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Abstract

In this paper, it is proved that for n ~ 3 there exists a eonstant 6(n) with

1/4 5 6(n) < 1 such that if M is a simply connected lliemannian manifold of dimension

n with 6(n)-pinehed curvatures then for every lliemannian manifold N every stable

harmonie map (J: M --+ N is constant. The praof is completely different {rom that of the

authorJs previous paper and here the pinehing constants are easy to compute by elementary

functions.
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1. Introduction

A harmonic map is a critical point of the energy functional and a harmonic map ia

said to he stahle if for any deformation vector field, its second variation is always

non-negative.

As weil known, when the source or the target manifold is the Euclidean sphere

Sn(n ~ 3) , every stahle hannonic map must be constant ( [4], [8]). A natural question is

"Does the above fact hold too for a simply connected o-pinched Riemannian manifold 7".

Here by a 6-pinched Riemannian manifold we mean a lliernannian manifold whose

sectional curvatures are hetween the interval (6K,K] with constants K > 0 and

1~6>O.

* This work was supportcd by Max-Planck-Institut für Mathematik in Bann.
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For the ease that the target manifold is a simply connected o-pinched lliemannian

manifold, Howard in 1985 praved that Let n ~ 3 . There is a number 6(n) with

1/4 5 6(n) < 1 such that if Mn is a simply connected Riemannian manifold with

6(n)-pinehed eurvatures then far every compact lliemannian manifold N every stahle

harmonie map ~: N ----i Mn is constant on [3]. Reeently, Okayasu ohtains a

dimension-independent pinehing eanstant. He proves\in [5} that Let Mn he a compaet

simply connected 0.83-pinehed llielnannian manifold (n ~ 3) : Then for every compaet

Riemannian manifold N , any stahle harmonie map ~: N ----i Mn is constant.

There is ua result for the case that the souree manifold is a simply connected

o-pinched Riemannian manifold up to now. Recently, thc author in a previous paper [7]

gives an affirmative answer to it with dimension-depending pinching constauts. But there

the pinehing canstants are difficult to eompute. The aim of the present paper is to give a

new proof of the above answer in a co~pletely different way from which one ean practically

compute thase pinehing constauts. We shall prove the following

Main Theorem. Let n ~ 3 . There is a number 6(n) with 1/4 ~ 6(n) < 1 such that if

Mn ia a simply connected Rielnannian manifold with 6(n)-pinched curvatures then for

auy Riemannian manifold N every stahle harmonie map ~: Mn ----i N is eonstant.

Same values of 6(n) are given in the following table.

n .3 4 5 6 7 8 9 10 11 12

6(n) 0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.98
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2. Preliminaries

From now on, we always assume that M is a compact simply connected o-pinched

Riemannian manifold of dimension n.

As in [2], we normalize the o-pinched metric of M by multiplication with

(1+0)/2 . Put E = TM m€(M) ,where TM is the tangent bundle of M and €(M) ia a

trivialline bundle on M with ametrie. Thus E naturally becomes a Euclidean vector

bundle on M. Let e be a section oe length one in f(M). We define ametrie connectio.ll

V" on E as follows:

(1)

(2)

where X and Y are any vector fields on M, < ,> and V are the lliemannian rnetric

and connection of M , respectively. As shown in [2], the curvature R" of V" satisfies

the following relations:

RII(X,Y)Z = R(X,Y)Z - <Y,Z>X + <X,Z>.Y J

RII(X,Y)e = 0

(3)

(4)

where X,Y,Z are any vector fields on M and R(X,Y)Z =VXVyZ - VyVXZ - V[X,Y] Z

is the curvature operator. oe V.

Under the assumption on M) we can obtain a flat metrie connection V, elose to V"

exactly as in [2]. To measure the eloseness, we define
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I IV'-V" I I := Max {I Wxy-VxYlli x E TM, IIXII=1, Y E E, II Y II=1}.

Note that our I IV'-V" I I is half of 11 V'-V" I I in [1]. Set

(5)

(6)

(7)

By [1, 4.13] , we have

(8)

Now let N be any Riemannian manifold of dimension m and ;: M --+ N any

harmonie map from 101 into N . Choose Ioeal fields of orthonormal farmes {e.} and
. 1

{e~} in M and N , respectively. We shall make the following convention on the ranges

of indices: 1 $ i,j,k, ... ,5 n; 1 $ O,ß,1, ... ,$ m , and use the summation convention. Let

~* : TM --4 TN be the tangential map of ~. We also ~an consider ~* as a ~-lTN

valued I-form d~, Le., d~(X) = t/J.X ,for X E TM . The induced bundle ~-lTN --4 11:

possesses the inrluced Riemannian connection as follows

(9)
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is r = \' a .. e ' , , where a 0 0 is theL Oll a OlJ

0, i

covariant derivative of aai . For a harmonie map rp, T = 0 , Le., 1: aaü = 0 .

i

For any seetion of E ,8ay Y , we denote by y T and ye the TM-eomponent and

the f(M)-eomponent of Y , respeetively. If we take ~*yT as the deformation veetor

where X E TM ,S is any scction of tP-lTN , and V is the lliemannian connection of N .

