Max-Planck-Institut fur Mathematik
Bonn

Higher order Cheeger inequalities for Steklov
eigenvalues

by

Asma Hassannezhad
Laurent Miclo

Max-Planck-Institut fir Mathematik
Preprint Series 2017 (35)






Higher order Cheeger inequalities for Steklov
eigenvalues

Asma Hassannezhad
Laurent Miclo

Max-Planck-Institut fir Mathematik Institut Mittag-Leffler
Vivatsgasse 7 Auravagen 17
53111 Bonn 18260 Djursholm
Germany Sweden

Institut de Mathématiques de Toulouse
Université Paul Sabatier

118, route de Narbonne

31062 Toulouse Cedex 9

France

MPIM 17-35






Higher order Cheeger inequalities for Steklov eigenvalues

Asma Hassannezhad! and Laurent Miclo?

nstitut Mittag-Leffler, Sweden

Hnstitut de Mathématiques de Toulouse, UMR 5219
Université de Toulouse and CNRS, France

Abstract

We prove a lower bound for the k-th Steklov eigenvalues in terms of an isoperimetric constant
called the k-th Cheeger-Steklov constant in three different situations: finite spaces, measurable
spaces, and Riemannian manifolds. These lower bounds can be considered as higher order Cheeger
type inequalities for the Steklov eigenvalues. In particular it extends the Cheeger type inequality
for the first nonzero Steklov eigenvalue previously studied by Escobar in 1997 and by Jammes in
2015 to higher order Steklov eigenvalues. The technique we develop to get this lower bound is based
on considering a family of accelerated Markov operators in the finite and mesurable situations and
of mass concentration deformations of the Laplace-Beltrami operator in the manifold setting which
converges uniformly to the Steklov operator. As an intermediary step in the proof of the higher
order Cheeger type inequality, we define the Dirichlet—Steklov connectivity spectrum and show
that the Dirichlet connectivity spectra of this family of operators converges to (or bounded by)
the Dirichlet—Steklov spectrum uniformly. Moreover, we obtain bounds for the Steklov eigenvalues
in terms of its Dirichlet-Steklov connectivity spectrum which is interesting in its own right and is
more robust than the higher order Cheeger type inequalities. The Dirichlet—Steklov spectrum is
closely related to the Cheeger—Steklov constants.

Keywords: Dirichlet—to-Neumann operator, Steklov problem, eigenvalues, isoperimetric ratios, higher or-
der Cheeger inequalities, finite Markov processes, jump Markov processes, Brownian motion on Riemannian
manifolds, Laplace-Beltrami operator.
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1 Introduction

Let (M,g) be a compact Riemannian manifold of dimension n with smooth boundary, the Steklov
eigenvalue problem is
{ Af =0, in M

% =of, on oM (1)



where A = div V is the Laplace—Beltrami operator on M and v is the unit outward normal vector along
0M . Tts spectrum consists of a sequence of nonnegative real numbers with accumulation point only at
infinity. We denote the sequence of the Steklov eigenvalues by

0O=01<0y< <o, </ ®
The Steklov eigenvalues can be also considered as the eigenvalues of the Dirichlet—to-Neumann operator
S:C*(0M) — C*(0M)
oF

ov

where F' is the harmonic extension of f into the interior of M. The Steklov problem was first intro-
duced by Steklov [32] in 1902 for bounded domains of the plane. Many interesting developments and
progress in the study of the Steklov problem have been attained in recent years. We refer the reader
to the survey paper [19] and the references therein for recent developments, and to [22] for a historical
account. The relationship between the Steklov eigenvalues and geometry of the underlying space, and
also its similarity and difference with the Laplace eigenvalues have been a main focus of interest and a
source of inspiration, see for example [14], 17, [10, 20} [15] 18 21].

The focus of this paper is on obtaining lower bounds for the k-th Steklov eigenvalue oy in terms of
some isoperimetric constants in three different settings. Our results can be viewed as counterparts of
the higher order Cheeger inequalities for the Laplace eigenvalues in discrete setting proved by Lee, Oveis
Gharan and Trevisan [25], and in manifold setting by the second author [29]. It is also an extension
of Escobar’s [14] [I5] and Jammes’ [21] results for oo. We first recall previous results known in this
direction.

Let A denote the family of all nonempty open subsets A of M with piecewise smooth boundary. For
every A € A let u(A) denote its Riemannian measure and p(0A) denote the (n — 1)-dimensional
Riemannian measure of 0A. We define for every A € A the isoperimetric ratios

o) = B ©)
/ . /i(azA)
n(A) = W(A M) (3)

where 0;A := 0A n Int M. Here Int M denotes the interior of M. Consider the following isoperimetric
constants

ha(M) := inf max{n(A), n(M\A)}
(M) = inf max (A), 7/ (M\A)}

The constant ho(M) is the well-known Cheeger constant [8]. Motivated by the celebrated result of
Cheeger [§], Escobar [14], [15] introduced the isomerimetric constant h%(A) and obtained a lower bound
for o9 in terms of this isoperimetric constant and the first nonzero eigenvalue of a Robin problem. Re-
cently, Jammes [21] obtained a simpler and more explicit lower bound for o5 in terms of an isoperimetric
h,y(M) similar to the one introduced by Escobar, and the Cheeger constant hy(M):

72(M) > iy (M)ho(M) (1



where hy(M) := inf {n’(A) : Ae A, and u(A) < @} The proof of (4)) is simple and only uses the co-
area formula. The constants h,(M) and hly(M) are interesting geometric quantities. It is an intriguing
question if similar geometric lower bounds hold for higher order Steklov eigenvalues o,. We give an
affirmative answer to this question not only in Riemannian setting but also in the setting of finite and
measurable spaces.

Let (M, ) be a measure space and V' a proper subset of M, and let L be an operator acting on a
functional subspace H of L?(u1). Throughout the paper we deal with either of three different settings

listed below:

(FS) Finite state spaces: M is a finite set, V' is a proper subset of cardinality v, L is a reversible
irreducible Markov generator and p is its unique invariant probability measure. Here H is the
space of functions on M denoted by F(M).

(MS) Measurable state spaces: (M, u) is a probability measure space with o—algebra M, and V is a
measurable subset of M such that 0 < u[V] < 1. Here, L is a Markov generator of the form P—1,
where P is a Markov kernel reversible with respect to p and I is the identity, and H = L2(u).

(RM) Riemannian manifolds: M is a compact Riemannian manifold with smooth boundary dM, u is its
Riemannian measure, L is the Laplace-Beltrami operator A, and H is the Sobolev space H'(u).
Here V is equal to M.

With the help of L we define an operator S on V' and call it the Steklov operator. In setting (RM),
the operator S we consider is in fact the Dirichlet—to-Neumann operator discussed above. For the
definition of S in (FS) and (MS) settings we refer to definitions in Section 2] and in Section 3]
respectively. We denote the eigenvalues of S by oy (M) or simply o. Let A be a family of admissible
sets in M:

e in (FS) settings, A is the set of all nonempty subsets of M;

e in (MS) setting, A is the set of all non-negligible elements of M, i.e. A € M such that 0 < u[A] <
L;

e in (RM) setting, A is the set of all nonempty open domains A in M such that d.A := A n OM
and 0;A := 0A n M are smooth manifolds of dimension n — 1 when they are nonempty.

In (FS) and (MS) settings, we introduce the boundary of any A € A via
0A = {(z,y) : x€ A ye A%}

and define the following isoperimetric ratios

_ u(2A)
= @)
, 1(0A)
1 (A) HAnV)

where p is a measure on M x M. We refer to and for the definition of x in (FS) and (MS)
settings respectively. In (RM) setting, the isoperimetric rations n(A) and 7'(A) are already defined in
the beginning, see . We then consider

p(A) == minn(B),  p(A):= miny(B)

BeA B'eA
BcA B'cA



in (FS) and (MS) settings. And in (RM) setting we take

o : / ': : 1!
plA)=inf n(B), p(A):= Inf #(B)
_ BcA B'cA
Bno A= B'no; A=

The constant p(A) in (RM) setting is the Cheeger constant of A when the Dirichlet boundary condition
on ;A is imposed, we refer to [7, 34] for more information on the Cheeger constant on manifolds with
Dirichlet and Neumann boundary conditions. We are now ready to define the higher order Cheeger—
Steklov constants. For any k € N and for any of three settings (FS), (MS) and (RM), we define the k-th
Cheeger—Steklov constant of M by

M) := inf ANp' (A
w(M) o= i maxp(A)e(A)
where [k] := {1,...,k} and A is the set of all k-tuples (Ay,---, Ay) such that A, € A for all [ € [£].
We recall the definition of the higher order Cheeger constants for the eigenvalues of a Markov generator
in settings (FS) and (MS) and for the eigenvalues of the Laplace-Beltrami operator in setting (RM):
hi(M) := inf A
«(M) (A1,---1,Izl4k)€Ak rlg[[%{n( 2

The sequence of the higher order Cheeger constants is called the connectivity spectrum. One can see
how closely hj and ¢ are related. We now state our main theorems.

