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At the C.I.R.M. conferenee in Luminy the first author gave a re-

·port on "Logarithmie DeRham eomplexes" and sketehed the vanishing

theorems as weIl as the applications included in [4] and [5]. The

Kodaira-Nakano vanishing theorem can often be improved by regarCiing

the "logarithmic version" of the vanishing theorem for invertible

sheaves directly. Following this theme we discuss in this note some

~pplieations already indieated but not worked out in [4] and [5].

In particular, using remark 2.3.6 in [4], we prove A. Sommese's

vanishing theorem for k-ample invertible sheaves ~ , with an improve

ment on the bounds if k is larger than the Iitaka dimension K(~)

(§ 2) •

§1 contains some remarks eoncerning cohomology of loeal eonstant

systems. We reeall methods from [4] as far as they are needed in §2

and §3.

In §3 we just extend [5] to Iocal constant systems of rank one

without imposing conditions on the monodromy. This part was motivated

by· a talk by A.N. Varchenko at the International Conference on Topo

logy at Baku (October 1987) on "Combinatorie and Topology of Configu

rations of Hyperplanes" where he used an explieite description by dif-

N
ferential ferms ef a base of Hn (IR n , U A. il[) for N hyperplanes

i=1 ~

A. in general position. We reformulate the content of [5] in such a
:L
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way that the main result, the non-vanishing of cohomology classes gi

yen by certain differential forms, ean be applied to constant eoeffiei

ents as weIl.

Recently several authors studied vanishing theorems for logarith

mie differential forms (for example D. Arapura [ 1] and K. Maehara

[7]). Some of the results deseribed here may overlap with some eon

tained explicitly or implicitly in their papers.

Throughout this note we use the notations introduced in [4].

X will always denote a conneeted complex compact manifold of di

mension n, bimeromorphically dominated by a Kähler manifold and

s

D =.l Di anormal erossing divisor on X. We write U = X - D and
1.=1

j : U ~ X for the inelusion.
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§1 Local constant systems and logarithmic DeRham complexes

Definition 1.1. Let g: Y ~ Z be a morphism of analytic varieties.

We define r(g) = Max{dim f - dirn g(f) - codim fi f closed subvariety

of Y}.

Of course we can write as weIl r(g) = Max{dim (generic fibre of

glf) - codim fi f closed subvariety of Y}

and moreover, there are only finitely many subvarieties f where the

maximum i6 achieved. If b denotes the maximal fibre dimension of g

and K = dim Zone has r(g) ~ Max{dim Y - K; b - 1}.

Let ~ be a closed local constant system on U.

Lemma 1.2. (see [4], 2.3.6). Assume that there exists a proper surjec

tive morphism 9 from U to an affine variety w.

Then Hk(U,~) = 0 for k > n + r(g).

Proof. By [9], 2.3.1 the sheaves Rqg*~ are analytically construc-

~ible and Sq = Support (Rqg*~) must be astein space. Since

·'2 • (dim 9 -1 (Sq) - dim Sq) ~ q one has HP (W, Rqg*1') = 0 for

P + q > n + r(g) ~ 2 dim g-1(Sq) - dim Sq ~ q + dirn Sq. By the Leray

spectral sequence

one obtains 1.2.

Corollary 1.3. If in addition none of the monodromies of 1 around

D. has one as an eigenvalue then Hk (U,1) = 0 for k < n - r(g) as
~

weIl.

Proof. The condition on the monodromy is equivalent to Rj *'1 = j! 1

(see [4], 1.6). By Poincare duality one has
I

k k
= rn (X,Rj*~) = ~ (X,j!~) =

2n-k
= H (U,HO~(~,~»
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and by 1.2 all the cohomology groups are zero for 2n - k > n + r(g).

~ From now on we fix a locally free 0x-module ~ and a logarith

mie holomorphic integrable conneetion

with 1 = Ker(Vl u).
By the Riemann-Hilbert eorrespondenee of P. Deligne, [2], such a pair

(~,V) exists. V gives rise to a logarithmic DeRham eomplex

0X(log D) 8 ~, quasi isomorphie to ~

be the residue of V along

on U • Let r i € End (0 D, 8 .M)
1

D., i.e. the endomorphism
1.

If none of the eigenvalues of r.
1. lies in Z>o' for i = 1, ... , s, the

eomplexes 0x(log D) 8 ~ and Rj*~ are quasi isomorphie (see [2]).