Set ~*e. = a .e 'and e(~) = \' a2
0 • Then the energy of tP is

1 01 a L Q1

a ,i

E(~) = ~ f
M

e( ~)*lM ' and the tension field of ~

field, the seeond variation formula of the energy can be reduced to the following form as

shown in [6]:

I( ~*yT,~*yT) = f <d~(Ve.VeoyT)-2Ve. (d~(V e.VT))-<b*(RicM(VT)),rp*yT>N*1 ,
rvI 1 J 1 J .

(10)

where llicM is the llicci curvature operator of M , llicM(ei) = Rijej .

Für any fixed point p E rvI ,choosing {e.} such that Ve eol = 0 , we make the
1 • J P

1

following calculations

= (V" VJ,) - <V,e>e. ,e. 1 1
1 \

(11)

=(V" (V" V)T)T - <V" V,e>e. - <V,V" e>e.e· e· e. 1 e. 1
I I I I
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= [V" (V" Y - <VII V,e>e)] T - <V" Y,e>e. - <Y,e.>e.e· e. e. e· 1 1 1
1 1 1 1

t!.j/
= <VII VII V,e.~"- 2<Ve" V,e>e. - <V,e.>e..e. e. J.......A . 1 1 1

1 1 1

Noting dtP(e.) = a .e' and the harmonicity a .. = 0 , we have
1 01 0 Oll

dtP(V V y T) = <VII V" V,e.>a .e' - 2<VII Y,e>a .e' - <V,e.>a .e' ,e. e. e. e· J OJ a e· Q1 a I 01 a
I I I 1 1

-2 Ve (dtP(Ve VT)) = -2 Ve «V" V,e.>a .e' - <V,e>a .e').. . e. J oJ 0 01 0
I 1 1 1

= -2<V" Vll V,e.>a .e' + 2<'\7" V,e>a .e'e. e. J oJ a e. oJ a
I 1 J

-2<V" V,e.>a .. e' + 2<V" V,e>a .e' + 2<V,e.>a .e' .e. J OJI 0 e· 01 a I al 0
1 1

Thus, the second variation fonnula reduces to

where

(12)

(13)

(14)

(15)
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+ <V,e.><Y,ek>a ·a k - 2<V" V,e.><Y,ek>a ··a k - <V,e.><V,ek>R..a .a k .
1 Ql 0 ei J OJl () J IJ (}1 ()

(16)

3. ProoC of the main theorem

We now define r = {Y Er(E) I'Y'V = O} ,where r(E) denotes thc veetor spaee

consisting of all smooth seetions of E. Then r is isomorphie to [Rn+l and has a natural

inner produet and I(tP*VT,tP*yT ) is a quadratie form on r. We eompute the traee of

I( ;.VT, (,6*VT) over rand show for a appropriate chosen 0 depending on n the rsult

is negative if ~ is not a eonstant harmonie rnap.

Let {VI ,r=l ,... ,n+l} be an orthonornlal basis oe r. We get

(17)

and

trQ = _<V" V" yf,e.><yr,ek>a .a k + 2<Ve" yf,e><yf,ek>a"'ka"'J'e· e. J aJ a· ~ ~
"I 1 1

(18)
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Lemma 1. 1t holds that

and

(19)

(20)

(r, 8 = 1,... ,n + 1)

Proof. Since {Vr} is orthonromal to each other, we have <Vr,Vs> = Crs .

DiITerentiating it, we get

It follows that (19) holds. Differentiating (21), we get (20).

(21)

q.e.d.

In the following, we transform the bad term -2<V" yr,e.><yr,ek>a .. a k into a
ei J O'JI 0'

form in which the quantities can be estimated.

Noting a .. = a ", we have
O'lJ O'JI
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= -2 Ve {<Ve" yf,e.><Vf,ck>a .a k} + 2<V" V" yf,e.><yf,ek>a .a k. . J 01 0 e. e. J at Q
J 1 J 1

+2<Ve" yf,e.><V" Vf,ek>a .a k - 2n<V" yf,c><yf,ek>a .a k. Je. 01 Q e· Ql a
1 J 1

-2<Vell Vf,e.><yf,e>a .a . + 2<V" yf,e.><yI,ek>a ·a k"
. J tU oJ e· J 01 0 J
1 1

(22)

In the cornputation, since the cornputation is pointwisely done, we can omit the tefms

in which Ve e. appears.
i J

Ey using the Ried identity

V" VII yI = V" V" Vf + R"(e. e. )yfe. e. e. e. J' 1
J 1 1 J

and a .. = 0 , we have
011

2 VII V" yI VI< ,e.>< ,ek>a.a ke· e· J 01 0
J 1

= 2<V" VII yI,e.><VI,ek>a .a k + 2<R"{e.,e.)Vf ,e.><VI,ek>a .a ke. e . J 01 0 J 1 J at 0
1 J
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Now we compute

(23)

From (22)"'(24) and using Stokes formula, we have

=f {2(1-n)<Ve" Vr,e><Vr,ek>a .a k - 2<Ve
ll VrJe.><Ve" VI,ek>a ·a k

M . 01 0 '. J . aI Q
1 J 1
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= o.

