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At the C.I.R.M. conferenee in Luminy the first author gave a re-

·port on "Logarithmie DeRham eomplexes" and sketehed the vanishing

theorems as weIl as the applications included in [4] and [5]. The

Kodaira-Nakano vanishing theorem can often be improved by regarCiing

the "logarithmic version" of the vanishing theorem for invertible

sheaves directly. Following this theme we discuss in this note some

~pplieations already indieated but not worked out in [4] and [5].

In particular, using remark 2.3.6 in [4], we prove A. Sommese's

vanishing theorem for k-ample invertible sheaves ~ , with an improve­

ment on the bounds if k is larger than the Iitaka dimension K(~)

(§ 2) •

§1 contains some remarks eoncerning cohomology of loeal eonstant

systems. We reeall methods from [4] as far as they are needed in §2

and §3.

In §3 we just extend [5] to Iocal constant systems of rank one

without imposing conditions on the monodromy. This part was motivated

by· a talk by A.N. Varchenko at the International Conference on Topo­

logy at Baku (October 1987) on "Combinatorie and Topology of Configu­

rations of Hyperplanes" where he used an explieite description by dif-

N
ferential ferms ef a base of Hn (IR n , U A. il[) for N hyperplanes

i=1 ~

A. in general position. We reformulate the content of [5] in such a
:L
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way that the main result, the non-vanishing of cohomology classes gi­

yen by certain differential forms, ean be applied to constant eoeffiei

ents as weIl.

Recently several authors studied vanishing theorems for logarith­

mie differential forms (for example D. Arapura [ 1] and K. Maehara

[7]). Some of the results deseribed here may overlap with some eon­

tained explicitly or implicitly in their papers.

Throughout this note we use the notations introduced in [4].

X will always denote a conneeted complex compact manifold of di­

mension n, bimeromorphically dominated by a Kähler manifold and

s

D =.l Di anormal erossing divisor on X. We write U = X - D and
1.=1

j : U ~ X for the inelusion.
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§1 Local constant systems and logarithmic DeRham complexes

Definition 1.1. Let g: Y ~ Z be a morphism of analytic varieties.

We define r(g) = Max{dim f - dirn g(f) - codim fi f closed subvariety

of Y}.

Of course we can write as weIl r(g) = Max{dim (generic fibre of

glf) - codim fi f closed subvariety of Y}

and moreover, there are only finitely many subvarieties f where the

maximum i6 achieved. If b denotes the maximal fibre dimension of g

and K = dim Zone has r(g) ~ Max{dim Y - K; b - 1}.

Let ~ be a closed local constant system on U.

Lemma 1.2. (see [4], 2.3.6). Assume that there exists a proper surjec­

tive morphism 9 from U to an affine variety w.

Then Hk(U,~) = 0 for k > n + r(g).

Proof. By [9], 2.3.1 the sheaves Rqg*~ are analytically construc-

~ible and Sq = Support (Rqg*~) must be astein space. Since

·'2 • (dim 9 -1 (Sq) - dim Sq) ~ q one has HP (W, Rqg*1') = 0 for

P + q > n + r(g) ~ 2 dim g-1(Sq) - dim Sq ~ q + dirn Sq. By the Leray

spectral sequence

one obtains 1.2.

Corollary 1.3. If in addition none of the monodromies of 1 around

D. has one as an eigenvalue then Hk (U,1) = 0 for k < n - r(g) as
~

weIl.

Proof. The condition on the monodromy is equivalent to Rj *'1 = j! 1

(see [4], 1.6). By Poincare duality one has
I

k k
= rn (X,Rj*~) = ~ (X,j!~) =

2n-k
= H (U,HO~(~,~»
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and by 1.2 all the cohomology groups are zero for 2n - k > n + r(g).

~ From now on we fix a locally free 0x-module ~ and a logarith­

mie holomorphic integrable conneetion

with 1 = Ker(Vl u).
By the Riemann-Hilbert eorrespondenee of P. Deligne, [2], such a pair

(~,V) exists. V gives rise to a logarithmic DeRham eomplex

0X(log D) 8 ~, quasi isomorphie to ~

be the residue of V along

on U • Let r i € End (0 D, 8 .M)
1

D., i.e. the endomorphism
1.

If none of the eigenvalues of r.
1. lies in Z>o' for i = 1, ... , s, the

eomplexes 0x(log D) 8 ~ and Rj*~ are quasi isomorphie (see [2]).

