Geometric Equimuliiplicity
by

B. Mocnen

Appendix tco the book "EQUIMULTIPLICITY AND BLOWING-UP!
by M. Hewwmann, S. Tkeda, U. Orbanz.

Max=Planck=Institut

fiir Mathematik
Gottfried-Claren-StraBe 26
5300 Bonn 3

MPI/87-59



APPENDIX

GEOMETRIC EQUIMULTIPLICITY



r
R
'
. .
- PR '




INTRODUCTION it vvenssenecanenansonnass O
I. LOCAL COMPLEX ANALYTIC GEOMETRY .. ..c. ittt ininnecnnnnns .
§ 1. Local analytic algebras ........ciieeeenunns e re e
1.1. Formal power series et e s ettt .
1.2. Convergent DOWEL S@ri€S ......i:eiveeenerennnncnsas
1.3. Local analytic k-algebras ......... teeacascasnan
§ 2 Local WeierstraB Theory I: The Division Theorem ......
2.1, Ordering the monomials ........c.tiiirireenensnsne
2.2. Monomial ideals and leitideals ........c0iiiveens
2.3. The Division Theorem .....cicceeveaens e .o
'2.4. Division with respect to an ideal;
standard bases e st ees e e st s eane s et
2.5, Applications of standard bases: the General
WelerstraB Preparation Theorem and the Krull
Intersection Theorem .....iiciiievernecnens ceenas
2.6. The classical WeierstraB Theorems........... e iens
§ 3. Complex spaces and the Equivalence Theorem ...........
J.17. ComPleX SPACES 4 it visisntersosssscassassssssnnnnas”
3.2. Constructions in ¢gpl .........o0innne. crecranone
3.3. The Equivalence Theorem .......ecuiieriercnnncens .
3.4. The analytic spectrum ......ceettetenesnncancnanns
§ 4. Local WeierstraBl Theory II: Finite morphisms ......... .
4,1. Finite morphisms .....ceieeiennnascncaasas cae e
4.2, Welerstral MAPS c.iiiiiieeinetetoeeaaenasnensnnens
4.3. The Finite Mapping Theorem ........¢ ittt eeeenn .
4.4. The Integrality Theorem

S © . CONTENTS

[ R ¢ s JRNNE N R N

15

16 .
17

15-
19
21

.26
29

31
3
33
37



§ 5. Dimension and Nullstellensatz .....¢.veveeene e v e s

5.1. Local dimension .....cceenenerscssancarsssocasans ‘e e
5.2. Active elements and the Attive Lemma .....cccesee .o
5.3. The Rickert Nullstellensatz ........ c et e e
5.4. Analytic sets and local decomposition e eeeeaaena
§ 6. The Local Representatidﬁ Theorem for complex )
spacegerms (Noether narmalization) ...... e eeraees e “o
.1. Openness and dimension ......... e et s et ae e

Geometric interpretation of the local
dimension and of a system of parameters;

algebraic Noether normalization ..... N .o
6.3. The Local Representation Theorem;
geometric Noether normalization .....¢ciccecenn. ‘e
§ 7. Coherence. ..... Gttt er e ot e et e e et eeaa e
7.1. Coherent sheaves ...... et ia e ces e PN
7.2. Nonzerodivisors ....... e e et et a e e .
7.3. Purity of dimension and local decomposition ........ =
7.4, ReducCtion ... itiiireinnetnieanonsonnnan e e
II. GEOMETRIC MULTIPLICITY essoensecnn s e e vt e e te s esseanenn
§ 1. Compact Stein neighbourhocods ............. e eeseaaas “ee
1.1. Coherent sheaves on closed subsets ..... chseenan .
17.2. Stein subsets ...t iieiiiiinann e seses s e s
1.3. Compact Stein subsets and the Flatness Theorem .....
1.4, Existence of compact Stein neighbourhoods .........
§ 2. Local mapping degree ....... e ceeieaeea Ceteeneeaa Cenenae
2.1. Local decomposition revisited ........ci00iivniaen.
2.2. Local mapping degree ......cceeroans cetiesteataaesan
§ 3. Geometric multiplicity .....¢cieiiiininnnn et ces
3.17. The tangent cone ...... et e s s ea sttt
3.2. Multiplicity te s v eeuenn raenasesesednana cresesnnn ..
§ 4. The geometry of Samuel multiplicity ....... Che e

4,1. Degree of a projective variety ..v.vieescccveonansas

4,2, Hilbert functions .....ieieeicecccaranns e e e -
4.3. A generalization ......iciiccnecann ctesee e .
4.4. Samuel multiplicity ....cciiieiininiennan e .o



§ 5. " Algebraic multiplicity ....... teseeceansanaccenr s Y8,
5.1. Algebraic degree ........ A T 98
S.2. Algebraic multiplicity ........ ettt 104
IITI. GEOMETRIC EQUIMULTIPLICITY .. .. cicerreroosanennns eseeenan T
§ 1. Normal flatness and pseudoflatness P S [0
1.1. Generalities from Complex Analytic Geometry ...... 107
1.2. The analytic and projective analytic spectrum .... 111
1.3. Flatness of admissible graded algebras ........... 116

1.4. The normal cone, normal flatness, and
normal pseudo flatness ............ Cree e 119

§ 2. Geometric equimultiplicity along a smooth
S-ubépaé'e‘-r R R R R I R R R T I N Y T I I B ] L S A I R N I I N T TR NN Y Y ] 126
2.1, Zariski equimultiplicCity v.uvv'vervnnerennnnenoenans 127
2.2, The Hironaka-Schickhoff Theorem ................. 130

§ 3. Geometric equimultiplicity along a general
subspace e e e et st e urrmarseaneesanan 155
3.1. Zariski equimultiplicity .....ceveeeeenn. Ceeeceas 156

3.2. Normal pseudoflatness ......... Ch et eseaa ce e 157



-3 -

INTRODUCTION

The idea of a complex space emerged slowly over the decades as a na-
tural generalization of the idea of a Riemann surface and.its higher
dimensional analogues, the complex manifolds. As in the classical theory
of holomorphic functions of one variable, complex spaces arise in the
.attempt to understand holomorphic functions of several variables by
constructing their natural home, "das analytische Gebilde", i.e. the
maximal natural domain of definition. The nonuniformizable points, now-~
adays called singularities, caused great conceptual difficulties, so
that a satisfactory definition had to wait until the 50's of this
century when it was given by Behnke and Stein and, somewhat later in
some greater generality, by Cartan and Serre. Subsequently it became
clear that if one wants to gain a deeper understanding of complex
manifolds, even of curves, complex spaces with nilpotents in their
structure sheaf inevitably show up, be it in inductive proofs, or be
it in the construction of such important geometric objects as moduli
spaces of various, sometimes very classical, structures. This step
was taken by Grauert and Grothendieck in the early 60's, who introduced
the now generally accepted definition of, possibly nonreduced, complex
spaces.

Aside from their intricate and important global properties, complex
spaces possess a very rich and interesting local geometry, due to the
presence of singularities. The algebraization of this local geometry
was initiated by WeierstraB, who formulated his famous Preparation
Theorem. Rilickert, in a fundamental paper of 1931, was the first to use
systematically algebraic tools in the local theory, and the consequent
use of local algebra was further systematized in the Cartan Seminer of
1960/61, and Abhyankar's book of 1964 on local analytic geometry. It
then became clear that the local geometry of complex spaces and the
algebraic structure of the corresponding local rings are completely
equivalent. In this way, then, algebraic statements within the category.
of local analytic algebras (i.e. guotients of convergent power series
algebras) have an equivalent geometric interpretation which can be
systematically exploited. Conversely, geometric considerations may pro-
vide particular insights and suggest natural algebraic statements which
possibly would not have shown up easily within a pure algebraic con-
text. It is this interplay between algebra and geometry which makes
local analytic algebras a particularly intersting category, and a
"testing ground" for conjectures and concepts in local algebra.
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This Appendix sets out to give an introduction to Local Complex Ana-
lytic Geometry, to give the geometric interpretation of some fundamental
algebraic concepts as dimension, system of parameters, multiplicity,
and finally to explore to some extent the geometric meaniné of the equi-
multiplicity results of @9} , [_7’71 , and E/'B-l .

-

I now give a guick overview over the contents and intentions of the
three parts;more details are provided in the introductory remarks of
the various parts and their paragraphs.

In Part I, my intention was to give a rapid introduction to the local
theory of complex spaces, but at the same time to maintain the contra-
dictory principle of giving all main lines of thought, in order not to
discourage the nonspecialist by refering constantly to a labyrinthic and
sanetimes extremely . -~  technical literature. The main results are the
Equivalence Thébrem 3.3.3, which establishes the equivalence of the
algebraic and geometric viewpoint; and the Local Representation Theorem
6.3.1.This local description of a complex space as a branched cover,
which was, in principle,known to WeierstraB,lies at the heart of alge-
braization of the analytic theory, expressing the fact that any complex
spacegerm gives rise to a "relative algebraic situation" over a smooth
germ. This geometric situation is the local analogue of the Noether
Normalization and contains the notions of dimension, system of parame-
ters, and multiplicity, in its geometry. Technically, I have tried to
emphasize two points. Firstly, I have made constant use of the General
Division Theorem of Grauert-Hironaka from the beginning. From my point
of view, it is a natural and systematic procedure which classifies many
technical points. Moreover, it 1is basic for Hironaka's resolution of
complex space singularities (see III, 1.3.5) and its effective algo-
rithmic character may someday point the way to an explicit resolution
procedure. (Presently, at least, it provides an effective algorithm
for computing standard bases, and so Hilbert functions and tangent
cones, see I, 2.4.4) Secondly, following Grothendieck's treatment in
[64], I have postponed the introduction of coherence to the point where
it really becomes indispensible; since, in the complex analytic case,
coherence is a deep and not at all obvious property, it should be used
only for the proof of those results which depend crucially on it (in
our case, the property that openness of a finite map at a point implies
the map being open near that point). Large parts of the exposition are
taken from [28], and I refer to it and [40],[64] for complete details.
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In Part II, I expose the geometric theory of local multiplicity as

a local mapping degree; for more historical and geometrical background

I refer to the introductory remarks to that Part. The main technical
concept,introduced in § 1, is that of a compact Stein neighbourhood.
This concept allows to relate properties of nearby analytic local rings
of a complex space to one unifying algebraic object, the coordinate

ring of a compact Stein neighbourhood. This gives a systematic way of
deducing local properties of complex spaces from results of local alge-
bra, and vice versa. Here, coherence enters in a fundamental way, and
it'is.via coherence and the Equivalence Theorem I 3.3.3 that local, not -
only punctual, properties of complex spaces can be deduced by doing
local algebra. This technique seems to have originated in [33], and has
been exploited by various authors to deduce results in Complex Analytic
Geometry from corresponding results in Algebraic Geometry, starting with
(4]; see [S5], [29], [38], and [63] .Here, I have simplified the treat-
‘ment by dropping the requirement of semianalyticity for the compact
Stein neighbourhoods, thus avoiding the highly nontrivial stratification
theory of semianalytic sets. '

Part III, finally, deals with the geometric theory of equimultiplici-
ty, and forms the central part of the Appendix. It also gives various
instances of the method of compact Stein neighbourhoods. In § 1, we
deduce properties of normal flatness in the complex analytic case from
the algebraic case; in § 2 we give a geometric proof of the equivalence
of the condit%sns e(R) = e(Rp) and - ht{p) = s(p) of Chapter IV,

Theorem (20.9); and in § 3, finally, we turn this principle around and
establish the¥%ﬁometric contents of equimultiplicity via Theorem (20.5)
of Chapter IV. Further, bearing in mind the title of a well-known paper
by Lipman [49] I have made comments on the connections with, and the
geometric significance of, the algebraic notions of redﬁction and inte-
gral dependence. The underlying fundamental geometric principle, which
unifies equimultiplicity, reduction, and integral dependence, is the
notion of transversality (this is a basic principle in the work of
Teissier {69]); this becomes particularly clear from the geometric des-
cription of multiplicity as the mapping degree of a projection (see

the introductory remarks to III, III § 2, and III § 3 below).

On one hand, this Appendix was intended to give an ovérview of the
geometric significance of equimultiplicity and not to be a full detailed
treatment. On the other hand, I felt that it would have been of little
value just to state the results without providing some insights into
the machinery producing them, especially as there seems to be some

¥) this is Satz 2 of | 77] ™ this is basically Theorem 4 of §2 in 49]

L PN
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interest on the side of algebraists to become more acquainted with
complex-analytic methods. In connection with the confinements of space,
time, and perseverance of the auther, there results that the prsenta-
tion oscillates between rigoﬁr and loose writing, a dilemma I have
been unable to solve. I can only offer my apologies and hope that those
who approve of the one and disapprove of the other will appreciate
seeing their approvals met instead of complaining about seeing their
disapprovals aroused.

Concerning the notation, local rings are usually denoted R etc.
instead of (R,m) . The maximal ideal of R etc. is then denoted by
L and its nilradical by ne - The notation moo neEN , refers
specially to the maximal ideal of kizT,...,zn} . If (X,OX) is a
complex space, mx'x or m_ ., denotes the maximal ideal of OX’x '
and Nx,x ; Or Nx , its nilradical. References within this Appendix
usually are by full address; II 5.2.1 for instance refers to 5.2.1 of
Part II. When they are made within one Part, the corresponding numbers
I, II, IIT are suppressed. Numbers in brackets refer to formulas;

I (2.3.1) for instance means the formula numbered (2.3.1) in Part I.

I wish to take the opportunity to express my profound indebtness to
Professor Manfred Herrmann for the suggestion to include this work as
a part of the book. I thank him, and 0. Villamayor, for the interest
they took in this wo;k and for numerous hours of discussion, which
saved me from error more than once. It goes without saying that all
the remaining errors and misconceptions are entirely within the author's
responsibility. I further express may gratitude to the Max-Planck-
Institut fir Mathematik and its director, Professor F. Hirzebruch, to
be able to work in a stimulating atmosphere, and for financial support.
Finally, I thank Mrs. Pearce for her skilful typing and for the
patience with which she bore many hours of extra work and the ever-
lasting threat of possible changes.
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I. LOCAL COMPLEX ANALYTIC GEOMETRY

In this chapter I give an overview over the basic facts of the local
theory of complex analytic spaces. The main references are the Cartan
seminar [64], especially the exposés 9-11, 13 -14 of Grothendieck and
18 - 21 of Houzel, and the excellent book [28]. For further information,
one can also consult the book (40]. )

The main results are the Equivalence Theorem 3.3.3, which establi-
shes the equivalence of the category of local analytic algebras and
the category of complex space germs, the Integrality Theorem 4.4.1.,
which characterizes finiteness geometrically and algebraically, and,
finally, the Local Representation Theorem 6.3.1., which is a local
analogue of Noether normalization. It allows to represent a complex
space germ locally as a branched cover of an affine space,and this
-gives the geometric interpretation of the dimension and of a system
of parameters of the corresponding local ring. Moreover, this setup
will be fundamental for the description of the multiplicity of this
local ring in the next chapter. ’

§ 1. Local analytic algebras

In this section, I describe the category la of local analytic al-
gebras, which will be basic to all what follows. Its objects, the
local analytic algebras, are the algebraic counterparts to the geometric
objects formed by the germs of analytic spaces, or singularities, which
will be introduced in § 3.

In what follows, Ik denotes any complete valued field. Proofs are
mostly sketched, or omitted. For details I refer to (26], Kapitel 1,
§ 0-1; [(40], and § 21.

1.1. Formal power series

I assume known the notion of a formal power series in n indeter-

minates XyreoerX - They form a ring denoted D(HX1,...,Xn]], or

kIx]] if n is understood. I use the multiindex notation; a monomial
T n

x} ...x> will be denoted x® with A= (a',...,A") en". Let

Min) gk [x]] be the space of monomials; then



(1.1.1) log : M(n) > WO
XA > A
induces an isomorphism (M(n),-,xo) —_> (IN§,+,O) of monoids which I

will freely use; in this way, one may view monomials as lattice points
in ®R" , and divisibility properties of monomials turn into combinato-
rial properties of lattice points. This interplay between algebra and
combinatorics will be guite crucial in establishing in § 2 fundamental
properties of power series rings such as the Division Theorem, the

noetherian property, or the Krull Intersection Theorem.
In the multiindex notation, |A] := E Aj , so that |XA|

3=1
the usual degree. Formal power series will be written as

:= |A] is

£ = MEE{(n)fM M = AEZ]Nn £,x" , with £,,f €Kk . We define
(1.1.2) supp (£) := {MEM(n)IfM # o} ,

the support of £f , and

(1.1.3) v(f) := min{|M| |M€ supp’(f)}

the order or subdegree of £ . We will make use of the following pro-
perties of k Hx1,...,xnn :

Proposition 1.1.1.

(1) B{HX1,...,XnH is a commutative ring with unit, and in fact
a k-algebra.
(ii) fe x{(x]] is a unit if and only if fO 0
(1ii) 3<Hx1,...,xnn is a local ring with maximal ideal
moos= (E[vIE) 21) = (X ,...,X ) KX, ... X 1]
(1v) Vke N : R: = (£|v(£) 2k} ; especially
n s = (0)

k=0
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These properties are elementary. (i) is clear. For (ii), note that,
when f := 1-u1u with wv{u) z1 , Z ul  exists in k[(x]] . Finally,
3=0

if £ has v(f) 2k , it can be written as
(1.1.4) £ = mee ™ ™M gk
MEM (n)
M| =k
with the supp(M-f(M)) pairwise disjoint (this will be systematized
later on in the Division Algorithm 2.3.7.). This shows that
{£|v(f) 2k} c (x1,...,xn)k , which implies, together with.(ii), the

statements (iii) and (iv).

1.2, Convergent power series

Let A" be the affine n-space over 1k . A polyradius p is an
1 n n 1
p=(p ,...,p ) E(R

‘ )" , and if 1z, = (io,...,zn
point in A" , the set

0

element ) is a

>0 0

(1.2-1} P(zo;p) ::{ZE An] Y18isn :

zi—zé ]< pi}

is called the polycylinder around Z of (poly-)radius p

Proposition 1.2.1. For a formal power series fe€ Xk [[X]] , the follo-

wing properties are equivalent:

(i) 3 a polyradius p€ (R_,)" such that the family (fAzA)

0 A€IN

is summable in Xk for =z €P(0;p) .

(ii) 3 " a polyradius p € (IR)O)n such that
' A
(1.2.2) HEN := 1 €, ]p" <o
| P aem” A
(1ii) 3 constants C,NEEE2>0 such that
(1.2.3) £, | sconl?l

for all A€W .

n
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Moreover, in these cases there is the "Cauchv estimate"

(1.2.4) |fA[Si|f[|o'p-A for all A€ N"

Definition 1.2.2. A formal power series f € k[X]] satisfying one of

the properties of Proposition 1.2.1. is called a convergent power series.

The convergent power series form a commutative, unitary ring and a
Xk -algebra, denoted X ({X,,...,X } , or Xk ({X} for short.

The "norm” || ||p defined in (1.2.2) is the main technical tool in
manipulating convergent power series. Introduce the following subalge-
bras, for p¢€ (El)o)n , of Xk {X} :
ki{x}, := {£€ &UX) | [J£]] < =}

That these are in fact subalgebras follows from

’

Proposition 1.2.4. Ec{x}p is a k -Banach-algebra with norm |||lp

and has no zerodivisors.

The proof uses the Cauchy estimate (1.2.4).

We now.find the units of k{Xx} :

Lemma 1.2.5. For fe€k{X} , lim ||£}]  =|E,| .
P 0
p>0
. n
Proof. Write, as in (1.1.4), £ = £ + ) Xjfj with the supp(xjfj)
. j=1
n
disjoint, then ||f||p =|f0|+j£

03 Hfjilp » whence the claim.
1

Hence, if. f = 1-u with v{u) 21 , Hu]|p<1 for suitable p , and
SO ) ul  in fact exists not only in XkI{[X]] but in Xk {X} because
J=0

of Proposition 1.2.4. This proves

Proposition 1.2.6. f€ k{X} is a unit if and only if £, 7 0 .

Corollary 1.2.7. Xk {X} is a local ring with maximal ideal’

m_ o= (x1,...,xn)- k{X}.
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Proof. Xk {X} is local by Proposition 1.2.6, with maximal ideal
m_:= ﬁnrmn<[x} . By the proof of Lemma 1.2.5 we may write fe€m_  as
n “
£ = ] £.X. with [{|£f]]_ = Z J||f which shows the ‘f. are in
521 373 P42y J
k{xX} .
Finally, reasonings analoguous to those above show the following lemma.
| k k
Lemma 1.2.8. mo = {fex (X} |v(f)y 2k} = (X1""’Xn) +k {x}
>k
Corollary 1.2.9. nm- = {0}
k=0 "

1.3. Local analytic algebras

We are now in a position to describe the category la/k of local
.analytic Ik -algebras. The proofs are sketched, for morg_agiails see
[26] or [40]; they are more or less straigthforward with the notations
~and results of 1.1. and 1.2..

The following definition makes sense because of Corollary 1.2.7.

Definition 1.3.1. Let R be a k-algebra. R 1is called a local
analytic k -algebra if and only if R is isomorphic to a gquotient
algebra Bc{x1,...,xn}/I , where Ig;ﬂ({x1,...,xn} is a finitely

generated ideal.

The assumption on I being finitely generated is in fact superfluous
due to the following famous theorem.

Theorem 1.3.2 (Rlickert Basissatz). A local analytic k -algebra is
noetherian.

This is a nontrivial result. I will give a proof in 2.4. which makes
it clear that this property comes from a combinatorial property of the
monomials which puts the noetherianness of k{X], k[X]] and Xk {X}
on an equal footing. ("Dickson's Lemma"; see Proposition 2.2.1).

Here, we assume Theorem 1.3.2.

The local analytic Xk -algebras with the local k -algebra homomorphims

form a category which I will call la/Xk . The following remark is
sometimes useful:
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Remark 1.3.3 (Serre). Any X -algebra homomorphism of local Ik -algebras
is local.

The proof is simple and left to the reader.

The following theorem is the main result of this section; it charac-
terizes the convergent power series in la/Xk

Theorem 1.3.4. The algebras H<{X1,...,Xn} are free objects in la/Xk .

In other words, given a local analytic k -algebra R and n ele-
ments fT""'an LI there is a unique Xk -algebra homomorphism

© : nc{x1,...,xn} ——> R with w(xj) = fj for j = 1,...,n .

This property will be an essential step in the proof of the Equivalence
Theorem 3.3.3; see Proposition 3.3.1. ‘

Sketch of proof of 1.3.4.

For existence we may assume R = Bc{U1,...,Um} is a convergent power
series ring. Let f1,...pﬁ1€mR be given. Write gE]k{XT,...,Xn} as
(1.3.1) g= 1 Iy ,

k=0

where the g, are homogeneous polynomials of degree k . Then

gk(f1""'fn) is a f:rmal power series with v(qk(f1,...,fn)) 2k , and
so g(f1,...,f ) := ) g, (f£,,...,f ) 1is a well-defined formal power
n k=0 k' "1 n
series. If then O'E(IR>0)n is such that Hg|h7<w , there is a
m . .
PE(R )7 with “g(f1""'fn)|lp s ||g||(J ; this follows from Lemma

1.2.5. So g(f1,...,fn) EIk{U}pslk{U} , and we put o(g) :=g(f1,...,fn).

For uniqueness assume ¢,y : k {X} —> R are such that
@(xj) = w(xj) ,1$3js&n . Then, with the notation (1.3.1),
(o-¢) (g) = (w—w)( Z gk) for all g€k {X} and p€N . By Lemma 1.2.8.,
oo k=p ) oo
Z gkezmg , so  {p-y)(g) e n mg , but n nf = {0} because of Theorem
= — R
k=p P=0 p=0

1.3.2. and the Krull Intersection Theorem (see Theorem 2.4.5, or [1],
10.19).
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§ 2. Local Weierstrass Theory I: The Division Theorem.

The classical Weierstrass Preparation and Division Theorem lie at
the foundation of local analytic geometry and are the most basic and
important results of the theory. In their classical appearance, their
use in proofs requires always induction on the dimension, which makes
sometimes these proofs appear not véry transparent. A more natural
statement of the Division Theorem has been found independently by
Grauert [23] and Hironaka [35], the main point being to divide a power
series not by a single other one,but by several others at the same
time. This is also related to the construction of standard bases, i.e.
computing equations of tangent cones (for which by now an effective
algorithm exists), and seems also to be of crucial importance in
Hironaka's desingularization theory, since it allows to put generators
of an ideal of power series into a canonical form. I will sketch a
proof here which I think is the most simple one and clearly exhibits
that' it is based on a manifest division algorithm suggested by the
usual euclidean algeorithm for polynomials in one Gariable, the sole
difference being that one divides with respect to ascending monomial
degree instead of descending degree. See also [8],[18]1-{21], and [62]

In this section, k<X > will stand either for I[[X]] or Xk {X}

2.1. Ordering the monomials.

Usually, in order to prove noetherianness of power series rings,
or the Weierstrass theorems, one uses the valuation on power series
given by the subdegree v € N (1.1.3). The crucial idea of getting a
refined division theorem is to manipulate power series by using the
finer valuétion given by the monomial degree log(M) = AeN® for
M = xA . For this, one has to choose an ordering on the monomials, or,
equivalently (because of (1.1.1)) on the monoid .N" . The idea of
putting an order on the monomials appears for the first time in a
famous paper of Macaulay ([(52], p. 533). We require that this order
is compatible with the monoid structure. Nevertheless, there are quite
a lot of orders fulfilling these requirements; they have been classi-
fied by Robbiano [58] and, in fact, there are infinitely many. We will

temporarily work with the following one.

Definition 2.1.1. The lexicographic degree order on M(n) is defined

as fqllows:
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(2.1.0) xR <xB if and only if

either |{A] < |B| ,
or |a| =|B|, and the last nonzero coordinate of

of A-B is negative.

It has the properties

(2.1.1) (1) 1<M for all M€ (n) ;
(11) M<M'=» MN<M'N for all N ;
(1ii) < 1is a well-ordering.

Definition 2.1.2. For £ € Xk[[X]]

’

LM(f) := min(supp(£f}) € M(n) U {«}
.is called the leitmonomial of f , with the convention LM{0) = =
Recall that £ € k[[X]] has a unigque decomposition £ = ) £,
k=v (£f)
with ka:DcﬂX]] homogeneous of degree k ; fv(f) =: L(f) =: in(f)

is called the leitform or initial form of £.. The following properties

are immediate from the definitions:

(2.1.2) (1) LM(f) = LM(L(f)) , and so |LM(£)| = v(f) ;

(ii) LM(f+g) 2 Min(LM(£f) ,LM(g)} , with equality holding
when LM(f) # LM(g) ;

(1i1) LM(f-g) = LM(f)-LM(g) .

2.2. Monomial ideals and leitideals

A monomial ideal I<£k<X> 1is defined to be an ideal generated by
monomials. The following lies at the heart of the noetherian property
of Xk ([xX], Xx[x]] , and Ik {X!}

Proposition 2.2.1 ("Dickson's Lemma"), A monomial ideal is finitely

generated. A canonical basis consists of those monomials which are minimal

with respect to the divisibility relation.

For this, introduce the "stairs of I", E(I} , for a monomial ideal I:
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E(I) := {AE]ND} XAEI} (see Fig. 1)

E{I) is translation invariant: E(I)-+Iflg E(I}) . In 1913, Dickscn

studied numbcrs with only finitely many given prime factors and
proved ([11]):

2.2.2. E:gimn is translation invariant if and only if E can be

written as

k n
e e o (a2
.- k
=1
for some AjEZRfl, 3 =1,...,k . These Aj are unique up to permu-

tation when they are taken as the minimal elements of E with respect
n

to the partial orders A <B :e=>V1 S$jsn : al g’ on N

Lococking at Figure 1, this is intuitively clear, since when approa-
ching the coordinate hyperplanes the steps of the stairs decrease by in-
tegral amounts in the coordinate directions, which can happen only
finitely many times. The precise proof is left to the reader. This
result proves Proposition 2.2.1.

VN VIV A= (1,0,1
.I;'(>§3 )(1 ,><1?§3 >%2) | | 2

Fig. 1
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If I is monomial, f € k<X > belongs to I 1if and only if all

M€ supp(f) belong to I ; this is analogous to the fact that a poly-
nomial belongs to a homogeneocus ideal if and only if all its homoge-
neous components belong to it. The crucial property of moﬁomial ideals
is now that membership of a monomial is effectively decidable if ge-
nerators are known, since a monomial belongs to it if and only if it
is divisible by the generators. But testing the divisibility of
monomials is a simple effective operation; this operation will be put

to work in the Division Algorithm 2.3.1. below. One therefore associates
to any ideal I a monomial ideal LM(I)

Definition 2.2.3. Let Ick<X> be an ldeal. The monomial ideal

LM(I) := ideal generated by the LM(f) for feTI

is called the leitideal of I

LM(I) reflects many properties of I . For instance, a famous re-
sult of [52 ] is that, if I is homogenecus, the Hilbert function
H(I,t) of I equals H{M{I),t) , and we will see in Section 2.4
that a base of an ideal I whose leitmonomials generate M(I) has
special pleasant properties and allows to deduce in an elegant way

various facts about ideals in the rings k<« Xx>; see 2.4.3, 2.4.4. ,
and 2.5.2.

2.3. The Division Theorem

In order to give some motivation for the Division Theorem, consider
the problem of finding a finite basis for an ideal I . The idea of how

to obtain a finite basis is as follows: By Dickson's Lemma there are

finitely many f1,...,ka I such that the LM(f1),...,LM(fk) generate
LM(I) . Given f€I , we then may write
(2.3.1) () = o/ Pmieh) « o+ g PmuES)

(0) (0)
k

for some P N ; note this step is constructive. We regard

this as the 0-th approximation to a wanted equation
2.3.2 = g.f
( | ) £=g,f + ...+ gf .

For the first approximation, we form
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(2.3.3) AL f._<g§0)f1 . géO)fk)

and iterate the step (2.3.1) with f replaced by ;f(1)
= § 9P e (2.3.2) (which
actually converge).This process is constructive when the £3  are

. Continuing
this way, we get formal solutions g

given, and so it is feasible to call it an algorithm. The development
of this idea leads to the Division Algorithm.2.3.1, which technically
proceeds a little differently. Of course, this is only one aspect of
the Division Algorithm, and its full power can only be seen from the

consequences to which it will lead.

. A,

We begin with elements f1,...,fkfiﬂ<<X:> . Let LM(fj) = x J '
j=1,...,k , and fix the ordering (A1,A2,...,Ak) of the Aj
Definition 2.3.1. Let f1,...,fh'€Ik<X>. The Division Algorithm with
respect to (f1,...,fk) is defined by the following recursion scheme:
Start: For f e Xk<X> put
(2.3.4) (1) vVisjsk : gjg—” := 0, h(-” = 0,

(1i) g0 .o ¢
Recursion: Let g§04)’_..'gip-1)’ h(p-1),f(p) _be defined for 0sSp sSq.
Then put
a a
{2.3.5) f(q) =: g(ﬁ)-x L ce. * giq}jx k +h(q) ’

where the g;q) ;3 1,...,k and h(q) are defined uniquely by the
requirements

A.
(2.3.6) (1) supp(ggq)-x J) and supp(h(q)) are pairwise dis-
’ joint for 1sjsn ;

A.
(i1) if x°¢ supp(ggq)x ) , B isinno A, +N" where
Ai precedes Aj in the given order. (In other words, one
first collects all Mg supp(f(q)) divisible by

A
X ' to obtain g:q) , then those divisible by X

to obtain géq) , and so on.)

A,

Finally, put
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(2.3.7) gl L g@ gl L gl @k )

A A
g{q)(x ey s s gfq)(x k_gXy

From (2.3.7), it is easy to see that, because of (2.1.2), one gets

Ca strictly increasing sequence
(£ ey <@y <« ...,

which implies that, for 1s$3jsn ,

_ (q)
(2.3.8) g, = ) g.
3 g=0 3
and
(2.3.9) h o:= § n9@)
g=0

exist in k[[X]] , and so
(2.3.10) £ = g1f + ... * gkf' + h

holds in k([{X]] , with the gj and h uniquely determined by
(2.3.6).

The miracle which now happens is that, if f€ Xk {X} , the ‘gj and
h are also in Xk {X} , and (2.3.10) ‘'holds in Kk {x} . I will just
collect together the necessary estimates and leave the details, which
are elementary after all, to the reader.

(i) . The conditions (2.3.6) guarantee , because of (2.3.5):

A A
.31 gl o T e lgf@ o e (@ <y D)

for all g and p , and so, fixing some p

=A
(2.3.12)  viszsk: fo Pl s ety e

' (gq) (q)
and e e @y

for all g
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(ii). Because of (2.3.7), (2.3.12) implies
A -A A -A
1 k
(2.3.03) eI s (hx =g e Tel e lix RegK) oK) et
P P P P
for all g .

The crucial point is now that the expression in brackets can be made
n

Po € (R )

and A€ (0,7) arbitrary. This is a tedious, but elementary point which

smaller then a given €  for op = Apo , wWhere is suitable,

the reader should try to convince himself of; trouble is caused by those
monomials of fj which are different from XAj but have the same
degree. It depends on thg.fact that all monomials in supp(XAj—fj) are
strictly greater then X J , and on the lexicographic order(see [23],
pO€ (IR>0
get from (2.3.11), by summing over g and using (2.3.13):

Satz 2. ). Hence, choosing ¢ € (0,1) and )n suitably we

' A, A, ’
(2.3.94) Jlgllye e eee e Bayll o K ellnll, st i1,
for all p = Apo s A€ (0,1) TR , which gives the desired estimates on
the ||gj||p and ||h||p to ensure 95 y,hek{X} , 1sjsn

This establishes the Division Algorithm with respect to the lexico-
graphic degree order. There are, however, further important orders

which arise, more generally, from a strictly positive linear form

A2 RD > IR
(2.3.15) n -
(x1,...,xn) > 2 kixj '
i=1 -
with )\1,...,An€IR>0 ;, by defining
A B . e '
X" <, X" if and only if either A(A) <A(B) or

A(A) = A(B) and the last nonzero coordinate

of A-B 1is negative.