So (28) folIows.

Noting (3) and Rij = <R(ek,ei)ej'ek> , we get (29).

q.e.d.

Concerning the second derivatives of V r , we have

Lemma 3. It holds at each point p that

_<V" VII Vr e.><yr e >a.a = V" yj V" yk>a .a (30)
e. e. 'J 'k oJ ak e.' e. oJ ak '

1 1 1 1

(31)

where R is the scalar curvature of M .

Proaf. Choose an orthonormal basis {Vr} as in Lemma 2. Letting t = i J r = k

and s = j and then multiplying a .a k and summing over the indices, we get
OJ 0

(32)

Thus
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(25)

Since the trace of Q is independent of the choice of an orthonormal basis for each

fibre of E and the computation is pointwisely done, at each point p E M we can choose

an orthonormal basis {yl, ... ,yn,Vn+ 1} such that yi = e
i

' i = l, ... ,n , and yn+l = e

at thc point p, Thus we have

Lemma 2. It holds at each point p that

r r<y ,e.><y ,ek>R..a .a k = R..a ·a "
J IJ 01 0 IJ 01 oJ

<R"(e.,e.)yr,e.><yr,ek>a .a k = R·ka .a k - (n-l)e(ifJ) .J I J (ll 0 I 01 0"

(26)

(27) .

(28)

(29)

Prooe. Choose orthornormal basis {yr} as above. (26) and (27) are obvious.

Letting r = k and s = j in (19), at the point p) we get <V~.vk,e/ =-<V~.vj,ek> .
1 1

Thus we get

VII Vr Vr VII Vk
< ,e.>< ,ek>a.a k' = < ,e.>a .a k'e· J (U 0" J e. J 0"1 0" J

1 1

1( VII yk VII yj )= 1"r < ,e.>a .a k' + < ,ek>a .a 'k
~ e i . J 01 a J e i 01 OJ
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VII V" yr yr V" V" yk-< e ,e.>< ,ek>a.a k = -< e e ,e.>a.a k. e. J O'J 0' .. J O'J 0
1 1 1 1

It follows that (30) holds. In a similar way, letting t = r = k , i = 8 = j and

summing over the indices, from the Ricci identity we get

(33)

and (31) !ollows from (33).

q.e.d.

Lemma 4. It holds at each point p that

VII yr yr VII yI VI< e. ,e>< ,ek> = -< e. ,ek>< ,e>.
J J

(34)

Proo!. Since {e1"" ,en,e} is a Iocal orthonormal basis, ~e have <ek,e> = 0 and

<ej,ek> = 6jk ' Le., <Vf,ek><yf,e> = 0 and <yI,ej><Vf,ek> = 0jk' DiITerentiating

the fifst equality, we get

o= Ve.(<Vf,ek><Vf,~»
J

VII Vf VI ~ yI . VI VI"' yI Vr= < ,ek>< ,e> - U'k< ,e>< ,e> + < ,e>< ,ek>e· J e.
J J
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V" VI VI VI' VI VI= < e. ,ek>< ,e> + < e. ,e>< lek>·
J J

Now, we integrate-(18). By rneans of Lenuna 2,3,4 and (25) we get

=f {<V" yj,v" Vk>a.a + 2(3-n)<V" Vr,e >a a.
M e. e· ClJ ok e· k ok ClJ

1 1 J

-2<Ve
ll yr,e.><Vell yI,ek>a .a k + (3-n)<Vell yr,e.><Vr,e>e(~). J . 01 a . J
J 1 J

+ <Vell VI,e,><Vell yr,ek>e(~) + 2<Ve
ll Vr,e.> <Veil yr,ek>a .a k. J k . J . Cll a

J 1 J

+ ~n(n-l)e(~) - kR e(~) + R..a .a . - (2n-3)e( ~)}*l .
~ ~ IJ 01 OJ

Noting (8), we have the following estimations:

q.e.d.

(35)
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Noting that we have llOrlllalizcd the o-pinched Inetric of M , we have

and

2R..a .a . <~(n-l) .
IJ 0'1 0'] - J.;- U

From (36)""(38), we get the estilnation:

(36)

(37)

(38)
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2 2 }+ n -n+2-~ n +3n-6) 6" * 1
2( + (5 )

(39)

We observe that the RHS of (39) is a continous functions of 0 and for any fixed

n ~ 3 its value at 6" = 1 is

because k3(1) = 0 . Thus we cao take

o(n) = inf{j < 0 < 1 s.t. the RHS of (39) is negative} .

Now the main theorem is proved.

Remark 1. Since the values of 0(0) here are actually greater than 0.83. Okayasu's result

holds for these o(n )-pinched Riemannian manifolds too.

Remark 2. Unfortunately, 1im o(n) = 1 , and the pinching constant depends on the
n-im

dimension of the manifold. It seems that there should exist a dimension-independent

pinching constant.
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