Theorem A In setting (FS), there exists a universal positive constant ¢y such that

co ti(M)
V ke [v], or(M) = 5L

where ||L|| is the largest absolute value of the elements of the diagonal of L.

The following theorem is an extension of Theorem [A| to setting (MS).

Theorem B In setting (MS), there exists a universal positive constant ¢y such that

&1
Y ]{JEN, O'k<M) = ﬁ’/k(M)
The higher order Cheeger-Steklov inequality in setting (RM) which is an extension of Escobar and
Jammes results to higher Steklov eigenvalues states

Theorem C In setting (RM), there exists a universal positive constant co such that

VheN, o (M)> %Lk(]\/[)
We recall that for k& = 2, the Cheeger inequality in setting (FS) was studied in [I], 2, 13], and in
settings (MS) in [24], see also the lecture notes by Saloff-Coste [31] for a review. The higher-order
Cheeger inequality in setting (FS) was conjectured by the second author [28], see also [12]. This
conjecture was proved by Lee, Oveis Gharan and Trevisan [25]. Later, the second author [29] extended
their result to (MS) and (RM) settings. The higher order Cheeger inequality in (FS) setting for the
operator L states (see [25, Theorem 3.8] and [29, Theorem 2])

C3 h2(M>
kel MO0 = EHS 9



and in (MS) and (RM) settings states [29)]

VkeN, Ae(M) = hQ(M) (6)

L6
where ¢3 and ¢4 are universal positive constants. As we mentioned before, our main results, Theorems[A]
[B] and [C] for Steklov eigenvalues, can be viewed as a counterpart of the higher order Cheeger inequalities
for the Laplace spectrum. We remark that even for k = 2, Theorem [A] and Theorem [B] are new.

We now discuss about an improvement of the dependency on %k in Theorems , , and In [25]
Theorem 4.1] and [29, Theorem 13], it is shown that one can obtain a better lower bound when A is

replaced by Mg in and @

é: h2 (M) . .
Ao (M) = Tog(h D) ILT in setting (FS) -
log? (k+1)h’2<M) in settings (MS) and (RM)

For Steklov eigenvalues we obtain analogous results.

Proposition A There are universal positive constants ¢, and ¢y such that

() V ke [v], in setting (FS)

oon(M) > (5D L]
?k—i—l) 1 (M) VkeN, in settings (MS) and (RM)

(8)
Remark 1 The sharpness of the coefficient of hy in (7)) was investigated in [29] using the noisy
hypercube graph, and in [25] using the Ornstein—-Uhlenbeck process. Understanding the asymptotic
sharpness of the coefficient of ¢ in is an interesting problem which needs a further investigation and
remains open.

m]

We now briefly discuss the idea of the proof of the main Theorems. To prove the main theorems we
first introduce the Dirichlet-Steklov connectivity spectrum of S on M. Second we show that eigenvalues
of S can be viewed as a limit of eigenvalues of a family of operators. Then we prove that the Dirichlet
connectivity spectrum (introduced in [28] and in [29]) of this family of operators converges to Dirichlet-
Steklov connectivity spectrum of S. Moreover, we show that this convergence is uniform in some sense.
Then we use the known lower bounds [25, 29] for eigenvalues of this family of operators in terms of
their Dirichlet connectivity spectra to show that the Steklov eigenvalues have similar lower bounds in
term of the Dirichlet-Steklov connectivity spectrum. The final step is to relate the Dirichlet—Steklov
connectivity spectrum to the higher order Cheeger—Steklov constants. This is done using the co-area
formula in each setting (FS), (MS) and (RM). Although the main idea of the proof in these three set-
tings are the same, the details and technicalities that we need to deal with in each setting are different.
This makes the investigation of each setting interesting in its own and not only as a straightforward
consequence of another setting. We aim to explore a deeper underlying connection between these three
settings in future studies.

It is also interesting to study the higher order Cheeger-Steklov inequality when L is a diffusion
operator and when we also have a density on V. Here the associated Dirichlet—to-Neumann map S
(known as the voltage—to—current map) appears in the study of the electrical impedance tomography
[5, B3]. The techniques and methods that we develop in this paper can be used to obtain the higher
order Cheeger—Steklov inequality in this setting in terms of a weighted version of the higher order
Cheeger—Steklov constants. The classical Cheeger inequality for weighted manifolds is studied in [6],



see also [9, 29]. We will address this in more details in a forthcoming work.

The paper is organized as follows. Section [2| deals with (FS) setting and the proof of Theorem [A| and
Proposition [A]l In Section [3|we extends results in (FS) setting to (MS) setting. We also show that under
the Dirichlet gap assumption on M\V the proof of Theorem [B|can be simplified. In Section 4 we prove
Theorem [C| We also provide examples which show the necessity of both isoperimetric ratios appearing
in the definition of ;. Although the ideas and techniques in three sections 2] [3| and [ are related, the
reader do not need to read the sections in order. In Appendix [A] we discussed some continuity properties
in setting (MS). In particular, it shows that in this setting under somewhat restrictive conditions, a
Steklov operator without the Dirichlet gap assumption on M\V can be viewed as a limit of a family of
Steklov operators with the Dirichlet gap assumption on M\V'.
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2 The finite state space framework

Let L == L(x,y)syem be an irreducible Markov generator on the finite set M. Recall that L is Markovian
if
Ve#yeM L(z,y) >0, and ZL(x,y):O

yeM

and is called irreducible if for every x,y € M there exists a sequence x = g, 21, ...,x; = y of elements
of M such that L(z;,x;41) > 0 for any j € [0,{ — 1] := {0,...,1 — 1}. Denote by p = (f1(x))gerr its
unique invariant probability, characterized by

Vye M, > u(@)Lz,y) = 0
xzeM

Let V' be a proper subset of M, i.e. @ & V & M. Define the corresponding Steklov operator S on
F(V), the space of functions on V', via the following procedure. Given f € F(V), let F' be its harmonic
extension on M, namely the unique F' € F(M) satisfying

{L[F](a:) —0, ifzeM\V o)

F(z)=f(x), if zeV
Then we consider
VaxeV, S[f](z) = L[F](z) (10)

The following observation should be classical.



Proposition 2 The operator S is an irreducible Markov generator on V whose invariant measure is
v, the renormalized restriction of u to V.

Assume that p is furthermore reversible for L, namely

Va,ye M,  plx)l(z,y) = ply)L(y,z)

It follows that S is equally reversible with respect to v, and the spectra of —S and —L are non-negative.
Denote by 0 = 01,09,03,...,0,, with v = card(V'), the eigenvalues of —S in R with multiplicities,
indexed so that 0 = 01 <09 <03 < -+ < 0.

Our goal is to investigate these eigenvalues. Follows a way to approximate them.

For any r > 0, consider the Markov generator defined by

rL(z,y), ifxeM\V

Vr#yeM, LW(z,y) = {L(:p ) ol

Since p is reversible for L, we will see (in Lemma that L") is reversible with respect to its invariant
measure u”). Hence the eigenvalues of —L(") are non-negative. Let 0 = AY), /\g), )\:(;), A with
m = card(M), be the eigenvalues of —L( in R with multiplicities, indexed so that 0 = /\Y) < )\g) <
>\;(),T) <o < )\7(77;)_

Proposition 3 Assume that L is reversible. For any k € [v] = {1, ..., v}, we have

lim )\,(:) = 0
r——+00

and for any k € [m]\[v],
lim A7 = 4o
r—+00

Remark 4 We believe that the above proposition should be true in the non-reversible case (where in
the last convergence, )\,(:) is replaced by its real part).

