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Abstract

In our recent work with Rogers on resolving some Boyd’s conjectures on two-
variate Mahler measures, a new analytical machinery was introduced to write the
values L(E, 2) of L-series of elliptic curves as periods in the sense of Kontsevich
and Zagier. Here we outline, in slightly more general settings, the novelty of our
method with Rogers, and provide two illustrative period evaluations of L(E, 2)
and L(E, 3) for a conductor 32 elliptic curve E.

1 Introduction

A period is a complex number whose real and imaginary parts are values of absolutely
convergent integrals of rational functions with rational coefficients, over domains in Rn

given by polynomial inequalities with rational coefficients [1]. Without much harm,
the three appearances of the adjective “rational” can be replaced by “algebraic”. The
set of periods P is countable and admits a structure of ring.

The extended period ring P̂ := P [1/π] = P [(2πi)−1] (rather than the period ring P
itself) contains many natural examples, like special L-values. For example, a general
theorem [1] due to Beilinson and Deninger–Scholl states that the (non-critical) value
of the L-series attached to a cusp form f(τ) of weight k at a positive integer m ≥
k (cf. formula (2) below) belongs to P̂ . In spite of an effective nature of proof of
the theorem, computing the L-values as periods remains a difficult problem even for
particular examples; it is this phenomenon which we refer to as “perioddness”. Most
such computations are motivated by (conjectural) evaluations of the logarithmic Mahler
measures of multi-variate polynomials.

With the purpose of establishing such evaluations in the two-variate case, Rogers
and the present author [2] have developed a machinery of writing the L-values L(f, 2)
as periods for cusp forms f(τ) of weight 2, the machinery which is different from that

∗This work is supported by the Max Planck Institute for Mathematics (Bonn, Germany) and the
Australian Research Council (grant DP110104419).
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of Beilinson. In this note, we overview the method of [2, 3] on a particular example
of L(E, 2) in Section 2, and then attempt in Section 3 to describe a general algorithm
behind the method. Finally, in Section 4 we present an example of evaluating L(E, 3)
as a period, a computation we failed to find in the existing literature. In the examples of
Sections 2 and 4, E stands for an elliptic curve of conductor 32. There are at least two
reasons for choosing this conductor. First of all, this conductor is not discussed in our
joint works [2, 3], and secondly, the involved modular parametrisations are sufficiently
classical and remarkably simple.

Throughout the note we keep the notation q = e2πiτ for τ from the upper half-plane
Re τ > 0, so that |q| < 1. Our basic constructor of modular forms and functions is
Dedekind’s eta-function

η(τ) := q1/24
∞∏
m=1

(1− qm) =
∞∑

n=−∞

(−1)nq(6n+1)2/24

with its modular involution

η(−1/τ) =
√
−iτη(τ). (1)

We also set ηk := η(kτ) for short.
For functions of τ or q = e2πiτ we use the differential operator

δ :=
1

2πi

d

dτ
= q

d

dq

and denote by δ−1 the corresponding anti-derivative normalised by 0 at τ = i∞ (or
q = 0):

δ−1f =

∫ q

0

f
dq

q
.

In particular, for a modular form f(τ) =
∑∞

n=1 anq
n, whose expansion vanishes at

infinity, we have

L(f,m) =
1

(m− 1)!

∫ 1

0

f logm−1 q
dq

q
=
∞∑
n=1

an
nm

= (δ−mf)|q=1 (2)

whenever the latter sum has sense.

2 L(E, 2)

For a conductor 32 elliptic curve E, the L-series is known to coincide with that for the
cusp form f(τ) := η24η

2
8.

Note the (Lambert series) expansion

η48
η24

=
∑
m≥1

(
−4

m

)
qm

1− q2m
=
∑
m,n≥1
n odd

(
−4

m

)
qmn

=
∑
m,n≥1

a(m)b(n)qmn, where a(m) :=

(
−4

m

)
, b(n) := n mod 2,
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and
(−4
m

)
denotes the quadratic residue character modulo 4.

Then

f(it) =
η48
η24

η44
η28

∣∣∣∣
τ=it

=
η48
η24

∣∣∣∣
τ=it

· 1

2t

η48
η24

∣∣∣∣
τ=i/(32t)

=
1

2t

∑
m1,n1≥1

a(m1)b(n1)e
−2πm1n1t

∑
m2,n2≥1

b(m2)a(n2)e
−2πm2n2/(32t), (3)

where t > 0 and the modular involution (1) was used.
Now,

L(E, 2) = L(f, 2) =

∫ 1

0

f log q
dq

q
= −4π2

∫ ∞
0

f(it)t dt

= −2π2

∫ ∞
0

∑
m1,n1,m2,n2≥1

a(m1)b(n1)b(m2)a(n2)

× exp

(
−2π

(
m1n1t+

m2n2

32t

))
dt

= −2π2
∑

m1,n1,m2,n2≥1

a(m1)b(n1)b(m2)a(n2)

×
∫ ∞
0

exp

(
−2π

(
m1n1t+

m2n2

32t

))
dt.