By duality ([ 4], Appendix A, for example) 0x (log D) @ .M

isomorphie to j !~ if none of the eigenvalues of the r i

.z~o •

is quasi

lies in

More generally , let us assume that we ean write * Io = 0 + O·

such that none of the eigenvalues of
I

and none in Z~O' if Di ~ D-. writing

r.
1.

lies in *D. ~ 0 ,
1.

*U=X-D v' I X-D

10
'

1
0

X-D! I Xv

we have

Lemma 1.5. The three eomplexes 0x (log D) 8 ..M I Ra*v! "V

are quasi isomorphie.
and v! Ra ~.,
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Proof, By [4], A,2 and 1,2,e, the Verdier duality exchanges the role
• I

of D and D·. Therefore it i5 5ufficient

two complexes are quasi isomorphie. Ra.u!'"
I

Ra.(OX_D.(log D') ~ ~). To show that the map

to prove that the first

is quasi isomorphie to

i5 a quasi isomorphism as weIl we may reduce the statement to poly­

disks and then to rank one sheaves ~ (following the proof of 11,3.13

in [2], as we did in [4], A.8). In this case one may assume (~,V) to

be the product of rank one sheaves with connections obtained by pull­

back from those living on disks,Since Ra. is compatible with this

construction we are reduced to the one-dimensional case, where the

statement is a consequence of the quotations made above.

1,6 The main lemma ([41, 2.2 and 2.3)

Assume that 9 is a proper surjective morphism from U to an affine

variety W. Let ~ be a locally free 0x-module and V a holomorphic

integrable connection of ~ with logarithmic poles along D. Assurne

that none of the eigenvalues of the residues r. is an integer. If
l.

the spectral sequence

degenerates at EI' then

p + q > n + r(g) and for p + q < n - r(g).

1.2 and 1.3 finish the proof.

Proof, The assumptions just imply Hk(U,Ker vl u) ~ m Eiq
(.M). Then

p+q=k

Remark 1.7. Under the monodromy assumptions of 1. 6 i t is sometirnes

useful to introduce additional divisors C and E such that

C + E + D has still normal crossings and to study the complex
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0X(log(D + C + E» ~ ~ ~ 0X(-E).

If one denotes the inelusions by

U-(C+E) v'
~ U-C

j ,
• x-c

1a' 1a 1Tl

U-E U i ~x
v ]

the eomplex is quasi isomorphie to eaeh of:

R(j 0 a).vi 1 ', (j 0 v)!Ro'.~' or

RTl.(j' 0 u')!1' where~' = ~IU-(C+E)

(use 1.5).

Assume that the speetral sequenee

degenerates at E
1

• Then again, geometrie properties of (X,D,E,C)

imply the vanishing of some of the eohomology groups oeeuring as

E1-terms in the speetral sequenee (see 2.1).

The following lemma is, for E = ., one example whieh will be

needed in 2.6.

Lemma 1.8. Assume in addition that g: U --+ W is smooth and that

cl U has relative normal erossings. Then

for p + q < dim W.

Proof. The pair (U, C) is loeally topologieal trivial \ over W.

Therefore - keeping the notations from (1. 7) - the eohornology of

R(g 0 a).1' is loeally constant. Then

Hk (U,Ro.1') = H~(U,Ro*1') = ~~(W,R(9 0 a).~') = 0 for k < dirn W.
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§2 Vanishinq theorems for k-ample invertible sheaves

2,1, The main example, Even if the statements obtained in [4] or §!

are more general, many applications follow from the example [4], 2·,7:

Let be an invertible sheaf such that ~N = ° (X
u. D.)

1. 1.
with

N > v. ~ 0, Then ~-1 haB a holomorphic integrable connection V
1.

with logarithmic poles along D, whose residues r. are the multipli­
1.

cation with v./N and the spectral sequence EPq(~-1) degenerates at
1. 1

-1E1 , In fact the complex 0x (log D) ~ ~ 18 a direct summand of a

complex ~*Oy(log w*D) where ~ : Y ~ X is the desingularization of

the cyclic cover obtained by taking the N-th root of the Bection with

-1EI (~ ) -degeneration i8 irnplied by P,zero divisor "2 u. D., The
i=1 1. 1.