]

We would like to estimate these eigenvalues via Cheeger type inequalities. Denote by A the set of
nonempty subsets from M. We associate to any A € A a Dirichlet-Steklov operator Sy on F(A V)
in the following way: given f e F(A n V), consider F' € F(M) such that

L[F|(x)=0, if xe A\V
F(z) =0, if e M\A (11)
F( f(x), ifzeAnV

&
[

The existence and uniqueness of such a F' are similar to those of the solution of @, see e.g. the proof
of Proposition [2] Indeed, one is brought back to this situation by replacing V by V U (M\A) and by
extending f to this set by making it vanish on M\A.

Next define

VeeAnV,  Salf](x) = L[F](z)

When A n'V # &, we will check that S4 is always a subMarkovian generator (i.e. Sa(z,y) = 0, for
any r # y, and Zer Sa(z,y) < 0) maybe not irreducible, but Perron-Frobenius’ theorem enables to



consider the smallest eigenvalue o1(A) of —S4. By convention, when A n'V = &, F(&) = {0} and
01(A) = +0. Next we introduce the Dirichlet—Steklov connectivity spectrum (K1, k2, ..., k) of S via

Y k = ] A 12
el me =, min | maxoi(d) (12)

where Ay, is the set of k-tuples (Aj, A, ..., Ax) of disjoints elements from .A. Notice that definition ({12))
can be written as

V ke [v], Kp = min max oy (A;) (13)
(Al ..... Ak)E.Ak(V) ZEIUC]]

where A (V) is the set of all disjoint k-tuple in A(V) :={Ae A : AnV € A}. The above definitions are
valid in all generality, but (for the moment) they are mainly useful under the reversibility assumption:

Theorem 5 Assume that L is reversible. There exists a universal constant ¢ > 0 such that
c
V ke [v], ﬁl‘ik<0k</€k

The interest of the Dirichlet—Steklov connectivity spectrum is that it is strongly related to higher
order inequalities. We need further definitions. Introduce the boundary of any A € A via

0A = {(z,y) 1 xe A ye A%}

Consider the measure p defined on M x M by

x)L(x,y), ifx#
Veye M, uny) - { GOHED (14)

it enables to measure 0A through u(0A). As a consequence, we can define the isoperimetric ratios

_ w(0A)
) = 1(A)
) w(0A)
n(A) p(AnV)

By convention n'(A) = +w if AnV = . The ratio (A) is the discrete analogue of quantities

introduced by Escobar [14] and Jammes [21], since in their terminology, dA and A NV can be seen

respectively as the interior and exterior boundaries, when the set V itself is seen as a boundary of M.
Next consider

p(A) = minn(B)
BcA

/ L . 1!
p'(A) == min 7' (B
B'cA
For any k € [v], introduce the k-th Cheeger—Steklov constant of V' by

= 3 A , A
Lk (Al,H,lAil)eAkrlIel[%c)ﬂ(p( l)p( l)

Remark that ¢; = 0 by taking A = M. The next result can be seen as an extension to higher order
Cheeger inequalities (in the discrete case) of Théoréme 1 of Jammes [21]:



Theorem 6 Assume that L is reversible and let ¢ be the constant of Theorem[d. We have

C Lk

VkE[[U]], Ok %m

where ||L|| is the largest absolute value of the elements of the diagonal of L.

Let consider

hy, = min max 7' (A;)
(A1 ..... Ak)EAk(V) lE[[k‘ﬂ

Proposition 7 Assume that L is reversible. We have

V ke [v], O < h;ﬁ

Remark 8 Let L be a reversible Markov generator but not necessarily irreducible. Let X := (X;);>0 be
a Markov process generated by L, starting from x under the probability P,. Assume that the reaching
time of V' denoted by 7:

7 = inf{t>0: X, eV}

is almost surely finite. Then all of the results above are valid without irreducibility condition. In
particular, o3, = 0 if and only if 2} = 0. Indeed one way is obvious due to Proposition . For the “only
if” part, o), = 0, implies ¢, = 0 by Theorem [} Therefore there exists (A, ..., Ax) € Ax(V) such that
w(0A;) =0 for all [ € [k]. It follows hj, = 0. Note that the number of zeros determines the number of
communicating classes. Recall that for the eigenvalues of L = L™ the result of Lee, Oveis Gharan and
Trevisan [25] implies that Ay = 0 if and only if the k-th Cheeger constant hy

hy, = min  maxn(A4;)
(A1 ,,,,, Ak)G.Ak leﬂk]}

is zero. In comparison, we see that the hj plays the role of hy, for the Steklov problem .

Proof of Proposition

It is based on the following simple probabilistic interpretation of S. Let X := (X;);>¢ be a Markov
process generated by L, starting from x under the probability P,. Denote by 7 its reaching time of V:

T = inf{t=>0: X, eV}

it is a.s. finite, since L is irreducible. A usual application of the martingale problem associated to X
shows that for any function G € F(M), we have

BIO] = G+ [ LG as
0
In particular, for any f e F(V), it appears that its harmonic extension defined in @ is given by
VeeM, F@) - E[f(X,)]
= U [f]



where v, is the law of X, under P,. More precisely, we get the existence and uniqueness of the solution
of @, even without assuming that L is irreducible (only the finiteness of 7 is needed). We deduce that
for any f e F(V) and any x € V|

Sf1) = >, Llx,y)(Fly) — F(x))
yeM\{z}

= > D L yw(2)(f(2) - f(x))

yeM\{z} z€V

namely, the matrix associated to S is given by

Va,zeV, S,z = { Leangey L2 0)0 (2) %f vz
= Dpeniay S (@, y) ifr =z

On this expression, it is clear that S is a Markov generator, namely that it satisfies S(z,z) = 0 for
any © # z € V and ), S(x,2) = 0 for any x € V. It is also irreducible: for any z,z € V, let
To = T,T1,Ts,...,2; = 2 be a sequence of elements of M such that L(x;, z,41) > 0 for any j € [0,] —1].
Let (y;)jefo,,) be the subsequence of () efo,y consisting of the elements belonging to V. We have y = =,
yr = z and from the above description of S, it follows that S(z;,x;4+1) > 0 for any j € [0,k — 1].

It remains to check that v, the renormalized restriction of p to V, is invariant for S. For any
f e F(V), we have, with F constructed as in (9)),

vISIF) = — D, u(@)S[f](x)

It shows that v is invariant for S.

Remark 9 (probabilist point of view) A Markov process Y = (Y;);>0 associated to the generator
S and starting from x € V' can be obtained from a Markov process X = (X;)i=0 associated to the
generator L and also starting from z, by erasing its passages in M\V. More precisely, let (7;,)nez, be
the sequence of jump intertimes of X:

T = 0
VneZ,, i1 = nf{t >0 : Xpp # X, }

Let (Ny)nez, be the sequence of integers for which Xry4rptotry, €V and consider

VYneZ,, T, = ZTNp

pen]

Then we can construct the Markov process Y through the relation

Vi = 07 Y;ﬁ = XT1+7'2+"'+’TNTL ) if te [Tan+1[

10



This observation inspired the introduction of the generators L"), for r > 0: heuristically the generator
of Y is L®) namely X is accelerated with an infinite speed in M\V and only its passages on V remain.

The above probabilistic interpretation also enables to see directly that S is irreducible and that the
invariant measure v of S is just p conditioned on V. Indeed, for the latter assertion, by the ergodic
theorem, we must have a.s.

.1t
VyeV, vy = lim ;L Ly (Y) ds
so it follows that for any y,z € V,
t
W) o Selw () ds
v(z) t—>+o0 Sé 1 (Ys) ds
t
1,0 (X,)d
. S? w(X) ds
t—+00 SO ]l{z} (XS) ds
_ My
1(z)

Remark 10 (analytic point of view) Recall that the Dirichlet form associated to L (and p) is the
bilinear form &y, given by

VEGeF(M), E(F.G) = —JFL[G] du

It is symmetrical, if and only if p is reversible with respect to L.
The carré du champ associated to L is the bilinear functional I';, defined by

VEGeF(M),YxeM, ['L[F,G|(z) = L[FG|(z)— F(z)L|G](x) — G(x)L[F](z) (15)
It is not difficult to compute more explicitly that

VEGeF(M),YaoeM,  T[FG)) = ) Lay)(Fy) - F)(Gy) - G))

yeM

In particular, when F' = G, the r.h.s. looks like a weighted discrete gradient square, explaining the
name carré du champ.