Call such an order a linear order. It again defines, for f€ k<Xx>,

a leitmonomial which I denote by LMA(f) , or LM(f) if A 1is under-
stood. With these leitmonomials, one can again set up the Division
Algorithm 2.3.1. To arrive at the estimates (2.3.12) and (2.3.13), one
changes the definition of ||||Q to



A{Rn)
HE = ) lEule
oA aem” A
AA A_aP
. Aay _ 1.71 n, n . . .
with o = (p ) .o (p) ; this norm clearly is equivalent to
the former norm ||||p defined by (1.2.2). One gets again the estimates
A, tA(AL)
(2.3.12) and (2.3.13), with p ] replaced by p J , and the con-

clusion that the bracket in (2.3.13) can be made arbitrarily small still

holds.
Finally, one may even allow positive linear forms, i.e. with Ai.EIRao '
since a generic small perturbation of the Ai defines a strictly positive

linear form with the same division algorithm. Summing up one gets

Theorem 2.3.,2 (The Division Theorem, or:-"Weierstrass préparé
"4 la Grauert-Hironaka"). Let A : R —> R  be a positive linear
. A,

form. Let f1,...,fkezn<<x:>, and LMA(fJ) =x J y17$jJsk , be the leit-
monomials with respect to the linear order on M(n}) induced by A
Fix the order (f1,...,fk) of the fj, and put recursively

AO := P ' . _

A, 1= (A +]Nn) __J_l_ﬂ ’ ] =1,.. rk )

J j i<y J
A —-— n— ﬁq
A N =33k 73

Finally, let f € k<X >. Then the following statements hold:

(1) The Division Algorithm 2.3.1. gives a unigque representation

f = g1f + ol F gkfk + h

with g, = ] g.,X I, $jsk , and h= J h x? power series
A — A€x A -

in X{x1].

(ii) If fe€ Xk {X} , then for any e with 0O<e <1 there exists a
neighbourhood basis B of oen” consisting of polycylinders P (0;p)
such that for any P(0;p) € B the estimate '

A(A1) | A(Ak) .
Hagtl, g eerilally a0 < wlinll, o5 = £l 4



- 15 -~

holds. In particular, the gj and h are in I {x}

2.4, Division with respect to an ideal; standard ‘bases

We are now in a position to carry out the suggestions at the be-
ginning of 2.3. and prove the Rickert Basissatz, Theorem 1.3.2. We also
give a proof of the Krull Intersection Theorem.

Let Ick<X> be an ideal. Fix some linear order and choose
f1,...,ka I such that the leitmonomials LM(f1),...,LM(fk) generate

the leitideal LM(I) , which is possible by Dickson's Lemma 2.2.1.

Proposition 2.4.1 (Division with respect to I ). Let f€ k<X>, and
. 1 k
let "I and £

;...,£ €I be as above,

(i) In the representation

given by the Division Theorem 2.3.2, h does not depend on the choice

of f1,...,fk , hence depends only on I , and is called redIf .

(11i) f€I if and only if redIf =0 .
k)

{(iii) {f1,...,f is an ideal base of I

The proof is left to the reader; (i) depernds on the fact that

n°

;llijzﬁ is a disjoint decomposition, and (ii), (iii) are simple
i

consequences.

Because of (iii), the following definiton makes sense:

Definition 2.4.2. Let Iglk<X> . Then {f1,...,fk};]Z is called a
standard base of I (with respect to a given linear ordering of the
monomials) Lif and only if {LM(£'),...,LM(£5)} is a base of LM(I)

Since standard bases exist, we get

Corollary 2.4.3. The rings k<X > are ncoetherian.

This clearly implies Theorem 1.3.2.
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Remark 2.4.4. a) Not every ideal base is a standard base.

b)- If {f1,...,fk} is a standard base, the initial forms

L(f1},...,L(fk) generate the initial ideal L(I) , i.e. the ideal

L(I) having the property that gr, (Ik<X>/I)* k<X>/L(I). In parti-
. n .

cular, L(f1),...,L(fk) define the tangent cone at 0 of

Spec(k<X > / I)

c) If f',...,fk are polynomials defining an ideal Ic<ck<X> ,
there is a constructive procedure for deriving a standard base from
them ‘using the division algorithm, which is based on the fact that

{f1,...,fk}is a standard base if and only if each monomial syzygy of

1,...,fk . Dividing the

the leitmgnomials lifts to a syzygy of £
f := ):gif:L , where the Gqree-r9y run through a generating system of
the monomial syzygies of the leitmonomials, by f1,...,fk and adding
the nonzero remainders leads eventually to a standard base. See [44],
[55] and [62]. An implementation of the élgorithm of [44] is available

on the computer algebra system Macaulay [ 4 ]. This allows the computa-
tion of the Hilbert function of a homogeneous ideal (based on III,

(1.3-4))’ [53]0
d) For Xk [X] one obtains, using maximal monomials instead of minimal
ones, a proof of the Hilbert Basissatz along identical lines. In this

case, a standard base is known as a Grobner base ([3],(44], and [46]).

2.5. Applications of standard bases: The General Weilerstrass

Preparation Theorem and the Krull Intersection theorem.

Any ideal Ic€ k<X> has a canonical standard base with respect to
a given linear order in the following way: By Dickson's Lemma, LM(I)

has a unique base of monomials minimal with respect to divisibility,
A A

x1,...,x 58 say. By Proposition 2.4.1, we have well-defined remainders
A

red X J . we thus obtain

Theorem 2.5.1 (The General Weierstrass Preparation Theorem). Let

IcXk<X> be an ideal, A a linear order on M(n) , .and B;LMA(I)

the canonical base consisting of the minimal elements with respect to

the divisibility relation. Then {QM |QM 1= M-redIM for_deB} is
a standard base of I

We refer to this base as the Welierstrass base of I (with respect
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to the given linear order).

As a further application of the Division Theorem we prove:

Theorem 2.5.2 (Krull Intersection Theorem). If rRela/Xk ,
(o]
nm§={o} .
p=0
Proof. One has to show that, if Ig;ﬂ({x1,...,xn} is any ideal,
N (I+md) =1
n
p=0
1 k @
Choose a standard base {f ,...,f} of I . Let f€ n (I+m§) , and
A, : p=0
let p0 be so large that all the X J o= LM(f]) ,153jsk , have degree

A,
less that Py - Let P2p, . Fix the order {X.j,...,xAk) and then all
A

X with degree XA = p in some orxrder, and apply the Division Algorithm

with respect to f1,...,fk and the XA to f ; so f can be written

£ = g:p)fl el F g}ip)fk + ZA ggp)-xA .
degX =p '
But the Division Algorithm 2.3.1 shows that the g'P) , 1595k , do not
depend on p as soon as p2p, . Hence the remainder ZA gip)oxA
degX =p
does not depend on p and so is in n mp , which is zero by
P2pP

Corollary 1.2.9.

2.6. The classical Weierstrass Theorems.

These are the classical cornerstones of Local Complex Analysis and
direct consequences of the Division Theorem 2.3.2.

We introduce the notation X' := (X1,...,X;*1) , and so X = (X',Xn).
The Weierstrass Division Theorem 2.6.1 (Stickelberger-Spdth; see
the discussion in [26], p. 36). Let f€ k<X> be such that
f(O,Xn) = Xﬁ-u for some integer bz1 and uEEﬂ<<xn> a unit (we

then say £ is regular in Xn of order b.) Then any e€ k<X> can
be uniquely written as
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e = g-£f+h

with g€ k<X> and heg k<X" {xn] of X -degree strictly less than b .

For this, just note that the condition on 'f ensures,after rever-

sing the numbering of the coordinates,the existence of.a positive

linear form A on R" making LMA(f) = Xg ; then apply the Division
Theorem 2.3.2. Uniqueness, i.e. independence of g and h of the
order, comes from the fact that 01 = (O,b)+ZINn ; B =1mn_1x[0,b—1]

do not depend on the choice of order.

Corollary 2.6.2. k<X >/(f) =]k<x'>b as a k<X'>-module.

Hence k<X>/(f) 1is a finite k<X's-module. This fact is the main
reason why Local Complex Analysis is accessible to algebraic methods.
It will be considerably generalized in the sequel to the extent that
any local analytic algebra is finite over a convergent power series
ring (see 6.2.4}), leading in geometric terms to the Local Representation
Theorem 6.3.1, which realizes any analytic space germ as a finite
branched cover of a domain in some number space.

The Weierstrass Preparation Theorem 2.6.3. Let fe€ k<X> be regular

in X~ of order b . Then £ can be uniguely written as

‘where e is unit in k<X > and u:EIk<x'>[Xn] a Weierstrass poly-

nomial, i.e. it is monic with coefficients in m

n=-1
Just apply Theorem 2.5.1. to I = (f) , and with linear order as
above. The fact that the coefficients of w are in = follows

n-1
from comparison of coefficients in the relation Xn-u = e(O,Xn)'w(O,Xn).

§ 3. Complex spaces and the Equivalence Theorem.

From now on, k = € , and Jla := la/C . The standard coordinates on
n
T are denoted ZyreesZ

n

The main result of this section will be Grothendieck's Equivalence
Theorem which states the equivalence of the "algebraic" category of
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local analytic C-algebras and the "geometric" category of complex
analytic spacegerms (or "singularities"), or rather its dual. This
is a local analogue to the equivalence in Algebraic Geometry between
the categories of rings and of affine schemes. Although Qell—known,
proofs are not readily accessible; one is in [64], Expos& 13, and one
in [40]), the latter one, however, makes use of the machinery of co-
herence, which we will, following the viewpoint of Grothendieck ({64],

p- 9 -10) make no unnecessary use of.

3.1. Complex spaces.

Higher dimensional complex manifolds and complex spaces with sing-
ular points arise naturally in the deformation and classification o%
varying complex structures on smooth complex curves. The systematic
construction of these spaces by means of his philosophy of represen-
table functors led Grothendieck to consider nilpotents in the struc-
ture sheaf (see his exposés 7 ~-17 in [64]), and it is only when .
allowing arbitrary nonreduced spaces that phenomena as, for instance
subspaces which have plenty of infinitesimal deformations but no actual
one within the ambient space (corresponding to nonreduced isolated
points of the Hilbert scheme), can be satisfactorily understood.

At the same time Grauert [22], also led by the consideration of
moduli problems, introduced nonreduced complex spaces.

I will assume that the notion of a ringed space is known and just
fix some notation concerning them; full discussions are available in
[28], (311, [40] and (641, Exposs 9.

As usual, a ringed space consists of a topological space X and

a sheaf of (commutative, unitary) rings OX on it and is denoted

(X,OX) , or X , if Ox is understood. We denote the stalk of Ox

at x€X by Ox < and, 1f it is a local ring, its maximal ideal by
r

m,. . A morphism between ringed spaces is a pair

(f,fo) : (X,OX) —_— (Y,OY) , where f : X —> Y 1is continuous and
fO a sheaf morphism'()Y —_> f*Ox ; 1f no confusion is possible, we
also denote the canonical adjoint by f0 : fJOY _— Ox because
Homioy,f*ox)
writing f : X —> Y

Hom(fqu,OX) naturally. Again, we abbreviate by

I further assume the notions of an open subspace and an closed

subspace defined by an ideal Jc<0, which we always will assume to be
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locally finitely generated or, as I will say, locally finite. A sub-

space will always mean a locally closed subspace, i.e. a closed sub-
space of an open subspace. Corresponding to these notions there

are the notions of an open immersion, closed immersion and immersion.

For later use, we note the following simple Lemma:

Lemma 3.1.1. Let (x,OX) be a ringed space, I,JS;OX ideals, and I

locally finite. Then any x € X such that ng;Jx has a neighbourhood
U such that I|uclJ|u

The proof is left to the reader.

We make €' into a ringed space by defining the structure sheaf 0

C
to be the sheaf of germs of holomorphic functions, in other words,
0 (U) := {f£|f : U —> € holomorphic} for any open Ucc” . For any
T
a = (a;,...,a,) € ¢” the stalk 0 n is then canonically isomorphic
T ,a
to the convergent power series ring E{Xj-a1,...1xn—an} , and we will
identify these two rings: in particular, ¢ n = E{X1,...,Xn} . More-
¢ ,0
over, we will identify the indeterminates Xj with the standard co-
ordinate functions Zj on @7 . We can now define complex (analytic)
spaces.
Definition 3.1.2.
(1) (Local model spaces). A local model space is a ringed space
(M,OM} given by the following data:
LN
1) an open set UgC ,
2) elements f1,...,fk'€0 n(U) ("equations") ,
T
in the following way: If I := (f1,,..,fk)-0U , then

M o= supp(UUII)

. o3
{XEUIVTSJS}(. £ €m0 }
T ,x

{er|v1 $jsk : £ (x) = 0}
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and 0, := (0,/1)|M . We then write M = E(n,U,(f1;--.,fk}) or
M= N(n,U,I} ; if Uggmn is understood we simply write
M= Q(f1,...,fk) or M = N(I) , and call it the null space of I .

(ii) (Morphisms of local models)., A morphism between local models

M = N{m,UAf1,...,fK)) and N = N(n,VJg1,...,g2n is a morphism
(f,fo) : (M;OM) —_ (N,ON) induced by a holomorphic map F : U —> V
with the property vi1sjsf : gj oE‘E(f1,...,fk)-OU in the following
waz:
1) £ := F|M ;
2) fo : ON —_ f*OM is induced by the mapping
Fg OV(W) —_> OU(F'1W), gt—> goF, for all open WcV .

(iii) (The Category of complex spaces}. A complex space is a ringed

space which is locally isomorphic to a local medel. A morphism of

~complex spaces,or holomorphic map, is morphism
_(f]fo) : (X,Ox) —_ (Y,OY) of the complex spaces (X,Ox),(Y,OY)

within the category of ringed spaces which locally is isomorphic to a

morphism of local models. This defines the category c¢pl of complex
spaces.

In fact, any morphism between complex spaces within the category

of ringed spaces turns out to be a holomorphic map; see Corollary 3.3.4.

If X 1is a complex space, an open or closed subspace in the cate-
gory of ringed spaces,as defined before, is itself a complex space, and
we can talk about open, closed,or arbitrary subspaces, and of open,

closed, and arbitrary,immersions.

Example 3.1.3. Let X = {x} be a one point space and Acgla be

artinian. Then ({x},A) is a complex space. In fact the converse is
true: any one point complex space arises in this way. This is astoni-
shingly difficult to prove; it is a special case of the Rlickert
Nullstellensatz, and essentially equivalent to it; see § 5.

3.2. Constructions in ¢pl . It should be kept in mind that the

following constructions are categorical; that means that the
spaces and morphisms whose existence is asserted do notft exist only
settheoretically ,but also the sheaves and sheaf maps have to be
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considered, and I urge the reader to convince himself of the details.

a) Glueing. Glueing data for a complex space consist of

(1) a fawmily “(M,,0, ) of local models,
1 M.,
i 1€l
{ii) open subsets Uj_j _g_Mi ; UjigMj and isomorphisms
£i4 (Uij 0Mi)|ul:J —_— (Uji,OMj IUji)

for all 1i,j €I such that the cocycle ldentity

£5x ° Eiy 7 ik

holds for all i,j,k€I

Given glueing data, there is, up to isomorphism, a unique complex space

(X,Ox) which has local models (Mi,OMi)

In a similar way, a morphism (f,fo) : (X’Ox) _ (Y'OY) can be given
by glueing data. which I will not write down explicitely.

b) Intersections. Let X/X'! —> Y be closed complex subspaces

of the complex space Y , defined by the locally finite ideals
I,1'<0, . The intersection XNX' 1is defined to be the largest com-
plex subspace X" <—> Y such that any morphism 2Z —> Y which
factors through X and X' also factors through X" ; it is given by
the locally finite ideal T + I1' ., )

c) Inverse images.. Let £ : X —> Y be a morphism in cpl . If

Z <> Y 1is a complex subspace, the inverse image gy &> X |is

the complex subspace with the universal property that if f' : X' —> X
is in ¢pl and f o f' factors through 2 , £' factors through 2'13
If Z <> Y is a closed complex subspace defined by the locally finite

ideal I,f-1(E)C——> X is defined by £—1I 3= I-OX » the ideal generated

in OX by 1 under fo :f‘10Y —> OX . A special case of this con-
struction are the fibres 5’1(x)<:—> X y€Y, of the morphism £

’

d) Products. In ¢pl , the categorical product
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(3.2.1) X x ¥ -

exists for E,XE'cgl . Locally, it is given as follows:

If U,V are open subsets of number spaces,

Ry . U

y/

(3.2.2) U=

is given by the usual product UxV with the canonical complex
structure, and Py s RXy by the usual projections and, on the sheaf
level, by lifting holomorphic functions via these. If

X = (m,U,(f1,...,fk)) and V = (n,V,(g1,...,g2)) are local models,
. . -1 =1
(3.2.1) is given by b) and c) as X xY := &ru(g)ng_x_'v (X)_ and
pr, := prylX, pr, := pr,|Y ; this means that X xY¥ is the local model

U,...,fk uprU,g1 oprv,...,gz aprv) . In the general

case, cover X and Y by local models, form their products, and use

(m+n,U xv,f1 ° pr

the universal property of the product to obtain glueing data for
{(3.2.1) according to a).

«¢) Diagonals. If Xe€c¢pl , the diagonal éX ——> X 1is the complex

subspace with the property that for any morphism £ : 2 —> X in

cpl , f£xf : Z —> XxX factors uniquely through AX . For a local
model XcU , where U is open in some " , by = (Xx X) Nay »
and éU is the obvious diagonal of U ; for the general case, glue

according to a).

£) Fibre products. In c¢cpl , categorical fibre products exist.

Given f : X —> ¥ ,qg : Y¥Y' —> Y , the cartesian square
X! El > X

(3.2.3) £ £
v v
4 > X
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is defined by putting X' := §.xyxf := ((£opry) ><(9_°E£Y,))“1 (a.)

and £',g' defined by the projections pry,pr : XxY¥Y' —> X,¥!
» Y - = - =

The universal property of the fibre product is implied by the univer-

sal properties of the inverse image and the diagonal.

g) Graph spaces. A special case of f) is the graph space Lf of a

morphism f : X —> Y ; it is defined by the cartesian square

P
I, > X
(3.2.4) g £
\4 v -
¥ _ > ¥ / ‘
14,

and is a complex subspace of X xY . By the universal property of the

fibre product the morphisms ;gx : X—> X and f : X —> Y define
i:= EQX<KY£ : X —> T , and one gets the commutative diagram
i
X = >.1:.f > XX
(3.2.5) £ 1 Ry
N VO
Y ’

where 1 1is an isomorphism, inverse to p . Hence, we have:

Proposition 3.2.1. Any morphism £ : X —> Y is isomorphic to the

restriction of a projection to a complex subspace.

If X and Y are Hausdorff, Lf is a closed complex subspace,

and so idxf : X —> XxY 1is a clcsed immersion with image [. .
The proposition will be important in the study of finite morphisms

in the following paragraphs, since it allows to reduce locally to

the situation of linear projections of number spaces restricted to

closed complex subspaces.
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h) Sugéorts of modules.

Definition 3.2.2. Let X€c¢pl, and M be an Ox-module.uw is called
admissible if and only if it is locally of finite presentation, i.e.
if and only if every x €X has an open neighbourhood such that there
is a short exact sequence

1]
(3.2.6) 0| v 2> 0B |u—> W]y —>0

If M is admissible, the Fitting ideals Fn{M) are defined as

(3.2.7) F (M) | U := ideal generated in OXl U by the
(p~n} x {(p-n}) —minors of the p x g-matrix
given by ¢ in (3.2.6).

A theorem of Fitting [15] implies that the Fn(M) are globally
well-defined. By construction, they are locally finite. We then
define the support of M to be

(3.2.8) supp M := the closed complex subspace of X defined
The underlying topological space of suppM is suppM := {x€X|Mx #0} ;

for this, just tensorize (3.2.6) at x€X with €30, |m_
14

Remark. If Ann{(M) 1is the annihilator ideal of M , then
Fo (M) cAnn (M) g VF M) . The first inclusion is by elementary linear

algebra, whereas the second one lies considerably deeper and follows
from the Riickert Nullstellensatz 5.3.1.

i) 1Image spaces. Let £ : X —> ¥ be a morphism in ¢pl . Then

im(f) = supp(i,Ox) settheoretically, so if f*Ox happens to be an
admissible OY-module, supp(f*ox) has a natural structure as a closed
complex subspace of Y via Fo(f*ox) in view of a). We call this
space the complex image space of f , denoted im(f) or £(X)
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3.3. The Equivalence Theorem.

The Equivalence Theorem asserts the equivalence of the "geometric"
category of complex Space.singularities with the "algebraic" category
of local analytic C-algebras. Its explicit formulation seems to be
due to Grothendieck ([64], Exposé 13).

We begin with describing the morphisms of a complex space X to
gn . If REla , R/mR =T canonically via the augmentation mapping
induced by the C-algebra-structure; hence, if X e€g¢pl , any section

f(SOx(X) defines a function [f] : X —> € wvia
(3.3.1) vxeEX : [f]l(x) := £y modmx

Proposition 3.3.71. If , we get a bijection

I><
m
I
=

n

Hom (x,c™)

cp1 (XL > OX(X)

0 0
£ —> (fx(z1),...,fx(zn))

where fﬁ : (f—10¢n)(x) - omn(m“) —> 0, (X)

Sketch of proof.

(1) Injectivity: Since Z 5 o f = [fo(zj)] , the fo(zj) determine
the settheoretic map £ : X —> €". Now, if §£ ,QEEHong%(g,gg)

have fo(zj) = gO(zj) for 15j3sn , then f =g , and

0 0 _ _ .
fx’gx : Omn . —_— Ox,x , where y := £(x) = g(x) , agree on the Z j
’

for 1s3jsn . But then they agree on 0 n , since
c,

0 =C{z_,...,z2 } 1is a free object in la
n 1 n =

C .,y

o

by Theorem 1.3.4.

(1i) Surjectivity: Let (f1”"’fn)€ OX(X)n be given. First suppose
X 1is a local model space in some open Us;Gn, and the £f£. are in-

J
duced by holomorphic functions Fﬁ : U—> @& for 15jsn . Then

N with

F := (F1""'Fn) : U —> €% induces a morphism £ : X —> C
fo(zj) = fj for 15jsn . In the general case cover X with local

models and glue the local morphisms obtained on the overlaps by
means of (i).
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Definition 3.3.2 (Germs of complex spaces).
(i) A complex spacegerm, or singularity, is a tuple (X,x) with

}(Egg% and x€X

(ii) A morphism of complex spacedgerms , or complex mapgerm, is a

morphism £ : U —> Ve&cpl of an open neighbourhood U of x into

an _open neighbourhood V of y with f(x) =y , where one identifies

those morphisms which coincide after restriction to possibly smaller

neighbourhoods.

The complex space germs with their morphisms form a category, which

I will denote gpl, . If (X,x)€e€cgpl,, and U is any open neighbourhood
of x in X , (X,x) = (U,x) wup to isomorphism in cgl0 , and I will
refer to this as "possibly shrinking X "

There is a canonical contrafunctor

O:cglo > la
mapping (X,x) €¢gply, to 0, =~ and f : (X,x) —> (X,y) to
0 - ’
fx : OY,y —> Ox,x .
Theorem 3.3.3 (The Equivalence Theorem; Grothendieck [64], Exposé 13).
0 : Eglgpp —> la is an equivalence of categories.

Sketch of proof. We have to show two properties:

(1) essential surjectivity on objects: For Re€ la there exists
(X,x) ECQlO with OX,x;R
(11) bijectivity on morphisms:
HOITIC lo((_)_{.rx)f(zlY)) > Hom}é(OY,y'ox,X)
0
f > £
x
is a bijection.
(i): is trivial from the constructions.
(ii): Since the question is local, we may assume, after possibly

shrinking X and Y , that X<—> gg:_gm ¢ Y y_ggn are local models,
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where U and V are open, and x = 0 eq™ , Y = oeg” .

Injectivity: We may assume Y = gn ; the claim then follows from

Proposition 3.3.1.

Surjectivity: Let ¢ : OY y —> Ox < € la be given. By Theorem 1.3.4

there is a commutative diagram

6 —-——-—-- - > 0

0 ™, 0
(3.3.2) €Z>

=

v v

OY,y s > Ox,x
Let (F3). := Y(z5) €0 ;, 18jJsn ; after possibly shrinking U ,

J°0 J @™ 0
we may assume the (Fj)0 have representatives Fj : U —> ¢ , which
together define the holomorphic map
n

F := (Fj,...,Fn) : U —> C .

Let X be defined by gT,...,ngIO m(U) and Y by
C
.h1,...,r#'€O (V) . Define the 0 _-ideals
¢n U
1 h
I = (g ;ooo,g )'OU
B 1 2 .
J == (h0 oF,...,hO F) OU

Then Jogglo because of the commuative diagram (3.3.2). By Lemma

3.1.1. we may therefore assume Jc< 1 . But then F induces a mor-
phism £ : X —> Y by Definition 3.1.2.(ii), and fg==w by construction.

Corollary 3.3.4. ¢pl is a full subcategory of the category lrsp

of spaces locally ringed in C-algebras.

For the same proof as in 3.3.3. shows the injectivity of

Hom ((fo)r(_Y_rY)) —> Hom (OY Io )

gépo la r Y X,x
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Corollary 3.3.5. Morphisms £ X, x) —> (gn,O) correspond one-to-
one to mx—seguences (f1,...,fn) (i.e. sequences (f1,...,fn) with
fj me for 1sjsn). '

Remark 3.3.6. By Corollary 3.3.5, special morphisms of germs should

correspond to m -sequences with special properties. We will see
instances of this principle later on (4.4.2, 6.2.3., 6.3.1.).

3.4 The analytic spectrum.

For later use, we shortly discuss a further application of

Proposition 3.3.1.

Let A Dbe a finitely generated C-algebra. Picking generators
aT,...,an(EA gives an epimorphism

QY E[z1,...,zn] —>> A

Let I be the kernel of ¢ , and IgOn the ideal sheaf generated
. C
by I . 1 defines a closed complex subspace 2Z&—> Qn , and there

is a canonical homomorphism ¢ : A —> OZ(Z) , such that for given
a €A the germ ?;(a)z at a given 2z €2 is the germ induced by

sz 0 n where f 1is any preimage of a under ¢ . We then have the
T,z
following generalization of Proposition 3.3.1.

Proposition 3.4.1. The pair (Z,3) represents the functor
cgloPp —> gets given by X }—> Homggl(g,g) ; in other words, the

canonical map

Homggé(ﬁ,g) > Homm al (A,OX(X))

" f —> fg o T

induces a natural equivalence of functors.

X

Here, £9 is the homomorphism UZ(Z) —_> OX(X) = (f*OX)(Z) given
by the sheaf map fo : 0, —> f*OX .

Z
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The proof of the Proposition is simple,using 3.3.1,and left to the
readexr. For the general formalism of representable functors see [64],

Exposé 11, by Grothendieck.

It follows that the pair (Z2,Z}) is unigue up to unigue isomorphism,
and so the following definition makes sense:

Definition 3.4.2. If A 1is a finitely generated ¢—algebra, the pair

(z,8) , or the complex space 2 alone when ¢ is understood, construc-

ted above 1is called the analvtic spectrum of A and denoted

Specan(A) .

§ 4. Local Weierstrass Theoxy II: Finite morphisms.

Classically finite maps arose naturally by solving systems of

polynomial equations via Kronecker's elimination theory (see e.g. [511);

successively eliminating indeterminates by forming resultants of
polynomials turns some indeterminates into free parameters, which can
be'varied arbitrarily and whose number should be thought of as the di-
mension of the solution variety; the rest of the indeterminates =
become algebraic functions of these parameters. Geometrically, this

amounts to representing the solution variety as a finite branched

cover of an affine space, and'algebraically to the fact that the coor-
dinate ring of the solution variety is a finite integral extension of
a polynomial ring. This is nowadays known as "Noether normalization",

and fairly easy to prove, without using elimination theory.

This picture remains true localiy in the complex analytic case, but
this is much harder to prove. As already mentioned before, the main
reason for the applicability of local algebra to local complex analysis
is the fact that,under the equivalence 3.3.3, finite mapgerms will
correspond to finite, and hence integral, ring extensions of local
analytic algebras,and so a kind of "relative algebraic situation"
emerges, This will be the subject of the main result of this paragraph,
the Integrality Theorem 4.4.1. Fundamental for it is the famous Finite
Mapping Theorem 4.3.1. of Grauert and Remmert; in the proof of it,
the elimination procedure of the algebraic case is mimicked geometri-

cally by a seguence of linear projections along a line.
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4.1. Finite morphisms.

From now on, all topological spaces under consideraticon will be
Hausdorff, locally compact, and paracompact. For general facts of
topology gquoted in the sequel see [7 ] , and also [14].

A continuous map £ : X —> Y of topological spaces is called

proper if the inverse image of a compact subset of Y 1is compact in

X . This is equivalent to the requirement that £ is closed (i.e.

maps closed sets to closed sets) and has compact fibres. A proper map

with finite fibres is called finite, so a map is finite iff it is
closed with finite fibres. Finally, a morphism £ : X —> Y of
complex spaces 1s called finite if the underlying map f : X —> Y

of topological spaces is so. Elementary considerations from topology
show. that any y €Y has a neighbourhood basis consisting of open

neighbourhocods V such that f_1V = l—% U for open neighbourhoods
x€f (y) '

U, of x in X and ijx : U, —> V is finite. Thus, there are

canonical homomorphisms for a sheaf M on X

!

(4.1.1) e+ (E_M) > & M , for all ye€yY ,
y * Y XE f-1(y ) X
induced from M(f—1V)——> e M{u_) wvia s b—> E slUx , and
x€f y) ¥ x€£7U(Y)

one gets:

Theorem 4.1.1. Let f : X —> Y be a finite morphism of complex

spaces. Let Ox-mod and OY-mgg denote the category of Oxﬂmodules

and,OY-modules respectively. Then:

(1) The homomorphisms Ey in (4.1.1) are isomorphisms for all
&{Gox—ggg ;

(11) the functor £, : O, -mod ——>OY-mod is exact.

4.2. Weierstrass maps (see [28]). These are the prototypes of finite

morphisms in local complex analytic geometry and ‘play a prominent réle
in what follows, since any finite morphism locally will embed in a
Weierstrass map. So ultimatively basic properties of finite morphisms

will be proved using Weierstrass maps.
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Let -m(j)E 0 0 [wj] be monic polynomials

c,0
b b.-1
» 1 1 ‘v
(4.2.1) w3 2w 3 % a3 zyw, , 15355k,
J v=0 v J
a\gj) €0 n » and bj21 » for 13j sk . Let Bgﬂtn be a domain con-
c,0 .
taining oec” such that the w(J) have representatives, also
called w(J) , defined on B . We get the closed subspace
A := E(m(1),...,w(k)) > §'xgk , and the projection
Pry E:(Ek —> B defines
(4.2.2) moi=prg|A:A—>B .
We call 7 a Weierstrass map.
Given 2z € B , the equations (4.2.1) have only finitely many solu-
b-1
tions. Moreover, if w = wb + Z av(z)w”’eo n [w] and w(zo,wo) =0 ,
we have the simple estimate v=0 C.0 ‘
b-1
wgl s max(1.v£0|av(zo)|> ,

which shows that the inverse image of a bounded set is bounded. Hence:

Proposition 4.2.1. A Weierstrass map is finite.

Somewhat deeper lies:

Proposition 4.2.2. A Weierstrass map is open.

This is implied by the following easy but very useful consequence
of the Weilerstrass Preparation Theorem:

Lemma 4.2.3 (Hensel's Lemma) .
p P v
Let w := w(z,w) = w + Z a (zyw €0 [w] be a monic polyno-
— v n
v=0 C i)O b
mial of degree bz21 . Let w(0,w) = (w-c1) 1.....(w—cr) T . Then there
exist unique monic polynomials w,,...,w_€0 (w] , degquw, = b. for
1 r G:n,O 3 3j

18jsSr , such that w = w,- ... w

1 r
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For the proof of 4.2.3, one just applies the Preparation Theorem suc-

cessively in the rings ¢ n [w-c1] , 0 n [w—cz] , and so on.

Now the Weierstrass map (4.2.2) clearl§ is open at 0 €A since the
equations (4.2.1) have a solution for any 2z €B , but by llensel's

Lemma thegerm 1w : (A,a) —> (B,w(a)) 1is locally around any a€A a

Weierstrass map, so 7T 1is open at all a€A , and so is open, which

proves Proposition 4.2.2.

4.3. The Finite Mapping Theorem.

The following theorem is the fundamental result in local complex
analytic geometry,and is due to Grauert and Remmert ([24], Satz 27).
Recall the notion of an admissible module (Definition 3.2.2.}).

" Theorem 4.3.1 (The Finite Mapping Theorem). Let f : X —> ¥ be

a finite morphism of complex spaces. Then, if M is an admissible

Ox-module, f.M is an admissible OY-module.

Corollary 4.3.2. If f : X —> Y 1is a finite morphism of complex

spaces, the complex image space im(f) in the sense of 3.2.1i) exists.

This Corollary is an obvious consequence of the Theorem.

The proof of this basic result is done in various steps. The details
are in [28], Chapter 3, but since the full machine of coherence is
employed there, I will give an outline, indicating the minor modifica-

tions which are necessary when not invoking the notion of coherence.

In the first step, one considers the special case where f 1is a
Welerstrass map nm : A —> B . Let the notation be as in 4.2. Let

k b.

:Nn+k = A .u_LlAj be the decomposition given by the monomials wjJ

3=1

according to Theorem 2.3.2; hence

(4.3.1) K=1N“xEO with EO:={Bemklosal<bi for 1515k}.

A
Let OB 0 be the OB-module defined by
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BN B
(4.3.2) 057 (U) := {B[_ £gw | £5€0 n(U)}

EAO C

for UcgB open. There is a natural OB—module homomorphism

0 Ao
(4.3.3) T o OB s n*OA

given as follows: If UcB is open, f wB is defined on

M~

[

0 k(Uxﬂ:k) = ¢ (ﬂ_1U); this defines !
B
Bx(C

-1 restrlctlon> 0

-1
A{w U,

U)

0 0
4.3, .
(4.3.4) Ty 05" (U) >0

Bx(T

and so (4.3.3). The following theorem substantially generalizes
Corollary 2.6.2:

0
Theorem 4.3.3. 7 is an isomorphism of OB—modules.

This in turn is an immediate consequence of the following parametrized

generalization of the Division Theorem:

Theorem 4.3.4 (The Generalized Division Theorem). Let the notation

be as in 4.2. Let y€B , and let, for all xj En"nyﬂ , germs

ijH)n+k be given. Then there exist unigue germs guj €0 n+k ’
m Ixj (E ,Xj
a=1,...,k , and a unique polynomial he€{( n[w1,...,wk] of the
] . T
form h = J K b w® with 0SAT<b., for 1sisk such that for all
—— A —— 1 ——
» AEIN
xje T {y)
(1) (k) )
f. = g,.w + ... + g W + h in 0
3 TRy k3% % ek«

[ 1S

The main point of this theorem is that one h works for all x.
The proof is a formal consequence of the Division Theorem and Hensel's
Lemma 4.2.3., and I refer to [28] for it.

