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INTRODUCTION

The idea of a eomplex spaee emerged slowly over the deeades as a na­

tural generalization of the idea of aRiemann surface and its higher

dimensional analogues, the eomplex manifolds. As in the elassieal theory

of holomorphic funetions of one variable, eomplex spaees arise in the

attempt to understand ho19morphic funetions of several variables by

construeting their natural horne, "das analytische Gebilde ll
, i.e. the

maximal natural domain of definition. The nonuniformizable points, now­

adays ealled singularities, eaused great eonceptual diffieulties, so

that a satisfactory definition had to wait until the 50's of this

eentury when it was given by Behnke and Stein and, somewhat later in

same greater generality, by Cartan and Serre. Subsequently it became

elear that if one wants to gain a deeper understanding of eomplex

manifolds, even of eurves, complex spaees with nilpotents in their

strueture sheaf inevitably show up, be it in inductive proofs, or be

it in the eonstruetion of such important geometrie objects as moduli

spaees of various, sornetimes very elassical, struetures. This step

was taken by Grauert and Grothendieck in the early 60's, who introdueed

the now generally aeeepted definition of, possibly nonredueed, eomplex

spaces.

Aside from their intrieate and important global properties, eompiex

spacespossessa very rieh and interesting Ioeal geometry, due to the

presenee of singularities. The algebraization of this Ioeal geornetry

was initiated by WeierstraB, who formulated his famous Preparation

Theorem. Rückert, in a fundamental paper of 1931, was the first to use

systematieally algebraie tools in the loeal theory, and the consequent

use of loeal algebra was further systematized in the Cartan Seminer of

1960/61, and Abhyankarts book of 1964 on loeal analytie geometry. It

th~n beeame clear that the local geometry of eompiex spaees and the

algebraie strueture of the eorresponding Ioeal rings are eompietely

equivalent. In this way, then, aigebraie statements within the eategory.

of loeal analytie algebras (i.e. quotients of eonvergent power series

algebras) have an equivalent geometrie interpretation which ean be

systematically exploited. Conversely, geometrie eonsiderations may pro­

vide partieular insights and suggest natural algebraie statements which

possibly would not have shown up easily within a pure algebraie eon­

text. It is this interplay between algebra and geometry whi~h makes

loeal analytie algebras a partieularly intersting categery, and a

11 testing ground It for conj eet.ures and eoneepts in leeal algebra.
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This Appendix sets out to give an introduction to Local Complex Ana­

lytic Geometry, to give the geometrie interpretation of some fundamental

algebraic concepts as dimension, system of parameters, multiplicity,
. .

and finally to explore to some extent the geometrie meaning of the equi-

multiplicity results of ~9J [?7J, and -[zsJ":

I now give a quick overview over the contents and intentions of the

three partsjmore details are provided in the introductory remarks of

the various parts and their paragraphs.

In Part I, my intention was to g~ve a rapid introduction to the loeal

theory of complex spaces, but at the ,same time to maintain the contra­

dictory principle of giving all main lines of thought, in order not to

discourage the nonspecialist by refering eonstantly to a labyrinthic and

saretircwes extreIuely_ - _- technical 11terature. The main resul ts are the

Equivalence Theorem 3.3.3, whieh establishes the equivalence of the

algebraie and geometrie viewpointj and the Loeal Representation Theorem

6.3.1.This loeal description of a cornplex space as a branched cover,

whieh was, in prineiple,known to Weierstraß,lies at the heart of alge­

braization of the analytie theory, expressing the fact that any eomplex

spacegerrn gives rise to allrelative algebraie situation ll over a smooth

germ. This geometrie situation is the loeal analogue of the Noether

Narm~lizatian and eontains the nations of dimension, system of parame­

ters, and multiplicity, in its geometry. Technically, I have tried to

emphasize two points. Firstly, I have made eonstant use, of the General

Division Theorem of Grauert-Hironaka fram the beginning. Fram my point

of view, it i5 a natural and systematic procedure which elassifies many

teehnical points. Moreover, it is basic for Hironaka's resoiution of

eomplex space singularities (see III, 1.3.5) and its effeetive algo­

rithmie character may sorneday point the way to an explicit resolution

procedu~e. (Presently, at least, it provides an effective algorithm

for computing standard bases, and so Hilbert functions and tangent

cones, see I, 2.4.4) Seeondly, following Grothendieck's treatment in

[64], I have postponed the introduction of coherenee to the point where

it really beeomes indispensiblej since, in the eomplex analytic case,

coherenee is a deep and not at all obvious property, it should be used

only for the proof of those results which depend crucially on it (in

our case, the property that openness of a finite map at a point implies

the map being open near that point). Large parts of the exposition are

taken from [28], and I refer to it and [40] ,[64] for cornplete details.
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In Part II, I expose the geometrie theory of Ioeal multiplieity as

a loeal mapping degreei for more historieal and geometrieal background

I refer to the introductory remarks to that Part. The main teehnical

concept,introdueed in § 1, is that of a compaet Stein neighbourhood.

This eoneept aIIows to relate properties of nearby analytie Ioeal rings

of a eompiex space to one unifying algebraie objeet, the coordinate

ring of a eompaet Stein neighbourhood. This gives a systematie way of

dedueing loeal praperties of compiex spaces fram results of Ioeal alge­

bra, and vice versa. Here, coherence enters in a fundamental way, and

it'is via coherence and the Equivalence Theorem I 3.3.3 that Ioeal, not

only punetual, properties of eompiex spaces can be dedueed by doing

Ioeal algebra. This technique 5eems to have originated in [33], and has

been exploited by various authors to deduce results in Complex Analytie

Geometry from corresponding results in Algebraic Geametry, starting with

[4] i see [5], [29], [38], and [63] .Here, I have simplified the treat-

"ment by dropping the requirernent of semianalyticity for the compaet

Stein.neighbourhoods, thus avoiding the highly nontrivial stratifieation

theory of sernianalytic sets.

Part III, finally, deals with the geometrie theory of equimultipliei­

ty, and forms the central part of the Appendix. It also gives various

instanees of the method of compaet Stein neighbourhoods. In § 1, we

deduee properties of normal flatness in the eomplex analytic ease from

the algebraic easei in § 2 we give a geometrie proof of the equivalence

of the conditions e(R) = e(R
p

) and" ht(p) = s(p) of Chapter IV,

.Theorem (20.9)~ and in § 3, finally, we turn this prineiple around and

establish the ~eometric eontents of equimultiplieity via Theorem (20.5)

of Chapter IV~*Further, bearing in mind the title of a well-known paper

by Liprnan [49] I have made comments on the connections with, and the

geometrie significance af, the algebraie notions of reduction and inte­

gral dependenee. The underlying fundamental geometrie prineiple, whieh

unifies equirnultiplicity, reduction, and integral dependenee, 1s the

nation of transversality (this is abasie principle in"the work of

Teissier [69]); this beeomes particularly elear from the geometrie des­

cription of multiplicity as the rnapping degree of a projection (see

the introduetory remarks to III, II1 § 2, and III § 3 below).

On one hand, this Appendix was intended to give an overview of the

geometrie signifieanee of equimultiplicity and not to be a full detailed

treatment. On the other hand, I feIt that it would have been of little

value just to state the results without providing sorne insights into

the maehinery produeing thern, especially as there 5eems to be some

~) this i5 satz 2 of [77J 104 this is ba5ically Theorem 4 of §2 in (49J..

..... r:,.oo •
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interest on the side of algebraists to become more acquainted with

complex-analytic methods. In connection with the confinements of space,

time,' and perseverance of the author, there results. that ~he prsenta­

tion oscillates between rigour and loose writing, a dilemma I have

been unable to solve. I can only offer my apologies and hope that those

who approve of the one and disapprove of the other will appreciate

seeing their approvals met instead of complaining abeut seeing their

disapprovals aroused.

Concerning the notation, local rings are usually denoted R etc.

instead of (R,m) . The maximal ideal of R etc. is then denoted by

m
R

' and its nilradical by n
R

• The notation mn n E JN , refers

specially to the maximal ideal of k{z1' ... ,zn} . If (X,OX) is a

complex space, mX or m , denotes the maximal ideal of 0x ',x X ,x
and Nx ' er N , its nilradical. References within this Appendix,x x
usually are by full address; II 5.2.1 for instance refers tö 5.2.1 of

Part II. When they are made within one Part, the corresponding numbers

I, II, III are suppressed. Numbers in brackets refer to formulas;

I (2.3.1) for instance means the formula numbered (2.3.1) in Part I.

I wish to take the opportunity to express my profound indebtness to

Professor Manfred Herrmann for the suggestion to include this work as

apart of the book. I thank hirn, and o. Villamayor, for the interest

they took in this work and for numerous hours of discussion, which

~aved me from error more than once. It goes without saying that all

the remaining errors and rnisconceptions are entirely within the author's

responsibility. I further express may gratitude to the Max-Planck­

Institut für Mathematik and its director, Professor F. Hirzebruch, to

be ahle to work in a stimulating atrnosphere, and for financial support.

Finally, I thank Mrs. Pearce for her skilful typing and for the

patience with which she bore rnany hours of extra work and the ever­

lasting threat of possible changes.

....
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I. LOCAL COMPLEX ANALYTIC GEOMETRY

In this chapter I give an overview over the basic facts of the Iocal

theory of eomplex analytic spaccs. The rnain references are the Cartan

seminar [64], especially the exposes 9 - 11, 13 - 14 of Grothendieck and

1 8 - 21 cf Houzel, and the excellen t book [28]. For further information,

one can also consult the book [40].

The main results are the Equivalence Theorem 3.3.3, which establi­

shes the equivalence of the category of loeal analytic algebras and

the category of complex space germs, the Integrality Theorem 4.4.1.,

which characterizes finiteness geornetrieally and algebraieally, and,

finally, the Local Representation Theorem 6.3.1., which 1s a loeal

analogue of Noether normalization. It allews to represent a complex

space germ locally as a branched cover of an affine space,and this

·gives the geometrie interpretation of the dimension and of a system

-of parameters of the corresponding local ring. Moreover, this setup

will be fundamental for the description of the multiplicity of this

Ioeal ring in the next chapter.

§ 1. Local analytic alaebras

In this section, I describe the category la of loeal analytic al­

,gebras, which will be basic to all what follows. Its objects, the

local analytic algebras, are the algebraic counterparts to the geometrie

.objects forrned by the germs of analytic spaces, or singularities, which

will be introduced in § 3.

In what follows, ~ denotes any camplete valued field. Proofs are

:rnostly sketched, er omitted. For details I refer to [26], Kapitell,

§ 0 - 1; [ 40 ], and § 2 1 .

1.1. Formal power series

I assume known the nation of a formal power series in n indeter­

.minates Xl' ... ' Xn · They form a ring denoted ]{ [[ Xl ' .• · , Xn ]] , or

kUX]] if n is understood. I use the mul.tiindex notation; a monomial
r n

_--A _Ä A. 1 n n
A,- ••• A~ will be denoted X W.l. th A = (A , ... ,A ) E:IN • Let

M (n) S=]k [[x]] be the space of monomials ; then
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M(n) --> JNn

X
A

--> A

induees an isomorphi sm (A{ (n) , · , X0 ) -> (IN~, +,O) of monoids whieh I

will freely use; in this way, one may view monomials as lattice points

in Rn , and divisibility properties of monomials turn into combinato­

rial properties of lattice points. This interplay between algebra and

combinatories will be quite crucial in establishinq in § 2 fundamental

properties of power series rings such as the Division Theorem, the

noetherian property, or the Krull Intersection Theorem.
n .

In the multiindex notation, lAI .- L AJ , so that IxAI:= lAI is
j=1

the usual degree. Formal power series will be written as

f = L f M M = L fAX
A

, wi th f M ' f
A

E: Ik • We de fine
MEM (n) AE mn

(1.1.2) supp (f) : = {M EAl (n) I f M;l o}

the support of f, and

(1.1.3) \I (f) : = min{ IM I I M E suppÜ) }

~order or subdegree of f. We will make use of the following pro­

perties of k [[Xl'·· · ,X n ]] :

Proposition 1.1.1.

(i) lk [ Xl' • • • ,Xn ]]

a Jk -algebra.

is a commutative ring with unit, and in fact

(ii) f E Jk[[ X]] 15 a unit if and only if f O # 0 .

(iii) :D< [[ Xl' • • • , Xn ]] isa Ioeal ring wi th maximal ideal

~n : = {f Iv (f) ~ 1} = (Xl' . • • , Xn)· lk [[ X1 ' • • • , Xn ]]

(iv) Vk E m ~~ = {flv(f} ~ k} especially

00

n
k=O

I\k
m

n
= {O}
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These properties are elementary. (i) is clear. For (ii), note that,
co

when f: = 1 - u with v (u) ~ 1, L u j exists in Jk[[X]]
j=O

if f has v (f) ~ k , it can be written as

Finally,

(1.1.4) f = L Mof{M)
MEM(n)
IM I=k

f (M) E :k [[ X]]

with the SUpp(M.f(M)) pairwise disjoint (this will be systematized

later on in the Division Algorithm 2.3.1.). This shows that

{f Iv (f) ~ k} S; (X
1

' ••• ,X
n

) k , which implies, together wi th . (ii), the

statements (iii) and (iv) 0

1.2. Convergent power series

Let An be the affine n-space over :D< . A polyradius p is an

element (p 1 n (m ) n and if ·1 n isp = , ••• ,P ) E Zo = (z' 0 ' • • • , z 0 ) a
>0

,
point in An , the set

(1.2.1)

.i5 called the polycylinder around Zo of (poly-)radius p.

Proposition 1. 2. 1 • For a formal power series f E :nc [[ X]] , the follo­

wing properties are eguivalent:

(i) 3 a polyradius pE {JR>o)n such that the family

is sumrnable in Jk for z E P (0 i p) •

(ii) 3 a polyradius n
p E (lR >0) such that

(1.2.2)

(iii) ::l constants C,N E: JR> 0 such that

(1.2.3) IfAI ~c.NIAI

for all A E~
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Moreover, in these cases there i5 the nCauchv estimate"

(1.2.4)

Definition 1.2.2. A formal power series f E D<[[X]] satisfying one of

the properties of Proposition 1.2.1. is called a convergent power series.

The convergent power series form a comrnutative, unitary ring and a

lk -algebra, denoted :TI< {X 1 ' .•. ,Xn } ,2..E TI< {X} for short.

The 11 norm Jl 11 11 p def ined in (1.2.2) is the main technical tool in

manipulating convergent power series. Introduce the fo1lowing subalge­

bras, for p E (JR >0) n , of Jk {X} :

That these are in fact suba1gebras follows fram

Proposition 1.2.4. :nc {X}p is a :TI<-Banach-a1gebra with norm 11 II p ,

and has no zerodivisors.

The proef uses the Cauchy estirna te (·1. 2. 4) .

We now.find the units of ~{X}

becauseJk {X}but inso

disjoint, then

Ul

L u
j

j=O
of Proposition 1.2.4. This proves

Lemma 1. 2. 5 '. Für f E :Dt {X} , 1im 1I f I1 = If0I •
p-+O p

n
Proof. Write, as in (1.1.4), f = f O + L X.f. with the supp(X.f.)

j=l J J J J
n .

11 fll p = I fol+ I pJ 1I f .11 ,whence the claim.
j =1 ] P

Hence, if, f = 1 - u with v (u) ~'1, 11 ull < 1 for suitable p , and
p

in fact exists not only in Jk [[X]]

Proposition 1.2.6. f E Jk {X} i5 a unit if and 001y if f O i 0 •

Corollary 1.2. 7 . ]Je {X} i5 a local ring wi th maximal ideal'

m = (X 1 ' • • • , X ). k {X} •n n
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as

is loeal by Proposition 1.2.6, with maximal ideal

. By the proof of Lemma 1 .. 2 .. 5 we may write fErn
nn .

llfll = I pJ Ilf.11 whieh shows the 'f. are in
P j=l J P J

Proof. Jk {X}

rn := Iit n Jk (xl
n nn

f = L f.X. with
j=l J ]

lk txl

Finally, reasonings analoguous to those above show the following lemma.

Lerruna 1.2 .. 8. mk
= {f E :D< {X} I \J (f) ~ k}

n

Corollary 1.2.9.
co

n mk = {O} •
k=O n

1.3. Loeal analytie algebras

We are now in a position to deseribe the category la/:D< of loeal

.analytic ~-algebras. The proofs are sketched, for more details see

[26] er [40]; they are more or 1ess straigthforward with the notations

and results of 1.1. and 1.2.

The following definition makes sense beeause of Corollary 1.2.7.

Oe~init1on 1.3.1. Let R be a k-algebra. R is ca11ed a loeal

'analytic Jk -algebra if and only if R is isomorphie to a quotient

algebra :nc {Xl' •.• 'Xn }/I where I c Jk {Xl' ••• ,Xn } is a finitely

generated ideal.

The assurnption on I being finitely generated 1s in fact superfluous

due to the following famous theorem.

Theorem 1.3.2

noetherian.

(Rückert Basissatz). A Ioeal analytie :Dc-algebra is

This is a nontrivial result. I will give a proof in 2.4. whieh makes

it elear that this property comes fram a eombinatorial property of the

monomials whieh puts the noetherianness of :D< [ X], Jk UX]] and :D< {X}

on an equal footing. (" Dickson l s Lemma"; see Propo sition 2.2. 1) .

Here, we assume Theorem 1.3.2.

The loeal analytie Jk -algebras with the loeal Jk -algebra homomorphims

form a category whieh I will eall la/~ . The following remark is
sornetimes useful:
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Rernark 1.3.3

is loeal.

(Serre). Any Jk. -algebra hornornorphisrn of loeal :D< -algebras

The proof is simple and left to the reader.

The following theorem is the- main result of this seetion; it eharae­

terizes the eonvergent power series in la/~

Theorem 1. 3 .4. The algebra5 Jk {X 1 ' .•• 'X
n

} are free obi eets in Ia / Jk

In other words, given a Ioeal analytic k-algebra Rand n ele­

ments f 1 ' · · . , f n E ffi
R

' there i5 a unique Jk -algebra homomorphi5m

l.P : Ik {X 1 ' · .. , Xn} --> R wi th <.0 (X j) = f j f 0 r j = 1, ... , n .

This property will be an essential step in the proof of the Equivalence

Theorem 3.3.3; see Proposition 3.3.1.

Sketch of Eroof of 1.3.4.

For existence we may assurne

series ring. Let f 1 ,··· '~n E mR

R'= Jk {U 1 ' • • • ,Um}

be given. Write

is a eonvergent power

.g € Dc {X l' • • . , Xn } as

00

(1.3.1) g = I gk
k=O

where the gk are homogeneous polynomials of degree k. Then

gk (f" ••• ,in) is a formal power series with \,) (gk (f" ••• ,fn )) ~ k , and
co

so g(f" •.. ,fn ) := L gk(f, , ... ,f) i5 a well-defined formal power
k=Q n

series. If then 0 E (JR >0) n i5 such that 11 9 11 a < co , there is a

pE (JR>o)m with Ilg(f 1 , ... ,fn) IIp :;;; Ilgll
o

; thi5 follows from Lemma

1 • 2 • 5. So 9 ( f 1 ' • • • , f n) E Jk {U} p S Jk {U} , and we put l.P (g ) : = 9 ( f 1 ' • • • , f n) •

. By Lemma 1.2.8.,

becaU5e of Theorem

P E ]\1and9 E Jk {X}for all
co co

E n m~ ,but n mP = {Q}
P=Q p=Q R

the Krull Intersection Theorem (see Theorem 2.4.5, or [1 ],

Für uniqueness assume l.P,~ : ~ {X} --> R are such that

Then, with the notation (1.3.1),lp (X .) = ~ (X .) , 1 :;;; j Sn.
] ] 00

( 4)-!JJl (g) = (4)-!JJ) ( L 9k )
co k=p
L gk E m~ ,so (4)-lfI) (g)

k=p
1 .3. 2. and

10.19) .
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§ 2. Local Weierstrass Theory I: The Division Theorem.

The classieal Weierstrass Preparation and Division Theorem lie at

the foundation of loeal analytie geometry and are the most basic and

important results ~f the theory. In their classical appearance, their

use in proofs requires always induction on the dimension, which makes

sometimes these proofs appear not very transparent. A more natural

statement of the Division Theorem has been faund independently by

Grauert [23] and Hironaka [35], the main point being to divide apower

series not by a single other one,but by several others at the same

time. This 1s also related to the construetiori of ~tandard bases, i.e.

computing equations of tangent cones (for which by now an effective

algorithm exists), and seems also to be of crucial importance in

Hironaka's desingularization theory, since it allows to put generators

of an ideal of power series into a canonical form. I will sketch a

proof here which I think is the most simple one and clearly exhi~its

that· it is based on a manifest division algorithrn suggested by the

usual euclidean algorithrn for polynomials in one variable, the sole

difference being that one divides with respect to ascending rnonornial

degree instead of descending degree. See also [8] ,[18]-[21], and [62] .

In this section, D« X > will stand either for Dc[[X]] or :nc {x} •

2.1. Ordering the monomials.

Usually, in order to prove noetherianness of power series rings,

or the Weierstrass theorems, one uses the valuation on power series

given by the subdegree v E m (1.1.3). The crucial idea of getting a

refined division theorem i5 to manipulate power series by using the

finer valuation given by the monomial degree log (M) = A E Thf for

M = XA . For this, one has to choose an ordering on the monomials, or,

equivalently (because of (1.1.1)) on the monoid ·mn . The idea of

putting an order en the monomials appears for the first time in a

famaus paper of Macaulay ([52], p. 533). We require that this order

is compatible with the rnonoid structure. Nevertheless, there are quite

a lot of orders fulfilling these requirernents; they have been classi­

fied by Robbiano [58J and, in fact, there are infinitely rnany. We will

temporarily work with the following one.

Definition 2.1.1. The lexicographic degree order on M(n) is defined

as fellows:
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if and only if

either IAl< IBI
or lAI ~IBI, and the last nonzero coordinate of

of A - B 1s negative.

It has the properties

(2.1.1) (i) 1 < M for all M E: (n) i

(ii) M < MI ~ MN < MI N for all N

(iii) < is a well-ordering.

Definition 2.1 w 2. For f E ]k [[X]]

LM (f) : ~ min (s upp (f )) E Ai (n) U {co}

.is called the leitmonomial of f, with the convention LM(O) : co

with f
k

E Jk[[~]] homogeneous of degree k

is called the leitform or initial form of

Recall that f E Jk [[ X]] has a unique decomposition f: L f
k:::v{f) k

f v ( f) =: L (f) =: in (f)

f .. The following properties

are immediate from the definitions:

(2.1.2) (i) LM(f) = L~(L(f)) , and so ILM(f)! = \)(f)

(ii)

(iii)

LM(f+g) ~ Min(LM(f) ,LM(g)) , with equality holding

when LM(f) i LM(g) i

LM ( f • 9 ) = LM (f) • LM (g ) •

2.2. Monomial ideals and leitideals

A monomial ideal I ~ k< X > is def ined to be an ideal generated by

monomials. The following lies at the heart of the noetherian property

o f lk [X], k [[ X]] ,and TI< {X} :

proposition 2.2.1 (IIDickson's LemmalI). A monomial ideal i5 finitely

generated . A canonical basis censists of these menomials which are minimal

with respect to the divisibility relation.

Far this, introduce the "stairs of I", E(I) , for a monomial ideal I:
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E (I) : = {A E JNfi I XA EI} (see Fig. 1)

E(I) is translation invariant: E(I) + JNns; E(I) . In 1913, Dickson

studied numbcrd with only finitely many given prime factors and

proved ([ 1 1 ] ) :

E c]Nn is translation invariant if and only if E can be

written as

k
E = .U (Ak + :IN

n
)

J=1

for some A. E JrP, j = 1, ••• , k • These A . are unique up to permu-
] ]

tation when they are taken as the minimal elements of E with respect

to the partial orders A < B : ~ V1 :;; j ;;;a n : A
j

S B
j on lN

n

Looking at Figure 1, this is intuitive1y clear, since when approa­

ching the coordinate hyperplanes the steps of the stairs decrease by in­

tegral amounts in the coordinate directions, which can happen only

finitely many times. The precise proof is 1eft to the reader. This

result proves Proposition 2.2.1.

E{I)

­;>./ -,
t-~ .1···

. ---,

Fig. 1
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If I is monomial, f E 1k< X > belongs to I if and only if all

M E supp (f) belang to I; this is analogous to the fact that a poly­

nomial belangs to a homogeneous ideal if and only if all its homoge­

neous components belong to it. The crucial property of rnonomial ideals

is now that membership of a rnonornial is effectively decidable if ge­

nerators are known, since a manamial belangs to it if and only if it

is divisible by the generators. But testing the divisibility of

monomials is a simple effective operation; this operation will be put

to work in the Division Algorithrn 2.3.1. below. One therefore associates
to any ideal I a monomial ideal LM(I)

Def in!tion 2. 2 . 3. Let I c TI< < X > be an ideal. The monomial ideal

LM(I) := ideal generated by the LM(f) for fE I

1s called the leitideal of I .

LM(I) reflects rnany properties of I. For instance, a ,famous re­

sult of [52] is that, if I is hornogeneous, the Hilbert function

H(I,t) of I equals H(M(I) ,t) , and we will see in Section 2.4

that a base of an ideal I whose leitmonomials generate M(I) has

special pleasant properties and allows tq deduce in an elegant way

various facts about ideals in the rings ]« X~·; see 2.4.3, 2.4.4 ..

,and 2.5.2 ..

2.3 .. The Division Theorem

In order to give same motivation for the Division Theorem, consider

the problem of finding a finite basis for an ideal I . The idea of how

to obtain a finite basis is as follows: By Dickson's Lemma there are

fini tely many f 1 , ••• ,fk E I such that the LM (f 1 ) , ••• ,LM (fk) generate

LM (I) • Given f EI, we then may write

(2.3.1)

for some g~O) , ... ,g~O) ; note this step is constructive. We regard

this as the Q-th approximation to a wanted equation

(2.3.2)
, 1

f = g f
1

For the first approximation, we form
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.• = f - (g1(O) f1 (0) fk)\ + ••• + gk

and i terate the step (2" 3 "1) wi th f replaced by ~ f (1) . Continuing

this way, we get formalsolutions gJ' = I g~p) tb (2.3.2)(which
p=O J

actually convergeL.This process is constructive when the fj are

given, and so it is feasible to call it an algorithm. The development

of this idea leads to the Division Algorithm,2.3.1, which technically

proceeds a little different1y. Of course, this is only one aspect of

the Division A1gorithm, and its full power can only be seen from the

consequences to which it will lead.

We begin with elements . Let
A.

= X J

j = 1, ... ,k ,.and fix the ordering of the A, •
]

Definition 2.3.1. Let
1 ~respect to (f,. "",f )

f1, ••• ,fh
E :ß«X>. The Division Algorithm with

is defined by the following recursion scheme:

For f E :Ik< X >Start:

(2.3.4) (i)

put

'11 ~ j ~ k : g~-1) := 0 (-1 )
h : = 0

( ii)

RecuX'sion:

Then put

Let

f(O) := f

(0-1) (p-1) h (p-1) , f (p)
g1 ,···,gk ' be defined for

(2.3.5)
A

=: g{q).x 1
1 + ".. +

where the g~q) , j = 1, .. ",k and h{q) are defined uniquely by the

reguirements

(2.3.6) (i)

(1i)

supp(g~q) .xAj
) and SuPp(h(q» are pairwise dis­

J
joint for 1 ~ j Sn;

if xB E SUPP(g~q)XAj) B is in no A. +]Nn where
] ]

A. precedes A. in the given order. {In other words, one

ftrst collects ;11 M E supp (f (q) ) divisible by

X
A1

to obtain g~q) , then those divisible by xA2

to obtain g~q) , and so on.)

Finally, put
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f (q+ 1) : = f (q) - g 1( q) f 1 - ••. - g ~q) f k - h (q)

A A
= g ~ q) (X 1_ f 1 ) + ••• + g ~ q) (X k _ fk )

From (2.3.7), it is easy to see that, because of (2.1.2), one gets

a strictly increasing sequence

LM (f ( 0» < LM (f ( 1 » < LM (f (2» <

which implies that, for < . <.. J - n ,

(2.3.8)

and

(,2 • 3 • 9 )

00

gJ' := L g~q)
q=O J

00

h : = L h (q)

q=O

exist in Dc [[ X]] , and so

(2.3.10) • •• +

.holds in

(2.3.6).

Jk[[X]] , with the g.
J

and h uniquely determined by

The rniracle which now happens i8 that, if f E: ]( {X} , the . gj and

h are ai80 in lk {X} , and (2. 3. 10) 'holds in ]( {X} • I will just

collect tagether the necessary estimates and leave the details, which

are elementary after all, to the reader.

l!l. The conditions (2.3.6) guarantee , because of (2.3.5):

(2.3.11)
A A

11 9 1( q} 11 P P 1 + • •• + 11 9 ~q} I1 p p k + I1 h (q) 11 p = I1 f (q) 11 p

for all q and p, and so, fixing same p:

(2.3.12)

for all q.

and llh (q) 11 ~ Ilf(q) 11
p p
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(ii). Because of (2.3.7), (2.3.12) implies

for all q.

The crucial point is now that the expression in brackets can be made
n

smaller then a given s· for P = APO ' where Po E (JR >0) i5 suitable,

and A E (0,1) arbitrary. This is a tedious, but elementarypoint which

the reader should try to convince himself of; trouble is caused by those
. A'

monomials of fJ which are different from X J but have the same
A· .

degree. It depends on the fact that all monomials in supp(X J_f J ) are

strictly greater then xAj
, and on the lexicographic order (see [23],

Satz 2. ). Hence, choosing E: E (0,1) and Po E (]R>o)n suitably we

get from (2.3.11), by summing over q and using (2.3.13):

(2.3.14)

for all P =

the 11 9 j 11 P

APo ' A E (0,1) ~:IR , which gives the desired estimates on

and 1I h 11 P t 0 e n s ure 9 j , h E Jk {X}, 1 :;a j ~ n .

This establishes the Division Algorithm with respect to the lexico­

graphie degree order. There are, however, further important orders

which arise, more generally, from a strictly positive linear form

---> :IR

(2.3.15)
1 n

(x , ••• ,x)

n ­

---> L A. x
j

, 1 ~
~=

with A1 , ... ,A n ElR>O' by defining

xA
< A xB if and only if either A(A) < A(B) or

A(A) = A(B) and the last nonzero coordinate

of A - B is negative.

Call such an order a linear order. I t again def ines, for f E Jk < X > ,

a leitmonomial which I denote by LMA(f) ,or LM(f) if A is under­

stood. With these leitmonornials, one can again set up the Division

Algorithm 2.3.1. To arrive at the estimates (2.3.12) and (2.3.13), one

changes the definition of 11 11 P to
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!l 11 .- I If j_pA{A)
f p, A. AE JNn A

arbitrarily small still

; this norm clearly is equivalent to

(1.2.2). One gets again the estimates
±A (A . )

P J, and the con-

A Al ;\ An
A (A) 1 1 n nwi th p : = (p) ••• (p )

the former norm 11 J I def ined by
P ±A.

(2.3.12) and (2.3.13), with p ] replaced by

clusion that the bracket in (2.3.13) can be made

holds.

Finally, one may even allow positive linear forms, i.e. with A. E ffi 0 '
1. ~

since a generic small perturbat~on of the Ai defines a strictly positive

linear form with the same division algorithm. Summing up one gets

Theorem 2. 3. 2 (The Division Theorem, or:'.''Weierstra·ss prepare

. a la Grauert-Hironaka"). Let A. : IR
n -> IR be a positive linear

1 k . A.
form. Let f, ... , f E Jk < X > , and LM A (f J) = X ] , 1 ~ j ~ k , be the leit-

monomials with respect to the linear order on M{n) induced by A .

Fix the order (f1 , ... ,fk) of the f j , and put recursively

6. : = (A. + JNn) _J.l 6. j = 1 , .•• , k
J J i<j J

,

11 := JNn _u6.
j~k J

Finally, let f E Jk < X >. Then the following statements hold:

(i) The Division Algorithm 2.3.1. gives a unique representation

+ ••• +

with
A-A.

g. = L g. AX J
J AE 11. J

J

, , ~ j ~ k , and h = power series

in Jk [[ X]]

( ii) I f f E TI< {X}

neighbourhood basis

such that for any

, then f or any E: wi th 0 < E: < 1 there exi sts a

8 of 0 E/A n consis ting of polycylinders P (O ; p)

P (O; p) E B .the estimate

A{A,) A(Ak )
1I 9 1 11 p , A P +. • • + i I 9 k I1 p , A P + 11 h IIp , 1\ ~

1
l-E:
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and h are in TI<. {x} .

2.4. Division with respect to an ideal; standard :bases

We are now in a position to carry out the suggestions at the be­

ginning of 2.3. and prove the Rückert Basissatz, Theorem 1.3.2. We also

give a proof of the Krull Intersection Theorem.

Let I c Jk< X > be an ideal. Fix some linear order and choose
1 k 1 kf , ... , f E I such that the lei tmonomials LM (f ), ..• ,LM (f) generate

the leitideal LM{I) , which is possible by Dickson's Lemma 2.2.1.

Proposition 2.4.1 (Division with respect to I). Let fElk<X>, and
1 klet land f, ... , f E I be as above.

(i) In the representation

+ ••• +

given by the Division Theorem 2.3.2,
1 kof f, . .. ,i , hence depends only on

h does not depend on the choice

I , and 15 called red1f .

(ii)

(iii)

f E I if and only if redIf = 0

1 k{f , ... ,f} is an ideal base of I

The proof is left to the reader; (i) depends on the fact that

lr'f = 116.116 is a disjoint decomposition, and (ii), (iii) are simple'-. ]
] .

consequences.

Because of (iii), the following definiton makes sense:

1 kDe f i n i t i 0 TI 2. 4 . 2 . Let I s;; Jk < X > • Then {f,..., f } ~ I i s ca11e d a

standard base of I (with respect to a given linear ordering of the
1 kmonomials) if and only if {LM(f), ... ,LM(f )} 1s a base of LM{I)

Since standard bases exist, we get

Corollary 2.4. 3. The rings Jk < X >

This clearly implies Theorem 1.3.2.

are noetherian.
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Remark 2~4.4. a) Not every ideal base is a standard base.

1 kb)· If {f , ... ,f} is a standard base, the initial forms
1 k

L (f ), ... ,L (f) generate the initial ideal L (I) , i .e. the ideal

L (I) having the property that gr rn (Jk< X > Ir)~ :D< < X > I L (I). In parti-
1 k n

cular, L(f) , ... ,L(f) define the tangent cone at 0 of

S pec (Jk < X > I I)

.. k
c) If f I , ••• , f are polynomials def ining an ideal I .:: Jk < X >

there is a constructive procedure for deriving a standard base from

them'using the division algorithm, which is based on the fact that

{f1 , ... ,fk} is a standard base if and only if each monomial syzygy of

the leitmonomials lifts to· a syzygy of f1 , ... ,fk . Dividing the

f := Igif
i

, where the g1, ... ,gk run through a generating system of

the monomial syzygies of the leitmonomials, by f1, ... ,fk and adding

the nonzero remainders leads eventually to a standard base. See [44],

[55] and [62]. An implementation of the algorithrn of [44] is available

on the computer algebra system Macaulay [ 4 ]. This allows the computa­
tion of the Hilbert function of ? homogeneous ideal (based on III,

(1.3.4)), [53].

d) For Jk [X] one obtains, using maximal monomials instead of minimal

ones, a proof of the Hilbert Basissatz along identical lines. In this

case, a standard base is known as a Gröbner base ([3] ,[44], and [46]).

2.5. Applications cf standard bases: The General Weierstrass

Preparation Theorem and the Krull Intersection theorem.

