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At the C.I.R.M. conference in Luminy the first author gave a re-
.port on "Logarithmic DeRham complexes" and sketched the vanishing
theorems as well as the applications included in [4] and ([5]. The
Kodaira-Nakano vanishing theorem can often be improved by regarding
" the "logarithmic version" of the vanishing theorem for invertible
sheaves directly. Following this theme we discuss in this note some
applications already indicated but not worked out in [4] and [5].

In particular, using remark 2.3.6 in [4], we prove A. Sommese's
vanishing theorem for k-ample invertible sheaves ¢ , with an improve-

ment on the bounds if k 1is larger than the Iitaka dimension «(¥)
(§2).

§1 contains some remarks concerning cohomology of local constant

systems. We recall methods from [4] as far as they are needed in §2
and §3.

In §3 we just extend [5] to local constant systems of rank one
without imposing conditions on the monodromy. This part was motivated
by a talk by A.N. Varchenko at the International Conference on Topo-
logy at Baku (October 1987) on "Combinatoric and Topology of Configu-
rations of Hyperplanes" where he used an explicite description by dif-

N

ferential forms of a base of Hn(Rn, U Ai;C) for N hyperplanes
i=1

A, in general position. We reformulate the content of [5] in such a
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way that the main result, the non-vanishing of cohomology classes gi-
ven by certain differential forms, can be applied to constant coeffici
ents as well.

Recently several authors studied vanishing theorems for logarith-
mic differential forms (for example D. Arapura [1l] and K. Maehara
[7)). Some of the results described here may overlap with some con-
tained explicitly or implicitly in their papers.

Throughout this note we use the notations introduced in [4].

X will always denote a connected complex compact manifold of di-
mension n, bimeromorphically dominated by a Kahler manifold and

s
D = 2 D; a normal crossing divisor on X. We write U =X - D and
i=1

j : U— X for the inclusion.



§1 Local constant systems and 1ogarithmic DeRham_complexes

Definition 1.1. Let g : Y -— Z be a morphism of analytic varieties.
We define r(g) = Max{dim I' - dim g(I') - codim I'; T closed subvariety
of Y}.

Of course we can write as well r(g) = Max{dim (generic fibre of
glr) - codim I'; T closed subvariety of Y}
and moreover, there are only finitely many subvarieties T where the
maximum is achieved. If b denotes the maximal fibre dimension of g
and x = dim Z one has r(g) ¢ Max{(dim Y - «; b - 1}.

Let ¥ be a closed local constant system on U.

Lemma 1.2. (see [4], 2.3.6). Assume that there exists a proper surjec-
tive morphism g from U to an affine variety W.

Then HN(U,7) = 0 for k > n + r(g).

Proof, By [9], 2.3.1 the sheaves ng*1 ére analytically construc-
tible and Sq = Support (ng*f) must be a Stein space. Since
2+ (dim g'l(sq) -dims) 2 q one has HP (w,r%,¥) = o for

p+qg>n+r(g) 2 2 dim g'l(sq) - dim Sq 2 g + dim Sq. By the Leray
spectral seguence

ebd = #P(w,R%,7) » P Y(u,7)
one obtains 1.2.

Corollary 1.3. If in addition none of the monodromies of ¥ around

Di has one as an eigenvalue then Hk(U,T) =0 for k<n-1r(g) as

well.

Proof. The condition on the monodromy is equivalent to R,V =3,7
(see [4], 1.6). By Poincaré duality one has

w& (U, ¥)

W%, R3,7) = w5x,3,0) = 15U, -

= #2"¥(u, Homg (1,0))



and by 1.2 all the cohomology groups are zero for 2n - k > n + r(g).

1,4, From now on we fix a locally free Ox—module Hd and a logarith-

mic holomorphic integrable connection

V: d — Q;(log D) @ 4

with ¥ = Ker(VlU).

By the Riemann-Hilbert correspondence of P. Deligne, [2], such a pair
(H,V) exists. V gives rise to a logarithmic DeRham complex

Qi(log D) @ 4, quasi isomorphic to ¥ on U. Let Fi € End(OD @ AH)

i
be the residue of V along D;, i.e. the endomorphism

4 =5 0%(log D) 8 4 —> 0 8 A.

i

If none of the eigenvalues of Fi lies in Z for i=1,...,s8, the

>0/
complexes ﬂi(log D) ® & and Rj,¥ are quasi isomorphic (see [2]).