Theorem 4.3.3. is then proved as folloﬁs: By Theorem 4.1.1. (i),

(n*OA) = @ 0 ; SO any element sy of (Tr*OA)y is represented



by a family (fx.)x.E ﬂ-1(y) , fx. €0 n+k Dividing the
J J ] it P X
fx by wi11...,wik) via Theorem 4.3.4 shows there is an unigque
g 9 j
h FOA mapping to s, so (4.3.3) is bijective on stalks,and so
Y B,y Y
bijective by Theorem 4.1.1. (ii).

The second step reduces the general case to the case of a linear

projection. For this, one observes that the statement of Theorem 4.3.

is local in the sense that any x € X has an open neighbourhood U

such that 7|U : U —> 7(U) is again finite, and so we may assume

that X<—> B' , Y~> B , where B' g(!:n and Bgﬂ:k are domains.

One gets a commutative diagram

where the horizontal arrows in the upper row are closed immersions,
the left hand triangle is defined by the graph construction

(3.2.5), and the right hand square is defined by the closed immer-"

sions X&> B' , Y&—> B . Identifying X with its image in B' xB

we may assume we have a commutative diagram

X
z/\_
i~ LU
Y < > B

where m 1is given by the restriction of a linear projection to X

which is‘finite, or, as I will say, where

ﬁection. One now has the following lemma.

is a finite linear pro-

Lemma 4.3.5. Let X €cpl , X}:£¢ X a closed complex subspace, and

M an OY-module. Then M is an admissible OY—module if and only if

i,M is an admissible Ox—module.
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The proof is a simple diagram chase and left to the reader.

This lemma shows that it suffices to prove Theorem 4.3.1 for = .

The last step reduces now everything to the first step. We may
assume that £f 1is a finite linear projection. We may even assume
that k = 1 , for we can factor f successively into a sequence of
projections along lines, and Corollary 4.3.2 and Lemma 4.3.5 reduce

everything to that case.Then choose a nonzero gegd which

™0
vanishes on X near 0 ; after possibly shrinking X and B we
may assume g 1s a Welerstrass polynomial by Theorem 2.6.3. We then

have the commutative triangle
L_._)N
and, again by Lemma 4.3.5, we are reduced to prove Theorem 4.3.1 for

the Weierstrass map 1© . Now let M be an admissible 0,-module; after

shrinking A and B, we may assume there is an exact sequence

q P :
0A > OA 7> M >'0
so there is an exact sequence, since 7, is exact by 4.1.1. (ii):

N9
(H*OA) —> (W*OA)p —> 1 M —> 0 ,

(note 7, commutes with direct sums). But W*OA sog for some b
by Theorem 4.3.3, hence Theorem 4.3.1 follows.

As a corollary of the proof we obtain:

Corollary 4.3.6. Let f : X —> Y be qua51f1nite at x€X (i.e.

X 1is an isolated point of the fibre £ f(x)) . Then x has a neigh-
bourhood U and f(x) a neighbourhood VvV with £(U) =V such that
£]|U : U —> Vv is finite.

The proof is identical with the reduction procedure in the above
proof, reducing it to the case of a Weierstrass map, which is
finite by Proposition 4.2.1.
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4.4, The Integrality Theorem.

Recall the equivalence of categories

0 : gpiP? —> 1a

given by the Equivalence Theorem 3.3.3. We are now in a position to

describe which homomorphisms in la correspond to the finite mapgerms

in CElo , and this will finally allow to describe algebraic invariants
of local analytic algebras in geometric terms of gg;o .

Theorem 4.4.1 (The Integrality Theorem). Let f : (X,x) —> (¥,y)

be a holomorphic mapgerm; recall that by Theorem 3.3.3 this is equi-
valent to having a homomorphism ¢ : 0Y y —> Ox % of local analytic
r ’

algebras. The following statements are equivalent:

(i) f is quasifinite, i.e. x 1is isolated in f-1f(x) for some

(or any) representative of f .

(ii) £ is finite, i.e. some representative of f is a finite

morphism of complex spaces.

(iii) v is gquasifinite, i.e 0 -0 is a finite dimensional

complex vectorspace.

(iv) @ is finite, i.e. 0 is a finite ¢ -module via ¢ .
X,X Y,y :

We can visualize this situation by the following diagram:

(1) £ quasifinite at x ¢TT> (1ii) dlm(tox,x/myox,x'<
A A
v v
(ii) £ finite near x «<==>| (iv) OX finite over ¢
0 /X Y,y

equivalence in cgl0 equivalence in la
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I will give a bare outline of the argument, following the diagram

clockwise via (i} = (iii) = (iv) = (ii) = (i} . Arguing as in the last
section, I may assume throughout £f 1is represented by a finite
linear projecction, Y = gszgn is a domain containing y = 0€ec” i X
is defined in ¥ xV , V a domain in 'gk , by a finitely generated
ideal Ig? aek (L xV) , x =0 EEn+k; and f is induced by the pro-
jection Efm : YxV —> Y . (See Figure 2). Let R :=()x'x/myox'x

Kk

Ve ( XEBXYV

Fig. 2

+

(i) = (iii). The fibre £ (y) is defined by the ideal m,-Oy o by
3.2.c). The Corollary 4.3.6 then shows Of—k )% is an admissible
7

0  -module by Theorem 4.3.1, where = ({y},0 /my) .
Yy Y - 4 Y d,, "
b

{iii) =» (iv). (iii) means that there is an integer b2z 1 with mp = 0 .

This implies that, after possibly shrinking X and Y , there are
(Yyxv) , v=1,...,n, such that

. < 4 :]
integers bj , 1£3j3 sk , and g5 €O¢n+k

. b, n .
(4.4.1) wl(z,w) := ij + Z ga(z,w)-zv €1 for 138k ,
v=1

where Ig( n+k(Yx V) defines X . One can then show that there is a
C
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positive linear form A with w1<A"'<Awk<AZ1<A"'<Azn such that

(4.4.2) LM, (w)) = w J

for 1sjsk . Given any f€¢0 n+k , divide it by w1,...,mk accor-
T 0

4
ding to the Division Theorem 2.3.2:

4.4.3 -
( ) £ B I T h
with supp(h) €A . Because of (4.4.2), h can be written as
(4.4.4) h= ] h(z)w
. - k . j - .
with ao ¢ = {AG&DJ |vj : 0ga <bj} . hA(z) EOEH'O OY,y . Taking
(4.4.3) modI , we see by (4.4.4) that the monomials w' for A€R
generate Ox,x over OY,y
{iv) = (ii) . Since OY < is finite over 0Y y ’ there are integral
equations
. TN TN
(4.4.5) w'(z,w) = w,? + ) a. ' (z)w €I
J v=0 J J
for the wj as elements in Ox,x over OY,y . After possibliy

shrinking X and Y , this gives the commutative diagram

i
£\ /
g
B

where i is a closed immersion and 1 a Weierstrass map. 7m 1is

N(w1,...,wk)

(4.4.6)

finite by Proposition 4.2.1, hence so is f .

(ii) = (i). This is clear.
Corollary 4.4.2. (i) Let £ : (X,x) —> (€",0) be defined by the
elements ijImx r J=1,...,n . Then
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a) £ is finite if and only if (fT"“’fnJ generates an m -
primary ideal of Ox,x
b) f is a local immersion if and only if (f1,...,fﬁ) generates
m
X
(ii) (X,x) Ecglo is smooth, i.e. (X,x) E(gn,O) for some n ,
if and only if OX " is a regular local ring.
Sketch of proof.
(i) a): is clear because of Theorem 4.4.1.
(1) b}: If (f1""’fn) generate m, dlnlﬂox’x/mn-ox'x)= 1 <
hence 0 is finite over 0 via £  , and Nakayama's
X,x ® o X
Lemma tells us that f0 : 0 —> 0 is surjective. So it factors
X G.In,O X,x
- . n .
as Omn . —>> OY,O =0X,x with (¥,0) c(C,0) defined by the ideal
T := Ker'fg . Conversely, if f is a local immersion, fg factors
as 0 n —_— OY,O _Ox,x . hence is surjective, and so fx(mn) =m, -
c,0 »
(ii). If (X,x) 1is smooth, OX,x soan . which is regular. If Ox,x
is regular, a regular system of parameters of OX . gives a homomor-
, A A A ,
phism ¢ : 0 = —> Ox'x such that ¢ : 0 n Ox,x is an iso-
c,0 T ,0
morphism. This implies ¢ 1is injective and dlmm(ox,x/mn OX,x) =
dlmm(ax’x/ﬁnax’x)= 1 , so ¢ 1is finite and hence surjective by

Nakayama's Lemma again., Hence ¢ 1is also surjective, hence an isomor-

phism, which implies (X,x) S(En,O) by the Equivalence Theorem 3.3.3.

Exercise. Prove 4.4.2, without passing to the completion (use 2.6.2}).

§ S. Dimension and Nullstellensatz.

Pursueing the analogy with elimination theory further, it is shown
that a complex spacegerm has a well-defined local dimension, given
as the minimal number of free parameters such that in the system of
holomorphic equations defining the germ the rest of the unknowns are
algebraic functions of them (this will be geometrically and algebrai-
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cally exploited in 6.1 and 6.2). This local dimension coincides with
the Chevalley dimension of the corresponding local ring. We introduce
active elements, providing good inductive proofs for the dimension,
and give a short proof of the Rickert Nullstellensatz, from which we
deduce that the decomposition of a complex space germ into irreducible
analytic setgerms corresponds in a one-to-one fashion to the minimal

primes of the corresponding local analytic algebra.

5.1. Local dimension.

Recall that by Corollary 3.3.5 mapgerms £ : (X,x) —> (En,O) €QQ;0
correspond in a one-to-one fashion to sequences (f1""'fn) with
f1, ...,fn € m. -

Proposition and Definition 5.1.1 (Local dimension). Let (X,x) €¢pl, .

The following integers are the same: °

mln{n |af1,...,fn €Em, : x is isolated in N(f1,...,fk)} ,
min{n |3 finite mapgerm f : (X,x) —> (gn,O}} ;

‘their common value is called the (local)dimension of X x and

e+

denoted dimxg .

This is immediate from the Integrality Theorem 4.4.1. We list the
following properties:

Proposition 5.1.2. The local dimension has the following properties:

(i) dimxg.Sn if and only if (X,x) admits a finite holomorphic

mapgerm {(X,x) —> (En,O)

(ii) £f: (X,x) —> (¥,x) finite = dimxg_sdimyz

(iii) If {E,x)Eﬁgg;o, define (gred,x)‘l—> (X,x) as -the subgerm
corresponding to the projection Ox,x ——x»OX'x]Nx , where
Nx is the nilradical of OX < via the Equivalence Theorem

3.3.3. Then dim X = dim X
X— X=r

ed
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(iv) - If Xecpl , X }—> dimx§ is upper semicontinuous.

(v) If (¥,x) c(X,x) is a subgerm and dimx¥.<dimx§ ,
(Y,x) # (X,x) as germs of sets. '

(vi) x is isolated in X if and only if dim X = 0 .
(vii) dimX§ = dinlox x the Chevalley dimension of the local ring
OX,X

0f this, (i) - (vi) are immediate from the definitions, only (vii)
deserves a comment. Recall that the Chevalley dimension of a noethe-
rian local ring R is defined to be the minimal length of a system f:=
(f1,...,fn) of elements which generate an m,-primary ideal; the latter
condition is in our case equivalent to

dim_ (R/£fR) = lenght, (R/fR) <« . Then the claim (vii) follows directly

from the Integrality Theorem 4.4.1.

5.2. Active elements and the Active Lemma.

Active elements generalize nonzerodivisors. The main result is

the Active Lemma 5.2.2, which makes inductive proofs work. Since, as

we will see, activity of an element of a local analytic algebra re-
.stricts only its behaviour on the irreducible components of the corres-
ponding complex space germ and not its behaviour on the embedded ones,

it is a more flexible notion than that of nonzerodivisors.

Proposition and Definiton 5.2.1. Let R be a noetherian local ring.

Then f£e€R is called active iff it satisfies one of the following
equivalent conditions:

(i) V RE€Min(R) : £ ¢ p

(ii) Vge R : £:g€ np = genR , where no is the nilradical of
R .

(iii) f is a nonzero-divisor in the reduction Rred:= R/nR .

Lemma 5.2.2 (The Active Lemma). Let (X,x) €cpl, and fem,  be
active. Then
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dim N(f) = dim_X -1
x= X=
Idea of proof. It suffices to show dim N(f) sdim X -1 . Let
; d
d := dim X and 1 : (X,x) —> (L ,0) be a finite holomorphic mapgerm:

then f satisfies an integral egquation

£f7 +a £ + ... + a1f +a0 =

with a.j Eo¢d 0" 0£jsk-1 , by the Integrality Theorem 4.4.1. By
activity, we éay assume a, # 0 . Then (5.2.1) induces the commutative

diagram of complex space germs

(N(£) ,x) S——> (X,x)

TIN(E) . T

v \'4

(N(ay),0) =—— (€%,0)

where the horizontal arrows are closed immersions, and so 1|§(f)
is a finite holomorphic mapgerm. Hence dimxg(f)s dimog(ao) by
Proposition 5.1.2 (ii). But since a, # 0 , there is a line ngcd
.~ such that 0 1is isolated in N(ao) NL by the Identity Theorem for
holomorphic functions in one wvariable, which easily implies
dimgN(a,) sd -1 . This proves the Active Lemma.

The Active Lemma has numerous consequences as we will see in the
next sections. Immediate is the following one:

Corollary 5.2.3. dimomn =n .

Remark 5.2.4. If dimxx:>0 , active elements do exist in OX % (see
14
[28], p. 99).

5.3. The Rickert Nullstellensatz.

If Xk is an algebraically closed field and A a finitely genera-
ted k~algebra, elements f €A define regular functions [£f] : X —>Ik



- 44 -

on the variety X = Spec A (we consider only the closed points). The
famous Hilbert Nullstellensatz states that ({£f] is zero as a function
if and only if f is a nilpotent element of A , or, what is equiva-
lent in this case, nilpotent in all local rings Ox,x , XEX ., The
proof of the Nullstellensatz is rather easy in this algebraic case:
One proves (i) the "weak Nullstellsatz" that any ideal I # 1 in
R[x1,...,xn] , n21 , has a zero, and then (ii) applies the Rabinowitsch
trick (see [71], § 121). Usually (i) is proven by means of Noether
normalization, which is easy in the algebraic case but hard in the
complex analytic case (in fact it is our final aim in this chapter to
prove it as the Local Representation Theorem in § 6); there

are even more elementary proofs using the Division Algorithm in poly-
nomial rings (which is similar to Theorem 2.3.2, but much easier to
establish), see [ 3 ] for the Divison Algorithm and [46] for the
Division Algorithm and the Nullstellensatz.

Although the Nullstellensatz remains true in the complex analytic
case, the above approcach will not work because (ii) fails; the result
lies considerably deeper in this case, and was first proved by Rlickert
in his fundamental paper (591, in which for the first time algebraic
methods were systematically introduced intc Local Complex Analytic
Geometry. In the treatment here, it will be a consequence of the
Active Lemma.

Theorem 5.3.71 (Rickert Nullstellensatz). Let Xecgpl , fe;ox(x) ,
and ([£f] : X —> € the function defined by £f (see (3.3.1)). Then
{f] = 0 if and only if fxE Ox X is nilpotent for all xXE€X .

I

Idea of proof.

The "if"-part is clear. For the "only if"-part, let x¢X be

given; one decomposes the nilradical N g0, .

(5.3.1) N, = n 0 .
X .
peMLn(OX'x)

For pe;Min(Ox'x) » let the immersion (X ,x) < (X,x) of germs
correspond to the projection Ox,x ——»-Ox'x/p via the Equivalence
Theorem 3.3.3. Then Oxp'x = Ox,x/p is an integral domain, and so
£, := f|§p is either 0 or active in ¢y . . But it cannot be

B
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active, since then by the Active Lemma dimxﬂ(fp) <dimx§ and so it

would not vanish near x on xp , which it must since g vanishes
on X by assumption. So (fp)x = 0 in OX x which means £ €p .
Since this holds for all p € Min OX’X ’ fx EpNx by (5.3.1).

There are other useful formulations of this result:

Corollary 5.3.2. The following statements are equivalent to Theorem
5.3.1 and do therefore hold:

(i) Let Xegpl , Y—> X a closed complex subspace defined by the
locally finite ideal 1c0, . Let J, be the ideal defined as '
Jg(U) := {£€0,(U)|[f]]Yy = 0} for UcX open. Then J, = VI (this

is the traditional formulation of the Nullstellensatz).

(1i) Let M be an admissible Ox—module, and let fEZOX(X) be such

that it vanishes on supp(M) as a function, i.e. [£f] | suppM= 0 .

Then any x € X has an open neighbourhood such that ft-M = 0 for
some integer t=z21 .

For 5.3.1= (ii) see {28] , p. 67, Corollary (use FO(M) instead of
Ann(M)} there and the fact FO(M)ggAnn(M)) . The implications
(1i) » (i) and (i) =5.3.1 are easy.

5.4. Analytic sets and local decomposition.

Let X be a complex space. A subset AgX 1is called analytic iff
it is locally around any x€ X the null set of finitely many sections
of Ox defined near x . The ideal JASOX with

Jp(U) := {£€0,(0)|[£]]A = 0} is called the vanishing ideal of A .

If AcX 1is analytic, it has a well-defined local dimension at
a€A : Since Ox,a is noetherian by the Rilickert Basissatz 1.3.2, .a
has an open neighbourhood U such that ANU is,the underlying set
of a closed complex subspace of U defined by a finitely generated
OU-ideal I which is such that Ia = JA,a , and two such ideals coin-
cide locally near a by Lemma 3.1.1. So there is,up to isomorphy.,.a
well-defined germ (A,a) €ggé0 defined by any such I in U , and we

put dimaA 1= dimaé . Especially, X 1s an analytic set in X , and
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JX « = N, . the nilradical of OX « r PY the Riickert Nullstellensatz
5.3.1, and so dimx§ = dimxX by Proposition 5.1.2 (iii). If

XeEX ,
we have the usual notion of the germ of an analytic set at x , denoted

{A,x) , which is the equivalence class of an analytic set' A defined
in an open neighbourhood of

X with respect to the equivalence rela-

ition which identifies two locally defined analytic sets when they coin-
-cide near x We call such germs analytic setgerms.

Unions of analytic
germs are well-defined and so there is the notion of an irreducible

germ, this being one which cannot be written as a nontrivial union.
It is then an easy exercise to show that an analytic setgerm has a
unique decomposition into irreducible ones which corresponds to the

associated primes of their vanishing ideal; this is a consequence of
the Rickert Basissatz (see [28 ], Chapter 4, § 1.).

Together with the
'Nullstellensatz we get the following result:

Proposition 5.4.1
'IE;OX,x

(Local decomposition). Let
is any ideal,let the inclusion (EI,X)C;—> (X,x)
spacegerms be defined by the projection Ox;x ——x»OX'x/I yia the
Equivalence Theorem 3.3.3. Then:

(X,x) € gpl, . If

of complex

(1)

The complex space subkgerms of
to the ideals of 0

(X,x) correspond bijectively

<. % under I > (EI,x) , and the analy-
tic setgerms to the radical ideals of ¢

under
X,x —

{ii) (X,X) = U (Xer)
pEMin(q( x)

analytic setgerm (X,x)

is the unigue decomposition of the

into irreducible ones.

at x

I refer: to the decomposition in (ii) as the local decomposition of X

into irreducible components.

I call the X

the local irreducible components of X at x (they

:are called prime components in [28]). Germs with exactly one irre-
.ducible component are called irreducible.

Using the Active Lemma, one proves the following result (see [28] ,

'P. 103}, which is a converse to Proposition 5.1.2. (v) and which wiil
‘be needed in § 6.

Theorem 5.4.2.

Let. Y be a closed complex subspace of the complex
space X , Xx€Y , and suppose dimxg

= dimx§ . Then X

and Y have




- 47 -

a common local irreducible component at x

Corollary 5.4.3 (Lemma of Ritt). Let X be a complex space, Y &> X

a closed complex subspace. The following statements are equivalent:
(1) dimyg‘:dimyg for all vyeyYy

(ii) Y 1is nowhere dense in X .

The proof is left as an exercise (use 5.2.2 (v) and 5.4.2).

§ 6. The Local Representation Theorem for complex space germs

‘(Noether normalization).

In this paragraph, we are finally in a position to interprete

geometrically the concepts of dimension and of a system of parameters for
a local analytic algebra and to see that they give rise locally to a
situation identical with Noether normalization in the algebraic case,

as described at the beginning of § 4. The dimension turns out to be

the unique integer d that the complex space germ corresponding

to the given local analytic algebra lies spread out finitelv over a

germ (Ed,O) , and these finite branched covering mapgerms.are preci-
sely those given, by a system of parameters according to Corollary 3.3.5.

6.1. Openness and dimension.

We now can give a geometric characterization of the local dimension.
The geometric characterization in question is the openness of a map
at a point; here, a continuous map f : X —> Y of topological
spaces is said to be open at a point x€ X iff it maps every neigh~
bourhood of x in X onto a neighbourhood of £(x) in Y

Lemma 6.1.1 (Open Lemma I). Let £ : (X,x) —> (¥,y) €gpl, be

finite. Then f is open at x if and only if each element of
Q

Ker(fx : oY,y —_ Ox’x) is nilpotent.

Proof. Since f is finite, £(X) 1is an analytic set in Y by
Corollary 4.3.2. f 1is open at x 1if and only if (£(x),y) = (Y,y)

as germs of sets at y €Y , which means Jf(X) v = JY y ! where
! [
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.Jf(x) and J, are the vanishing ideals of the analytic sets £(X) and

_ 0,1 - -
Y in Y . But Jf(x),y = (fx) Nx,x and JY,y Ny by the Nullstel
lensatz, and so
f open at x = (fo)-1N = N
X X Yy
<= Ker fo c N ’
x— Y
|

which prdves the claim.
Lemma 6.1.2 (Open Lemma II). Let £ : (X,x) —> (Y,y) €cpl, be

finite.
(i) f open at X *dimxg = dimyz .

(1i) If Y 1is locally irreducible at y (i.e. Y has only'one

local irreducible component at y , see 5.4), then

dimx§ = dimyg = f open at x .

Proof. (i): We may assume dim X>0 . After possibly shrinking X

and Y , we may assume there is gEﬁOY{Y) which is active at . y such
that fg(g).=: g' 1is active at y by the so-called Lifting Lemma '
{see [28], p. 99; the proof there actually does not need the assump-
tions that X and Y are reduced). This gives the commutative

diagram

N(g') =: X' <—> X

£|§(g')=:£' £
v v

N(g) =: ¥ S——> ¥

with £' finite and open, and this allows to induct over dim}{X .
(ii) dim}cx sdimﬁrf(X) <dim Y by Proposition 5.1.2, hence

dim&rf(X) = dimﬁrY , and the claim follows from Theorem 5.4.2.

6.2, Geometric interpretation of the local dimension and a system of
parameters; algebraic Noether normalization.
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Combining the results in 6.1, gives immediately:

Theorem 6.2.1 (Dimension Theorem). Let (X,x) €gpl, . If
£f : (X,x) —> (gn,O) is a finite holomorphic mapgerm, the following

statements are equivalent:

(i) £ 0 —> is injective,

x n X,x

(ii) f is open at x ,

{iii) n = dim

Corcllary 6.2.2. Let (E,x}E:gg;O . Then dimx§ is the unique integer

n such that (X,x) admits a finite mapgerm to (gn,O) which is
open at x .

Corollary 6.2.3. Let RE€1la , f1""’fn EmR . Then (f1""’fn) is a
system of parameters for R if and only if the mapgerm

£ : (5,3) —_ (gn,O)tigE;0 corresponding to (fi""’fn) via Corol-
lary 3.3.5 1is finite and open at x

Corollary 6.2.4 (Algebraic Noether normalization). Let R€1la ,

‘and'let (f1,:..,ﬁd) be a system of parameters for R . Then the

analytic subring generated by £
E{X1'.¢n’x

1,.'..,fd - 1s isomorphic to
, and R is finite over it.

al

Proof. If Re€ la and f1,...,fk€ZmR , the simplest way to define the
analytic subring generated by them is to declare it to be the image of

to £

i for

the homomorphism ¢ : Omk . —> R defined by mapping zj

15isk according to Theorem 1.3.4. By the way ¢ is defined, this

subring should consist of the {(in R) convergent infinite series
zkcAfA ' cA(EE , and in fact one can put a topology on R , the

AEIN

topology of analytic convergence {see [26]}) so that this statement

makes sense and is true; this analytic subring then is just the closure
of the subring generated by the fi in the algebraic sense. The claim

of 6.2.4 is immediate from 6.2.1 and Theorem 4.4.1 (iv) .
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6.3. The Local Representation Theorem; geometric Noether

normalization.

We now can more fully exploit the geometry of a system of parameters
of a local analytic algebra R or, what is the same according to
Corollary 6.2.3, of a finite open mapgerm of a complex space germ onto
a number space germ. We have already proven the "algebraic Noether
normalization”, namely that the system of parameters generate a sub-
algebra which is a convergent power series ring over which R is
finite. It now will turn out that locally this implies the same geome-
tric situation that we have in the algebraic case, where the variety
corresponding to a finite k-algebra R 1is a branched covering over
an affine space of dimension dim R, but this time the proof is sub-

stantially more difficult and needs the whole machinery described up
to now.

Anyway, the following local description of a complex space germ

holds, which is a kind of gecmetric Noether normalization:

Theorem 6.3.1 (The Local Representation Theorem). Let (E,x)EZgg%O ’
d = diml(é , and let f : (X,x) —> (gd,O) be a finite holomorphic

mapgerm; such mapgerms exist by the definition of the local dimension,
and they correspond to systems of parameters for Ox,x . Then £ has

arbitrarily small representatives f : X —> B , where B 1is a domain
in Ed , such that the following holds:

(1) There exists a closed complex subspace A& <> B which is
nowhere dense and has the property that X = f'%A) is
dense in X, := {x'€X|dim_,X =d} . 4 can be chosen
to be a hypersurface, i.e. A=N(§) for a nonzero &€0 ,(B)

C

(ii) flx-—f"%A) : X-f-nA) —> B-A 1is a topological covering

map.

-(1ii) If, in addition, X is reduced at x , i.e. the nilradical
, -1 -1 .
Ne of 0y is zero, £flx-£ (4) . X-f (8) —> B~ 4 is

a holomorphic covering of complex manifolds.




- 51 -

We call these representatives good representatives. A4 1is called a

discriminant locus for f

I will not give the detailed proof here , but describe
the main ingredients, so that the rest of it is a careful exploitation
on the basis of the results described until now.

It is clear that it suffices to prove (i) and (iii) for a germ
reduced at X , for we can pass from (X,x) to (gred,x)<l—>:(§,x)

defined by Ox,x — OX,X/NX

First, one treats the case of a Weierstrass map 7 : A —> B (see

4.2.) with the additional property that the defining monic poly-
nomials w(]) €0 d(B)[wj] , 15$3 sk , have no multiple factors.
T
o X (5) (3),,
Put § := || discr (w Iy , where discr (w'3’)€0 d(B) is the
3=1 . - T
discriminant of m(J), and let A(m) := N(S) . Then Hensel's Lemma

4.2.3 tells us that around zOGEB-—A(n) we can write

b.
(3) ) (3)
(6.3.1) w (z,w.) = [ (w --c\):l (z)) , 1sjsk
for holomorphic functions céj) defined near zg - If
a = (zy,c) €EA-71(4) and, for 153k, vy is such that
(3) - :
cvj (zo) = Cy s this forces
(6.3.2) 0. =0 /- M2y, - e R (2
. A,a ¢d+k,a 1 v, Tk Vi d
so that clearly 2.0 _— 0 is isomorphic. Hence m is
a md 2 A,a -
"0

locally isomorphic over B -4A(w) by the Equivalence Theorem 3.3.3.
This shows (iii).

(i) follows from the fact that ] # 0 since the m(j) have no

multiple factors, hence A(m} 1is nowhere dense in B by the identity
theorem for holomorphic functions, and so n_1(A( )} 1is nowhere dense

in A , since T is open by Proposition 4.2.2.

For the general case of a reduced (X,x) we may assume f 1is in-

duced by a linear projection pr: Ed+k-—-> md . With the notation of
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4.4, we get the embedding (4.4.6) of £f into a Weierstrass map, which,
in addition,we may assume to be of the above type, since OX - has no
nilpotents. Let

(6.3.3.) (X,x) = ] (xp,x)
pEMln(OX’X)

(6.3.4) (a,0) = U (A_,0)
pEMin(OA 0) 4

be the decompositions into locally irreducible components according
to 5.4.

Let M, := {pGEMln(OX’x)[dimxxp = d} = Assh(Ox’ ) and
M, 2= Min(Ox’x)*MO = {p EMin(OX’x)I dim X, <d} (equality by Proposi-

tion 5.1.2 (ii)). Choosing X,A,B small enough one can achieve:

1} for each FGMO there is exactly one g =: q{(p) € Min OA 0
’

with }{}I = Aq(p) ; this is by Theorem 5.4.2;

2) for all pemM, and all x' exp : dimx,xp<d‘; this is by

upper semicontinuity of dimension (Proposition 5.1.2. (iv));

3) A{m)u V] mT(A_NA_,) Ul U f(Xpn =; A(f) 1s an analytic
q,q'EMin(OA 0) R 4 REM,
q#ql r

subset of B ; this is by Corollary 4.3.2.

4) N(f) gN(8) for a nonzero §E€EU d(B)
T

One checks that for this 4 := N{§) the conditions (i) and (iii) of
the Local Representation Theorem held; the main ingredient is the
Open Lemma II,6.1.2.

Remark 6.3.2. For small enough representatives, A(f) can in fact
be defined as a complex subspace since A(m} , 1(5qr1§&,) and
E(EF) exist naturally as complex subspace germs at O0€ B , and so

their union exists as a complex subspace germ defined by the intersec-

tion of the corresponding ideals in OB 0 Moreover
. i
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(6.3.5) U T(A_NA_,) = A(m)
( >) q,q'EMinO) ) q q'
A,0
n#q’
(see II 2.2.1 ), soO

(6.3.6) A(E) = a(m)u U £(X.) ,
. peM, B

the natural choice.

Remark 6.3.3. Finally, I have to make a short remark on prime germs,

i.e. (X,x) Eggéo with Ox,x an integral domain, so that especially
(X,x) is locally irreducible (see 5.4.). Let £ : (X,x) —> (C,0)

be as in the Local Representation Theorem 6.2.1, then

fg : Ocd 0<=—> Ox,x is an integral ring extension by the Integrality

’

Theorem 4.4.1. Let h(EOX % be a primitive element for the correspon-
- ’

ding field extension and form, for a suitably small representative

f <+ X—>1B:

wl(z,t) := l1 (t-h(x'))EOB(B-A)[t] .
x'ef (z)

Then w(z,t) extends over A since A is nowhere dense in B by
the classical Riemann Extension Theorem (for a nice proof of the latter
see [30],p.9),and gives a monic irreducible polynomial w € OB(B)[t] .

‘The homomorphism

0 — - ————
Ve =0 205 2.0 >0 x 7

which maps 2z; to fg(zi) for 1sisn and t to h, ,annihilates

w , and so defines a morphism, via the Equivalence Theorem 3.3.3,

(X,x) —=——> (¥,y) := (N(w),0) =————> (BxC,0)

)
[E
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from E- into the Weierstrass mapgerm 17 given by the irreducible
monic polynomial w . It can be shown that v 1is isomorphic outside
a nowhere dense closed subspace of B for suitable representatives
(exercise; for a direct proof not using 6.3.1 see [40], § 46). If
we replace A of 6.3.1 with this subspace; Y-n-1(A), is connec-

ted since w 1is irreducible, and so we get

Corollary 6.3.4. If, in the situation of 6.3.171, (X,x) is a prime

germ, i.e. reduced and locally irreducible, X-—f’%&) is connected.
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§ 7. Coherence.

7.1. Coherent sheaves.

Definition 7.1.1. (i). Let R be a ring. A finitely presentable

R-module M 1is called cgherent if all its finitely generated submodu-

les are also finitely presentable. R 1is called coherent if it is co-

herent as a module over itself, i.e.if every finitely generated ideal

is finitely presentable.

(ii). Let (X,OX) be a ringed space. An admissible Ox-module M is

called coherent if all its locally finitely generated submodules are

also admissible. OX is called coherent if it 1s coherent as a module

over itself, i.e. if every locally finitely generated Ox-ideal isg

admissible.

I discuss the notion of coherence for sheaves; the discussion for
modules over a ring is analogous. The coherent Ox-modules over a
ringed space (X,OX)_ form a good category Coh/X in the sense that
it is stable under various operations on sheaves (called the "yoga

of coherent sheaves", see [28], Annex), From this yoga one infers:

Lemma 7.1.2. Let (X,OX) be a ringed space, Ox a coherent sheaf

of:rings. Then an Ox-module is coherent if and only if it is admissible.

So in this case the admissible modules are the right category to
work with, ana, given a ringed space, the question is basic whether
its structure sheaf is coherent. For complex spaces, the answer is
given by the following famous theorem.

Theorem 7.1.3 (Oka's Coherence Theorem). For every complex space
(X,0,) , 0

X is a coherent sheaf of rings.

For a nice proof, which deduces this from the Weierstrass isomor-
phism 4.3.3, see (28], 2.5. Other proofs are in [64], Exposé 18, and
(40], where it is deduced immediately, but in a not very enlightening
way, from the classical Weierstrass Preparation Theorem 2.6.3.

So from now on we identify admissible and coherent Ox-modules on a
complex space. ‘
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7.2. Nonzerodivisors.

Oka's Coherence Thecrem immediately entails:

Proposition 7.2.1. Let X be a complex space, fE:OX(X} . Then, if
f is a nonzerodivisor at x , it is a nonzerodivisor near x
See [28], p. 68, (or just look at the kernel of OX —;£> OX )

7.3. Purity of dimension and local decomposition.

Let (X/,x) € cglO , and let

(7.3.1) (X,x) = ] (Xp,x)
pEMin(Ox'x)

be its decomposition into local irreducible components according to
Proposition 5.4.1.

Definition 7.3.1 (X,x) 1is called equidimensional (or pure dimen-
sional) if and only if d:.mxx!:I = dimxX for all pEMln(Ox'x) .

In terms of local algebra this means Assh(Ox_x) = Min(OX x) .