Any ideal. I C ]k< X > has a canonical standard base with respect to

a given linear order in the following way: By Dickson's Lemma, LM(I)

has a unique base of monomials minimal with respect to divisibility,
A

1
A

k{X , ... ,X } say. By Proposition 2.4.1, we have well-defined remainders
A.

redIX ] . We thus obtain

Theorem 2.5. 1 (The General Weierstrass Preparation Theorem). Let

I S Jk< X > be an ideal, A a linear order on M(n) , .and B ~ LMA (I)

the canonical base consisting cf the minimal elements with respect to

the divisibility relation. Then {wM I wM := M-redrM for MEB} is

a standard base of r.

We refer to this base as the Weierstrass base of I (with respect
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to the given linear order).

As a further application of the Division Theorem we prove:.

Theorem 2.5.2 (Krull Intersection Theorem). If R E la/TI<

00

n mP = {a}
p=O R

Proof. One has to show that, if I S TI< {Xl' ..• ,X
n

} is any ideal,
00

n (I + mP ) = I .
n

p=O

co

I . Let f E: n (I+mP ) , and
. p=O n

: = LM (f J) , 1 ~ j ~ k , have degree
A. ~

les5 that PO. Let p 2: Po • Fix the order (X. J , •.• , X ) and then all

xA with degree xA = p in some order, and apply the Division Algorithrn
1 k Awith respect to f , ... ,f and the X to f ; 50 f can be written

Choose a standard base {fl , ... ,fk} of
A.

let Po be so large that all the X ]

+ ••• +

Corollary 1.2.9.

But the Division Algorithrn 2.3.1 shows that the g(p}
j

depend on p as soon as p;:: Po • Hence the remainder

does not depend on p and so is in n mP , which is
n

p~PO

, 1 ~ j :s; k , do no t
\' g (p) .XA
LA A

deg X = P
zero by

2.6. The classical Weierstrass Theorems.

These are the classical cornerstones of Local Complex Analysis and

,direct consequences of the Division Theorem 2.3.2.

We introduce the notation
/

XI := (X
1

, ••• ,X
n

_
1

) , and so x = (X', X ) •
n

The Weierstrass Division Theorem 2.6.1 (Stickelberger-Späth; see

the discussion in [26], p. 36). Let f E TI< < X > be such that

f (O,X ) = X
b

. u for same integer b aland u E Jk< X > a uni t (wen n n
then say fis regular in X

n
of order b.) Then any e E TI< < X > can

be uniguely written as
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e = g.f+h

with g € ]« X > and hE :D«X'> (X ] af Xn-degree strietly less than
n -

b.

Far this, just note that the condition on f ensures,after rever­

sing the nurnbering of the eoordinates,the existenee of.a positive

linear form A on E n making LMA(f) = x~ ; then apply the Division

Theorem 2.3.2. Uniqueness, i.e~ independenee of g and h of the
n - n-1order, eomes from the fact that .6 1 = (O,b) + IN ,.6 =:IN x [O,b-1]

do not depend on the ehoice of order.

Corollary 2.6.2. ]k<X >/(f) ii ]k<x,>b as a ]«X'>-module.

Hence :Ik< x> / (f) is a f ioi te Jk < XI> -module. This fact is the main

~eason why Local Complex Analysis is accessible to algebraic methods.

It will be considerably generalized in the sequel to the extent that

,any loeal analytie algebra is finite over a convergent power series

ring (see 6~2.4), leading in geometrie terms to the Local Representation

Theorem 6~3.1, whieh realizes any analytic space germ as a finite

branched eover of a domain in some nurnber spaee~

The Weierstrass Preparation Theorem 2 ~ 6. 3~ Let f E ]« X > be regular

in X of order b ~ Then f ean be uniguely written as
n

f = e • w ,

'where e i5 uni t in Jk < X > and w E: :TI< < X I> [X
n

] a Weierstrass poly­

nomial, i.e. it is monie with coefficients in m 1n-

, and with linear order asJust apply Theorem 2.5.1. to I = (f)

above. The fact that the eoefficients of ware in m 1 followsn-
.from comparison of eoeffieients in the relation xb.u = e(O,X )·w{O,X )

n n n

§ 3. Complex spaces and the Equivalence Theorem.

From now on, :D< ::: er: , and k:::: la/a: . The standard coordinates on

a:n are denoted

The main result of this section will be Grothendieckls Equivalence

Theorem whieh states the equivalence of the ll a l gebraie IT category of
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loeal analytie <I:-algebras and the llgeornetrie" eategory of eornplex

analytie spacegerrns (or Il s ingularities"), or rather its dual. This

is a loeal analogue to the equivalenee in Algebraie Geometry between

the .categories cf ~ings and cf affine schemes. Although well-known,

proofs are not readily accessiblei one is in [64], Expose 13, and one

in [40], the latter one, however, makes use of the machinery of co­

herence, which we will,f911owing the viewpoint of Grothendieck ([64],

p. 9 - 10) make no unnecessary use of.

3.1. Complex spaces.

Higher dimensional cornplex manifolds and complex spaces with sing­

ular points arise naturally in the deformation and classification of
j

varying cornplex structures on srnooth complex curves. The systematic

construction of these spaces by means of his philosophy of represen­

table functors led Grothendieck to consider nilpotents in the struc­

·ture sheaf (see his exposes 7 - 17 in [64]), and it is only when

allowing arbitrary nonredueed spaces that phenomena as, for instance

subspaces which have plenty of infinitesimal deformations but no actual

one within the ambient space (corresponding to nonreduced isolated

points of the Hilbert scheme), can be satisfactorily unde~stood.

At the same time Grauert [22], also led by the consideration of

"moduli problems, introduced nonreduced complex spaces.

I will assume that the notion of a ringed space is known anp just

fix some notation concerning them; full discus5ions are available in

[ 28 ], [31], [40] and [64], Expo 55 9.

As usual, a ringed 5pace consists of a topological space X and

a sheaf of (commutative, unitary) rings 0x on it and 15 denoted

(X,Ox) , or ~, if 0x i5 understood. We denote the stalk of 0x

at x E X by 0x ' and, if it is a local ring, its maximal ideal by,x
rn x . A morphi5m between ringed spaces i5 a pair

o
(f,f) (X,OX) --> (y,Oy) , where f: X --> Y is continuous and

fO a 5heaf rnorphism" Gy --> f*OX ; if no confusion is possible, we

also denote the canonical adjoint by fO: f-1 0y --> 0x because

Hom(Oy,f*Ox) = Hom(C10y 'Ox) naturally. Again, we abbreviate by

writing f: X --> Y .

I further assurne the notions of an open subspace and an closed

subspace defined by an ideal ] ~ 0x which we always will assurne to be
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locally finitely generated or, as I will say, locally finite. A sub­

space will always mean a locally closed subspace, i.e. a closed sub­

space of an open subspace. Corresponding to these notions there

are the nations of an open immersion, closed immersion and immersion.

For later use, we note the follewing simple Lemma:

Lenuna 3.1.1. Let (x,ox) be a ringed space, I ,J c: 0x ideals, and I

locally fini te. Then any x E X such that I x S Jx has a neighbourhood

U such that I IuS J lu .

The proof is 1eft to the reader.

We make ~n inte a ringed space by defining the structure sheaf o
er

n

is then canonically isomorphie

to be the sheaf of germs of ho1omorphic functions, in other words,

o (U) : = {f If : U -> a: holomorphic} for any open U c: a:n • For any
a:n

na :::: (a1 , ... ~,an) E a: the stalk o
n

er ,a
to the convergent power series ring ~{x1-al, ... ·,xn-an} , and we will

identify these two rings: in particular, 0 = ~{Xl' ..• ,Xn } . More-
a:n,O

over, we will identify the indeterminates Xj with the standard co­

ordinate functions z. on a: n . We can now define complex (analytic)
J

spaces.

Definition 3.1.2.

(i) (Local model spaees). A Ioeal modelspace i5 a ringed space

(M,OM) given by the following data:

1 ) an open set U ~ a:n ,

1 k
2) elements f, ... ,f E 0 (U) (" equations")

a: n

1 kin the following way: If I := (f , ... ,f ) .Ou then

M : = supp (0 UI I )

= {XE UI 'v'1 ;S j $ k fj . E m co}
x x- n

CI: ,x

= { x E U I 'v'1 :;;; j ~ k fj (x) = o}
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1 kand GM ':= (Gx/I)IM . We then write!:! = ~(n,U,(f , ... ,f)) or

M = N(n,U,I) i if USa:
n is understood we sirnp!y write

- 1 k-
M = ~(f , ... ,f) or M = ~(I) # and ca!! it the null spaee of I .

models). A rnorphism between local models
1 .Q..

~ = N (n, V,(g , •.• ,9 )) is amorphism

indueed by a holomorphie map F : U --> V
. 1 k

: 9 J 0 F E (f , ... , f ). 0u in the following

way:

(ii) (Morphisms of loeal
1 k

M = N (m, U, (f , ... , f )) and
- 0
(f,f) (M;OM) --> (N,ON)

wi th the property V 1 ~ j ~ .Q..

2 ) ON --> f*OM is indueed by the mapping

-1G
v

(W) -> 0u (F W), g ~> goF, for all open WSV

(i11) (The Category of eomplex spaces) . ~ eomplex spaee is a ringed

spaee whieh is locally isomorphie to a loeal model. A rnorphism of

cornplex spaces,or holornorphic maR' i5 rnorphism
. ~ 0

(f,f) (X,G
x

) --> (y,Oy) of the complex spaees (X,Ox)' (Y,Oy)

within the category of ringed spaces whieh locally i5 isomorphie to a

morphism of loeal models. This defines the eategory col of eomplex

spaces.

In fact, any morphisrn between complex spaees within the category

of ringed spaces turns out to be a holornorphic map; see Corollary 3.3.4.

If X is a complex space, an open or closed subspace in the cate­

gory of ringed spaces,as defined before, is itself a complex space, and

we can talk about open, closed,or arbitrary subspaces, and of open,

closed, and arbitrary,imrnersions.

Exarnple 3. 1 .3. Let X = {x} be a one point space and A E la be

artinian. Then ({x},A) is a complex space. In fact the converse is

true: any one point complex space arises in this way. This is astoni­

shingly difficult to prove; it is a special case of the Rückert

Nullstellensatz, and essentially equivalent to it; see § 5.

3.2. Constructions in ~. It should be kept in mind that the

following constructions are categorical; that means that the

spaces and morphisms whose existence is asserted do not exist only

settheoretically ,but also the sheaves and sheaf maps have to be
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considered, and I urge the reader to convince hirnself of the details.

a) Glueing. Glueing data for a complex space consist of

u. f ullllly . (M, ,GM ) 0 [ loeal models,
1. i iEI

(ii) open subsets Uij SMi Uji ~Mj and isomorphisms

( U, . ,OM ) 1 u. ,
1.J . 1.J

1.

-
---> (U., ,OM

J1. j
u .. )

J1.

for all i, j E I such that the cocycle identi tY.

f'k 0 f., = f'k-J -1.J -J.

holds for all i , j ,k EI.

Given glueing data, there is, up to isomorphism, a unique complex space

(X,OX) which has local models (Mi,OM.)
J.

In a similar way, a morphism (f,fO) (X,Ox) -> (Y,Oy) can be given

by glueing data.which I will not write down explicitely.

b) Intersections. Let ~,~I C--> Y be closed complex subspaces

of the complex space Y, defined by the locally finite ideals

r , I I S 0y • The intersection X n X' is defined to be the largest com­

plex subspace X" C-> Y such that any morphism ~ --> Y which

factars through X and XI also factors through X" it is given by

the locally finite ideal I + I'

cl Inverse images .. Let f: X --> Y be a morphism in epl . If

Z c=-> Y is a complex subspace , the inverse image :t 1(Z) C-> X is- - -
the complex subspace with the universal property that if f' : XI --> X

i5 in ~ and f 0 fl factors through Z,!' factors through f-1 Z .

If Z C-> ~ i5 a closed complex subspace defined by the locally finite

ideal l,f-1(~)c-> ~ is defined by f-1 r := I.Ox ' the ideal generated

in 0x by I under fO: f-10y --> 0x . A special case of 'this con-

struction are the f ibres !-1 (y) C-> ~ Y E Y, of the morphism f .

d) Products. In cpl, the categorical product
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EEx '7 X

y~-
- ---.

-Ei.~~ y
y -

exists for ~,rE cpl . Locally, it is given as follows:

If U,V are open subsets of number spaces,

(3.2.2) u x V

is given by the usual product U x V wi th the canonical eomplex

structure, and EEu' EEv by the usual proj ections and, on the sheaf

level, by lifting holomorphie functions via these. If
1 k 1 t

X '= (m,U, (f , ..• ,f ) and V = (n,V, (g , ••• ,g )) are loeal models,
- - -1-1
(3.2.1) is given by b) and c) as X x y := ,.EEu(~)nEEv (r) and

Ex : = EEu I~, EEy : = prv Ir; this rneans that ~ xr is the loeal model
1 k 1 ~(m+n,UxV,f oprU, ... ,f opru,g oprV, ... ,g opr

V
) • In the general

ease, cover X and Y by loeal models, form their produets, and use

the universal property of the product to obtain glueing data for

(3 .. 2.1) aeeording to a).

ie) Diagonals . If ! E cpl , the diagonal Q.X C--> X is the complex

subspace with the property that for any morphisrn f Z --> X in

.cpl, f x f Z -> X x X faeters uniquely through Ax . For a leeal
n

model ~ S Q , where U is open in some CI: , Q.x := (~x~) n Q.U '

and Qu 1s the obvious diagonal of U; for the general case, glue

:according to a) .

.f) Fibre products.

.Given f X -> Y

In cpl , categorical fibre products exist .

g : Y' -> Y , the cartesian square

X'
gl
== > X

(3.2.3) f' f

VI V

y' Y
> -
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is defined by putting X' := Xx VI_ yL

and f I , g I defined by the proj ections .E.Ex ' ~y : ~ x !' -> ~, Y I

The universal property of the fibre product is implied by' the univer­

sal properties of the inverse image and the diagonal.

g) Graph spaces.

morphism f x ->

A special case of f) is the graph space Lf
Y ; it 1s defined by the cartesian square

E
------> X

of a

(3.2a4)
v

y

v

------> Y

f

and is a complex subspace of X x Y a By the universal property of the

fibre product the morphisrns idx : X --> X and f: X -> Y define

i : = id
x

x y i : ~ -> I f ' and one get s the corrunutative diagram

x
i

> I
f

L'-- > X x Y

f

y

where i is an isomorphisrn, inverse to E. Hence, we have:

Proposition 3.2.1. Any rnorphism f : X --> Y is isomorphie to the

restriction of a projection to a complex subspaee.

If X and Y are Hausdorff, I
f

is a closed complex subspace,

and so id x f : X -> X x Y is a closed immersion with image I f .

The proposition will be important in the study of finite morphisms

in the following paragraphs, since it allows to reduce locally to

the situation of l,inear projections of number spaces restricted to

closed complex subspaces.
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h) Supports of modules.

Definition 3.2. 2. Let X E cpl, and 1\1 be an 0x-mod':lle. M. is called

admissible if and only if it is locally of finite presentation, i.e.

if and only if every x E X has an open neighbourhood such that there

is a short exact sequence

0i I u ~> O~ I U -> M lu -> 0

If M is adrnissible, the Fitting ideals F (M) are defined as
n

(3.2.7) Fn (M) I u . - ideal generated in 0x I U by the

(p-n) x (p-n) - minors of the p x q-matrix

given by ~ in (3.2.6).

A theorem of Fitting [15] implies that the F (M) are globally
n

well-defined. By construction, they are locally finite. We then

define the support of M to be

(3.2.8) ~M := the closed complex subspace of X defined

by FO(M)

The underlying topological space of

:for this, just tensorize (3.2.6) at

~M is

x E X with

supp M : = {x E X IM i O}x
a: Si 0x Im.,x x

Remark. If Ann{M) is the annihilator ideal of M , then

F0 (M) ~ Ann (M) ~ VF 0 (M) • The first inclusion 1s by elementary linear

algebra, whereas the second one lies considerably deeper and follows

from the Rückert Nullstellensatz 5.3.1.

i) Image spaces. Let f: X --> Y be a rnorphism in cpl. Then

im(f) = supp(f* 0x) settheoretically, so if f*Ox happens to be an

admissible Gy-module, supp~* 0x) has a natural structure as a closed

complex subspace of Y via FO(f*Ox) in view of a). We call this

space the cornplex image space of f denoted im(f) or f(~)
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3.3. The Equivalenee Theorem.

The Equivalenee Theorem asserts the equivalenee of the. "geometrie"

eategory of eornplex spaee singularities with the " a l gebraie ll eategory

of Ioeal analytie ~-algebras. Its explieit forrnulation seems to be

due to Grothendieck ([64], Expose 13).

We begin with deseribing the rnorphisms of a cornplex spaee X to

a: n . If R E la , R/m
R

;; a: canonically via the augmentation mapping

indueed by the <t-algebra-strueture; henee, ~f X E epl , any seetion

f E 0x (X) defines a funetion Cf] : X -> ~ via

.' .

(3.3.1) VxEX [ f] (x) : = f x mod m
x

Proposi tion 3.3. 1. If ~ E epl , we get a bijection

n Vx(X)nHorn 1 (X,<! ) -->cp --

.f ~>
o 0

(f
X

(Zl) , ... ,fx(zn))

where fO (f- 1V ) (X) = o (ee
n ) --> Vx(X)X a:n a:n

Sketch of proof.

o 0(1) Injectivity: Since Zj 0 f = [f (Zj)] , the f (Zj) determine

the settheoretic map f : X -> cr: n . Now, i f !' 9. E: Homepl (X, !~)

o 0have f (z j) = g (z j) for 1 S j $ n , then f = g , arid

fxO,gxO : 0 --> 0 , where y:= f(x) = g(x) , agree on the z'
a: n X,x J,y

for 1 Sj Sn • But then they agree on 0 , sinee
na: ,y

o .. {[{Zl' ... 'Z} is a free objeet in la by Theorem 1.3.4.
IT'n n
\,I. ,y

(ii) Surjeetivity: Let (f 1 ' .••• , f n) E 0x (X)n be given. First suppose

X is a Ioeal model space in some open U~ a: n , and the f . are in-
]

dueed by holornorphic functions F~ U --> <I for 1 $ j Sn Then
n J n

F := (F1 , ••• ,Fn ) : U --> ~ induces a morphism f : X -> er: with

fO (z.) = f. for 1 S j ~ n . In the general case cover X wi th local
] ]

models and glue the loeal rnorphi?ffis obtained on the overlaps by

means 0 f ( i) .
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(Germs of complex spaees).

(i) A eomplex spaeegerm, or singularity, is a tuple (~,x) with

X E cpl and x EX.

(ii) A morphism of cornplex spaeegerms , er eemplex rnapoerrn, is a

rnorphisrn f : U -> Y E cpl of an open neighbourhood Q ,of x into

an open neighbourhood V of y _ with f(x) = y , where one identifies

those rnorphisrns which coincide after restrietion to possibly smaller

neighbourhoods.

The complex space germs with their morphisms form a category, which

I will denote cplo . If (~, x) E cplo' and U i 5 any open neighbourhood

of x in X, (~,x) = (Q,x) up to isomorphism in cpla ' and I will

refer to this as "pos s ibly shrinking X 11

There is a canonical contrafunctor

o cplO --> ~

mapping (~, x) E cplo

fO 0 -> 0x Y,y X,x

to o andx,x f (~,x) -> (~,y) to

Theorem 3.3.3

o : cploPP -.->
-0

(The Equivalence Theorem; Grothendieck [64], Expose 13).

la is an equivalence of categories.

Sketch of proof. We have to show two properties:

(i) essential surjectivity on objects: Für R E la there exists

(X,X) E cpla with 0x,x ~ R •

(ii) bijectivity on rnorphisms:

Horn 1 (( X , x) , (y ,y) )
Q.PJ: - --0

f

is a bijection.

-->

r--->

HOrnla(Oy ,Ox )= ,y ,x

j!l: is trivial from the constructions.

(ii): Sinee the question is leeal, we may assurne, after possibly

shrinking X and Y, that X C-> .!:!.::!ffi, y c-> y.::!n are loeal models I
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where U and V are open, and x = 0 E a:m , y == 0 E <In .

Injectivity: We may assume Y = ~n

P~oposition 3.3.1.

the claim then follows from

Surjectivity: Let I..P: Oy,y -> 0x,xE1a be given. By Theorem 1.3.4

there is a commutative diagram

(3.3.2)

o
a:n,O

v

o
Y,y

_____tP > 0

([In, 0

v

--------> 0X,x

Let (F
J
') 0 : = 4J (zJ' ) E 0 , 1 ~ j ~ n ; after possibly shrinking U,

a:m,O
we may assume the (Fj)O have representatives F j : U --> a: , which

together define the holornorphic"map

n
U --> a:

1 kLet X be defined by g, ... ,g E 0 (U) and Y by
\Im

.h', .•. ,h~ E 0 (V). Define the 0u-ideals
a: n

1 h
1:= (g , ... ,g ).OU

] : = (h~ 0 F , ••• , h~ 0 F) • 0u

Then ] 0 ~ 1
0

because of the cornmuative diagram (3.3.2). By Lemma

3. 1 . 1. we may therefore assurne ] SI. But then F induces a rnor-

phisrn f X -> Y by Definition 3.1.2.(ii), and fO==1..P by construction.
x

Corollary 3.3.4. cRl is a full subcategory of the category lrsp

of spaces locally ringed in ~-algebras.

Für the same proof as in 3.3.3. shows the injectivity of

HomlrsPO ((~,x), (!:,y)) -> Hom
1a

(Oy,y,Ox,x)
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Corollary 3.3.5. Morphisms f: (~,x) --> (~n,O) correspond one-to­

one to rnx-sequences (f
1

, ••• ,fn ) (i.e. sequences (f, , ... ,fn ) with

f. E m for 1;;ii j :$ n ).] x

Remark 3.3.6. By Corollary 3.3.5, special morphisms of germs should

correspond to m -sequences with special properties. We will see
x

instances of this principle later on (4.4.2, 6.2.3., 6.3.1.).

3.4 The analytic spectrum.

Für later use, we shortly discuss a further application of

Proposition 3.3.1 ..

Let A be a finitely generated cr-algebra. Picking generators

a
1

' • • • , an E A gives an epimorphism

be the kernel of l!>, and ISO n the ideal sheaf generated
a: n

1 defines a closed complex subspace Zc-->! , and there

I:;. ": A -> 0z (Z) such that for given

giyen z E Z i 5 the germ induced by

preimage of a under ~ . We then have the

I

I .by

~s a canonical homomorphism

aE A the germ 1; (a) at a
z

f E 0 where f is any
z a:n , z

following generalization of Proposition 3.3.1.

Let

Proposition 3.4.1. The pair (~,C;) represents the functor

cploPP --> sets given by X ~> Homcpl(X'~) , in other words, the

canonical rnap

f

Horn l(X,Z) ----> Horn (A,O (X))
cp - - ~-alg X

r-> fO 0 1;
X

induces a natural equivalence of functors.

Here, f~ is the hornornorphisrn Oz{Z) -> 0x(X) = (f*Ox) (Z) given

by the sheaf map fO : 0z --> f*Ox .
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The proof of the Proposition is sirnple,using 3.3.1 ,and 1eft to the

reader. For the general formalism of representable functors see [64],

Expose 11, by Grothendieck.

It follows that thc pair (~,s) is unique up to unique isomorphism,

and so the following definition makes sense:

Definition 3.4.2. If A is a finitely generated ~-algebra, the pair

(~,~) , or the complex space Z alone when ~ is understood,construc­

ted above is called the analytic ~pectrum of A and denoted

Specan(A)

§ 4. Local Weierstrass Theory II: Finite morphisms.

Classically finite rnaps arose naturally by solving systems of

polynomial equations via Kronecker's elimination theory (see e.g. [51]);

successively eliminating indeterminates by forming resultants of

polynbmials turns some indeterminates into free parameters, which can

be'variedarbitrarily and whose number should be.thought of as the di­

mension of the solution variety; the rest of the indeterminates

become algebraic functions of these parameters. Geometrically, this

"amounts to representing the solution variety ~s a finite branehed- " .
cover of an affine space, and algebraically to the fact that the coor-

dinate ring of the solution variety is a finite integral extension of

a polynomial ring. This is nowadays known as IINoether oormalization",

and fairly easy to prove, without using elimination theory.

This picture remains true loeally in the complex analytie ease, but

this is much harcler to prove. As already mentioned before, the main

reason fOr the applicability of loeal algebra to local complex analysis

is the fact that,under the equivalence 3.3.3, finite mapgerms will

correspond to finite, and hence integral, ring extensions of loeal

analytic algebras,and so a kind of II re l a tive algebraic situation"

emerges. This will be the sUbject of the main result of this paragraph,

the Integrality Theorem 4.4.1. Fundamental for it is the famous Finite

Mapping Theorem 4.3.1. of Grauert and Remrnert; in the proof of it,

the elimination procedure of the algebraic case is mimicked geometri­

cally by a sequence of linear projections along a line.
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4.1. Finite rnorphisms~

Frorn now on, all topological spaces under consideration will be

Hausdorff, locally cornpact, and·paracompact. For general facts of

topology quoted in the sequel see [7] , and also [14].

A continuous map f: X --> Y of topological spaces is called

proper if the inverse image of a compact subset of Y is compact in

X . This is equivalent to the requirement that f is closed (i.e.

maps closed ~ets to closed sets) and hag compact fibres. A proper map

with finite fibres i5 called finite, so a map is finite iff it is

closed with finite fibres. Finally, a morphism f: X -> Y of

cornplex spaces is called finite if the underlying map f: X -> Y

of topological spaces is so. Elementary considerations from topology

show. that any y E Y has a neighbourhood basis consisting of open

neighbourhoods V such that f- 1 V = .y U
x

for open neighbourhoQds
xE:e (y)

U of x in X and flU U --> V is finite. Thus, there arex 1 X x
canonical homomorphisrns for a sheaf M on X,

(4.1.1) ---> EB- M
xE f-1(y) x

for all y E Y ,

induced from M(f- 1V)-> Ei M(U)
xE f-1(y) x

one gets:

via s ~> L slu, and
xEf-1(y) x

Theorem 4.1.1. Let f: X --> Y

spaces. Let 0x-mod and 0y-mod

and. Gy-modules respectively. Then:

be a finite morphism of complex

denote the category of 0x-rnodules

(i)

( ii)

The hornomorphisms

M E 0x-rnod ;

the functor f*

E in (4.1.1) are isornorphisrns for all
y

4.2. Weierstrass rnap5 (see [28]). These are the prototypes of finite

rnorphisms in loeal cornplex analytic geornetry and ·play a prominent role

in what folIows, since any finite morphism loeally will embed in a

Weierstrass map. So ultimatively basic properties of finite rnorphisms

will be proved using Weierstrass rnaps.
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Let . W (j) E 0 [w . ] be monie polynomials
a:n , 0 ]

(4.2.1)
b.

= w ] +
j

b.-1

~
v=O

a(j) (Z)W~
v ]

be a domain con-B ~ (Ln

have representatives, also

get the closed subspace

, and the projection

a (j) E 0 , and b. ~ 1 , for 1 ~ j ~ k . Let
v ~n,O J

taining 0 E (Ln such that the w ( j )

called w(j) , defined on B. We
- • _ (1 ) (k) c- k!::..- !:!(w , ••• ,w ) > ~:!

kEE
B

: B x CI: -> B defines

(4.2.2) ~ := EEB I A : ~ ---> B

We call TI a Weierstrass map.

we have the simple estimate

Given z E B , the equations (4.2.1) have only finitely many solu­
b-1

tions. Moreover, if w = wb + L a (Z)W
V E 0 [w] and W(ZO/W

O
) = 0 I

v=O v (Ln /O

." whieh shows that the inverse image of a bounded set is bounded. Hence:

Proposition 4.2.1. A Weierstra5s map 15 finite.

Somewhat deeper lies:

Proposition 4.2.2. A Weierstrass map is open.

This is implied by the following easy hut very useful eonsequence

of the Weierstrass Preparation Theorem:

Lemma 4.2.3 (Hensel f S Lemma).

b-1
Let w:= w (z ,w) = wb + I a (z) W

V
€ 0 [w] be a manie palyno-v nv=O a: ,0

b 1 b r"rnial of degree b ~ 1 .. Let w (0 ,W) = (W-C
1

) ...... (W-C
r

) .. Then there

exist unigue monie polynomials w
1

I .... ,W E 0 [w] deg w. = b. for
r et n I 0 J ]

1 :;a j ~ r I such that W = w1• • • • • wr
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For the proof of 4 e 2 e3, one j list applies the' Preparation Theorem suc-

cessively in the rings 0 [w-c 1], 0 [w-c 2], and so one
~n,O ~n,O.

Now the 'Weierstrass map (4 e2e2) clearly ~s open at 0 E·A since the

equations (4 e2 e1) havc a sol u tion for any z E B , but by lIensei' 5

Lemma the germ. 2!. (~, a) -> (~, TI" (a)) 1s locally around any a E A a

Weierstrass map, so 'TT is open at all a E A , and so is open, which

proves Proposition 4e2e2e

4 e3e The Finite Mapping Theoreme

The following theorem is the fundamental result in loeal complex

analytic geometrY,and is due to Grauert and Remmert ([24], Satz 27) e

Recall the nation of an admissible module (Definition 3 e2.2e).

Theorem 4e3.1 (The Finite Mapping Theorem). Let f: X --> Y be

a finite rnorphism of cornplex spaees. Then, if M 15 an adrnissible

0x-rnodule, f*M is an admissible 0y-modulee

Corollary 4e3e2. If f: X --> Y 1s a finite morohism of compiex

spaces, the complex image space im(!) in the sense of 3.2.1} exists.

This Corollary is an obvious .consequence of the Theorem.

The proof of this basic result is done in various stepse The details

are in [28], Chapter 3, but since the full machine of coherence 1s

employed there, I will give an outline, indieating the minor modifica­

tions which are necessary when not invoking the nation of coherence.

In the first step, one considers the special case where f 1s a

Weierstrass map 'TT: A --> B . Let the notation be as in 4.2. Let
k b.

lN
n

+
k

= ß lL UD.. be the decomposition given by the monomials w. J
j=1 ] J

according to Theorem 2.3.2; hence

i "

(4.3.1)

Let be the OB-module defined by
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(4.3.2)

for US B open. There is a nil. tural OB-module homomorphism

(4.3.3)
o
TT

given as follows: If USB is open,

° k (uxa:
k

) = OB (n-
1

U) this defines
Bx([

(4.3.4)
"6

°BO(U) --> ° k(TI
-1U)restriction> ° ( -1 )A TI U ,

Bx<I:

and so (4.3.3). The following theorem substantially generalizes

Corollary 2.6.2:

Theorem 4.3.3.
o
TT is an isomorphism of OB-modules.

This in turn is an immediate consequence of the following pararnetrized

generalization of the Division Theorem:

9 . € 0 k
a J a:n + ,x j

hEOa:n[Wl, ... ,wk] of the

for 1 ~ i ~ k such that for allwith

and a unique polynomial

h =

f'j EO n+k
a: ,x .

J
Cl = 1, •.• ,k

form

Theorem 4.3.4 (The Generalized Division Theorem). Let the.notation

be as in 4. 2. Let y E B , and let, for all x. E TT- 1(y) , germs
J

be given. Then there exist unigue germs

( 1 )
f j = 9 1 j Wx .

J
+ • •• + 9 .w(k) +

kJ x.
J

hx.
]

in °a:n + k , x .
J

The main point of this theorem is that one h works for all x ..
J

The proof is a formal consequence of the Division Theorem and Hensel's

Lemma 4.2.3., and I refer to [28] for it.

Theorem 4.3.3. is then preved as fellows: By Theorem 4.1.1. (i),

(TI*O) ~ $ 0 , so any element 5 of (TI*OA)y is represented
A y x .E-rr-1(y) A,x. y

] ]
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. Dividing the

bijcctivc on stnlks,ünd sosn (4.].3) is

(ii) .

f E 0 kx. n+
J er ,x.

J
via Theorem 4.3.4 shows there is an unique

by a family (fx.)x.E rr- 1 (y)
J J

(1) (k)
f by w , ••• , wx. x. x.

] -0 ] J
h ~ 0

6
mlll'rlinrr!-n Ry u,y y

bijeetive by Theorem 4.1.1.

The second step reduces the general case to the case of a linear

projection. For this, one observes that the statement of Theorem 4.3.1

is Ioeal in the sense tha t any x E X has an open neighbourhood U

such that nlu u ---> n(U) is again finite, and so we rnay assume

that X C-.-> BI, Y c-> ~ , where BIS er n and B 5 a:: k are domains.

One gets a comrnutative diagram

x c > X )( Y c > B I X B

!\ / //EEB/EE
y

/

/~

Y c > B

where the horizontal arrOW5 in the upper row are elo5ed immersions,

the 1eft hand triangle i5 defined by the graph eonstruction

(3".2.5), and the right hand square i5 defined by the elo5ed immer­

sions xc=-> B' , ~c-> B . Identifying X with its image in B I
)( B

we may assume we have a commutative diagram

x

Y c"- ;> B

where TI is given by the restrietion of a linear projection to X

which is finite, or, as I will say, where TI is a finite linear pro­

jection. One now has the following lemma.

Lemma 4. 3 . 5 . Let X E cpl , Y d> X a elosed eomplex subspaee, and

M an Gy-module. Then M 1s an admissible Gy-module if and only if

i*M 1s an admissible 0x-module.
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The proof is a simple diagram chase and left to the reader.

This lemma shows that it suffices to prove Theorem 4.3.1 for TI.

Thc last step rcduccs now everything to the first step. We may

assurne that f is a finite linear projection. We may even assume

that k = 1 , for we can factor f successively into a sequence of

projections along lines, and Corollary 4.3.2 and Lemma 4.3.5 reduce

everything to that case.Then choose a nonzero gEG n+1 which
er ,0

vanishes on X near 0 i after possibly shrinking X and B we

rnay assurne 9 is a Weierstrass polynomial by Theorem 2.6.3. We then

have the commutative triangle

i
X C > !!(g) =: A

~/
---I ~

B

and, again by Lemma 4.3.5, we are reduced to prove Theorem 4.3.1 for

the Weierstrass map TI. Now let M be an admissible GA-module; after

shrinking A and B, we may assume there i5 an exact sequence

oq --> op --> M --> 0
A A

so there is an exact sequence, 5ince TI* is exact by 4.1.1. (ii):

(note 1T* commutes with direct sums). But 1T*G
A

;; O~ for some b

by Theorem 4.3.3, hence Theorem 4.3.1 fellows.

As a corollary of the proof we obtain:

Corellary 4.3.6. Let f: X -> Y be guasifinite at x E X (i.e.

x is an isolated point of the fibre f-1f(x)) . Then x has a neigh­

bourhood U and f(x) a neighbourhood V with f(U) ~.V such that

!l~ : ~ -> V is finite.

The proof is identical with the reduction procedure in the above

proof, reducing it to the case of a Weierstrass map, which is

finite by Proposition 4.2.1.
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4.4. The Integrality Theorem.

Recall the equivalence of categories

G l oPP
ep 0 -->

given by the Equivalence Theorem 3.3.3. We are now in a position to

deseribe which homomorphisms in 19 correspond to the finite rnapgerrns

in cp10 ' and this will finally allow to describe algebraic invariants
of loeal analytic algebras in geometrie terms of cpla.

Theorem 4.4.1 (The Integrality Theorem). Let f : (~,x) -> (y,y)

be a holomorphie mapgermj recall that by Theorem 3.3.3 this is egui-

valent to having a homomorphism ~ : Gy -> 0x of loeal analytic,y , x
algebras. The following statements are equivalent:

(i) f is guasifinite, i.e. x is isolated in f- 1 f(x) for some

(or any) representative of f.

(ii) f is finite, i.e. some representat1ve of f 1s a finite

rnorphisrn of complex spaces.