By duality ([ 4], Appendix A, for example) 0x (log D) @ .M

isomorphie to j !~ if none of the eigenvalues of the r i

.z~o •

is quasi

lies in

More generally , let us assume that we ean write * Io = 0 + O·

such that none of the eigenvalues of
I

and none in Z~O' if Di ~ D-. writing

r.
1.

lies in *D. ~ 0 ,
1.

*U=X-D v' I X-D

10
'

1
0

X-D! I Xv

we have

Lemma 1.5. The three eomplexes 0x (log D) 8 ..M I Ra*v! "V

are quasi isomorphie.
and v! Ra ~.,
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Proof, By [4], A,2 and 1,2,e, the Verdier duality exchanges the role
• I

of D and D·. Therefore it i5 5ufficient

two complexes are quasi isomorphie. Ra.u!'"
I

Ra.(OX_D.(log D') ~ ~). To show that the map

to prove that the first

is quasi isomorphie to

i5 a quasi isomorphism as weIl we may reduce the statement to poly

disks and then to rank one sheaves ~ (following the proof of 11,3.13

in [2], as we did in [4], A.8). In this case one may assume (~,V) to

be the product of rank one sheaves with connections obtained by pull

back from those living on disks,Since Ra. is compatible with this

construction we are reduced to the one-dimensional case, where the

statement is a consequence of the quotations made above.

1,6 The main lemma ([41, 2.2 and 2.3)

Assume that 9 is a proper surjective morphism from U to an affine

variety W. Let ~ be a locally free 0x-module and V a holomorphic

integrable connection of ~ with logarithmic poles along D. Assurne

that none of the eigenvalues of the residues r. is an integer. If
l.

the spectral sequence

degenerates at EI' then

p + q > n + r(g) and for p + q < n - r(g).

1.2 and 1.3 finish the proof.

Proof, The assumptions just imply Hk(U,Ker vl u) ~ m Eiq
(.M). Then

p+q=k

Remark 1.7. Under the monodromy assumptions of 1. 6 i t is sometirnes

useful to introduce additional divisors C and E such that

C + E + D has still normal crossings and to study the complex



- 6 -

0X(log(D + C + E» ~ ~ ~ 0X(-E).

If one denotes the inelusions by

U-(C+E) v'
~ U-C

j ,
• x-c

1a' 1a 1Tl

U-E U i ~x
v ]

the eomplex is quasi isomorphie to eaeh of:

R(j 0 a).vi 1 ', (j 0 v)!Ro'.~' or

RTl.(j' 0 u')!1' where~' = ~IU-(C+E)

(use 1.5).

Assume that the speetral sequenee

degenerates at E
1

• Then again, geometrie properties of (X,D,E,C)

imply the vanishing of some of the eohomology groups oeeuring as

E1-terms in the speetral sequenee (see 2.1).

The following lemma is, for E = ., one example whieh will be

needed in 2.6.

Lemma 1.8. Assume in addition that g: U --+ W is smooth and that

cl U has relative normal erossings. Then

for p + q < dim W.

Proof. The pair (U, C) is loeally topologieal trivial \ over W.

Therefore - keeping the notations from (1. 7) - the eohornology of

R(g 0 a).1' is loeally constant. Then

Hk (U,Ro.1') = H~(U,Ro*1') = ~~(W,R(9 0 a).~') = 0 for k < dirn W.
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§2 Vanishinq theorems for k-ample invertible sheaves

2,1, The main example, Even if the statements obtained in [4] or §!

are more general, many applications follow from the example [4], 2·,7:

Let be an invertible sheaf such that ~N = ° (X
u. D.)

1. 1.
with

N > v. ~ 0, Then ~-1 haB a holomorphic integrable connection V
1.

with logarithmic poles along D, whose residues r. are the multipli
1.

cation with v./N and the spectral sequence EPq(~-1) degenerates at
1. 1

-1E1 , In fact the complex 0x (log D) ~ ~ 18 a direct summand of a

complex ~*Oy(log w*D) where ~ : Y ~ X is the desingularization of

the cyclic cover obtained by taking the N-th root of the Bection with

-1EI (~ ) -degeneration i8 irnplied by P,zero divisor "2 u. D., The
i=1 1. 1.