’

Theorem 7.3.2 (Purity of dimension). Let the complex space X be

equidimensional at x . Then it is eguidimensional near x .

The proof is left as an exercise. For it, assume X is reduced
at x and represent (X,x) via f : (X,x) —> (Qd,O) as in the
Representation Theorem 6.3.1. Then fg(ﬁ) -is a nonzerodivisor at x ;

apply 7.2.1 and Ritt's Lemma 5.4.4. to conclude XO = X near x .

Corollary 7.3.3 (Open Mapping Lemma). Let f : X —> B be a finite
morphism from the complex space X to an open subspace gg;gd . If

f is open at x€X , and X is equidimensional at x , £ is open
near x




_57_ 1

‘ This follows from the Purity Theorem 7.3.2. and the Dimension
Theorem 6.2.1.

Corollary 7.3.4. In the decomposition (7.3.1), for suitably small re-
presentatives, xprwxp, is nowhere dense in Xp and Xh,_ for all
p,p' EMin(OX ) with g # p'

' X E—

Proof. Exercise: use 7.3.2 to conclude dim}v(XFITXp,)<dim}v(Xﬁ

for x! near x .

7.4. Reduction. The significance and importance of the no-

tion of coherence cannot be described by a few words; they manifest
themselves in the numerous results they imply. From this point on, co-
herence is indisputable for the further developments of the theory,
which comprise coherence of the sheaf of nilpotents {(Cartan's Coherence
theorem), theory of reduction, analyticitiy of the singular locus,

normalization . For this, see the book [28].

Theorem 7.4.1 (Cartan's Coherence Theorem)}. For every complex space

(XJOX) , the nilradical Nxs;Ox is coherent.

For proofs see [28],(40], [64], and the sketch below.

r

Corollary 7.4.2. If A is an analytic set in the complex space X

the vanishing ideal JA (see I, 5.4.) is coherent and endowes A with

the canonical structure of a reduced complex space. Especially the

analytic set X has a canonical structure as a reduced complex space

and is called the reduction X _; of X ; one has 0, = 0 /Ny

by the Riickert Nullstellensatz 5.3.1. red

Here a complex space is called reduced 1if all its local rings have
no nilpotents.

Sketch of proof of 7.4.1.

The assertion is local; so let (X,x) ECQlO , and we must show that

there is a representative X such that NX is locally finite.
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Assume first is reduced at x . Choose a representative X and -

X —> B as in the Local Representation Theorem

a finite map
6.3.1. Let

I 1= n o}
pEAssh(Ox'x)

I, := N i
pEAss(OX'x)-Assh(OX,x) .

After possibly shrinking X , these define locally finite ideal sheaves
Ijggox X and so two closed complex subspaces §j<l—l> X for 3 = 0,1
Then, and here Oka's Coherence Theorem comes in, IO nI1 is locally

finite; hence, since (IO 011)x = 10{111 = {0} , we may assume

IO nI1 = Q0 after eventually shrinking X , by Lemma 3.1.7. Further

shrinking X we may assume dimx,§0 = d for all x'GEXO and

dimx,x1 <d for all x’EﬁX1 by Theorem 7.3.2 and Proposition 5.2.2 (iv).

Let A = N($) be as in 6.3.1, with 6€0 ;(B) . We may choose X so
small that fo(é) is a nonzerodivisor .1'.n(r OXOIX’ at any x'ElXo ’
because it is a nonzerodivisor in Oxo,x , and we then apply Proposi-
tion 7.2.1. I then propose to show NX = 0

Let x' €X . Choose, after possibly shrinking X , a locally finite
ideal JgN, with J_, =N, , . Then supp)J :suppNXEN(fO(G)) , and
so there is t€ N, £ 21 , such that fo(d)t-J = 0 near x' Dby the

Rickert Nullstellensatz in the form of Corollary 5.3.2

(ii). Hence N , = J_, 1is contained in
X,X 0 X
g 1 .
0,x ,
= —_—r 1
IO,x' Ker(Ox’x, x>0xo'x,) , SO nggIO near x' . Since
0
I = Ken(0, —Ys» 0. ) , Nunkerg® = Nonl.cT.n1. =0, and so g°
1 X X0 X 91 x" 1 s ’ 94
injects Nx into NX1 . Since dlm}{,§1-<d. for all x Eix1 ' NX1 = 0
by the induction assumption, and so Nx = 0

Finally, if (X,x) 1is arbitrary, choose, after shrinking X , a local-

ly finite ideal Jg;Nx with Jx = N Let Y be the closed complex

X,x °
subspace of X defined by J . Then Y is reduced at x and so

NY = 0 by what we proved above. But NY = VyJ/J , and so Nx =71,
which is locally finite.
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II. GEOMETRIC MULTIPLICITY.

The concept of multiplicity arises as a natural generalization of the

multiplicity of a solution to a polynomial equation in one indeterminate.

Consider a system

(1) o fj(z1,...,zn} =0 , j=1,...,k

of holomorphic equations, and suppose oech is a solution. Heuristi-
cally, the multiplicity of O as a solution should be the number of
solutions "concentrated near O ", i.e. the algebraic number m of
distinct generic solutions arbitrarilynear to 0O (cf. [51]), p. 17,
Definition). Symbolically:

(2) m= lim_ (sup #{z€U | £f.(z) =0, 3 =1,...,k
_[_]_) |
"distinct" solutions} ) ,
where U runs over the neighbourhoods of O in c" , and the solutions
are properly counted. In modern terms, the f1,...,fk define an ideal
Ie?l n and so a germ (E,x)EIcglo , and the multiplicity in question
c,0

is called the multiplicity of x on X , denoted m(X,x)

To clarify what this means, consider the corresponding algebraic si-
tuation, where the fj above are polynomials in jk[z1,...,zn] for
some field 1k . Kronecker's elimination theory ([43], [42], and [51],
which is, in a sense, still quite readable and has become a classic)
represents the solutions, after a general linear coordinate transforma-
tion, as algebraic functions of some of the coordinates, 21,...,zd
say, which act as free parameters. The correct definition of the global
multiplicity, i.e. the algebraic number of distinct generic solutions,
was debated quite a time after Kronecker's 1882 paper [43] (see e.qg.

[42]) and found 30 years later by Macaulay [50]. In modern terms:

{(3) M := dlmKK@kR

= 7 length(Rp)-[R/p:K]
p€Assh(R)
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with K := klz1,...,zd) and R := Ik[z1,...,zn]/(f1,...,fk
ral generalization, after all, of the case of one variable. (It is inte-
resting to look at the attempts in [42] to define the correct coeffici-

ent of [R/p:K] via the degrees of the factors of the resolvent.and

)} , a natu-

Macaulay's criticism of it in [50]. This is a good lesson how painfully
and slowly conceptsdeveloped which nowadays are considered to be utterly
self-explanatory and trivial. This applies equally well to primary de-
composition and the notion of local multiplicity below).

Geometrically, this corresponds to representing the solution variety

X ¢ A" as branched cover
(4) m: X —>a% , d= dimx = dimR

with 7 induced by a generic projection, and putting

(5) , M := algebraic global mapping degree of w
= Lo, #(n ) (2) NX,)
XA A '

where the Xk are the irreducible components of X ,'QA = 1ength0X X
TR

and 2z EA@ is any point outside the image of the branching locus

{a "generic" z). (That (3) and (5) agree will be proved, in a local

version, in 5.1.4 below).

The local multiplicity m(X,x) of X at x , then, should be the
local mapping degree of a generic projection. This means one wishes to
take a small neighbourhood U around x such that =(U) 1is open in
Ad and ﬂ_1ﬂ(x}f1U = {x} ; then m(X,x) should be

(6) m(X,x) = PE\E)‘ i (" (2) nu,)

!

where the 'UA are the local branches of X at x and lk the
length of a maximal primary chain starting at the primary defining
UA , which measures the multiplicity of the generic solution on UA .
Unfortunately; there are no small neighbourhoods in the algebraic si-
tuation, and so it took several decades to master the concept of multi-
nlicity. There are three ways out of this difficulty:
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(1) - One tries to make sense out of the limit process in (1) alge-
braically, i.e. out of the concept of "solutions coming toge-
‘ther at 0 ". This leads to the theory of specialization mul-
tiplicity of v..d. Waerden and Weil ([72], [73]), and [741).
This will not be touched further upon here.

(ii) One passes to formal ("infinitesimal") neighbourhoods via com-
pletion; then the analogue of the local mépping degree makes
sense. This leads to the definition of Chevalley ((9], [16];
see also Chapter 1, (6.7), and 5.1.5 and 5.1.8 below).

(iii) One uses the sophisticated approach to define multiplicity via
the highest coefficient of the Hilbert function of the asso-
ciated graded ring; this is the definitive and commonly accep-
ted definition of Samuel [60]. It has the advantage of being
concise, and it works very well in the practice of algebraic
manipulations. (Ultimately, it leads via Serre's notes [67] and
the paper of Auslander and Buchsbaum on codimension and multi-
plicity {(Ann. of Math. 68 (1958), 625-657, esp. Theorem 4.2)
to the definition presented in Chapter I, (1.2).) Although
the gecmetric significance of this definition must have been
known to the'experts, it seems to have been rarely explicited
(it was already known to Macaulay, see [50], footnotes on p.82
and 115, and [37], which makes quite a tense reading). It
corresponds, geometrically, to approximating X at x by its
tangent cone and taking the local multiplicity of the tangent
cone at its vertex; for cones, the problem of small neighbour-
hoods does not pose itéelf, since the local and global mapping
degree of a projection of a cone agree, due to the latter's
homogeneous structure.

Fortunately, small neighbourhoods do exist in Complex Analytic Geometry,
and so the definition of multiplicity as the local mapping degree of

a generic projection makes perfect sense; this must have been, in the
reduced case, folklore ever since (cf. [13], [38] and (75]). This for-
malism is set up in the first three paragraphs of this part II. To

handle the nonreduced case, we make use of the properties of compact
Stein neighbourhoods to relate the properties of nearby analytic local
rings to those of one algebraic object, the coordinate ring of the
compact Stein neighbourhood; this guarantees the constancy of the numbers

RA in (6) along the local brances UA . This is exposed in § 1. In
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§ 2, we define the local mapping degree, and in § 3 the geometric mul-
tiplicity m(X,x) of (X,x) €g§éo . In § 4, we exblain the geometry of
Samuel multiplicity alluded to above, and in the last paragraph we prove
that the local mapping degree definition of the multiplicity of
(X,x) €gpl, coincides with the Samuel multiplicity e(OX’x) of the

corresponding local ring.

This geometric description of multiplicity will then be put to work in
the next chapter, since it is basic for geometric proofs of equimulti-

plicity results due to Hironaka, Lipman, Schickhoff, and Teissier.
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§ 1. Compact Stein neighbourhoods.

1.1. Coherent sheaves on closed subsets.

Let X be a complex space and AcX a closed set.

Definition 1.1.1. A coherent module on A is a sheaf of the form

ﬁIA , where i is a coherent Ov—module on some open neighbourhood Vv
of A

Here, ﬁ|A is the restriction in the sense of sheaves of abelian
groups, in other words, for U<A open in A , (H|A)(U) are the
.continuous sections of the "espace étalé" associated to M over a .
It is not to be confused with the coherent OA-module i*M if i
AS—> V happens to be a closed complex subspace, so in this case
one has to distinguish between "coherent modules on A " and
"coherent OA-modules". Especially, we have to distinguish
ola := OX|A and 0, in this case.

Directly from the definitions and the "yoga of coherent sheaves”
the following simple lemma follows:

Lemma 1.1.2. If M,N are coherent modules on A , and a : M —> N

is a homomorphism of 0|A-modules, then Kex (o) and (Cokeala) are

coherent modules on a .

1.2. Steln subsets.

In the following I assume known the simplest properties of sheaf
cohomology groups for sheaves of abelian groups. They can be defined
as the higher right derived functors of the section functor. On
paracompact spaces they can be computed by the éech procedure (based
on alternating cochains), and on complex manifolds by the Dolbeault

cohomology of (p,g)-forms (see (39], (27], [40], and [30] , at least
in the locally free case).

The notion of Stein subsets is closely related to the following

three statements, which have their traditional names. Let A<X be
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a closed set in a complex space.

"Theorem A". Any coherent module on A 1is generated by its global
sections.

"Theorem B". Hq(A,M) = 0 for all coherent modules M on A and
all qgz1 |

"Theorem F". If a : M — N is a surjective homomorphism of cohe-
rent modules on A , oyt M{A) —> N(A) 1is surjective.

The long exact cohomology' sequence gives immediately:

Proposition 1.2.1. Theorem B implies Theorem A and Theorem F.

Definition 1.2.2. Let X be a complex space. A closed subset

AcX 1is called a Stein subset if and only if Theorem B holds for A

In,a sense, a Stein subset should be thought of as the analogue
of an affine set in the case of algebraic varieties, so there should
be a correspondence between coherent modules on them and modules
over the coordinate ring. For this however, we have to make an
additional compactness assumption, which we do in the following sec-
tion.

1.3. Compact Stein subsets and the Flatness Theorem.

Let now A = KgX be a compact subset. It is then easy to see
that in this case the coherent modules on K are just the finitely
presentéd 0|K-modules. Using this and standard arguments based on
Proposition 1.2.1, one gets the following proposition, which states
that compact Stein neighbourhoods are the appropriate analogues of
the affine subsets in the algebraic case. Let O0(K) := F(K,Ox)

Proposition 1.3.1. Let X be acomplex space, KsX a cohpact Stein
subset. Let c¢coh{K) be the category of coherent modules on K , and
adm (0 (K the category of admissible, i.e. finitely presented,
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0 {K)-modules. Then:

(1) O(K) 1is a coherent ring {(cf. I 7.1.1. (i));

(ii) the section functor induces a natural equivalence:

- (1.3.7) T : coh(K) —> adm(0 (K , which has
(1.3.2) (=) @, g, (0|K) : gdm(Q(K)) —> coh(K) as an inverse.
Theorem 1.3.2 (Flatness Theorem). Let K be a Stein compact sub-

set in the complex space X . Then, for any x€ K , the natural
morphism

(1.3.3) A+ 0(K)

is flat.

This follows from Proposition 1.3.1, because the section func-
tor is exact by Theorem B, and hence so is (-) GO(K)(OlK)

Remark 1.3.3. 1In the case where X 1s an algebraic variety (by

this I mean an algebraic scheme of finite type over a field) and K
is an affine set, the analogue of Theorem 1.3.2 is immediate, since
Ax is just the algebraic localization of 0(K) with respect to the
prime ideal corresponding to x . In this case, the local rings

Ox'x are "semiglobal" in the sense that any.element is a gquotient
of two sections defined on the whole of K . In the complex analytic
case, Ax does not arise by this simple construction, and, moreovef,
one has to work with compact Stein subsets, which makes the result
much harder; we are going to show in the next section that suffici-

ently small compact Stein neighbourhoods always exist.

1.4. Existence of compact Stein neighbourhoods.

The theory of Stein spaces is concerned with various criteria which
characterize Stein subsets (or Stein spaces). The basic reference for
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this is the book [27], of which I will need only the first three
chapters. Fundamental for the theory is the following Theorem 1.4.71,
which goes back to Cartan and Serre; it directly implies the existence
of compact Stein neighbourhoods (Corollary 1.4.2) needed for the
applications of Theorem 1.3.2 in the sequel, e.g. for Definition

2.2.6 and for the proofs of Theorem 5.1.4 and Theorem 5.2.1.

A compact stone in En with coordinates (21""’zn} will be a
compact interval in the space :RZn with coordinates

(Re z

, Imz., ,..., Rezn ' Imzn)

1 1

Theorem 1.4.1. A compact stone in ¢” is a Stein subset.

A detailed and clear proof of this is in Chapter III of [27].
Since the result is so basic, I give a short summary of the strategy
of the proof. . It is considerably more difficult than the proof of
the corresponding statement for affine sets, which ultimately
rests on localization of rings, a technique which one has not at its
disposal in Complex Analytic Geometry, since the coherent sheaves
on smaller open subsets of Stein subsets do not arise by localization.

Complex'analysis ultimately shows up by solving the 3-equation.

_1St Step. There are two basic Vanishing Theorems for compact stones.

.One is elementary and uses simple combinatorical arguments on sub-

divisions of stones together with alternating éech cochains to show
that 3 q, = q,(n) with #4(Q,8) = 0 for q2q, and all
sheaves S on Q . The other lies deeper and uses Dolbeault coho-

mology; by explicitely solving the 3-equation (in the so-called 3-
Poincaré-Lemma due to Grothendieck, see [27],II, £ 3) one shows that
Hq(Q,O) = 0 for gz1 . These two Vanishing Theorems show that
Theorem A implies Theorem B for compact stones, and so it suffices
to show Theorem A for compact stones. {([27], III, § 3.2).

2nd Step. Theorem A is proven by induction on the real dimension
d of the compact stone Q . If Ad ’ Bd, and Fd are the statements
of Theorem A, Theorem B, and Theorem F for compact stones of dimen-
sion sd , it suffices by the first step and Proposition 1.2.1. to

prove

)

(1.4.1) A and F =

da-1 d-1 Agq
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3rd Step. Since sections of sheaves over a compact set extend

over an open neighbourhood, one easily sees that by subdividing a

one dimensional side of the d-dimensional stone Q into sufficiently
small pieces the claim follows if we are able to deal with the follo-
wing situation. Suppose Q = Q UQ? arises by cutting Q into two
halves by a section orthogonal to a one-dimensional side {see

Figure 3). .
Fig. 3
Let M be a coherent module en Q , 0 := 0|Q , and suppose there
are given 0O-module epimorphisms h Op|Q— —>» M|Q ,
ht o OqIQ+ ——»»M]Q+ such that the images of h~ and h' generate

the same subsheaf of UP|Q- nQ* . Wwe then want to glue h and h*
into an 0-module epimorphism 0P s ; this will then comiplete

step 2. Let t-,...,t; €M(Q) and t+,...,t; e&HQ+) be the sections
defining h- and h' . Then one can write

_\T . \T

t1 t1
(1.4.2) ) - : - A

- +

- + - +

ts /o7 ng fq /lo"na

with a matrix A€M(gxp, 0|Q” NQ') . Now suppose we could f£ind holo-

morphic invertible matrices CtEEGL(Qt,O) such that
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(1.4.3) m lo”nQ" = (¢71a”nQ") -(c” 1o nQ") , where

1)€ GL(p,0) is the identity matrix. This would imply

(1.4.4) £ \T £ \T

P Q" nQ" 97197 ng -l nQ"

So, 1if we then define new sections 5 ..,E; eEMQT) wvia

JURYA _\T
t1 t.]
= c ,

Pt — t_

tp P
they still define an epimorphism h  : 0PjQ” —» M|Q~™ , since C~
is invertible. Now make the
(1.4.5) assumption: A extends over Q
Then one could extend the sections %?,...,E; to sections %1""'%p
over Q by (1.4.4), and this would give an O-homomorphism
B : 0P —> M which restricts to an epimorphism over Q . In the
same way one would produce an 0-homomorphism R : 09 —> M  which
restricts to an epimorphism over Q' . Then h := R eh : 0P'? —» i
would be the desired epimorphism.
Last Step. (1.4.5) dces not hold in general. One has to approximate

A Dby a holomorphic matrix A defined on Q , which can be done via
an appproximation theorem of Runge; this then forces to have a decom-

position (1.4.3) not only of 1 ,but of holomorphic p xp - matrices

'
close to M_ . That this can bé)done is the content of the famous Cartan
Patching Lemma (27],III, § 1,3. This Lemma is, by a delicate interation
procedure, reduced to an additive decomposition of holomerphic
functions on an open.polycylinder which itself is a union of two

open polycylinders, the so-called Cousin Patching Lemma (271,111, §1,1.
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This Lemma, £finally, is proven by explicitely solving the 3-equation.
All details are in §§ 1 and 2 of Chapter III of {27].

Corollary 1.4.2. Let X be a complex space..Then any x€X has a

neighbourhood basis consisting of compact Stein subsets. For this,

one can take the compact sets in the inverse image of the system of

. n . .
compact stones 0 in C under any local immersion

(X,x) &= (",0) .

Proof. Let X<—> U be a closed complex subspace of an open set
Ugmn , X = 0€XcU . Let K be a compact polydisc centered at 0 .
Let M be a coherent module on KNX . After possibly shrinking U ,
we may assume M is the restriction of a coherent 0_-module H

Then i,M 1is a coherent OU-module, and so Hp(XnK,M)==Hp{K,i*H) =0
for p21 , since K 1is Stein by Theorem 1.4.1.

§ 2. Local mapping degree.

In this paragraph, I assign to each finite mapgerm
=

£ (X,x) —> (md,O) a local mapping degree deg){f € ]N'O, which
- - = - >
-counts the algebraic number of preimages of a "general" point of Ed

close to 0 . This will be basic for the definition of multiplicity.

2.1. Local decomposition revisited.

In order to count the number of preimages of such an f as above
algebraically, I have to weight a preimage point lying on a local
irreducible component where X is possibly not reduced by a certain
positive number, which will appear as the value of some locally con-
stant function along a generic subset of that component; here, I call
a subset of a topological space generic if it contains an open dense

subset. It is the purpose of this section to exhibit such generic
subsets.

First I introduce some terminology. Let X be a complex space,
Xx€X . Define the germ (X __.,x) as in I, 5.1.2 (iii). We then have
the following loci:
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(2.1.1) Xreg 1= {x:Ex ](gred,x) is smooth}
= {xEﬁX|OX,x/’Nx is regular}
(2.1.2) X;, = {XEEX | (X,x) is irreducible}
= {x:€X|Ox’x/Nx is an integral domain}
Obviously,
.(2'1'3) Xreg c Xir .

Now let (X,x) € CElo ,and let X be a good representative, i.e.
there should be a finite map from X to B, a domain in-: ¢d  satis-

fying the Local Representation Theorem I 6.3.1. Let

(2.1.4) X= U X

Aen A

be the local decomposition of (X,x}) into irreducible components

as in I 5.4. This decomposition has the following properties:

Proposition 2.1.1. There are arbitrarily small good representatives
X such that the following statements hold:

(1) X)\l‘lxu is nowhere dense in XA for all X €A and all peA

with u # A .

(ii) X is locally reducible at all points of U (%, N X )
A, uEAN
Afu

Proof.

{i) is just I 7.3.4., and (ii) follows from (i} and elementary pro-
perties of the local decomposition of analytic sets (see [28], p. 108).
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Corollary 2.1.2. Let the notations be as in Proposition 2.1.1. Put

0 ) U
1. := - X

(2.1.5) XA X wir X4

Then, for all X €A

(2.1.6) Xg is connected, open and dense in XA , and open in X ;
_ 0 . . . .

(2.1.7) xhr}xir = (xk)ir is connected,and this set is géne?lc

in X)\ ;

(2.1.8) X, =_Ll(x nx._)
ir en A ir

‘Proof. Xg is clearly open both in X and X , since H Xu is

pEA
closed as a finite union of analytic sets. It is dense by Proposition

2.1 (i) . Let EA : X, —> B, satisfy the assumption of the Local
Representation Theorem I 6.3.1. So, after possibly shrinking £ £

is open by the Open Mapping Lemma I 7.3.3, and therefore -f;1(Ai) ig
nowhere dense in XA , as AA is nowhere dense in BA . This shows that
X, - f;1(ah) is opef1and denge in X, , and itois connected by é

6.3.4. Since Xy - fA (AA)SXA for some A)\gx)\ . tl&is shows Xy is
connected, and dense in XA . Finally, X)\nxir = (Xk)ir follows

from Proposition 2.1.1 (ii), and so xkfjxir , containing XA"f;1(AA)'
is generic in 'xA , and connected. (2.1.8) finally is obvious from

X AgAXX .

Remark 2.1.3. One has, again by Proposition 2.1.1 (ii), that

. _ 0 0 . _ 1

xln xreg = (Xx)reg , and that (xx)reg , containing XA fA (AA) ’

is generic in XA . Using the Jacobian criterion for regularity one

may show it is the complement of a nowhere dense analytic set in XA .
_ 0 : .

It follows that X . %gk(xk)reg is the complement of a nowhere

«dense analytic set in X . This implies that for any X €cpl the

locus Xreg is also the complement of a nowhere dense analytic set.

Remark 2.1.4. Using the local results above, one can show the

following., Let X be any complex space. Decompose Xreg into connec-
ted components:



and put X, := E: . The decomposition

X = UX

AEA A

then will satisfy Corollary 2.1.2. Moreover, this decomposition is
unigue and characterized by the fact that it is a decomposition of
X into irreducible analytic sets, i.e. analytic sets which cannot
be written as a proper union of analytic sets. We call this decompo-
sition the decomposition of X intolgloball)irreducible components.

Locally this decomposition induces the decomposition given by the

local decomposition intc irreducible analytic setgerms. (See [40],

§ 49). So in the local situation above, the decomposition (2.1.4) is
indeed the decomposition into global irreducible components and we

will call it so, but we will make use only of the properties in
Corollary 2.1.2.

2.2. Local mapping degree,

We first introduce the weights with which to count preimage points.

Let R be a noetherian ring, Ac (R) the set of active elements.
Since
(2.2.1) Ac (R} = n (R = p)

FEMin (R}

by T 5.2.1, Ac(R} 1is a multiplicative subset, and we can form the
localization of R with respect to Ac(R) .

e

Definition 2.2.1. Quot(R) := (Ac) 'R is called the modified ring
of fractions of R

I
Lemma 2.2.2, Quot (R} has the following properties:
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’.—-._/ . . . P
(1) Quot (R) is artinian, and length(Quot(R)) = X length(Rp) :
pEMin (R)
. f-\._/ .
(ii) i1f R has no embedded primes, Quot(R) = Quot(R) , the usual

total ring of fractions of R

ST
Proof. (i): All primes of Quot(R) are minimal by construction, so

e .
Quot (R) is artinian. By the well-known structure of artinian rings

(see [ 6 ], Chapter IV, § 2.5, Corollary 1 of Proposition 9).

—
S := Quot(R) = ist,ﬁ = [ Rp ,
HEMin(S)  PEMin(R)
P
and so length(Quot(R}) = Z length(Rp)
BEMin (R)
(1i): In this case, Ac(R) =R - U r is the set of nonzero-
PEAss (R)

divisors of R

Proposition 2.2.3. Lét X be a complex space, X = X the

U
AEATA
decomposition into irreducible components. Then for any xfEXir

P g
the modified ring of fractions Quot(OX x) is of finite length,
J— o’ ’
and the function x b—> length(Quot(OX x)) is, for each A ,
’
_constant along the generic subset XA nxir of XA
’--/
Proof. Quot(Ox x) is artinian by Lemma 2.2.2, so is of finite
. ! — _
lenght. Since x:f:txir p Quot(Ox'x) = (Ox,x)Nx .. So, because of

{2.1.7), it suffices to prove that the function ):F—plength((ox x)N )
. ! X

is lobally constant. Let X €X; . and fix a compact Stein neighbour-
hood K of x according to Corollary 1.4.2. From the construction
there one sees that one can take K so that it has a fundamental

system of open neighbourhoods
ducible and U_cX, ,

0 o A

xEXu by (2.1.8). Since x€X
replacing X by a small open subspace contained in Xg , forget

about A and assume X = XA . Now, by T Corollary 7.4.2, X has

(U ) such that each U  1is irre-
o’ afA o
where A is the unique p €A such that

g , and XA is open in X , we may,

the structure of a complex space _Ered by putting Oxred 1= OX/Nx
Let N be the ¢(K)=-ideal NX(K) = F(K,Nx) . I claim N is prime.

Since the section functor is exact by Proposition 1.3.1 (ii) (or
Theorem B),



- 74 -

F(K,Ox ) = I’(K,OX) / TK,N)
red
But
r(K,0 ) = 1lim r(u_,0. ) ’
xred o€ A o xred
and the I‘(Ua,OX ) are integral domains because the Ua are
red
irreducible, so I‘(K,Ox ) 1is an integral domain, and N is in-
: red

deed prime. Now the natural morphism

(2.2.2) A

is flat for all x'€K(\Xir by Theorem 1.3.2. The ideal N generates
in OX <! the ideal Nx, via Ax' because of Proposition 1.3.1.
Localizing (2.2.2) at N gives that

(2..2.3) (A_,) F(K.OX}N —_— (0

X,x')Nx,

is flat, since flatness localizes. Hence (2.2.3) is faithfully flat,
being a flat local morphism of local rings. Pushing composition series

of F(R,OX)N to (OX then shows by standard arguments

I'X')le

(2.2.4) length((()X x') = length (Tl (K,0

N ) x)N’)

xl

(seé the following Lemma 2.2.4). But the right hand side does not
depend on x' , and this shows the Proposition.

From the literature, I cite the following lemma.

Lemma 2.2.4. ([31], Chapter O, Corollary (6.6.4)). Let p : A —> B

be a local flat homomorphism of local rings, M an A-module. Then




lengthB(M QAB) = length A (M) _-length(B/mA B)

in the sense that the left side is finite if and only if the right
hand side is finite, and then the equality holds.

We now consider finite mapgerms £ : (X,x) —> (gd,O) and choose
a good representative f : X —> B , which here is defined to mean

(i) B 1is a domain in (Bd :

(1i) if dim X <d , we choose f : X —> B so small that
dimx, X<d for all x'€X (which can be done by I 5.1.2, (iv));
put A := im(f) (then A is nowhere dense in B );

(iii) if dimx_)g =d , f should have the properties of the Local
Representation Theorem I 6.3.1 ;

(iv) Proposition 2.1.1 and Corollary 2.1.2 hold for X .

Note that always dimxgc_ sd by I 5.1.2, (iv), and that we may take
good representatives to be arbitrarily small, i.e. we are allowed to
.shrink them when necessary.

Proposition 2.2.5. Let f : X —> B be a good representative for
the finite mapgerm. f : (X,x) —> (gd,O) in gpl, with discriminant
lemgth(Quc::t(Ox x.)) does not

’

locus A . Then the number ): -1
x'ef |

depend on the choice of y€B-A .

y)

Proof. Let y€&€B-A . Then X-f"'T(A) gxir , and so all the x' Ef-1

are in xir . Tha claim then follows from the fact that

£ : X-fNA) —> B-4A is a covering map and from Proposition 2.2.3.

(y)

I can now make the main definition:

Definition 2.2.6. Let £f : (X,x}) —> (G:d,O) be a finite mapgerm in
cpl, , and f : X —> B be a good representative with discriminant
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locus A . Thenthe well-defined number,

o —
deg £ := ) length (Quot (0

)Y,
x'€£ y) X%

y any point in B-4A , is called the local mapping degqree of the
erm £ :

Remark 2.2.7. Since length(é?é'i/i(()x’x)) may be difficult to compute,
one hopes for a nicer formula. In fact, one may show that, in the
situation of Definition 2.2.6, one can find a nowhere dense subspace
A'=B such that X- f"1(A') is Cohen-Macaulay at all x 1lying over

B-A' (see Theorem 2.2.11); consequently
deg £ = length (Quot (0 1)
= _ dim , (0 /m_+0 ) ) '
for all y€B-A' , where my is the maximal ideal of ¢ a
T,y

We have the following simple but important fact:

Theorem 2.2.8 (Degree Formula). Let £ : X —> B be as in Defini-
tion 2.2.6. Then |

degx£= deg , £

x'Ef‘1(y) x =
for all ye€B .

This follows from the geometry of Definition 2.2.6. An algebraic
proof will appear below, cf. 5.1.7. Theorem 2.2.8. has the important
application that multiplicity will be upper semi-continuous along
complex spaces, see Theorem 5.2.4.



- 77 -

Exercise 2.2 .9. In the situation of Defintion 2.2.6

(2.2.5) deg f = ] . dim (0 /m_ 0 )

- L] 1
x' €€ (y) C X,x y X,X

for y€B-A and A a suitable nowhere dense analytic set in B .

For this, proceed as follows:

(i) Show by means of Fitting ideals that for an admissible module
M on a reduced complex space Y the set LF(M) := {y€Y|M is lo-
cally free at y } 1is the complement of a nowhere dense analytic
set (cf.[28], Chapter 4, § 4).

(1i) Let now £f be as in Definition 2.2.6; choose A in such a
way that f*Ox is locally free on B -4 .

Exercise 2.2.10. Use 2.2.9 (ii) to prove the following

Theorem 2.2.11. Let X be a complex space. Then the Cohen-Macaulay-

locus Xn.y, := {xezglox x LIs Cohen-Macaulay} is the complement of a
. L4

‘-nowhere dense analytic set.

¥hat is with the smooth locus X_ := {xfzxjox x 1s reqular} ?

§ 3. Geometric multiplicity.

'We now use the notion of the local mapping degree of a finite map~
germ to define the geometric multiplicity m(X,x) of a complex
space germ (X,x) € cpl, .

Geometric multiplicity in the reduced case is discussed in [13],

{38], [(61], [70] and [75].
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3.1. The tangent cone.

_ k, k+i . .
Let (ﬁ,x)Eigg;O , and grmx(OX’x) 1= kgomx/mx , which is a

finitely generated C—-algebra. Recall the notion of the analytic
spectrum of a finitely generated T-algebra in I .3.4.

Definition 3.1.1. C(X,x) := Specan(gr (0, )} , the tangent cone
’
of (X,x) Ecgl0 . X

To describe it in a more concrete way, choose generators
£1r-+osEy of m_, i.e. an embedding (X,x) =—> (€®,0) by I 4.4.2.
This gives a surjection

0 : Clz,,...,2_1 = gr_ (0 ) —» gr_ (0 )
1 n yn mn'o mx X,x 4
and so C(X,x) 1is defined in g? by the homogeneous ideal Ker (@) ,

hence is a cone ., If the ideal IO defines (X,x) , one can
' c,0
show that Ker(y) = L(I) , the ideal generated by the leitforms

L(f) of all the fe€I . So if I is generated by finitely many
polynomials, the standard base algorithm discussed in I Remark
2.4.4,gives finitely many equations which define C(X,x) .

Proposition 3.1.2. Dim C(X,x) = dim X = dlnlgrmx (Ox'x) .

Proof. A geometric proof is somewhat involved (see Proposition

3.1.3 (iii) below), so we use the elementary properties of dimension

of local rings. Now r 0 = gr her Mo
g g M;( C(E,X) ,X) g mx(ox'x) r W e X
is the irrelevant maximal ideal of 9r, (0x x) . Since these two
X r .

rings have the same Hilbert function, the result follows from the
well-known main result of dimension theory of local rings (see e.qg.

[ 1], Theorem 11.14.) and the fact that this Hilbert function is just
the Hilbert function of ¢

.