(iii) ~ is quasifinite, i.e

cornplex veetorspaee.

o / m • G is a fini te dimensionalX,x y X,x

(iv) ~ i5 finite, i.e. G is a finite
X,X Gy -module via ~.,y

We can visualize thi5 situation by the following diagram:

(i) f qua5ifinite at x

1\

<==->
G

(iii) dirn (f' 0x / m 0x < co"'" ,x y ,x
1\

(ii) f

v

finite near x <=>
o

(iv) °X,x

v

finite over oY,y

equivalenee in cpla equivalence in la
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I will give a bare outline of the argument, following the diagram

clockwise via (i) ~ (iii) ~ (iv) => (ii) 0::> (i) • Arguing as in the last

section, I may assume throughout f is represented by a finite

lineClr projcction, Y = ß s; a: n
is Cl domcJ.in contcJ.ining y.-= 0 € ([n; X

is defined in Y x V ,V a domain in ,!k , by a finitely generated

ideal I ~ 0 k (Y x V) x = 0 E a: n +
k ; and f 15 induced by the pro-

n+
jection pr([y : ~ x ~ -> Y . (See Figure 2). Let R: = 0x Im Ux,x y ,x

Fig. 2

(i) .. (i11) ..

3. 2. c). The

o -module
;L,y

-1
The fibre f (y) is defined by the ideal m·O I by

Y X
Corollary 4.3.6 then shows 0f-') IX is an admissible

by Theorem 4. 3 • 1 ,where y = I {Yl ,0 d / Md)
([ I Y

(li1) ~ (iv) . (ii1) means that there is integer b ~ 1 with
b

0an m
R

= .
This implies that , after possibly shrinking X and y

I there are

integers bj
1 < . :;;k and gj EO k(YxV) v = 1 I ••• ,n such thatI - ] , I ,

v cr n +

(4.4.1)
b. n .

:= w.] + L g~(Z/W).ZV EI
] v=1

for

where I ~ 0 k (y x \1')a: n +
defines X. One can then show that there is a



(4.4.2)

- 39 -

posi tive linear form !I. wi th w1< A · · · <1\ wk <I\. Z 1< A· · · <I\. zn such that

. b.
LMI\.(W J ) = w J

for 1 ~ j ~ k . Given any f E 0 +k ' div ide i t by
a:n ,0

ding to the Division Theorem 2.3.2:

1 kw , ••• , w accor-

(4.4.3)

with supp (h) ~ 6. • Because of (4.4.2), h can be written as

h = L_ hA(z)w
A

AE6 0

:= {A E ]Nk I Y. : 0 ~ A
j

< b .} , h
A

(z) E 0 = Oy
] ] ~n,O'Y

mod I , we see by (4.4.4) that the monomials wA

(4.4.4)

with 6 0

(4.4.3)

generate o overX,X
o .y,y

. Taking

for A E 6
0

(iv) ... (ii) .

equations

Since oX,x is finite over Oy , there are integral,y

(4.4.5) wj(z,w)
b.

:= w.] +
]

b.-1
]L a ~ v) (z) w~ E I

'v=O ] ]

for the w.
]

shrinking X

as elements in 0 over Oy . After p05sibliyX,X ,y
and Y , this gives the comrnutative diagram

(4.4.6)
i

X r- > A 1 k
:= ~(w , ••• ,w )

where i i5 a closed immersion and TI a Weier5trass map. n i5

finite by Proposition 4.2.1, hence so is f.

( i i) ~ (i). This i s cle ar .

Corollary 4.4.2. (i) Let ! : (~,x) ---> (~n,O) be defined by the

e lement5 f. E m ,j = 1, ... In. Then
] x
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a) f is finite if and only if

primary ideal of 0x ,x

generates an m ­x

(ii) (~,x) E cpla is smooth, i.e. (~,x):: (~n,a) for some n ,

if and only if 0 is a regular local ring.X,x

Sketch of proof.

(i) a): is clear because of Theorem 4.4.1.

o -» 0 ~ 0 , hence is surjective, and so
~n,O Y,O X,x

Lemma teIls us that

fO faetors
x

fO(m) = m
x n x

defined by the ideal

dirn 0:( 0X / m •0X ) = 1 < coo ,x n ,x
f , and Nakayama's

x

is surjeetive. So it faetorsoX,x

m
x

via

is a loeal immersion,f

with

o
a:n,O

o Sö 0
Y,O X,x

(f
1

, ••• ,f
n

) generate

is finite over 0
(In,O

->

. Conversely, if

-»

If

oX,x

(i) b):

henee

as

as 0
a:n,O

'I := Ker fO
x

(li). If (~,x) is smooth, 0 =0 , which is regular. If °
X,X (In,O X,x

.is regular, a regular system of parameters of 0 gives a homomor-
1\ A X,x /\

.phism l..P : 0 -> 0x such that l..P : 0 -> 0 is an iso-

. a:n , 0 ' x a::n , ° X , x

morphism. This implies ~ is injective and dim (Ox Im 0x ) =a: ,x n ,x

dim~(a I~ ~ )= 1 , so ~ is finite and hence surjective by
\L. X,x n X,x

Nakayama's Lemma again. Hence l..P is also surjective, henee an isomor-

phism, which implies (~,x) ~ (!n,O) by the Equivalence Theorem 3.3.3.

Exercise. Prove 4. 4 . 2. wi thout pass ing to the completion (use 2. 6 .2) .

§ 5. Dimension and Nullstellensatz.

Pursueing the analogy with elimination theory further, it is shown

that a complex spacegerm has a well-defined loeal dimension, given

as the minimal number of free parameters such that in the system of

holomorphic equations defining the germ the rest of the unknowns are

algebraic functions of them (this will be geometri~ally and algebrai-
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eally exploited in Ga1 and 6a2) a This Ioeal dimension eoineides with

the Chevalley dimension of the eorresponding Ioeal ring. We introduce

aetive elements, providing good induetive proofs for the dimension,

and give a short proof of the Rüekert Nullstellensatz, fram which we

deduee that the deeornposition of a cornplex spaee germ into irreducible

analytie setgerms corresponds in a one-to-one fashion to the minimal

primes of the corresponding loeal analytic algebraa

Sa1a Local dimensiona

Recall that by Corollary 3.3aS mapgerrns f:

correspond in a one-to-one fashion to sequences

f 1 ' • a - , f E m an x

n
(~ , x ) -> ( CI: , 0) E epI 0

(f1 ' a a a , f n ) wi th

proposition and Defi"i tion 5 a1 .1 (Local dimension) a Let (~, x) E~O a

The following integers are the same:"

min{n 13 finite mapgerm f

t'heir eornmon value 1s ealled the (local) dimension of X at x and

denoted dirn X ax-

This 15 immediate from the Integrality Theorem 4.4a1 _ We list the

following properties:

Proposition 5a1.a2a The loeal dimension has the following properties:

(i) dirn X S. nx-
mapgerm

if and only if
n

(~, x) -> (! ,0)

(~, x) admits a finite holomorphic

(ii) f : (~, x) -> (~, x) finite ~ dirn X ~ dirn Y ax- y-

(iii) If (X,x) E cp10' define (~red'x) C-> (~,x) as ·the subgerm

corresponding to the projection 0x --» 0x IN , where,x ,x x
N is the nilradical of 0x ' via the Equivalenee Theoremx ,x
3.3_3a Then dirn X = dirn X d ax- x-re
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(iv) If X E cpl , X' t-> dirn X
- - x-

1s upper semicontinuous.

(v) If (.!:, x) oS (~, x) i5 a subgerm and

(Y,x) 1 (X,x) as germs of sets.

dirn Y < dirn Xx- x-

(vi) x is i501ated in X if and only if dirn X = a .
x-

(vii) dimx~ = dirn 0x,x

°x ·,x

the Chevalley dimension of the loeal ring

\ '
I

J

\
\
I

o.f this, (i) - (vi) are immediate from the definitions, only (vii)

deserves a comment. Recall that the Chevalley dimension of a noethe­

rian loeal ring R is defined to be the minimal length of a system f:=

(f , .•. ,f) of elements which generate an mn-primary ideal; the latter
1 n f"'l

condition is in our case equivalent to

dim~(R/!R) = lenghtR(R/!R) <~ • Then the claim (vii) follows direetly

from the Integrality Theorem 4.4.1.

5.2. Active elements and the Active Lemma.

Active elements generalize nonzerodivisors'. The main result is

the Active Lemma 5.2.2, which makes inductive proofs werk. Since, as

we will see, activity of an element ef a loeal analytic algebra re­

.stricts enly its behaviour on the irreducible components ef the corres­

ponding eornplex space germ and not its behaviour on the embedded anes,

it 1s a more flexible nation than that of nonzerodivisors.

Proposition and Definiten 5.2.1. Let R be a noetherian Ioeal ring.

Then f E R 1s called active 1ff it satisf1es one of the following

equivalent conditions:

(i) v p e: Min (R) f ~ P •

(ii) \I g e: R : f. 9 e: uR .,. g E: UR

R •

where is the nilradical of

(iii) f 1s a nonzero-divisor in the reduction Rred := R/U R •

Lemma 5.2.2 (The Active Lemma).

active. Then

Let (~,x) e: cpla and f E: m bex
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dirn N (f) = dirn X - 1x- x-

Idea of proof. It suffices to show dirn N(f) :5 dirn X-1 . Let- x- x-
d : = dirnxX and lf : (~, x) -> (~d, 0) be a f inite ho lornorphic rnapgerm ,:

then f satisfies an integral equation

with a j E 0 cl ' 0 ~ j ~ k-1 , by the Integrality Theorem 4.4. 1. By
a: 0

activity, we may assume a O ~ 0 . Then (5.2.1) induces the comrnutative

diagram of complex space germs

(~ (f) , x) c > (~, x)

2!.1~(f) TI-

v v

(N(a
O

) ,0) c > (~d ,0) ,

where the horizontal arrows are closed imme~sions, and so TIIN(f)

is a finite holomorphic mapgerm. Hence dimxN(f) ~ dimON(a O) by

Proposition 5.1.2 (ii). But since a O ~ 0 , there is a line Ls ~d

such that 0 is isolated in N (a
O

) n L by the Identity Theorem for

holomorphic functions in one variable, which easily implies

d.ir.lO~ (a O) ~ d - 1 • This proves the Active Lemma.

The Act~ye Lemma has numerous consequences as we will see in the

next sections. Immediate 1s the following one:

Corollary 5.2.3. dirno~n = n •

Remark 5.2.4.

[28J, p. 99).

If dirn X > 0 , active elements da exist in 0 (see
x X,x

5.3. The Rückert Nullstellensatz.

If ~ is an algebraically closed field and A a finitely genera-

ted :ne-algebra, elements f E A def ine regular functions [f J : X ->Ik
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on the variety X = Spee A (we consider only the elosed points). The

famous Hilbert Null5tellen5atz states that [f] i5 zero as a function

if and only if f is a nilpotent element of A , or, what 15 equiva-

lent in this ease, nilpotent in all loeal rings 0x ' x EX. The,x
preof of the Nullstellensatz is rather easy in thi5 algebraie case:

One proves (i) the " weak Nullstellsatz ll that any ideal I#-1 in

:fit [X 1 ' ••• , X
n

] , n 2:: 1 , has a zero, and then (ii) appl les the Rabinowi tsch

trick (see [71], § 121). Usually (i) i5 proven by means of Noether

normalization, whieh is easy in the algebraie case but hard in the

complex analytic case (in fact it i5 our final aim in this,chapter to

prove it as the Local Representation Theorem in § 6); there

are even more elementary proofs using the Division Algorithm in poly­

nomial rings (which i5 similar to Theorem 2.3.2, but much easier to

establish), see [3] for the Divison Algorithm and [46] for the

Division Algorithm and the Nullstellensatz.

Although the Nullstellensatz remains true in the complex analytic

case, the above approach will not work because (ii) fails; the result

lies considerably deeper in this ease, and was first proved by Rückert

in his fundamental paper [59],in which for the first time algebraic

methods were systematically introduced inte Lecal Complex ~nalytic

Geometry. In the treatment here, it will be a consequence of the

Active Lemma.

Theorem 5. 3. 1 (Rückert Nullstellensatz ). Let X E cpl , f E 0x (X)

and Cf] : X --> ~ the functien defined by f (see (3.3~1». Then

(f] = 0 if and only if f E 0x is nilpotent for all x EX.x ,x

Idea of proof.

The 11 ifll-part is clear. For the 11 only i f" -part, let x E ~ be

9 iven; one decomposes the nilradical N c: 0x :x - ,x

(5.3.1) n p
PEMin (OX ),x

For p EMin (Ox ) , let the immersion (X, x) C-> (X, x) of germs,x -p-
correspond to the projection 0x --» 0x /p via the Equivalence,x ,x
Theorem 3.3.3. Then 0x = 0x /p is an integral domain, and sop,x ,x

f n := fl~p is either 0 or active in 0x x. But it cannot be
r p'
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active, ·since then by the Active Lemma dirn N(fp ) <dirn Xp , and so itx- x-
would not vanish near x on xp , which it roust since f vanishes

on X by aS5umption. So (f) = 0 in 0 which rne~ns f E P
P x xp,x x

Since this holds for all p E: Min 0x ' f E N by (5.3.1).,x x x

There are ether useful formulations of this result:

Corellary 5.3.2. The following statements are equivalent to Theorem

5.3.1 and do therefore hold:

(i) Let X E: cpl , Yc-> ~ a closed complex subspace defined by the

loeally finite ideal I ~ 0 X • Let J y be the ideal defined as

Jy(U) := (of E 0x(U) I [fJIY = O} for UcX open. Then J y = vr (this

is the traditional formulation of the Nullstellensatz) .

(li) Let M be an admissible °x-module, and let fEGx(X) be such

that it vanishes on supp(M) as a function, i.e. [ f] I supp M= 0 .
Then any xEX has an open neighbourhood such that ft. M = 0 for

some integer t a: 1 .

For 5.3. 1 - (ii) see [28 J , p. 67, Corollary . (use F0 (M) instead of

Ann (At) there and the fact Fa (M) sAnn (M» • The implications

(ii) ~ (i) and (i) ~ 5.3.1 are easy.

5.4. Analytic sets and Ioeal decomposition.

Let X be a compiex space. A subset A S X is called analytic iff

it is locally around any x € X the null set of finitely many sections

of Gx defined near x. The ideal JA~OX with

JA (U) : = {f E Gx (U) I [f] IA = O} is called the vanishing ideal of A.

is analytic, it has a well-defined loeal dimension at

0x i5 noetherian by the Rückert Basissatz 1.3.2, ,a,a
neighbourhood U such that A n U is, the underlying set

complex subspace of U defined by a finitely generated

Gu-ideal 1 which is such that I = JA ' and two such ideals coin-a ,a
eide locally' near a by Lemma 3. 1 • 1. So there is, up to isomorphY",_.a

well-defined germ (A,a) EcplO defined by any such 1 in U, and we

p~t dimaA:= dirna~ . Especially, X is an analytic set in X , and
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Jx = N , the nilradical of 0x ' by the Rückert Nullstellensatz,x x ,x
5.3.1, and so dirn X = dirn X by Proposition 5.1.2 (iii). If x EX,x- x

. we have the usual notion of the germ of an analytic set at x , denoted

·(A,x) , which is the eguivalence clas s of an analytic set A def ined

-ln an open neighbourhood of x with respect to the equivalence rela­

~tion which identifies two locally defined analytic sets when they coin­

,eide near x. w~ call such germs analytic setgerms. Unions of analytic

germs are well-defined and so there is the notion of an irreducible

'germ, this being one which cannot be written as a nontrivial union.

It is then an easy exercise to show that an analytic setgerm has a

,unique decomposition into irreducible ones Wh1Ch corresponds to the

associated prirnes of their vanishing ideali this is a consequence of

the Rückert Basissatz (see [28], Chapter 4, § 1.). Together with the

,Nullstellensatz we get the following result:

.Proposition 5.4.1 (Local decomposition). Let (X,x) EeplO . If

:1 "S °X, x i s any ideal, let the inclus ion (~I ' x) C-> (~, x) of eomplex

.spaeegerms be defined by the projection 0x' -» 0x II via the,x _ ,x
Equivalence Theorem 3.3.3. Then:

,
1

\
,
~

i
\

(i) The complex space subgerms of (~,x~ correspond bijectively

to the ideals of 0x,x under I ~> (XI,X) , and the analy­

tic setgerrns to the radieal ideals of ° under
X,x

I 1--> (X1,x)

,( i1) (X ,x ) = U (Xp , x) i s the unique deeomposition of the
pEMin(O )

"X ,x
analytic setgerm (X,x) into irredueible ones.

~~ '~efer: to the decomposition in (ii) as the loeal decomposition of X

~ x into irreducible cornpooents.

~ ~eall the Xp the loeal irreducible components of X at x (they

iare ealled prime components in [28]). Germs with exactly one irre­

~ducible component are ealled irreducible.

Using the Active Lemma, one proves the following result (see [28) ,

:p. 103), whieh is a converse to Proposition 5.1.2. (v) and whieh will

'beneeded in § 6.

Theorem 5.4.2. Let. Y be a elosed cornplex subspace of the complex

:space X x E Y , and suppose dirnx Y = dirnx~ Then X and Y have
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a eommon Ioeal irredueible eomponent at x .

Corollary 5.4.3 (Lemma of Ritt). Let X be a eompiex spaee, yc-> X

a elosed eomplex subspaee. The following statements are equivalent:

(i) dirn Y < dirn X for all y E Y .
y- y-

(ii) Y 15 nowhere dense in X.

The proof is left as an exercise (use 5.2.2 (v) and 5.4.2).

§ 6. The Local Representation Theorem for eomplex spaee germs

"(Noether normalization) .

In this paragraph, we are finally in a position to interprete

geometrically the coneepts of dimension and of a system of parameters for

a loeal analytie algebra and to see that they give rise locally to a

situation identical with Noether normalization in the algebraie ease,

a~ described at the beginning of § 4. The dimension turns out to be

the unique integer d that the complex space germ eorresponding

to the given loeal analytic algebra lies spread out finitely over a
dgerm (~,O) , and these finite branched eovering mapgerms.are preei-

sely t~ose given, by a system of parameters aecording to Corollary 3.3.5.

6.1. Openness and dimension.

We now can give a geometrie eharaeterization of the Ioeal dimension.

The geometrie eharacterization in question is the openness of a ~ap

at a point; here, a continuous rnap f.: X -> Y of topologieal

spaces is said to be open at a point x € X iff it maps every neigh­

bourhood of x in X onto a neighbourhood of f(x) in Y ..

Lemma 6 .. 1 .. 1 (Open Lemma I) • Let f : (X ,x) -> (~, y) E cplO be

finite .. Then f 1s open at x if and only if each element of
Ker(fO : Oy,y -> °x ) is nilpotent.

x ,x

Proof .. Since f is finite, f(X) is an analytie set in Y by

Corollary 4.3 .. 2 .. f is open at x if and only if (f(x),y) = (y,y)

as germs of sets at y € Y , which rneans J f (X) , y = Jy , Y , where
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are the vanishing ideals of the analytic sets r(x) and

J = (fO)-1 Nx and J = N by the Nullstel-
f(X),y x ,x Y,y Y

f open at x ~

which proves the claim.

Lemma 6.1.2 (Open Lemma II). Let f

finite.

(fO)-1 N = N
x x y

Ker fO c N
x - y

(~,x) -> (Y,y) € cplO be

(i) f open at x ~ dirn X = dirn y
- x- y-

(li) If Y is locally irreducible at y

local irredueible cornponent at y ,
dirn X = dirn Y <I' f open at x .x- y-

(i.e. Y has only one

see 5. 4), then

Proof. (~J : We may assurne dirn X > 0 . After possibly shrinking Xx-
and y , we may assume there is gEOy(y) which i5 active at ' y such-

fO (g)that = : g' 1s active at y by the so-ealled Lifting Lemmax
(see [ 28] , p. 99; the proof there actually' does not need the assurnp-

tions that X and y are redueed). This gives the eomrnutative

diagram

~ (g' ) =: X' c > X

f!N(g')=: f' f

v 'i/

N(g) =: y' c > y

with f' finite and open, and this allows to induet over dirn X .
x

(i i) dirn X:;;; dirn f (X) :;;; dirn Y by Proposi tion 5. 1 .2, henee
x y y

dirn f(X} = dirn Y, and the claim follows from Theorem 5.4.2.y y

6.2. Geometrie interpretation of the Ioeal dimension and a system of

parameters; aigebraie Noether normalization~
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Combining the results in 6.1. gives imrnediately:

Theorem 6. 2 . , (D imension Theorem). Let (~, x) E cplO . If

f : (~,x) --> (~n,a) 1s a finite holomorphic mapgerm, the following

statements are equivalent:

(i) o --> 0 i5 1njective,
<In , 0 X, x

(ii) f is,open at x ,

( iii) n = dirn Xx-

Corollary 6.2.2. Let

n such that (~,x)

open at x.

(X,x) E cpla . Then dimxx

admits a'finite mapgerm to

is the unique integer

(~n,O) which is

, f , .•. , f E mR . Then (f
1

, ... , f) is a
, n -- n

if and only if the mapgerm

corresponding to (f, , ... ,f
n

) via Corol­

open at x .

Corollary 6. 2. 3. Let R E la

system of parameters for R
n

f : (X,?,) -> (~ ,0) E cplO

lary 3.3.5 is finite and

Corollary 6. 2. 4 (Algebraic Noether normalization). Let R E la ,

and'let (f1 ,: .• ,fd ) be a system of parameters for R. Then the

analytic subring generated-by f1,.~.,fd 15 isomorphie to

~{X1 , •.• ,Xd } , and R i5 finite over it.

Proof. If R E ~ and f 1 ' ••• , f k E mR ' the simplest way to define the

analytic 5ubring generated by them i5 to declare it to be the image of

the homomorphi5m <.P.: 0 k -> R def ined by mapping Z i to f i for
er: , a

1 ~ i. S; k according to Theorem 1. 3.4. By the way <.P i5 defined, thi5

subring should consi5t of the (inR) convergent infinite serie5

L cAfA , cA E er: , and in fact one can put a topology on R, the

AEJN
k

topology of analytic convergence (see [26]) so that this statement

rnakes sense and is true; this analytic subring then i5 just the closure

of the subring generated by the f. in the algebraic sense. The claim
~

of 6.2.4 is inunediate fram 6.2.' and Theorem 4.4. 1 (iv) .
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6.3. The'Loeal Representation Theorem; geometrie Noether

normalization.

We now can more fully exploit the geometry of a system of parameters

of a local analytic algebra R or, what is the same according to

Corollary 6.2.3, of a finite open mapgerm of a cornplex space germ onto

a number space germ. We have already proven the lI a l gebraic'Noether

normalization " , namely that ~he system of parameters generate a sub­

algebra which is a convergent power series ring over which R is

finite. It now will turn out that locally this implies the same geome­

tric situation that we have in the algebraic ease, where the variety

corresponding to a finite k-algebra R is a branched covering over

an affine spaee of dimension dimR, but this time the proof is sub­

stantially more difficult and needs the whole maehinery described up

to now.

Anyway, the following Ioeal deseription of a eomplex spaee germ

holds, which is a kind of geometrie Noether normalization:

Theorem 6. 3 • 1 (T.he Loeal Representation Theorem). Let (~,x) E cp10 '

d = dimxx , and let f: (~,x) -> ([d,O) be a finite holomorphic

rnapgerm; such mapgerms exist by the definition of the Ioeal dimension,

and.they correspond to systems of parameters for 0x,x. Then f has

arbttrarily srnall representatives f: X --> B , where B is a domain

in ~d, such that the following holds:

(i) There exists a elosed complex subspace

nowhere dense and has the property that

dense in Xo := {Xl E X I dirn I X = d}
x -

to be a hyper5urfaee, i. e. !l = !'i (ö) for

6 c::.......> B which 1s

X - f-1( 6) 1s

6 can be chosen

a nonzero oEO d(B)
a:

(ii) f IX - f-1( ß )

rnap.

-1X - f (ß) -> B - 6 is a topological eoverinq

. (ii1) rf, in addition, X i5 redueed at x , i.e. the nilradical

N of 0 i5 zero, !I~ - f-
1
(ß) . X - f-\ß) -> B- 6 isx X,X

a holomorphic covering of complex manifolds.
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We call these representatives good representatives. 6 is called a

discrirninant locus for f.

I will not give the detailed proof here , but describe

the main ingredients, so that the rest of it is a careful ~xploitation

on the basis of the results described until now.

It is clear that it suffices to prove (i) and (iii) for a germ

reduced at X , for we can pass from (_X,x) to (X d'x) ~>: (X,x)-re -
defined by 0x ~ 0x IN .,x ,x x

First, one treats the case of a Weierstrass map TI: A ---> B (see

4.2.) with the additional property that the defining monie poly-

nomials w(j) e: ° (B) [w.] ,1,:;;j j ;:i k , have no multiple factors.
a: d ]

we can write

Put 6 := lfr discr (w(j)) where discr (w(j))EO d(B) is the
j=1 ~ ~

discriminant of w(j}, and let ~(TI) := ~(o) • Then Hensel's Lemma

4 •.2 • 3 teIls us thataround z 0 E B - 6 (1T)

(6.3.1) ( j )
w (z''''j)

.for holamorphie functions c(j)
v

a = (zo ,e) e: A - 1T~1(6) and, for

c (:j) (z ) = e. , thi 5 force 5
V. 0 ]

]

defined near Zo . If

1 S j ;:i k , v. is such that
]

(6.3.2) 0=0
A,.a d+k

~ ,a

·0so that clearly 1T a : 0 d ---->
<I ,zo

locally isomorphie over B - 6 (TI)

This shows (iii).

o is isomorphie. Hence TI i5A,a

by the Equivalence Theorem 3.3.3.

(i) follows fram the fact that 8 i 0 since the w(j) have no

multiple factors, hence 6(TI} is nowhere dense in B by the identity

theorem for holornorphic functions, and so rr- 1 (ß(» is nawhere dense

in A ,since TI is open by Proposition 4.2.2.

For the general case of a reduced (X,x) we may assume f is in-
d+k - d

dueed by a linear proj ection pr: er: ---> a: • With the notation of
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4.4. we get the embedding (4.4.6) of f into a Weierstrass map,which,

in addition,we may assume to be of the above type,since 0x has no,x
nilpotents. Let

(6.3.4)

(X, x) =

(A ,0) =

U (X p ,x)
PEMin(Ox ),x

U (A ,0)
PEMin(OA/O) q

cl} = Assh(O ) and
X,x

dirn x xp < d} (equali ty by Proposi­

small enough one can achieve:

be the decompositions into locally irreducible components according

to 5.4.

Let MO := {p € MinlOx ,x) I dim x x p=

M, := Min(Ox,)-Mo = {p € Min(Ox,x) I
tion 5.1.2 (ii». Choosing X,A,B

1 ) for each JI E MO

with Xp = Aq(p)

there is exactly one q =: q (p) EMin 0A,O

; this is by Theorem 5.4.2;

2) for all p E M
1

and all x I E Xn : dim I X < cl ; this 1s by
r' X P .

upper semicontinuity of dimension (Proposition 5.1.2. (iv»;

3) Ä (TI) U U TI (Aq n AI) U( ~ f (Xp » =: 6. (f)
q , q I EMin(O A 0) q PEM

1q#ql ,

subset of B; this i5 by Corollary 4.3.2.

1s an analytic

4) N(f) SN (6) for a nonzero 6 E 0 d (B)
([

Onechecks that for this 6.:= N(ö) the conditions (i) and (iii) of

the Local Representation Theorem hold; the main ingredient 1s the

Open Lemma II,6.1.2.

Remark 6.3.2. For small enough representatives, Ä(f) can in fact

be defined as a complex subspace since ~ (TI) , 2!. (~ n ~q t ) and

f(~p) exist naturally as complex subspace germs at OE B , and so

their union exists as a complex subspace germ defined by the intersec­

t10n of the corresponding ideals in 0a,o . Moreover
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"(6.3.5J u ( ~7t' (A n Aq ,) c
q,q'EMin 0A 0 q

qjCq I '

6 (TT)

(see I I 2. 2 • 1 ), so

(6.3.6) 6 (f) = 6 (TT) U U f (X )
PEM P

1

the natural ehoice.

Remark 6.3.3. Finally, I have to make a short remark on prime germs,

i.e. (~,x) E cpla with 0 an integral domain, so that especially
X,X d

(~,x) is locally irreducible (see 5.4.). Let!: (~,x) ->Ca: ,0)

be as in the Local Representation Theorem 6.2.1, then

fO : 0 d C-> 0x is an integral ring extension by the Integrality
x ~ ,0 ,x

Theorem 4.4. 1. Let h E 0x be a primi tive element for the correspon-, ,x
ding field extension and form, for a suitably small representative

f 0: X -> B

'(::

w ( z , t) : = x I ~(z) (t - h (x' )) E 0 B (B - Cl) [ t]

Then w (z,t) extends over 6 since 6 is nowhere dense in B by

the classical Riemann Extension Theorem (for a nice proof of the latter

.see [30], p. 9) ,and gives a monie irreducible polynomial w E OB (B) [t]

'The homomorphism

o
V : = tPx ° --> 0B x ~,O X,x

o
which maps zi to f x (zi) for 1:S i :S n and t to h x ' annihilates

,W 1 and so defines amorphisrn, via the Equivalence Theorem 3.3.3,

(~, x)
v----> (r, y) : = (!! (w) ,0) r- -> (B x CI:, 0)

~I
(B, 0)
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fram f into the Weierstrass rnapgerrn rr given by the irreducible

manie polynomial w. It can be shown that v is isomorphie outside

a nowhere dense closed subspace of B for suitable representatives

(exercise; for a direct proof not using 6.3.1 see [40], § 46). If

we replace D. of 6.3. 1 w i th this subspacej Y - 'IT -1 (D.) . i.s connec­

ted since w is irreducible, and so we get

Corollary 6.3.4. It, in the situation of 6.3 ..1, (X,x) 15 a prime

germ, i. e. reduced and locally irreduc1ble, X - .r1(6) 15 connected.
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§ 7. Coherence.

7.1. Coherent sheaves.

Definition 7.1.1. (i). Let R be a ring. A finitely presentable

R-module M is called coherent if all its finitely generated submodu­

les are also finitely presentable. R is called coherent if it is co­

herent as a module over itself, i.e.if every finitely generated ideal

is finitely presentable.

(ii). Let (X,Ox) be a ringed spa~e. An adrnis5ible 0x-module M i5

called coherent if all its locally finitely genera ted submodules are

also admissible. 0x is called coherent if it i5 coherent as a module

over itself, i.e. if every locally finitely generated 0x-ideal is

admissible.

I discuss the notion of coherence for sheaves; the discussion for

modules over a ring is analogous. The coherent 0x-modules over a

ringed space (X,Ox). form a good category Coh/x in the sense that

it is stable under various operations o~ sheaves (calied the lI yoga

of coherent sheaves", see [28],Anne~. From this yoga one infers:

Lemma 7.1.2. Let (x,ox) be a ringed space, 0x a coherent sheaf

of:rings. Then an 0x-module 15 coherent if and only if it 15 admissible.

So in this case the adrnissible modules are the right category to

work with, and, given a ringed space, the que5tion is basic whether

its structure sheaf is coherent. For complex spaces, the answer 15

given by the following famous theorem.

Theorem 7.1.3

(x,ox) 0x

(Oka's Coherence Theorem) .

is a coherent sheaf of rings.

For every complex space

For a nice proof, which deduces this from the Weierstrass isomor­

phisrn 4.3.3, see [28]; 2.5. Other proofs are in [64], Expose 18, and

[40], where it is deduced immediately, but in a not very enlightening

way, from the class~cal Weierstrass Preparation Theorem 2.6.3.

So fram now on we identify admissible and coherent 0X-modules on a

complex space.
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7.2. Nonzerodivisors.

Oka's Coherenee Theorem immediately entails:

.- - I

Proposition 7.2.1. Let X

f is a nonzerodivisor at

be a compiex space, f E 0x (X) . Then, i f

x I it is a nonzerodivisor near x.

See [28] I p. 68, (ar just look at the kernel of 0x ~> 0x

7.3. Purity of dimension and Ioeal decomposition.

Let (X,x) E cpla I and let

(7.3.1) (X,X) = U (X x)p ,
PEMin(Ox )

,X

be its decomposition into Ioeal irreducible companents according to

Proposition 5.4.1.

Definition 7.3.1 "(X,x)

stonal) if and only if

is called equidimensional (ar pure dimen-

dirn X = dirn X for all J.l EMin (OX )
x J.l x ,X

In terms of loeal algebra this means Min(Ox )
IX

Theorem 7.3.2 (Purity of dimension). Let the complex space X be

equidimensional at x. Then it 1s equidimensional near x'.

The proaf is left as an exercise. For it, assume X is reduced

at x and represe~t (X,X) via f (X,x) --> (~d,O) as in the

Representation Theorem 6.3.1. Then fO(6) ·is a nonzerodivisor at
x

apply 7.2.1 and Rittls Lemma 5.4.4. to conclude Xo = X near x.

x

Corollary 7.3.3 (Open Mapping Lemma). Let f: X --> B

rnorphisrn fram the camplex space X ta an open subspace

f 15 open at x € X , and X 1s equidimensional at x I

near x.

be a finite

B S a:d . If

f 1s open
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This follows from the Purity Theorem 7.3.2. and the Dimension

Theorem 6.2.1.

Corollary 7.3.4. In the decomposition (7.3.1), for suitably small re­

presentatives, X p n X p I is nowhere dense in x p and X pt . for all

p,pl E Min(Ox ) with p'" pI .
,X

for Xl near x.

Proof. Exercise; use 7.3.2 to conclude d im I ( X n X , ) < cl im I ( X )
x p p x p

7.4. Reduction. The significance and importance of the no-

tion of coherence cannot be described by a few words; they manifest

themselves in the numerous results they imply. From this point on, co­

herence is indisputable for the further developments of the theory,

which comprise coherence of the sheaf of nilpotents (Cartan's Coherence

theorem), theory of reduction, analyticitiy of the singular locus,

norrnalization. Für this, see the book [28].

Theorem 7.4.1 (Cartanls Coherence Theorem). Far every complex space

(X,i 0 X) , the nilradical NX ~ 0 X is coherent.

-Far proofs see [28] ,[40], [64], and the sketch below.

Corollary 7.4.2. If A is an analytic set in the camplex space X,

the vanishing ideal JA (see I, 5.4.) i5 caherent and endowes A with

the canonical structure of a reduced complex space. Especially the

analytic set X has a canonical structure as a redueed complex space

and is called the reduction ~red of X ane has 0x ~ 0x/Nx
by the Rückert Nullstellensatz 5.3.1. red

Here a complex space is called reduced if all its Iaeal rings have

no nilpatents.

Sketch of eraof of 7.4.1.

The assertion is Ioeal; so let (~, x) E cpla ' and we must show that

there is a representative X such that Nx is locally finite.
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Assume first X

a finite map f

6 . 3. 1. Let

is reduced at x. Choose a representative X and

X --> B as in the Local Representation Theorem

I O := n p
PEAssh(Ox,x)

I
l

:= n p
PEASS(Ox ) -A5Sh(Ox )

,X ,X

After possibly shrinking X I these define locally finite ideal sheaves
2.'

I , C 0x and so two closed complex subspaces X. ~> X for j = 0 I 1
J - I X -J -

Then ,and here Oka I s Coherence Theorem comes in I IOn 1
1

is locally

fini te; hence I since ( Ion I 1 ) X = Ion I l = {o} I we may assurne

IOn 1
1

= 0 after eventually shrinking ~ I by Lemma 3. 1 . ,. Further

shrinking X we may assurne dimx I ~O = d for all x I E X o and

dirn
x

,X
l

<d for all Xl E Xl by Theorem 7.3.2 and Proposition 5.2.2 (iv).

because it is a nonzerodivisor in 0
XO'X

tion 7.2. 1. I then propose to show Nx = 0 .