From , we get that
v F.Ge F(M), JFL[F, Gldp — E.(F.G)+ E4(C, F)
and in particular
v F e F(M), J T [Fldp — 26.(F,F)
where ' [F] stands for 'y [F, F']. Furthermore, when p is reversible with respect to L, we get

v F.Ge F(M), J TUF.Gldy — 26,(F.G)

11



These definitions are valid for any finite Markov generator L and we can consider similarly £ and
['s. For any f,g€ F(V), let F and G be their harmonic extensions. It is clear that

. gL(Fv G)
and as a consequence, we have
1
JFS[f,g]dV = mfFL[RG]dM

which is an important relation in the analytical approach to the usual Steklov (or Dirichlet to Neumann)
operators.
It follows immediately from that v is reversible for S when p is assumed to be reversible for L.

]

Since for any r > 0, the generator L) is irreducible, it admits a unique invariant probability (.

Lemma 11 The probability measure p") is given by

wz)
V.TEM, M(T)(x) _ { Zr foEV

wo) - fx e M\V

rZy

where Z, == u(V) + (1 — w(V))/r is the normalisation constant.
Furthermore, if u is reversible for L, then pu") is reversible for L")

Proof

These are consequences of more general facts: assume that H € F(M) is positive: H > 0. Consider the
operator HL acting on F(M) via

VFeF(M),VzxeM, HL[F]|(x) = H(z)L[F](z)

It is an irreducible Markov generator. Let (1/H) - i1 be the positive measure admitting 1/H for density
with respect to . We have

VFeFWM),  ((1/H)-w[HLF]] = p[L[F]]
= 0
Thus the invariant probability measure of H L is proportional to (1/H) - p.
Considering H := 1y + 71y (where 1y is the indicator function of V') leads to the first announced

result.
For the second result, note that in general, when p is reversible for L,

VEGeFM),  ((1/H) wFHL)G]] = plFLG]
[

I ]
p[GL[F1]
= ((1/H)- w|[G(HL)[F]]

Proof of Proposition

12



In the reversible case, —L is diagonalisable with real eigenvalues. In view of Lemma [II], for any

r > 0, the same is true for —L™, denote by 0 = A" < AV < Al < oo < Al its eigenvalues. Let
1= QDY), (IJéT), @ér), ..., ®") be corresponding eigenvectors. They are not unique (especially in the case

of multiplicities larger than 1), but we can and do choose them so that they are orthogonal with respect
to ;N):

Vre(0,40), YVk#le[m], pO@"0"] = 0
Renormalize them with respect to the supremum norm |||, instead of the L*(u™) norm:

Ve (0, +0), ¥ [ € [m], Hcp}’”) -1

0

Consider [ € [m] such that

{ liminfrHJroo)\l(r) < 4 (17)

liminf, 0 A7, = 4o

By compactness, we can find an increasing sequence of positive numbers (7, ),ey and for any & € [I], a
non-negative number )\,(:O) € [0, +o0) and a positive function <I>,(€oo) e F(M) with H@l(COO)H = 1 such that
0

limr, = +©
n—0o0
: (rn) (o0)
S A= A
: (rn) (o0)
ol = o

Passing to the limit in the relations

VaeV,  L[®YV](x) = LUD[@V](x)

N ()
we get
VeeV, L®M)z) = Ao (a)
For x € M\V, we have instead
ral[@]V]() = N2 ()

(OO)CD,(COO) (x) for large n € N, we deduce that

Since the r.h.s. converges to —\;

VeeM\V, L®™)(z) = lim L[®](2)
n—o0
= 0
Thus denoting ¢y, the restriction of @,(COO) to V, it appears that <I>,(€OO) is the harmonic extension of (.
Note that ¢ # 0, otherwise we would conclude that CD,(COO) = 0, in contradiction with HCIDI(:O) H = 1. Thus
a0

/\,(COO) is an eigenvalue of —S. Furthermore, passing to the limit in the relations
Vitkell], pr@i™el™] = 0

J

13



we see that
Vi#kell], vie;er] = 0

It follows that the A,iw), for k € [I], correspond to different eigenvalues of —S (with multiplicities).
Namely, there exists an increasing mapping N : [I] — [v] (recall that v := card(V')) such that

Vikelll, A7 = oy

and in particular, v > [. Conversely, consider 11,1, ...,1, a basis of F (V') consisting of eigenvectors
of —§ associated respectively to the eigenvalues oy, 09, ...,0,. Since v is reversible for S, we can and
do choose these functions to be orthogonal in L%(v). Let Uy, W, ..., ¥, be the harmonic extensions
of Yn,19,...,1,. We furthermore impose that ||V|, = 1 for all k& € [v]. Consider the vector space
W < F(M) generated by these functions

W = Vect(¥y : ke [v])

Due to the variational principle, we have for any r > 0,

_ ) (r)
Ag) < sup H [FY;ZLFH
FeW\{0} P [F?]

Since the functions from W are harmonic on M\V, we have for any r > 0, with the notation of

Lemma [T1]

vEeW,  —p"FLIF]] = - =y[FL[F]]

VAN

where f is the restriction of F' to V. We also have

plLy f2] + p[Lapy F2]/r

pIE?] = 7
> M(Z‘:) V[ f2]
We deduce from these two bounds that
A< g,
and
limsup A < +oo (18)
7400
i.e. [ > v and finally | = v.
It follows that
V ke [v], lim A~ gy (19)

14



Taking into account , for any increasing subsequence (R,,)nen of positive numbers diverging to +oo,
we can extract another subsequence (7,)nen such that is true, we conclude by compactness that

V ke [v], lim A7 = o

r— 400

The last assertion of Proposition |3|is a consequence of [ = v and of the definition of [ in .
[ |

Before coming to the proof of Theorem [f] let us check that for any A € A(V), S4 is a subMarkovian
generator. The argument is similar to that of the proof of Proposition [2|and is based on the probabilistic
representation of the solution F' of :

VareM, F(x) = El’[f(XTAnV)]lTAr\V<T]\/I\A] (20)

where (X;);>0 is a Markov process generated by L and starting from z, and for any B < M, 75 is the
hitting time of B:

5 = inf{t >0 : X, € B}

As a consequence, the first eigenvalue o1(A) of —S4 is non-negative. It vanishes, if and only if there is
no path (whose transitions are permitted by L) going out of A without passing through A n' V.

Assume that g is reversible with respect to L. By the variational formulation of eigenvalues and
using the notation of Remark [9, we have for A € A,

o1(A) = inf{M : fe]:(AmV)} (21)

VARV [f2]

where v4~y is the renormalized restriction of p to A n'V, which is reversible with respect to S4. As in
(16), in the above formula, Es, (f, f) can be replaced by EL(F, F)/u(A V), where F is associated to

f via (11)).

We can now come to the

Proof of Theorem [5

The upper bound of ¢}, is a direct consequence of the variational characterization of oy,

B . Es(f. f)
g, = min max 2
HeF (V) feH\{0} V[f ]

where Fy (V) is the set of all k-dimensional subspace of F(V'), by taking H as the space spanned by
the first eigenfunctions of S4,, [ € [k].
The proof of the lower bound is based on the higher order Dirichlet-Cheeger inequalities for finite
irreducible and reversible Markov generators. So assume that p is reversible with respect to L and let
0=X(L) < A(L) <A3(L) <--- < A\p(L) be the eigenvalues of —L. Associate to any A € A its first
Dirichlet eigenvalue

SL(F ) F )

M(A) = inf {W : F e F(M) with F vanishing on M\A}
I

This is the same definition as if we had taken V' = M. Next define for any k € [m],

AL(L) = i M (A
+(L) (v Ay TR 1(4)

15



The higher order Dirichlet-Cheeger inequalities of Lee, Gharan and Trevisan [25] (see also [29] for its
Markovian reformulation) assert that there exists a universal constant ¢ > 0 such that

c
V ke [m], Me(L) = ﬁAk(L)
In particular, we can apply them to L") for r > 0:
" r ¢ r r
Vkelml, A = M(LD) = SALY) =AY (22)

From Proposition |3} we know the behavior for large > 0 of the Lh.s., for k € [v], so it remains to
investigate the r.h.s.
Fix A € A and consider for r > 0,