X,x
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We now shortly touch upon another, more geometric description of
the tangent cone,which puts it into a flat deformation of (X,x) i
this appears in [45], [70], and is a special case of Fulton's and
Macpherson's "deformation to the normal cone" (see [17] for the al-
gebraic case; the analytic case is analogous):

Let (X,x) <> (€",0) be defined by the ideal Ig0 . For
c”,0
fel , let £f*€0 0 be defined by
T xT,0

1

£*(z,t) :z_\)(TT.f(tZ) o
. t '

where mn

is the order of f(I(1.1.3)); Let I*cO 0 be the ideal generated
T xT,0 :
by the f* for f€I . It defines a germ (X,0) <> (gnxg,O) » and

the projection gnxg —> T defines a morphism p : (X,0) —> (C,0)

has coordinates z and € has coordinate t , and v (f)

and so p : X —> B , where Bc(C 1is an open disk around 0 (in :;
fact, it is easy to see that p is defined over C ). Then the fol-
lowing statements do hold:

Proposition 3.1.3 (Deformation to the tangent cone).

(i) (p~t), (0,t)) = (X,x) for all t # 0
(11)  (p7%0), (0,0)) = (C(X,x),x)
(iii) pg£t1ﬂx)}is a. nonzerodivisor in 0, y for all x€X . and

s0 p |is f£lat; especially dim _C(X,x) = dim X .

(iv) X - p~ o) = X

Corollary 3.1.4.

C(X,x) =u{z|z = lim xx' } .
x—+x'
X#x'
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where xx' 1is the complex line through x and x' , and the

limit is taken in %70 | ‘

In other words, settheoretically is C(X,x) the union of limits
of secants of X through x , whence the name "tangent cone".

3.2. Multiplicity.

Let now (X,x) €cpl, , d := dim X . We fix generators

f1,...pﬁ1€mx , SO an embedding (E,X)C—ﬁ»(E?,O) , and so an embed-

ding C(X,x) =—> € as in 3.1. Note that d = n implies
(X,x) = (Qn,O) by I 4.4.2. We now consider finite linear projections
of (X,x) onto {gd,O)

Definition 3.2.1. Let Grassd(mn) denote the Grassmannian of
d-codimensional linear subspaces ngmn (see e.g. [30], Chapter 1,
Section 5). Let (X,x) €gpl, . Then L€ Grass? (") is called

good for (X,x) if and only if x 1is isolated in LANX , and
excellent for (X,x} if and only if it is good for (C(X,x),x) , i.e.
LnC(X,x) = {x} .

We put
; d,.. _ d,.n
(3.2.1) Pg(g,x) 3= {Le;Grass (@) | L good for (g,x)} '
: d _ d, .n
(3.2.2) Pe(i,x) := {L€Grass (C) | L excellent for (X,x); ,

and use the notations

(3.2.3) Lrhxx: s LeP‘;(gg,x)

(3.2.4) LA, COx: = LePS(x,x) .
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If LEEGrassd(mn) , choose coordinates (21,...,zn) so that L is
™9 with coordinates (zg,1+++-+2 ) ; then the projection

LS ¢’ —> md .along L defiges the linear projection

Py T T | (X,x) : (X,x) —> (C°,0) . Then Corollary I 4.3.6 immedi-

ately implies

Proposition 3.2.2. 1If L.EPi(X,x) ' P is finite.

We now show that there is an ample supply of these finite projec-
tions P -

For this, we exploit the transversality condition algebraically;
the following observation seems to be due to Lipman [49], see also
[69].

Let f : (X,x} —> (Y¥,y) be a mapgerm; then £ induces
0 . .
grm(fx) : grmy(OY'y) —> grmx(OX'x) , SO by localizing at the irre-

levant maximal-ideal a homomorphism OQ(XrY)'Y —> Og(g,x),x , and

hence a mapgerm
a.f : (C(X,x),x) —> (CY,y),y)

called the differential of f at x .

Proposition 3.2.3. Let f : X,x) —> (gd,O) be a mapgerm,

d = dim]{E . The following conditions are equivalent:

(W) af : (Cxx),x) —> (€%,0) is finite ;

(11) the ideal g := fg(md)-ox . is a minimal reduction of m_

In particular, then, £ : (X,x) —> (Ed,d) is finite.

Proof. Let f be defined by ¢

let G := 9T, (0
x

1,...,demx. To simplify notatign,

X x) , and let M+5;G be the irrelevant maximal
!
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ideal, M+ t= B G Let f£* be the image of f. -in G ==m‘/m2 ,
k>0 k J 3 1 XK
j=1,...,d , and Q := (£%,...,£%) G . Let '
* .= * * . * N
qx : (f ,...,fd) oc{g,x),x Consider the injections
G/Q ——> (G/Q) c—> 0 | / q*
® mto /) ¥ C{X,x}),x " "x
If dim{

% - . , - _
C OC(E,x),x./qx)'< , it follows that dlmm(G/Q) <» ., Conver

sely, if dimm(G/Q)-<p , G/Q is artinian, and so, since it is gra-
ded, must be local, so that in fact ¢ 1is an isomorphism. Now ¢ |is

faithfully flat by (4.1.3), and so by Lemma 2.2.4 we get

dim_ ((G/Q) y = dim,, (0 /q*) . Consequently,

T mt. (6/Q) C "C(X,x),x" 'x
dimm(Oc(E'x)'x,/q;) = dimm(G/Q) hence is finite. It follows that
dim¢(OC(§'x)’x /q;)<<m is equivalent to dimm(grm(ox'x)/Q)~<m . But

the first inequality means dxé is finite by the Integrality Theorem
I 4,4.1, and the second one that g is a minimal reduction of m
by Chapter II, Theorem (10.14) and Corollary (10.15). Especially,

X

L is m-primary, and so dima:OX /qxlcm , whence f 1is finite by

' X
the Integrality Theorem I 4.4.1.

We now get:

Proposition 3.2.4.

(1) £ EGrassd(ﬂ:n) p LfﬂxC(g,x) implies Ld‘lxx , and so

If L
d

d
Pe (X,x) ng

(X,x)

(ii) Pg(g,x) , and so a fortiori Pg(g,x) , 1s generic in
d,.n

Grass () .
Proof.
(i) 1is direct from Proposition 3.2.3.

(ii) We may assume 1s5dsn-1 . Put

n

R := {(L,JL) EGrassd((I: ) >t11?n-‘I | REL} '

where ]Pk := ka(m) denotes complex projective k-space. We have the
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diagram

v

Grassd(mn) '

where p,qg are projections. We now use some elementary Algebraic Geo-
metry, as e.g. in the first chapter of [56]. This is a diagram of
algebraic varieties and algebraic morphisms, and p is proper. Let
PC(X,x) g P
p(q-%IPC(ﬁ,x))) is an analytic, even algebraic, set in Grassd(mn) .

be' the projective tangent cone. It follows that

and so is either nowhere dense in Grassd(mn) or coincides with it,
since Grassdtmn) is a connected, smooth, and hence irreducible,
variety. But equality p(qq(n>C(§,x))) = Grassd(En) means that any

d-codimensional plane in ]Pn_1 hits I C(X,x) gIPn-1

, which can-
not be since it has projective dimension d -1 by Proposition 3.1.2.
Finally, note that PZ(K,x) = Grassd(mn)-p(q-%IPctg,x))) , which

implies (i) .

Remark 3.2.5. The inclusion Pg(ﬁ,x)ggPé(g,x) says that if
L€ Grassd (ﬂ:n) has dime nxzi1 there should be a line 2 cLNC(X,x)
which is intuitively clear,since dim}cL}Ix:ZT tells us there are

secants xx'cL with x' # x arbitrarily close to x . So a geo-
metric proof could be based on Corollary 3.1.4, for which, however,

I did not give a complete proof. The existing geometric proofs of
Proposition 3.2.4 (i) in the literature ([131, [75]) are somewhat in-
volved. Proposition 3.2.4 (il) is also in [75] (Chapter 7, Lemma 7N).

We are now ready for the definition of multiplicity.

Definition 3.2.6 (Geometric multiplicity). Let (X,x) Egg%o ’

d := dim}(X . Fix generators f1""’fn of mx , l.e. an embedding

(&,x)‘=—> (mn,O) . The geometric multiplicity m(X,x) of (X,x)
(with respect to this embedding) is defined to be
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m(X,x) := gln {degxPL}
L€Pg(§,x)

Proposition 3.2.4 (ii} implies that this definition is not empty.
m(X,x) depends a priori on the embedding. It will be shown algebra-
ically in Theorem 5.2.1 that this is not so.

Exercise 3.2.7. (i) Brove by geometric means that m(X,x) degends.
only on the isomorphism class of (X, x) EE gg%o

Hints: First show that it suffices to compare embeddings of equal
dimensions; here (2.2.5) might be of use. Then use Proposition I
3.2.1, to show that

(3.2.5) m(_}_{_,x.) = min {degxg}
£:(x,x) -+ (@2,0)
f finite .
(ii) Conclude that m(X,x) = 1 when (X,x) is smooth. Show that
conversely (X,x) is smooth when (X,x) is equidimensional and
m(X,x) =1 (Criterion of multiplicity one).

Hints: For the converse prove that a finite extension (¢ g > OY y
' T ,0 !

of degree one, where 0Y y is an integral domain, is surjective. For
r

this, use the Local Representation Theorem I 6.3.1 and the classical

Riemann Extension Theorem (see I Remark 6.3.3).

Example 3.2.8. If L ¢ Pg(g,x} , it can happen that degx}gL £ m(X,x) .
For instance, let X &> gz be defined by z, -zg =0, L := the
zz—axis, x = 0 . Then m(X,x) = 1 by Exercise 3.2.7 (ii) above, but

a
deg, p; = 2 . However, I.EPE(E,x) will imply deg, p; = m(X,x)
Bee Theorem 5.2.1.
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§ 4. The geometry of Samuel multiplicity.

The purpose of this paragraph is to give a geometrié interpreta-
tion of the Samuel multiplicity e(q,OX'x) of an m -primary ideal
0 in the local analytic C-algebra Ox'x ; it will turn out to be
canonically the geometric multiplicity m(C,0) , where C 1is the
geometric affine cone corresponding to grq(OX'x) , and 0€C its
vertex; see Theorem 4.4.2, This has, of course, to do with very
classical Algebraic Geometry, namely the fact that the Hilbert func-
tion of a projective variety determines its degree, which is the
number of intersection points with a generic complementary linear sub-
space. This should explain, or at least motivate, the usual abstract

definition of elq,0 ) by means of the Hilbert function of

X,x

gr (0 ) . The reader who takes this definition of e(q,0 )  for
g X,x r"X,x .

granted may skip this paragraph.

4.1. Degree of a projective variety.

Let _z_g:[E’n-1 be a projective variety, i.e. an algebraic C-scheme
of finite type. We denote the structure sheaf of Z , when 2 is

regarded as an algebraic variety, by 0;19 ; so Z 1is given by the
ideal sheaf generated in Oall?__1 by a homogeneous ideal
P

Ic (I:[z1 PRP ,zn] . Let ggg_:n be the corresponding cone; as an alge-
braic variety, C = Spec(R) , and as a complex space, C = Specan(R)} ,
where R 1is the graded ring ¢[z1,...,zn] /I .

Classically, the degree deg(Z) of Z2 1is defined to be the
number of intersection points of Z with a general (d-1)-codimensio-
nal proijective plane' E’g:@n-1 , where d -1 1is the projective dimen-
sion of 2 , and hence d is the affine dimension of C . One has,
however, to be a little careful what "general" means, and what

"number of intersection points" means when 2 1is not reduced.

In analogy to Proposition 3.2.3 for cones one has
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Proposition 4.1.1. The set P2_1(§) 2= {PGIGrassd—TtPn_1) |Pf1i
is finite} is generic in Grassd—1tmn_1) .

Proof. We use basic Projective Algebraic Geometry, -see e.g. the
4@ ") with P'nz= g
pd-]

first 72 pages of [56 ). There is P' € Grass
since dimZ = d-1 ; then the linear projection dpr ¢ Z —>
along P' is finite, hence for 2z €272 , the linear space through P'
and z hits 2 in only finitely many points. So Pg'T(E) £ 0

Now let P := T(z,L)gan‘1 xGrassd“1tPn-1)| z EL} : it has a cano=-
nical structure as an algebraic variety P , and the projection gives

a fibre bundle P —> P" ' , which, by pulling back via zc—> P%7

gives us a fibre bundle I —£-> z with

.= {(z,L) €2 xGrass§-1(IPn-1)| z EL} . The projection

2z <> Grassd-1(1Pn_1) is proper and finite at some point, so it is
finite over a nonempty Zariski-open subset of Grassd-1(IPn-1) , say
over Grass®™! (™) - A(zZ) , where A(2Z) is a proper Zariski-closed

subset. Q.e.d.

Remark 4.1.2. Since g 1is finite outside a nowhere dense analytic

set of Grassd ! (IPn-1

dense analytic set. One may use this to prove that the set

) . 9. Oz is locally free outside a nowhere

d-1 - a-1
with 2, := {z€2]0 is Cohen-Macaulay} , is generic in
CM 2,2

Grassd™! (P

morphic outside a nowhere dense analytic set, and one can equally
show that then

n-1) . Similarly, if 2 1is reduced, ¢ is locally iso-
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d-1 _ d-1 -

(4.1.2) Preg(g_) 1= {PEPe (2) | PﬂZngeg and P 1is trans
versal to Zreg along PNZ }
is generic in Grass®~ ' (2™ ) .
Definition 4.1.3. The degree deg(Z) of z<—> ggn-1 is defined
to be
deg(z) := ] deg q
zeznp  (Z/P)
o .d=-1, _n-1

where gq : I —> Grass (P ) and A(Z) are as above, and
Pecrass®  (B"') -a(z) = P57z .

That this number is independent o¢f P can be proven as in Propo-
sition 2.2.5, but it is simpler here, since we will see that we could,
have worked with the algebraic local rings, and then the local constan-
cy of the degﬁhp)g along Zir follows without using compact Stein
neighbourhoods; see Corollary 4.1.5 below.

Lemma 4.1.4. Let Z be an algebraic variety over C . Let Zir be

the locus of points where - 2 1is locally irreducible as a complex

space, Then, if z.EZir ,2 lies on a unique irreducible component
of Z as an algebraic variety, ZA say, and

L el A
length (Quot (0, _)) =length(Quot(d, _)) = 1ength(é?16€(oglg))
- alg
—length(OZ'Z ),
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where Oglg is the local ring of 2 along Zy .« In particular,
TA

it is constant along 2, N32Z._ .

A ir

Proof. Consider the inclusions

alg =S c - palg
F4'1'3) OZ z ° 0 2,2 1 > eZ,z - Oz,z .

Then, since (¢ is integral, so is (Oalg) , and z is

Z,z)red
on a unique Z, . Moreover, ¢y and Y °¢ are faithfully flat as

red

completion morphisms, and hence so is ¢

Now it is known (and this is a nontrivial result) that for'an
integral local analytic CT-algebra R the completion ﬁ is integral.
For this see [64], Exposé 21, Théoréme 3 on p. 21-13. Or use the fact
that the normalization R' of R is again a local analytic algebra
([261, Satz 2 on p. 136); since R is excellent, the minimal primes

of R correspond to the maximal ideals of R' {[12], Theorem 6.5),
A
and so R is integral. Applying this to R := (OZ z)red , one has
’

A 3 ] ]
R = ﬁz,z /Nz-az'z is integral, so Nz-az'z is prime and so eguals

. alg =
ﬂz , the nilradical of 32'2 . We thus get Nz -OZ’z = Nz .

A
Nz .3z z - Nz . We now can localize and get morphisms
' r
. P ) ) A
(4.1.4) Quot(Oalg) —> (Suot(()Z z) > 636%(02 z) ,
! L4 ’

which are faithfully flat, and Lemma 2.2.4. gives length(Quot(Oalg)))

— A
length(Quot (0, )) = length(dGEE(OZ ,)) . Finally, assume
I r
2 = Spec(p) affine, where A 1is a finitely generated C-alebra,
with ZA corresponding to g € Min(A) ¢ an and 2z to a maximal ideal
al - _
m of spec(dA) . Then pcm , and so Quot(O g) = (Am)p =

_ _ nalg
) é” ) oz'zx
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Corollary 4.1.5. deg(Z) does not depend on the choice of P

Especially, if Z is irreducible and reduced,

deg (z)=# (znp)

Lemma 4.1.6. Let X be either an algebraic variety over @ or a

complex space, and let (¢ denote either the algebraic or complex

analytic structure. Then, for all k20 , and x%€X (the irredu-

ir
cible locus with respect to the complex analytic structure),

k
(x,0) € (XxC )ir , and

— —
length(Quoth )} = length(Quot ))
. P X k
XxCT, (x,0)
In particular, if £ : (X,x) —> (gd,O) is finite,

deg:{g = deg(x,O)(valdmk) for all k .

Proof. We may assume k=1 . Consider the faithfully flat extension

(4.1.5) 0y v —> Opr .oy = Og HED .

A .
The nilradical of Ox gtll 1is N0y [[t]] , and so

A .
x5/ NOx ) LET]

A A
Haxﬂtlﬂred = {0 (Ox,x)red ((t]] by the proof of

A A

4.1.4; so if Nx is prime, Nx uxfox'x is prime, so xfEXir im-

plies (x,0} € O(xm)ir . The claim now follows again by Lemma 2.2.4 and
Lemma 4.1.4.

Proposition 4.1.7. Let 2Z&—> ggn_1 be a projective variety of

dimension d-1 and with homogeneous coordinate ring R .. Then for

any PEIP2_1(§) and P' a hyperplane in P with ZnP' = @ :
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deg(2z) = ] deg, g, ,
ZEZNP
d-1 . . . ,
where dp: ¢ Z—> P is the projection with centre P

(cf. (5.3) and (5.4.) in Mumford's book {56 ])

Qutline of proof.

Let the notaticons be as above. Fix P and P' . Let
JPn-2 g]Pn_1 be a hyperplane containing P' and not meeting 2Z NP
Finally, let pd-1 _c'__‘_IPn-'1 be such that %' np' = @ and
d-1

n-2 IPd-1

r n e is a hyperplane in

(see Figure 4).

Fig. 4
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We say two planes L,L' g:@n-1 are transversal, denoted LIDL' '

if LNL' has minimal possible dimension. Put

Ip‘g'1 = P4 o @9 ptT?) Grassd-1(IPn‘1)0 += {QEGrassd-1(IPn-1)|
QmiPd_1 ) thIP“‘?‘ ’ th]Pd'1 nm“'z} . and

Grassd™] (19“'2)0 := {Q' € Grass¥ 1 (®"2) | o' § 2! n]Pn_z} . These
are nowhere dense Zariski-open subsets. Finally put EO :=.§-:mn'2,

-1 -1 d-1, _n-1
and I, :=p (Z,) Ng (Grass~ (P )0)

(notations as in the proof

of Proposition 4.1.1). One then gets the diagram

f
(4.1.6) Zy < 7z, *Qggggd—1(mn'2)0
g
d 9p x id
v \'
h
Grass@ @™y > p9T xGrassd_1(Pn_2) ,
0 < ” -0 0
' n-2
where £f: (z,Q) > (z,QNIP ) ’
g : (z,Q') > (2,Q' vz) , where Q'vz denotes the plane
spanned by Q' and 2z ,
h:ob— @ne? ! gnp™?

k= (z,Q") > Q' vz

Then f and g are inverse to each other, and so are h and k .
Over P € Grass -1(IPn'1)0 , the diagram is commutative, and so for
Z€EZNP :

deg(z'P) g - deg(zrp_') (HP' xi_d') - degz (q ) ’

the last equality from Lemma 4.1.6. This proves the Proposition.
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Theorem 4.1.8. Let 2 &> gnq

d-1 with homogeneous coordinate ring R , and let C <> gn be the

be a projective variety of dimension

corresponding affine cone. Then

deg (2) = m(C,0) '

the geometric multiplicity of C at its vertex.

Proof. Let €° have coordinates (21,...,£n) ; we may assume

IPr_l_z_c;_;Pn_1 in 4.1.7 is given by z_= 0 . Let L' €Grassd—1 o)

correspond to PEZGrassd-1tPn-1) ,nand !

corresponding to P2 | Let L :=1'ne™ " and put C, : g-—mn—1
H, N pe

the affine hyperplane given by z, = 1 , and put g1 1= EO 31 .

Now consider the commutative diagram of morphisms of algebraic varieties

5(]:rl be the hyperplane

r

where C 1is te affine cone corresponding to 2 . Let cC
n

I

-*
(4.1.7) 91 LJ:—-) 9_1 x g‘ Y > _C_O - >)£0
n
P |H p p d,,
-L 1 =L =L ( =
) l ©) )
v v v
a-1 . da a-1 a a-1 T3 _a-1
g ==—— ¢ 'xg* = L -C > By

Here, the left horizontal arrows are inclusions via z' —> (z',1)
u 1is induced by mn'1 n-1 with (2',A) —> (rz',Xx) ,
and the right horizontal arrows are induced by the canonical projection
LIV GN-{O} —-»GPN‘1 . u 1is ;somorphic, the inverse being induced
by et - s o e pzo= (z',z) F=> (2'/z_,z ) (see

Figure 5).

r

x@* —> ¢ -
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Fig. 5

From this figure, the result should be intuitively clear, since the
intersection of P with Z corresponds to the intersection lines

of L' with C,which in turn correspond to the intersection points
of the affine plane P0 ﬂ=P'-Cn-1 = H1I1L' with C ; but we must

check the multiplicities.

The composite horizontal arrows give isomorphisms, so, since mn'1
is disjoint from 2Z2nP , deg(Z) = Z degwg' , =
WEZNP P
deg ., (p, |H,) . But this equals deg, P, by Lemma 4.1.6 and

Z2' ZL' 1 0 =L
2 €C,NP,
‘the middle square in (4.1.7.). So deg(Z) = degOEL for all
I.EPg(Q,O) = Pg(g,o) + which proves the claim.

p € Assh(R) , be the irreducible components

Corollary 4.1.9. Let Zg
of Z of dimension d4d-1 , given by a homogenecus primary decomposi-
tion of 0 in R . Then
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(4.1.8) deg(z) = ) length (Ry) -deg (Z)
p€Assh(R)

Proof. As PEPd_1(Z) hits Zg for p €Assh(R) , and these corres- .
pond to the max:.mal irreducible components of C0 , it suffices to
show length(Quo\..(O )) = length(Rp) for =z ¢ (Co)ir and p cor-
responding to the irreducible component on which 2z 1lies. Now the

affine coordinate ring of Cy is Riz ) and zn¢p , Since other-
n
wise Z NP would not be disjoint to IPn_2 . Then oalg = (R ). =
sz C,z {z,)'p
R , and the claim follows from Lemma 4.1.4.

B

4.2. Hilbert functions.

The following result is classical; it was, at least in the reduced
irreducible case, known to Hilbert ([32], p. 244), and, in general, to
‘Macaulay [50], footnotes on pp. 82 and 115).

Theorem 4.2.1. Let .R be the coordinate ring of a proiective variety
22— P! of dimension d. Then the Hilbert function

B(R,k) := dima:Rk has the form

(4.2.1) H(R, k) = SHEL k971 4 1ouer terms

for k>>0

One way of geometric thinking about this goes as follows: For any
projective variety Z and coherent Oz—module M  put

(4.2.2) X(z,M = J -1t aimutz,m

where all H* (2,M) are finite dimensional and ‘0 for i>d-1

([65]) , and one may either take analytic or algebraic sheaf cohomology
(66]) .
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Let M be a f.g. graded module over (B[X1....,Xn} and M the

corresponding coherent 0 -1 -module. By celebrated results of [65] ,
. 4 r
Hl(IPn“1 M(k)) =0 for i>0 and k»>>0 , and M

for k>>0 , hence

- n-1
K ST(P Mk))

(4.2.3) H(M,k) := dim M = (™! ,M(x)) for k»>>0

k
Now take any hyperplane peis ™1 | defined by a linear form F ;
then the exact sequence

(4.2 0 —> 0 __ (-1) “55 0

—> 1,0 —> 0
P IPn—1 *“H

induces (loc. cit. p. 277)
(4.2.5) 0 —> M(k-1) —> M(k) —> i,(i*M(k)) —> 0

for all k as soon as H 1is in general position with respect to
supp M , namely F should not belong to any prime of the homogeneous
primary decomposition of M , except the possibly present irrelevant

. maximal ideal.

‘By additivity of X , then,
(4.2.6)  x(P"7' ,M(x)) = x (27T, M(k-1)) + X(H,i*M(K)) .

Applying this to M = R gives the recursion

(4.2.7)  X(2,0,(k)) = X (2,0, (k=1) +X(Z NH,0, . (k)) ,

ZNH

and by doubly inducting over k and d one gets

. d-1 (4) j+k=1
(4.2.8)  X(z,0,(k)) = | (zng 7,0 ()" '
3=0 ZNH J

where H "'Hd—1 are hyperplanes in general position defined by

1"° .
linear forms F1,...,Fk,and E(J) := §1n...n§j . So
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(4.2.9) H(R,k) = X(2,0,(k)) for k>0

is indeed a polynomial of degree d -1 in k , whose leading coeffi-

1

cient is =T X(grwg,ogrwg) , where P is a (d-1)-codimensional
plane in general position, and Z NP the scheme-theoretic intersec-
tion. But since P2—1(§) is generic in Grass®™ 1 (") , we then
have that, for a general choice of H1""’Hd—1 , the intersection

ZNP consists of finitely many points. Then

(4.2.10) 0 = @ 0 ,
ZNP ~ Lepnp 2NP,z

a direct sum of artinian rings, and so

) = )} dim (0 )

(4.2.71) X(znep,0 T ' ZNP,z

-~ zZEZNP

Choosing P' <P a hyperplane in P with P'NZ =-¢ , Ap 12 —> ggd_1

will be finite ; so {qP;uOZ) being a coherent sheaf, will be generi-

cally finite.. So moving the Hj we may assume that OZ 2 is locally

free over ¢ ¢ for all zezZznpP with PIWIPd_1= {Z;L
d-1 1 d-1
r , 2 @ , 0
But then
(4.2.12) length (Quot (0 -
2. ength (Quot ( Z,z)) = rank, 4 (Oz,z)
C ,0
= dlmﬂ:(oz’z/md_q-OZ,z)
= dlmm(OZ ﬂP,z) '
which implies deg(Z) = Zegnpdegng, = x(glﬁg,oznp) . Q.e.d.

For a more classical proof which does not use sheaf cohomology see
[56], p. 112 £f, which works for the case 2 reduced irreducible.

Since H({-,k) is additive on modules,

(4.2.13) H(R,k) = ) length (R _JH(R/p, k) ,
pEAssh (R) B
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and so the general case follows also from this because of Corollary
4.,1.9.

4.3. A generalization.

Let A€ la Dbe an artinian local C-algebra corresponding to a one-
point complex space S = ({s},A) € cpl

Definition 4.3.1.

(i) ;_1 := §_xggn—1 , projective (n-1)-space over A .

(i1) A projective variety 2 over A is a closed complex sub-

space 2 <—> P;_1 defined by a homogeneous ideal
IgA[Z1,...,Zn] for some n :

Remark 4.3.2. Projective varieties correspond to finiteiy generated
graded A-algebras (positively graded, By = A , generated by B, ).
In fact if Z 1is as above, R := A[Z1,...,Zn]/I » 2 = Projan(R)
(see III 1.2.8), the complex space associated to the projective scheme
Proj (R) '

Corresponding to 322-1 there is affine n-space 352 := s xg"
over A . Corresponding to 2 <—> 122_1 there is an affine variety

n .
C=> m, , in fact C = Specan(R) as a complex space. We call again

C the cone associated to 2 , and 2 the projective cone P C of
C .
n-1 r n—-1 . .
Let IP ——=> EEA be the morphism given by
_— c— n ; 1@ -

A[Z1’°"’Zn] > (A/mA)[Z1,...,Zn] . If 2 > EEA is a projec
tive variety over A , we put go =3 gfﬁg) and
(4.3.1) deg (2} := (dim ;A)-(deg(Z,)) .

Now let M be a finitely generated B-module. Define again the
Hilbert function H{M,k} to be

(4.3.2) H(M,k) := dimerk
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Then Theorem 4.1.8 and Theorem 4.2.1 still hold with the convention
(4.3.1) for deg(2) -

4,4, Samuel multiplicity.

Let now (ﬁ,x)E:cglO , 1 an mx—primary ideal of OX % ! defining
- ’
a zero dimensional complex subspace of X supported on x , which

we call x(gq} .

Definition 4.4.1 (Normal cone). The normal cone of x(g) in x is
defined to be

C(X,x(q)) := Specan(gr (0 ))
- = = q X,X
In case q = m , C(X,x(q)) = C(X,x) , the tangent cone.
The epimorphism Sym(q/qz) —_> grq(Ox X) gives an embedding
P C(X,x(n)}) C—o-gg§-1 , where d := dimm(q/uz) and A v=R/q'. Taking
the Hilbert function of P C{X,x(4)) with respect to this embedding

we get from Theorem 4.1.8, Theorem 4.2.1 and the discussion in 4.3:

Theorem 4.4.2. e(q,0y ) = m(C(X,x(q)) ,x)

Remark 4.4.3. For an extension of this to the general scheme-theore-

tic context see the paper [57] of C.P. Ramanujam.

§ 5. Algebraic multiplicity.

In this paragraph, I show the equality m(X,x) = e(mx,o ) for

a complex space germ (X,x)

5.1. Algebraic degree.

I now give some algebraic formulae for the local mapping degree,
which relate it to Samuel multiplicity.
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Proposition 5.1.1. Let X be a complex space, M a coherent OX-'

module, and 2Z be an irreducible component of the support supp (M)
of M . Let the ideal PcO, define 2z in X . Then

(i) For zfszir , the localization (Mz)P is an artinian
%

(Ox,z)pz-meégés:

(ii) the function 2z |—> length(Mz)P is locally constant on
z :

Z 3 .
ir

Proof. The proof is analogous to the proof of Proposition 2.2.3,
s0 the details are omitted. One proves

lengthw ((Mz,)P = lengtho(K)PMP for z'€Z,_ NK ,

X,z')Pz, z! iz

where, for given zEZZir , K 1is a suitable compact Stein neighbourhood
of z , P 1is the O(K)-ideal 1I'(X,P) , and M the ((K)-module
I'(K,M), by localizing the flat map '

Az' 2 O(K) —> OX,z'

at P and again using Lemma 2.2.4.

We now apply this,with £ : X —> B as in Definition'2.2.6, to
the coherent OB-module £,0,

Corollary 5.1.2. The number
{5.1.1) ) . dimy ot (0 i) (Quot(Omd ) ® 04 oX'x.)
x'€f (y) c,y Y Y

is independent of vy €B .
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Proof. By I Theorem 4.1.1,

(£,0,) = ® 0 , for all ye€B
* X'y x'€f_1(y) X, x

as an 0 a -module. The claim now follows by Proposition 5.1.1.
C ,y
Recall now Serre's notation: Let R be a local ring, 4 an
mR—primary ideal, M an R-module, de N such that dim M s£d ;

R
then put

e(q,M) 1if dhnRM =d

5.1.2 ez
( ) eq(Mld)

0 else

(see [67], p. V-3). We then have the formula (loc.cit, or Chapter
I, Theorem (1.8)):

(5.1.3) eq(M,d) = ) length(Mp)-eq(R/p,d)

dim(R/p) =4

(because of additivity of length).

.Corollary 5.1.3. 1In the situation of Corcllary 5.1.2, the number

(5.1.4) ) e (0

d)
x'Ef;%y) Uy

x’xl r

is also independent of y € B , where qx, is the ideal in 0

X,x!

generated by the maximal ideal my of 0 a ; in fact it equals
C .,y
the number (5.1.1.).
Proof. The number in question is e ({f*Ox)y,d) , which by (5.1.3)
is just length (Quot (0 a '%0 g (f*ox,x)y) , since R = 0 4 is
Ty c-, C,y

regqular and so e(m,,R)=1 ., And this number is (5.1.1).

d

We now can characterize the local mapping degree algebraically.



- 101 -

Theorem 5.1.4 (Multiplicity formula). Let £f be as in Definition

2.2.6. Then the following numbers are equal:

(1) the local mapping degree —degx£ ;

(ii) dim (Quot/0 ® 0 ) ;
Quot( 0 d 0) ( md,o) Qq:d'0 X,x

\ ¢
(iii) the Samuel multiplicity eq(()x x,d) with
g = md'ox,x = (fT"“'fd)'Ox,x , where (f1""'fd) define

f according to I, Corollary 3.3.5.

Remark 5.1.5.

a) .For a complete local ring containing a field which is an integral
domain, (ii) was Chevalley's original definition of the multiplicity

e{qx,()x x) (up to multiplying with the degree of the residue field

extension, which is 1 here) in [ 9], § IV. Somewhat later he extended
it to quasi-unmixed local rings in [10], Definition 3 on p. 13, and
his definition can be shown to be again the number (ii). In other
words, the philosophy behind his definition was to mimic,by passing
to the completion, the notion of local mapping degree by an

algebraic construction. See also Remark 5.1.8.

b) The equality of (ii) and (iii} is a special case of the Projec-
tion Formulé (Theorem (6.3) in Chapter I).

Proof of Theorem 5.1.4. We may assume dim X = d , since other-

wise all numbers are 0 . The equality of (ii) and (iii)} has just
been seen in the proof of Corollary 5.1.3.

To prove the equality of (i) and (ii), we are reduced, by Corol-
lary 5.1.2, to prove the equality

{Quot {0 ) @

(5.1.5) length(Quot(Ox <))
’ C,vy T,y

=dimg ot (0 g )
c ,y

in the special case where in the diagram
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/X') <= (X,x")

red
2
(E rY)

g is an isomorphism and where i 1is defined by

OX,x' —-»»Ox'x, /Nx, . We thus have that in the situation
£, 10,
0 —X S0, , —%X % 0, _,/N_, ,
Ed,y X,x X, % X

fg, is injective by I Theorem 6.2.1 and ig. ofg, is an isomorphism.

The claim then follows from the following Lemma.

Lemma 5.1.6. Let R<—> S be a finite extension of local analytic

C-algebras such that R is an integral domain and the nilradical
———

g of S is prime. Then Quot(R)@RESEQuot(S) .

Proof. Since ng is prime, any element of S is either nilpotent

or active by (2.2.1). By the argument in the proof of the Active

Lemma I 5.2.2 and t € Ac(S) = S-ns satisfies an integral equation

{5.1.6) tT+r, .t + ... + r1t+r0 = 0

with k21 ,erR for 0<3sk-1, and rO#O .