Let !:=.. = !i (6) be as in 6. 3. 1 I wi th 6 E 0 d (B) • We rnay choose X so

small that fO (0) is a nonzerodivisor iner Ux ' at any x I E Xo I

. 0 I X

and we then apply Proposi-

Let x' EX • Choose , after possibly shrinking X I a locally finite
oideal ] c Nx wi th ] x I = Nx ,X I • Then OsuPP ] ~ suppNx C N (f (0)) ,and

so there is tE:IN, t;;:, I such that f (0) t.] = 0 near Xl by the

Rückert Nullstellensatz in the form of Corollary 5.3.2

o
I NX n Ke.IL g 1 = Nx n T, ~ Ion I, = 0 I and so

· Since dirn x I ~1 < d for all x' E X, , N
X1

= 0

. SinceX'near

= ] is contained in
Xl

o
go Xl

, » °X I)' so NX ~ I 0O,X

NX I,X

10 I = Ker(Ox I
, X ~ , x

gO
I 1 = KeIL (0 x -'-» 0X )

1
injects Nx into Nx,
by the induction assumption, and so

(ii). Hence

Finally, if (~IX) is arbitrarYI choose , after shrinking X I a local­

ly f ini te ideal ] S Nx wi th ] = N
X

• Let Y be the closed complexx ,x
subspace of X defined by ] . Then Y is reduced at x and so

Ny = 0 by what we proved above. But Ny = VII] I and so Nx = ]

which is locally finite.
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II. GEOMETRIC MULTIPLICITY.

The concept of multiplicity arises as a natural generalization of the

multiplicity of a solution to a polynomial equation in one indeterminate.

Consider a system

(1 ) f.(z1' ... 'Z) = 0] n

of holomorphic equations, and suppose 0 E (In is a solution. Heuristi­

cally, the multiplicity ?f 0 as a solution should be the number of

solutions IIconcentrated near 0 11, i.e. the algebraic nurnber rn of

distinct generic solutions arbi trarily near to 0 (cf. [51], p. 17,

Definition). Symbolically:

(2 ) m = 1 im (sup # {z E U I f J' (z) = 0 , j = 1, •.. , k---u->
"distinct" solutions} )

where U runs over the neighbourhoods of 0 in ~n , and the solutions

ar~ properly counted. In modern terms, the f 1 , ••• ,fk define an ideal

I E 0 and so a germ (~,x) E cplO ' and the multiplicity in question
~n,O

is called the multiplicity of x on X, denoted rn(~,x)

To clarify what this means, consider the corresponding algebraic si­

tuation, where the f. above are polynomials in k[z1, ... ,zJ for
J n

same f ield lk . Kronecker I s el imination theory ([ 43], [42], and [51],

whieh is, in a sense, still guite readable and has becorne a classie f
represents the solutions, after a general linear coordinate transforma­

tion, as algebraic functions of same of the coordinates, z1~ •.. ,zd

say, which act as free parameters. The correct definition of the global

multiplicity, i.e. the algebraic number of distinct generie solutions,

was·debated quite a time after Kronecker's 1882 paper [43] (see e.g.

[42]) and found 30 years later by Macaulay [50]. In modern terms:

(3 ) M := dirn K K ~k R

= L length(Rp ) .[R/p:K]
pEAssh (R)
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w i t h K: = ]( (z 1 ' · . . , Z d ) a nd R: = ]c [ Z 1 ' · . . , zn] / (f 1 ' . . . , f k ) a na t u-

ral generalization, after all, of the case of one variable. (It is inte­

resting to look at the atternpts in [42] to define the correet eoeffiei­

ent ef [R/p :K] via the degrees cf the faetors of the reselvent,'and

Maeaulay's eriticisrn of it in [50]. This is a good lessen how painfully

and slowly eoneeptsdeveloped which nowadays are eonsidered ta be utterly

self-explanatary and trivial. This applies equally weIl to prirnary de­

cornposition and the nation of loeal multiplicity below) .

Geornetrically, this correspends to representing the solution variety

X c An as branched cover

( 4 ) drr : X --> IA d = dirn X = dirn R

with rr indueed by a generic projeetion, and putting

(5 ) M := algebraie global mapping degree of ~

where the XA are the irreducible components cf X ,'2A = lengthOx,X
A

and z E lAd 1s any point outside the image of the branehing loeus

(a "generie" z). (That (3) and (5) agree will be proved, in a Ioeal

version, in 5.1.4 below).

The loeal multiplieity m(X,x) of X at x, then, should be the

lceal mapping degree cf a generic projection. This means one wishes to

take a small neighbourhood U around x such that n(U) is open in

A,d and 7T-
1 rr (x) n u = {x} ; then m(X,x) should be

(6 )

where the 'UA are the loeal branches of X at x and 2A the

length cf a maximal primary chain starting at the prirnary defining

UA ' which measures the multiplicity of the generic solution on UA •

Unfortunately, there are no small neighbourhoods in the algebraic si­

tuation, and so it took several' decades to master the concept of multi­

~licity. There are three ways out of this difficulty:
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(i) .One tries to rnake sense out of the limit proeess in (1) alge­

braically, i.e. out of the concept of "solutions coming toge­

ther at 0 ". This leads to the theory of specia~ization mul­

tiplicity cf v.d. Waerden and Weil ([72J, [73J, and [74]).

This will not be touched further upon here.

(ii) One passes to formal ("infinitesimallI) neighbourhoods via com­

pletion; then the analogue of the Ioeal mapping degree makes

sense. This leads to the definition of Chevalley ([9], [10];

see al so Chapter 1, (6. 7), and 5. 1 • 5 and 5. 1 • 8 be low) .

(iii) One uses the sophisticated approach to def~ne multiplicity via

the highest coefficient of the Hilbert function of the asso­

ciated graded ring; this is the definitive and commonly aecep­

ted definition of Samuel [60]. It has the advantage of being

eoneise, and it works very weIl in the practice of algebraic

manipulations. (Ultimately, it leads viaSerre's notes [67] and

the paper of Auslander and Buchsbaum on codimension and multi­

plicity (Ann. of Math. 68 (1958), 625-657, esp. Theorem 4.2)

to the definition presented in Chapter I, (1.2).) Although

the geometrie significance of this definition roust have been

known to the experts, it seems to have been rarely explicited

(it was already known to Macaulay, see (50], footnotes on p.82

and 115, and (37], whieh· makes quite a tense reading). It

corresponds, geometrically, to approxirnat~ng X at x by its

tangent cone and taking the loeal multiplicity of the tangent

cone at its vertex; for cones, the problem of sma~l neighbour­

hoods does not pose itseIf, since the ioeal and global mapping

degree of a projection of a cone agree, due to the lat~er's

homogeneous structure.

Fortunately, small neighbourhoods do exist in Complex Analytic Geometry,

and so the definition of multiplicity as the Ioeal mapping degree of

a generic projeetion makes perfeet sense; this must have been, in the

reduced case, folklore ever since (cf. [13], (38] and [75]). This for­

malism is set up in the first three paragraphs of this part 11. To

handle the nonreduced ease, we make use of the properties of compact

Stein neighbourhoods to relate the properties of nearby analytic loeal

rings to ~hose of one algebraic object, the coordinate ring of the

eompact Stein neighbourhood; this guarantees the eonstancy of the numbers

i A in (6) along the Ioeal branees U A • This is exposed in § 1. In
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§ 2, we define the loeal mapping degree, and in § 3 the geometrie mul-
t

tiplieity m(~,x) of (X,x) EeplO . In § 4, we explain the geometry of

Samuel multiplicity alluded to above,· and in the last paragraph we prove

that the loeal mapping degree definitio~ of the multiplicity of

(x,x) EcplO eoincides with the Samuel multiplieity e(Ox,x) of the

corresponding loeal ring.

This geometrie deseription of multiplicity will then be put to work in

the next ehapter, sinee it is basic for geometrie proofs of equimulti­

plicity results due to Hironaka, Lipman, Schickhoff, and Teissier.
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§ 1. Compact Stein neighbourhoods.

1.1. Coherent sheaves on closed subsets.

Let X be a complex space and A .= X a closed set.

Definition 1.1.1. A coherent module on A i5 a sheaf of the form

MIA where M i5 a coherent 0V-module on some open neighbourhood V

of A.

Here, MIA is the restriction in the sense of sheaves of abelian
f'OoJ

groups, in other words, for USA open in A , (Ai I A) (U) are the
f'OoJ

.continuous sections of the "espace etale ll associated to M over A •

It is not to be confused with the coherent GA-module i*M if i

AC-> V happens to be a closed complex subspace, so in this case

one has to distinguish between II coherent modules on A It and

"coherent GA-modules". Especially, we have to distinguish

GIA := 0x lA and GA in this case.

Directly from the definitions and the "yoga of coherent sheaves"

-the following simple lemma follows:

Lemma 1.1.2. If M,N

1s a homomorphism of

coherent modules on

1.2. Stein subsets.

are coherent modules on

GIA-modules, then Ke~(a)

A •

A , and a : M -> N
and Coke~(a) are

In the following I assume known the sirnplest properties of sheaf

cohomology groups for sheaves of abelian groups. They can be defined

as the higher right derived functors of the section functor. On
v

paracompact spaces they can be computed by the Cech procedure (based

on alternating cochains), and on complex manifolds by the Dolbeault

cohomology of (p,q)-forms (see [3;J], [27], [40],· and [30] , at least
in the locally free case).

The notion of Stein subsets is closely related to the following

three statements, which have their traditional name·s. Let A S X be
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a closed set in a complex space.

I1Theorem All. Any coherent module on A is generated by its global

sections.

"Theorem B". Hq(A,M) = 0 for all coherent modules Al on A and

all q ~ 1

"Theorem F II
• If Ct : M-> N is a surjective hornomorphism of cohe­

rent modules on A, a A : M(A) -> N(A) is surjective.

The long exact cohornology' sequence g'ives irnrnediately:

Proposition 1.2.1. Theorem B implies Theorem A and Theorem F.

Definition 1.2.2. Let X be a complex space. A closed subset

Ac X 15 called aStein subset if and only if Theorem B holds for A.

In,a sense, aStein subset should be thought of as the analogue

of an affine set in the case of algebraic varieties, 50 there should

be a corre5pondence between coherent modules on them and modules

over the coordinate ring. Far this hawever, we have to make an

additional compactness assumption, which we do in the following sec­

tion.

1.3. Compact Stein subsets and the Flatness Theorem.

Let now A = K~ X be a compact subset . It is then easy to see

that in this case the coherent modules on Kare just the finitely

presented alK-modules. Using this and standard arguments based on

Proposition 1.2.1, one gets the following proposition, which states

that compact Stein neighbourhaods are the appropriate analogues of

the affine subsets in the algebraic case. Let O(K) := f(K,OX)

Propos i tion 1. 3 . 1. Let X be a complex space, K r;;; X a compact Ste in

subset. Let coh(K) be the category of coherent modules on K, and

adm(O(K)) the category of admissible, i.e. finitely presented,
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o(K)-modules. Then:

(i) 0 (K) is a coherent ring (cf. I 7.1.1. (i));

(ii) the section functor induces a natural eguivalence:

(1.3.1) r coh(K) --> adm(O(K)) , which has

(1.3.2) (-) ~G (K) (0 IK) adm(O(K)) --> coh(K) as an inverse.

Theorem 1.3.2 (Flatness Theorem). Let K

set in the cornplex space X . Then, for any

morphism

be aStein compact sub­

x E K , the natural

(1.3.3) A
x

o(K) --> ox,x

1s flat.

f /--> f x

This follows from Proposition 1.3.1, because the section func­

tor is exact by Theorem B, and hence so is (-) ~O(K) (GIK)

Remark 1.3.3. In the case where X is an algebraic variety (by

this I mean an algebraic scheme of finite type over a field) and K

is an affine set, the analogue of Theorem 1.3.2 is immediate, since

A
X

i5 just the algebraie localization of O(K) with respect to the

prime ideal corresponding to x . In this case, the loeal rings

0x are II semiglobal ll in the sense that any element is a quotient,x
of two sections defined on the whole of K. In the complex analytic

case, A does not arise by this simple construction, and, moreover,
x

one has to work with compact Stein subsets, whieh makes the result

much harder; we are going to show in the next section that suffici­

ently small compact Stein neighbourhoods always exist.

1.4. Existence of compact Stein neighbourhoods.

The theory of Stein spaces is concerned with various criteria which

characterize Stein subsets (or Stein spaces). The basic reference for
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this is the book [27], of which I will need only the first three

chapters. Fundamental for the theory is the following Theorem 1.4.1',

which goes back to Cartan and Serre; it directly implies.the existence

of compact Stein neighbourhoods (Corollary 1.4.2) needed for the

applications of Theorem 1.3.2 in the sequel, e.g. for Definition

2.2.6 and for the proofs of Theorem 5.1.4 and Theorem 5.2~1.

A compact stone in ~n with coordinates (z1, ... ,zn) will be a

compact interval in the space ~2n with coordinates

(Re z 1 ' Im z 1 , ••• , Re Zn' Im Zn)

Theorem 1.4.1. A compact stone in ~n is aStein subset.

A detailed and clear proof of this is in Chapter III of [27].

Since the result is so basic, I give a short summary of the strategy

of the proof .. It is considerably more difficult than the proof of

the corresponding statement for affine sets, which ultimately

rests on localization of rings, a technique which one has not at its

disposal in Complex Analytic Geometry, since the coherent sheaves

on smaller open subsets of Stein subsets do not arise by localization.

Complex analysis ultimately shows up by solving the a-equation.

1st Step. There are two basic Vanishing Theorems for compact stones .

.One is elementary and uses simple combinatorical arguments on sub-
v

divisions of stones toqether with alternatinq Cech cochains to show
that 3 qo = qo (n) with H

q
(Q,S) = 0 for q ~ qo and all

sheaves S on Q • The other lies deeper and uses Dolbeault coho-

mologYi by explicitely solving the ä-equation (in 'the so-called ä­
Poincare-Lernma due to Grothendieck, see [27],II, 53) one ShO~1S that

Hq(Q,O) = 0 for q a 1 . These two Vanishing Theorems show that

Theorem A implies Theorem B for compact stones, and so it suffices

to show Theorem A for compact stones. ([27], III,·§ 3.2).

2nd Step. Theorem A is proven by induction on the real dimension

d of the cornpact stone Q. If A
d

' Bd , and Fd are the statements

of Theorem A, Theorem B, and Theorem F for compact stones of dimen­

sion ~d, it suffices by the first step and Proposition 1.2.1. to

prove

(1.4.1) and
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3rd Step. Since sections of sheaves over a compact set extend

over an open neighbourhood, one easily sees that by subd~viding a

one dimensional side of the d-dimensional stone Q into sufficiently

small pieces the claim follows if we are ahle to deal with the follo­

wing situation. Suppose Q = Q- U Q;t- arises by cutting Q into two

halves by a section orthogonal to a one-dimensional side (see

Figure 3).

Q

--~

Fig. 3

Let M be a coherent module on Q , 0 := OjQ , and suppose there

are given O-module epimorphisms h- : oPla- --»MIQ- ,

h+ : oQla+ --»M!Q+ such that the images of hand h+ generate

the same subsheaf of OPIQ- nQ+ . We then want to glue h- and h+

into an O-module epimorphisrn OP+Q --»M ; this will then complete
- - - + + +step 2. Let t
1

, ••• ,t E M(Q) and t
1

, ••• ,t E M(Q) be the sections
- +p Q

defining hand h . Then one can write

- T + T
t

1
t

1

(1.4.2) = A

IQ- n Q+
+ IQ- n Q+t t

P q

with a matrix AEM(qxp, 0IQ-nQ+) • Now suppose we could find holo-
+ +

morphic invertible matrices C- E GL (Q- ,0) such that
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IQ- + (c- I Q- n Q+) + IQ+nQ+)(1.4.3) 11 nQ = . (C , where
p

11 E GL (p, 0) is the identity matrix. This would imply
p

(1.4.4) T + Tt
1 t 1

+ -1
C ::: • A • (C )

t t+
IQ-1 +p n Q+ q - +

Q nQ Q nQ

So, if we then define new sections ~, ... , t; E Al (Q-) via

T

:=

"'-t
P

t
P

T

. C

they still define an epimorphism h­
is invertible. Now make the

(1.4.5) assumption: A extends over Q .

Then one could extend the sections t~, ... ,t~ to sections t
1

, ..• ,t
p

over Q by (1.4.4), and this would give an O-homomorphism

R- oP --> M which restriets to an epimorphism over Q In the

same way one would produce an O-homornorphism h+ : oq --> M which

restriets to an epimorphism over Q+ • Then h:= 11 6t 11+ : Op+q ~ M

would be 'the desired epimorphism.

Last 5tep. (1.4.5) does not hold in general. One has to approximate

A by a holomorphic matrix ~ def ined on Q, which can be done via

an appproximation theorem of Rungej this then forces to have a decom­

position (1.4.3) not only of 1p ,but of holornorphic pxp - matrices

elose to TI p . That this can be done is the content of the farnaus Cartan

Patching Lemma [27] ,III, § 1,3. This Lemma is, by a delicate interation

procedure, reduced to an additive decomposition of holomorphic

functions on an open polycylinder which itself is a union of two

open polycylinders, the so-called Cousin Patching Lemma [27],III, § 1,1.
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This Lemma, finally, is proven by explicitely solving the a-equation.

All details are in §§ 1 and 2 of Chapter III of [27].

Corollary 1. 4. 2 • Let X be a cornplex space .. Then any x € X has a

neighbourhood basis consisting of compact Stein subsets. For this,

one ean take the eompact sets in the inverse image of the system of

cornpaet stanes 0 in ~n under any loeal immersion
i n.(X,x) '7 > (0: ,0)

Proof. Let Xc-> U be a closed complex subspace of an open set
nU S <I , x = 0 E X cU. Let K be a compaet polydisc eentered at 0 •

Let M be a coherent module on K n X • After possibly shrinking U ,
.....

we rnay assume M is the restrietion of a eoherent 0x-module M .
Then i*M is a coherent 0u-module, and so HP(XnK,M) =HP(K,i*M) = 0

for p ~ 1 , sinee K is Stein by Theorem 1.4. 1 .

§ 2. Loeal mapping degree.

In this paragraph, I assign to eaeh finite mapgerm
cl(_X, x) -> (a: ,0) a Ioeal mapping degree deg f E JN'. , whieh

x- >0
. ,counts· the algebraic number of preimages of a "general" po;i..nt of ([d

elose to o. This will be basic for the definition of multiplieity.

2.1. Loeal deeomposition revisited.

In order ta count the number of preirnages of such an f as above

algebraieally, I have to weight apreimage point lying on a Ioeal

irredueible eomponent where X is possibly not reduced by a eertain

positive number, whieh will appear as the value of some loeally eon­

stant funetion along a generie subset of that eomponentj here, I call

a subset of a topologieal spaee generie if it contains an open dense

subset. It is the purpose of this seetion to exhibit such generic

subsets.

First I introduce same terminology. Let X be a eornplex spaee,

x EX. Define the germ (X d'x) as in I, 5.1.2 (iii). We then have-re
the following loei:
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(2.1.1) X := {X E X I (X d'x) is smooth}reg -re

:= {xEXIOx IN is regUlar},x x

(2.1.2) X. := {X E X I (~, x) is irredUCible}lr

= {X E xlOx IN is an integral domain},x x

Obviously,

(2.1.3) x c X.reg lr

Now let (~, x) E cplO ' and let X be a good representative, i. e .

there should be a finite rnap from X to !!, a domain in· ([d satis­

fying the Local Representation Th~orem I 6.3.1. Let

(2.1.4) x = U X A
AEI\.

be the loeal decomposition of (X,x) into irreducible components

as in I 5;4. This decomposition has the ~ollowing properties:

Proposition 2.1.1. There are arbitrarily small good representatives

X such that the following statements hold:

(i) X A n XJ.l 15 nowhere dense in X
A

for all A E I\. and all IJ. E A

with' J.l ~ A •

(ii) X is locally reducible at all points of U (X
A

n X )
A,J.lEI\. J.l
A~ ,.1"

ProoE.

(i). is just I 7.3.4., and (ii) follows from (i) and elementary pro­

perties of the Ioeal deeomposition of analytic sets (see [28] , p. 108).
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Corollary 2.1.2. Let the notations be as in Proposition 2.1.1. Put

(2.1.5)

Then, for all A E A :

(2.1.6) X~ i5 connected, open and dense in x\ ' and open in X

X, n X.
1\ ~r

in X)..

o
= (X,).

1\ ~r
is eonneeted,and this set i5 generie

X.
~r

=1-1 (X, n x. )
)..E.A 1\ ~r

·Proof. xO is elearly open both in X and X , sinee U X is
).. ~ JJ.

~:fA
closed as a finite union of analytic sets. It is dense by Proposition

.2.1.1 (i). Let !).. : ~A -> BA satfsfy the assumption of the Loeal

Representation Theorem I ~.3.1. So, after possibly shrinking !).. ,!,\
-1is open by the Open Mapping Lemma I 7.3.3, and therefore 'fA (6

A
) is

nowhere dense in X
A

' as 6,\ is nowhere dense in BA • This shows that
-1

X,\ - f\ (6\) i5 open and dense in x\ ' and it is eonneeted by I
-1 0 0 0

6.3.4. Since X).. - f).. (6)..) .sX).. for some 6).. SXA. ' this shows XA is

eo,nnected, and dense in x, . Finally, X, n x. = (x?). follows
•• 1\ 1\ ~r ~ 7r -1

from Proposition 2.1.1 (~~), and so x\ n Xir ' eonta~n~ng X.:\ - f).. (6.:\) ,

i5 generic in' X.:\ ' and connected. (2.1.8) finally is obvious from

~X:= U X
AEA A

:Remark 2.1.3. One has, again by Proposition 2.1.1 (ii), that

'x n X = (XO) , and that (X~) , containing X, - f7 1
(Li,)A reg ).. reg 1\ reg 1\ 1\ 1\

.is ·generic in X).. • Using the Jacobian eri ter ion for regular!ty one

may show it is the complement of a nowhere dense analytic set in x).. •

.It follows that X = I I (x?) is the eomplement of a nowhere '
reg tt~ 1\ reg

..dense analytic set in X. This implies that for any l; E epl the

locu5 X is also the complement of a nowhere dense analytie set.reg

Remark 2.1.4.

,fo llowing. Let

ted eomponents:

Using the loeal results above, one ean show the

X be any complex space. Deeompose X into connec-reg
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x = il z
reg >"E/\ >..

The decomposition

x =: U x
>"Ei\ A

then will satisfy Corollary 2.1.2. Moreover, this decomposition is

unique and characterized by the fact that it is a decornposition of

X into irreducible analytic sets, i.e. analytic sets which cannot

be written as a proper union of analytic sets. We call this decornpo­

sition the decornposition of X into(global)irreducible cornponents.

Locally this deeomposition induees the deeornposition given by the

loeal deeornposition into irredueible analytie setgerms. (See [40],

§ 49). So in the loeal situation above, the decornposition (2.1.4) is
indeed the decornposition into global irreducible cornponents and we

will call it so, but we will make use only of the properties in

Corollary 2.1.2.

2.2. Local rnappino degree.

We first introduce the weights with whieh to count preimage points.

Let R be a noetherian ring,

Since

Ac(R) the set of active elements.

(2.2.1) Ac (R) = n (R - Jl)
pEMin(R)

by I 5.2.1, Ac(R) is a rnultiplicative subset, and we can form the

localization of R with respect to Ac(R)

Definition 2.2.1. ~(R):= (AC)-1 R is called the modified ring

of fractions of R.

Lemma 2.2.2. --------Quot(R) has the following properties:
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-.-/ ..---"
(i) Quot(R) is artinian , and length(Quot(R)) = L length(Rp )

pEMin (R)

--"""(ii) if R has no embedded primes, Quot(R) = Quot(R)

total ring of fractions of R a

the usual

~

Proofa Jll: All primes of Quot(R) are minimal by construction, so
.....---'

Quot(R) is artiniana By the well-known structure of artinian rings

(see [6 ] I Chapter IV, § 2.5, Corollary 1 of Proposition 9) a

--.-/
5 := Quot(R) - n S'~ =

~ p
pEMin(5)

n Rp
pEMin(R)

and so length(QWY((R) = L length(Rp )
pEMin(R)

(ii): In this case,

divisors of R a

Ac (R) =R - U. p
pEAss(R)

is the set of nonzero-

decomp05ition into irreducible component5a

the rnodified ring offractions QU"ö'f(Ox )
..----' ,x

"and the function x ~> length (Quot (0x »,x
constant along the generic subset X

A
n Xir

' ..

Proposition 2.2.3a Let x be a complex space , X = U X the
"AEA "A

Then for any x E X.
~r

1s of finite length,

i5, .for each "A I

of

---./
Proofa Quot(Ox ) is artinian by Lemma 2.2.2, so is of' finite

,x ---./
lenght. Since x EX. ,Quot (OX ) = (Ox ) N So, because of

~r ,x ,x x
{2 . 1 a7), i t suf fices to prove that the function x }---J-.length ( (Ox, x) N )

x
is locally constant a Let x EX. and fix a compact Stein neighbour-l.r
hood K of x according to Corollary 1 a4 a2a Frorn the construction

there one sees that one can take K so that it has a fundamental

system of open neighbourhoods (Ua)aEA such that each Ua 15 irre­

ducible and U ~ X
A

I where A is the unique J.i E I\. such that

X E X
o a 0
J.i by (2 a1 a8) a Since x E X"A ,and ~A is open in0 X I we may,

replacing X by a small open subspace contained in XA I forget

about A and assurne X = XA . Now, by I Corollary 7 a4.2, X has

the structure of a complex space X d by putting 0x := 0x/Nx a
-re red

Let N be the o(K)-ideal Nx(K) = f(K,Nx) a I claim N i~ prime.

Since the section functor is exact by Proposi tion 1 a3. 1 (ii) (ar

Theorem B),
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f (K,OX ) = r (K,OX) / f (K,N x)
red

Out

r (K,OX )
red

= 1im :>
aEA

and the f(U IOX ) are integral domains because the
a red

irreducible, so f(K,OX ) is an integral domain, and
red

deed prime. Now the natural morphism

u
Cl

N

are

is in-

A ,x

is f lat for all x 'E K n X.
~r

in 0x I the ideal N ,,x x
Localizing (2.2.2) at N

by Theorem 1.3.2. The ideal N generates

via A I because of Proposition 1.3.1.
x

gives that

(.2 .• 2 • 3)

is flat, since flatness localizes. Hence (2.2.3) is faithfully flat,

being a flat loeal rnorphism of loeal rings. Pushing composition series

of r (K,OX)N to (OX x')N then shows by standard arguments
, x I

(see the following Lemma 2.2.4). But the right hand side does not

depend on Xl , and this shows the Proposition.

From the literature, leite the following lemma.

Lemma 2.2.4. ([31], Chapter 0, Corollary (6.6.4)). Let p : A --> B

be a leeal flat hornomorphism of leeal rings, M an A-module. Then
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length
B

(M ~A B) = length A (M) ·length (B/ mA B)

in the sense that the left side is finite if and only if the right

hand side 15 finite, and then the eguality holds.

We now consider finite rnapgerms d! : (~,x) -> (~ ,0) and choose

a good representative f X -> B , which here is defined to mean

(i) B is a domain in ~d ;

(ii) if dirn X < d , we choosex-
dirn • X < d for all x I E Xx
put ß := im{!) (then ß

f : X -> B so small that- -
(which can be done byI 5.1.2, (iv»;

1s nowhere dense in B);

(iii) if dirn X: d, f should have the properties of the Localx-
Representation Theorem I 6.3.1

(iv) Proposition 2.1.1 and Corollary 2.1.2 hold for X .

Note that always dirn X ~ d by I 5.1.2, (iv), and that we may takex-
good representatives to be arbitrarily small, i.e. we are allowed to

~shrink them when nec~ssary.

Proposition 2.2.5. Let f: X -> ~ be a good representative for

the finite mapgerm. f: (X,x) --> (!d,O) in ~o with discriminant

locus ß. Then the number L ~1 length{6UQt(Ox Xl» does not
x'Ef ,(y) ,

depend on the choice of y E B - ß •

Proof. Let y E B - ß . Then X - f~1(ß) ~ X. , and so all the x' E f-1(y)
- l.r

are in Xir . The claim then follows from the fact that

f : X - f- 1(6) --> B - 6 1s a cover1ng rnap and from Propo5i tion 2.2. 3 •

I can now make the main definition:

Definition 2.2.6. Let

cplO and f X --> B

df : (~,x) --> (~,O) be a finite mapgerm in

be a good representative with discriminant
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locus 1::.. Then the well-defined number I

deg f :=x-
~2 1 length (Quot (OX I))

X ' Ef- (y) . I X

y any point in B - 6. , is called the Iocal mapping degree of the

germ f .

----.; .
Remark 2.2.7. Since length(Quot(Ox ,) may be difficult to compute,

,X
one 'hapes .for a nicer formula. In fact, one may show that I in the

situation of Definition 2.2.6, one can find a nowhere dense subspace

1:1 ' SB such that X - f- 1 (6') is Cohen-Macaulay at all X lying over

B - ß I (see Theorem 2.2. 11 ) ; consequently

deg f =x- L l' length (Quot (OX x) )
x'Ei (y) - I

= L -1 dirn '" (OX t Im •0x ' )
x'Ef (y) \J" IX Y IX

.for all y E B - 6 I I where m
Y

i5 the maximal ideal of ° dce ,y

We have the following simple but important fact:

Theorem 2.2.8 (Degree Formula). Let f: X --> B be as in Defini­

tion 2.2.6. Then

deg f =x-

for all y E B •

L deg I f
x'Er1(y) x.-

This follows from the geometry of Definition 2.2.6. An algebraic

proof will appear below, cf. 5.1.7. Theorem 2.2.8. has the important

application that multiplicity will be upper semi-continuous along

complex spaces, see Theorem 5.2.4.
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In ·the situation of Defintion 2.2.6

(2.2.5) deg f =x- L -1 dim"..(Ox ,Im .OX I)
xlEf (y) u.. IX Y IX

for y E B - ß and ß a suitable nowhere dense analytic set in B •

For this , proceed as follows:

(i) Show by means.~f Fitting ideals that for an admissib1e z:nodu1e
M on a reduced complex space y. the. set LF(M) := {yE YIM is 10-

cally free at y } 1s the comp1ement of a nowhere dense analytic

set (cf.[28], Chapter 4 , § 4) •

(ii) Let now f be as in Definition 2.2.6; choose 6 in such a

way that f*Ox i5 locally free on B - 6

Exercise 2.2.1a~ Use 2.2.9 (ii) to prove the following

Theorem 2.2.11. Let X be a complex space. Then the Cohen-Maeaulay­

locus XCM : = {x E X I0x,x is Cohen-Maeaulay} 1s the complement of a

..nowhere. dense analytic set.

~fuat 18 with the srneoth locus

§ 3. Geometrie multiplicity.

X : = {x E x·1 0xsm ,x 18 regular} ?

We now use the netio.n of the Ioeal mapping degree of a fin! te map­

germ to define the geometrie multiplie!ty m(2.,x) of a complex

spaee germ (X,x) E cpla .

Geometrie multiplicity in the reduced ease is discussed in [13],

[ 38], [ 6 1 ] I [ 7 0 ] and [75].
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3.1. The tangent eone.

Let

finitely

sp~etrum

(X,x) E cplo ' and gr (0 ):= ED m
k

/m
k

+
1

, which is a
Mx X,x k~O x x

generated ~-algebra. Reeall the notion of the analytic

of a finitely generated ~-algebra in I .3.4.

Definition 3.1.1.

of <.~, x) E cplO ·

C(X,x) := Speean(grm (Ox,x)) , the tangent eone
x

To describe it in a more eonerete way, ehoose generators

f 1 , .• "fn of Mx' i.e. an ernbedding (~,x) C--> (~n,O) by I 4.4.2.

This gives a surjeetion

= gr (0 )
Mn a:n,O

and so C(~,x) is defined in a: n by the homogeneous ideal Ker{~) ,

hence 1s a cone • If the ideal I cOde fines (~,x), one can
- eIn, 0

show that Ker(~) = L(I) , the ideal generated by the leitforms

L (f) of all the f EI. So if I is generated by fini tely many

·polynomials, the standard base algorithm diseussed in IRemark

·2.4.4,gives finitely many equations whieh define C{X,x)

Proposition 3.1.2. Dirn C{X,x) =x- -
dirn Xx- :: dirn gr

mx
(OX ) •,x

Proof. A geometrie proof is somewhat involved (see Proposition

3"1.3 (iii) below) I so we use the elementary properties of dimension

,of Ioeal rings. Now grM+(OC(X ) ) = gr (OX x) , where M;
x _/X,X Mx'

is the irrelevant maximal ideal of gr (OX ) . Sinee these twom ,xx ..
rings have the same Hilbert funetion, the resuit follows from the

weII-known main result of dimension theory of Ioeal rings (see e.g.

[ 1 ], Theorem 11. 14.) and the fact that this Hilbert funetion is just

the Hilbert funetion of 0x' ,x
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We now shortly touch upon another, more geometrie description of

the tangent cone,which puts it into a flat deformation of (~,x);

this appears in [45], [70], and is a special ca~e of Fultonts and

Macpherson's "deformation to the normal cone ll (see [17] for the al­

gebraic case; the analytic case is analogous) :

Let (!,x) C-..-> (!n , 0) be defined by the ideal leO . Far- (En,O
f E I , let f* E 0 be defined byna: xlt,O

f*(z,t) 1
• f (tz):=

tv(f)

where a:n has coordinates z and a: has coordinate t I and 'J (f)

is the order of f (I (1 .1 .3) ) ~ Let I* S 0 n be the ideal generated
er xa:,O . n

by the f* for fE I . It defines a germ (X,O) C-> (~ xa:/O) ,and

the projection a:nxa: --> ~ defines a morphism E : (~,O) --> (~,O)

and '50 E. : ~ --> ~ , where B c CI: is an open disk around 0 (in;"

fact, it 1s easy to see that E is defined over CI:) ~ Then the fol­

lowing statements da hold:

'Proposition 3.1.3 (Deformation to the tangent cone).

(i) (E-1(t) , (O/t)) :; (~,x) for all t I- 0 •

(11)

(lii)

(iv)

p~ .{,t:-p (x)) 15 a.. nonzerodivisor in 0 for all x E X ,and.... X,X
ßO' E 1s flat; especially dirn C{X,x) = dirn X •

x- - x-

Corollary 3.1.4.

lim xx' }
x.....x ,
xix'
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where XXi 15 the complex l1ne through X and Xl , and the

limit 15 taken in ~n-1

In other words, settheoretically· is C(~,~) the union of limits

of secants of X through x , whence the name Ittangent cone".

3.2. Multiplicity.

Let now (~,x) E cplO ' d := dimx~ . We fix generators

f 1 ' • • • , f E m ,so an embedding (~,x) C->n x
ding f(~,x) c--> ~n as in 3.1. Note that

, and so an embed­

implies

(X,X) :iii (a:
n ,0) by I 4.4.2. We now consider finite linear projections

dof (~,x) onto (~,O) .

Definition 3.2.1. Let Grassd(~n) denote the Grassmannian of

d-codimens ional linear subspace s L c a:n (see e. g. [30], Chapter 1,

Section 5). Let (~, x) E cpla • Then L E Grass
d

(a:
n ) is called

good f or (~, x) if and only if x i 5 isolated in L n X , and

excellent for (~,x) if and only if 1t 15 good for (C(X,x) ,x) , i.e.

Ln C(X,x) = {x} •

We put

(3.2.1)

(3.2.2)'

good for (~,x)}

excellent for (~,x)},

and use the notations

(3.2.3) L ~ Xx
d

LEP (X,x), g-

(3.2.4) L ~ c (X, x): ...,.
X -

d
L E P (X,x)

e -
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cl n
If L E Grass (lt ) , choose coordinates (z1' ... ,zn) so that L is
n-cl

~ with coordinates (zd+1' ... 'z~) then the projection
n d

TI L : ~ --> ~ .along L defines the linear projection

..EL : = 2!L I (~,x) (~, x) --> (a:
d

, 0) • Then eorollary I 4.3.6 immedi-

ately implies

Proposition 3.2.2. If
d

L E P (X,x)
g is finite.