By duality ([4], Appendix A, for example) Q)'((log D) © A is quasi
isomorphic to jIY if none of the eigenvalues of the ry lies in

‘ZSO'
* |
More generally, let us assume that we can write D=D + D’
such that none of the eigenvalues of Fi lies in Z>0, if Di < D*,
!
and none in ZSO’ if Dy { D°. Writing
*
U=X-D TS B X-D
o! la
! X
X-D X
v

we have

Lemma_ 1.5, The three complexes Qi(log D) ® 4, Ro,v|¥ and v Rol¥
are quasi isomorphic.



Proof. By [4], A.2 and 1.2,e, the Verdier duality exchanges the role

| .
of D* and D°. Therefore it is sufficient to prove that the first

two complexes are quasi isomorphic. Ro v ,7¥ is quasi isomorphic to

t
Ra*(ﬂi_D*(log D°) @ 4). To show that the map

. !
Qx(log D) & 4 — Ra*(QX_D*(log D) & d)

is a quasi isomorphism as well we may reduce the statement to poly-
disks and then to rank one sheaves A (following the proof of II,3.13
in [2], as we did in [4], A.8). In this case one may assume (4,V) to
be the product of rank one sheaves with connections obtained by pull-
back from those living on disks. Since Ro, is compatible with this
construction we are reduced to the one-dimensional case, where the

statement is a consequence of the quotations made above.

1.6 The main lemma (f4], 2.2 and 2.3)

Assume that g 1is a proper surjective morphism from U to an affine
variety W. Let A be a locally free Ox—module and V a holomorphic
integrable connection of d with logarithmic poles along D. Assume
that none of the eigenvalues of the residues Fi is an integer. If
the spectral sequence

P9y = m9(x,08%(1og D) @ 4) » mp+q(X,Qi(log D) © A)

degenerates at El, then

Hq(X,ﬂi(log D) ® k) = 0 for

p+g>n+r(g) and for p + g < n - r(g).

Proof. The assumptions just imply Hk(U,Ker VIU) = qu(ﬂ). Then
p+tg=k
1.2 and 1.3 finish the proof.

Remark 1.7. Under the monodromy assumptions of 1.6 it is sometimes

useful to introduce additional divisors c and E such that
C+ E + D has still normal crossings and to study the complex



Qy(log(D + C + E)) ® & ® O (-E).

If one denotes the inclusions by

t St
U-(C+E) —>— U-¢c —L— x-C

o Lo |

U=-E T’ U ——i—ix

the complex is quasi isomorphic to each of:

R(} © o),ui¥', (3 ° v),Ro' ¥ or

Rn,(3' © v'),¥' where ¥' = 1|U-(C+E)

(use 1.5).

Assume that the spectral sequence

Hq(X,Qg(log(D+E+C))@ A8 0 (-E)) » Hp+q(x,ﬂi(log(D+E+C)) ® 4 ® 0, (-E))

degenerates at El' Then again, geometric properties of (X,D,E,C)
imply the vanishing of some of the cohomology groups occuring as

El—terms in the spectral sequence (see 2.1).

The following lemma is, for E = ¢, one example which will be
needed in 2.6.

Lemma _1.8. Assume in addition that g : U -— W is smooth and that

C|U has relative normal crossings. Then Hq(x,ng(log(D+C))®A)'= 0
for p + q < dim W.

Proof. The pair (U,C) is locally topological trivial:Gover W.

Therefore - keeping the notations from (1.7) - the cohomology of
R(g © o),¥' 1is locally constant. Then

oS (U,Ro, V') = HS(U,Ro,¥') = HS(W,R(g © 0),9') = 0 for k < dim W.



§2 Vanishing theorems for k-ample invertible sheaves

2.1. The main example, Even if the statements obtained in [4] or §1

are more general, many applications follow from the example [4], 2.7:

et ¢ Dbe an invertible sheaf such that ¢V = Ox( S viDi) with
. i=1

N > vy 2 0. Then 2_1 has a holomorphic integrable connection v
with logarithmic poles along D, whose residues Fi are the multipli-~

1

cation with vi/N and the spectral sequence qu(g' ) degenerates at

1

E

In fact the complex Qg (log D) @ e is a direct summand of a

l.
complex w*ni(log w*D) where w7 : Y — X 1is the desingularization of
the cyclic cover obtained by taking the N-th root of the section with
zero divisor 5 v;Dy. The El(w_l)-degeneration is implied by P.
i=1
Deligne's theorem, that the logarithmic Hodge-DeRham spectral sequence
degenerates at E,. If X is algebraic, P. Deligne and L. Illusie
gave recently a beautiful purely algebraic proof by reduction modulo

p of this theorem ([3]). There one also finds a proof of the degene-

ration of the spectral sequence given by Qé(log(w*D)) @ DY(-B) for
any reduced subdivisor B of D. Interpreted in the same way we ob-
tain the degeneration of