Now any element of Quot(R) ® S can be written as a fraction s/r

R
with s €S, r€R - {0} . Since R - {0} &> S--ns , we can consider
this as an element of 633?(8) , and this gives a homomorphism
—~—
(5.1.7) © : Quot(R) ®. S > Quot (S)

I claim ¢ 1is an isomorphism.

Injectivity of ¢ : Suppose s/r € Quot(R) @RS maps to 0 in
e
Quot (S) . This means there is t €Ac(S}) with t.s = 0 ., Multiplying
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(5.1.6) with s shows ryes = 0 , with rOEZR-LYO} , hence s/r=290
in Quot(R)@RS = (R-—{O})—1S

Surijectivity of ¢ : Let

O —
s/t € Quot(S)

; it suffices to produce
u€S such that tu = r€R - {0}

, for then s/t = su/r

Now t €Ac(S) , therefore (5.1.6) gives

t(tk-1-+r tk'-2 + ... +r1) =

so i1t suffices to take u := t +Tr t + ..

Remark 5.1.7.

The degree formula 2.2.8. holds.

This is now immediate by 5.1.2 and 5.7.4.

Remark 5.1.8. Formula (3.2.5)

can be written as

(5.1.8)  m(X,x) = min {d”bntm JQuot (0 5 )8, 0 1
(E,s-..sEg)8.0.p. R ¢,0 T, %,x ]
of. 0
X,x

A
By the proof of Lemma 4.1.4, Quot(OX x) —> Quot(()x ) 1is a flat

morphism of local rings with residue field extension of degree 1;
from this one can show

dim (Quot (0 ) ® 0 ) =
QUOt(O¢d 0) Gd,O Omd

X A A
dimy e o . )(Quot(amd 0) ® 5 4 Oox’x)
m ’0 ’ E r

which is just Chevalley's definition of his e(OX x;f1,...,fd)
r
corresponds to taking the minimal value of these multipli-

cities, as asserted in the Historical Remark Chapter I,

So m(X,x)

(6.7),c).
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5.2. Algebraic multiplicity.

We now characterize the geometric multiplicity algebraically.

Theorem 5.2.1 (The Multiplicity Theorem). Let (X,x) &> (gn,O)
be an embeddine of (X,x) € cglo‘, d := dimx§ , and LEEPg(E,x)
Then
(1) deg P .z e (mx,Ox'x) ;
(11) if LePd(x,x) , deg P. = e(m ,0_ ), and

_ e =’ ! x =L X X,X —_—

if (X,x) is pure dimensional , the converse holds;

(iii) - m(§,x)==e(mx,0X «)s i.e. the geometric multiplicity
of (X,x) equals the Samuel multiplicity of OX v Especially,
m(X,%) does not depend on the embedding (X,x) &> (gn,O) , but
only on the isomorphism class of (X,Xx) in cpl0

Proof.

{i). We have dengL = e(qx,Ox'x) by Theorem 5.1.4, where

=, | . ‘
iy = Bp (Mg Oy x - Since g gem  is m -primary,

’

0 . .
e(qX'ox,x) Ze(mx, X,x) by the definition e(qx,Ox'x)

. d . ,
(ii). If Le Pe(g,x) , L'M(C(E'X) , which means dXEL is quasi-
finite at x € C(X,x) , and hence finite as a mapgerm

dng ¢ (C(X,x),x) —> (gd,O) by I Corollary 4.3.6. So Ty is a

minimal reduction of m by Proposition 3.2.3, and so

e(qx,dx’x)==e(mx,dxfx) by Chapter I, Proposition {(4.14.). The con--

verse is just the Theorem of Rees (r, ,[49] , Theorem 1-of &1 ); o
}F -

(iii). This is immediate from (i) and (i1). Q.e.d.

For geometric proofsof Rees's Theorem in the reduced case for the
maximal ideal see [131, Th. 6.3 and (75], chap. 7, Th. 7P. For the

geometric interpretation of the general case of Rees' Theorem see
ITI, 3.2.2. ’
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Corollary 5.2.2. m(X,x) = m(g(_}_{_,x),x)

This gives a geometric proof of the following well-known fact:

Proposition 5.2.3. Let (X,x) Ecplo be equidimensional. Then

m(X,x) = 1 implies ({X,X) 1s smooth.
Proof. m(X,x) = m(C(X,x),x) by Corollary 5.2.2.
= deg (P C(X,x)) Dby Theorem 4.1.8, where
C(X,x) &> ¢” with n = dimm(mx/mz) . But deg(PC(X,x)) = 1 implies

that PC(X,x) 1is a (d-1)-dimensional linear space (see Exercise)
and so d = n , since otherwise m. could be generated by less than
n elements which cannot be. This proves the claim.

Exercise: IPC{X,x) 1is equidimensional (Hint: Consider 3.1.3. Or
blow up X at x ). '

As an application of 5.2.1, we now prove:

Theorem 5.2.4. (Upper Semicontinuity of Multiplicity). Let
X €cpl . Then the function x b—> e(mx,o

}) is upper semicontinu-

ous, i.e. any x€ X has a neighbourhood U such that
e{m

x"ox,x') Se(mx,ox’x)for all x'€U .

Proof. Since the claim is local, we may assume (X,x) &> (c,0)
for some n . Let LEPi(_)g,x) where 4 = dimxxd, then thxx by
Proposition 3.2.4 (i), and so pp (X,x) —> (C ,0)d is quasifinite
and hence finite by Proposition 3.2.2,830 L +x'" €P_(X,x'} for

x' near x . Choosing U sufficiently small, we have

e(mx,OK x)= degxgL by Theorem 5.2.1, (ii)
T~ Z-T deg?c'-EL by Theorem 2.2.8
xep (x")) £ T
2 deg <! b
2 e{mxuox <) by Theorem 5.2.1, (i) .
r
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ITT. GEOﬂETRIC EQUIMULTIPLICITY:

As exposed in the preface of this book, one of the numerical condi-
tions to be imposed on a subspace Y of a complex space X as to
‘qualify for a suitable centre of blowing up is that X should have
the same multiplicity along Y . This condition has been studied alge-
graically in Chapter IV, and it is the purpbse of this part to give
a description of it from a geometric point of view.

~
The appropriate geometric property of the blowup X ——> X

of X
along Y which is controlled by the multiplicity in case Y 1is smooth
is the equidimensionality of 1T restricted to the exceptional divisor.
In terms of the normal cone, it 1s called normal pseudoflatness of X
along Y ; in terms of local algebra, it is Jjust the condition

ht(I) = s(I) , where I defines Y in X lobally. Normal pseudoflat-
ness has been introduced by Hironaka in [34], and the name originates
from the fact that it is just that weakexr version of normal £latness
which keeps the essential topological properties of the latter. The
surprising fact that equimultiplicity is equivalent to normal pseudo-
flatness is due in the special case of a surface along a smooth curve
to Zariski, and, in the general case,to Hironaka and Schickhoff.

In the first paragraph I introduce the notions of normal cone,
blowup,and normal flatness and pseudoflatness for the complex analy-
tic case. In the following section, I give a detailed account of the
result of Hironaka and Schickhoff and related results of Lipman and
‘Teissier. These results could have been,in principle, mostly derived
from the corresponding algebraic results by the method of compact Stein
neighbourhoods, but I have preferred to give a geometric proof more
or less along the original lines. This was done partly to give an
introduction to the geometric method, where multiplicity appears as
a local mapping degree and which is used explicitely by the authors
mentioned above, and partly to illustrate the geometric content of
various other algebraic notions and methods; in particular, the rela-
tion of equimultiplicity with reduction and integral dependence, which
is emphasized in the preface of this book, is commented on. The last
paragraph, finally, describes more briefly the geometric content of
equimultiplicity and normal flatness along a nonsmooth centre, where
equimultiplicity in the former sense has to be modified to a general

type of multiplicity, which however, can again be described geometri-
cally by local mapping degrees.
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My general contention is that the relation between equimultiplicity
and normal pseudoflatness asserts, on the geometric level, that the
local mapping degree of a linear projection of a complex spacegerm
(embedded in a number space) is a measure for the contact of the kernel
of the projection with the spacegerm at the intersection. In that
sense, the requirement of equimultiplicity of a space X along a sub-
space Y puts a transversality condition on the intersection of the
space with the family of projections defining the multiplicity of
the space along the subspace. This transversality appears as growth
conditions on the local coordinates of X in directions normal to Y ,
and so the relations with integral dependence and normal pseudoflat-
ness emerge. From this the fundamental rble of the Theorem of Rees-
Bdger should be apparent, and I have tried to indicate the connections

with this theorem at the appropriate places.

§ 1. Normal flatness and pseudoflatness.

Here I discuss the notions of normal flatness and normal pseudo-
flatness of a complex space along a closed complex subspace. Basic
is the result that these notions are open, and generic when the
subspace is reduced. It is derived from the algebraic case by the
method of compact Stein neighbourhoods, and for this some technical
preparations are needed, which are supplied in 1.1. In 1.2 the notions
‘of the analytic énd projective spectrum over an arbitrary base S € ¢cpl
are discussed; these constructions are fundamental for the construc-
tion of the normal cone and of the blowup. Section 1.3 contains a
proocf that flatness is open, and generic along a reduced base.
Finally, in 1.4, we define the normal cone, the blowup , and discuss
normal flatness and normal pseudoflatness.

1.1. Generalities from Complex Analytic Geometry.

In the sequel I need some general facts from Complex Analytic
Geometry which I collect here.

First some notation. Let X be a complex space. If x€X ,

}IEOX « @& prime, I put
r

(1.1.1) Xk (p) := Quot(OX'x/p) ,
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the residue field of the local ring (OX,_X)p . Let M be a coherent
0,-module, x€X , then

X
(1.1.2) M(x) := Mx/mex = hh{@o C
X,x

Proposition 1.1.1. Let the notation be as above.

(1) dlmmM(x) Zdlm]k (1) (Mx ®Ox . k (p)) for all p¢€ Spec(()x'x)

(ii) dimmM(x) ZdimmM(x') for all x' near x , i.e. the function
y —> dimmM(y) is upper semicontinuous.

(iii) The freenees locus LF(M) := {x€X |M is locally free at x }
is the complement of an analytic set Deg(M)

(iv) If X is reduced, M is locally free at x if and only if
the function vy —> dimmM(y) is constant near X . Further,
Deg(M) is nowhere dense.

Proof.

(i}). Let m := dimEM(x) . Then m generators of Mx over OX %

give m generators of (Mx)p over (OX x)p . Then apply Nakayama's Lemma.

(ii) . Let Fn(M) be the n-th Fitting ideal of M (cf. I 3.2.h)) and
§n(M) the closed complex subspace defined by it. .Tensorizing the exact
sequence of I (3.2.6) at x with € shows

(1.1.3) Xn(M) = {yeX| dimq:M(y) >n}

Now, with m = dimau(x) , xEEX-Xm(M) , which is open.:

(iii). It is easy to see that

(1.1.4) Mx is locally free of rank n =
Fn(M)x T X,x and Fn—1(M)x = 0
Hence,
(1.1.5) LF (M) = X-ngo(xn(M)leupp Fn_1.(M)) '
and ngo(xn(M) U supp ﬂrJ (M)) 1is analytic since the family

(Xn(M)leupp Fn_1 (M))nena becomes lécally stationary.

(iv) . Let r := r(M) := min{dim M (x) | x €X} . Then X(r) := X -X_ (M)
is nonempty and open. Now all x € X(r) are in Xr_1(M) , SO
Froq (M) | X(r) e Ny | X(x) , which implies FooqM) =10 for xeX(r)

since X 1s reduced. The claim now follows by replacing X with any
open neighbourhood of a given x€X and applying (1.1.4).
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Theorem 1.1.2 (Cartan). Let M be a coherent module on the complex
space X and MO 5M1 < M2 c...<cM an increasing chain of coherent

submodules. Then this chain is locally stationary.

For a slick elementary procf see {28] , Chapter 5, § 6; see also
[14], 0.40.

Next, we set up a formalism (([5],(29],(38],(41],[63]) by which results
in Algebraic Geometry can often be transferred to Complex Analytic

Geometry; we will use it in 1.4 to deduce the fact that normal flat-
ness 1is generic from the Krull-Seidenberg-Theorem in Chapter 1V,

(24.4). This idea seems to have originated from footnote 18 on p. 136
of [33]. We partly follow the presentation of [38].

In the following, X is a local model in some open set Usgmn

Definition 1.1.3. A distinguished compact Stein set in X is a

compact neighbourhood of some x€ X of the form QNX , where Q

is a compact stone in U

By II Corollary 1.4.2, any x € X has a neighbourhood basis con-
sisting of distinguished compact Stein subsets.

We first need a noetherian property for distinguished compact
Stein subsets. The following result is a special case of a theorem
due to Frisch ([16], Théoréme (I, 9)) and Siu ([68], Theorem 1).

Proposition 1.1.4. Let K be a distinguished compact Stein subset
in a complex space X . Then O0(K) = F(K,Ox) is a noetherian ring.

Proof. We may assume §¢i> U is a local model, where 'Ugmn
Let Q&£ U be a compact stone which defines K , i.e. K = XngQ .
The surjection OU —>> i*Ox induces the surjection

F(Q,OU)-——» F(K,Ox) by Theorem B. So it suffices to prove F(Q,OU)

is noetherian. For this we induct over the real dimension d of Q

If d=0, Q 1is a point, and the claim is just the Rilickert
Basissatz, I 1.3.2. Let d 21 , and suppose the proposition is true
for (d-1)-dimensional compact stones. Suppose Isgf(Q,Ux)' were not

finitely generated, so we can find a sequence f1,f2,f3,... of

elements in I such that we get a strictly increasing sequence
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I,€I,cIjs... with Ij = (f1,...,fj)'F(Q,0X)
Now we may write

2(d+1) o
(1.1.6) Q = U QWuQ .

L=1

where the Ql are compact (d-1)-dimensional stones, and Q -is a stone
which is open in the real vectorsubspace of c” spanned by Q . By

the induction assumption there are finitely many elements

gl,...,gtE F(Q,Ox) such that I-F(QQ,OX) = (g1""'gt)'F(Ql'0X)n for

L =1,...,2(d+1) . Let U be an open neighbourhood of Q in (C such

that g1,...,gt€ F(U,OX) . Define ideal sheaves Ijg;OU via

(g1,...,gt)-0v , VeU-Q open

(1.1.7) Ij(V) :
(g1,...,gt,f1,...,fj)°0V + VU open, VNQ # @ .

Then I1<:Iz<:I3<:... is a strictly increasing sequence of coherent
OU-ideals, so it cannot become eventually stationary on the compact

set Q . This contradicts Theorem 1.1.2. Q.e.d.
A point x€ K defines a character Xy 0(K) —> T .via xx(f) = £(x) ,
called a point character. Its kernel is a maximal ideal of 0(K) ,

denoted M_ . Let X be the ringed space (K,0|K), and Spec(0(K))
be :the usual prime spectrum as a ringed space. We get a map of ringed
spaces

(1.1.8) gy + K > Spec {0 (K))
by putting
(1.1.9) | ¢K(x) 1= Mx = Ker(xx) for x€eK ,
and
Og p(g) T 0K (g —> T(D(E),0,)

(1.1.10)
g/f" > (x > g(x)/E(x)T)

for £ € 0(K)

We call a subset A cK analytic in K if there is an analytic sub-
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set A of some open neighbourhood V2K such that A = ANK ; this

is the same as requiring that there is a finitely generated ideal

sheaf 1< 0|K such that A = N{I) . The following result is basic.
Proposition 1.1.5. If BgSpec(0(K)) is zariski-closed, ¢ ' (B) =: A
is analytic in K , in fact A = N{(I) , when B = V(I) for TIg?0(K)

an ideal and 1

I-0}K . In particular, ¢, 1is a morphism of ringed

spaces.

Proof. Let B = V{(I) ; since (0(K}) 1is noetherian, I==(f1,...,fk)-0(K)
for some f1,.. £y €0(K) , and I = (f1,...,fk)-O|K . Then

x€¢K (V(I))e—oM :I¢==f .,kaKer(Xx)mXEN(I)

Remark 1.1.6.

(i) The sheaf morphism ¢g is regular on the stalks. From this one

may deduce the openness of certain analytic loci, e.g. the regular
locus, the Cohen-Macaulay locus, or the normal locus of a complex
space, from the corresponding scheme-theoretic results, which, as a

rule, are easier to prove; see [38].

(i1) One may use Proposition 1.1.5 to deduce the openness of the
flatness locus of a coherent Ox-module M with respect to a morphism
£ X —> Y of complex spaces from the corresponding algebraic result

(Theorem of Frisch); see [41].

1.2. The analytic and projective analytic spectrum:

This section generalizes I, 3.4 and II, 4.3 to the case of families

of affine respectively projective varieties parametrized by a complex
space.

Definition 1.2.1. Let S€cpl , A a sheaf of Os—algebras, A is

called an admigsible ¢ -algebra, or an U.-algebra locally of finite
presentation,if every x(ES has an open neighbourhood ‘U such that

there are sections g1,.,.,gz<EOS(U)[T1,...,Tk] and an epimorphism
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(1.2.1) wU : OU[T1,..;,Tk] —>» A|U

is the ideal generated by

of OU-algebras such that. Kan(wu)

911---:92

Now consider the category c¢pl/S of complex spaces over S , whose

objects are the morphisms o
are the commutative diagrams

1=
I
v
=

(1.2.2)

23]
£S)

Then an Os-algebra A induces a contrafunctor

{1.2.3) Homos_gég(A,-) : cpl/S —> sets

as follows: It assigns to.an object ¢ : W —> §

Homos_gég(A,g*Ow) '

(1.2.4) Homos_rg;g

a —> 0l (£%) o a

Theorem 1.2.2 (see [64], Exposé& 19). If A

W —> S in ¢pl and whose morphisms

in c¢cpl/S the set

and to the commuative triangle (1.2.2) the map

(A,930,) —> Homos_gég(A,g*Ow)

is an admissible Oswalgebra,

the functor (1.2.3) is representable in c¢pl/S

This means the feollowing: There is an object

cpl/S and an element Ly € Hom, —QLQ(A'(EX)*OX)
S

transformation

{(1.2.5) Homcpl/si-,ﬂx) —— Homosg;g(A,-)

which assigns to ¢ : W —> S€cpl/S the map

Iy X —>8 in
such that the natural

’



(1.2.6) Hom

is a natural equivalence of functors.

As usual, the pair }  is unique up to unigue isomorphism.

(ﬂxfo

The universal property together with the glueing construction I 3.2 a)

reduces the proof to the case A = OS[T1""'Tk]/I , where T 1is
generated by sections g1,...,gi'GOS(S)[T1,...,Tk]. Now there is a
natural morphism 0. (s)[T,,...,7,. ] —> 0 (s xmk) , hence
S 1 k Sxmk
Gyre-+,9 generate an ideal J g0 + and one defines 7 via
1 2 5 xEk —X
i k
(1.2.7) X := N(J) &——> Sx¢(C
. ox,
S
.0
. k 1x -1
The homomorphism ¢ : 0.(S)[T,,...,T, . ]==> 0 (s x.C™) > 0 (m '8),
S 1 k 5 xmk X -

factors through I and restricts over any open Uc<S , defining Gy *
Details are left to the reader.
Definition 1.2.3. The pair (EX,CX) , or,if no confusion is possible,

the complex space X over S , is called the analytic spectrum of the
admissible OS—algebra A and denoted Specan(A)

We also write, 'par abus de languague', Ta Specan(A) —> § for
Ex:_}.(.—:'é

The analytic spectrum has the expected functional properties, see
[641, Exposé 19. We mention here:
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Proposition 1.2.4 . (Base change). Let A be an admissible Os-alqebra,
w : T —> Se€cpl . Let ¥ : Specan(p*A) -—> Specan(A) € cpl correspond

to the canonical morphism A —> @, 0*A wvia (1.2.6). Then the diagram

Y
(1.2.8) Specan (p*A) —=———> Specan(A)
ll-tD*A () ﬂA
T <
v v
z = - 8

is cartesian, i.e. Specan{(p*A) = Specan(A) x,T

From this we see the following: Let AS be the stalk of A at s€S ,

mSEO the maximal ideal, and put

S,s

(1.2.9) A(s) := A /m_+A_= A_®
s"'s s s Og o

which is a finitely generated C-algebra. Then in 1.2.7.

(1..2.10) X = n-1(s) = Specan(A(s))

by base change,'i.e. we may think informally of X = Specan{A) as a
family of affine varieties (considered as complex spaces) parametrized
by the points of the complex space S wvia 7 .: X —> § . This motivates

the following result, which I just gquote:

Proposition 1.2.5 ([64], Exposé 19, Prop. 3 and 4).

(i) The points of Es correspond bijectively to the elements of

0
- tX,s
vm(m_A_} := {n€ Specm(A) |ngmsAS} under x € X_ F—> Ker(A_ ——=> Ox,x)
(i1) Let ne€evm{m_ A_ ) correspond to x€ X_ . Then CO
== s s T =s _ X,s
factors ‘as A —> (A) > 0 , and
s s’ n X,x —_—

(1.2.11) b+ (A
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is an isomorphism.

We now come to the projective analytic spectrum.

Definition 1.2.6. Let S€cgpl . An admissible graded OS— lgebra is
an admissible Os—algebra such that

(1) A 1is positively graded, i.e. A = & A » and locally generated
by A1 as Os-algebra.

(ii) The local representations (1.2.1) can be so chosen that wU is

a graded homomorphism of degree zero, where T «.,T have

10

k

degree one.

Proposition 1.2.7 ((471, 1.4). Let A be a graded 0 -algebra which
is locally finitely generated as Os—algebra. Then the following state-
ments are equivalent:

(1) A is an admissible graded Os—algebra.

{(ii) Ak is a coherent Os-module for all k20 .

Since the reference may be not easily accessible, I give a short idea
of the proof.

(i) =» (ii): Consider (1.2.1) ; Kea(wU) is a locally finite OU-module,
so Ak|U'=(OU[T1,...,Tn%2/Ken(wU)k is coherent.

(ii) = (i): The question is local, so we may assume we have an epi-

morphism
Y
(1.2.12) OS[T1""’Tk] »> A
of graded Os—algebras. Let K := Kea(y) , and put for ne€ W
(n) __ ®
(1.2.13) A - = OS[T1,o-.’Tk]/ kSnKk -
Then A(0)~——»»A(1) —> ... 1s a decreasing tower of admissible OS—

algebras. This gives us an increasing chain of coherent 0 k-ideals
SxC
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I(h) (n) k

I{O) EI“') < ... , where defines

X 1= SEecan(A(n))ggxg
The claim then follows from Theorem 1.1.2

If A 1is an admissible graded Os-algebra, we have local represen-
tations (1.2.1) with Ken(wu) homogeneous. Therefore, in the local
construction of Specan(A) in diagram (1.2.7), the (0 _-homogeneous

S k-1

ideal J defines a closed complex subspace 2> Sx IP , and

we det the commutative diagram

(1.2.14)

(0o’

1))

The < glue well because of the functorial properties of the Specan-
construction; so, for any admissible graded Os—algebra, we have con-

structed a complex space PZ : 2 —> S over S

Definition 1.2.8. The space so obtained is called the projective

analytic spectrum of A and denoted p, : Projan(A) —> S , or
Projan(A) for short.

Remark 1.2.9. As in 1.2.4, base change holds for the Projan-construc-

tion.

1.3. Flatness of admissible graded algebxas.

Definition 1.3.1. Let Se€cpl , A an admissible Os—algebra. Then A
is called flat along S at s € S if and only if AS is a flat
Os's-module. A 1is called flat along S if and only if it is flat
along S at all se€s .

Remark 1.3.2. If A 1is flat along S , (As)n is OS S—flat for all"
r



- 117 -

: P N . A
s and all n ESpecaE(AS) , hence (AS)n = OX,X is OS,S flat for
all s€S and xE_Tlx}s) , where 1, : X —> S5 is Specan{(A), by
Proposition 1.2.5. It follows that 1@, : X —> S is a flat morphism.

X

Proposition 1.3.3. Let Se€g¢gpl be reduced, A an admissible graded

Os—algebra. The following statements are equivalent:

(1) A 1is a flat Os—algebra.

{ii) The functions s l—> dimmAk(s) (see (1.2.9)) are locally con-
stant for all k

Proof. A 1is a flat OS~algebra if and only if Ak is a flat OS—
module for all k . But each Ak is a coherent Os-module by Proposi-
tion 1.2.7. The claim then follows from Proposition 1.1.1 (iv), since

over a local ring, to be flat means to be free.

We now have the following theorem, which has been stated by Hironaka
in {33], p. 136, and proved by means of Proposition 1.1.3 in [38], and
by other means in [47].

‘Theorem 1.3.4 (Flatness is generic). Let A be an admissible graded

Og-algebra on the complex space S . Then the set F(A) := {s €S|As

is a flat OS S-module} is the complement of an analytic set. If S

r

is reduced, S - F(A} is nowhere dense.

Proof. The question.is local. Let Kg$S be a distinguished compact

i = = @ * = = -
Stein subset, and let Ak : F(K,Ak) , A kzoAk , R : F(K,OX) 0(K) ;
R is noetherian by Proposition 1.1.4. Let s€ K . Then

(1.3.1) As is Os’s-flat e Vk20 (Ak)s is Os’s-flat
- VvYkz0 (Ak)M is RM -flat, since
s s
RMS —> Os,s is faithfully flat

<> A is R ~-flat .
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Hence KNF(A) = ¢;1(F(A)) . The first claim now follows by the Krull-
Seidenberg-Grothendieck - Theorem (Chapter IV, (24.4)) and by Proposi-
tion 1.1.5. The second claim follows from Proposition 1.1.1 (iv)

and 1.3.3. (ii):

(1.3.2) S - F(A) = kgo Deg(Ak)

has empty interior as a countable union of nowhere dense analytic
sets by the theorem of Baire.

Remark 1.3.5. Theorem 1.3.4 can be interpreted more concretely,

without using the Krull-Seidenberg-Grothendieck-Theorem, as follows,

using 1.3.3.instead. Let S be reduced. Then 1.3.4 would follow from
1.3.3, if one were able to show that the Hilbert functions H(A(s),-=)
were constant for s near s, , i.e. if k pb—> H(A(s),k) were inde-

0

pendent of s near Sy - Note that this is a priori stronger that the

statement (ii) of 1.3.3, since the neighbourhoods of s on which the

0
functions dimmAk(s) are constant might depend on k .

Now it is known that each Hilbert function k > H{(A(s) ,k) - becomes
a polynomial, of degree do(s)-i , say, for k above some number
k0 = ko(;) , and so is determined by any do(s) values at numbers
k:-ko(s) . S0 the constancy of finitely many functions dimmAk(sy

near s, would guarantee the constancy of all of them if we were able

0

to bound do(s) and ko(s) near s, ; this would then imply 1.3.4
because of 1.3.3 (ii). So what one wants to show is: '

(f.3.3) For any s, €S , there are a neighbourhood U of s

0 0

and natural numbers do and ko such that H(A(s),h k)

is a polynomial in k for all k:>k0 of degree <d0 for seU.
There might be two ways to establish (1.3.3). For the first one, results
of Grauert and Remmert for projective morphisms over a basis in cpl
(concering the vanishing of the sheaves (RiE)* M(n) for
B =Ry ° Projan(A) —> 5 and M a coherent module on Projan(A) and
generalizing well-known facts from the scheme-theoretic case; (see
[25], [ 2.] Chapter IV))suggest that one should have: There is a neigh-

bourhood U of s0 and a number ko such that
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H(A(s) k) = X(2_,0, (k)) for kzkj, S€U

Z 4
S
where p : 2 —> S 1is Projanf(A) , Z, the fibre E_1(s) , and
OZ (k) = OZ(Hcg , 02(1) the canonical linebundle on Z . Then
s
(1.3.3) holds with d, = max {dim2z_ | seul+ 1

The other approach might be based on a parametrized version of the

division algorithm for rings of the form S S[Z ...,Z£] (see [20],
(1.2.7) and [62], 1.3 ). Applying this to the ideal
1505508[21""’Z£]’ where A= OS[T1,...,T£]/I locally, should give
a leitideal generated by monomials AAZA , where AA are germs in
OS s Now the Hilbert function of a homogenecus ideal
0
Is;E[Z Z ] =: R 1is the Hilbert function of the leitideal LM(I) ,
and so (see (s 3]
t L-1+deg Lcm(M, ,... /M, )+k
k ! ! .
H(R/I,k) = § (=1) I g 4
j=0 1Sl1<...<lj5t 0=1 .
where the monomials M,,...,M_ generate LM(I) . From this it may be
possible to see that H(A({s), k) = H(R/ISR,k) is constant out-
:;side the subspace of (S,so) defined by the AA and can only.in-

crease over there, so that s }—> H{A(s),k} 1s upper semicontinuous,
and that the H{A(s),k) are polynomials for all s near Sy for

k above a fixed value ko . (Added in proof: By oral communication
of J.L. Vicente this effective approach has been worked out in complete
detail in a forthcoming book of Aroca, Hironaka, and Vicente on the

resolution of singularities of complex spaces).

1.4. The normal cone, normal flatness, and normal pseudoflatness.

Let X be a complex space, §‘345—> X a closed complex subspace,

defined by the locally finite ideal IggOX

is an admissi-

Lemma 1.4.1. The graded 0_-algebra B(I,0,) := & Ik

ble graded Ox—algebra.
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Proof. Since 1T = BT(I'OX) is locally finite and generates B(I,Ox) ,
the Ox-algebra B(I,Ox) is locally finitely generated. Morecover, 1

k

is coherent, so all I" ,kz20 , are cohereht, and the claim follows

from Proposition 1.2.7.

Corollary 1.4.2. The graded OY-algebra

(1.4.1) G(1,0) := ® 1%,k

k20

is an admissible graded OY—algebra.

Proof. G(I,OX) = i*B(I,OX) , and B(I,OX) is an admissible graded
Ox-algebra.

Hence, the following definition makes sense:

Definition 1.4.3.

normal cone of Y

I’OX) : SEecan(G(I,Ox)) —> Y is_called the
X and denoted v : C(X,Y) —> Y

urel
in

For geometric applications to equimultiplicity we need a geometric
description of C(X,Y) , which will explain the name 'normal cone'.

~

Recall that a blowup T : X —> X of X alocng Y is a morphism

which is universal among the morphisms ¢ : X' —> X having the pro-

perty that w'1§ is a hypersurface in X' , i.e. locally generated by

a nonzero-divisor. It is unique up to unique isomorphism.
Theorem 1.4.4. p : Projan(8(I,0,)) —> X is the blowup of X along

Y .
I will not prove Theorem 1.4.4, but make some remarks which I will

use anyway. Let 1[I be generated over the open subspace US— X by
g1,...,ng:0X(U), and consider the morphism

(1.4.2) Yy : U~-Y
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It can then be shown that p|U above is given as

(1.4.3) r, e g B
r
plu ) pI,

v L/"

g ,
where 'F'Y —> (U-Y) X_ng-1 is the graph space of ¥y according to
I 3.2 g), and f; is the idealtheoretic closure of £+ , 1.e. the
smallest closed complex subspace of U xggk-1 containing LY as

an open subspace (for this see [14], 0.44). It is then not difficult

to show, using the factorization critericn for holomorphic maps through
a closed complex subspace (see [28], Chapter I, § 2.3),that (1.4.3)
constitutes the blowup locally, which proves 1.4.4 by universality.

(The diagram (1.4.3) coincides with the local description given by
Hironaka and Rossi in [37]; consult this paper for details}).

Corollary 1.4.5. If m : X —> X blows up ¥ , © (¥) *PC(X,Y) ,

the projectivized normal cone.

Proof. P C(X,Y) 1is defined as Projan(G(I,OX)) . But
6(1,0y,) = i*8B(1,0,) , where i : ¥Y<—> X is the inclusion, and the
claim follows by base change for Projan (Remark 1.2.9).

This gives the following description of the fibre v—1(y) of the
normal cone v : C(X,Y) —> Y at a point y €Y . Choose generators
.g1,...,ng:Ox’y of the stalk Iy , where the ideal Is;OX defines

YS<—> X , and add elements h1,...,hf such that h1,...,hf, g1,...,gk
generate the maximal ideal. After possibly shrinking X , we may '

assume these generators are in Ox(x),, and they define, according
i
to I 4.2.2, an embedding ECZ=H>En » n := £+k , as a locally closed

subspace. Then g1,...,gk are induced by the coordinates zf+1"“'2n
k

of €' via i . Let K :=C x0 , and let p : gn —> K be the pro-
jection; then «vy(x) = p(yx) <K , and (1.4.3) gives, together with
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«Corollary. 1.4.5.

{(1.4.4) v-1(y) = U{E|2 = lim p(§§)}gl<

X—=y

XEX-Y
Corollary 1.4.6. dimigtg,g) = dimv(g)ﬁ for all E£€C(X,Y) . If
(X,v{(£)) 1is equidimensional, so is (C(X,Y).,&)

proof. There is a canonical embedding Y &> C(X,Y)

, corresponding

to the augmentation homomorphism G(I,OX) —_—> OX/I = i*OY , where

i

1 EOX defines Y<——> X , via the universal property of the Specan-

«construction. In the sequel, therefore, we may view Y as being

maturally embedded in C(X,Y)

1
N
1

' Let E€C(X,Y) . We may assume (Y,v(&)) # (X,v(g)) . First, let
5&:6 Y , so it is not a vertex of a fibre of v . Then £ corresponds
ko a line on C(X,Y) , i.e. to a point x' €X + where 1 : g —> X
;is the blowup of X along Y . Now 1|E-—v—1(Y) 3 E - Ny —> X-Y
!is.isomorphic; so there are poinEs on Xreg arbitrarily1close to
o jmx') =: x = v({) , hence dim X = dimv(g)x . Since 1w (¥Y) =P C(X,Y)

is :@a hypersurface in Z , 1.e. locally generated by a nonzerodivisor,

dim_,X = dim_,PC(X,¥Y) + 1 by the Active Lemma I 5.2.2. Thus we get
x' x'—"='=

dim

EC(E,X) = dim X = dim . X

If & 1s a vertex, there are points §' arbitrarily close to §

:on C(X,Y) - Y , where dimg,C(ﬁ,X) = dimv(g,)x by the first case;
tthis again implies dimEC(ﬁ,z) = dimv(g)x
The last claim is obvious. Q.e.a.
:Remark. For the algebraic proof, see Chapter II, Theorem (9.7).
1
Definition 1.4.7 (Hirconaka). Let X€gpl , ¥Y&———> X _a closed

complex subspace, y€Y . Then X

X 1s called normally flat along Y

at y if and only if G(I,Ox)y is a flat OY y—module. X is called

’
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normally flat along Y if and only if it is normally flat along Y
at all yeyY .