We now show that there is an ample supply of these finite projec~

tions

For this, we exploit the transversality condition algebraicallYi

the following observation seems to be due to Lipman [49], see also

[69] •

Let f: (~,x) --> (!,y) be a mapgerm; then f induces
o

grm(fx ) grmy(Oy,y) --> gr
mx

(Ox,x) , so by localizing at the irre-

levant maximal' ideal a homomorphism 0 -> Oe (X ) , andf(I,y) ,y __ ,x ,x
hence a mapgerrn

called the differential of f at x.

3
. d .

Proposition 3.2.. Let ! .. : l~ I x) --> (~ (0) be a mapgerrn,

d = dim x X • The following condi tions are equivalent:

(i) cl fx-

(ii) the ideal o
q .= f (md) .Oxx· x IX

is a minimal reduction of m
x

In particular,.then , f

Proof. Let f be defined by

let G:= grm (Ox x) , and let
x '

f 1 I • • • , f d E: Mx • To simplify notation,

M+ c G be the irrelevant maximal .
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+ideal, M := W Gk . Let f~ be the image of f.· in
k>O ] ]

j = 1, ••. ,d , and Q:= (fi, ... ,fd,).G . Let

q~ := (fi,··· ,fd).OC(~,X),X · Consider the injeetions

2
G

1
= m Imx x

G/Q C q> > (G/Q) + c tV > 0c (_X,x) ,x I q~
M • (G/Q)

If dima:(OC(X,x),x/q~) <CD , it follows that dirna:(G/Q) <co • Conver­
sely, if dima:(G/Q) <~, G/Q is artin1an, and so, 8inee it is gra­

ded, roust be Ioeal, so that in faet ~ is an isornorphisrn. Now ~ 1s

faithfully flat by ,(4.1.3), and so by Lemma 2.2.4 we get

dirn«: ( (G/Q) + )'.' = dirne: (0 C (X ,x) , x / q~) • Consequently,
M • (G/Q)

dimer (Oc (~,x) ,x I q~) = d1rna: (G/Q) henee is finite. 1t follows that

dirna:(OC(~,x),x/q~) <00 15 equivalent to dirner(grm(Ox,x)/Q) <co • But

the first inequality rneans dxf 1s finite by the Integrality Theorem

I 4.4.1, and the seeond one that q is a minimal reduction of Mx

by Chapter 11, Theorem (10.14) and Corollary (10.15). Espeeially,

q is m-primary, and so dim",Ox / q <CD , whence f i8 finite byx \L. ,X x
the Integrality Theorem I 4.4.1.

We now get:

Proposition 3.2.4.

d n
(i ) I f L E: Grass (a: ) I L ~ C (X , x )x -
d dP (X,x) C p (X,X) •
e - - g -

implies L ~ X , and so
x

(i i) pd (X, x)
e -

Grassd (lJ:n) .

Proof.

and so a fortiori dP (x,x) , i8 gener1e in
g - -

(i) is direct from Proposition 3.2.3.

(i1) We mayas sume 1 S d S n - 1 • Put

where lPk
:= JPk (<1:) denotes complex projective k-space. We have the
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diagram

p

R
q n-1 .

--...:::<----> lP

Definition 3.2.6

d ':= dirn X • Fix
x

(~,x) C-> (ce
n ,0)

(~ith respect to

v
d nGrass (CI: )

where p,q are projections. We naw use same elementary Algebraic Geo­

metry, as e.g. in the first chapter of [56]. This is a diagram of

algebraic varieties and algebraic morphisrns, and p is proper. Let
. n-1·

lPC(~,x) sP be' the projective tangent cone. It follows that

p(q-1(~C(X,x») is an analytic, even algebraic, set in Grassd(cen ) ,

and so is-either nowhere dense in Grassd(~n) or coincides with it,
d nsince Grass (CI:) is a connected, smooth, and hence irreducible,

variety. But equality p(q-1(~C(X,x») = Grassd(cen ) means that any

d-codimensional plane in F n- 1 -hits lP C (!,x) S; F n - 1 , which can­

not be since it has projective dimension d - 1 by Proposition 3.1.2.
d d n -1Finally, note that Pe(~'X) = Grass (0: ) -p(q (lPC(~,x») , which

.implles (i) •

Rernark 3. 2.5. The inclusion pd (X, x) c pd (X, x) says that if
e - g

L E Grass d
(a:

n ) has dirn L n X ~ 1 there should be a line 2 oS L n C (~,x) ,. x .
which is intuitively clear, since dirn L n X a:: 1 teIls us there are

x
secants xx' S;L with x' ~ x arbitrarily elose to x. So a geo-

metrie proof could be based on Corollary 3.1.4, for which, however,

I did not give a cornplete proof. The existing geometrie proofs of

Proposition 3.2.4 (1) in the literature ([13], [75]) are sornewhat in­

vqlved. Proposition 3.2.4 (li) 1s also in [75] (Chapter 7, Lemma 7N).

We are now ready for the definition of multiplieity.

(Geometrie multiplieity). Let (~,x) E cpla '

generators f 1 , •.. ,fn of Mx' i.e. an ernbedding

• The geometrie multiplieity rn(~,x) of (~,x)

this ernbedding) is defined to be
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Proposition 3.2.4 (ii) implies that this definition is not empty.

m(X,x) depends apriori on the embedding. It will be shown algebra­

lcally in Theorem 5.2.1 that this 1s not so.

Exereise 3.2.7 .. (i) Prove by geometrie means that rn(~,x) depends

only on the isomorphism class of (X,x) in cpla

Hints: First show that it suffices to compare embeddings of equal

dimensions; here (2.2.5) might be of use. Then use Proposition I

3.2.1, to show that

(3.2.5) m (~, xl = min {deg xi}
!: (~, x) -+ «[cl, 0 )

f finite

Hints:

(li) Conclude that m(~,x) = 1 when (X,x) 15 smooth. Show that

conversely (X,x) 15 smooth when (X,x) 15 equidimensional and

m(X/~). = 1 (Criterion of multiplicity one).

For the converse prove that a finite extension 0 C-> 0
cl Y,y([ ,0

of degree one, where Oy is an integral domain, i5 surjective. For,Y
this, use the Local Repre5entation Theorem I 6.3.1 and the classical

Riemann Extension Theorem (see IRemark 6.3.3).

d
Example 3.2.8. If L t p (X,x) I it can happen that degxE

L
1 m(X,x) .

e 2- 2
For instance, let X C-..-> CI: be defined by z 1 - Z2 = a , L : = the

z2-axis, x = 0 . Then m(X,x) = 1 by Exercise 3.2.7 (ii) above, but
- d

degx EL = 2 • However I L E Pe (~,x) will imply degx E
L

= m (X,x)

See Theorem 5.2.1.



- 85 -

§ 4. The geometry of Samuel multiplicity.

The purpose of this paragraph is to give a geometrie interpreta­

tion of the Samuel rnultiplieity e(q,Ox ) of an mx-primary ideal,x.
q in the loeal analytie ~-algebra 0x ; it will turn out to be,x
canonieally the geometrie multiplieity m(f,O) ,where C is the

geometrie affine eone eorresponding to gr (Ox ) ,and °E C itsq ,x
vertex; see Theorem 4.4.2. This has, of course, to do with very

elassical Algebraic Geometry, namely the fact that the Hilbert func­

tion of a projective variety determines its degree, which i5 the

number of interseetion points with a generie eomplementary linear sub­

space. This should explain, or at least motivate, the usual abstract

definition of e(q,Ox ) by means of the Hilbert funetion of,x
gr (Ox ). The reader who takes this definition of e"(q ,Ox ) forq ,x ,x
granted may 5kip thls paragraph.

4.1. Degree of a projective variety.

Let Z c ]pn-1 be a projeetive variety, i. e. an algebraie ct-scheme

of finite type. We denote the structure sheaf of !' when Z i5

regarded as an algebraic variety, by O~lg ; so Z i3 given by the

ideal sheaf generated in oalg by a homogeneaus ideal
F n - 1

I c a: [z 1 ' ••• ,zn] . Let C =~n be the corresponding eone; as an alge-

braie variety, C = Spec(R) , and as a complex space, C = Specan(R) ,

where R is the graded ring ~[z1, ... ,zn] / I .

Classically, the degree deg(!) of Z i5 defined to be the

nUffiber of intersection points of Z with a general (d-1)-eodimen5io-
" n-1

nal projective plane P S JP , where d -"1 is the projective dimen-

sion of ! , and hence d is the affine dimension of C. One has,

however, to be a little careful what "general" means, and what

" n umber of intersection points" means when Z is not reduced.

In analogy to Proposition 3.2.3 for cones one has
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p~-1 (Z I : = {p € Grassd- 1 (lPn - 1 ) I pn Z

Grassd- 1 (JPn - 1)

projection

at some point, so it is

Proof. We use basic Projective Algebraic Geornetry, ·see e.g. the

first 72 pages of [56 ';.. There 1s piE Grassd (Fn - i ) wi th pi n Z = 0
since dirn Z = d - 1 ; then the linear projection 9.p ' : ! -> 1I?~-1

along Plis fini te, hence for z E Z , the linear space through P f

and z hits Z in only finitely many points. So pd-1 (Z) ~ ß •
7 n-1 d-1 n-1 I } e -Now let P:= 1(z,L) ~ lP x Grass (JP ) z E L ; it has a cano-·

nical structure as an algebraic variety P, and the projection gives

a fibre bundle P -> lPn- 1 , which, by p~lling back via ZC-> ]pn-1

gives us a fibre bundle 1 -E->! with

z..= {(Z ,LI € Z x Grass.d- 1 (lPn - 1 I I z € L} . The

Z ~ G d-1(IPn- 1). 'df' 't_ > rass LS proper an Ln~ e

finite over a nonempty Zariski-open subset of Grassd- 1 (lI?n-l) , say

over Grassd- 1 (~n-1) ß(!), where ß(~) is a proper Zariski-c!osed

subset. Q.e.d.

Rernark 4.1.~. Since g is finite outside a nowhere dense analytic

set of Grassd- 1 (~n-1) , q* 0z is locally free outside a nowhere

dense analytie set. One rnay usa this to prove that the set

(4.1.1) pd - 1 (Z)'
CM - {:= P € p~":1 (~) I p n Z s ZCM }

with ZCM: = {z E Z I ~ Z,z is Cohen-Macaulay} , is generic in

Grassd- 1 (lI?n-1) . Similarly, if Z 1s reduced, g 1s locally iso­

morphie outside a nowhere dense analytic set, and one can equally

show that then
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: = {p E pd-1 (z) I pn z c: Z
e - - reg and p 1s trans-

versal to Z along P n Z }reg

1s generic in Grassd - 1
(IP

n - 1 )

Definition 4 .. 1 .. 3 .. The degree deg (~) of Z C-> ]pn-1

to be

deg (~) : = r deg (z , P )g
zEZnp

1s defined

" d-1 n-1
where g: ~ --> Grass (JP ) and ~(~) are as above, and

p E Grassd - 1 (IPn - 1 ) - 6. (_Z) = pd-1 (Z) ..
e -

That this number is independent of P can be proven as in Propo­

sition 2.2.5, hut it i5 simpler here, since we will see that we could

.' have worked with the algebraic loeal rings, and then the loeal. constan­

cy of the deg(~~p)g along Zir follows without using compact Stein

neighbourhoodsj see Corollary 4.1 .. 5 below.

Lemma 4 .. 1 .. 4 .. Let Z be an algebraic variety over ~ .. Let Zir be

the locus of points where .! 1s locally irreducible as a complex

space. Then, if z E Zir ' z lies on a unique irreducible component

of Z as an algebraic variety, ZA say, and

_____ --"" A

length (Quot (0 Z )) =·length (Quot (0 Z )) =,z ,z

alg
= 1e ngth (0 z , Z A)

------ alglength(Quot(Oz )), z
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where oalg is the loeal ring of Z along
Z, ZA ,

i t is eonstant along Z, n Z. ..
1\ ~r

Proof.. Consider the inclusions

ZA .. In partieular,

(4 .. 1 .. 3) c=....-> 0
t,p Z,z

oalg
Z,z

Then, since (0) is integral, so isZ,z red
(oalg) , and

Z,z red z is

on a unique ZA .. Moreover, 1JJ and 1JJ 0 lP are fai thfully flat as

completion morphisms, and henee so 1s lP ..

Now it is known ('and this is a nontrivial result) that for'an
1\

integral Ioeal analytie a:-algebra R the completion R is integral ..

For this see [64], Expose 21, Theoreme 3 on p .. 21-13. Or use the fact

that the normalization R' of R is again a loeal analytie algebra

([26], Satz 2 on p .. 136); sinee R 1s exeellent, the minimal primes
1\

of R correspond to the maximal ideals of R' ([12], Theorem 6.5),
1\

and so R is integral. Applying this to R:= (Oz ) d' one has,z re

~ = a / N .. ß i9 integral, so N. 8 is prime and so equalsZ,z z Z,z z Z,z

~ , the nilradical of Oz . We thus get Na1g .. Oz = N ,z ,z z,z z

N • a = N We now can localize and get morphisms
z' Z,z z

(4.1.4) C-> QUot (Oz ),z

______ 1\

C-> Quot (Oz ), z

which are fa1thfully flat, and Lemma 2 .. 2 .. 4. gives 'length(Quot(Oazlg ») =,z
~ A ---...' <

= length(Quot(Oz » = length(Quot(Oz » • Finally, assume,z ,z
! = Spec(A) affine, where A is a finitely generated a:-alebra,

wi th Z A corresponding to p EMin (A) , and z to a maximal ideal

m. of spec (A) .. Then p sm, and so QUä"t (Oazlg ) = (A) =,z m p
= A = oalg

p z,z:\
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Corollary 4.1.5.

Especially, if Z

deg(!) does not depend on the choice of

is irreducible and reduced,

P •

deg (~) = # (z n P)

where PE pd-1 (z) arbitrary (this is the classical definition).
reg - -

Lemma 4.1.6. Let X be either an algebraic variety over ~ or a

complex space, and let 0 denote either the algebraic or complex

analytic structure. Then, for all k a 0 ,and x, E X
ir

(the irredu­

cible locus with respect to the complex analytic structure) ,

(x,O) E (X x a:k ). and
~r

~

= length (Quot (0 k ) )
xxa: ,(x,O)

dIn particular, if ! : (~,x) -.-_> (! ,0) is finite,

deg x f = deg (x, 0) (~ x ida:k ) for all k.

Proof. We may assurne k= 1 . Consider the faithfully flat extension

(4.1.5) o -> ~ = 0x [[ t ]]X,x XxII, (x,O)

Nx · 0x [[ t]] , and so
1\

= (Ox,x) red [[tJ] by the proof of

1\ 1\

N = N • 0 i s pr irne , so x EX. im-x x· X,X ~r

. The claim now follows again by Lemma 2.2.4 and

4.1.4; so if N is prime,
x

plies (x,O) E (X x lt) ,
~r

Lemma 4.1.4.

Proposition 4.1.7. Let Z c--> n-1 be a projective variety of:IP

dimension d - 1 and with hornogeneous coordinate ring R .. Then for

any P E pd-1 (Z) and P' a hyperplane in P with z np' = ß :e -



pi and not meeting

JP d-1 n p' = ß a nd

(see Figure 4).
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deg (~) = L deg z SIp I

zEZn~

where Z ->
d-1 i8 the projection with centre pi

SPI : :IP

(cf. (5.3) and (5.4.) in Mumford's book [56 ] ) .

Outline of proof.

Let the notations be as above. Fix P and pi . Let

n-2 n-1:IP ~ :IP be a hyperplane containing
d-1 n-1Finally I let:IP S ]I' be such that

d-1 n-2 d-1
JE' . n:IP is a hyperplane in lP

Fig. 4

z n p •
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n-1 ~We say two planes L,L ' S~ are transversal, denoted L 'pL I
,

if L n LI has minimal possible dimension. Put

lP~-l : = lPd - 1 _ (lPd - 1 n lPn- 2 ) , Grassd - 1 (lPn - 1 ) 0 : = {Q E Grassd - 1 (lP
n

-
1 11

Q ~ lPd - 1 ,Q ~ lPn - 2
,Q ~ lPd - 1 n lPn - 2 } ,and

Grassd- 1 (lPn- 2 ) 0 : = {Q' E Grassd- 1 (lPn - 2 ) I Q' ~ lPd - 1 n lPn -
2

} • These

are nowhere dense Zariski-open subsets • F inally put !o : = Z _ F
n - 2

,

-1 -1 d-1 n-1 )and lo := 12 (!o) nS (Grass (F ) 0 (notations as in the proof

of Proposition 4.1.1). One then gets the diagram

f

· I'!

<--------(4.1.6)

v

--------> d-1 n-2
!O x Grass (F ) 0

v
h

Grassd - 1 (]pn-1) 0 ~ > JP~-1 x Grassd - 1 (IP n- 2 ) 0
k

where f (Z ,Q) ~> (z,Q n ]pn-2)

51 (z,Q') f--> (z,Q' v z) where Q I v z denotes the plane

spanned by Q' and z

k (z , Q') ~> Q 1 V Z

Then fand g are inverse to each other, and so are hand k .
a-1 n-1

Over P E Grass (lP ) 0 ' the diagram is commutative, and so far

z E Z n p

deg(z,p) S = de g (z , p.' ) (s.p' x i d ) = deg z (q )
pi

the last equality fram Lemma 4.1.6. This proves the Proposition.
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Theorem .4. 1 .8. Let Z c-> ]pn-1 be a projective variety of dimension

d - 1 wi th homogeneous coordinate ring R , and let C c-> a: n be the

corresponding affine cone. Then

deg (~) = m (f, 0)

the geometrie multiplicity of C at its vertex.

Proof. Let ~n have coordinates (z1, .•• ,zn) j we may assume

lP~-2 s;;pn-1 in 4. 1 . 7 is given by z = 0 • Let LI E Grassd- 1 ((I:n)

correspond to P E: Grass d-1 (]pn-1 ) , nand a: n - 1 ~ a:: n be the hyperplane

d ' n-2 :-_ LI nll"'n-1 n-1correspon ~ng to lP • Let L ~ and put f o := f - ([ ,
where C is te affine cone corresponding to Z. Le't H1 s; cen be

the affine hyperplane given by zn = 1 , and put f 1 : = f o n !!1

Now consider the cornmutative diagram of morphisrns of ,algebraic varieties

(4.1.7) f 1
c > f 1

x 0:* --> E.o --»Z
.in J:!.. 7i -0--n

l?LIH 1
')

..PL C) .2L C) 9.p '

~ ~

v v v

a:d - 1 c ld d-1
x ~*

~d _ a:d-1 lId d-1
> ~ = --> lP O

Here, the left horizontal arrows are inelusions via zr ~> (z' ,1)

u is induced by a:n- 1
x a:* -> a:n - a:n - 1 with (z t ,A) ~> (,\z I ,A)

and the right horizontal arrows are induced by the canonical projection
N N-1

TfN : a: - {o} -» lP • u 1s isomorphie, the inverse being induced

by a:~ - a:n- 1 -> a:n - 1
x a:* , z = (zt,z ) ~> (z' /z ,z) (see

n n n
Figure 5).
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Fig. 5

From this figure, the result should be intuitively clear, since the

intersection of P with Z corresponds to the intersection lines

of L' with C, which in turn correspond to the intersection points
n-1of the affine plane P o := P - ~ = H

1
n L' with C ; but we roust

check the multiplicities.

The composite horizontal arrows give isomorphisms, so, since

is disjoint from z n P deg <.~) = r deg g. =
wEznp w pi

. L deg Z I (PL IH1 ) · But this equals deg 0 EL by Lemma 4. 1 . 6 and
zEt;1 nP O -

'the middle square in (4.1.7.). So deg(!) = degoEL for all

L E pd (C, 0) = pd (C, 0) , which proves the claim.,
g - e -

Corollary 4. 1 .9. Let zp , p E Assh (R) , be the irreducible components

of Z of dimension d-1 , given by a homogeneous primary decomposi­

tion of 0 in R. Then
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deg(!) = L length(Rp ) .deg(Zp)
pEAssh(R) .

P E Assh (R) , and these corres- -forProof. As PEpd-1 (Z) hits Z
e - p

pond to the maximal irredueible components
. ..--/

show length(Quot(Oc,z» = length(R p ) for

responding to the irreducible component on

affine coordinate ring of fo iso R
(zn)

wise Z n P would not be disjoint to lP
n - 2

of f o ' it suffices to

z E (CO) . and p cor-
~r

which z lies. Now the

and zn ~ p , since other-

Then o~~~ = (R (zn) )p =

Rp ,and the claim follows from Lemma 4.1.4.

4.2. Hilbert functions.

The following result is classical; it was, at least in the reduced

irreducible case, known to Hilbert ([32], p. 244), and, in general, to

.Maeaulay [50], footnotes on pp. 82 and 115·).

Theorem 4.2.1. Let .. R be the eoordinate ring of a projective variety

~.e:.-> IP
n- 1 of dimension d. Then the Hilbert function

H(R,k) := dirn R has the form
CI: k

( 4.• 2. 1 )

for k» 0 .

H(R,k) = deg(Z) kd - 1 + lower terms
(d-1)!

One way of geometrie thinking about this goes as follows: For any

projective variety Z and coherent 0Z-module M put

(4.2.2) x (~, M) : = L (-1) i d imo:Hi (~, M)
i~O

where all H
i (~,M) are fini te dimensional and ·0 for i > d - 1

(~5]), and one may either take analytic or algebraic sheaf cohomology

( [66) •
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Let M be a f.g. graded module over ~[X1, •.. ,Xn] an~ M the

corresponding eoherent 0 1 -module~ By celebrated results of [65] ,n-

Hi (lPn - 1 ,M (k) = 0 for lPi > 0 and k» 0 , and M
k

~ r (lPn - 1 ,M (k) )

for k» 0 , henee

(4.2.3) H(M,k) n-1: = d ima:Mk = X (:IP , M(k) ) for k» 0

Now take hyperplane He!..> n-1 defined by a linear form Fany IP ,
then the exaet sequence

(4.2.4) o -> 0 (-1 ) ·F 0 i 0 -> 0n-1 --> n-1 ->
JP JP * H

induces (loe. eit. p. 277)

(4.2.5) 0 -> M(k-1) -> M(k) -> i*(i*M(k)) -> 0

for all k as seen as H is in general position. with respeet te

~M , namely F should not belang to any prime of the homageneous

primary deeompesition of M, except the possibly present irrelevant

maximal ideal.

:By additivity of X', then,

(4.2.6) X(JPn - 1 ,M(}<)) = X(JPn - 1 ,M(k-1)) + X(!!,i*M(k)

Applying this to M = R gives the recursion

and by doubly inducting over k and d one gets

(4.2.8) d-1 ( ') ( j+J.k-1 )= L . (! n H J ,0 (j ) ) •
j=O !nH

where H1 , .•• ,Hd- 1 are hyperPl~~~S in general position defined by

1 inear forms F 1 ' ••. , Fk ' and H ] : = !!1 n •• • n'!:!j . So
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(4.2.9) H (R, k) = X (~, 0 Z (k)) f or k» 0

is indeed a polynomial of degree d - 1 in k whose leading coeff1-

cient 1s where P is a (d-1)-codimensional

plane in general position, and Z n P the scheme-theoretic intersec-

tion. But since pd -1 (Z) is generic in Grass d - 1 (lP n - 1 ) we thene -
have that, for a general choice of H 1 ' ••• , Hd - 1

, the intersection

Z n p consists of finitely many points. Then

(4.2.10) ffi 0
zEZnp Z n p, z

a direct sum of artinian rings, and so

(4.2.11) I dimce(Oznp )
zEznp ,z

Choosing p' ~ P a 'qyperplane

will be finite i so {qp")~Oz)

cally f ini te. ';- So .moving the

free aver 0 d-1 1 == 0 d-1
TI? ,z <I ,0

in P wi th P' n z =. 0 , 2p I : Z -> lP
d

- 1

being a coherent ~heaf, will be generi-

Hj we may assume that 0Z,z is lacally

for all z E Z n'p with P n lPd - 1 = {z ~}.

But then

(4.2.12)
........--,../

length(Quot(Oz )) =, z rankO (Oz)
d-1 ' z

ce ,0

Q.e.d.wh~ch implies deg(~) = I deg gp' = x(~ n!:'Oznp)
zEznp z

Far a more classical proof which does not use sheaf cohomology see

[56], p. 112 ff, which works for the case Z reduced irreducible.

Since H(-,k) is additive on modules,

(4.2.13) H(R,k) = L length(R )H(R/p,k)
pEAssh(R) P
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and so the general case follows also from this because of Corollary

4.1.9.

4.3. A generalization.

Let A E la be an artinian local a:-algebra corresponding to a one­

point complex space S = ({s},A) E cpl .

Definition 4.3.1.

(i)
n-1

IP
A

: = S x ]pn-1 projective (n-l)-space over A •

(ii) A projective variety Z over A 1s a closed cornplex sub­
n-lspace Z c->]PA defined by a hornogeneous ideal

I cA [ Z1 ' •.• , Z] for some n.- n

Remark 4.3.2. Projective varieties correspond to finitely generated

graded A-algebras (positively graded, BQ = A , generated by B1 ).

In f"act if Z is as above, R:= A.[Zl' ... ,Zn]/I, ~ = Projan(R)

(see III 1.2.8), the complex space associated to the projective scherne

Proj (R)

Corresponding to ]p~-1 the~e is aff ine n-space :IA.~ : = S x a:n
n-lover A. Corresponding to Z c-> ]PA there is an affine variety

C ~> JA~ , in fact C = Specan (R) as a cornplex space. We call again

C the cone associated to Z , and Z the projective cone FC of

C .

n-l r n-1 be byLet 1P ~> JI'A the rnorphisrn given

A[Zl,···,Zn] -» (A/mA) [Z 1 ' · . • , Zn] . If Z c--> JPn is a projec-
-A

tive variety over A , we put !O = : !.-1(! ) and

(4.3.1) deg (!) : = (dirn a: A) · (deg (~O) )

Now let M be a finitely generated B-module. Define again the

Hilbert function H(M,k) to be

(4.3.2) H(M,k) := diffi(!M
k
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Then Theorem 4.1.8 and Theorem 4.2.1 still hold with the convention

(4.3.1) for deg(~)

4.4. Sarnuel multiplicity.

Let now (~,x) E: cpla' q an m -prirnary ideal of 0 defining
x X,x

a zero dimensional complex subspace of X supported on x, which

we ca11 ~ (q ) •

Definition 4.4.1

defined to be

(Normal cone). The normal cone of ~(q) in x is

:= Specan(gr (OX ))- - q,x

In case q = m , ~(~,~(q)) = ~(~,x) , the tangent cone.

The epimarphisrn syrn(Q/q2) --» gr (0 ) gives an embedding
Q X,x

d-l 2
lP C (~,~ (q)) c-> ]PA ' where d := dirna: (q/q) and A:::::: R/q • Taking

the Hilbert function of FC(~,~(q)) with respect to this embedding

we get fram Theorem 4.1.8, Theorem 4.2.1 and the discussion in 4.3:

Theorem 4.4.2. e (q ,Ox,x) = rn (~(~,~ (q) ) ,x)

Remark 4.4.3. For an extension of this to the general scheme-theore­

tic context see the paper [57] of C.P. Ramanujam.

§ 5. Algebraic multiplicity.

In this paragraph, I show the equality

a cornplex space germ (~,x)

5.1. Aigebraic degree.

rn(~,x) = e(m ,Ox )x ,x
for

I now give some algebraic formulae for the Ioeal mapping degree,

whieh relate it to Samuel multiplicity.
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Proposition 5.1.1. Let X be a complex space, M a coherent 0X­

module, and Z be an irreducible component of the support ~ (M)

of M • Let the ideal P ::: °X def ine Z in X • Then

(i) For z E Zir ' the localization (Mz)p is an artinian
z

(Ox,z)p -module;
z

(ii) the function z ~> length(Mz)p is locally constant on
z

Z.
~r

Proof. The proof is analogous to the proof of Proposition 2.2.3,

:50 the details are omitted. One proves

length(O ,) ((M ')p
X,z P, Z Zl

Z

= lengtho (K) ~
P

for z' e:z. nK
l.r

where, for given z e: Z . , K is a sui table compact Stein neighbourhood
l.r

of z, P is the O(K)-ideal l'(K,P) , and M the O(K)-module

f(K,M), by localizing the flat map

A I O(K) --> 0 I
Z X,Z

;at P and again using Lemma 2.2.4.

We now apply this,with !
-,the coherent 0B-~odule f*Ox

x -> B as in Definition"2.2.6, to

Corollary 5.1.2. The number

.. (5 • 1 • 1 )

is independent 0 f y € B .
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Proof. By I Theorem 4.1.1,

(f*OX)y == $ 0 I for all yEB
x I Ef-l( y) X, x

as an 0 d -module. The claim now follows by Proposition 5.1.1.
er: , y

Recall now Serre1s notation: Let R

m
R
-primary ideal, M an ·R-module, d E :IN

then put

be a local ring, q an

such that dirn RM S d ;

(5.1.2) eq(M,d) :=

e(q,M) if

o else

dirn RM == d

(see [67], p. V-3). We then have the formula (loc.cit, or Chapter

I, Theorem (1.8)):

(5.1.3) eq(M,d) == L length(M ) .eq(R/p,d)
dim(R/p)==d P

(because of additivity of length) .

. Corollary 5.1.3. In the situation of Corollary 5.1.2, the nurnber

(5 • 1 • 4 ) L -1 e q (Ox x I ,d)
xlEf (y) Xl ,

is also independent of y E B , where

generated by the maximal ideal my

the number (5.1.1.).

q is the ideal in 0x IXl ,x
of 0 d ; in fact it equals

CI: ,y

isR == 0 d
a: ,y

Proof. The nurnber in question 15 e m ((f*Ox) ,d) , which by (5.1.3)
y y

1s just length (Quot (0 d ) @ 0 d (f*Ox x)) , since
a:,y a:,y , Y

regular and so e(md,R)== 1. And this nurnber 1s (5.1.1).

We now can characterize the local mapping degree algebraically.



- 101 -

Theorem 5.1.4 (Multiplieity forrnula). Let f be as in Definition

2.2.6. Then the following nurnbers are egual:

(i) the Ioeal mapping degree -deg fx-

(ii) dirnQuot(O ) (Quot(V d ) ~ 0 d °x,x)
\ ~d,O ~ .:0 ~ ,0

(iii) the Samuel multiplicity e (OX ,d) withq ,x
q = ffid·OX,X = '(f 1 , ••• ,fd )·OX,x' where (f 1 , ••• ,fd ) define

f aeeording to I, Carollary 3.3.5.

Remark 5. 1 .5.

a) .Far a eomplete Ioeal ring containing a field which is an integral

domain, (ii) was Chevalley's original definition of the multiplicity

e(q ,Ox ) (up to multiplying with the degree of the residue fieldx ,x

extension, which is 1 here) in [ 9 ], § IV. Sornewhat later he extended

it to quasi-unmixed Iocal rings in [10], Definition 3 on p. 13, and

his definition can be shown to be again the number (ii). In other

words, the philosophy behind his definition was to rnimic,by passing

to the eompletion, the notion of Ioeal rnapping degree by an

aigebraic construetion. See also Rernark 5.1.8.

b} The equality of (ii) and (iii) 1s a special case of the Projec-
I

tion Forrnula (Theorem (6.3) in Chapter I) .

Proof of Theorem 5. 1 .4. We may assurne dirn X = d , since other­x-
wise all numbers are o. The equality of (ii) and (ii1) has just

been seen in the praof of Corollary 5.1.3.

Ta prove the equality of (i) and (li), we are reduced, by Corol­

lary 5.1.2, to prove the equality

(5.1.5) length(Quot(OX,x')) =dimQuot(O ) (Quot(O t»O(1'd 0x,x')
~d ~,y ~,y
u.. ,y

in the special case where in the diagrarn
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i
(X d'x') c > (_X,x')-re

~:=!~ /
~ d ~
(! ,y)

~ is an isomorphism and where i is defined by

0x I -» 0x I IN, . We thus have that in the si tuation,x ,x x

° d<r , Y

fO
x'

---> 0x I
,X

.0
1. I

X
---» 0x ,I N I,x X

fO is injective by I Theorem 6.2.1 and ixO,ofO , is an isomorphism.x' x
The claim then follows from the following Lemma.

Lemma 5.1.6. Let RC-> 5 be a finite extension of Ioeal analytic

a:-algebras such that R is an integral· domain and the nilradical
.----.-."

115 of S is prime. Then Quot (R) @R S i:i Quot (5)

Proof. Since n 5 is prime, any element of S is either nilpotent

or active by (2.2.1). By the argument in the proof of the Active

Lemma I 5.2.2 and t E Ac (5) = 5 - n
S

satisfies an integral equation

(5.1.6) k k-1
t + r k-1 t +. •• + r 1t + r 0 = °

wi th k ~ 1 , r j E R for 0 ~ j ~ k - 1 , and r 0 -:J 0 •

Now any element of Quot(R) ~R5 can be written as a fraction sir

wi th sES , r E R - {O} • Since R - {O} C-> 5 - n S ' we can cons ider
---...,....

this as an element of Quot(S) , and this gives a homomorphism

(5.1.7)
---..,/

lP : Quot (R) @R S -> Quot (5)

I claim lP is an isomorphism.

Injectivity of lP: Suppose
.---""
Quot(S) . This rneans there is

sir E Quot (R) @R S

t E Ac (S) wi th

maps to 0 in

t·s = 0 . Multiplying
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(5.1.6) with 5 shows r -5 = 0 , with r
O

E R ~ {'O} , hence sir = 0
0_ 1in Quot (R) ~R S = (R - {O}) S

Surjectivity of

u E S such that

~

<.p: Let s It E Quot (S) ; i t suff ices to produce

tu = rER - {O} , for then s/t = su/r .

Now tEAc(S) , therefore (5.1.6) gives

t(
"tk-.1 k-2

+ r k - 1 t + ••• + r 1) =

so it suffices to take u :=
k-1 k- 2

t + r k-1 t + .•• + r 1 and r := -ra ·

Rernark 5.1.7. .The d.egree forrnula 2.2.8. holds.

This is now immediate by 5.1.2 and 5.1.4.

Remark 5.1.8. Formula (3.2.5) can be writtenas

(5.1.8) m (~,x) = min { d:iIrQuot (0 )Quot (0 d ) ~ 0 ° 1
(f1 ,···,fd )s.o.p. a;d,o 0:.,0 a:d,o x,xf

of, 0
X,X

1\

By the proof of Lemma 4.1.4, Quot(O ) --> Quot(Ox ) is a flatX,x ,x

morphism of local rings with residue field extension of degree 1;

fram this. one ean show

dimQuot(~ ) (Quot(O cl
a:d,O a: ,0

1\
~ 1\ 0 )

0a:d,o X,x

whieh is just Chevalley's definition of his e(Ox,x;f
1

, ... ,f
d

) .

So m(~,x) corresponds to taking the minimal value of these multipli­

eities, as asserted in the Historical Remark Chapter I, (6.7) ,c).
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5.2. Algebraie mUltiplieity.

We now eharaeterize the geometrie multiplieity algebraieally.

Theorem 5.2.' (The Multiplieity Theorem). Let (X,x) c-> (~n,O)
- d-

bc an embcddin0 oE (~,x) E cpl
O

" d:= dirnx~ , and L Erg (~,x)

Then

(i)

( ii) if d
L E P (X, x) , deg P

L
= e (m ,° ), and

e - x - x X,x

if (~,x) 1s pure dimensional , the eonverse holds;

(iii) m(~{,x) =e (mx'Ox,x)' 1.e. the geometrie rnultiplieity

of (X,x) equals the Samuel multiplieity of 0x . Espeeially,,x
m(~,x) doe5 not depend on the embedding (~,x) c-> (!n,O) , but

only on the i50morphi5m elas5 of (X,x) ~n cpla .

Proof.