Here comes the crucial transformation of purely analytical origin: we make the change
of variable t = n2u/n1. It does not change the form of the integrand but affects the
differential, and we obtain

L(E, 2) = −2π2
∑

m1,n1,m2,n2≥1

a(m1)b(n1)b(m2)a(n2)n2

n1

×
∫ ∞
0

exp

(
−2π

(
m1n2u+

m2n1

32u

))
du

= −2π2

∫ ∞
0

∑
m1,n2≥1

a(m1)a(n2)n2e
−2πm1n2u

×
∑

m2,n1≥1

b(m2)b(n1)

n1

e−2πm2n1/(32u)du.

The first double series in the integrand corresponds to∑
m,n≥1

a(m)a(n)n qmn =
∑
m,n≥1

(
−4

mn

)
n qmn =

∑
n≥1

n

(
−4

n

)
nqn

1 + q2n
=
η42η

4
8

η44
,

3



while the second one is∑
m,n≥1

b(m)b(n)

n
qmn =

∑
m,n≥1

qmn

n
− q(2m)n

n
− qm(2n)

2n
+
q(2m)(2n)

2n

=
1

2

∑
m,n≥1

2qmn − 3q2mn + q4mn

n

= −1

2
log
∏
m≥1

(1− qm)2(1− q4m)

(1− q2m)3
= −1

2
log

η21η4
η32

,

hence

L(E, 2) = π2

∫ ∞
0

η42η
4
8

η44

∣∣∣∣
τ=iu

· log
η21η4
η32

∣∣∣∣
τ=i/(32u)

du.

Applying the involution (1) to the eta quotient under the logarithm sign we obtain

L(E, 2) = π2

∫ ∞
0

η42η
4
8

η44
log

√
2η8η

2
32

η316

∣∣∣∣
τ=iu

du.

Now comes the modular magic: choosing a particular modular function x(τ) :=
η42η

2
8/η

6
4, which ranges from 0 to 1 when τ ranges from i∞ to 0, one can easily verify

that
1

2πi

x dx

2
√

1− x4
= −η

4
2η

4
8

η44
dτ and

(√
2η8η

2
32

η316

)2

=
1− x
1 + x

.

Thus, we arrive at the following result.

Theorem 1. For an elliptic curve E of conductor 32,

L(E, 2) =
π

8

∫ 1

0

x√
1− x4

log
1 + x

1− x
dx = 0.9170506353 . . . .

3 General L-values

To summarise our evaluation of L(E, 2) = L(f, 2) in Section 2, we first split f(τ) into
a product of two Eisenstein series of weight 1 and at the end we arrive at a product
of two Eisenstein(-like) series g2(τ) and g0(τ) of weights 2 and 0, respectively, so that
L(f, 2) = cπL(g2g0, 1) for some rational c. The latter object is doomed to be a period
as g0(τ) is a logarithm of a modular function, while 2πi g2(τ) dτ is, up to a modular
function multiple, the differential of a modular function, and finally any two modular
functions are tied up by an algebraic relation over Q.

The method can be further formalised to more general settings, and it is this ex-
tension which we attempt to outline in this section.

For two bounded sequences a(m), b(n), we refer to an expression of the form

gk(τ) = a+
∑
m,n≥1

a(m)b(n)nk−1qmn (4)
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as to an Eisenstein-like series of weight k, especially in the case when gk(τ) is a modular
form of certain level, that is, when it transforms sufficiently ‘nice’ under τ 7→ −1/(Nτ)
for some positive integer N . This automatically happens when gk(τ) is indeed an Eisen-
stein series (for example, when a(m) = 1 and b(n) is a Dirichlet character modulo N
of designated parity, b(−1) = (−1)k), in which case ĝk(τ) := gk(−1/(Nτ))(

√
−Nτ)−k

is again an Eisenstein series. It is worth mentioning that the above notion has per-
fect sense in case k ≤ 0 as well. Indeed, modular units, or weak modular forms of
weight 0, that are the logarithms of modular functions are examples of Eisenstein-like
series g0(τ). Also, for k ≤ 0 examples are given by Eichler integrals, the (1 − k) th
τ -antiderivatives of holomorphic Eisenstein series of weight 2−k, a consequence of the
famous lemma of Hecke [5, Section 5].