AD(4) = inf {%ﬁ;’? : F e F(M) with F vanishing on M\A}

It is the smallest eigenvalue of —Lg), where LE:) is the subMarkovian generator acting on F(A) whose
matrix is the (A x A)-restriction of the matrix corresponding to L. The proof of Proposition [3| can
easily be adapted to this situation to show that as r goes to +c0, the first card(A n V') eigenvalues of
—Lf:) converge to the eigenvalues of —S,4. In particular we get
lim A7(4) = oy(A)

r—+00

Since Ay, is a finite set, it follows that

V ke [v], lim A,(;) = Ky

r—+00

where the r.h.s. is defined in (12]). The wanted result is thus obtained by passing to the limit in as

T goes to +00.
[ |

Proof of Theorem
To relate the kg, for k € [v], to isoperimetric quantities, we will adapt a computation of Jammes [21]
to the finite setting. Fix A € A and let us come back to . More precisely, consider f e F(AnV) a
minimizer of the infimum in the r.h.s. of and F' the associated solution of . From the Perron-
Frobenius’ theorem, we know that we can and do choose f to be non-negative and from , we also
have F' > (0. We are looking for a lower bound on the ratio

EL(F.F)  Xpsyen M@)L(2,y)(F(y) — F(2))°

plf?Lany] 2 aenny M) [2(2)

So multiply the numerator and the denominator by >, ., pu(2)L(2",y')(F(y') + F(2))?. In the
numerator we get

>, w@)LE Y F) + F)? Y p@)Lix,y)(Fly) — F(z))?

' #y'eM c#AyeM

> ( > u(x)L(w,y)(F(y)+F(x))!F(y)—F(ﬂf)\> (23)

r#yeM

_ ( 3 M(x)L(x,y)|F2(?/)—F2(x)|>

r#yeM

16



where for the first bound we used the Cauchy-Schwarz inequality with respect to the measure y outside
the diagonal of M x M. Concerning the denominator, we begin by noting that

Y, wa@ L@ ) FW) + F@)? < 2 ) pa) L@y )(F2 () + ()

o' #£y'eM ' #£y'eM
= 4 D L@, y)F ()
z'#£y'eM
= 4> u(@) |L(2', )| F*(2')
z’'eM
< 4L Y, p()FA() (24)
z'eM

where we used the reversibility of u with respect to L for the first equality. For any G € F(M), denote
|dG| the function on M x M given by

Vi(r,y)eM, [dG|(z,y) = [G(y)—G(z)|
Putting together the above computations, we have obtained

U p[ldF?]] plldF™]
8L plF?] ulf*Lanv]
To deal with the ratios of the r.h.s., recall the co-area formula (see for instance Formula (3.3.2) page

381 of the lecture notes of Saloff-Coste [31]): for any non-negative G € F(M) vanishing somewhere, we
have

o1(A) =

&W®]=‘rﬂﬂmﬁ

0

where
V=0, Dy, = {zeM: Gx) =t}
7 = inf{t=>0: D, =} (25)
= inf{t >0 : w(@D;) = 0} (26)

We also have
W6l = | D
Applying these formulas with G := F? (which vanishes somewhere since A # M), we deduce that
Cl i {’MD’*) > 0}

pulF?] Dy
> min{n(B) : Be A, Bc A}

since we have D, c A for all t > 0. Furthermore we have
:u[f2]1AmV] = M[FQ]IAHV]
40
= J plDin AnV]dt

0

400
_ J Dy ~ V] dt
0

17



so we deduce similarly that

ufldF?[]

Finally we have shown that

p(A)p'(A)
W A € A, 01 (A) = W
It follows that
Vie], s > -2 (27)
8L

and Theorem [6] is now an immediate consequence of Theorem [5]

Proof of Proposition

Consider the variation characterization of oy:

gS(f7f)

. . E(Fy, Fy)
g = min max —2 = min max T
HeFy (V) fem\{oy v[f?] HeFy (V) rem\foy  p[f?1y]

where Fj(-) is the set of all k-dimensional subspace of F(-), and F} is solution to (1)), the harmonic
extension of f to M\V. We can rewrite the variational characterisation in the following equivalent way.

EL(F,F)

HeF, (M) Fgllﬁ){(o} [ F2 1y ]
Hl|yeFi(V)

O =

Indeed for every f e F(V), and all F € F(M) with F|, = f we have
EL(Fy, Fy) < EL(F F)

This is due to harmonic property of F}, for a more detail see (38)). Let (Ay, ..., Ax) € A(V) and consider
H :=Vect(1y, : L €[k]) € Fr(M). It is also clear that H|y € Fi(V).

Eola,la)  Dwyens M@ L2, y)(La,(y) — Lo, (2))?
pla,Av] B 2u(A; V)
Dae,, year K@) L(z, y) + p(y) Ly, )
- 2u(A A V)
= 7'(A)
It implies
o < min max 17 (A;) = h,

(A1, Ap)eAL (V) Te[k]

and completes the proof.

We conclude this section by the proof of Proposition [A]in the introduction.
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Proposition 12 There is a universal positive constant ¢ such that
Cl Lk

YV ke |v], Oop =
Wl o> e T T

Proof
By [25, Theorem 4.6] and [29], Section 2], we have

Vhe[], M)'>— 5 A0
=l log?(k +1) "

where c is a universal positive constant. Passing to limit and using we get

c c L

S
log?(k+ 1) "~ 8log?(k + 1) |Z]

V ke [v], o = lim )\,(:) >
r—>00

and the statement follows.

3 The measurable state space framework

Let (M, M, 1) be a probability measure space, endowed with a Markov kernel P leaving p invariant (i.e.
u[P[F]] = p[F], for any bounded measurable function F'). The Markov kernel P defines a map
P :1L*(u) — L*(u) by P[F = §,, P(z,dy)F(y). It has has the following properties

P[]l]:]l, and VF>0= P[F]>0

We assume that P is weakly mixing, in the following sense. Let Z = (Z(n))nez, be a Markov
chain whose transition kernel is P. As usual, we indicate that Z is starting from x € M, i.e. Z(0) = =,
by putting x in index of the underlying probability P, and expectation E, (more generally, this index
will stand for the initial law of Z(0). Denote by A the set of A € M such that 0 < u(A) < 1. For any
A e A, define the hitting time of A by Z via

T4 = inf{neZ, : Z(n)e A} (28)

The weak mixing assumption asks for 74 to be P -a.s. finite, for any x € M and any A € A (but what
follows can be adapted to the situation where 74 is a.s. finite, y-a.s. in x € M and for any A € A).

Fix some V € A, we introduce corresponding Steklov Markov kernel K and Steklov generator
S in the following way: let B(V') be the set of bounded measurable mappings defined on V. To any
f e B(V), we associate the mapping Fy € B(M) given by

VeeM, Fyz) = E[f(Z(m)] (20)
and we define
. K[flz) = P[F/()
veel, {Suum = K[f)(z) - f(x) (30)

Note that K is a Markov transition operator, in the sense that it preserves the non-negativity
of functions, as well as 1y (the mapping always taking the value 1 on V). It is immediate to check that
the function F; defined in is given by

Fr = > (LywP)"ly[f]

’I’LEZ+
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where the indicator functions are seen as multiplication operators. It follows that the transition kernel
of K'is 3., (PLyny)"Ply. The function Fy is called the harmonic extension of f to M, because
we have

Vaee MV, (P-D[F@) = 0 (31)

where I stands for the identity operator (it will always be so in the sequel, even when the underlying
space will not be the same). Indeed, we have on M\V,

P[F¢] = Ty P[Ff]
= Ty P Z (Lanv P)"1y[f]

= > (L P)'1y[f]
neN
= > (L P)"Iy[f] - Tv[f]
= Z (Lapv P)" 1y [f]
— Ff+

where we used that 1y, = 0 on M\V in the last but one equality.
Let v be the normalisation into a probability measure of the restriction of p to V.

Lemma 13 The probability measure v is invariant for K.