L
® 0, (-E)) 2

> WPTI(x,0; (log(D + E + C)) @ 27 8 0, (-E))

Hq(x,ng(log(o +E+C)) 8 ¢

for all reduced divisors € and E such that D + € + E has normal

crossings. If 0 < v, <N, for all i, and if ¥' = Ker(le—(D+C+E))
we obtain (notations as in 1.7):
k : i1y = ¥ gy =
H™(X,R(] © o) ,v)7") =N (Xr(j°U)!RU*7 ) =
Nk(x,Rn*(j’ °cu') 1) = @ Hq(x,ﬂg(log(D +E+cC)) @ ele 04 (-E)).

p+tg=k

Several vanishing theorems for differential forms (as well as for mor-
phisms between cohomology groups, as in {4) §3) can be so obtained.



Some are stated and discussed in [1] and [7]. We return to the
simple case where C = E = ¢: ‘

Corolla Assume there exists a proper surjective morphism - g
from U =X -D to an affine variety W. Let ¢ ©be an invertible

sheaf on X and assume that SN = ox( S v.D.) for 0 < v, < N.
j&, 171 i
then  H9(x,0P(log D) @ ¢y =0 for p+g>n+r(g and for

P+4gqg<n-r(g).

Notations 2.3. An invertible sheaf is semiample if some of its powers
are generated by global sections. A. Sommese (see [8]) defined ¢ to

be b-ample if for some N > 0 ¢V ig generated by its global sections

and if the corresponding morphism ¢ NG X — P(HO(X,QN)) has at most
€
b-dimensional fibres. We write for a semiample invertible sheaf ¢

r(£) = r(¢ y) where N is any positive number such that N g
b4

generated by its global sections. It is easy to see that r(¢) is
well defined.

Using those notations we obtain an improvement of A. Sommese's vani-
shing theorem (see [8)], Chapter III):

Theorem 2.4. Let ¢ be a semiample invertible sheaf on x. Then

wI(x, 0P e ¢ Yy =0 for p+q<n-r(¢). Especially, if ¢ is

b-ample of Iitaka dimension «x(¥), this holds for
P+ g< Min{(x($),n - b + 1}).

Proof. If «x(4) = 0, there is nothing to show. For «(¥) > 0.  we

choose N > 1 such that ¢V is generated by its sections and write
¢ =¢ g X—>Z=29 n(X). Let D be the zero divisor of a general
4 ¢

section of QN. D is non singular and Z ~ ¢(D) affine. By 2.2

#9(x,0P (1og D) ® ¢l

the exact sequence

) =0 for p+gq<n-r(¢). For those p and g

P p p-1
o — Qx — Qx(log D) — QD — 0



gives rise to a surjection

Hq'l(o,ng‘l 8 , ¢ — i (x,0P o ¢ 1

0 % )

0X X

Since K(EID) = k(¢) - 1 and since 2|D is again semiample with
r(2|D) < r(¢) + 1 the lefthand side is zero by induction on «x(¥) (In
fact, since D is in general position we even have r(9|D) < r(¥)).

Remarks 2.5, a) If ¢ N is equidimensional the bound for p + g
4

given in 2.4 is the same one as in A. Sommese'’'s original theorem. If
¥ is b-ample and «x(¢) 2 n-b + 1 then n-r(¢) =n-Db + 1 if
and only if the union of all b-dimensional fibres of ¢ N has codi-
mension one. In this case the bound is just improved by one. On the
other hand, C.P. Ramanujam gave an example (see [8], 3.23) of a three-

fold X and a 2-ample sheaf ¢ of Iitaka dimension 3, such that

Hl(x,n§ ® 2-1) # 0. Therefore, as long as the "bad locus" consists of
divisors one can not expect further improvements.

b) It should be possible to replace the assumption "b-ample of Iitaka
dimension «x ()" in 2.4 by some numerical condition. But anything we
could imagine looked quite unnatural. However for applications it is
often sufficient to use 2.2 for a suitable divisor D as illustrated
in part ii) of the following lemma:

Lemma 2.6. Let ¢ be an invertible sheaf on X and CC X be a

normal crossing divisor. Assume that one of the following assumptions
holds:

i) ¢ 1is semi-ample

ii) X is Moidezon and ¢ is numerically good. Then there exists a
bimeromorphic morphism rt : X' — X of compact complex manifolds and
a normal crossing divisor D' on X' containing (T*C)red such that

H9(x',0P, (log p') ® t'¢71) =0 for p + q < x(2).
Before sketching the proof (similar to [4], 2.11 and 2.12), let
us recall the definition and some properties of numerically good in-

vertible sheaves, both due to Y. Kawamata, [6].
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Definition 2.7. An invertible sheaf ¢ is called numerically good if
it is numerically effective (i.e. if deg er 2 0 for all curves

I c X) and if «x(¥) = Min{k,cl(&f)k+1 numerically trivial}.