Deli9ne's theorem, that the logarithmic Hodge-DeRham spectral sequence

degenerates at E1 , If X is algebraic, P, Deligne and L, Illusie

gave recently a beautiful purely algebraic proof by reduction modulo

p of this theorem ([3]), There one also finds a proof of the degene-

ration of the spectral sequence given by Oy(lo9(~*D» ~ 0y(-B) for

any reduced subdivisor B of D, Interpreted in the same way we ob­

tain the degeneration of

Hq(X,O~(109(D + E + C» ~ ~-1 ~ 0X(-E» ~

~ rnp+q(X,Ox(109(D + E + C» ~ ~-1 8 0X(-E»

for all reduced divisors C and E such that

crossings, If 0 < Vi < N, for all i, and if

we obtain (notations as in 1,7):

D + C + E has normal

~, = Ker(vIX_(D+C+E»

rnk(X,R(j 0 a)*v!~') = rnk(x,(jou) !Ro~~') =

rnk(X,R~*(j' 0 v')!~') - $ Hq(X,O~(109(D + E + C» ~ ~-1 ~ 0X(-E»,
p+q=k

Several vanishing theorems for differential forms (as weIl as for rnor­

phisms between cohomology graups, as in [4] §3) can be so obtained,
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Some are stated and discussed in [1] and [7]. We return to the

simple case where C = E = +:

Corollary 2.2. Assume there exists a proper surj ective morphism . 9

from U = X - D to an affine variety W. Let <.f be an invertible

sheaf on X and assume that ~N = 0 ( 2 u. 0.) for ° < u. < N.X i=1 1. 1. 1.

then Hq(X,O~(log 0) ~ <.f-1) = ° for p + q > n + r(g) and for

p + q < n - r(g).

Notations 2.3. An invertible sheaf is semiample if some of its powers

are generated by global sections. A. Sommese (see [8]) defined <.f to

be b-ample if for some N > ° ~N is generated by its global sections

and if the corresponding morphism • N : X ~ W(HO(X,<.f,N)) has at most
~

b-dimensional fibres. We write for a semiample invertible sheaf ~

r (<.f) = r (rp N) where N is any positive number such that <.fN is
<.f

generated by its global sections. It is easy to see that r (<.f) is

weIl defined.

Us~ng those notations we obtain an improvement of A. Sommese's vani­

shing theorem (see [8], Chapter 111):

Theorem 2.4. Let <.f, be a semiample invertible sheaf on x. Then

IHq(X,O~ ~ <.f-1) = ° for p + q < n - r(<.f). Especially, if

b-ample of Iitaka dimension K(<.f), this holds for

p + q < Min{K(<.f),n - b + l}.

iso

Proof. If K (<.f) = 0, there is nothing to show. For K (<.f ) > 0· we

choose N > 1 such that <.iN

: X ~ Z =. N(X). Let
<.f,

is generated by its sections and write

o be the zero divisor of a general

section of i8 non singular and Z - +(0) affine. By 2.2

Hq(X,O~(109 D) ~ ~-1) = ° for p + q < n - r(+). For those p and q

the exact sequence
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gives rise to a surjection

since K (~ ID) = K (~) - 1 and since ~ ID is again semiample with

r(~ID) ~ r(~) + 1 the lefthand side 1s zero by induction on K(~) (In

fact, since D is in general position we even have r(~ID) ~ r(~)).

Remarks 2.5. a) If • N is equidimensional the bound for p + q
~

given in 2.4 i8 the same one as in A. Sommese's original theorem. If

<;f i5 b-ample and K (<;f) ~ n - b + 1 then n - r (<;f) = n - b + 1 if

and only if the union of all b-dimensional fibres of • N has codi-
;e

mension one. In this case the bound is just improved by one. On the

other hand, C.P. Ramanujam gave an exarnple (see [8], 3.23) of a three­

fold X and a 2-ample sheaf ;e of Iitaka dimension 3, such that

Hl(x,n~ e ~-1) '# o. Therefore, as long as the "bad locus lt consists cf

divisors one can not expect further irnprovements.

b) It should be possible to replace the assumption "b-ample of Iitaka

dimension K(~)" in 2.4 by some nurnerical condition. But anything we

could imagine looked quite unnatural. However for applications it is

often sufficient to use 2.2 for a suitable divisor D as illustrated

in part ii) of the following lemma:

Lemma 2.6. Let ;e be an invertible sheaf on X and C C X be a

normal crossing divisor. Assume that one cf the following assumptions

holde:

i) ;e is semi-ample

11) X i9 Moisezon and

bimeromorphic morphism T

anormal cross1ng divisor

~ is numerically good. Then there exists a

X' ~ X of compact complex manifolds and

D' on X' containing (T*C)red such that

Before sketching the proof (similar to [4], 2.11 and 2.12), let

us recall the definition and same properties of numerically good in­

vertible sheaves, both due to Y. Kawamata, [6].
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Definition 2.7. An invertible sheaf ~ is called numerically good if

i t is numerically effective ( i . e. if deg ~ Ir ~ 0 for all curves

r ~ X) and if K(~) = Min{k,c1(~)k+1 numerically trivial}.

good. Then there are projective manifolds X' and

morphism T: X' --+ X, a surjective morphism g: X'

Lemma 2.8. (see [6]) Let X be the Moi~ezon and ~ be numerically

Z, abirational

--+ Z and an in-

vertible numerically effective sheaf X on Z, such that

for some a > 0 and dim Z = K(~) = K(X).

* * a9 X = T ~

It is easy to see that all numerically effective sheaves ~ with

KC~) ~ dim X - 1 are numerically good.

The proof of 2.6.

find X', Z , X , T , 9

Under either one of the assumptions made we can

and a as in 2. 8 . (For i) we take X' = X and

k

9 = ~ N)· Let C' = (T *C) d = \' C'.• We can find - blowing up X',
~ re j~l ]

*if necessary - a divisor r on Z such that B = gras weIl as

C' + B are normal crossing divisors, such that gIX'-B is smooth. and

c:I.~x, -B a relative normal crossing divisor. K (X) is maximal and for

U »0 ~u 8 0z(-r) will contain an ample invertible sheaf. Replacing

r by a larger divisor and blowing up X' a little bit more we mayas

weIl assume XU
~ 0Zc-r) to be ample. X is numerically effective,

which allows to enlarge u until N = a • u > Multiplicities of the

components of B. This inequality remains true if we replace u and

r by the same multiple and we may assume that ~u ~ 0Z(-r) i5 very

ample. Pulling back a general section we get a nonsingular divisor H

on X' such that 0 t= H + Band 0' = H + B + C' are both normal

crossing divisors. For ~'= T*~ we have ~,N = 0x' (0) and the as­

sumptions of 2.2 are satisfied. 1.8 allows to add the divisor C' to

the boundary and we obtain the vanishing of Hq(X' ,o~, (log D') 8 ~,-1)

for p + q < n - r(glx'-o) = dim Z = K(~).
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§3 Cohomology classes represented by logarithmic differential forms

.h..L. Let .M

ble connection

The residues

be an invertible 0x-module with a holomorphic integra­

V with logarithmic poles along 0 and· ~ = Ker V lu.
f i of V along D1 are given by mUltiplication with

* I
constants 'ti and - as in 1.4 - we write o = D + D· where for,

* 'ti (. z>o and forD. ~ D
l.

I
fix decompositionsD. ~ D· "'t- E Z~O· As in 1.5 we one of those and

l. 1.

write v' * a
U -----+ X - D ) X. By 1.5 we have

which is (by definition)

k * I *H (X - D , D· n (X - D );~).

Theorem 3.2.

Moise~on and

as above we assume that either

is semiample.

isX

-1.M

the morphism

(.M,V)

is numerically good or that

For

K. =Then for

is injective.

Remark 3.3. a) For the sheaf (n~(lo9 D) @ ~)cl of closed j-valued

p-forms we have

HO(X,(O~(109 D) ~ .M)cl) =

= rnP(X,FP(Ox(109 D) @ .M))

where FP denotes the Hodge filtration. ß is given by the inclusion
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b) By F. Bogomo10v' s vanishing theorem one knows that for p < K

HO (X, o~ (log D) 8 .M) c: O. In fact, this can be obtained from 2.2 by

using the arguments given in [4], 2.11.

Proof of 3.2. (see also [5])

By 2.6 there is a bimeromorphic morphism -r: X' ~ X and anormal

crossing divisor D' containing (-r*D) red such that

Hq(X' ,O~' (log D') ~ T*.M) = 0 for p + q < K. Then

and the morphism ß' in the fo1lowing diagram is injective:

rnK(X,FK(OX(109 D) ~ .M)) ~ rnK(X,Ox(log D) ~ ~)

1T* 1

As remarked in 3.3 a) the groups on the left hand side are those of

global closed forms and *T is injective as weIl.