Proof
Indeed, we compute that for any f e B(V),
1
V[K[f]] = m#[ﬂvK[f]]
1
) (L[ELf1] = pllany KT1]])

By invariance of p with respect to P, we have

plonv K S = plP[Tany KLf]]]

e ()]

n€Z+

= W Z(P]lM\V)nP[]lvf]]

| neN

= plKLf] = pl Py f]]
= plKLf] = plv /]

In conjunction with the previous identity, we get

VKU = —=ullvf] = vif]



as wanted.
[ |

From now on, we will only be concerned with the more specific reversible situation where P is
symmetric in IL?(u) (or equivalently u(dz)P(x, dy) = u(dy)P(y,dz)). Tt follows that P can be extended
into a bounded self-adjoint operator on L?(1). Then v is also reversible with respect to K: for any
fyg€ B(V), we have

1
v[fKlg]] = mﬂ[]_lvf[([g]]
- ;dhﬁﬂ 1Vf< UHMAv)fﬁﬂvﬂ>]

= v[gK[f]]

As a consequence, K can also be extended into a bounded self-adjoint operator on L?(v). It leads
us to introduce the following quantities for k£ € N,

on = inf sup HUIZHU

32
HeHk(V) fem\{(0} v[f?] (32)

where Hy, (V) is the set of subspaces of dimension k of L?(v). In the above definition and subsequently,
the convention inf & = +o0 is enforced. When K has no essential spectrum, the finite elements of
(0 )ken are the eigenvalues of [ — K = —S with multiplicities, due to their variational characterization.
We want to estimate them via higher order Cheeger inequalities. To go in this direction, let us consider

AWV) = {AeA: AnVeA

and for A € A(V), the Dirichlet—Steklov Markov kernel K4 defined on B(A n V') as follows. For
any f € B(An V), consider

VaeeM, Fyp(z) = Ew[f(Z(TAﬁV))1{TAmv<TM\A}]
where 74y is the hitting time of A n V by Z according to . The operator K 4 is then given by
VeeAnV,  Kalfl(x) = P[Fas](z)

Let v4 be the renormalisation into a probability measure of the restriction of p (or v) to An V.
It can be easily checked as above that K, is Markovian and symmetric in L?(v4), so that K4 can be
extended into bounded self-adjoint operator on L%(v4). As in (32), we could introduce the quantities
(0% (A))ken, but only its first element will be important for us:

o1(A) = inf valf(I — Ka)lf]]

33
FEL2(va)\{0} valf?] (33)
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More precisely, for any k € N, let A (V') be the set of k-tuples (A, As, ..., Ay) of disjoint elements from
A(V). We introduce the Dirichlet—Steklov connectivity spectrum (ky)gen of K via

VkeN, K = inf max o1 (A4;)
(A1, Ay )e Ay (V) Ie[K]
Definition can be considered for any A € A, but with the usual convention, we get 01(A) = +00 when
A ¢ A(V), because L?(v4) = {0} in this case (and we are left with the trivial K4 = 0). Nevertheless,
it enables to write

VkeN, Kk = inf  maxoy(4) (34)
(Al,...,Ak)G.Ak lE[[k]]

where Aj, be the set of k-tuples (Aj, As, ..., Ax) of disjoint elements from A.
The goal of this section is to show that the extension of Theorem [5 holds in this setting:

Theorem 14 There exists a universal constant ¢ > 0 such that

V keN, %/ﬁ;k<0k</€k
As in the finite setting, the above result leads to higher order Cheeger inequalities presented below.
Nevertheless Theorem [14] is more robust than the latter inequalities and , as it will appear in
its proof. In a future work, we hope to take advantage of Theorem [14] to give an alternative proof, as
well as extensions, of Theorem [C] of the introduction.
We need the natural extensions of the definitions given in the finite case to our present mesurable
state space setting. The boundary of any A € A is given by

0A = {(z,y) :xe A ye M\A}

It is a measurable subset of M x M endowed with its product o-field M ® M. Consider the measure
pon M x M defined by

w(dz,dy) = p(dz)P(z,dy) (35)

Here there is a slight difference with the finite case, as we do not impose that the diagonal D := {(z, z) :
x € M} is negligible with respect to u: we cannot do so, because we are not sure D belongs to M ® M.
It is not important, since we will only integrate with respect to u functions which vanish on the diagonal.
In particular p enables to measure 0A through p(dA). As a consequence, we can define for A € A the
isoperimetric ratios

_u(0A)
) = 1(A)
) _ u(0A)
' (A) S(ANV)

(by convention, n'(A) = +w if A ¢ A(V)). Again, the ratio 1/(A) is the measurable analogue of
quantities introduced by Escobar [14] and Jammes [21], since in their terminology, A and A n' V' can
be seen respectively as the interior and exterior boundaries, when the set V itself is seen as a boundary
of M.

Next consider

p(A) = inf 7n(B)
BcA
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/ N 1!
p(A):= Inf 7(B)
B'cA
For any k € N, introduce the k-th Cheeger—Steklov constant of V' by

= inf Ao (A
Lk o, b Akrlgﬁ?p( 0 (Ar)

The next result can be seen as an extension to higher order Cheeger inequalities of Théoreme 1 of
Jammes [21], as in Theorem [6}

Theorem 15 Let ¢ be the constant of Theorem [ We have

c
Vke N, o = ﬁbk (36)
Proof

The deduction of Theorem [I5] from Theorem [I4]is very similar to that of Theorem [¢] from Theorem [5
For any function f € L?(v4)\{0}, due to Remark [10| for the measurable situation and Lemma |17| below,
we have

valf (U = KOl _ plFas( — P)[Fagll
valf?] [Ty naf?]
SMXM ,u(dx)P(x, dy)]lFA,f(y)#FA,f(a:)(FA,f(y) - FA,]‘(I'))2
2,Uv[leAf2]

We multiply the numerator and the denominator by §, . pu(dz) P(x,dy)Lg, ;(y)cra @) (Faf(y)+Fap(z))?
and follow the same calculation as in the proof of Theorem [I5] The key point is that the statement of
the co-area formula is the same in the finite and measurable situations, replacing sums by integrals. To
illustrate the kind of slight modifications to be taken into account (also that ||L|| of Theorem |5 can be
replaced by 1 here), let us present the equivalent of the computation ([24])

|| wlan) P i ie, e (Fasl) + Fay(@)
r

S ZJM M'u(dx)P<x’dy)]lFA,f(y#FA,f(m)(le,f(y) + Ffl,f(l'))

- 4 p(dw) P(, dy)Lp, ()25 ) Fa p(2)
MxM

< 4 p(dz)F3 ¢ (x)

M

The measurable indicator 1, ;()4F, ;(2) is inherited from the Cauchy-Schwarz’ inequality in (23) and
must be kept to avoid the possible drawback that D ¢ M & M.

In the same spirit, Definition must be replaced by . Then we apply the above calculation
to a family of functions f, € L2(v4) such that “AUnU—E Ul _, 5 (4) as n tends to oo.

valf?]
[ |

As in the previous section we consider

h/ = inf / A .
k (A1,...,,}X£l)eAk(V) Ilrelﬁ}]}(n( l) ( )
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and by the same proof, Proposition [7] valid in the measurable situation, i.e.
V keN, o, < h,

The proof of Theorem follows the same pattern as in the finite case: it will be deduced from
the higher order Cheeger inequalities from [29], once the above quantities will be shown to be limits of
spectra associated to speed-up Markov processes. More precisely, for r > 0, consider the jump Markov
generator L") on M given by the kernel

, _ r(P(x,dy) —d.(dy)), if xe M\V
LO(w,dy) = { P(z, dy)y— 5m(dy)3{ ifreV

Define the probability measure p(") on (M, M) by

M(r)(dx) _ <]lV(x) +1M\V($)>u(dx)

Zy r4,

where Z, = (V') + (1 — p(V))/r is the normalisation constant.
The proof of Lemma [11]is still valid and leads to

Lemma 16 The operator L") is self-adjoint in L?(pu(™).
Similarly to and , consider

A= inf su
g HeHy, FeH\I?O} p[F?]

where H,, is the set of subspaces of dimension k of L?(x) = L2(u("), and for any A € A,

Ay = inf

PeL2(Am\(0) p[F2]

where L2(A, ;1) is the space of F € L2(u) which vanish on M\A. The larger A" (A) is, the easier it is
for a (continuous time) Markov process associated to the generator L") to exit A: the quantity A7 (4)
corresponds to the first Dirichlet eigenvalue of A and measures the asymptotical rate of exit from A.