The following theorem with an idea of proof was formulated by Hironaka
([33], p. 136) and proved in [38], Theorem 1.5, and in [46], Théoréme
8.1.3.

i
Theorem 1.4.8. Let X€cpl , Y=——> X a closed complex subspace,
and let F(X,Y) := {y€Y|X 1is normally flat along Y at vy}

Then F(X,Y) is the complement of an analytic set in Y . Moreover,

when Y is reduced, Y-F(X,Y) 1is nowhere dense.

Proof. This is immediate from Theorem 1.3.4.

We finally need the following weaker notion, whose importance was

also discovered by Hironaka ([34], Definition (2.4) and Remark (2.5)).
We use throughout dimyv-1(y) = dim‘J1(y) , cf. II, Proposition 3.1.2.
Proposition and Definition 1.4.9. Let X€¢pl , Y&=> X a closed
complex subspace, and Vv : C(X,Y) —> ¥ be the normal cone. Let X

be equidimensional at y €Y . The following statements are equivalent.

(1) vV 1s uniyversally open near y , i.e. there is an open neigh-
bourhood U of y in Y such that, for any base change U' —> U

in gpl, (vjU) x;U' 1is an open map;

1

(ii) dim Vv ' (2) does not depend on z near vy ;

(iii) dimv ' (z) = dim X - dim Y
y y

We call X normally pseudoflat along Y at y if and only if one
of these statements holds true (this clearly is an open condition on y).

The statement (iii)just means ht(Iy) = s(Iy) , where IYEEOX y
defines (Y,y) <> (X,y) ; see Proposition 2.2.5 below.
Outline of proof. We may assume U = Y and Y reduced. We have

the following general facts for a morphism £:W—>2 in ¢pl

— —
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1) Sz > diny§—1(2) is upper semicontinuous {[14], 3.4).
. di -1 ; 2 di '
2) VweEW @ dim £ T£(w) + dimg 2 im W ({141, 3.9.)
3) If 2 1is equidimensional at all points and £ 1is open,

equality holds in 2) for all weEW . Conversely, if 2 1is
irreducible at 2z = f(w) and equality holds in 2) for w ,
f 4is open at w ([14], 3.10 and 3.9).

We may assume X to be equidimensional of dimension d at all points
of Y by I Theorem 7.3.2. Then C(X,Y) 1is equidimensional of dimen-
sional d at all points by Corollary 1.4.6.

Let (Y ),., bPe the irreducible components of Y ; we may assume A
finite and the XA given by the local decomposition of (¥Y,y) by II
Remark 2.1.4.

(i) = {iii): Make the base change XA —> Y and get from 3)

dimv™ ' (y) + dim Y, = d for all A
(iii) = (Li): This follows from 1) and 2).
(ii) = (i) : (cf. [34]) Since C(X,Y) is equidimensional, we may,
through any given point §€S(X,¥Y) and for any A find an irreducible
subgerm (W,,&) = (C(X,¥),£) such that dim W, = dim, ¥, and

V|HA : (W, 8) —> (gk,u(a)) is finite. Then, for suitable represen-
tatives, vIEA : EA —_ XA is universally open; for this, use the
fundamental facts on open finite mappings of I, § 6. Since this holds

for all A and £ ,v must be, after a possible shrinking, univer-
sally open.

Remark 1.4.10. A motivation for the definition is the following:

If X 1is normally flat along Y , the normal cone map v o C(X,Y) —>Y

is a flat map of complex spaces by Remark 1.3.2. Now it is known that
flatness is stable under base extension and that a flat map is open,
hence a flat map is universally open (see [14], 3.15 and 3.19, and
{36], p. 225).
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This is -in fact the main topological property of a flat map, which,
in particular, implies that the fibres of a flat map have the expected
minimal generic dimension. In this sense, normal pseudoflatness

retains the topological essence of normal flatness.

Remark 1.4.11. Normal flatness of X along Y at y implies normal
pgeudoflatness at this point. Hence, in the situation of 1.4.9, if Y
is reduced, the set PF(X,Y) := {y€Y |X is normally pseudoflat along
Y at y} is generic in Y

Proposition 1.4.12. Let the situation be as in 1.4.9. Let y be a

smooth point on Y . Then the following statements are equivalent:

(1) X 1is normally flat along Y at vy
(ii) The natural morphism

-1 \
(1.4.5) voo(y) x C(Y,y) > C(X,y)

is an isomorphism.

Proof. Since (1.4.5) corresponds to an algebraic morphism of the
corresponding projectivized cones, the celebrated results of [66] im-
ply that (1.4.5) is an isomorphism of complex spaces if and only if it
is an isomorphism of algebraic schemes. In view of this, the Proposition

1.4.12 is a mere restatement of a well-known fact about the Hironaka-. Grothendleck-
Isonorp | hism .(cf. [3@]) - - .
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§ 2. Geometric equimultiplicity along a smooth subspace.

In this paragraph we analyse the geometric significance of a complex
space X having the same multiplicity along a subspace Y near a
smooth point y of Y , and give various characterizations due to
Hironaka, Schickhoff, Lipman, and Teissier (see Theorem 2.2.2 below).
The motivation, of course, is to understand which restrictions this
requirement puts on the bloWup of X along Y ; see the preface of
this book. The result of Hironaka-Schickhoff is that equimultiplicity
in the above sense is equivalent to normal pseudoflatness, so we have
the noteworthy fact that the dimension of the normal cone fibres are
controlled by the multiplicity. The underlying reason why this is so
is that the requirement of equimultiplicity and of the normal cone
fibre having the dgeneric minimal dimension both put a transversality
condition on X along Y relating the two properties.To be more precise,
let us embed X 1locally around y in some t” so that 'Y Dbecomes
a linear subspace. Let L€ Pz(g,y) be a projection centre whose
corresponding projection onto md has the multiplicity m(X,y) as
local mapping degree. It turns out that both requirements amount to
the requirement that Y xL and X intersect transversally along Y
in the sense that Y xLNC(X,Y) =Y. If X is normally pseudoflat along Y
at vy , this fact comes about by blowing up X and Y xL along Y ,
and the various projection centres in Y x L parametrized by points
of Y yield projections whose local mapping degrees are constant and
give the multiplicity of X along Y . The converse direction, star-
ting from equimultiplicity and reaching transversality, is more delicate
and is essentially the geometric version of the Theorem of Rees-Bdger.
Inherent is the principle that multiplicity was defined as a minimal-
mapping degree, and this minimality forces the projection centre
defining the multiplicity to be generic and hence transversal. Arche-
typical for this situation is (X,x) &—> (En,O) given by a Welerstral
equation so that the zn—axis L has 0 as isolated intersection
point with X ; it is then a challenging exercise to convince one-
self that the projection along L has minimal mapping degree if and
only if L 1is transversal to the tangent cone. We end by analysing
some further geometric conditions and their relationship to various
algebraic characterizations of equimultiplicity, especially to the
notion of reduction and integral dependence, as exposed in the first
four chapters of this book. It 1s instructive to return again to the
above WeierstraB example and to convince oneself that the transver-

sality of L to the tangent cone is, in this case, equivalent to z.
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being, as a function on X , integrally dependent on the ideal genera-

ted in Ox,x by ZyreeaiZ 4

the algebraic connection between reduction and integral dependence is

In particular, it appears that
reflected geometrically by the fact that the transversality condition

stated above is equivalent to growth conditions on the coordinate

functions of ¢ along normal directions of Y in X .

2.1. Zariski-equimultiplicity.

Throughout this section we employ the following notation. X 1is

a complex space, Y a closed complex subspace, Yy €Y a smooth point

on Y , IgOY the ideal defining XC—1—> X , and FZESpec(OX z)
r

the ideal defining the subgerm (Y¥,z)c (X,z) for z¢€ Yir . If

(R,mR) is a local noetherian ring, e(R) := e(mR,R)
Definition 2.1.1 {Zariski-equimultiplicity). Let (X,Y,y) be
as _above. Then X is called Zariski-equimultiple along Y at y if

and only if the function 2z |—> m(X,z) on Y 1is constant near vy .

The following result exploits this definition algebraically [38],[49]).

Theorem 2.1.2 (algebraic characterization of equimultiplicity). Let

(X,Y,y) be as stated above. The following conditions are equivalent:

(1) X is Zariski-equimultiple along Y near vy .

(ii) e (0 ) = e((0 )p ), where pyeESpec(Ox'y) defines

This will be an immediate consequence of the following proposition,

which explains the geometric significance of the number e((Ox Y o) .

24 Fy

Proposition 2.1.3 Let (W,w) egpl, , (2,w) <> (W,w) a prime sub-
germ. Then, after suitably shrinking W
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(1) m{W,w) 2e((0EfW)Fw) , where pwEZSpec(Ow'w) defines (Z,w)

(ii) There is a nowhere dense analytic set Ac?Z such that

miW,z) = e((Uw,w)pw) for all z€2Z-A

In other words, e((0, w)p ) is the generic multiplicity of W along
! w

the subspace Z <> W defined locally by R,

Proof of 2.1.3. Since Z 1is reduced at w , we may assume, after

possibly shrinking W , that there is a nowhere dense analytic set A
such that Z -A 1is reduced and smooth, and W 1is normally flat along

Z2-A ; this follows from I 6.3.1, and 1.4.8. Now consider the chain

(1) (2) ‘ (3)
{2.1.1) m(W,y) 2 m(W,z) = e((Ow,z)pz) = e({OW,w)pw) s 2E€EZ -2
(1) : This is just the upper semicontinuity of multiplicity in II
- Theorem 5.2.4.
. (2): This is II Theorem 5.2.1 (iii) and Corollary (21.12) of

- Chapter IV,

(3): This results from the following Lemma 2.1.4.

This proves the Proposition 2.1.3.

Proof of Theorem 2.1.2. After shrinking X , let AcY be such that

2.1.3 (ii) hqlds, so e((OX y)p ) is the generic value of m(X,z) ,
and Y
(2.1.2) m(X,y) 2 m(X,z) 2 e((OX,y)py) '

both inequalities by upper semicontinuity of multiplicity (IT Theorem
5.2.4). Q.e.d.

Lemma 2.1.4 Let W be a complex space , M a coherent Ow-module,

and Z an irreducible component of suppM . Then the function

z > e((Mz)pz) is locally constant on Zir .
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Proof. This is done by the methods of compact Stein neighbourhoods and
is similar to the proof of II 2.2.3, so I will be brief. Let Ig;OX
define 2<~—> W . Let Zg €2, v and choose a compact Stein.neighbour-
hood K of zZ, in W . Let R := F(K,Ow) , P := I"'(X,1) , which is
a prime ideal of R by II, vroof of 2.2.3. Finally, put M := I'(K,M) .

If z€KNZ,  , the homomorphism

{2.1.2) (AZ)P : R p > (Ow,z)pz ’

where pz(ESpec(Ow z)' defines (2,z) <> (W,z) ,and is faithfully flat

by II Theorem 1.3.2. Moreover,

(2.1.3) (M_) = M_ @ (0 )

Zz Fz P RP W,z pz

Then, for all k20 , we get by II Lemma 2.2.4:

{2.1.4) length((Mz)

k _ k
5 /PZ(MZ) ) = lenght(MP /P MP) ,

oz

this proves the lemma.

Remark 2.1.5 If one just wants Theorem 2.1.2 without the characteri-

zation in Proposition 2.1.3, one could use the chain

(1) (2') (3) .
. o N
m(X,y) 2 m(X,z) 2 e((OE:Z)Fz) e((QE'y)py) for z near vy ,
with (2') given by Proposition (30.1) of Chapter VI.

Corollary 2.1.6. Let X be a complex space, Y a smooth closed

complex subspace. If X is normally flat along Y , then X is

Zariski-equimultiple along Y .

Proof. Condition (ii) of Theorem 2.1.2 holds.'by_gprolla.zy'z-on-p“.“,wb“

of [33] .

Remark 2.1.7. Corollary (21.12) in Chapter IV relates normal flatness
to an equality of Hilbert functions. In fact, normal flatness can be

characterized by this; this is the content of the following famous
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theoremn. -

Theorem of Bennett (complex analytic case). Let X be a complex

space, YS—> X a smooth connected closed complex subspace. The

following statements are equivalent:

(1) X is normally flat along Y

(ii) All local rings U0 , YEY , have the same Hilbert function,

X,y
i.e. 2z F—>Iﬂ0%0x z,—) is constant for =z near vy .

r

The algebraic analogue, the original Theorem of Bennett, is Theorem
(22.24) in Chapter IV. The complex analytic version above is proven
in [48], Theorem (4.11).

Remark 2.1.8. Definition 2.1.1 makes sense for (X,y) and

(Y,y) &> (X,y) arbitrary. I leave an appropriate statement of Theorem

2.1.2 in the general case to the reader.

2.2. The Hironaka-Schickhoff-Theorem.

We have seen in Corollary 2.1.6 that normal flatness along a smooth
:subspace implies Zariski-equimultiplicity along this subspace. It is
a remarkable discovery of Hironaka and Schickhoff that normal pseudo-
flatness along a smooth subspace is equivalent to Zariski-equimultipli-

ity (see Theorem 2.2.2 below). Recall that we employ the property (ii)
of Proposition 1.4.9 as the definition of normal pseudoflatness, but
At is property (i) which characterizes normal pseudoflatness as the
notion carrying the topological essence of normal flatness, so it is
this topological essence which 'interpretes' Zariski;equimultipliciﬁy
:along a smooth subspace geometrically (for Zariski-equimultiplicity
.along a nonsmooth subspace see § 3). Hironaka proved that normal pseudo-
flatness along smooth centres implies equimulitiplicity in [34],
Remark (3.2). Schickhoff proved the converse in [61], p. 49; in fact
he proved the stronger statement below, which is analogous to Proposi-
tion 1.4.11, and shows how much from normal flatness is lost by normal
pseudoflatness. Both proofs were geometric, and I will given the out-
lines in the sequel; the algebraic essence of the Hironaka-Schickhoff-
Theorem .ig"Satz 2 of [T{] T - e T . - .. .-« using the method .
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of compact Stein neighbourhoods, it would be possible to derive the

Hironka-Schickhoff-Theorem from this algebraic result.

Before formulating the main result, I fix some terminoclogy. Let
(X,y) ECQlO be a complex spacegerm of dimension d , (¥,y) &> {X,x)
a complex subspacegerm. After possibly shrinking X , we may assume :

(2.2.1) (i) X<—> U as a closed complex subspace, where Ug(]:n is open,
such that X 1is equidimensional at all points if (X,y} was

equidimensional,and y = 0€U

(ii) Y= X 1is a closed complex subspace, and Y = XNG , where

G 1s the linear subspace of ch given by Zpyeq T o eo =zn==0 .
This can always be achieved by choosing generators g1,...,gi EOX Y:::R
of the ideal IcR defining (Y,y) <> (X,y) and adding elements
h1,...,hmE{R such that h1,...,hm ' g1,...,gR generate Ehe maximal
ideal of R . Then n := m+% , and we write points in C as pairs
(u,t) , with u = (21,...,zm) and t = (zm+1,...,zn);the h1,...,hm
are induced by Zaree a2y and the gyreeor9, by SRR

(iii) If (Y¥,y) 4is smooth, Y is connected and smooth everwhere,

and m = dim Y =: f
Y
Since Y<—> G , X"EQ'C"” g_n . Any hed n , considered as an ele-
c,0
ment in 0 = 0 {t.,...,t,} , can be written as
Yxmz,o Y,y 1 2
(2.2.2) h= ] h ,  h €0, [t,,...,t,]
k=v (h) K ko oYey :

with vY(hl uniquely determined by requiring vY(h) # 0 . We call

v, (h) the order of h along Y at y , and h

vY(h) : LY(h) the

y-leitform of h. The germ (C(X,Y¥),y) &> (¥ x€X,0) is then defined

by the ideal generated by all LY(h) for he€J , where the ideal

Y

Jc0 . defines (X,y) <> (€",0) . This ideal is called the Y-

c 0 -
leitideal of J and denoted LY(J) . It is possible to find finitely
many generators f1,...,fS of J such that LY(f1),...,LY(fs)

generate LY(J) ; we call {f1,...,fs} a Y-standard-base of J
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After possibly shrinking X , we may assume that LY(f1)""’LY(fs)
are defined on Y xg} ; then C(X,Y)&— Y xg? , and v :CI(X,Y) —> ¥
is induced by the projection Y xgg — gg

We make all these assumptions in the sequel of this section.

Example 2.2.1.

1) X &> 93 given by gl(x,y.,z2) = 22-x2y =0, Y the x-axis, l.e.

defined by (y,z)-()cc3 . . Then vylg) =1, and g, =-x2y
!
defines C(X,Y) . See Figure 6.

Fig. 6
: . 3 . _ .2 2 2, _ .
2) X > C given by g(x,y,z) = z" -y (y+x”) = 0 , Y again the
x—-axis defined by - (y,z)-0 3 - Then vF(g) = 2 , and g, =22-y2x2

C

1 (9)
defines C(X,Y) . See Figure 7



Fig. 7

The main result on the geometric significance of equimultiplicity is
now the following theorem.

Theorem 2.2.2 {Geometric analysis of equimultiplicity; Hironaka-
Lipman-Schickhoff-Teissier). Let (Y,y)<—> (X,y) &> (¢",0) be
embeddings of complex spacegerms, (X,x}) equidimensional of dimension

d , (¥,y) smooth of dimension f , and let X,Y be chosen as stated

above. The following statements are equivalent.

(1) X 1is Zariski-equimultiple along Y at y

(ii) There is LEZGrassd(En) and a neighbourhocod V of y in X
such that L, NV = {z} and LZGEPZ(E,Z) for all zevny , where

Lz := L+z ([61]).

(iii) There is a nonempty Zariski-open subset V of Grassd(mn) such
that for any L€V there is a neighbourhcod V of y in X such
that L NV = {z} for all zevny ([69]).

(iv) X 1is normally pseudoflat along Y at y , i.e.

dimv Ny) = d-f , ([34]1, [61]).
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Moreover, if one of these condition holds, one may take V = Pg(z,x)

in (iii), and then LePS(x,2) for all Lev and z€Y near y

Addendum to Theorem 2.2.2 (cf. Teissier [69]}, Chapter I, 5.5).

The condition (iii) is equivalent with

(iii') There exists a nonempty Zariski-open subset UggGrassd_f(En,Y)
d-f

:= {HE€ Grass (¢”) | H2 Y} such that (Y,y) = (XNnH,y) as analytic
setgerms for all HeU . )

Exercise 2.2.3. Analyse the given conditions in the two cases of

Example 2.2.1.

The rest of this section is devoted to an outline of the proocf, which
will be geometric.

Basic is a careful setup for a finite projection h : (X,y) —> (gd,O) ,
which is to give m(X,z) for all 2z on Y near y . For this, we

collect the following facts, which hold after possibly shrinking X .

2.2.3.

(i).. Let (X,x) &> (g“,O) be a complex subspaéegerm, d := dim _ X ,

x—
feIN with 0sfsd . Let KEeGrasst(¢?) . we say

(2.2.3) K weakly transverse to X at x.: =
dim‘{XﬂK =d-£ , denoted xrhx§ :

K transverse to X at x : i
dim C(X,x) NK = d-~-¢f , denoted KAMC(X,x) ;

and put

(2.2.4) Pg(g,x) := {K E-Grassf(ﬂ:n) |K¢x§} ’

P:(ﬁ,x) 3= {K!EGrassf(En) | K Cc(xX,x)} .
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Then Pg(g,x) EP;(E,X) . To see this, note that C(XNnK,x)cC(X,x)NK ;
so, if dim C(X,x)NK =d-f , we have dimC(XNK,x) = dim XNKsd-f ;
since always dim XNK 2 d-£ (for instance by the Active Lemma,

I 5.2.2), we get equality.

The set Pi(g,x) is a nonempty Zariski-open subset of Grassf(mn) '

S0 Pg(z,x} is generic in Grassf(cn) . The proof is a straightforward

generalization of the case f =d in II, 4.1: If 2> ggn_1 is a

(d=1)dimensional variety, consider the fibre bundle given by the

"incidence correspondence"

n=-1

Z := {(z,K) €2 xGrassf(IP ) | z €K}

v

Grassf(mn)

Then, by Elementary Algebraic Geometry, g has fibre dimension
(d-f) -1 outside a proper Zariski-closed subset (see e.g. [56],
Chapter 3, (3.15)). Now apply this to 2 := PC(X,x) .

We finally define the notion of being strongly transverse, which is
based on the following theorem.

Theorem. Let X€cpl . Then the Cohen-Macaulay-locus
XCM':= {xex IOX % is Cohen-Macaulay! is the complement of a nowhere
dense analytic set. Moreover, if pEZSpec(Ox ) defines

r

(Y,y) &=—> (X,y) , (Y, y)n(X.,,y) # @ if and only if (0 ) is
= - CM X, y'p —
Cohen-Macaulay.

This can be proved by the methods of distinguished compact Stein
neighbourhoods, see Remark 1.1.6 (i). For the first statement, see also
II Theorem 2.2.11; the second statement can also be proved by the

methods of [64], Expos& 21. We will make use only of the first state-
ment at the moment,.

Further, if (X,x) <> (gn,O} , and (A,x) € (X,x) is an analytic set-
germ with (A,x) # (X,x) , the set of KtSGrassf(mn) with
(AnNK,x) # (XNK,x) 1is generic in Grassf(mn} for 0sf<d (for
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this, one may assume A being defined by one equation, and then the
proof is left to the reader). We define

.

{K € l’;(x,x) | ((XAK),,x) 0 (Xgyx) 78  for all
(2.2.5) P;s(g,x) := { irreducible components ((XIWKJA,X) of
(X NK,x) of dimension d }, if £ <d ;
k{KePg(g,x) | KhC(X,YnK) if £ = d};
£ _ £ £
P S(E;X) = Pe(z{_'x) npgs(z(_rx)

These are generic sets in Grassf{mn) If KEEPiS(E,x) , we say K
is strongly transverse to (X,x) '
We have the following lemma:
i n . d
Lemma. Let (X,x)<=—> (C",0) be in gpl, . L.EPg(ﬁ,x) , and
K € Pf J(X,X) with K2L . Let h : (x,x) —> (€%,0) be the projection
along L ,and h : (XNK,x) —> (gdrig,O) be the restriction of h
to N K Then
deg h = deg h
Proof. There is b€T NK such that h™'(b) = b} (b) X, NX___ .

CM reg
Then II Remark 2.2.7 shows that we get the same contrxbutlons to

degxg and deqxg_x ..

Corollary. m(X,x) = m(XnK,x) .
Proof. Choose L€ P (X,x) ; since C({XNK,x)cC(X;x) ,
ePg‘f(ggng,x;K) := {Loeerassd'f(x) ]L fC(XNK,x)} . Then
deg .h = m(X,x),, and deg h = m{XnK,x) . Q.e.d.
If KEP (X,x) ,KZ :=K+z€Pg(>_{_,z) for z near x . If K€P (Xx),

Kze:Pgs(X +x) for 2z near x . This follows, because the X  := XNK
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are the fibres of the projection P, |X , where P, : & —> & is

the projection along K , and from the openness of XbM "

{(iii) Let (X,x) &> (gn,O) be equidimensional of dimension d , and
K€ Pg(g,x) . Then

C(XNK,x) = C(X,x) NK

Proof ([61], 2.9). First remark that for any (W,w) €gpl, .
dim W = dimzﬂreg for z near w , the dimension of the manifold of
regular points on W ; this follows from the local representation

Theorem I 6.3.1 (iii), since dim W = dim W__ . .

Consider the deformation p : (ﬁ,(0,0))g;(En xC,(0,0)) — (€,0) to
the tangent cone CI(X,y) zxo 1= 2_1(2) in II Proposition 3.1.3 and
the resulting description of C(X,y) by II Corollary 3.1.4. From

this the inclusion C{XNK,y) cC(X,y} NK 1is obvious. For the converse,

note that X0 is nowhere dense in X by II 3.1.3 (iv) and so

(X,(0,0)) 1is equidimensional of dimension d + 1 by the introductory
remark. So dim(z't)(xrl(Kx €)) z2d+1-£f for all (z,t) close to

(0,0) , but dim(olo)(XOfT(K x {0}) = d-f by assumption. Hence there

is the strict inclusion (XN (Kx€),(0,0)) > (Xyn (Kx{0}),(0,0)) of
analytic setgerms, and this proves C(XNK,y)=2C(X,y)nK . Q.e.d.
{iv) Let (Y,y) = (X,y) —> (gn,O) be as in Theorem 2.2.2. Consider

the diagram of projections

+

R := {(K,L) € Grass® (") x Grass® (¢") | LeK }
= \
Grassf(mn) Grassd(mn)

We then define various sets:

-1

- £ £ -1,.d
PALL\)(E'X’Y) = g (P/\ll(ﬁ'y) n pg(Y;Y’) nr (P\) (KrY))
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where A ,Vv are the letters "g","e", and u 1is the blank or "s" .
These are generic subsets of R

Moreover, given L€ Pi(g,y) » the sets Ppuv(g,z,y)f1r—1(L)' are
generic in r—1(L) ; so, for given L€ PS(E,Y) , there is
K€ wa (X,y) (for ‘both values of v ) such that K2 L

Elements (K,L) € quv(g,g,y) now allow to perform the basic construc-
tion for the proof of Theorem 2.2.2:

Let (K,L) € PAMV(E,X,y) be given. Let the coordinates (21,...,zn) on

¢” be such that K is defined by Zy0F see = Zp 0= 0 . We use the

following notations:

(2.2.6) Py (gn,O} —> (Y¥,y) the projection along K ;
p : X —> Y the restriction P_|X ;
X, := 3-1(2) = X0NK, for z€Y near y , with K, the

affine plane K+ 2 parallel to K through =z ;

E : a d-dimensional plane containing Y complementary to L;
BL : Qn —> E ' the projection along L ;
h : X —>E the restriction P |X ;
: X, —>» E_ :=E K the restriction of h to K and
-z =z =z - =z = -z .
hence the projection along Lz :
P :=P gn —> K the projection along Y

=y

The following figure may illustrate the situation.



K
e

Fig. 8

We now come to the actual proof of Theorem 2.2.2. We use the notations
of (2.2.6) throughout. Further, if K EGrassf(mn) is given, it

defines an embedding C(X,Y) &> Y xgn_f<1—> gn of the normal cone,

. . n-£
with v : C(X,Y) —> ¥ induced by the projection Y xd —_> ¥

according to the description given in 1.4. If KGfP;(E,x) , we have
the settheoretic inclusions

(2.2.7) (1) C(XNK,y) €v '(y) €K
(ii) C(XNK,y)eC(X,x) NK ’
. £
and, if K¢ PQ(E’X) '
(iii) C(XNK,y) = C{X,x) NK ;

"this will be used without further comment.

We proceed according to the pattern
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(iv) = (iii) = (1)
\\/
> (ii)
(iv) = (iii) (cf. [34], [691]) Choose K¢ Pg(g,y) . With the conventions
above, K 1is given by 2, T ... T 2g 7 0, p: En —> K denotes the

projection along Y , and 2-1(1) may be regarded as a subvariety of

d

K , which is of dimension d-f by assumption. So Pe_f(E-T(x),y;K) e =

:= {I.EGrassd—f(K) |Lrhv-1(y)} is a nonempty Zariski-open set of

d-£

Grassd‘f(K) . Put Uo(y) := {L,EGrassd(En) Ip(L)EP_e (2-1(x),y;K} .

This is a nonempty Zariski-open subset of Grassd(mn) , and the claim
is that (iii) holds for V := Vo(y) . Suppose this were not so. We could

then find an L€V, (y) and a sequence (x (37 such that xJ) ¢

FEIN
(X=Y) n(L+x(3%,h(x(J)) €Y ,and x(J)——o-y . After selecting a suitable

(3)

subsequence we may assume p{x y) converges to a line & in IP(K) ,
since TP{(K) is compact. But then 15\71(y) by (1.4.4), and
Lep(L) by construction, which contradicts the fact that

p(L) € pd-£f

e (3-1(x),y;K) . So we have (iii) .

Before showing (iii) = (i) , one shows the following consequence of (iv):

(2.2.8) Assume (iv) heolds. Let KePg(g,y) and LgK be in
P (y)yix) . Then L, €PdF(v(2),zik ) for all

z outside a nowhere dense analytic subset of Y .

~

For this, let 1w : En —_> gn be the blowup of En along gf x 0
The strict transforms of X and YxL under 1 give the blowups

<2

and (Y xL)" along Y . Their exceptional divisors P C(X,Y) and
Y xIP (L) are subvarieties of Y xIP (K) , and so meet in a subvariety
of Y xIP (K) , whose image under Y x1P (K) —> Y 1is a subvariety of
Y since this map is proper. This shows (2.2.8).

(iii) = (i) (cf. loc. cit.) By Proposition 2.1.3, the function

z —> m(X,z) has a generic value, m say, outside a nowhere dense
analytic set A in Y . By Theorem 1.4.8, we may assume Y-AcF(X,Y) ,
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the flatness locus of X along Y . So (iv) holds at all points of

Y -A . We choose Kfins(§,y) ; after shrinking Y , we may assume
KZEPZS(K,Z) forall z €Y by (2.2;3) (ii) . Choose a WE€Y-A and
an L in the generic set Ur\UO(w){WGrassd_f(K) of Gcrassd f(x

i d-f, -1
Since LE€V,(w) , we know by (2.2.8) that L, €P_ "(v (2),2z;iK))

outside a nowhere dense analytic set B ; we may assume B>OA
a-£

Since C(gz,z)ggv-1(z) always, we have LZE Pe (§Z,Z;KZ) . The

Lemma and Corollary of 2.2.3 (ii) imply:

(2.2.9) deg h = deg h = m(X ,z) = m(X,z) '

so deg,h must have the generic value m on Y-B . 2\

On the other hand, we have LegV . Now the degree formula II Theorem
(2.2.8), applied to h , gives

(2.2.10) deg,h = 21 deg,,h ,
z'€éh hi(z)
for 'z near Vv . But the assumption (iii) forces h-1h(z) = {z}
near y , SO
(2.2.11) deg h = deg h

for 2z near y . This implies degyg =m by (2.2.9) so we have equi-
multiplicity by upper semicontinuity of multiplicity (II Theorem
5.2.4).

(i) = (iv) (cf. [61]). Let X be equimultiple along Y at y . Let
I.ePg(g,x) -and h : X —> E be the corresponding projection as in
(2.2.10). Then degyE = m(X,y) , and so by (2.2.11), -

degyh Zdegzg_am(ﬁ,z) for =z near y , hence we have degyh = m(X,z)

for 2€Y near y by equimultiplicity.

We will now show: If L.EPS(E,x) is such that for the corresponding
projection we have degyh = m{X,z) for z€Y near y , then

Llhv—1(y) ; this will obviously establish (i) = (iv). One proves this
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first in case (X,y) 1s a hypersurface, and then for general (X,y)
by the classical device. of reducing it to the hypersurface case via
a finite projection. We let K€1P£(§,x) be the plane given. by

21 = ... = Zg S 0 and define the normal cone Q(E,X)C—agn by this
K .

o n d+1 .
So let X be a hypersurface in € =€ . We choose coordinates
24r--.02, 1n SECh afwaykthat Y 1is given by zf;51 = ... =2 0= o .
We decompose € = Q7 x(C and write points in (@ as (z,t)
with z = (21,...,zf) and t = (zf+1,...,zn) . Let g EOmn(U) be an

equation for X ; one can write

(2.2.12) glz,t) = [ gq,(z) &P

AERﬁc

(notation as in I, §§ 1-2)), where the gA(z) are holomorphic func-

tions on Y = (mf x Q) NU . The Y-leitform of g (as defined in (2.2.2))
is

= A
(2.2.13) Lylg) = ] g, (2) -t ’

k
AN
[aj=v
A

where v = vY(g) is the degree of the first nonzero monominal t

appearing in (2.2.13) with respect to the lexicographic degree order.

Now the equimultiplicity assumption on X along Y at y implies
that the gA(z) with |A| = v cannot simultaneously vanish at y = 0.
For suppose this were the case. The analytic set defined by the simul-
taneous vanishing of the g,(z) with |A} = v is nowhere dense in

Y Dbecause LY(g) does not vanish identically on K since

I(€P£(§,y) . So there are, arbitrarily close to y , points zy €Y
such that gA(zo) # 0 for at least one A with |A] = v . But then
all monomials in the development of g(z,t) €C{z,t} 0f (2.2.13)

would have degree > v , whereas in the corresponding development of
gl{z,t) Em{z-zo,t} there would appear monomials of degree v , and

the multiplicity m(X,y) >v would drop to m(g,zo) = v which cannot
0) = 0. if Z4 £ X ) . Note
that this argument establishes, in particular:

be by assumption (here we agree on m(X,z
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(2.2.14) VY(g) = generic multiplicity m(X,z) for z€Y near vy.
It follows that v, (g) = m(X,y) , hence the leitform L(g) is
A
(2.2.15) Lig) = ] g,(0) -t
A
|af=v

{2.2.13)_and (2.2.15) show:

(2.2.16) C(X,y) = 3'1 (y) xC(¥,y) ’

and so X 1is normally flat along Y at y . In particular, we get

-1

(2.2.17) v (y) = C(X,y) nK = C(XNK,y)
We now turn to L;EPg(ﬁ,y) . In suitable coordinates v = (v',vn) of
¢ , we may assume g 1is a Weierstraf polynomial g(v',vn) =

b o b=1 : \ . .
vo ¥ ab—1(V A + oLt a1(v )vn-+a0(v ) , and L 1is given by
v' = 0 . Then degyg = b , and, by assumption, b = m(X,y) = vi(g) .
So vg appears in L{g) , which means L.EPg(E,y) . So we can choose

K€ P:(_)E,y) with XKoL , and then (2.2.17) shows LITI\)—1 (y)

We now treat the general case . So let Y&—> X<—> U be as in
Theorem 2.2.2, and let L.EPg(X,x) be such that

(2.2.18) degyg = m(X,z)

for all z€Y near y , h the projection along L . We want to
show Lrhv_1(y) , where v : C(X,Y) —> ¥ 1is the normal cone. For
this, it suffices to show LAva-1(y) = {y} for each line LA < L

We may assume X is reduced. Namely, by the degree formula (II
Theorem 2.2.8), we have

(2.2.19) degyg = 2-1 degz,g > degzh ,
z'¢eh "hi(z)
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so our assumption forces h_1h(z) = {2z} and degzg = degyg for
z€Y near y . But then deqzhred = degyhred for z €Y near vy
Moreover, deg,h . = m(§red,z) , and so we have our assumpti?n on L
with respect to X eq - BY the limit description (1.4.4), v ' (y)
depends only on Ered , and so it suffices to consider the case
X = éred

. v
We describe lines in L by linear forms A€L - {0} , where
I := Hom (L,C) is the dual of L , in the following way: We fix

AeL-{0} and choose L* to be a complementary line to Ker (X)

This gives us the following situation.