Suppose we are interested in the L-value L(f, k0) of a cusp form f(τ) of weight
k = k1 + k2 which can be represented as a product (in general, as a linear combination
of several products) of two Eisenstein(-like) series gk1(τ) and ĝk2(τ), where the first
one vanishes at infinity (a = gk1(i∞) = 0 in (4)) and the second one vanishes at zero
(ĝk2(i0) = 0). (The vanishing happens because the product is a cusp form!) In reality,
we need the series gk2(τ) := ĝk2(−1/(Nτ))(

√
−Nτ)−k2 to be Eisenstein-like:

gk1(τ) =
∑
m,n≥1

a1(m)b1(n)nk1−1qmn and gk2(τ) =
∑
m,n≥1

a2(m)b2(n)nk2−1qmn.

We have

L(f, k0) = L(gk1 ĝk2 , k0) =
1

(k0 − 1)!

∫ 1

0

gk1 ĝk2 logk0−1 q
dq

q

=
(−1)k0−1(2π)k0

(k0 − 1)!

∫ ∞
0

gk1(it)ĝk2(it)t
k0−1 dt

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∫ ∞
0

gk1(it)gk2(i/(Nt))t
k0−k2−1 dt

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∫ ∞
0

∑
m1,n1≥1

a1(m1)b1(n1)n
k1−1
1 e−2πm1n1t

×
∑

m2,n2≥1

a2(m2)b2(n2)n
k2−1
2 e−2πm2n2/(Nt)tk0−k2−1dt

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∑
m1,n1,m2,n2≥1

a1(m1)b1(n1)a2(m2)b2(n2)n
k1−1
1 nk2−12

×
∫ ∞
0

exp

(
−2π

(
m1n1t+

m2n2

Nt

))
tk0−k2−1dt;

the interchange of integration and summation is legitimate because of the exponential
decay of the integrand at the endpoints. After performing the change of variable
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t = n2u/n1 and interchanging back summation and integration we obtain

L(f, k0) =
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∑
m1,n1,m2,n2≥1

a1(m1)b1(n1)a2(m2)b2(n2)n
k1+k2−k0−1
1 nk0−12

×
∫ ∞
0

exp

(
−2π

(
m1n2u+

m2n1

Nu

))
uk0−k2−1du

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∫ ∞
0

∑
m1,n2≥1

a1(m1)b2(n2)n
k0−1
2 e−2πm1n2u

×
∑

m2,n1≥1

a2(m2)b1(n1)n
k1+k2−k0−1
1 e−2πm2n1/(Nu)uk0−k2−1du

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∫ ∞
0

gk0(iu)gk1+k2−k0(i/(Nu))uk0−k2−1 du.

Assuming a modular transformation of the Eisenstein-like series gk1+k2−k0(τ) under
τ 7→ −1/(Nτ), we can realise the resulting integral as cπk0−k1L(gk0 ĝk1+k2−k0 , k1), where
c is algebraic (plus some extra terms when gk1+k2−k0(τ) is an Eichler integral). Alter-
natively, if gk0(τ) transforms under the involution, we perform the transformation and
switch to the variable v = 1/(Nu) to arrive at cπk0−k1L(ĝk0gk1+k2−k0 , k1). In both cases
we obtain an identity which relates the starting L-value L(f, k0) to a different ‘L-value’
of a modular-like object of the same weight.

The case k1 = k2 = 1 and k0 = 2, discussed in [2, 3] and in Section 2 above, allows
one to reduce the L-values to periods. As we will see in Section 4, the perioddness can
be achieved in a more general situation, based on the fact that Eichler integrals are
related to solutions of inhomogeneous linear differential equations.

4 L(E, 3)

To manipulate with L(E, 3) for a conductor 32 elliptic curve, we use again L(E, 3) =
L(f, 3) with f(τ) := η24η

2
8 and write the decomposition in (3) as

f(it) =
1

2t

∑
m1,n1≥1

b(m1)a(n1)e
−2πm1n1t

∑
m2,n2≥1

b(m2)a(n2)e
−2πm2n2/(32t).

Then

L(E, 3) = L(f, 3) =
1

2

∫ 1

0

f log2 q
dq

q
= 4π3

∫ ∞
0

f(it)t2 dt

= 2π3

∫ ∞
0

∑
m1,n1,m2,n2≥1

b(m1)a(n1)b(m2)a(n2)

× exp

(
−2π

(
m1n1t+

m2n2

32t

))
t dt
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= 2π3
∑

m1,n1,m2,n2≥1

b(m1)a(n1)b(m2)a(n2)

×
∫ ∞
0

exp

(
−2π

(
m1n1t+

m2n2

32t

))
t dt

(here we perform the change of variable t = n2u/n1)

= 2π3
∑

m1,n1,m2,n2≥1

b(m1)a(n1)b(m2)a(n2)n
2
2

n2
1

×
∫ ∞
0

exp

(
−2π

(
m1n2u+

m2n1

32u

))
u du

= 2π3

∫ ∞
0

∑
m1,n2≥1

b(m1)a(n2)n
2
2e
−2πm1n2u

×
∑

m2,n1≥1

b(m2)a(n1)

n2
1

e−2πm2n1/(32u) u du.