The numerators in the above r.h.s. are only slightly dependent on r» > 1 and related to the similar
quantities relative to K:

Lemma 17 We have for any r > 0 and F € L?(u),

HOFCLONFY = 5o | alde) Pla.dy) (F() - F@)?
— U~ P)IF]
Furthermore, for any f € L2(v),
VAT =KUY = P = PYIFY : Ay = f)
1

where Fly stands for the restriction of F' to V.
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Proof
By definition, for any r > 0 and F € L?(u), we have

WOLF (L) F]] = *.[w )L o ) ) Fl)

(z, dy) F(z)F(y)

_ —ﬁ/MumM@U”@dwF@WhD—J u) (dr) L)

(M\V)x M

_ i p(dx) (6, (dy) — P(x,dy))F(x) F(y)

VxM

. J dy) — P(z,dy))F(z)F(y)
(M\V) x

- 7  nlde) P dy)(F(@) - () F(x)

::22  plda) P, dy) (Fly) — F ()

where we used the reversibility (under the form p(dz)P(z,dy) = p(dy)P(y,dx)) in the last equality.

Note that the last but one r.h.s. is just u[F (I — P)[F]]/Z,.
Similarly, we compute that for any f € L?(v),

A= = | oK (e dn)(r(e) = F) @)
_ L” fl(@) ()
_ LV Fy)(2) f ()
_ LM4 P, dy)(f(x) = Fy(y)) £ ()
- LM4 P, dy) (Fy(x) = Fy(y))Fy(x)
_ f P(x,dy)(Fy(x) = Fy(y)) Fy(x)

- Mv)wwf P)IF]

where in the last but one equality, we used that F; is harmonic on M\V according to (31)). It remains

to see that

inf{u[F(I — P)[F]] : Fly = f} = u[Fy(I— P)[F]]

namely that among all F' € L?(u1) coinciding with f on V, the quantity u[F(I — P)[F]] is minimum
when F' = Fy. This is a well-known fact, due to the harmonic property of Fy, let us recall the argument.
Write any such function F under the form F; + G where G € L?(u1) vanishes on V. We have

plE(I = PIIF]] = plFy
= ulFy (L= P)Ff]] + 20 G = P)[Ff]] + p[G(I = P)[G]]
= plEr(I = P)[Fy]] + plG(I = P)[G]]

25

(I = P)[Fy]] + plFy (I = P)[G]] + plG(I — P)[Fy]] + ulG(I = P)[G]]



where we used reversibility, Gy = 0 and . The announced minimisation comes from the non-
negativity of

WG - P)C]] = L{Muwwpmuwx0@>—aww2

Our first approximation results are:

Theorem 18 Assume that \ := /\gl)(M\V) > 0 (this quantity will be subsequently called the Dirichlet
gap of M\V' ), namely that it is quite easy for the Markov chains (Z)zenr to enter into V. Then for any
k e N, we have

lim )\,(:) = O
r—+400
and for any A € A,
lim A(4) = o1(A) (39)
r——+00

More precisely, the latter convergence is uniform, in the following sense: let 0 be a distance on the
compact set [0, +o0] compatible with its usual topology. We have

lim supb(/\gr)(A),al(A)) = 0

r—=+0 Ac A
More generally, the proof of will show that lim,_, )\,(:) (A) = o1(A), for any k € N, but it will not
be useful for our purposes.

Proof

The proof is mainly concerned with the first convergence, since the second one will follow by recycling
the obtained quantitative bounds.
We begin by checking that for any k£ € N, we have

lim sup )\,(:) < o (40)

r—+00

This result does not require that Agl)(M \V) > 0. Note that any H € H;(V') can be seen as an element
of Hj, through the one-to-one mapping

L) s f — Frel’(n)

so that we have

A< inf
F HeM (V) el pI[F7]

According to Lemma (17)), for any f € L*(v),

HOLFH-LONF] = -ulFy(T = PIF]
= M- i
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Furthermore, we compute that

HO[FE = — (u[Ly /2] + plLany F2)/r)

\%

rﬂ[ﬂva]
n(V)

Thus we get that

(r) : v[f(I — K)[f]]
A S He%lkf(v) I]I}e%( v[f?]
= O

from which follows at once.
Conversely, to any subspace H < IL%(u1) associate H the subspace of L?(v) generated by the functions
Fyy for F e H. For k € N, let H} stands for the set of H € H;, which are such that H € H;(V'), namely

such that H has dimension k. We begin by remarking that for k € N such that k < dim(IL2(v)) (< +)
and for any r > 0,
pIF(=LO)[F]]

A= inf 41
k fens Ferngoy  pO[F2] (41)

Indeed, fix some H € Hy, and choose Fy, Fy, ..., Fy, a basis of H. Consider for [ € [k], f; the restriction
of Fy to V. If (fi)ies) is not an independent family of L?(V), then we can find another family (ﬁ)lem
of L?(V') such that for any € € (0, 1], the family (f; + eﬁ)leﬂkﬂ is independent. For € € (0, 1], consider H,
the space generated by (F] + eﬁ’l)le[[kﬂ, where the ﬁ}, [ € [k], are the functions coinciding with ﬁ onV
and e.g. vanishing outside. Since f]e belongs to Hy(V'), we have that H, € Hj. Furthermore, it is clear
that

I [F(— " M[F(-L™
e AOECIONEN o pOF(-LO)[F]]
e—04 FeH\{0} pu[F?] FeH\{0} p[F?]

showing ([41]).
Recall that we have by definition
ol DlF]
FeL2(M\V,2)\{0} [ 7]
_ o Mlww PO - Py P

FeL2(M\V,p) pLany F2
Lpnv F#0

A=

It follows that for any F' e L?(u),

1

p[F?] XM[]IM\VF(I — P)[Lanv F]

VAN

Lul(F — 1y F)(I — P)[F — 1y F]

N

N

(Wl F(L = P)E]] + pllv F(I = P)[1v F]])

VAN

A
2
A
; (u[F(I = P)[F]] + 2u[1vF?))
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where we used that the mapping L?(u) 3 F — u[F(I — P)[F]] is a (non-negative) quadratic form
(called the Dirichlet form associated to the Markov generator P — I, see Remark and that the
spectrum of the operator I — P is included into [0, 2]. We deduce that for any r > 0,

1 1
WOIF) = o (i) Lt )

< 5 ((v+5) wirvrr+ Zutea - i)

It follows that

pOF(LO)F) ulF(— P)F]]
WO 7 (U4 ) [ P+ ZulF (T~ P)F]]
N plF( = P)[F]
- qu( p[ly F2] )
where
¢T : [O,+OO]9u — W

Note that the latter mapping is increasing, so taking into account Lemma , we have, with f = Fy,

(B ) 2 e (i)
- (R
7]

We deduce from the above computations that for H € Hj,

p " [F (=LY F]] v[f(I = K)[f]]
rernoy  pO[F2] v ¢T< v[f?] )

_ @(max V[f(I—K)[f]]>

fe\{0} v[f?]
= (br (0k>

since H € Hy(V).
When k < dim(LL?(v)), it follows from that

Nz 60 (o)
and it remains to let r go to +o0 to get

1%&“,&” > lim ¢.(on) = o (42)

When k > dim(IL?(v)), for any H € Hy, we can find F* € H\{0} such that Fy, =0 and so

pO[F (=L [F]] PO [F*(=LO)[F*]]
Iu(r) [F*Q]

Or(+0)

Ar

Fgllﬁ?o} u[F?]

\Y

\Y
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It follows that )\,(;) > Ar/2 and letting r go to +00 we get

liminf)\,(:) = 400 = 0y
r——+00

Thus is always true and in conjunction with , we obtain the first announced convergence.

For the second convergence, note that for A € A, the definition of 01(A) is similar to that of oy
where V' is replaced by V' u (M\A), except we only consider functions that vanish on M\A. It leads us
to consider

A= AP

and for r > 0, the mapping ¢4, given by

u

4 2u
Aar + Aar

Gar : [0,4+0]3u —

1+
The above computations show that for any r > 0,

ai(A) = M(A) = ¢a,(01(4))

Note that the mapping A > B — )\gl)(B) is non-increasing with respect to the inclusion of sets (because
AY(B) corresponds to an infimum over the space of functions L2(B, 1)\{0}, which is non-decreasing
with respect to B), so we deduce

Agd = A
V’I“>O, ¢A,7‘ = ¢7’

It follows that to get the wanted uniform convergence, it is sufficient to show that

lim sup ?(u,d.(u)) = 0

7=+ 4]0, + 0]

which is an elementary computation, since it can be reduced to

1 1

u  op(u)

=+ ue[0,1] ue([1,40]

):0

Remark 19 The assumption of positive Dirichlet gap in Theorem [18]is really needed. Indeed, remark
that when /\gl)(M\V) = 0, then for any r > 0, we have )\(f)(M\V) = 0. Due to Lemma E this is an
immediate consequence of

lim max ( sup |u — ¢(u)|, sup

L FU=PIF] _ pOFCLOEF] 1 p[F(I - P)F]]
max(Lr)  lf?] O[] omin(Lr)  plF?]