Iemma 2.8. (see (6]) Let X be the Moifezon and ¢ be numerically
good. Then there are projective manifolds X' and 2, a birational
morphism Tt : X' — X, a surjective morphism g : X' - Z and an in-

* *
vertible numerically effective sheaf ¥ on 2, such that g ¥ = 1 ¢

for some a > 0 and dim 2 = k(¥£) = k(¥).

It is easy to see that all numerically effective sheaves ¥ with
k(£) 2 dim X - 1 are numerically good.

The proof of 2.6. Under either one of the assumptions made we can

find Xx',2,¥,7,9 and a as in 2.8. (For i) we take X' = X and
k
*
= L = ,. . » - . :
g ¢9N)' Let C (t C)red jzl CJ We can find blowing up X',
if necessary - a divisor I' on 2Z such that B =vg*F as well as
C' + B are normal crossing divisors, such that ng'-B is smooth and

ClX'-B a relative normal crossing divisor. «(¥) 1is maximal and for

v>>0 A8 0,(-T) will contain an ample invertible sheaf. Replacing
' by a larger divisor and blowing up X' a little bit more we may as

well assume & © 0,(-T) to be ample. ¥ is numerically effective,
which allows to enlarge v until N = a - v > Multiplicities of the

components of B. This inequality remains true if we replace v and

I' by the same multiple and we may assume that A e OZ(—F) is very
ample. Pulling back a general section we get a nonsingular divisor H
on X' such that D= H + B and D' = H + B + C' are both normal

N

*
crossing divisors. For ¢' =t ¢ we have ¢'= = Ox,(D) and the as-

sumptions of 2.2 are satisfied. 1.8 allows to add the divisor C¢' to

the boundary and we obtain the vanishing of Hq(X',QE,(log D') ® ¢ 71

for p+ gq<n - r(g| = dim 2 = k(2).

)
s -p)
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§3 Cohomolo classes represented b ogarithmic differential forms

3.1. Let 4d Dbe an invertible Ox-module with a holomorphic integra-
ble connection V with logarithmic poles along D and - ¥ = Ker V|U.

The residues Fi of V along D, are given by multiplication with
1
constants L8 and - as in 1.4 - we write D = D* + D°, where for
*
Di <D LA ¢ Z>0 and for
t
Dy { D° L ¢ ZSO. As in 1.5 we fix one of those decompositions and

. ! *
write U 22— X - D —Z— X. By 1.5 we have

K (X,05(log D) ® A) = H(X,Ro,v!¥)

which is (by definition)

|
B(x - p*, o' n (x - D¥);1).

Theorem 3.2. For (4,V) as above we assume that either X is

Moise¥on and 41 is numerically good or that at

Then for k = k(4 %) the morphism

is semiample.

H°(x,(n§(1og D) & &) ;) £, mk(x,Ra*uiv)

is injective.

Remark 3.3. a) For the sheaf (Qg(log D) ® ‘)cl of closed K-valued
p-forms we have

1 (x, (2B (1og D) © 4)_)

= MP(X,Fp(ﬂi(log D) © X))
where FP denotes the Hodge filtration. B 1is given by the inclusion

Fp(Qk(log D) ® 4) — 0Ny (log D) ® A.
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b) By F. Bogomolov's vanishing theorem one knows that for p < k

HO(x,0P(log D) ® A) = 0. In fact, this can be obtained from 2.2 by
using the arguments given in [4], 2.11.

Proof of 3.2. (see also [5])
By 2.6 there is a bimeromorphic morphism =t : X' — X and a normal
crossing divisor D' containing (-r*D)red such that

Hq(X',Qﬁ,(log D') ® r*#) =0 for p+ q < k. Then

w Tl x 0.3 (log p7) 8 M) = 0

and the morphism B’ in the following diagram is injective:

H* (X, F* (25 (1og D) & 4)) £ ¥ (x,0;(log D) & )

|+ |

W (X', F* (23, (log D') ® T"4)) £ W (x',05, (log D') & T A)

As remarked in 3.3 a) the groups on the left hand side are those of

global closed forms and 5 is injective as well.

