist a dimension-independent pinching constant.

Acknowledgement. The author would like to express his sincere thanks to the Max-Planck-Institut für Mathematik in Bonn for their warmly hospitality and to Prof. Karcher and Dr. Ohnita for helpful conversation with them.

References

[1] Grove, K., Karcher, H. and Ruh, E.A.: Jacobi fileds and Finsler metrics on compact Lie groups with an application to differentiable pinching problems, Math. Ann. 211 (1974), 7-21.
[2] Grove, K., Karcher, H. and Ruh, E.A.: Group actions and curvatures, Inv. Math. 23 (1974), 31-48.
[3] Howard, R.: The nonexistence of stable submanifolds, varifolds, and harmonic maps in sufficiently pinched simply connected Riemannian manifolds, Mich. Math. J. 32 (1985), 321-334.
[4] Leung, P.F.: On the stability of harmonic maps, Lecture Notes in Mathematics, 949, Springer-Verlag, 1982, 122-129.
[5] Okayasu, T.: Pinching and nonexistence of stable harmonic maps, Tohoku Math. J. 40 (1988), 213-220.
[6] Pan, Y.L.: Some nonexistence theorems on stable harmonic mappings, Chin. Ann. of Math. 3 (4), 1982, 315-318.
[7] Pan, Y.L.: Nonexistence of stable harmonic maps from sufficiently pinched simply connected Riemannian manifolds, to appear in J. London Math. Soc.
[8] Xin, Y.L.: Some results on stable harmonic maps. Duke Math. J. 47 (3), 1980.

[^0]: * This work was supported by Max-Planck-Institut für Mathematik in Bonn.