~ j (., ~ c °u) := .Al 8 °X(*D) is the regular meromorphic exten-
m*

sion of ., 80;Ou to X, unique up to isomorphism ( [,2] ) • We call

€
o p meromorphic along D if lies inCL! H (U,OU 80;") w

subsheaf of

V induces a

such that the

i. We say that

1s one and if

invertibleanisextensioncanonicalThe .,
can

jm*(~ ~ COU) which is determined by the property that

connection on ~can with logarithmic poles along d

real part of the residues r i lies in [O,l[ for all

CL! swallows Dj , if the monodromy of ~ around Dj
for some u. € Z

~

w € HO(X,O~(I09 D) ~ 1 80x() u.D. - D.)).
can i~j 1 ~ J
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o nCorollary 3.5. Let UJ € H (U ,OU 8 C1') be meromorphic along D. Let
I

D' be the union of all components of D which are swallowed by UJ

* Iand D = D - D'. Let Z be the closure of the zero divisor of w

on U. If ~ = O~(l09 D) 8 0x(-Z) is numerically effective and

K(~) = n, then UJ defines a non vanishing cohomology class in

Proof. Let ~ be the smallest extension of 1 0 a::;Ou

~-1 = <,i.

such that UJ E HO(X,O~(109 D) ~ ~ 8 0x(-Z)), Then

n
w : 0x ---t 0x(log D) 0 .M 0 0x(-Z) is an isomorphism and

Moreover .At C "'can 8 0X(-D j ) 80x (*(D-Dj )) if and only if w swal-

lows Dj . Therefore the choice of D1 and D* satisfies the assurnp­

tions made in 3.1 and by 3.2 we have an injection

* I
3.'"6. We write again D = D + D' • The relative cohornology

Hn.!(X D*,D 1 * ) ;e) is givenn (X-D by the n-th hypercohomology of the
I * *complex 0x (log D) ~ °X(-D') 8 ° (*D ) . If X - 0 is affine (other-X

co
wise we should replace the holomorphic forms by ~ -forms) we can as

weIl take the n-th cohomology of the cornplex of vector spaces

3.2 says that in this complex no non zero form out of

HO(X,O~(109 D) ~ 0X(-D! + u •

= HO(X,O~ 0 0x«u + 1) • 0*))

*D )) .....

I *i5 exact, provided 0x (D' - u· D )

maximal Iitaka dimension.

i8 numerically effective and of

We heard the following example (over m) form A.N. Varchenko.
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Corollary 3. 7 . Let Al' ••• ,~ be hyperplanes in en in general

position, n ~ N, and let Yl' · · · , Yn be the coordinate functions.

Then a base of ... u ~;a::) i8 given by the differential

forms for m. ~ 0
1

n

and l m. ~ N - n - 1.
i=1 1

if we take for V

the assumptions of

*D for the hyper-

form a base of

... U ~ and

forms given

= Ho(~n,Onn(log D» ~~) for
W

* .• D ) = 0 (-1). Obv10usly,
IP n

the usual differential on 0 (_D 1 + (N - 1) • D*)
Wn

3.2 are all satisfied and we have an injection

Proof. On Wn we write D! = Al U

plane at 00 The differential

Ho(Wn,Onn~ O(N • D*»
IP

~ = 0 (_D 1 + (N - 1)
IP n

and 3.7 fel-

lews from the presumably weIl known

Lemma 3. 8 • Let D
O

' ••• , DN be hyperplanes in Wn in general posi­

tion, n ~ N. Then Hq(Wn,nP (log 0) ~ 0 (-1» = 0 for q > o.
IPn ~n

Proof. Do' ... 'On form a complete coordinate system. If N = n then

n
0

1 (log 0) = $ 0 1
IP n W

and the cohomology group considered i8

N-1
For N > n we write 0' = l D. and consider the long exact sequence

i=O 1
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o ~ oP (log 0') 8 0 (-1)
IP n IP n

By induction on

induction on n

p-10 0 (log(DN n 0')) 8 0 0 (-1)) ~ 0
N N

N the left hand side has no higher cohomology and by

neither does the right hand side.
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