Furthermore, ∑
m,n≥1

b(m)a(n)n2qmn =
∑
m,n≥1
m odd

(
−4

n

)
n2qmn =

η82η
4
8

η64
,

∑
m,n≥1

b(m)a(n)m2qmn =
∑
m,n≥1
m odd

(
−4

n

)
m2qmn =

η184
η82η

4
8

,

so that

r(τ) :=
∑
m,n≥1

a(m)b(n)

n2
qmn = δ−2

(
η184
η82η

4
8

)
.

Continuing the previous computation,

L(E, 3) = 2π3

∫ ∞
0

η82η
4
8

η64

∣∣∣∣
τ=iu

· r(i/(32u))u du

(we apply the involution to the eta quotient)

=
π3

8

∫ ∞
0

η44η
8
16

η68
r(τ)

∣∣∣∣
τ=i/(32u)

du

u2

(we change the variable u = 1/(32v))

= 4π3

∫ ∞
0

η44η
8
16

η68
r(τ)

∣∣∣∣
τ=iv

dv.
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This is so far the end of the algorithm we have discussed in Section 3. In order
to show that the resulting integral is a period we require to do one step more. As in
Section 2 we make a modular parametrisation; this time we take the modular function
x(τ) := 4η42η

8
8/η

12
4 which also ranges from 0 to 1 when τ goes from i∞ to 0. Then

δx =
4η122 η

8
8

η164
, (1− x2)1/4 =

η42η
2
8

η64
, s(x) :=

(1−
√

1− x2)2

x(1− x2)3/4
=

16η104 η
8
16

η82η
10
8

.

Furthermore, the substitution z = x2(τ) into the hypergeometric function

F (z) := 2F1

(
1
2
, 1

2

1

∣∣∣∣ z) =
2

π

∫ 1

0

dy√
(1− y2)(1− zy2)

results in the modular form

ϕ(τ) := F (x2) =
∞∑
n=0

(
2n

n

)2(x
4

)2n
=

η104
η42η

4
8

of weight 1. Because F (z) (along with F (1−z)) satisfy the hypergeometric differential
equation

z(1− z)
d2F

dz2
+ (1− 2z)

dF

dz
− 1

4
F = 0,

it is not hard to write down the corresponding linear second order differential operator

L := x(1− x2) d2

dx2
+ (1− 3x2)

d

dx
− x

(in terms of x) such that Lϕ = 0.
With this notation in mind, we obtain

L(E, 3) = π3

∫ ∞
0

η104 η
8
16

η82η
10
8

ϕ(τ) r(τ)δx

∣∣∣∣
τ=iv

dv

=
π3

16

∫ ∞
0

s(x(τ))ϕ(τ) r(τ)δx

∣∣∣∣
τ=iv

dv,

and at this point we make an observation that the function h(τ) := 4ϕ(τ)r(τ) solves
the inhomogeneous differential equation

Lh =
1

1− x2

(
which is nothing but [4, 6]

δ2r

δx · ϕ
=

η244
4η162 η

8
8

)
,

so that it can be written as an integral using the method of variation of constants:

h =
π

2

(
F (x2)

∫
F (1− x2)

1− x2
dx− F (1− x2)

∫
F (x2)

1− x2
dx

)
=
πx

2

∫ 1

0

F (x2)F (1− x2w2)− F (1− x2)F (x2w2)

1− x2w2
dw

= x+
5

9
x3 +

89

225
x5 +

381

1225
x7 +

25609

99225
x9 +

106405

480249
x11 + · · · .

8



This implies that

L(E, 3) =
π2

128

∫ 1

0

s(x)h(x) dx,

and we have the following period expression.

Theorem 2. For an elliptic curve E of conductor 32,

L(E, 3) =
π

64

∫ 1

0

(1−
√

1− x2)2

(1− x2)3/4
dx

∫ 1

0

dw

1− x2w2

×
(∫ 1

0

dy√
(1− y2)(1− x2y2)

·
∫ 1

0

dy√
(1− y2)(1− (1− x2w2)y2)

−
∫ 1

0

dy√
(1− y2)(1− (1− x2)y2)

·
∫ 1

0

dy√
(1− y2)(1− x2w2y2)

)
= 0.9826801478 . . . .
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