Deli9ne's theorem, that the logarithmic Hodge-DeRham spectral sequence

degenerates at E1 , If X is algebraic, P, Deligne and L, Illusie

gave recently a beautiful purely algebraic proof by reduction modulo

p of this theorem ([3]), There one also finds a proof of the degene-

ration of the spectral sequence given by Oy(lo9(~*D» ~ 0y(-B) for

any reduced subdivisor B of D, Interpreted in the same way we ob

tain the degeneration of

Hq(X,O~(109(D + E + C» ~ ~-1 ~ 0X(-E» ~

~ rnp+q(X,Ox(109(D + E + C» ~ ~-1 8 0X(-E»

for all reduced divisors C and E such that

crossings, If 0 < Vi < N, for all i, and if

we obtain (notations as in 1,7):

D + C + E has normal

~, = Ker(vIX_(D+C+E»

rnk(X,R(j 0 a)*v!~') = rnk(x,(jou) !Ro~~') =

rnk(X,R~*(j' 0 v')!~') - $ Hq(X,O~(109(D + E + C» ~ ~-1 ~ 0X(-E»,
p+q=k

Several vanishing theorems for differential forms (as weIl as for rnor

phisms between cohomology graups, as in [4] §3) can be so obtained,
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Some are stated and discussed in [1] and [7]. We return to the

simple case where C = E = +:

Corollary 2.2. Assume there exists a proper surj ective morphism . 9

from U = X - D to an affine variety W. Let <.f be an invertible

sheaf on X and assume that ~N = 0 ( 2 u. 0.) for ° < u. < N.X i=1 1. 1. 1.

then Hq(X,O~(log 0) ~ <.f-1) = ° for p + q > n + r(g) and for

p + q < n - r(g).

Notations 2.3. An invertible sheaf is semiample if some of its powers

are generated by global sections. A. Sommese (see [8]) defined <.f to

be b-ample if for some N > ° ~N is generated by its global sections

and if the corresponding morphism • N : X ~ W(HO(X,<.f,N)) has at most
~

b-dimensional fibres. We write for a semiample invertible sheaf ~

r (<.f) = r (rp N) where N is any positive number such that <.fN is
<.f

generated by its global sections. It is easy to see that r (<.f) is

weIl defined.

Us~ng those notations we obtain an improvement of A. Sommese's vani

shing theorem (see [8], Chapter 111):

Theorem 2.4. Let <.f, be a semiample invertible sheaf on x. Then

IHq(X,O~ ~ <.f-1) = ° for p + q < n - r(<.f). Especially, if

b-ample of Iitaka dimension K(<.f), this holds for

p + q < Min{K(<.f),n - b + l}.

iso

Proof. If K (<.f) = 0, there is nothing to show. For K (<.f ) > 0· we

choose N > 1 such that <.iN

: X ~ Z =. N(X). Let
<.f,

is generated by its sections and write

o be the zero divisor of a general

section of i8 non singular and Z - +(0) affine. By 2.2

Hq(X,O~(109 D) ~ ~-1) = ° for p + q < n - r(+). For those p and q

the exact sequence
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gives rise to a surjection

since K (~ ID) = K (~) - 1 and since ~ ID is again semiample with

r(~ID) ~ r(~) + 1 the lefthand side 1s zero by induction on K(~) (In

fact, since D is in general position we even have r(~ID) ~ r(~)).

Remarks 2.5. a) If • N is equidimensional the bound for p + q
~

given in 2.4 i8 the same one as in A. Sommese's original theorem. If

<;f i5 b-ample and K (<;f) ~ n - b + 1 then n - r (<;f) = n - b + 1 if

and only if the union of all b-dimensional fibres of • N has codi-
;e

mension one. In this case the bound is just improved by one. On the

other hand, C.P. Ramanujam gave an exarnple (see [8], 3.23) of a three

fold X and a 2-ample sheaf ;e of Iitaka dimension 3, such that

Hl(x,n~ e ~-1) '# o. Therefore, as long as the "bad locus lt consists cf

divisors one can not expect further irnprovements.

b) It should be possible to replace the assumption "b-ample of Iitaka

dimension K(~)" in 2.4 by some nurnerical condition. But anything we

could imagine looked quite unnatural. However for applications it is

often sufficient to use 2.2 for a suitable divisor D as illustrated

in part ii) of the following lemma:

Lemma 2.6. Let ;e be an invertible sheaf on X and C C X be a

normal crossing divisor. Assume that one cf the following assumptions

holde:

i) ;e is semi-ample

11) X i9 Moisezon and

bimeromorphic morphism T

anormal cross1ng divisor

~ is numerically good. Then there exists a

X' ~ X of compact complex manifolds and

D' on X' containing (T*C)red such that

Before sketching the proof (similar to [4], 2.11 and 2.12), let

us recall the definition and same properties of numerically good in

vertible sheaves, both due to Y. Kawamata, [6].
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Definition 2.7. An invertible sheaf ~ is called numerically good if

i t is numerically effective ( i . e. if deg ~ Ir ~ 0 for all curves

r ~ X) and if K(~) = Min{k,c1(~)k+1 numerically trivial}.

good. Then there are projective manifolds X' and

morphism T: X' --+ X, a surjective morphism g: X'

Lemma 2.8. (see [6]) Let X be the Moi~ezon and ~ be numerically

Z, abirational

--+ Z and an in-

vertible numerically effective sheaf X on Z, such that

for some a > 0 and dim Z = K(~) = K(X).

* * a9 X = T ~

It is easy to see that all numerically effective sheaves ~ with

KC~) ~ dim X - 1 are numerically good.

The proof of 2.6.

find X', Z , X , T , 9

Under either one of the assumptions made we can

and a as in 2. 8 . (For i) we take X' = X and

k

9 = ~ N)· Let C' = (T *C) d = \' C'.• We can find - blowing up X',
~ re j~l ]

*if necessary - a divisor r on Z such that B = gras weIl as

C' + B are normal crossing divisors, such that gIX'-B is smooth. and

c:I.~x, -B a relative normal crossing divisor. K (X) is maximal and for

U »0 ~u 8 0z(-r) will contain an ample invertible sheaf. Replacing

r by a larger divisor and blowing up X' a little bit more we mayas

weIl assume XU
~ 0Zc-r) to be ample. X is numerically effective,

which allows to enlarge u until N = a • u > Multiplicities of the

components of B. This inequality remains true if we replace u and

r by the same multiple and we may assume that ~u ~ 0Z(-r) i5 very

ample. Pulling back a general section we get a nonsingular divisor H

on X' such that 0 t= H + Band 0' = H + B + C' are both normal

crossing divisors. For ~'= T*~ we have ~,N = 0x' (0) and the as

sumptions of 2.2 are satisfied. 1.8 allows to add the divisor C' to

the boundary and we obtain the vanishing of Hq(X' ,o~, (log D') 8 ~,-1)

for p + q < n - r(glx'-o) = dim Z = K(~).
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§3 Cohomology classes represented by logarithmic differential forms

.h..L. Let .M

ble connection

The residues

be an invertible 0x-module with a holomorphic integra

V with logarithmic poles along 0 and· ~ = Ker V lu.
f i of V along D1 are given by mUltiplication with

* I
constants 'ti and - as in 1.4 - we write o = D + D· where for,

* 'ti (. z>o and forD. ~ D
l.

I
fix decompositionsD. ~ D· "'t- E Z~O· As in 1.5 we one of those and

l. 1.

write v' * a
U -----+ X - D ) X. By 1.5 we have

which is (by definition)

k * I *H (X - D , D· n (X - D );~).

Theorem 3.2.

Moise~on and

as above we assume that either

is semiample.

isX

-1.M

the morphism

(.M,V)

is numerically good or that

For

K. =Then for

is injective.

Remark 3.3. a) For the sheaf (n~(lo9 D) @ ~)cl of closed j-valued

p-forms we have

HO(X,(O~(109 D) ~ .M)cl) =

= rnP(X,FP(Ox(109 D) @ .M))

where FP denotes the Hodge filtration. ß is given by the inclusion
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b) By F. Bogomo10v' s vanishing theorem one knows that for p < K

HO (X, o~ (log D) 8 .M) c: O. In fact, this can be obtained from 2.2 by

using the arguments given in [4], 2.11.

Proof of 3.2. (see also [5])

By 2.6 there is a bimeromorphic morphism -r: X' ~ X and anormal

crossing divisor D' containing (-r*D) red such that

Hq(X' ,O~' (log D') ~ T*.M) = 0 for p + q < K. Then

and the morphism ß' in the fo1lowing diagram is injective:

rnK(X,FK(OX(109 D) ~ .M)) ~ rnK(X,Ox(log D) ~ ~)

1T* 1

As remarked in 3.3 a) the groups on the left hand side are those of

global closed forms and *T is injective as weIl.