3.4, jm (¥ ® C OU) 1= H @ Ox(*D) is the regular meromorphic exten-
*
. sion of ¥ @COU to X, unique up to isomorphism ([2]). We call
w € HO(U,QE ®c7) meromorphic along D if o lies in
HO(x,5. (¢ ©.0.) 8, aP(log D))
"“m, c'vu OX X )
The canonical extension 1can is an invertible subsheaf of
jm (v © COU) which is determined by the property that V induces a
*
connection on 1can with logarithmic poles along d such that the

real part of the residues Fi lies in [0,1[ for all i. We say that

w swallows Dj’ if the monodromy of ¥ around Dj is one and if

for some vy € Z

0 p -
v € 1 (x,08(1og D) ® ¥___ & 0( iZ'UiDi DJ)) .

J

-
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corolla 5 et o € HO(U,QE GEV) be meromorphic along D. Let
D! be the union of all components of D which are swallowed by
and D =D - D!. Let 2Z be the closure of the zero divisor of o
on U. If ¢ = Q;(log D) ® Ox(—Z) is numerically effective and
k() = n, then © defines a non vanishing cohomology class in

!

HY%(x - p*,0' N (x - D) ;¥)

Progf. Let 4 be the smallest extension of ¥ @ COU in j_ 94 & 0
. m, c'u

such that o € H’(X,0}(log D) ® 4 ® 0,(-Z)). Then

w 3 OX — n;(log D) @ A ® OX(-Z) is an isomorphism and At =,

Moreover 4 C fcan ® OX(-Dj) ® Ox(*(D-Dj)) if and only if v swal-

lows Dj' Therefore the choice of D! and D" satisfies the assump-
tions made in 3.1 and by 3.2 we have an injection

1 (X,03(log D) @ 4) — H"(X,Ro,u1¥).

* 1
3.6. We write again D=D + D°. The relative cohomology

! n (X-D*);C) is given by the n-th hypercohomology of the

1’x - p*,D
|
complex ni(log D) ® Ox(-D') @ OX(*D*). If X - D' is affine (other-

wise we should replace the holomorphic forms by @w-forms) we can as
well take the n-th cohomology of the complex of vector spaces

1% x - o*, 0 log D') ® 6.(-D"
( ’ x_D*( og ) x( ))'

3.2 says that in this complex no non zero form out of

|
HO(X,Q;(log D) 8 0, (-D° + v - D*y) =

= HO(X,QQ ® 0, .((v+ 1) D*))

) *
is exact, provided OX(D' - veD ) is numerically effective and of
maximal Iitaka dimension. ’

We heard the'following example (over R) form A.N. Varchenko.



- 14 -

Corollary 3.7. Let A,,...,A4 be hyperplanes in ¢” in general
position, n ¢ N, and 1let Yl,...,Yn be the coordinate functions.

Then a base of Hn(Cn,Al U ... U AN;G) is given by the differential

™ ™ S
forms Y1 -...-Yn . leA...AdYn for m, 2 0 and .Zlmi {N-n-1.
1 - — *
Proof, On P? we write D' = Al u ... U AN and D for the hyper-
plane at ©, The differential forms given form a base of
1o (P, 0" @ o(N - D*)) = HO(P",0" (log D)) & 4) for
ph ph
d =0 n(—D! + (N - 1) - D*) = 0 n(-1). Obviously, if we take for v
P P :
the usual differential on ¢ n(-DI + (N - 1) - D*) the assumptions of
P
3.2 are all satisfied and we have an injection
(P, 0™ (l1og D) ® 4) — H™(C™,A, U...U A_;C) =
ph 1 n

= ™" (P™,0° _(log D) © A).
]Pn

The cokernel is contained in mn(Pn,Q°in_l(log D) ® ) and 3.7 fol-
P

lows from the presumably well known

Iemma 3.8. Let DO""'D be hyperplanes in P in general poSi-

N
tion, n ¢ N. Then HI(P",0P (log D) ® 0 (-1)) =0 for q > oO.
P P
Proof, 0""'Dn form a complete coordinate system. If N =n then
1 n
1- _(log D) = & ©
ph IP1

n
and the cohomology group considered is ® Hq(Pn,O n(-1)).
P

N=1

For N >n we write D' = Di and consider the long exact sequence
i=o0
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0 — ﬂ::n(loq D') ® opn(-l) — Q“I:n(log D) ® opn(—l) —

b (-1)) — 0

— a8~ (1og(D, N D)) & 0
N N

By induction on N the left hand side has no higher cohomology and by
induction on n neither does the right hand side.
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