{(2.2.20) X —> EA

Ny ¥
UE
Here , we have assumed U = UEx UL with UE open in E , UL open
in L . The maps are finite projections;= Ei s = EA |x ‘with
Ty f Qn —> E}BEA sgd+1 the projection along Ker (i) , X, := im(w,) ,
and DA the projection along ,LA . EAC=—> QE xEA is a hypersurface,
given be the equation
A degxg

(2.2.21) w (z,£) := T (t-X (x-2)) €0(ug) ]

xEth(z)=L+z

where we regard O(UE)[t]‘Z—o O(UE xLA) under t > A . This follows

because « is given by

A

(2.2.22) my (v) = (PL(V)’DA(V)) ‘

where Py ¢ ¢ —> LA is the projection along E @ Ker(i) , and from the
classical arguments involving the elementary symmetric functions in

the A(x-z) for x€h™'(z) . We have
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(2.2.23) X = noaT b

XeL-{0} *

namely, )(gw;1(xk) for all X since X 1is equidimensional, and on
the other hand, for any V’EEn-—X , there is A.Ef.-{O} with

Ax-v) # 0 for all Xtih-1pL(v) , and so m, (v) ¢ x* by (2.2.21) and
(2.2.22).

From (2.2.21), we see deg_h, = ] deg.h = deg_h and so, putting
2=A x¢h th(z) *= z=

z = Yy , in particular m(EA,y) = m(X,x) . Let C(z,y)l := nA(C(g,x)) :

then,'since Ty is proper, one may show, by the limit description of

tangent cones,

A A
(2.2.24) CX,y)" = C(X",y)
So LA CiX,y) —> C(Ek,y) is finite, and, in particular, if
K€ PZ(E,y) , we have k' := LY (K)Eipg(fx,y) . If we define the normal

cones of Y in gk by the KA , we get, by the hypersurface case

proved above, that LA(hv;1(y) . Again by the properness of m, and
the limit description of normal cones, there results

(2.2.25) vyt s vy (y)

where (\)“1(3()))'L t= nk(v*1{y)) . Hence LAr1v_1(y) = {y}
wanted to show. So (i) =» (iv) 1is established.

' as we

Note that this proof shows, in addition ,

(2.2.26) Cix,y) = v ' (y) xC(X,y)

This follows, because, by (2.2.16), we have

- v
(2.2.27) C(§A,y) = vA1(y) xC(Y,y) for all X€eL-{0} ;
then, by (2.2.24) and (2.2.25), we get (2.2.26) by intersecting
(2.2.27) over all X and using (2.2.23) (for XA ’ (v_1(y))A , and
(C(§,y))A) . In particular, we get

(2.2.28) v iy) = cx,y) NK = C(XNK,y)
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for KE.P:(E,y) under the condition (i). This is in fact equivalent

to (i) and hence to (2.2.26), because it clearly implies
1

dimv™ ' (y) = d-£f , so (iv) holds, and we have already (iv) = (i).
(iv) = (ii) = (i) : By the proof of (iv) = (iii) and (2.2.8) we even
know that (ii) holds for all L.EVO(y) . The implication (ii) = (i)
follows because we have (2.2.11) for the projection h along L by
the same reasoning as in the step (iii) = (i}; by assumption, we have
deg h = m(X,z) for all =z near y in addition, and this shows (i).
This establishes the equivalence of (i) - (iv). For the additional

statements, note that the step (iv) = (iii) showed we may take

vV = Vo(y) 1= {I.GGrassd(¢n) | p(L) EPg—f(g_1(x);K)} . If one of the
statements of Theorem 2.2.2 holds, we know all of them hold for all
2€Y near y , and then (2.2.28) and (2.2.8) applied to =z , show
L, EPg(g,z) for all L€V and 2z€Y near y . This concludes the
proof of Theorem 2.2.2.

The proof of the Addendum is left to the reader.

Before commenting further on the significance of the various characte-
rizations of normal pseudoflatness, let us remark that the proof of N
(i) » (iv) gave further important characterizations. Recall, for

g€ Ox,y , the notions of the order wvi(g) (I, (1.1.3)) and the order
vY(g) of g along Y ((2.2.2)) .

Theorem 2.2.2 (cont.}). Let YS—> X<—> U be as in Theorem 2.2.2.

Then the following statements are equivalent to (i) - (iv} of Theorem
2.2.2:

(v) Let 150, be the ideal defining X<—> U . There are finitely
many equations gAE I1{U} with the following properties. Let

Kk:= N(gy) , and Yy g(gx,g) —> Y be the normal cones for all A
Then:
1) v(gA) = ingA) for all X ;
2) C(X,y) = NC(X,,y) ;
A
-1 -1
3) v (y) = Ny (y) '

A
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where vﬁ1(y} p vKT(y) are defined in € with respect to some
b
KeP (X,y)
(vi) C(X,y) = v-1(y) x C{(Y,y) with respect to some K(ZPg(E,y) .
(vii) v iy) = C(XNK,y) with respect to some K(SPS(E,y) .
If one of the conditions (i) - (vii) holds, (vii) holds for all
£ N .
KE P (X, )
g(_ Y)

Moreover, 1if X 1is a hypersurface, the following condition is also

equivalent to (i) - (vii}:
(iv')} X is normally flat along Y at vy .
I leave it to the reader to show (i) = (v) = (vi); all the other impli-

cations have been mentioned above.

Conditions (v} and (vi) are particularly interesting for the relation
between normal flatness and normal pseudoflatness; (v) shows algebrai-
cally, and (vi) geometrically, how much is lost when passing from
normal flatness to normal pseudoflatness. For normal flatness, condi-
.tion (v) would require, in addition to vY(gA) = O(gk) , that the
L,{g,) generate the normal cone C(X,Y) (note that this implies
that the gA generate the ideal defining X—>U, so C{X,x)= QC(XA’X)

Condition (vi) would require C(X,y) =Ef1(l) xC(Y,y) so normal
pseudoflatness keeps the geometric content of normal flatness, but
looses the possibly nonreduced structure.

In order to connect Theorem 2.2.2 with the algebraic equimultiplicity
results of Chapter IV of this book, we formulate the following result.

Proposition 2.2.3. Let (X,y) €¢gply , {¥,y) &> (X,y) a complex

subspacegerm defined by the ideal IcR := Ox y Then:

(2.2.29) codimyz = ht (I) :

(2.2.30) dimv ' {y) = s(I)
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Proof. A local analytic algebra is catenary (e.g. by the Active
Lemma I 5.2.2). This gives (2.2.29) by the Dimension Formula,
Chapter III (18.6.1)..Further, by base change for Specan, Proposition

1.2.4, 3'1(1) = sQecah( ® Ik/mka) . This gives (2.2.30).

kz0

By 2.1.2 and 2.2.3, then, we see that the equivalence (i) e== (iv) of
Theorem 2.2.2 is, for local analytic C-algebras, equivalent to ~ .

satz 2 af“[?i] , ... ~~thus elucidating its geometric con-
cent in this case. Conversely, (20.9) gives an algebraic proof of the
Hironaka-Schickhoff-Theorem, based on 2.1.2, which used compact Stein
neighbourhcods to interprete invariants of localizations of local
analytic C-algebras geometrically (note that the localization of RE€ la
is no longer in la , so does not correspond directly to a geometric
object via the Equivalence Theorem I 3.3.3). This is a particular case
of the general principle that distinguished compact Stein neighbour-
hoods provide a systematic way of translating results from local
complex analytic geometry into local algebra and vice versa. In this
wveln, the equivalence (iv) e= (vi) &= (vii) of Theorem 2.2.2 1is essentially
the geaetric content of (ii). <‘>4iii)<$>(iii’)uof.[781.;4see also-

T T

the discussion in [49], § 5), and we will deduce geometric properties
in ggéo from local algebra in 3.2. below.

Exercise 2.2.4. Try to express the statement (ii) of Theorem 2.2.2 in
terms of local algebra and to show its being equivalent to the equi-

multiplicity condition e (R} = e{Rp) algebraically.

(ii) Try to translate the proof of Theorem 2.2.2 into an algebraic

proof of .satz 2 of[j71 T What do the choices of the
f- and d-codlmenSLOQQL pl ngg K and L mean algebraically?

I close this section by some comments on the geometric and algebraic
significance of the various conditions in Theorem 2.2.2 and 2.2.2

(cont.); these will be partly, within this limited account, informal.

The equivalence (i) e«= (v}, i.e. that the size of the normal cone is
controlled by equimultiplicity, is geometrically a transversality
statement, as we will see now. This should be, in a sense, not too
surprising, since multiplicity was defined as a generic mapping degree,
and we have already seen in II Theorem 5.2.1, that a projection has

generic mapping degree if its kernel is transverse to the tangent cone.
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The appropriate generalization of this is the following theorem, which
we actually proved in the course of establishing (i) e= (iv) of
Theorem 2.2.2.

Theorem 2.2.5. Let Y&—> X&—> U be as in Theorem 2.2.2, and let
L.EPS(E,y).. The following conditions are equivalent:

(1) degyg = m(X,2) for z€Y near y , where h 1is the projection
along L .

(ii) Y xL.mY X , i.e. Y xL intersects X transversally along Y
in the sense that Y xLNC(X,Y) =Y (C(X,¥Y) defined with respect to

any (n-f)-dimensional plane K2>L )

Remark 2.2.6,

1) If we put Y = {y} , we get the statement (ii) of II Theorem

5.2.1 which is the geometric form of the Theorem of Rees (cf.” Theorem 1~
in;§1;;?1%€}1“ for reductions of the maximal ideal. For priméry ideals,
see Proposition '3.2.2 (ii) below. In fact, Theorem 2.2.5 is a variant
of the geometric form of the Theorem of Bdger (Chapter III, Theorem
(19.6)) for the case of a regular prime ideal. The transversality con-

dition in (ii) just means that the ideal generated in OX via the

: Q;oﬁection X —> gd_f along Y xL 1is a minimal reduction of the

ideal generating Y . This gives a geometric picture of the meaning

of a minimal reduction in this case. For the general case, see Theorem
3.2.7 below.

2) We did not use the Theorem of Rees (i.e. the important direction
(i) = (ii) in Chapter III, Theorem (19.3)) to establish (i) =» (ii)} above,
so we really gave it a geometric proof. The direction (ii) = (i) was also
established in a geometric way, although one may object that I made

use of the fact that, 1if LEZPg(E,y) , one has degyg = m(X,y) .

which was established in an algebraic way in II Theorem 5.2.1 using

the theory of reduction. We will see in the proof of Theorem 2.2.8

below how to interprete this more geometrically.

I now turn to a discussion of condition (vi). Note that the equivalence
(iv) e= (vii) means, in particular:
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Either v y) = c(XnK,y) or dimv™' (y) >d-£  (where
Ke Pi(g,x)) , which is, at first sight, rather surprising. Trying to
understand this sheds some more light on the geometry of equimultipli-
city, so I give an informal account. For this, we have to take a closer

look how normal directions arise geometrically.

Proposition 2.2.7 (Existence of testarcs). Let (X,x)€g¢gpl, , and
(A, x) g(x,x) be an analytic setgerm. Then there exists a morphism

a :(ID,0) —> (X,x) , where D cC is the open unit disc, such that
a(D-0)cX-A and a(0) = x . We call o a testarc for (A,x)

Sketch of proof. 1If (g,c)figgéo is onedimensional, we get

a :(D,0) —> (C,c) by parametrizing an irreducible component. This
reduces the proof to the case (X,x) = (Qd,O) via the Local Represen-
tation Theorem I 6.3.1. Then Jjust parametrize a complex line trans-
verse to A at x . Q.e.d.

Applying this to thefblowup " : X—>X of X along Y , with x
being a point in n-1(Y) and A& := ﬂ_1(Y) , we see that in the limit
description (1.4.4) of v—1(y) we can restrict the limit process to
testarcs for (Y,y)

=1

(2.2.31) 2 is a line in v (y) e 2 = lim p(ya(t)) for some
t-0
testarc o : (D,0) —> (X,y} for (Y,y)
Here, it is understood we have choosen KE€ P;(E,y) . and p : gn —> K

is the projection along Y . The normals at y now fall into two
classes: Those that belong to C(XNK,y) , which I call ordinary
normals,and those that do not, which I call excess normals. The equi-

valence of (vi) and (vii) says that the failure of normal pseudoflat-
ness is due to the existence of excess normals. These are. characterized
as follows:

(2.2.32) 2cK is an excess normal = 2 = (poa)(0) , where

a : (D,0) —> (X,y) is_a testarc for (Y,y) such that

«(0) is_a tangent line of X at x , but (p °a)(0)

is not a tangent line of XNK at vy .
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Here I have put 8(0) := lim yB(t) for a testarc 8 .
t-0

The following picture may illustrate the Situation.

projection
Into K

) .
g Z} ptz) Pl o) A P Pl
=0

)
Dﬂy
X | R / / '
\ P /
o K

e
\‘\\ v
\g/} ‘ sy |
C6,)) < projection
. info K
| —

EXCESS NORMALS

Fig. 9
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S0 we have to analyse what it means, in terms of testarcs, that a
line 255¢p is not tangent to a given (W,w) &> {QP,O} . Clearly

(2.2.33) L & C(W,w) o= for all testarcs ‘
¢ :(D,0) —> (W,w) :2 # a(0)
Choose coordinates (21,...,29) such that & is given by
2, T ... = zp_1 = 0 . It is conceivable that the requirement ¢ # a(0)
puts growth conditions on the coordinate functions 21,...,zd restric-—
ted to «a , as the following picture suggests:'
SR T A
“p “p
o
T - z- v o
zj :J#Ep J 'J?:p '
!
) Fig. 10
It turns out that the appropriate growth conditions are:
(2.2.34) % # a(0) = there is a neighbourhood V of 0QE€C

and CE€E IR> such that

0

lz_oa(t)| s ¢ sup lz.oa(t)]|
P 155sp-1

for all tev .

Now testarcs o define valuations v, on R:= 0 w in the sense of
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Chapter I, Definition (4.18), via

(2.2.35) v (£) := vi{af(g)) = ordo(ao(f))
0 . .

‘where flEOw’w ;o Ow,w e OE,O is given by

o (]Q,O) —> (W,w} , and ord

o denotes the order of vanishing at

‘0 ET . Then the condition (2.2.3 ) reads

)0 ) for all o ,

(2.2.3 ) ¢ F a(0) o= v, (2 zp_1 W,w

)E:va((z1,...,

P

and so the valuation criterion of integral dependence of Chapter I,
(4.20) strongly suggests that 2 # ®(0) is equivalent to zp , regar-

ded as a function on W , being integrally dependent on the ideal

Tz1,;..,zp_

In fact, there is the following proposition:

Proposition 2.2.8 ([69]). Let (X,x) €gply , I SOX x an _ideal ,

r

f€10x < The following statements are equivalent:

(1) For all testarcs o : (ID,0) —> (X,x) , v&(f) ZVG(I) .

{ii) For all systems of generators (g1,...,gg) of I there is a

neighbourhood V of x in X and C €R_, such that

[E(y)| sC - sup | gj(yH
183352

for yev .
(iii) £€T .

i(i) =» (iii) depends on the fact that in the proof of (ii) = (i) of
Proposition (4.20) of Chapter I the valuations v, suffice, see the
argument in the proof of Chapter I, 1.3.4 of [69]. (iii) = (ii) follows
‘because the equation of integral dependence gives the necessary esti-

mates, and (ii) = (i) is immediate. For the complex analytic proof see
[69], Chapter I, 1.3.1 and 1.3.4.

From this results we see:
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Theorem 2.2.9. Let (W,w) &> (Qp,o} be of dimension d , L the
d-codimensional plane given by 2z, = ... = zjy = 0 . Then LHC(W,w)
if and only if zd+1,...,zn€ (-21,...,zd)-Ow’W

It is in this way how the algebraic notion of integral dependence comes

in when describing the geometric notion of transversality.

We can now translate the condition (vii) into algebra. We formulate
(2.2.32) in the following way:

(2.2.37) There are no excess normals, i.e. (vi) holds e for all

testarcs « such that (p e a}’(0) is not a tangent line of

XNK at vy , a(0) is not a tangent line of X at vy

This can be exploited as follows.

We first get the generalization of Theorem 2.2.9:

Theorem 2.2.10. Let (Y,y) &> (X,y) —> (gn,OJ be as in Theorem
2.2.2, I,EPg(g,y) . Choose any {(n-f)-dimensional plane K2L , thus
KEZPS(E,y) {(defining an embedding C(X,Y) &> mn). Let the coordinates

Il

ZoreeerZg =0 be such that L 1is defined by 29T e T24 and K

be z,=...=2.,=0 . Then YxLAC(X,¥) if and only if

‘(zf+1""’zn)°ox,x = (zf+1""’zd)°0x,x .

This follows by applying Theorem 2.2.9 to (2.2.32), since there are
no excess normals if and only if (vii) holds, i.e. we have equimulti-
plicity,and so (vii) is equivalent to Y xL fC(X,Y) by Theorem 2.2.5.
The geometric content of this is that transversality is equivalent to
growth conditiocns on the coordinates of X along directions normal.
to Y , and this is the geometric interpretation of the fact that a
(minimal) reduction is characterized by integral dependence.

Further, it is now easy to see that we have, using Theorem 2.2.5:

(2.2.38) X is equimultiple along Y at y if and only if for all

I,EPS(E,y) we have Lrhv-1(y)=» L, mv_1(z) for all

zZ€Y near y outside some nowhere dense analytic subset.
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Since normal pseudoflatness holds outside a nowhere dense analytic

set, so that we can apply Theorem 2.2.10 there, we get, putting together
our achievments, the following theorem.

Theorem 2.2.2 (cont.) Let X<lé—> X=> U be as in Theorem 2.2.2,

and let the ideal 'IEOX define i . The following statements are
equivalent to the statements of Theorem 2.2.2.

{fviii) ("Principle of specialization of (minimal) reduction") . Let
Je1 . Then Jy is a (minimal) reduction of Iy if and only if Jz

is a (minimal) reduction of Iz for all z €Y near y outside a now-

where dense analytic set in Y .

(ix) ("Principle of specialization of integral dependence"; cf.[69] ,
Chapter I, 5.1) . Let fe€0,(X) . Then fye”fy if and only if

EZE'TZ for all =z €Y near y outside a nowhere dense analytic set

in Y .
The discussion of (ix) is similar to that of (viii) by embedding

X—> gn in such a way that £ 1s a coordinate on K . One can also
show (viii) e== (ix) directly. '

§ 3. Geometric equimultiplicity along a general subspace.

If a complex space X has the same multiplicity along a smooth
subspace Y , the results of the last paragraph show that this numeri-

~

cal condition gives control over the blowup m: X —> X of X along
Y to the extent that 1©|D : D —> Y is equidimensional, where

D &> z is the exceptional divisor (which is the same as saving that
X is normally pseudoflat along Y ). This is no longer so when Y
becomes singular, and it turns out that the "naive" equimultiplicity
condition above has to be replaced by a more refined egquimultiplicity
condition in order to guarantee normal pseudcflatness. The algebraic
formulation of this result is Theorem (20.5) of Chapter IV, and it is
the purpose of this paragraph’€3‘§:2;;; the geometric significance of

these and related results in that case.

In general, these two notions of equimultiplicty.are not related.
To visualize this, I give in the first section a short description
of the geometric significance of the first one, a result due to Lip-
man. In the subsequent section I give a somewhat more detailed descrip-

tion of the geometric meaning of the refined equimultiplicity condi-
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tion and various other equivalent geometric and algebraic conditions,
including normal pseudoflatness. These are the appropriate analogues
of the smooth case, formulated in Theorem 2.2.2 above, and correspond
to the’ algebralc results of Theorem 3 in [78] d‘ip';_,,‘i .. I also des-
cribe the-relation with the reductlon of ideals anuantepmlf‘ dependence.
The main difference to the smooth case is that one has to replace the
tangent cones by the normal cones to possibly nonreduced one-point-
subspaces induced in X along Y by a suitable projection, and to
change the multiplicities accordingly. These are also chal mapping

degrees.

The underlying geometric principle 1is ‘again that the local mapping
degree of a projection measures the order of contact of the kernel of
this projection with the spacegerm on which it is defined. Hence, the
equimultiplicity condition of a space along a subspace controls the
intersection behaviour of the family of this projection centres along
the subspace with the space under consideration and so represents a -
transverality condition on the normal cone. The algebraic notion
corresponding to transversality is that of the reduction of. an ideal
(or integral dependence), and so it is not surprising that the Theorem
of Rees-~Bb&ger is fundamental to equimultiplicity considerations and
contains, in a sense, the essence of it; I have made some comments
on this at the end. '

3.%. Zariski-equimultiplicity

The following result shows that the geometric description of Zariski-
equimultiplicity in Theorem 2.2.2 (ii) can be maintained. It will,
however, no longer control the dimension of the. normal cone fibres,
which makes this notion therefore not very interesting for the study
of the blowup along a nonsmooth centre. The main reason for this is
that along a general subspace the tangent cones to the ambient space
are not related to the fibres of the normal cone and to the normal
cones of a transverse plane section, which was the case in the smooth
situation.

For the definition of Zariski-equimultiplicity see Remark 2.1.8.

Theorem 3.1.1 (Geometric analysis of Zariski-equimultiplicity; [49],
Proposition (4.3)). Let (X,y) &> (gﬁ,O) be an equidimensional
spacegerm of dimension d , (Y,y) = (X,y) a complex subspacegerm.
The following statements are equivalent.
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(1) X 1is Zariski-equimultiple along Y at vy .

(ii) There is IJEGrassd(En} and a neighbourhood Vv of y in X
such that LNV = {z} and L, €Pl(X,2)) for all zevny .

(iii) For all L.ePgtg,y) there is a neighbourhood VvV of y in X
such that L, naVv = {z} and L, ePg(E,z) for all zevVny

Proof. For LfEPg(g,y) , let h := Ry (X,y}) —> (E,0) be the pro-

jection along L to a d-dimensional plane Eg;mn complementary to

L . We have

(3.1.1) degyg = 21 deg,h 2 deg h
z'€eh "h(z)
v vi
m(X,y) m(X,z)

for 2z near y on Y .

(i) = (iii) If LE€PI(X,y) , (3.1.1) implies h 'h(z) = {z} and

degzg = m(X,z) for 2z near y on Y . Then ALZGTPg(g,z) by the
geométric form of the Theorem of Rees, Remark 2.2.6,1).

(iii) = (ii) This is obvious.

(ii) = (i) By (3.1.1), m(X,z) = degzh = degyh for z near y on Y.

3.2. Normal pseudoflatness.

As mentioned before, if we have (Y,y) <> (X,y) , the tangent ccne
C(X,y) will ingeneral not be related to the fibre ‘2_1(1) of the
normal cone v : C(X,Y) —> Y , and so it cannot be expected that its
dimension is controlled by the multiplicity of X along Y near y .

Recall that the geometric analysis of equimultipliciﬁy along a smooth
subspace in 2.2. depended heavily on the use of a finite projection, h.

It turns out that the correct cones which to replace the tangent cones
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with are the normal cones C{X,y) , where y <> X 1is the one-point-

space defined in X be the primary ideal of OX y generated via the

r

finite projection, and that the correct multiplicities are the sums
of the multiplicities corresponding to these cones in the fibres of
the projection restricted to Y . This will be described now. Since
the results are a natural generalization of the smooth case, which

has been exposed in detail in § 2, arguments are only sketched, or

omitted. They describe the-geauetric-content or ‘Iheorem-3- in E’B] ST

- .
N e .
R e - —r—
. e e e e PR
. o L R

- .. -

Definition 3.2.1. Let (X,x) €gply , dim X =: d , L' € Grass® (¢")

such that x 1is isolated in XNL' with dsksn , and

q' := pg,(mk)gmx the mx-grimary ideal generated via the projection

Py X, x} —> (Qk,O) along L' . Let x%—> X be the one-point complex

spacegerm defined by g'.

(1) Pd(x,x) = {LEPd{X,x)I LoL'}
g = g -
Pg(gg,g) = {LEPS(§,§)| LC(X,x)!}
- P x) )
where C(X,x} 1is the normal cone of x<— X . (These are both generic

subspaces of the grassmannian of d~codimensional planes in ¢ contai-
ning L'.)

. . a
(ii) m(X,x) := mln{dengL| LEin(E,ﬁ)} .

In generalization of II, Theorem 5.2.1, one has

Proposition 3.2.2. Let the notation be as in Definition 3.2.1; in

particular, L' , or g' , is fixed.
. , a
(1) deg p, 2 elqg ,Ox'x) for all L€ g(g,;)
. d -
(ii) (Theorem of Rees). If LeP_(X,x) , deg p, = e(q',OX'x) .
Conversely, if (X,x) is equidimensional and dengL = e(q',OX x) ’

then L€ P:(E.x)
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Notation 3.2.3. We consider (Y,y) &> (X,y) &> (¢",0) , dim ¥ =: £ ,

and (X,x) equidimensional of dimension d . We assume the conventions

(2.2.1) (i),{ii), and (iii) made at the beginning of 2.2; 'so we assume
Y&> X&> U with U a domain in el , and Y = XNG , where G 1is
an m-codimensional plane in €" such that Y =XNG , called a

generating plane for Y . Let Ig;OX define Y &-> X . Further, let

K€ Pg(g,y) (cf.(2.2.4)). We let the coordinates on " be chosen in

such a way that K is given by 2, 0% ... = 20 0 and G by

zf+1 = ,.. = zf+m = 0 . Let L' := GNK . Then L' Grassf+m(mn) . The
. . ) . L . f+m

projection along L defines a finite map h' : X —> C , and

we will use the multiplicities induced by h' in X along Y to

control the fibres of the normal cone (see Figure 11).

For this, put. y := y(K) := YNK = (h')"'(0) ; the multiplicity in
question is m(X,y) , the behaviour of which along Y 1is relevant for

normal pseudoflatness. One has m(X,y) = e(Iy(ﬁ),O ) s xi=(zy,...,2¢)

X’y -

the set of parameters of OX y defining K (cf. Chép.I, {3.6)). Put

(3.2.1) EK : X —> F

to be the projection along K , where F = C° x 0> gn . We get the

commutative diagram

(3.2.2} Y < > X

and, for 2Z€F near y , (h')~ The behaviour of m(X,y)

along Y 1is as follows.

Proposition 3.2.4., Put, for 2z€F near vy ,

(3.2.3.) m(X,¥n K_) := ) m{X,z")

Then
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ooy e ey

Figure 11
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(1) m(X,¥NK ) sm(X,y) for all =z near vy , and has a constant

value for 2z near y outside a nowhere dense analytic subset Acy ,
denoted m(X,Y,K)

(ii) If IEOX defines Y ~——> X ,

m(éli!g) = e(—%'fy'ox,y) '
where x 1is the set (;1,...,zf) of parameters of OX,y defining K
and e(x,I ,0 } is the generalized multiplicity of Chapter I, (3.9).

v
<
g

The proof is similar to the proof of Theorem 2.1.2 ; one considers the

admissible graded OF-algebra G((h"),T,0,) = @& (h')*(Ik/Ik+1) and

k20
uses the fact that normal flatness is generic, i.e. Theorem 1.4.8.

See [54]

This leads to the following definition:

Definition 3.2.5. Let y€YS-> X<—> U be as in 3.2.3. If

K€ P;(z,y) » X is said to be K-egquimultiple along Y at y if and

only if the function z pF—> m(g,grwgz) is constant for all ze€F

near y

For equimultiplicity considerations,one wants to proceed as in the
smooth case and choose an L.EPg(g,X) with L&K , in order to use
the local mapping degree of the projectiona Q::;EK,L : X—>E F=§d xg"
along Y to compare the various m(E,Zfigz) . For this, one may show
there is an open neighbourhcod V of K in Grassf(mn) such that
m(X,¥NK)) does not depend on K' for K'€V and 2z near y (this
are grassmannian arguments similar to those employed in II, 4.1.). So,
since 'Pgs(x,y) is generic in Grassf(mn) , we may replace K with
some K' € Pes(z,y) without affecting m(ﬁ,gf]ﬁz) (this is the geome-
tric content of (20.3) and (20.4) in Chapter IV). So we may always

assume, for questions concerning m(g,zlﬁgz) , that KEEPgs(X,y}

Then C(X,y) NK=C(XNK,y) , and the set Pi-f(§fﬁg,x;K)

:= {L.€Gra§sd_f(K)|];':IJ and LAHC(X,x)} 1is generic in Grass?®™f (k)

SO we can always choose an L.EPZ-f(Elﬁg,x;K) . Then I.EPZ(K,z) '
‘ d

and if h : X —> E := € x0 1is the projection along L , there is the

[

14
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fundamental chain of inequalities for 2z €F near vy

(1)

(3.2.4) m(X,y) = deg h = ) deg_,h 2 ) deg_,h
- y— 9 z'= -1 z
z'€h " (z) z'€(h") (z)
(2)
2 ) m(x,z') = m(X,¥ nK,)
z'e(h') " (2)

The inequality (1) holds because (h')-1(z)5;h_1(z) , and (2) holds
because degz,g = e(q,OX’z,) Ze(q',OX,z,) = degz,g' =: m(X,z') , where

' 24 are the primary ideals induced by h' and h from the maximal
ideal of 0

E,z
The various aspects of K-equimultiplicity of X along Y at y are
now summarized in the following theorem.

Theorem 3.2.6 {Geometric analysis of equimultiplicity). Let
YeEY——> X=—>U —> _(l_:n be as described in 3.2.3. Let KE€ Pgs(};’,y) .
The following conditions are eguivalent:

(1) X is K-equimultiple along Y at vy
(ii) There is L(EGrassd(En) and a neighbourhcod Vv of y in X
such that, for all =z €¢f x{0}nv , VnLz = YrﬁKz and Lz| EP:(ErE')

for all z' EYf\Kz

{iii) For all L.EPg(ﬁ,x) there is a neighbourhood Vv of y in X
Ssuch that VNL, = YNK for all zeat x {0} nv .

{iv) X 1is normally pseudoflat along Y at y , i.e. dim\r1(y0 =d-£,

where v : C(X,¥) —> Y is the normal cone.

{v) There is L € Grass® (¢ ) such that (G+L) NC(X,Y) =Y .
. -1 £

(vi) C(X,y) =v "(v) x (" nf{o}) .

(vii) C(XNK,y) = v (y)

(viii) ("Principle of specialization of minimal reduction”"). Let
IEOX define Y<—> X .Let "JglI . Then Jy is
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(minimal) reduction of Iy if and only if Jz ~is a (minimal} reduction

a
of Iz for all z€Y near y outside a nowhere dense analytic set.

{ix) ("Principle of specialization of integral dependence", cf.[69],).
Let f’EOx(X) . Then fy,EIy if and only if fZ GIZ for all =z €Y

near y outside a nowhere dense analytic set.

If one of these conditions holds, (i) and (vii) hold for all KGPg(X,y).

The implications (iv} = {(iii) = (i) follow , analogously to 2.2, by

blowing up €" along G and using (3.2.4).(i) <= (ii) follows from (3.2.4)
and the Theorem of Rees (Propositicn 3.2.2. (ii)). I do not know of

a geometric proof of (i) = (iv), but (i) e= (iv) follows from the corres-
ponding algebraic result‘.ﬁi)4§xim of -theorem 3 in Y7QJ"’ " in view

of Proposition 3.2.4 (cf. {54]), and it is a useful eXercise to

visualize the proof of that Theorem geometrically using the geometric
form of Bbger's Theorem below. The eguivalence (iv) e= (vi) = (vii) also
follows “from Theorem 3 of®:(78] . . . " e '

- I 2 The implications (vi) = (vii) » (iv) are also
airect geometrically. The equivalence (v) e (viii) can be treated as-
in the smooth case, and (viii) e (ix)} is left to the reader. One may
also derive the equivalence (iv) e= (viii) as a direct consequence of

B&ger's Theorem:

Theorem 3.2.7 (Theorem of Bbger). Let (¥,y)S—> (X,y)<=—>(c",0) be

as in Theorem 3.2.6. Let L.Epgiﬁ,z) , and KE€ Pé(z,y) containing

L . Let GE€Grass"(c”) be such that ¥ = XNG , and let h : X—>C
be the projection along L . The following statements are equivalent.

(1) deg,h = m(X,¥YNK ) for all =z near Y outside a nowhere

dense analytic set, and (G+L) NX = Y near Y

{ii) G+L intersects X transversally along Y , i.e.
{G+L) nC(X,Y}) = Y
Exercise 3.2.8 (i) Derive this theorem from Bdger's Theorem Icf...

Theorem 1 inikﬂ),and show the equivalence (i) e= (v) of Theorem 3.2.6.
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We end our survey of Theorem 3.2.6 by establishing (iv) == (viii). The
implication (viii) = (iv) is left to the reader. For (iv) = (viii), the
"only if" statement is obvious, because 1 is locally finitely gene-
rated at y . For the "if"-statement, let J<I be a minimal reduction,
J = (g1,...,g£)~0x . We may assume X 1is so embedded in ¢ that
(g1,...,gl) = (zf+1,...,zd) . The assumptions then imply that condition
(1) of Theorem 3.2.7 holds, and the conclusion follows from (ii) of the
theorem. |

An interpretation of this is that the content of B&ger's Theorem, be-
yond the content of Rees' Theorem, is essentially the statement of the
principle of specialization of integral dependence. This is also appa-
rent from the proof of (19.6) in Chapter III.

Finally, as an application of Theorem 3.2.6 we mention the followina
geometric variant of proof of the result Theorem (b) of [jsj_.

Theorem. Let (X,y)<—> (€,0) be in gpl, , (Y,¥v) == (X,y) a

complex spacegerm, and let thé notation be as in 3.2.3. Let X€P

Sy
and suppose X is K-equimultiple along ¥ at y . Let 7 : X —>

1= 1=

be the blowup of X along Y and let ?(En—1(y) . Then

n(X,¥) § m(X,¥.K) .

Idea of proof. If (C,0) > (EP,O) is a cone, m(C,c) sm(C,0) for
all ce€C by the Degrée Formula II 2.2.8. Now let the line 2c<C(X,Y)
correspond to §€En_1(y) and let &€ 2-{0} . By Theorem 3.2.6 (vii)
we may assume E(Ev-1(y) . We have the chain of inequalities:

_‘](

n

m(X,¥) ¥) .Y (X,¥),£)

m(m

1}
=
10

smiv ' (y),y) = nXy) s nX,y)

which proves the claim.
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