...lU. We have deg x EL = e (qx'Ox,x) by Theorem 5.'.4, where

0 i5 -primary,q = EL,x (md) .Ox,x . 5inee qxs;;;m x
mx x

e (q ,Ox ) ;;;:e(m,O ) by the definition e (q ,0 )
x ,x x X,x x X,x

(ii) • If

finite at

L E pd (X,x) , L rtl C (X,x) , whieh means d D
Le - I~X - • x.!i:.

X E C (~, x) , and hence f inite as a mapgerm

1s quasi-

d
x

PL : (~(~ , x) , x) ->

minimal reduction of

(~d,a) by I Corollary 4.3.6. So

m by Proposition 3.2.3, and so
x

is a

e (q ,Ox ) = e (m ,Ox ) by Chapter I, Proposition (4.14.). The eon"':"'·x,x x ,x

verse 15 j ust the Theorem of Rees ~cf • ..149J " Theorera 1-'of ft, ). '"'l

(iii). This is immediate fram (i) and (i~). Q.e.d.

For geometrie proofsof Rees1s Theorem in the redueed ease for the

maximal ideal see [13], Th. 6.3 and [75], Chap. 7, Th. 7P. Für the

geometrie interpretation of the general ease of Rees 1
' Theorem see

III, 3.2.2.
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m(~,x) = m(C(~,x) ,x)

This gives a geometrie proof of the following well-known faet~

proposition 5.2.3. Let (X,x) E eplO be equidimensional. Then

m(~,x) = 1 implies (~,x) is smooth.

Proof. m(~,x) = m(f(~,x) ,x) by Corollary 5.2.2.

nf (~'x) C-> ([

= deg(~C(X,x» by Theorem 4.1.8, where

wi th ~ dim~(rn Im 2). But deg (JP C (~,x» = 1
, u. x

irnplies

that JPC(~,x) is a (d-1)-dirnensional linear spaee (see Exercise)

and so d = n , since otherwise mx eould be generated by less than

n elements which cannot be. This proves the claim.

Exereise: WC(X,x) 1s equidimensional (Hint: Consider 3.1.3. Or

blow up X at x).

As nn applicatian of 5.2.1, we now prove:

Theorem 5.2.4. (Upper SemicontinuitY,af Multiplieity). Let

:X E cpl . Then the functian x ~> e(m ,0 ) is upper semicontinu-
x X,x

aus, i. e. any x E X has a neighbourhood U such that

e(mx ' ,Ox,x') :;:; e (mx'Ox,x) for all Xl EU.

Proof. Since the claim is local, we may assume (X,x) C--> (~,O)
dfor some n. Let L € P (X, x) where d = dirn X , then L ~ X by
e - x d x

Proposition 3.2.4 (i), and so PL : (X,x) -> (CI: ,0) is quasifinite

and hence finite by Proposition 3.2.2. So L +;, E P~ (~,x') for

x' near x. Choosing U sUfficiently small, we have

e(m ,Ox ) = deg x ELx .,x

~ deg . I P
Lx -

by Theorem 5. 2 . 1, (ii)

by Theorem 2.2.8

by Theorem 5.2.1, (i)
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111. GEOMETRIe EQUIMULTIPLICITY~

As exposed in the preface of this book, one of the nurnerical condi­

tions to be irnposed on a subspace Y of a complex space X as to

'qualify for a suitable centre of blowing up is that X should have

the same multiplicity along Y . This condition has been studied alge­

graically in Cllapter IV, and it is the purpose cf this part to give

a description of it from a geometrie point of view.

~ TI
The appropriate geometrie property of the blowup X -=-> X of X

'along Y whieh is eontrolled by the multiplieity in ease Y is smooth

is the equidimensionality of TI restrieted to the exceptional divisor.

In terms of the normal eone, it is called normal pseudoflatness of X

:along Y i in terms of loeal algebra, it is just the condition

'ht(I) = s(l) , where I defines Y in X loeally. Normal pseudoflat­

·ness has been introduced by Hironaka in [34], and the name originates

from the faet that it is just that weaker version of normal flatness

whieh keeps the essential topological properties of the latter. The

surprising fact that equimultiplicity is equivalent to normal pseudo­

flatness is due in the special case of a surface along a smooth eurve

to Zariski, and, in the general case,to Hironaka and Schickhoff.

In the first paragraph I introduce the nations of normal·cone,

.blowup,and nor~al flatness and pseudoflatness for the complex analy­

tic case. In the following section, I give a detailed account of the

result of Hironaka and Schickhoff and related results of Lipman and

'Teissier. These results could have been,in principle, mostly derived

-from the correspondi~g algebraie results by the method of compact Stein

neighbourhoods, but I have preferred to give a geometrie proof more

or less along the original lines. This was done partly to give an

introduction to the geometrie method, where multiplieity appears as

,a ioeal mapping degree and whieh is used explieitely by the authors

!rnentioned above, .and partly to illustrate the geometrie content of

various other algebraie notions and methodsi in particular, the rela­

tion of equimultiplicity with reduction and integral dependenee, whieh

is emphasized in the preface of this book, is commented on. The last

paragraph, finally, describes more briefly the geometrie eontent of

equimultiplieity and normal flatness along a nonsmooth eentre, where

equimultiplieity in the former sense has to be modified to a general

type of multiplieity, whieh however, ean again be described geometri­

cally by Ioeal mapping degrees.
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My general contention is that the relation between equimultiplicity

and normal pseudoflatness asserts l on the geometrie level l that the

local mapping degree of a linear projection of a complex spacegerm

(embedded in a number space) is a rneasure for the contact of the kernel

of the prajection with the spacegerrn at the intersection. In that

senseI the requirement of equi~ultiplicity of aspace X along a sub­

space Y puts a transversality condition on the inteisection of the

space with the farnily of projections defining the multiplicity of

the space along the subspace. This transversality appears as growth

condi tions on the local coordinates of X' in directions normal to Y I

and so the relations with integral dependence and normal pseudoflat­

ness emerge. Frofi this the fundamental r~le of the Theorem of Rees­

Böger should be apparent l and I have tried to indicate the connections

with this theorem at the appropriate places.

§ 1. Normal flatness and pseudoflatness.

Here I discuss the nations of normal flatness and normal pseudo­

flatness of a complex space along a closed complex subspace. Basic
, .

is the result that these notions are open l and generic when the

subspace is reduced. It is derived from the algebraic case by the

~ethod of compact Stein neighbourhoods land· for this same technical

preparations are needed, which are supplied in 1.1. In 1.2 the nations

'of the analytic and prajective spectrum over an arbitrary base §. E cpl

are discussedi these canstructions are fundamental for the construc­

tion of the normal cone and af the blowup. Section 1.3 contains a

proof that flatness is open l and generic along a reduced base.

Finally, in 1.4 1 we define the normal cone, the blowup' , and discuss

normal flatness and normal pseudoflatness.

1.1. Generalities from Complex Analytic Geometry.

In the sequel I need some general facts fram Complex Analytic

Geametry which I collect here.

First same notation. Let X be a complex space. If x EX,

P c 0x ,x a prime, I put

(1.1.1) :TI< (p) := Quot(Ox /p)
IX
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the resi~ue field of the loeal ring (Ox"x)p . Let

0x-module, x EX, then

M be a eoherent

(1.1.2) M(x) := Mim" Mx x x

Proposition 1.1.1. Let the notation be as above.

( i) dima:M(x) i:::dimk (p) (Mx@Ox :D< (p) ) for all p E Spec (OX ) .
,x

,x

( ii) dima:M (x) ~ dirna:M(x I ) for all Xl near X , i.e. the function

y t--> d1ma:M(y) 1s upper semicontinuous.

(11i)

(iv)

Proof.

The freenees loeus LF (M) : = {x E X IAI i5 loeally free at x}

1s the complement of an analytie set Deg(M)

If X 15 redueed, M is loeally free at x if and only if

the function y r-> dim~M(y) 15 constant near x. Further,

Deg(M) 15 nowhere dense.

(i) •

give

Let m:= dima:M(x) . Then m

m generators of (M) over
x p

generators of M over 0
x X,X

(OX ) · Then apply Nakayama'5 Lemma.,x p

(ii). Let Fn(M) be the n-th Fitting ideal of M (cf. I 3.2.h)) and

X (M) the closed cornplex sub5pace defined by it. ,Tensorizing the exact-n
sequence of I (3.2.6) at x with a: shows

(l.1.3) X (M) = {y E X I d im<tM(y) > n}n

Now, with m = dim<tM(x) , xEX-X (M) , which is open. "
m

(iii) . It is easy to see that

(1.1.4) M is locally free of rank n e:-::;I>

x

F (M) = and Fn - 1 (M)x = 0 .n x X,X

Hence,

(1.1.5) LF (M) = X - n (X (M) u s upp F l' (M) )
n~O n n-

and n>O (X (M) u supp F 1 (M)) is analytic since the family
n. n n-

(X (M) u supp F 1 (M)) EJN become s locally stationary.n n- n

(iv). Let r : = r (M) : = min {dima:M (x) I x EX} • Then X (r) : = X - X
r

(M)

is nonempty and open. Nowall x EX(r) are in X
r

-
1

(M) , so

F 1 (M) I X (r) c N
X

I X (r) , which implie 5 F 1 (M) = 0 f or x E X (r)r- - r- x
since X is reduced. The claim now follows by replacing X with any

,open neighbourhood of a given x E X and applying (1. 1 .4) .
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Theorem 1.1.2 (Cartan). Let ,\{ be a coherent module on the complex

space X and MO c M1 'c M2 ~ ••• ~ Ai an increas ing chain of coherent

submodules. Then this chain 1s locally stationary.

Par a slick elementary proof see [28] , Chapter 5, § 6; see also

[14], 0.40.

Next, we set up a formalism ([5],[29] ,[38],[41J,[63]) by which results

in Algebraic Geometry can often be transferred to Complex Analytic

GeometrYi we will use it in 1.4 to deduce the fact that normal flat­

ness is generic from the Krull~Seidenberg-Theorem in Chapter IV,

(24.4). This idea seems to have originated from footnote 18 on p. 136

of [33]. We partly follow the presentation of [38].

In the following, X is a local model in some open set U s; a:n

Definition 1.1.3. A distinguished compact Stein set in X is a

compact neighbourhood of some x E X of the form Q n X , where Q

is a compact stone in U.

By 11 Corollary 1. 4 . 2, any x E X has a neighbourhood basis con­

sisting of distinguished compact Stein subset5.

We first need a noetherian property for distinguished compact

Stein subsets. The following result 15 a special case of a theorem

due to Frisch ([16], Theoreme (I, 9)) and Siu ([68J, Theorem 1).

Proposition 1.1.4.

in a complex space

Let K be a distinguished compact Stein subset

X . Then O(K) = r(K,Ox) is a noetherian ring.

Proof. We may assume

Let Q s; U be a compact

The surjection 0u--»

r (Q,Ou) -» r (K,OX) by

is naetherian. For this

i
X~> U is a loeal model, where 'U c a:n

stone which defines K, i .e. K = X n Q

i*Ox induees the surjection

Theorem B. So ·i t suf fices to prove

we induet over the real dimension

If d = 0 Q is a point, and the claim is just the Rückert

Basissatz, I 1.3.2. Let d ~ 1 , and suppose the proposition is true

for (d-1) -dimensional eompact stones. Suppose I S r (Q, 0x)' were not

finitely generated, so we can find a sequence f
1
,f

2
,f

3
, ... of

elements in I such that we get a strictly increasing sequence
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I,CI 2 CI 3 c .•.

Now we may write

with

(1.1.6)
2(d+1) 0

Q = U Q~ll Q
.i!.= 1

o

where the Q~ are compact (d-l)-dimensional stones, and Q ·is a stone

which is open in the real vectorsubspace of ~n spanned by Q . By

the induction assumption there are finitely many elements

g" ... ,gtE r(Q,Ox) such that I·r(QQ.'Ox) = (g1, ... ,gt)"r(QQ.'Ox) for

Q. = 1, ... ,2(d+1) . Let U be an open neighbourhood of Q in ~n such

that g 1 , ... ,gt E r (u, 0X) • Define ideal sheaves' 1 j c 0u via

(1.1.7) ! . (V) :=
]

(g 1 ' • • • , g t) • 0V ' V ~ U - Q open

(g 1 ' . · · , g t ' f 1 ' • • • , f j ) " 0V ' V c U open, V n Q i 0 •

Then I 1 c 1 2 c 13 c . .. is a strictly increasing sequence of coherent

0u-ideals, 50 it cannot becorne eventually stationary on the cornpact

set Q . This contradicts Theorem 1.1.2. Q.e.d.

A point x E: K defines a character Xx 0 (K) -> (t ,via

called a point character. Its kernel is a maximal ideal

denoted Mx. Let K be the ringed space (K,O!K), and

be ~the usual prime spectrum as a ringed space. We get a

spaces

Xx (f) := f (x)

of 0 (K) ,

Spec(O(K»

map'of ringed

(1.1.8)

by putting

K ---> Spec(O(K))

(1.1.9)

and

M
x

= Ker (X )
x

for xEK

(1.1.10)

for f E 0 (K) .

o
(P K , 0 ( f ) : = °(K) (f) -> r (D ( ~) , 0X )

We call a 5ubset A s; K analytic in K if there is an analytic sub-
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set A of some open neighbourhood V 2 K such that A = A n K ; this

is the same as requiring that there 1s a finitely generated ideal

sheaf I =0 IK such that A = N (I) . The following re sul t is bas ic_

-1
Proposition 1.1.5. If BsSpec{O{K)) is Zariski-closed, <PR (B) =: A

is analytic in K , in fuc-t A = N(I) , when 13 = V(I) fer 'IS;O{K)

an ideal and I = I.OIK . In partieular, ~K 1s a morphism of ringed

spaces.

Proof. Let B = V{I) sinee 0 (K) is noetherian, I = (f 1 , •.. ,fk)·O (K)

for same f
1

, •.• ,f
k

EO(K) , and I = (f
1

, •.• ,fk )·OIK. Then
-1

x E <P K (V (I) )e-. Mx .2 I ~ f 1 ' • • · , f k E Ker (Xx) <=> x E N ( I )

Remark 1.1.6.

(i) The sheaf morphism ~~ is regular on the stalks. Prom this one

may deduce the openness of certaln analytic loei, e.g. the .regular

loeus, the Cohen-Maeaulay locus, or the normal locus of a complex

space, from the corresponding scheme-theoretic results, which, as a

rule, are easier to provei see (38].

(ii) One may use Proposition "1.1.5 to

flatness locus of a coherent 0x-module

f :: X -> Y of complex spaces from the

(Theorem of Frisch) i see (41.].

deduce the openness of the

M with respect to a morphism

corresponding algebraic result

1.2. The analytic and projective analytic spectrum:

This section generalizes I, 3.4 and II, 4.3 to the case of families

of affine respectively projective varieties pararnetrized by a complex

space.

Definition 1.2 _1. Let .§. E epl, A a sheaf of 0 s-algebras.. A is

ealled an admissible 0s-alaebra, or an Os-algebra locally of finite

presentation« if every x E S has an open neighbourhood . U such that

there are sections g 1 ' • -.• ,g.?. E 0S (U) (T 1 ' •• • ,Tk ] and an epimorphism
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lP u

of 0u-algebras such that. Ke~(wu) is the ideal generated by

Y1,aoa,lJlJ.,

Now consider the category

objects are the rnorphisrns ~

are the cornmutative diagrams

cpl/S of compiex spaces over ~, whose

W --> S in cpl and whose morphisms

w
f

-=---> w'

--.J

~\/~I
S

Then an Os-algebra A induces a contrafunctor

(1.2.3) HomO 1 (A,-)
-~S -

cpl/S ---> sets

I

J
-<
~.,
j

j

as follows: 'It assigns to. an object ~: ~ ~> ~ in cp1/g the set

HomO -alg(A,~*Ow) , and to the comrnuative triangle (1.2 a2) the map
S -

(1.2a4) -->

oa ~> ~~(f ) 0 a

Theorem 1a2a2 (see [64], Expose 19)a If A is an admissible Os-algebra,

the functor (1 a2.3) is representable in cpl/S

This means the following: There is an object

cpl/§. and an element l;X E HomOs-alg (A, ('ITx ) *OX)

transformation

.!Ix : X -> S in

such that the natural

---> HomO 1 (A,-)
Sa g

which assigns to ~ W --> ~E~~ the map

- --_.. ------
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(1 • 2 • 6 ) -->

W
f

---=~-> X

is a natural equivalence of functors.

As usual, the"pair (~X'~X) is unique up to unique isornorphism.

The universal property together with the glueing construction I 3.2 a)

reduces the proof to the case A = 0S[T
1

, ••• ,Tk]/I ,where I is

generated by sections 9
1
,.,. ,9.Q. E Os (5) [Tl".' ,Tk ]. Now there is a

. k
natural morphism Os (s) [T l' · .. ,Tk ] -> ° k (S x CI: ) , hence

Sx<I:
9 1 ' • .. ,9.Q. generate an ideal ] sO k' and one defines 2!.x via

S x a:

(1.2.7) X := ~(J)
i k'-c > S x a:

2!.x

The homomorphism

S

.0
_~_x_> ° {rr- 1 S) ,

X -

factors through I and restriets over any open U eS, definin9 ~X.

Details are left to the reader.

Definition 1.2.3. The pair (!X'~X) , or,if no confu5ion i5 possible,

the complex space X over 5 , is called the analytic spectrum of the

adrnissible Os-algebra A and denoted Specan(A)

We also write," 'par abus de languague', !A
X -> S

Specan(A) --> S for

Th~ analytic spectrum has the expected functional properties, see

[64], Expose 19. We mention here:
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Proposition 1.2.4, (Base change). Let A be an admissible 0S-alqebra,

~ : .!. -> ~ E cpl . Let ~: Specan (~*A) -> Specan (A) E cpl correspond

to the canonical morphism A --> ~*~*A via (1.2.6). Then the diagrarn

Specan(<.p*A)
tlJ

Specan(A)(1.2.8) >

2:lP*A
~)

'11
-A

v v

T > 5
~

is cartesian, i.e. Specan(~*A);;:: Specan(A) x S ! .

From this we see the following: Let

m c Os the maximal ideal, and put
5 - ,S

A
5

be the stalk of A at sES ,

(1.2.9) A (5) : == A Im · As 5 S

which is a finitely generated ~-algebra. Then in 1.2.7.

(.1 .• 2 • 1 0 ) x-s
-1

: == 2!. (5) == Specan(A (s) )

x == Specan(A) as a

spaces) pararnetrized

-> S . This motivates

by base change, i.e. we may think inforrnally of

family of affine varieties (considered as complex

by the points of the cornplex space S via n.: X

the following result, which I just quote:

Proposition i .2.5 ([64], Expose 19, Prop. 3 and 4).

(i) The points of X correspond bijectively to the elements of
-g -

o
Vrn (m A ). : = {n E: Specrn (A ) In:::;) m A} under x E X f--> Ker (A ~ X, s> 0x )s 5 S - S S -s s , x

(ii) Let

factors 'as.

n E Vrn (m A) correspond to x EX. Then
s S 45X -5

A --> (A) ----> 0x ' and
5 S n ,x

o
1';X,s

(1.2.11)
/\
lP x

---> aX,x
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is an isomorphism.

We now corne to the projective analytic spectrum.

Defini tion 1.2. 6. Let S e: cpl . An admissible graded 0s-algebra is

an admissible Os-algebra such that

(i) A is positively graded, i.e. A = EI) A
n?:O n

, and Iocally generated

(ii) The Ioeal representations (1.2.1) can be so chosen that ~U is

a graded hornornorphisrn of degree zero, where T
1

, ••. ,T
k

have

degree one.

Proposition 1.2.7 ([47], 1.4). Let A be a graded Os-algebra which

is locally finitely generated as Os-algebra. Then the following state­

ments are equivalent:

(i) A is an admissible graded Os-algebra.

(ii) A
k

is a coherent OS-module for all k;;; 0 •

Since the referenee may be not easily aeeessible, I give a shert idea

o~f the proe f .

(i) ~ (ii): Con5ider (1.2.1); Ke~(~U) is a locally finite 0u-module,

so Aklu Ci (Ou[T
1

, ••• ,Tn]~/Ke.~{~U)k is coherent.

(li) ~ (i):

rnorphism

(1.2.12)

The question is loeal, so we rnay assume we have an epi-

of graded 0s-algebras. Let K := Ke/t (1JJ) , and put for nE JN

(1.2.13)

Then "A(O) -» A(1) -» ... is a decreasing tower of admissible 05­

algebras. This gives us an increasing chain of coherent 0 k-ideals
5x<I:
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r(O) cr(1.) s ... , where r(h) defines x(n} := specan(A(n))s.§.X!k

The claim then follows from Theorem 1.1.2.

If A is ul1 u<.1missiblc yrüdcd 0s-alyebrü, wc havc local rcpresen­

tations (1.2.1) with Ke~(~U) homogeneous. Therefore, in the local

construction of Specan(A) in diagram (1.2.7), the 0s-homogeneous
k-1 '

ideal ] defines a closed complex subspace Z c-> s)( lP , and

we get the commutative diagram

(1.2.14) Z c > S )( JPk - 1

~z
0 Es

v

s

The Ez glue weIl 'because of the functorial properties of the Specan­

constructionj so, for any admissible graded Os-algebra, we have con­

structed a complex space Pz Z --> S over S

Definition 1.2.8. The space so obta1ned 1s called the projective

analytic 5pectrum of A and denoted EA Projan(A) --> S or

Projan(A) for short.

Remark 1.2.9.

tion.

As in 1.2.4, base change holds for the Projan-construc-

1.3. Flatnes5 of admissible graded algebras.

Definition 1. 3. 1 • Let S E epl , A an admis,5ible Os-algebra. Then A

15 ealled flat along S at SES if and only if A
s

is a flat

0s,s-module. A 1s called flat along S if and only if it 15 flat

along S at all sES.

Rernark 1.3.2. If A is flat along S , 1s Os -flat for all·,s
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./'-...
sand all n E Speean (Ag) henee (Ag) n

all sES and x E ]l~1s ) , wh ere Ex : X

Proposition 1.2.5. It follows that Ex

f\

= °X,x
-> 8

X -> S

1\
is Os flat for,s

is 8peean(A), by

is a. flat morphism.

Propos i tion 1. 3. 3 . Let .§. E epl be redueed,. A an admissible graded

ps-algebra. Thc following statements are equivalcnt:

(i) A is a flat Os-algebra.

(ii) The funetions s ~> dim~Ak(s)

stant for all k.

(see (1.2.9)) are loeally eon-

Proof. A is a flat Os-algebra if and only if Ak is a flat 08­

module for all k. But eaeh Ak is a eoherent Os-module by Proposi­

tion 1.2.7. The claim then follows from Proposition 1.1.1 (iv), since

over a loeal ring, to be flat means to be free.

We now have the following theorem, whieh has been stated by Hironaka

in [33], p. 136, and preved by means of Proposition 1.1.3 in [38], and

by ether means in [471.

'Theorem 1.3.4 (Flatness 1s generie). Let A be an admissible graded

Os-algebra on the eomplex space S. Then the set F (A) : = {s E S IAg

is a flat Os -module} is the eomplement of an analytic set. If S,s
i5 redueed, S - F(A) 1s nowhere dense.

Proof. The question is loeal. Let K~ S be a distinguished eompaet

Stein subset, and let Ak := r (K,Ak ) A = k~OAk ' R .:= r (K,OX) = 0 (K) i

R i5 noetherian by Propo5i tion ,1 • 1 .4. Let s E K . Then

(1.3.1) A is Os -flat ~ Vk 2: 0 (Ak)s is Os -flats , s ,S

<=-01> 'v'k ~ 0 . (Ak)M is R
M

-flat, sinee.
s s

RM -> 0 is faithfully flat
s S,S

by Ir 1.3.2.

~ AM 1s R
M

-flat
5
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, -1
Hence K n F (A) ::: <P K (F (A)) • The first claim now follows by the Krull-

Seidenberg-Grothendieck -Theorem (Chapter IV, (24.4)) and by Proposi-

tion 1. 1 .5. The second claim follows from Proposition 1. 1 .,1 (iv)

and 1. 3 . 3 . (i i) :

(1.3.2) S - F(A) = U Deg(A)
k"'O k

has empty interior as a countable union of nowhere' dense analytic

sets by the theorem of Baire.

Remark 1.3.5. Theorem 1.3.4 can be interpreted more concr~tely,

without using the Krull-Seidenberg-Grothendieck-Theorem, as follows,

using 1.3.3.instead. Let S be reduced. Then 1.3.4 would follow from

1.3.3, if one were able to show that the Hilbert functions H(A(s) ,-)

were constant for· 5 near So ' i.e. if k ~ H(A(s) ,k) were inde­

pendent of 5 near sO. Note that this is apriori stronger that the

statement (ii) of 1.3.3, since the neighbourhoods of So on which the

functions dim~Ak(s) are constant might depend on k.

Now it is knownthat each Hilbert function k r-> H(A (5) ,k)· becomes

a polynomial, of degree dO(S~-l , say, for k above some number

k O = kO(s) , and so is determined by any dO(s) values at numbers

k > k O(s) . So the constancy of f initely many functions dima:Ak (5).

near So would guarantee the constancy of all of them if we were able

to bound dO(s~ and k O(5) near So ; this would then imply 1.3.4

because of 1.3.3 (li). So what one wants·to show is:

(1.3.3) For any So ES, there are a neighbourhood U of So
and natural numbers d O and k O such that H(A(s) ,k)

is a polynomial in k for all k > k O of degree <d O for sEU.

There might be two ways to establish (1.3.3). For the first one, results

of Grauert and Renunert for projective morphisms over a basts in cpl

~oncering the vanishing of the sheaves (RiE)* M(n) for

E = EA : Projan(A) --> ~ and M a coherent module on Projan(A) and

generalizing well-known facts fram the scheme-theoretic case; (see

[25], [2.] Chapter IV)) suggest that one should have: There is a neigh­

bourhood U of So and a number k
O

such that
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H (A (5) ,k) ::: X (~s ,OZ (k)) for
5

where .E : Z -> 5 is Projan(A) Z the fibre 12.- 1 (5) and
o (1) 0k

-5

°z (k) ::: oZ (1 ) the canonical linebundle on Z Then
Z

s
(1.3.3) holds with d

O
::: max {dirn Z I s E U } + , .

-s

The other approach might be based on a parametrized version of the

division algorithm for rings of the form 05,5[Z, , ... ,Z2] (see [20],

(, .2.7) and [62], '.3). Applying this to the ideal

1 s S 05[Z" ... ,Zi]' where A:;; 0S[T" ... ,Ti]/1 locally, should give
o A

a leitideal generated by monomials \A Z , where AA are germs in

O· • Now the Hilbert function of a homogeneous ideal
5,sO

I c a: [Z, I ••• I Z2,] :::: R is the Hilbert function of the lei tideal LM (I)

and so (see [53])

H(R/I,k) :::
t
L (_l)k

j:::O (

2, - 1+deg 2 c.m (M . , ••• , M . ) +k )L 1., 1. j
1 <' < <. ~t_1.

1
••• 1. j _ 2,-1 +

where the monomials M1 , ... ,Mt generate LM(I). Frorn this it rnay be

possible to see that H(A(s) ,k) ::: H(R/I R,k) is constant out-
s

:side the subspace of (S,sO) defined by the AA and can only#in-

crease over there, so that s ~> H(A(s) ,k) is upper semicontinuous,

and that the H(A(s) ,k) are polynomials for all s near So for

k above a fixed value k O . (Added in proof: By oral communication

of J.L. Vicente this effective approach has been worked out in cornplete

detail in a forthcoming book of Aroca, Hironaka, and Vicente on the

resolution of singularities of complex spaces).

1.4. The normal cone, normal flatness, and normal pseudoflatness.

Let X be a complex space, yc i > X a closed complex subspace,

def ined by the locally f inite ideal I cO.- X

ble graded 0x-algebra.

Lemma 1.4.1. The graded 0x-algebra := is an admissi-
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Proof. Sinee I = B
1

(I lOX) is laeally finite and generates B(I,Ox)

the 0x-algebra B(I,Ox) is locally finitely generated. Mareover , I

is eoherent I so all I k I k z: 0 I are coherent ,and the claim follows

fram Proposition 1.2.7.

Corollary 1.4.2. The graded 0y-algebra

(1.4.1) EB
k~O

i5 an admissible graded Gy-algebra.

Proof. G(I,Ox) = i*S(l,Ox) , and S{l,Gx ) is an admissible graded

°x-algebra.

Henee, the following definition makes sense:

is ealled theDefinition 1.4.3.

normal cone of Y

!G (1 , 0X) : Sp e e an {G (1 ,°X)) -> Y

in X and denoted v ~(~,!) --> Y

For geometrie applications to equimultiplicity we need a geometrie

description of C(~,1) , which will explain the name 'normal cone l
•

".,,;

Recall that a blowup ~ : X --> X of X along Y is a morphism

which i5 universal among the morph1sms ~ : Xl -> X having the pro-

perty that ~-1~ is a hypersurfaee in !' , 1.e. locally generated by

a nonzero-divisor. It is unique up to unique isomorphisrn.

Theorem 1.4.4.

Y .

projan(B(I,G X )) --> X is the blowup of X along

I will not prove Theorem 1.4.4, but make some remarks which I will

use anyway. Let I be generated over the open subspaee UC--> X by

9 1 ' • • • ,9k E: °X (U) , and consider the morphism

(1.4.2) y u - Y

x

___> ]pk-1

1""---> [ 9 1 (x) · .• : 9 k (x) ]

--- _..----- .~ .._----
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It can then be shown that Elu above is given as

(1.4.3) r r-'- > U x ]pk-1
-y

plu

v ~­

u

according tois the graph space of yk-1(Q-Y) x:IPc....:..>where r-y

I 3.2 g), and r- is the idealtheoretic closure of r' , i.e. the-y -y
smallest closed complex subspace of U x ]pk-1 containing I y as

an open subspace (for this see [14],0.44). It is then not difficult

~o show, using the factorization criterion for holomorphic maps through

a closed complex subspace (see [23], Chapter I, § 2.3),that (1.4.3)

constitutes the blowup locally, which proves 1.4.4 by universality.

(The diagram ,(1.4.3) coincides with the loeal description given by

"Hironaka and Rossi in [37]; consult this paper for details).

Corollary 1.4.5. If TI: X--> X blows up Y, ~-1 (Y) ~ WC(~,y)

the projectivized normal cone.

Proof. ~C(X,~) 1s defined as

-G (I ,0X) = i * B (I ,0 X) where i:

,claim follows by base change for

Pro j an (G (I , 0X)) • Bu t

y C-> X i5 the inclusion, and the

Projan (Remark 1.2.9).

This gives the following description of the fibre v- 1 (y) of the

normal cone v f (~,~) -> Y at a point y E Y . Choose generators

,g1'. · · ,gk E 0x,y of the stalk I y , where the ideal I f; 0x defines

,lc-> ~ , and add elements h 1 , .. · ,hf such that h 1 , ... ,hf , g1, ... ,gk

generate the maximal ideal. After possibly shrinking X , we rnay

assurne these generators are in 0X(X)., and they define, according

'to I 4 . 2,. 2, an ernbedding ~ ~!n , n : = f + k , as a locally closed

subspace. Then g1, ... ,gk are induced by the coordinates zf+1 , ... ,zn

of ([n via i. Let K:= ([k x 0 , and let E: ([n -> K be the pro­

jection; then y (x) = p (yx) S K , and (1.4.3) gives, together with
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,Corollary. 1 • 4 • 5 •

(1.4.4) 1 im p Iyx) } S K
x-y
xEX-Y

Corollary 1.4.6. dim~C(~,.x) = dirnV(E;)~ for all E;EC(~,X) . If

(~,v(~» is equidirnensional, so is (f(~,~) ,~)

proof. There is a eanonieal ernbedding ~c-> C(~,r) , eorresponding

to the augmentation homomorphism G(I,Ox) --» 0x/I = i*Oy , where
i

1 S 0x defines Y c > X , via the universal property of the Specan-

Iconstruction. In the sequel, therefore, we may view Y as being"

rnaturally embedded in C(~,~)

"Let ~EC(~,~) . We may a55ume (Y,v(E,:» t- (X,v(E,:» First, let

i~ i~ Y , so it i5 not a vertex of a fibre of v. Then ~ eorresponds

,fto a line on C (~':!.) , i.e. to a point Xl EX, where 11 : X --> X

.j is .the blowup of X along Y. Now .:!!.IR - 1T-1 IY) : X - -;;--1 l~) ->-X - Y

_.! is .isomorphie; so there are points on X arbitrarily elose to. reg_1j TT (.X"') =: x = v (E.:) , hence dimxiX = dimv (~)x • Since !!. (:!) =]I? C (X,~)
~ ~ ~:

is ja hypersurface in R , i.e. loeally generated by a nonzerodivisor,

,dim ,X = dirn 1 lP C (X, Y) + 1 by, the Active Lemma I 5.2.2. Thus we getx x -- - -
~d~~C (X ,!) = dimx I X = dirn\) (E;) X

:If E; is a vertex, there are points ~I arbitrarily elose to ~

~on ,C(~,Y) - Y , where dim~,C(~,~) = dirn\)(~,)X by the first casei

tthis again irnplies dirn~C(~,r) = dimv(t.:)X .

:The ,last claim is obvious. a.e.d.

:Remark. For the algebraic proof, see Chapter II, Theorem (9.7).

i
"Definition 1 .4. 7 (Hironaka) . Let X E epl , yc > X a closed

complex subspace, yEY . Then X is called normally flat along y--
,at y if and only if G (I ,Ox)y is a flat Oy -module. X is ealled,y
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norrnally flat along Y if and only if it is norrnally flat along Y

at all y E Y •

The following theorem with an idea of proof was formulated by Hironaka

([33], p. 136) and proved in [38], Theorem 1.5, and in [46], Th~or~me

8.1.3.

i
Theorem 1.4.8. Let X E cpl , :!. c > X a closed complex subspace ,

and let F(X,Y) := {yEY I X is normally flat along Y at y} .

Then F(X,Y) is the complement of an analytic set in Y. Moreover,

when Y is reduced, Y - F (X, Y) 15 nowhere dense.

Proof. This is immediate from Theorem 1.3.4.

We finally need the following weaker notion, whose irnportance was

also discovered by Hironaka ([34], Definition (2.4) and Rernark (2.5)).
-1 -1

We use throughout dirny'J (y) = dirn v (y) , cf. II, Proposition 3.1.2.

Proposition and Definition 1 • 4 .9. Let ~ E cpl , yc-> X a closed- -
complex subspace, and 'J : f(X,:!.) -> Y be the normal cone. Let X

be :equidimensional at yEY . The following statements are equivalent.

(i) 'J is universally open near y, i.e. there is an open neigh-

bourhood U of y in Y such that,for any base change U' --> U

in cpl,(vIU) XUQI is an open mapi

(ii) dirn v-1 (~) does not depend on z near y

. (iii) d im \J - 1 (z) = d im X - d im Y .
Y y

We call X normally pseudoflat along Y at y if and only if one

of these statements holds true (this clearly i5 an open condition on y).

The s.tatement (ii i) j ust means ht (I ) = s (I ) , where 1 c 0xy y y- ,y
,defines (~,y) C-....-> (~,y) i see Proposition 2.2.5 below.

Outline of proof. We may assume U = Y and Y reduced. We have

the following general facts for a morphism f W --> Z in cEl:
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1) "Z f--> dimf- 1 C~) is upper semicontinuous ([14],3.4).

2) 'Vw E W -1 > d'd im w !. f (w) + d im f (w) ~ - ~rnw~ ([ 1 4]", 3. 9 • )

3) If Z i5 equidimen5ional at all points and f i5 open,

equali ty holds in 2) for all w E ~, • Conver5ely, if Z is

irreducible at z = f(w) and equality holds in 2) for w ,

f i5 open at w ( [1 4 ], 3. 1 0 and 3. 9) .

X to be equidimensional of dimension d at all points

Theorem 7.3.2. Then C(~,!) is equidimensional of dimen­

at all points by Corollary 1.4.6.