~ j (., ~ c °u) := .Al 8 °X(*D) is the regular meromorphic exten-
m*

sion of ., 80;Ou to X, unique up to isomorphism ( [,2] ) • We call

€
o p meromorphic along D if lies inCL! H (U,OU 80;") w

subsheaf of

V induces a

such that the

i. We say that

1s one and if

invertibleanisextensioncanonicalThe .,
can

jm*(~ ~ COU) which is determined by the property that

connection on ~can with logarithmic poles along d

real part of the residues r i lies in [O,l[ for all

CL! swallows Dj , if the monodromy of ~ around Dj
for some u. € Z

~

w € HO(X,O~(I09 D) ~ 1 80x() u.D. - D.)).
can i~j 1 ~ J
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o nCorollary 3.5. Let UJ € H (U ,OU 8 C1') be meromorphic along D. Let
I

D' be the union of all components of D which are swallowed by UJ

* Iand D = D - D'. Let Z be the closure of the zero divisor of w

on U. If ~ = O~(l09 D) 8 0x(-Z) is numerically effective and

K(~) = n, then UJ defines a non vanishing cohomology class in

Proof. Let ~ be the smallest extension of 1 0 a::;Ou

~-1 = <,i.

such that UJ E HO(X,O~(109 D) ~ ~ 8 0x(-Z)), Then

n
w : 0x ---t 0x(log D) 0 .M 0 0x(-Z) is an isomorphism and

Moreover .At C "'can 8 0X(-D j ) 80x (*(D-Dj )) if and only if w swal-

lows Dj . Therefore the choice of D1 and D* satisfies the assurnp

tions made in 3.1 and by 3.2 we have an injection

* I
3.'"6. We write again D = D + D' • The relative cohornology

Hn.!(X D*,D 1 * ) ;e) is givenn (X-D by the n-th hypercohomology of the
I * *complex 0x (log D) ~ °X(-D') 8 ° (*D ) . If X - 0 is affine (other-X

co
wise we should replace the holomorphic forms by ~ -forms) we can as

weIl take the n-th cohomology of the cornplex of vector spaces

3.2 says that in this complex no non zero form out of

HO(X,O~(109 D) ~ 0X(-D! + u •

= HO(X,O~ 0 0x«u + 1) • 0*))

*D )) .....

I *i5 exact, provided 0x (D' - u· D )

maximal Iitaka dimension.

i8 numerically effective and of

We heard the following example (over m) form A.N. Varchenko.
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Corollary 3. 7 . Let Al' ••• ,~ be hyperplanes in en in general

position, n ~ N, and let Yl' · · · , Yn be the coordinate functions.

Then a base of ... u ~;a::) i8 given by the differential

forms for m. ~ 0
1

n

and l m. ~ N - n - 1.
i=1 1

if we take for V

the assumptions of

*D for the hyper-

form a base of

... U ~ and

forms given

= Ho(~n,Onn(log D» ~~) for
W

* .• D ) = 0 (-1). Obv10usly,
IP n

the usual differential on 0 (_D 1 + (N - 1) • D*)
Wn

3.2 are all satisfied and we have an injection

Proof. On Wn we write D! = Al U

plane at 00 The differential

Ho(Wn,Onn~ O(N • D*»
IP

~ = 0 (_D 1 + (N - 1)
IP n

and 3.7 fel-

lews from the presumably weIl known

Lemma 3. 8 • Let D
O

' ••• , DN be hyperplanes in Wn in general posi

tion, n ~ N. Then Hq(Wn,nP (log 0) ~ 0 (-1» = 0 for q > o.
IPn ~n

Proof. Do' ... 'On form a complete coordinate system. If N = n then

n
0

1 (log 0) = $ 0 1
IP n W

and the cohomology group considered i8

N-1
For N > n we write 0' = l D. and consider the long exact sequence

i=O 1
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o ~ oP (log 0') 8 0 (-1)
IP n IP n

By induction on

induction on n

p-10 0 (log(DN n 0')) 8 0 0 (-1)) ~ 0
N N

N the left hand side has no higher cohomology and by

neither does the right hand side.
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