We may assume

of Y by I

sional d

Let (Y )AEA
finite and the

Rernark 2.1.4.

be the irreducible cornponents of r; we rnay assurne A
Y).. given by the local decomposition of (r,y) by II

(i) ~ (iii): Make the base change !).. e:.-> Y and get fram 3)

for all )..

(ii"i) q (1i): This follows fram 1) and 2).

(i"i) .,. (i) : (cf. [34]) Since C (~, Y) is equidimensional, we may,

thraugh any given point ~ ES(~,I) and for any A find an irreducible

subgerrn (!y).. , .;) s (C (~,.!) , t;) such that dirnt; WA = dirnv (~) Y).. and

VI~A : (~,t;) --> (1)..,V{';)) is finite. Then, for suitable represen­

tatives, vl~)..:~).. --> Y).. is universally open; for thi5, use the

fundamental facts on open finite rnappings of I, § 6. Since thi5 holds

for all ).. and t; , v must be, after a possible shrinking, univer-

sally open.

Rernark 1.4.10. A motivation for the definition is the following:

If X is normally flat along Y, the normal cone map ~: f(~,~) ---> Y

is a flat rnap of cornplex spaces by Remark 1.3.2. Now it i5 known that

flatness is stable under base extension and that a flat map is open,

hence a flat map is universally open (see [14], 3.15 and 3.19, and

[36 ], p. 225) .

. ~----------- ----
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This is ·in fact the main topological property of a flat map, which,

in particular, implies that the fibres of a f'lat map have the expected

minimal generic dimension. In this sense, normal pseudofl~tness

retains the topological essence of normal flatness.

Rernark 1.4.11. Normal flatness of X along Y at y implies normal

pseudoflatness at this point. Hence, in the situation of 1.4.9, if y

is reduced, the set PF (~,~) : = {y E Y I ~ is norrnally pseudoflat along

Y at y} i s gener ic in Y.

Proposition 1.4.12. Let the situation be as in 1.4.9. Let y be a

smooth point on Y. Then the following statements are equivalent:

(i) X is normally flat along Y at y.

(ii)

(1.4.5)

The natural rnorphism

-1
~ (y) x ~ (~ , y) --> ~ (~ , y )

i5 an isomorphism.

'Praof. Since (1.4.5) corresponds to an algebraic morphisrn of the

corresponding projectivized cones, the celebrated results, of [66] im­

ply that (1.4.5) is an isomorphism of complex spaces if and only if it

is an isomorphism of algebraic schemes. In view of this, the Proposition

1 .4. 12 1s a mere restatement of a wel-l....;known fact aOOut the t:ii.rt?riaka-. ~:r;o~endieck-

lsonorpv hisrn .(cf. [3~).
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§ 2. Geometrie equimultiplieity along a smooth subspaee.

In this paragraph we analyse the geometrie significance ,of a complex

space X having the sa~e multiplicity along a subspaee Y near a

smooth point y of Y , and give various characterizations due to

Hironaka, Sehickhoff, Lipman, and Teissier (see Theorem 2.2.2 below).

The motivation, of course, is to understand whieh restrietions this

requirement puts on the blowup of X along Y ; see the preface of

this book. The result of Hironaka-Schiekhoff is that equimultiplieity

in the above sense is equivalent to normal pseudoflatness, so we have

the noteworthy fact that the dimension of the normal eone fibres are

eontrolled by the rnultiplieity. The underlying reason why this is so

is that the requirement of equimultiplieity and of the normal eone

fibre having the generie minimal dimension both put a transversality

condition on X along Y relating the two properties.To be more precise,

let us embed X loeally around y in some ~n so that Y becomes

a linear subspaee. Let LE pd(X,y) be a projection eentre whose
e -

corresponding projeetion onto ~d has the rnultiplicity m(X,y), as

loeal mapping degree. It turns out that both requirements amount to

the requirement that Y x Land X interseet transversally along Y

in the sense that Y x L n c (~,r) = Y. If X is normally pseudoflat along Y

at y, this fact comes about by blowing up X and Y x L along Y,

and the various projection eentres il'J. Y x L parametrized by points

of Y 'yield projeetion5 whose loeal mapping degrees are eonstant and

give the multiplicity of X along Y . The converse direetion, star­

ting fram equimultiplieity and reaehing transversality, is more delicate

and i5 eS5entially the geometrie version of the Theorem of Rees-Böger.

Inherent is the principle that multiplieity was defined as aminimal'·

mapping degree, and this minirnality forees the projection eentre

defining the multiplieity to be generic and hence transversal. Arche­

typical for this situation is (~,x) c-> (!n,O) given by a Weierstraß

equation so that the z -axis L has 0 as isolated intersection
n

point with X; it is then a ehallenging exercise to convinee one-

self that the projection along L has minimal mapping degree if and

only if L is transversal to the tangent eone. We end by analysing

same further geometrie eonditions and their relationship to various

algebraie eharacterizations of equimultiplieity, especially to the

nation of reduction and integral dependenee, as exposed in the first

four chapters of this book. It 1s instruetive to return again to the

above Weierstraß example and to convinee oneself that the transver­

sality of L to the tangent eone is, in this ease, equivalent to z
n
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being, as a function on X , integrally dependent on the ideal genera­

ted in 0x,x by z1' ... ,zn-1 . In particular, it appears that

the algebraic connection between reduetion and integral dependence is

reflected geometrieally by the fact that the transversality condition

stated above is equivalent to growth conditions on the eoordinate

funetions of ~n along normal directions of Y in X .

2.1. Zariski-eguimultiplicity.

Throughout this section we employ the following notation. X is

a eomplex space, Y a closed complex subspaee, yE,Y a smooth point

on :!.., I s;; Gy the ideal def ining r c2:.-> ~ ' and p E Spec (G x )z ,z
the ideal def ining the subgerrn (:!.., z) !: (X, z ) f er z E Yir . I f

(R,m
R

) is a loeal noetherian ring, e(R) := e(ffiR,R)

Definition 2.1.1 (Zariski-equimultiplicity). Let (~,r,.y)

as above. Then X i5 called Zariski-eguimultiple aleng Y at

and only if the function z r-> m(~,z) on Y i5 constant near

be

y if

Y .

The following result exploits this definition algebraically'. [38] ,[49]).

Theorem 2.1.2 (algebraic characterization of equimultiplicity). Let

(X,X,y) be as stated above. The following conditions are equivalent:

(i) X 1s Zariski-eguimultiple along Y near y.

( ii) e(Ox ) =,y

(:!..,y) c->

where defines

This will be an immediate consequence of the following proposition,

whieh explains the geometrie significance of the number e((OX,y)Py)

Proposition 2.1.3 Let (~,w) E cp1.o

germ. Then, after 5uitably 5hrinking

(~, w) C-> (~, w)

w
a prime sub-
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P E Spec (Ow )w ,w defines (~,w) •

(ii) There is a nowhere dense analytic set A S Z such that

m (~, z) :: e ( (0 W w) p) for all z E Z - A
, w

In other words, e{{Ow,w)p ) is the generic
w

the subspace Z <=......-> W defined locally by

multiplicity of

p •
w

w along

Proof of 2.1.3. Since Z is reduced at w, we may assurne, after

possibly shrinking ~, that there is a nowhere dense analytic set A

such that Z - A is reduced and smooth, and W is normally flat along

Z - A ; this follows from I 6 • 3 • 1, and 1. 4·.8. Now consider the chain

(2 •.1.1) m(~,y)

( 1 )
;;: m (!!, z )

(3 )
:: , zEZ-A.

J...!.l : This is just the upper semicontinuity of multiplicity in II

Theorem 5.2.4.

ill: This is II Theorem 5.2.1 (iii) and Corollary (21.12) of

Chapter IV.

(3) ::.. ; -- This results fram the following Lemma 2.1.4 .

This proves the·Proposition 2.1.3.

Proof of Theorem 2.1.2. After shrinking X, let A~·Y be such that

2.1.3 (ii) h~ds, so e( (OX'Y)P
y

l is the generic value of m(X,z)

and

(2.1.2) m(~,y) ~ m(X,z) '= e{ (OX l )
- ,y py

M a coherent 0w-madule,

. Then the function

both inequalities by upper semicontinuity of rnultiplicity(II Theorem

5.2.4). Q.e.d.

Lemma 2.1.4 Let W be a cornplex space ,

and Z an irreducible cornponent of ~ M

z ~> e( (Mzln) 15 locally constant on Z.
~z ~r
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Proof. This is done by the methods'of compact, Stein neighbourhoods and

is similar to the proof of 11 2.2.3, so I will be brief. Let r sax
define Z C-> W . Let Zo E: Z. , and choose a compact Stein neighbour-

~r

hood K of Zo in W. Let R:= r(K,Ow) , P := f(K,l) , which is

a prime ideal of R by 11, proof of 2.2.3. Finally, put M:= 1'(K,M)

If Z E K n z. , the homomorphism
~r

:( 2. 1 . 2 ) .( A )
Z P R P

where

by II

P E Spec(Ow ), defines (~,z) c-.-> (!!:,z) ,and is faithfully flatz ,z
Theorem 1.3.2. Moreover,

(2.1.3) = Mp <il R (°W z) p
p , z

Then, for all k ~ 0 , we get by 11 Lemma 2.2. 4 :

,(2 • 1 • 4 )

this proves the lemma.

Remark 2.1.5 If one just wants Theorem 2.1.2 without the characteri-

,zati.on in Proposition 2.1.3, one could use the chain
( 1 ) (2 I ) (3 )

.m (X', y) (: rn(~,z) ~ e ( (0 X z) p = e«Ox )p) for z near y
, z . -,y y

',with ( 2 I ) given by Proposition (30.1) of Chapter VI.

Corollary 2.1.6. Let X be a complex space, Y a srnooth closed

complex subspace. If X i5 normally flat along Y , then X is

,Zariski-equimultiple along Y.

Proof.

of ,[33J
Condi tion (ii) 'of Theorem 2. 1 • 2 holds, 'oY_.Q?rollazY Z-on-p--'--.1 Hb-

Remark 2.1.7. Corollary (21.12) in Chapter IV relates normal flatness

to an equality of Hilbert functions. In fact, normal flatness can be

characterized by this; this is the content of the following famous
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theorem. "

Theorem of Bennett (complex analytic case). Let X be a complex

space, yc--> X a srnooth connected closed complex subspace. The

following statements are equivalent:

,(i) X 1s norrnally flat along Y

(ii)

i.e.

All local rings

z f-> H(01U ,-)
X,z

Ux Y E Y , have the same Hilbert function,,y
is constant for z near y.

The algebraic analogue, the original Theorem of Bennett, is Theorem

(22.24) in Chapter IV. The complex analytic version above is proven

in [48], Theorem (4. 11 ) .

,Remark 2.1.8. Definition 2.1.1 makes sense for (~,y) and

(~,y) c-->(~,y) arbitrary. I leave an appropriate statement of Theorem

2,.1.2 in the general case to the reader .

.2.2. The Hironaka-Schickhoff-Theorern.

We have seen in Corollary 2.1.6 that normal flatness along a smooth

:subspace implies Zariski-equimul tiplici ty along this subspace . It is

,a remarkable discovery of Hironaka and Schickhoff that normal pseudo­

~latness along a smooth subspace is equivalent to Zariski-equimultipli­

,city (see Theorem 2.2.2 below). Recall that we employ the property (ii)

of Proposition 1.4.9 as the definition of normal pseudoflatness, but

~t "15 property (i) which characterizes normal pseudoflatness as the

nation carrying the topological essence of normal flatness, so it is

this topological essence which 'interpretes' Zariski~equimultiplicity

~along a srnooth subspace geometrically (for Zariski-equimultiplicity

.along a nonsmooth subspace see § 3). Hironaka proved that normal pseudo­

~flatness along smooth centres implies equimulitiplicity in [34],

Remark (3.2). Schickhoff proved the converse in [61] , p. 49j in fact

,he proved the stronger statement below, which is analogous to Proposi­

tion 1.4.11,and shows how much from normal flatness is lost by normal

:pseudoflatness. Bo~h proofs were geometrie, and I will given the out­

lines in the sequelj the algebraie essence of the Hironaka-Sehickhoff­

Theorem .1s?'·Se:tz-2 of "[7?J j, _ ' ..... _ " " ..... using the method "
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of compact Stein neighbourhoods, it would be possible to derive the

Hironka-Schickhoff-Theorern from this algebraic resul t.

Before formulating the main result, I fix some terminology. Let

(~,y) E cplO be a complex spacegerm of dimension d , (r,y) C-> (~,x)

a complex subspacegerm. After possibly shrinking X, we may assurne :

(2.2. 1) (i) X C-> U as a elo s ed compl ex subspace, where U S ([n is open,

such that X is equidimensional at all points if (~,y) was

equidimensional, and y = 0 EU.

(ii) Y c-> X is a closed complex subspace , and y = ~ n g, , where

G is the linear subspace of a: n given by zf+1 = ... = zn = 0 •

This can always be achieved by choosing generators g 1 ' • • • , g 9.. E: 0x, Y =: R

of the ideal I~R defining (:f,y) C-> (~,y) and adding elements

h 1 , · · · , hm E: ,R such that h 1 ' • • • ,~ , g 1 ' ••• , g 9.. generate the maximal

idealof R. Then n:= m +9., , and we write points in ([n as pairs

(u , t ) I' Wi th u = (Z 1 ' • • • , zm ) and t = (zm + 1 ' • · • , Zn) ; th e h 1 ' • • • , hm

are induced by z" ... ,zm' and the g" ... ,g~ by zm+1'· .. ,zn ~

(iii) If (~,y) i5 smooth, Y is connected and srnooth everwhere~

and In = dirn Y =: f
y

Sin~e

ment in

Y c-> G , Y x ([2. c-> a:n • Any h E: 0 , considered as an e1e-
a:n,O

o 9.. = 0y,y{t 1 ,···,t9.,} , can be written as
YxCI: ,0

(2.2.2)

with 'V y (h). uniquely determined by requiring 'Vy (h) 1- 0 • We call

the order cf h along Y at y, and h =: Ly(h) the'Jy(h)

Y-lei tform 0 f h. The germ (~ (~,:f) , y) C-> (:!: x !k ,0) is then defined

by the ideal generated by all L y (h) for h E J , where the ideal

J c 0 def ines (X, y) c-> (a:
n , O) • This ideal is called the y-

- n --CI: ,0

leitideal cf J

many generators

generate Ly (J)

and denoted Ly(J) . It is possible to find finitely

f" ... ,fs of J such that Ly(f,) , ... ,Ly(f
s

)

; we call {f" ... ,fs } a Y-standard-base of J.
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After possibly shrinking X , we may assurne that Ly (f 1 } , .•• ,Ly(f s }
i-i

are defined on ~)( ~ ; then ~(~,r) C-> X)(! ' and v: E.(X,r} -> y

is induced by the projection Y)( er~ -> ceR. •

We make all these assurnptions in the sequel of this section.

Example 2.2.1.

1 } r- 3 . b ( ) 2 2 0x-> CI: g~ven y g x,y,z = z -x y =
defined by (y,z}.O 3 • Then vy(g) = 1 , ane.

er ,0
defines f(~,~} . See Figure 6 .

r the x-axis, i.e.

g = - x 2yv

Fig. 6

2} X C-> «:3 given by g (x, y, z) ::

x-axis defined by' (y,z).O 3 • Then
CI: .

defines E.(~,~) • See Figure 7

222z - y (y+x ) :: 0

vF(g} = 2 , and

Y again the
222

gvr(g) = Z -y x
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I
I__ ~

Fig. 7

The main result on the geometrie signifieanee of equimultiplieity is

now the following theorem.

Theorem 2.2.2 (Geometrie analysis of equimultiplicity; Hironaka-
nLipman-Sehiekhoff-Teissier). Let (Y,y) c--> (X,y) c--> (~,O) be

embeddings of complex spaeegerms, (~,x) equidimensional of dimension

cl , (Y,y) smooth of dimension f, and let ~,1 be chosen as stated

above. The following statements are equivalent.

(i) X is Zariski-equimultiole along Y at y .

(ii) There is d n and a neighbourhood of inL E Grass (0; ) V Y X

such that L n V = {z} and d for all whereL Er (X,z) zEVny ,z z e -
L := L + z ([61]).z

(iii) There is nonempty Zariski-open subset V of d n sucha Grass (CI: )

that for any L E V there is a neighbourhood V of y in X such

that L nv = {z} for all z E V n y ([69]) •
z

(iv) X i5 normally pseudoflat along y at y , i.e.

cl im \) - 1( Y) = d - f , ([ 3 4], [6 1 ] ) .
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Moreover, if one of these condition holds, one may take

in (iii), and then L E: pd (X, z ) for all L E V and z E: Y
- e -

dV = P (X, x)
e -

near y.

Addendum to Theorem 2.2.2 (cf. Teissier [69], Chapter I, 5.5).

The condition (iii) is equivalent with

(iii I ) There exists a nonernpty Zariski-open subset d-f n
U ~Grass (<I: ,Y)

:= {H E: Grassd - f «([n) I H 2 y} such that (Y,y) = (X n H,y) as analytic

setgerms for all HEU •

Exercise 2.2.3. Analyse the given conditions in the two eases of

Exarnple 2.2.1.

The rest of this section is devoted to an outline of the proof, which

will be geometrie.

Basic is a careful setup for a finite projeetion h : (~, y) -> (!d ,0)

which is to give rn(~,z) for all z on Y near y . Far this, we

collect the following facts, which hold after possibly shrinking X .

2 .2 . 3 .

(i ) .•

f E JN

Let

with

n
(~,x) c--> (! ,0) be a cornplex subspacegerm,

o ~ f ~ d • Let K E: Grass f (a:
n ) • Wesa y

d : = dirn Xx-

(2.2.3) K weakly transverse to ~ at x·: ~

dirn X n K = d - f denoted K ~ Xx x-

K transverse to X at x: ~

and put

dirn C (X , x) n K = cl - f
x - , denoted K ~ S. (~, x)

(2.2.4)
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f fThen P (X,x) c P (X,x) . To see this, note that C(X n_K,x) ~C(_X,x) n K ;
e - g-

so, if dirn C (X, x) n K = d - f , we have dirn C (X n ~ ,x) = dimx~ n K ~ d - f
x -

since always dirn X n K ~ d - f (for instance by the Active Lemma,x-
I 5.2.2), we get equality.

f f nThe set P (X,x) is a nonempty Zariski-open subset of Grass (~ )
e -

so pf (X,x) is generic in Grass f
(CI:

n ) . The proof is a straightforward
9 - n-l

generalization of the case f = d in II, 4. 1 ~ If Z C-> lP is a

(d-1)dimensional variety, consider the fibre bundle given by the

Ilincidence correspondence"

f n-1Z ~ = {( z ,K) E Z x Gras 5 ( JP ) I z E K}

q

v
f nGrass (CI: )

Then, by Elementary Algebraic Geometry, q has fibre dimension

(d-f) -1 outside a proper Zariski-elosed subset (see e.g. [56],

Chapter 3, (3.15)). Now apply this to Z := IPC(~,x)

We finally define the notion of being strongly tran5ver5e, which i5

based on the following theor.em.

Theorem. Let X E epl • Then the Cohen-Macaulay-loeus

XCM . : = {x € X I °X,x i5 Cohen-Macaulay} is the complement of a nowhere

dense analytic set. Moreover, if p E: Spec (Ox ) def ines,y
(Y,y) C-> (~,y) , (Y,y) n (XCM'y) -:f ~ if and only if (Ox,y)p is

Cohen-Macaulay.

This ean be proved by the methods of distinguished compact Stein

neighbourhoods, see Remark 1.'.6 (i). For the first statement, see also

II Theorem 2.2.11; the second statement can also be proved by the

methods of [64], Expos~ 21. We will make use only ~f the first state­

ment at the moment.

Further ,if (~, x) C-> (~n, 0) ,and (A, x) .s: (X, x) i 5 an analytic set­

germ with (A,x) -:f (X,x) , the set of K E Grass f
(<c

n ) with
f n(A n K,x) ::J (X n K,x) is generic in Grass (CI:) for 0 ~ f < d (for
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this, one may assume A being defined by one equation, and then the

proof is left to the reader). We define

(2.2.5) fp (X,x):=
gs -

fP (X,x):=
es -

(

t K E I'~ (X , x) I (( X n K) .\. ' x) n (X CM ' x) t- 0 f 0 r a 11

irreducib1e components ( (X n K).\. ,x) of

(X n K,x) of dimension d }, if f < d

l{KE P~(!,X) I K $C(!,1 0 !5) if f = d};

pf (x,x) n pfs (x,x)
e - g-

These are generic sets in

is strongly transverse to

f n
Gr as s (er: ) • I f

(~,x)

f
K E: P (X,x) , we sayes - K

We have the following lemma:

Lemma. Let (~,x)

K E pf (X,X) with
gs -

along Land h-x
to X n K • Then

i d
C=....-> (a:

n , 0 ) be in Co 1
0

' L E P9 (~ ,x) , and

K=zL . Let h : (~,x) -> (!d ,0) be the projection

(~ n ~ ,x) -> (!d n ~,o) be the restrietion of h

Prüof.

Then II

deg hx-

There 1s bEa:d
nK such that h- 1

(b) = h- 1
(b) CXC'Mnx

x - reg
Remark 2.2.7 shows that we get the same contributions to

and deg h •.x-x

Corollary. m(~,x) = m(~ n ~,x)

. Then

dK E P (X,x),
es -

Proof. Choose L E pd(X,x) ; since C(X n K,x) SC(X;x)
d-f e - d-f J- -tf\ -

LEPe (~n.!5,x;K) := {LOEGraSS (K) LO'llC(~n.!5,x)}

degxh = m(~,x) I' and degx~x = m(~ n.!5,x). Q.e.d.

If K E pd(X,x) , K := K + z E pd(X,z) for z near x • If
9 - z 9 -

K E pd (X ,x) for z near x . This follows, because thez gs- x-z := X n K- -z
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are the fibres of the projection ~K I ~ , where ~K : ~n --> ~n is

the projeetion along K, and from the openness of X~M '.

(iii) Let (~,x) c--> (!n,O) be equidimensional of dimension d , and
--f
K E P (X,x) • Thene -

C (~ n .!5, x) :::: C (X, x) n K

F i r s t rema r k t hat f 0 r any (.!! ' w) E c P 1 0 '

z near w , the dimension of the manifold offor

Proof ([61],2.9).

dirn W = dirn Ww- z-reg
regular points on W ; this follows from the loeal representation

Theorem I 6.3.1 (iii), since dirn W = dirn W dw- w-re

nConsider the deformation 12 : (~, (0,0)) S; (~ x!, (0,0)) -> (!,O) to

the tangent cone C(~,y) =X o ::::: E- 1 (Q) in II Proposition 3.1.3 and

the resulting description of C(~,y) by II Corollary 3.1.4. From

this the inclusion C (~ n .!5, y) S C (~, y) n K i 5 obvious. For the converse,

note that Xo is nowhere dense in X by II 3.1.3 (iv) and so

(X, (O,O)) is equidimensional of dimension d + 1 by the introduetory

remark. So dirn (z, t) {X n (K x <1:)) ~ d + 1 - f for all (z ,t) elose to

(O., 0) , but dirn (O, 0) '{X 0 n (K x {O}) = d - f 'by assumption. Hence there

is ·the strict inclusion {X n (K x CI:) , (0,0) ) ::> (X 0 n (K x {O}) , (b, 0)) of

analytic setgerrns , and thi s proves C (~ n 15, y) :2 C (~, y) n K. Q. e. d.

(iv) Let (X,y) ~> (X,y) c--> (!n,O) be as in Theorem 2.2.2. Consider

the diagram of projections

f nGrass (CI: )
d nGrass (CI: )

We then define various sets:

P, (X,Y,y)
I\~V - -

-1 f f -1 d
:= q (P, (X,y) n P (Y ,y)) n r (P (X,y))

I\~ - 9 V -
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where >",. \J are the letter s "g 11 , 11 eil, and Il is the blank or 11 5 11
•

These are generic subsets of R .

(for ;-both values of \}) such that K :;? L ."

are

there is

-1 "
the sets P (x,y,y)nr (L)

1lIJ.\) - -

L E pd (X, y)
IJ. -

f
K E P (X, y)

Il\} -

Moreover, given L E pd (X, y)
Il -

generic in r- 1
(L) iSO, for given

Elements (K,L) E P (X,Y,y) now allow to perform the basic construc-
xjJ.\} - -

tion for the proof of Theorem 2.2.2:

Let
(In

(K,L) E P, (X,Y,y) be given. Let the coordinates (zl, ..• ,zn)
AjJ.\) - -

be such that K is defined by z1 = ... = zf = 0 . We use the

on

following notations:

(2.2.6) n
(~ ,0) --> (~,y) the projection along K

Q X --> Y the restriction ~K I ~

X-z : = _P-1 (z) = X n K for
-z

affine plane K + z

z E Y near

parallel to

y , with

K through

Kz
z

the

E a d-dimensional plane containing Y complementary to Li

~L a:n -> E " the projection along L

h X --.> E the restrietion ~L I ~ ;

h-z x --> E := E K the restrietion of-z -z -z
hence the projection along Lz i

h to K-z and

P := P-y (In --> K the projection along Y

The following figure rnay illustrate the situation.
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Fig. 8

"according to the description given in 1.4. If

t'he settheoretic inclusions

the normal cone,

. . y a:n - f yinduced by the proJect~on _ x _ ->
r

K E P (X , x ) , we haveg -

-> Yvwi"th

We now come to the actual proof of Theorem 2.2w2. We use the notations
f nof (2.2.6) throughout. Further, if K EGrass (er) is given, it

defines an embedding f (~,l) c-> r x er
n - f

c-> a: n of

(2.2.7) (i)

and, if
fK E P (X, x) ,
e -

(iii)

"this will be used without further comment.

We proceed according to the pattern
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L!.
(iv) ~ (iii) ~ (i)

~~(ii)/

'.-':'; ,:

" '

(iv) ~ (iii) (cf. [34], [69]) Choose K E r~ (~,y) • With the conventions
, n

above, K is given by z1 = ... = zf = 0 , E :! --> K denotes'the

projection along Y, and v- 1 (y) may be regarded as a subvariety of
d-f -1

K , which is of dimension d - f by assumption. So P (v (y) ,y;K) :=
e -

: = {L E Grassd - f (K) I L ~ '.1-
1 (y)} is a nonernpty Zariski-open set of

d-f {d n d-f -1Grass (K). Put V0 (y) : = L E Grass (D: ) I p (L) E Pe (~ (y),y iK}

This is a nonernpty Zariski-open subset of Grassd(~n) , and the claim

1s that (iii) holds for V := VO(y) . Suppos~ this were not so. We could

then find an L E VO(y) and a sequence (x(]) )iE:IN such that x(j) E

(X-Y) n (L+x (j )), h (x (j) ) E Y , and x (j) -> Y • After selecting a suitable

subsequence we may assume p(x(j)y) converges to a line ~ in ~(K)

sinee lP (K) is compact. But then ~ ~ v -1 (y) by (1.4.4), and

R, s; p (L) by construction,. which contradicts the fact that

peLl E pd-f ('.1- 1 (y) ,y;K) • So we have (iii) •
e -

Before showing (i1i) "=> (i) , one shows the following con sequence of (iv) :

(2.2.8) Assume (iv) holds. Let

d-f -1
Pe (v (Y) ,YiK) • Then

f
K E P9 (~, Y) and L ~ K

L
z

Epd - f {V- 1 (Z),Z;K)
e - - z

be in

for all

z outside a nowhere dense analytic subset of Y .

......n n n f
For this, let 7f: a: --> a: be the blowup of a: along a: x' Q
The strict transforms of X and Y x L under 7f give the blowups

g and (Y xL) along Y. Their exceptional divisors ]PC(~,!) and

1 x ~ (L) are subvarieties of y x :IP (K) , and so meet in a subvariety

of Y x lP (K) , whose image under ~ x lP (K) -> 1 is a subvariety of

Y since this rnap is proper. This shows (2.2.8).

(iii) ~ (i) (cf. loe. ci t. ) By Proposition 2. 1 .3, the function

z ~> m(X,z) has a generic value, m say, outside a nowhere dense

analytic set A in Y. By Theorem 1.4.8, we rnay assurne Y - A.= F (X, Y) ,
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the flatness locus of X along Y. So (iv) holds at all points of
f

K E P (X, y) after shrinking Y , we may assumegs - .
for all z E Y by (2.2. 3) (ii) . Choose a w E Y. - A and

d-f . d-f
V n V0 (w) n Grass (K) of Grass (K)

Y - A • We choose
f

K EP (X,z)z gs-
an L in the generic set

d-f -1
Since L E V0 (w) , we know by (2. 2 .8) that L z E Pe (y (~), z ; Kz )

outside a nowhere dense analytic set B; we may assume B ~ A •
-1 d-f

Since C(_Xz,z) Sv (z) always, we have L E Pe (X ,z;K ) • Thez -z z
Lemma and Corollary of 2.2.3 (ii) imply:

(2.2.9) deg h = deg h = m(X ,z) = rn(~,z)z- z-z -z

so deg h roust have the generic value m on Y - B .z-

On the other hand, we have L E V • Now the degree formula II Theorem

(2.2.8), applied to h, gives

(2.2.10) deg h :=y- L degz,l!
-1zIEh h(z)

for z near y. But the assurnption (iii) forces h- 1h(z} = {z}

near y, so

(2.2.11) deg h = deg hy- z-

for z near y. This implie8 deg h = m by (2.2.9) so we have equi­y-
multiplicity by upper sernicontinuity of multiplicity (lI Theorem

5.2.4) .

(1) 10 (iv) (cf. [61]). Let X be equimultiple along Y at y. Let
d

L E r e (~,x) .and ~: ~ -> ~ be the corresponding projection as in

(2.2.10). Then deg h = m(X,y) , and so by (2.2.11), .y- -
deg h ~ deg h ~ m (X, z) for z near y , hence we have deg h := rn (_X, z)y z- - y
for z E Y near y by equimultiplici ty.

d
We will now show: If L E P (X,x) i8 such that for the correspondingg -
proj ection we have degyh:= rn (X, z) for z E Y near y, then

L ~ v- 1 (y) ; this will obviously establish (i) -> (iv). One. proves this
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first in case (~,y) "is a hypersurface, and then for general (~,y)

by the classical device. of redueing it to the hypersurface case via

a fini te projection. We let K E pf (X, x) be the plane given. by
e -

z1 :;: ... :;: zf = 0 und dcfine thc normal cone f(~,~)C-~!n by this

K •

= 0

be an

- - Z- ••• - n

as (z,t)

9 E 0 (U)
([n

So let X be a hyp~rsurface in ~n = ~d+1 . We choose coordinates

z1, ... ,zn in such a way that Y is given by zf+1
n f k nWe decompose ~ = cr x ~ and write points in ~

with z = (z1' ... ,zf) and t = (zf+1'··· ,zn) . Let

equation for X one can write

(2.2.12) g(z,t) = E gA(Z) .t
A

AEJNk

(notation as in I, §§ 1-2», where the gA{z)

tions on Y = (Cf)( 0) n U • The Y-leitform of

is

are holomorphic func-

9 las defined in (2.2.2))

(2.2.13) L gA (z) .t
A

AEfJN
k

IAl =v

where v = vy{g) is the degree of the first nonzero monominal t A

appearing in (2.2.13) with respect to the lexicographic degree order.

Now the equimultiplicity assumption on X along Y at y implies

that the gA(z) with lAI = v eannot simultaneeusly vanish at y = 0 .

Fer suppese this were the case. The analytic set defined by the simul­

taneous vanishing of the gA{z) with lAI = v is nowhere dense in

Y because Ly{g) does not vanish identically on K since

KEP:{~,y) . So there are, arbitrarily elose to y, :ooints ZOEY

such that gA(zO) 1 0 for at least one A with lAI = v . But then

all monomials in the development of g(z,t) E<I:{z,t} ,:cf (2.2.13)

would have degree > v whereas in the corresponding development of

g{z,t) E<I:{z-zO,t} there would appear monomials ,af degree v , and

the multiplicity m(~,y) >v would drop to m(x,zO) = v which cannot

be by assumption (here we agree on m(~,zO) = O. if zo t X ) . Note

that this argument establishes, in particular:
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(2.2.14) . \)y (g) = gener ic mul tiplicity m (~, z) for z E: Y near y.

It follows that \)y(g) = m(~,y) , hence the leitforrn L(g)' is

(2.2.15) L(g) = L gA(O) ·t
A

A
IAl =\)

(2 . 2 • 1 3 ) and (2 • 2 • 1 5 ) show:

(2.2.16)

and so X is normally 'flat along Y at y. In particy.lar, we get

(2.2.17) \) -1 (y) = C (~,y) n K = C (X n ~,y)

" d
We now turn to L E: P (X, y) . In suitable coordinates v = (v I v) of

g - ' n
~n , we may assume 9 is a Weierstraß polynomial g{v' ,vn ) =

b b-1
v n + a b - 1 (v' ) v n + ••• + a 1 (v I ) V n + a 0 (v I) , and L i s given by

deg h = band, by assumption, b = m(_x,y) = \)(g)y-
d

l3:ppears in L(g) which means L E Pe(X,y) • So we can choose

wi th K ~ L , and then (2. 2 . 17) shows L ~ \) -1 (y) •

VI = 0 • Then

So vb
n

f
K:E Pe (~,y)

We now treat the. general case. So let y c-> X c-> U be as in

Theorem 2. 2.2, and let L E pd (X, x) be such thatg

(2.2.18) deg h = m (_X, z )y-

for all z E Y near y,.!l
show L r1l \) -1 (y) ,where \)

this, it suffices to show

the projection along L. We want to

: C(X,Y) --> Y is the normal cone. For
'\---1 - A

Ln\) (y) = {y} for each line L c: L .

We may assume X is reduced. Namely, by the degree forrnula" (lI

Theorem 2.2.8), we have

(2.2.19) deg h =
.y-

L deg ,h ~ deg hz - z-
Z ' Eh- 1h{z)
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ynear

forand degz~ = degy~

deg h d for z E Yy-re
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h-'h(z) = {z}

deg h d =z-re

so our assurnption forces

Z E Y near y . But then

Moreover, deg h = m(X d'z) , and so we have our assumption on Lz-red -re
with respeet to X d. By the limit description (164 64), \)-1 (y)-re
depends only on ~red ' and ~o it suffiees to consider the ease

~ = ~red 6

v
We describe lines in L by linear forms A E L - {O} ,where
v .
L : = Horn (L, 0:) is the dual of L , in the following way: We fix

A E L - {O} and ehoose LA to be a complernentary line to Ker (A )

This gives us the following situation6

(2.2620) x > ~A

Here I we have assurned U = U
E

x U
L

wi th U
E

in L 6 The maps are finite projections;~ EA
!.A ... a: n -> E ~ LA::; a: d +

1 the proj eetion along

and ~A the projeetion along . LA 6 ~A C-> !:!E

given be the equation

open in E, UL open

: = 2!.). I X with

Ker(A) ~A := irn(TI A)
x LA is a hypersurfaee,

(2 .. 2.21 )
A

w (z,t)
deg h

: = n . (t - A (x- z )) x- E 0 (UE) [t l
XEh-1h (z) =L +z

where we regard 0 (U
E

) [tl C-..-> 0 (U
E

x LA) under t 1--> A • This fellows

because lr A is given by

(262.22)

n A
where PA: 0: -> L i 5 the pro j ection along E () Ker ( A) , and frem the

elassical arguments involving the elementary symmetrie funetions in

the A (x-z)" for xE h- 1 (z) • We have
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X ~ n TI~l (X A )
AEL-{Q} A

-1 A
namely, X ~ TI A (X) for all A since X

nthe other hand, for any v E a: - X , there
-1

A(x-v) f Q for all x E. h P
L

(v) , and so

(2 .. 2.22) •

is equidirnensional, and on
, v
lS A E L - {Q} with

,\
TI,\ (v) ~ X by (2.2.21) and

From (2.2.21), we see deg h) ~ L deg h ~ deg h
~-I\ xCh-1h( z) x- z-A

z = Y , in particular m(~ ,y) = m(~,x) . Let C(~,y)

then,' since TI A is proper, one may show~ by the limit

tangent cones,

and so, putting

: ~ TI A (C (~, x») ;

description of

,( 2. 2 .. 24)
A A

C(~,y) = C(X ,y)

is finite, and, in particular, if

TI) (K) E pf(XA,y) . If we define the normal
1\ A e -

by the K ,we get, by the hypersurface case
).. -1

proved above, that L ~ v,\ (y) • Again by the properness of TI).. and

the limit description of normal cones, there results

A
So TI).. : C(~,y) --> C(X ,y)

f -A
K E P (X, y) , we have K : =

e -
cones of Y in X)..

(2 .• 2 • 25 ) (V- 1 (y»)A = -1
VA (Y)

-1 . A -1
where (v (y» := TI)..(v (y»
wanted to show .. So (i)." (iv)

Henc e LA n v - 1 (y) =

is established.

{y} , as we

Note that this proof shows, in addition ,

(2.2.26) C(~,y) = v- 1 (y) x C(X,y)

This follows, because, by (2.2.16), we have

(2.2.27)
A -1

C(~ ,y) = v).. (y) X C(~,y)

v
for all ).. E L - {Q} ;

then, by (2.2.24) and (2 .. 2 .. 25), we get (2 .. 2.26) by intersecting

(2 .. 2.27) over all A and using (2.2.23) (for XA , (v- 1 (y) A , and

(C (~, y) ) )..) • In particular, we get

(2.2.28) v-
1

(y) = C(~,y) n K = C(~ n ~,y)
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ffor KE.P (X,y) under the condition (i). This is in fact eq~ivalent
e -

to (i) and hence to (2.2.26), because it clearly implies

dirn v- 1 (y) = d - f , so (iv) holds, and we have already (iv) "'"" (i) .

(iv) >10 (ii)::> (i): By the proof of (iv)::::> (iii) and (2.2.8) we even

know that (ii) holds for all L E VO(y) • The implication (ii) .. (i)

follows because we have (2.2.11) for the projection h along L by

the same reasoning as in the step (iii) -> (i); by assumption, we have

deg h = m(X,z} for all z near y in addition, and this shows (i).z- -

This establishes the equivalence of (i) - (iv). For the additional

statements, note that the step (iv) ~ (iii) showed we may take
d n d-f -1

V = VO(y) := {L E Grass (CI: ) ) p(L) E Pe (~ (y) jK)} • If one of the

statements of Theorem 2.2.2 holds, we know all of them hold for all

z· E Y near y", and then (2. 2. 28) and (2. 2 .8) applied to z , show
dL E P (X, z) for all L E V and z E Y near y. This concludes thez e-

prüof of Theorem 2.2.2.

The proof of the Addendum is leit to the reader.

Before cornmenting further on the significance of the various characte­

rizations of normal pseudoflatness, let us remark that. the ·prüof of

(,1) ~ (iv) gave further important characterizations. Recall, for

~9:E 0x, y , the nations of the order v (g) (I, (1. 1 .3)) and the order

vy(g) of 9 along Y «2.2.2)) •

Theorem 2.2.2 (cont.). Let Y c-> X c-> U be as in Theorem 2.2.2.

Then the following statements are equivalent to (1) - (iv) of Theorem

2.2.2:

(v) Let I f; 0u be the ideal defining ~ C-......> Q • There are finitely

many equations g~ E I(U) with the following properties. Let

XA:= ~(gA) , and ~A : f(~A'~) --> Y be the normal cones for all A.
Then:

1 ) V(gA) = .vy' (g A) for all A

2 ) C(~,y) = n c (~A ' y)
A

3 )
-1 -1v (y) = n VA (y)

A
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-1 -1 nwhere v' (y) , vA (y) are defined in ~ with respect ta same
f

K E.P (X,y) 6

e -

(vi) C(~,y)
-1

::: V (y))( C (~, y) with respect to same f
K € r (X, y)

g -

(vii) V-'(y) = C(~n~,y) with respect to same f
KEP (X,y)g -

If one of the conditions (i) - (vii) holds, (vii) holds for all
f

K E r (X,y) 6g -

Moreover, if X is a hypersurface, the following condition is also

eguivalent to (i) - (vii):

(iv t ) X is normally flat along Y at y.

I leave it to the reader to show (i) ~ (v) ~ (vi); all the other impli­

ca~ions have been mentioned abave.

Conditions (v) and (vi) are particularly interesting for the relation

between normal flatness and normal pseudaflatness; (~) show~ algebra i­

cally, and (vi) geometrically, how much is lost when passing from

normal flatness to normal pseudoflatness6 For normal flatness, condi-

.tion (v) would require, in addition to Vy(gA) = V(gA) , that the

Ly:(g A) generate the normal cone C (X, Yr (note that thi 5 implies

that the gA generate the ideal defining x-> U, so C(~,x)= ~C(XA'X)

Condition (vi) would require f(X,y) =~-1 (y) )(f(~,Y) 50 normal

pseudoflatness keeps the geometrie content of normal flatness, but

looses the possibly .nonreduced structure6

In order to connect Theorem 26262 with the algebraic equimultiplicity

results of Chapter IV of this book, we forrnulate the following result6

Proposition 262636 Let (~,y) E cple '

subspacegerm defined by the ideal I c R

(r, y) c-> (lf ' y )

:= 0 Then:X,y

a complex

(2 .. 2.29) codim Y = ht(I)y-

-1dirn v (y) = 5 (I)
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Proof.

Lemma

Chapter

1.2.4,

A local analytic algebra is catenary (e:g. by the Active

I 5.2.2). This gives (2.2.29) by the Dimension Formula,

III (18.6.1) .. Further, by base change for Specan, .Proposition
-1 'k k

)2. (y) = Specan( mI /01 I) . This gives (2.2.30).
k~O x

By 2.1.2 and 2.2.3, then, we see that the equivalence (i)'~ (~v) of

Theorem 2.2.2 is, for Iocal analytic ~-algebras, equivalent to .-

_~tz 2 of ':'::[771 ._S"-.--~ thus eluc;;ida ting i ts geometric con-

cent in this ease. Conversely, (20.9) gives an algebraic proof of the

Hironaka-Schickhoff-Theorem, based on 2.1.2, which used compact Stein

neighbourhoods to interprete invariants of Iocalizations of Iocal

analytie <I:-algebras geometrically (note that the localization of R E la

is na langer in la , so does not correspond directly to a geometrie

object via the Equivalence Theorem I 3.3.3). This i5 a particular case

of the general principle that distinguished compact Stein neighbour­

hoods provide a systematic way of translating results from loeal

complex analytic geornetry into loeal algebra and viee versa. In this

;vein, the equivalence (iv).;=a:;Io (vi) ~ (vii) of Theorem 2.2.2 is essentially

th~ geol~~~..~ntent of (iiL <:=>(iii) ~>(iii"l_of-[?8J .:--(seG also~

the discussion in [49], § 5), und we wi~l deduce geometric properties

in eplO fram Ioeal algebra in 3.2. below.

Exercise 2.2.4. Try to express the statement (ii) of Theorem 2.2.2 in

terms of loeal algebra and to show its being eguivalent to the egui­

multiplicity condition e(R) = e(R
p

) algebraically.

(ii) Try to translate the proof of Theorem 2.2.2 into an algebraic

proo f 0 f ~~batz·2 , .;;! .[7~1 .- ~_. ~~~ _._ -~ . ~.yha t do the eho iee 5 0 f the

f- and d~eodimensional planes' 'K ~ L rnean algebraically?

I elose this section by some comments on the geometrie and algebraic

sign~ficance of the various eonditions in Theorem 2.2.2 and 2.2.2

(cont.) i these will be partly, within this limited account, informal.

The equivalence (i) -- (v), i.e. that the size of the normal"cone 1s

controlled by equimultiplieity, 1s geometrically a transversality

statement, as we will see now. This should be, in a sense, not too

surprising, since multiplieity was defined as a generic rnapping degree,

and we have al ready seen in II Theorem 5.2.1, that a projection has

generic rnapping degree if its kernel 1s transverse to the tangent cone.
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The appropriate generalization of this is the following theorem, which

we aetually proved in the course of establishing (i) ~ (iv) of

Theorem 2 .. 2 .. 2.

Theorem 2. 2 .5. Let Y C-> X C-> U be as in Theorem 2.2. 2, and let
d

L E P (X,y) .. The following conditions are equivalent:
g -

(i)

along

deg h = m (_X, z )y-
L •

for z E Y near y , where h 1s the projection

(ii) YxL~y X, i.e. YxL interseets X

in the sense that Y x L n c (~,~) = y (C (~,~)

any (n-f)-dimensional plane K,2L

Remark 2.2.6.

transversally along Y

defined with respeet to

1) If we put Y = {y} , we get the statement (ii) of II Theorem

5 .2. 1 whieh is the geometrie form of the Theorem of Rees ·(Cf.-:_'Ih~r6n 1

'in..·-~§1_-0j::.:[43J--:'» for reductions of the maximal ideal. For primary ideals,

see proposItion'3.2.2 (ii) below. In fact, Theorem 2.2.5 is a variant

of the geometrie form of the Theorem of Böger (Chapter III, Theorem

(1.9.6)) for the case of a regular pr ime ideal. The transversali ty con­

dition in (ii) just means that the ideal generated in 0x via the

pro'j"eetion X -> a:d - f along Y x L is a minimal reduction of the

ideal generating Y. This gives a geometrie picture of the meaning

of a minimal reduction in this ease. For the general ease, see Theorem

3.2.7 below.

2) We did not use the Theorem of Rees (i.e. the important direction

(i) - (ii) in Chapter III, Theorem (19.3)) to establish (i) ~ (ii) above,

so we really gave it a geometrie proof. The direction (ii) ~ fil was ~lso

established in a geometrie way, although one may object that I made

use of the fact that, if L E pd(X,y) , one has deg h = m(X,y)
e - y- -

whieh was established in an algebraic way in II Theorem 5.2.1 using

the theory of reduetion. We will see in the proof of Theorem 2.2.8

below how to interprete this more geometrically.

I now turn to a diseussion of condition (vi). Note that the equivalence

(iv) 0:-> (vii) means, in partieular:
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Ei ther v-1 (y) = c (X n K, y) or dirn v-1 (y) > d - f (where

K E pf (X, x)) , which i~, ~ t first sight, rather surpr ising. Trying to
e -

understand this sheds sorne more light on the geometry of equimultipli-

city, so I give an informal account. For this, we have to take a closer

look how normal directions arise geornetrically.

Propos i tion 2. 2 . 7 (Existence of testarcs). Let (~' x) E cplO ' and

(A,x) *(X,x) be an analytic setgerm. Then there exists a morphism

Ct : (ID,O) -> (~;x) , where ID ca: i5 the open unit disc, such that

a(ID-O) ~X-A and a(O) = x . We call a a testarc for (A,x)

Sketch of proof. If (f,e) E cplO is onedimensiona!, we get

~ : (ID,O) --> (f,e) by parametrizing an irreducible component. This
clreduces the proof to the case (~'x) ~ (! ,0) via the Local Represen-

tation Theorem I 6.3.1. Then just parametrize a complex line trans-

verse to A at x. Q.e.d.

Applying this to the blowup TI: ~ --> ~ of X along r, with x

being a point in n- 1 (Y) and A:= n- 1 (y) , we see that in the limit

description (1.4.4) of v- 1 (y) we ean restrlct the limit proeess to

testarcs for (Y,y)

(2."2.31) Il' 1 . . v- 1 (y) .-...
N J..s a ~ne ~n - .,9. = 1 im p (ya (t) )

t-+O
for some

testarc Cl ( JD , 0 ) -> (X , Y) f 0 r (Y , Y)

Here, it is understood we have choosen K E P~(~,y) , and E:!n -> K

is the projeetion along ~ . The normals at y now fall into two

classes: Those that belong to C(~nlS,Y) , which I call ordinary

normals,and those that do not, which I call excess normals. The equi­

valence of (vi) and (vii) says that the fililure of normal. pseudo~lat­

ness is due to the existence of excess normals. These are. characterized

as follows:

(0) , where

(Y,y) such that

but (p 0 a)·(O)

,9. c K 1s an excess normal .....". ,9. = (p 0 Cl)

Cl : (ID, 0) -> (X,y)· 15 a testare for

i(O) 1s a tangent 11ne of X at x,

15 not a tangent line of X n K at y.

(2.2.32)
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Here I have put 6-(0):= 1im yß(t) for a testare f.
t-+O

The fo11owing picture may illustrate the situation.

NO EXCESS NORMALS
,I

: ~.

"

[XC[SS
NORMAL

projeetlon
into K

K

v

EXCESS NORMALS
Fig. 9
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'So we ha~e to analyse what it means, in terms of testarcs, that a

line l c a:P is not tangent to a giyen (~,w) C-> (!p, 0) . Clearly

(2.2.33) for all testares

a : (ID, 0 ) -> (W, w) : ~ '1 Ct (0)

Choose coordinates (zl' ... 'zp) such that ~ is given by

z1 = ••• = zp_1 = 0 • It is conceivable that the requirement ~.,. ä. (0)

puts growth conditions on the coordinate functions z1' ... ,zd restric­

ted to a, as the following picture suggests:

·z
j' ,p.

", . ~ i '

i t>-

F ig . 1 0

,It turns out that the appropriate growth conditions are:

,( 2 . 2 .34) t '1 0.-(0) ... there i5 a neighbourhood V of 0 E a:
and C E :IR >0 such that

I Z 0 Cl (t) I ;s; C 5 up I z. 0 a (t) 1

P 1;S;jSp-1 ]

for all t E V •

Now testares adefine valuations v
a

on R:= 0W,w in the sense of
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Chapter I, Definition (4.18), via

(2.2.35) va(f) := v(aO(f)) = ordo(aO(f))

°'where f E Uw ' a : 0w -> Ga: ° is given by,w ,w,
a ,: (D,O) -> (!!,w) ,and ord

O
denotes the order 'of vanishing at

'0 E a: • Then the condition (2.2.3 ) reads

'(2.2.3 ) <-=:> V ( Z ) ~ v « z 1 ' •.. ,z 1 ) 0w )a p a p- ,w for all a

and so the valuation criterion of integral dependence of Chapter I,

(4.20) strongly suggests that 2 # a(O) i5 equivalent to zp' regar­

ded as a function on W, being integrally dependent on the ideal

t z
1 '····,zp_1)·OW,w·

In fact, there is the following proposition:

Proposition 2.2.8 ([69]). Let (~,x) E cpla ' I SOx,x an ideal,

f E 0x . The following statements are equivalent:,x

I(i') For all testarcs a (ID,O) -> (~,x) v' (f) ~v (I)
a a

(ii) For all systems of generators (g 1 ' • • • ,g 2) of I

.:neighbourhood V ef x in X and C E JR >0 such that

If(y) I ~C • sup I 9 j (y) I
1~j ~~

,!for y E V •

~("iii) f E I

there is a

tei) - (ii1) depends on the fact that in the proef ef (1i) .. (i) of

Proposition (4.20) of Chapter I the valuations v suffice, see the
CL

argument in the proof of Chapter I, 1.3.4 of [69]. (iii) -> (ii) fellows

~because the equation ef integral dependence gives the necessary esti­

.rnates, and (li) .. (i) is immediate. For the complex analytic proof see

.r 69], Chapter I, 1. 3 • 1 and 1. 3 • 4 •

~rom this results we see:
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Theorem '2.2.9. Let (~,w) c-> (!p,O) be of dimension

~d;...-....;c;...o;...d....;i;;;;.;m~e..;..n....;,s....i;...,;o....;n..;..a;;.;.l_....p_l_a_n_e_g"",--i_v_e_n_b....y Z 1 = .•• = Z d = 0 . The n

if and only if zd+1' ... ,zn E: (-z" ... ,zd) '()w,w

d, L the

L~C(W,w)

It is in this way how the algebraic notion of integral dependence comes

in when describing the geometrie notion of transversality.

We ean now translate the condition (vii) into algebra. We formulate

(2.2.32) in the following way:

(2.2.37) There are no exeess normal s, i. e. (vi) holds ~ for all

testarcs u such that (p 0 0)"(0) 1s not a tangent line of

x n K at y ,a'(O) is not a tangent line of X at y .

This can be exploited as follows.

We first get the generalization of Theorem 2.2.9:

Theorem 2.2.'0. Let (Y,y) c-> (X,y) C-> (~n,O) be as in Theorem

2.2.2, L E r: (X, y) . Ch~ose any (~- f) -dimen~ional plane K , thus

K E: p~ (X , y ) (def ining an embedding f (~, ~) c-> a: n). Let the coordinate s

Z,.' ... 'Zd =0 be such that L is defined by z, = ... =zd and K

be z1 = ... =zf = ° . Then Y x L ~ C (~,~) if and only if

(Zf+1'···'Zn)·Ux,x = (Zf+l'···'Zd)·OX,x

This follows by applying Theorem 2.2.9 to (2.2.32), since there are

no exeess normals if and only if (vii) holds, i.e. we have equimulti-

plieity, and so (vii) is equivalent to Y x L ~ C (~,:f) by Theorem 2. 2. 5 •

The geometrie content of this is that transversality is equivalent to

growth eonditions on the coordinates of X along directions normal.

to Y, and this is the geometrie interpretation of the fact that a

(minimal)reduction is characterized by integral dependence.

Further, it is now easy to see that we have, using Theorem 2.2.5:

(2.2.38) ~ is equimultiple along i at y if and only if for all

L E: pd(X,y) we have L ~ v- 1 (y) <=-> L ~ v- 1 (z) for all
g - z

z E: Y near y outside some nowhere dense analytic subset •
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Since normal pseudoflatness holds outside a nowhere dense analytic

set, so that we can apply Theorem 2.2.10 there, we get, putting together

our achievments, the following theorem.

i
Theorem 2.2.2 (cant.) Let Y <::..=....-> X C-> U be as in Theorem 2. 2.2,

and let the ideal 1 s: 0x define i. The following statements are

eguivalent to the statements of Theorem 2.2.2.

of specialization of (minimal) reduction ") . Let

i5 a (minimal) reduction of I if and only if ]
Y - z

of I for all z E Y near y outside a now­
z

in Y.

( 11 Pr inciple

Then ]
y

1s a (minimal) reduction

where dense analytic set

(.viii)

] c I

(ix) ("Principle of specialization of integral dependence"; cf. [69] ,

Chapter I, 5.1) Let fE 0x(X) • Then f ET if and only ify y
f E T for all z E Y near y outside a nowhere dense analytic setz z
in Y.

The discussion of (ix) is similar to that of (viii) by embedding

Xc-> ~n in such a way that f is a coordinate on K. One can also

show (viii) ~ (ix) directly.

§ 3. Geometrie eguimultiplicity along a general subspace.

If a complex space X has the same multiplicity along a smooth

subspace Y, the results of the last paragraph show that this numeri­

cal eondition gives control over the blowup u : X--> X of X along

y to the extent that ~ID : Q --> 1 is equidimensional, where
~

D c-> X is the exeeptional divisor (which is the same as saying tb,at

X i5 normally pseudoflat along Y). This is no longer so when Y

beeomes singular, and it turns out that the "naive" equimultiplicity

canditian above has to be replaced by a more refined equimultiplicity

condition in order to guarantee normal pseudoflatn~ss. The algebraic

formulation of this result is Theorem (20 .. 5) of Chapter IV, and it is
~ ,

the purpose of this paragraph to survey the geometrie significance of

these and related results in that ease.

In general, these two nations of equimultiplicty are not related.

To visualize this, I give in the first section a short description

of the geometrie signifieance of the first one, a result due to Lip­

man. In the subsequent seetion I give a somewhat more detailed descrip­

tion of .the geometrie meaning of the refined equimultiplicity condi~
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tion and various ether equivalent geometrie and algebraie conditions,

including normal pseudoflatness. These are the appropriate analogues

of the smooth case, formulated in Theorem 2.2.2 above, and correspond

to..-tJle·-·~ge:t>.r~c results of Theorenl 3 in [78] - ~t=:~:~-~ ... I also des-

,crioe ~tlie-' reiation with the reduction of ideals- ~_~.ul't.ejial :'~ 1 dependence.

~ The main difference to the smooth case is that one has to replace the

tangent cones by the normal cones to possibly nonreduced one-point­

subspaces induced in X along Y by a suitable projec~ion, and to

change the multiplicities accordingly. These are also lecal mapping

degrees.

The underlying geometrie principle is 'again that the loeal mapping

degree of a projeetion measures the order of contact of the kernel of

this projeetion with the spacegerm on which it is defined. Hence, the

equimultiplieity condition of aspace along a subspace controls the

intersection behaviour of the family of this projeetion centres along

the subspaee with' the space under consideration and so represents a .

transverality conditian on the normal cone. The algebraic nation

corresponding to transversality is that of the reduction of· an ideal

(or integral dependence), and so it is not surprising that the Theorem

of Rees-Böger is fundamental to equimultiplicity considerations and

eontains, in asense, the essence of it; I have made same eomments

on this at the end.

3. 1.· •• · Zariski-equimul tipliei ty

The following result shows that the geometrie description of Zariski­

equimultiplieity in Theorem 2.2.2 (ii) ean be maintained. It will,

however, no longer control th~ dimension of the. normal cone fibres,

which makes this notion therefore not very interesting for the study

of the b~owup along a nonsmooth eentre. The main reason for this is

that along a general subspace the tangent cones to the ambient space

are not related to the fibres of the normal cone and to the normal

eones of a transverse plane seetion, which was the ease in the smoot~

si tuat·ion.

For the definition of Zariski-equimultiplicity see Remark 2.1.8.

Theorem 3. 1 . 1 (Geometrie analysis of Zariski-equimultiplici ty; [49J~_

Proposition (4.3)). Let (~,y) C--> (~n,O) be an eguidirnensional'

spacegerrn of dimension d, (~,y) ~> (~,y) a complex sUbspacegerm.

The following statements are eguivalent.
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(i) x i5 Zariski-eguimultiple along Y at y.

d n
(ii) There is L E Grass (er) and a neighbourhood

such that L n V = {z} and L E pd (X,z)) for allz z e-

(iii) For all L E pd (X,y) there is a neighbourhood
e - d

such that L n V = {z} and L E P (X,z) for allz z e-

v of y

z E V ny

V of y

z E V n y .

in

x

x

d
Proof. For L E Pe (~, y) , let ~ : = E

L
(~, y) -> (~, 0) be the pro-

jeetion along L to a d-dimensional plane E c a: n complementary to

L . We have

(3.1.1) deg h =y-

vi

m(~,y)

L degz~ ~

Z'Eh-'h(z)

deg hz-

vi

m (~, z)

for z near y on Y .

(i) "* (iii) If
d

(3.1.1) implies h- 1h(z) { z} andL E P. (X,y) , =e -

deg,z~ for Then d
by the= m(X,z) z near y on Y . L E P (X, z)z e-

geom'etric form of the Theorem of Rees, Rernark 2.2.6,1) •

(111) .,.' (11) This 1s obvious.

(11) d> (i) By (3. 1 • 1 ) , m(X,z) = deg h = deg hz- y- for z near y on Y

3.2. Normal pseudoflatness.

As mentioned before, if we have (Y,y) C--> (X,y) , the tangent eone

f(~,Y) will in general not be related-to the fibre .~-1 (y) of the

normal eone ~ : C(~,r) -> Y , and so it cannot be expeeted that its

dimension is controlled by the multiplieity of X along Y near y .

Reeall that the geometrie analysis of equimultiplicity along a smooth

subspaee in 2.2. depended heavily on the use of a finite projeetion, ~.

It turns out that the correet cones which to replace the tangent cones
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with are the normal cones f(~,Y) ,where yc-> ~ is the one-point-

space defined in X be the primary ideal of 0x generated via the,y
finite projection, and that the correct' multiplicities are the sums

of the rnultiplicities corresponding to these cones in the fibres of

the projection restricted to Y. This will be described now. Since

the results are a natural generalization of the smooth case, which

has been exposed in detail in § 2, arguments are only sketched, or

ami tted. They describe the'-Y~Le.t:r,~~-C0!lterit-'2E~ .rü1eor~·"3J iIl:....---.(78J '; -~:'"~-"'.
.-=--~~>--- - '. ~-" .

'-.......... _-~ .'

k nDefinition 3.2.1. Let (~,x) E cpla ' dimxx =: d , LI E Grass (<I )

such that x is isolated in X n LI wi th d:i k :.i n and
oq' :~ PLI (mk)srn x the mx-primary ideal generated via the projection

kE
L

I '(X I x) -> (.9; ,0) along L' . Let x C-> X be the one-point complex

spacegerm defined by ql.

d {L E pd (X , x) I
:

(i) P (X,x) : ::: L ~L I}
9 - - g -

d d L1C(X,x)}p (X,x) : = {LEP(f(~,~)1e - -

d
= P (C(X,x) ,x)

g - - -

where f (~,~) is the normal cone of x C-> X . (These are both generic

subspaces of the grassmannian of d-codimensional planes in ([n contai­
ning L'.)

'j

(ii) := rnin{deg D
L

I L E pd(X,x)}
x~ g - -

In generalization of II, Theorem 5.2.1, one has

Proposition 3.2.2. Let the notation be as in Definition 3.2.1; in

particular, LI , or .q', , is fixed.

(i) for all dL E (X,X)g - -

(ii) (Theorem of Rees). If L E P~ (~,~) , degx12L = e (q' ,Ox ,x)

Conversely, if (!,x) is eguidirnensional and deg E
L

= e(q' ,Ox )
d x ,x

then L E P (X,x)e -
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TheZf+ 1 =
projection

we will use

Notation 3.2.3. We consider (y,y) C-> (X,y) C-> (~n,O) , dirn Y =: f ,
- - - y

and (X,x) equidirnensi9na1 of dimension d . We assume the conventions

('2.2.1) (i), (ii), and (iii) made at the beginninq of 2.2; ··50 we assume
ny C-> X C-> U with U a domD.in in a: , und r = ~ n ~ , where G is

an m-codimensional plane in {Cn such tha t Y = ! n Q , called a

generating plane for Y • Let I S 0x define Y C-> X • Further , let

K E pf (Y ,y) (cf. (2 .2 .4 ) ). We let the coordinates on a:
n be chosen in

9 -
such a way that K is given by z1 = ... = zf = 0 and G by

f+m n= zf+rn = 0 • Let L' := G n K • Then L' Grass (a:)

along L' defines a finite rnap h' : X --> ~f+m 1 and

the rnultiplicities induced by h' in X along y to

control the fibres of the normal cone-(see Figure 11).

For this, put_ y := y(K) := Y n K = (~' )-1 (0) ; the multiplicity' in

question is m(~,y) , the behaviour of which along ~ is relevant for

normal pseudoflatness. One has m(2S,Y) = e (T y (~) ,Ox,y) ~ := (z1'··· ,zf)

the set of parameters of 0x defining K (cf. Chap.I, (3.6)). Put,y

(3.2.1) x --> F

to be the projection along K, where F = a: f x 0 c-> a: n . We get the

commutative diagrarn

Y ~'--------> X

and, for

along Y

z E F near y,

is as follows.

(~,)-1 (z) = Y n K-z . The behaviour of

Proposition 3.2.4. Put, for z E F near y ,

(3.2.3.) m(X,Yn K )- - -z := L m(X,z')
z I EY n Kz

Then
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L
x

Figure 11
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(i) m (~,~ n Kz ) ~ m (~,y) for all z near y, and has a constant

value for z near y outside a nowhere dense analytic subset A.s Y ,

denoted m(~,~,~) .

(ii) If I ~ 0 X defines Y C-....-> X ,

== e(x,1 IOX )- y ,y

where x 15 the set (~1 ,. '.'Zf) of parameters of 0x,y defining K ,

and e(~,1y'Ox,y) is the generalized multiplicity of Chapter I, (3.9).

The proof is similar to the proof of Theorem

admi~sible graded 0F-algebra G((~l )*1 ,U F ) =

uses the fact that normal flatne?s

See [54]

2. 1. 2 ; one cansiders the

~ (~')*(Tk/1k+1) and
k~O

1s generic, i.e. Theorem 1.4.8.

This leads to the following definition:

Defini tion 3.2.5. Let y E ~ c-> ~ c-> U be as in 3.2".3. If
f

K E P (Y, y) , X is said to be K-eguimul tiple along Y at y if and
9 -

only if the function z ~> m (X, Y n K) is constant for all z E F- - -z
near y

Grassd-f(K)
d

L E Pe (~Iy)

L , there is the

Then C(~,y) nK=C(~n~,y)

d-f:= {L E Gr a.5 s (K) I L I s= L

so we can always choose an

and if h X --> E := ~d

Far equimultiplicity considerations,one wants to proceed as in the

smooth ease and choose an LEPd(X,y) with LeK, in order to usee -
the loeal mapping degree of the projection l h =: .!:!K,L : ~ -> ~ := a:d x 0 ".

along Y to compare the various m (X, y n K ) • For this, one may show- - -z -
there is an open neighbourhood V of K in Gras5f(~n) such that

m(X,ynK') does not depend on K' for K' EV and z near y (this
"- - -z

are grassrnannian arguments similar to those e~ployed in II, 4.1.). So,
. pf (X )' .. G f ( n) 1 . hS1nce' ,y 15 gener1c 1n rass ~ , we may rep ace K W1t

es r
some K' E P (Y,y) without affecting m (X, Y n K) (this i5 the geome-

es - - - -z
tric content of (20.3) and (20.4) in Chapter IV). So we may always

assume , for que stions concerning m (X. y n K ) , that K E pf (Y, y)- - -z es
d-f

, and the set Pe (.2f n JS,Yi K )

and L ~ C (X ,x)} is generic in
d-f --

L E Pe (~nJS,YiK) . Then

x 0 is the projection along
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fundamental chain of inequali ties for z E F near y

(3.2.4) deg h =y- L deg lhz ­-1
ziEh (z)

( 1 )
~ L degzl~

Z ' E(h,)-1(z)

(2 )

I m(X,zl) ;;::

z I E(h 1 )-1(z)

m(X,Y n K )
- - -2

-1 -1The inequality (1) holds because (h') (z) s h (z) , and (2) holds

because deg I h = e (q ,OX I) ~ e (q , ,Ox ,) = deg I h I =: m (_X, z I) , wherez - ,z , z .z -
q I ~ q are the prirnary ideals induced by h' and h from the maximal

ideal of OE ., z

The various aspects of K-equimultiplicity of X along Y at y are

now summarized in the following theorem.

Theorem 3.2.6 (Geometrie analysis of equimultiplicity). Let

yEYc-> Xc->Uc-> a: n be as described in 3.2.3. Let K0 f (Y,y) .
- - - - es -

The following conditions are equivalent:

(i) X is K-equimultiple along Y at y.

(ii) There is d n and neighbourhood of y in XL E Grass (a: ) a V

sueh that, for all z Ea: f
x {O} nv , vnL = ynK and L E pd (X, z I )

Z Z z' e - -
for all z' EynK

z

cl
'(i11) For all L E Pe(X'J:)

,5 ueh that V n L = Y n Kz z

there is a neighbourhood
ffor all z E a: x {O} n V •

v of y in X

'(iv) X is normally pseudoflat along y at i.e.
-1 =d-f,Y , dirn v (y)

where \) f (~,~) -> Y is the normal cone.-
,(v) There is L E Grassd (a: such that (G+L) nc(~,~) = y .

(vi) -1 f
c(~,y) = v (y) x (ce n {oll

-1
(vii) C (~n ~,y) = \) (y) •

("Prineiple of specialization of minimal reduction ll
).

define Y C-...-> X • Let . ] cl. Then ] is
- - y

Let



a (minimal) reduction of I
y

of I for all z E Y nearz
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if and only if l z is a (minimal) reduction

y outside a nowhere dense analytic set.

(ix) ("Principle of specialization of integral dependence", cf. [ 69] ,).

Let f E 0x (X) • Then f y E~ if and only if f z E~ for all z E Y

near y outside a nowhere dense analytic set.

If one of these conditions holds, (i) and (vii) hold for all f
KEP (Y,y).

g -

The implications (iv) ~ (iii) - (i) follow , analogously to 2.2, by

blowing up a: n along G and using (3.2.4). (i) ~ (ii ) follows fram (3.2.4)

and the Theorem of Rees (Proposition 3.2.2. (ii)). I do not know of

a geometrie proof of (i) 0::;. (iv), but (i) ~ (iv) follows fram the corres-

ponding algebraic resul t . (ii) ~Jii) of -~heorem 3 in t78J •. - in view

of Prapos ition 3.2. 4 (cf.' [54]), and i t is a"useful 'exercise to

visualize the proof of that Theorem geometrieally using the geometrie

form of Böger's Theorem below. The equivalence (iv) e-= (vi) ~ (vii) also

follows .--frc~:n llie::.~.1 3 of"~~'"{ ~8J .r- .~ "'~- ·,v~-,-,·~

-= '':-;:''- The implications (vi) ~ (vii) ~ (iv) are also

airect geometrieally. The equivalenee (v) ~ (viii) ean be treated as­

in the smooth case, and (viii) ~ (ix) is left to the reader. One may

also "derive the equivalenee (iv) ~ (viii) as a direct consequence of

Böger's Theorem:

Theorem 3. 2. 7 (Theorem of Böger). Let (y , y) c-> (X, y) C-> (tt
n , 0) be

d - - f-
as in Theorem 3.2. 6. Let L E P (X ,y) , and K E: P (Y, y) containing

g - g - -

L • Let G E Grass
m (a:n ) be such that ~ = ~ n ~ , and let ~: ~ -;a.. ~d

be the projection along L. The following statements are equivalent.

·(i) deg h = m (X, y n K) for all z near Y outside a nowherez- - - -z
dense analytic set, and (G+L) n X = Y near Y.

(ii) G+L interseets X transversally along Y, i.e.

·(G+L) n c (~'.!:) = Y .

Exercise 3.2.8 (i) Derive this theorem from Böger's Theorem '(cf ...

Theorem 1 inJ!SJ) ,ano. show the equivalence (i) ~ (v) 0 f Theorem c 3 .2. 6 .
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We end our survey of Theorem 3.2.6 by establishing (iv) ~ (viii). The

implication (viii) ~ (iv) is left to the rec?-der. For (iv) - (viii), the

ltonl y if" statement is obvious, because 1 is locally fin~tely gene-

rated at y . For the "if n - statement, let ] c: 1 be a minimal reduction,

] = (g1' ... ,g2) .Ox . We may assume X is so embedded in ~n that

(g1'. ··,g2) = (zf+1,···,zd) · The assumptions then imply that eondition

(i) of Theorem 3.2.7 holds, and the conclusion follows from (ii) of the

theorem.

An interpretation of this is that the content of Böger's Theorem, be­

yond the content of Rees' Theorem, is essentially the statement of the

principle of specialization of integral dependence. This is also appa­

rent from the proof of (19.6) in Chapter III.

Finally, as an application of Theorem 3.2.6 we mention the followina

geometrie variant of proof of the result Theorer~l (b) cf L?;9J_.

Let

. Then

Co1° ' (y, y) C--> (~ , y ) ~

be as in 3.2.3. Let KEpf(y,y)
g -

X -> X~ at y
I"'J -1
yErr (y)

n
Theorem. Let (~,y) c--> (! ,0) be in

complex spacegerm, and let the notation

and supP05e X is K-equimultiple along

be the blowup of X along y and let

Idea of proof. If (C/O) ~> (~p,O) 1s a cone, m(g"c) :5lm(C,O) for

all c E C by the Degree Formula II 2.2. 8. Now let the line 2 c C (X, y)- --
I"'J -1

correspond to y E rr (y) and let ~ E 2-{O} • By Theorem 3.2.6 (vii)

we may assume ~EV-1(y) . We have the chain of inequalit1es:

rn(~,y) ~
-1 I"'J m(C(X,:f) ,F;)m(2I (y) ,y) =

:5l
-1 m(X,y) m(~,y)rn(~ (y) ,y) = :;;a

= rn(~,y,!)

which proves the claim.
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