Ve L),

Furthermore, the fact that )\Y)(M \V) = 0 implies that )\g) = 0: consider a sequence of functions
(F)nen from L2(M\V, 1)\{0} such that

O[F, (—L0)
i PR CLOE]
nosco pOES]
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and consider for n € N, H,, := Vect(1, F,,) € H,. We easily get that

: p
1 =0
won rel o) p[F7]

ie. )\g) = 0. In particular, we have

lim A = 0
r——+00
But it may happen that oo > 0. Consider for instance an ergodic birth and death transition kernel P
on Z,: we take M = Z, endowed with a probability measure p charging all the points. The reversible
transition kernel P is defined via a Metropolis procedure:

2\ uy)
vxayEZJru P(:C7y) = O, lf’y—$’>2

1 - ZzeZ+\{x} P(:C, Z) y ifr= Y

l(MAl), if ly—z| =1

where p A ¢ := min{p,q}. The definition of P via the above Metropolis procedure implies that it is
irreducible with respect to p (see for example [4, Section 3.1]). Recall that by definition, P is ergodic
if and only if

VY Fel?(p), P[F] = F = F € Vect(1)

Thus, irreducibility implies ergodicity in the above example. As a result, P is also weakly mixing.
Assume that the queues of i are sufficiently heavy, in the sense that

() 0

% llr, )

An application of discrete Hardy’s inequalities (see [27], they are given for finite birth and death
processes, but are also valid in the denumerable setting) implies that Aﬁ”(ZA{O, 1}) = 0. Nevertheless
considering for instance V' = {0,1} we get that oo > 0, as a consequence of K(0,1) = P(0,1) > 0
and K(1,0) = P(1,0) > 0. More generally it can be proven that oo > 0 for any finite subset of Z.
non-empty and not reduced to a singleton.

Note that under the weak mixing assumption (or under the ergodicity assumption), )\gl) = (0 means
that 0 is the lower bound of the essential spectrum, so that )\,(Cl) =0 for all 1 < k < dim(L?*(p)) + 1 and
similarly, )\,(:) =0 for any r > 0 and 1 < k < dim(LL*(u)) + 1.

To prove Theorem [14] without the assumption of a positive Dirichlet gap on M\V', we will accelerate
the Markov process associated to the generator P — I more strongly on the slow points of M\V (near
o0 in the above remark). More precisely, we look for a measurable function ¢ : M — [1, +00), taking
the value 1 on V, such that by defining for » > 0, the jump Markov generator L") by

., _ ro(x)(P(z,dy) — d.(dy)), if xe M\V
L0z dy) = { @) (P(o.dy) — b2(dy). itz V (43)

we have that L") admits a positive Dirichlet gap on M\V. Then, with the corresponding spectra,

Theorem (18| will hold. Note that the notions of harmonic functions on M\V with respect to P — I and
L™ for all r > 0, coincide and the corresponding Steklov Markov kernels and generators are the same.
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Let X = (X(t))i=0 be a jump Markov process of generator P — I (see Chapter 4 in [16] for the
definition). Fix some x € (0,1) and consider the function ¢ defined by

1
E.[x7]

where 7 = inf{t > 0 : X; € V}. Note that when z € M\V is a point from which it is difficult to hit
V', namely such that 7 has a propensity to be large, then p(z) is quite large also: the jump Markov
process X == (X (¢)),50 associated to L) is strongly accelerated at x in comparison with X, as
wanted. From now on, the notation L), for r > 0, will only refer to the operators given in . Here
is the consequence of the acceleration procedure:

VxelM, o(x) =

Lemma 20 We have

VazeM, E,[rM] € ——
S may

where 7 = inf{t > 0 : X" e V}

Proof

Let us recall the time change transformations (cf. for instance Chapter 6 from the book of Ethier and
Kurtz [16]), which enable to construct X from X when both processes start from a fixed € M. Due
to [16, Theorem 1.4], if we define (6;);>0 via

then we can take

In particular, we get

It follows that

J, =
- L o [Ls<rBx, [XT]] ds
L Eo [LoerX Ea[x"|(Xu)uefo.q]] ds
_ L +OOIE:‘,,: [Loerx x| ds

where we use the measurability of the event {s < 7} with respect to the o-field generated by (X.,)ue[o,s],
the fact that on {s < 7}, we have 7 = s + 7 0 0, where §; is the shift of the trajectories by an amount
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s of time, and the Markov property, stating that for any measurable functional F' on the trajectories,
we have a.s. Eg[F o 0,(Xu)uepo,s]] = Ex,[F]. In this formula, Ex, is the expectation with respect to
a diffusion X starting from X, at time 0. Since all the integral elements are non-negative, we can use
again Fubini’s formula to get that the last integral is equal to

+00 T
E, lj T x X" ds] = E, J X ° ds]
0 0

= E, stds]
0

_ X' -1
B | In(x) ]
o
In(1/x)

as announced.

From the previous uniform boundedness of the expectations of 7!, we deduce uniform exponential
bounds on its queues:

Lemma 21 We have
VoeeM,Vs>=0, P [t > 5] < 2exp(—as)
with o == 1n(2) In(1/x)/2.
Proof
For any n € Z,, we have
VireM, P [ > an] < 27

where

2
In(1/x)

This is shown by iteration on n € Z,. It is clear for n = 0 and if it is true for some n € Z, , then by the
Markov property and Lemma 20} for any xz € M,

Px[T(l) = CL(TL + 1)] = ]Ez[]lT(l)zaPX(l)(a) [T(l) = cm]]
< 2_”IP’x[T(1) > a
E [7-(1)]

pp—
a

a1

aln(1/x)
_ 2—(n+l)

N

VAN

where in the third line we use the Markov inequality.
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For any s € R, , write n :=|s/a| € Z,, so that

VaxelM, P, [tV > 5] P[> na)
27774

9—ls/al
2(2—s/a)

2exp(—as)

NN

AN

as announced.

To simplify the notation, we now take y = exp(—2/In(2)), so that & = 1. Uniform exponential
bounds on the queues of exit times from a domain are well-known to imply that the associated Dirichlet
gap is positive. Here is a simple proof of this fact:

Lemma 22 We have
1
Wany) >
where the Lh.s. is relative to the accelerated generator LV,

Proof
As in Lemma , we see that the measure ﬁ,u(dx) is reversible for L(). Its total weight is

70 = Bl ) € 0.1

which leads us to define p™(dx) = mu(das), the invariant probability for L),
Our goal is to show that

pOF (=LY [F]]

AVANY) = inf
1 (M) FEL2ONV )\ (0} pW[F?]
1
> - 44
5 (44)

So consider F' a bounded and measurable function on M, vanishing on V. By the martingale
problems associated to X there exists a .2 martingale (M;)=0 such that

Vi=0, FYXW@) = FX(XD(0))+ f LOY[FY(XY(s))ds + M,

Replace in this relation t by t A 7(1) and take the expectation to get

E[F (X0t A 7)) E[F2<X<1><o>>]+E[ f L<1>[F2]<X<l><s>>ds]

where we use the martingale property E(M;) = E(M;) = 0. Via dominated convergence, we can let ¢
go to infinity to obtain

B[F(X ()] = E[FWD(O))HE[ [ L<1>[F2J<X<1><s>>ds]
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Note that since X((7()) € V the Lh.s. vanishes, we deduce

E[F2(X(1)(0))] = —-E [JT(U L(l)[F2](X(1)(S))d8

We have not yet specified the initial distribution of X (0), but take it now to be u(); so the Lh.s. is

E,o[FA(XM(0)] = f O (dr) FA(z) = pO[F?)

Concerning the r.h.s., recall that the carré du champs I'V) associated to L) and defined on any
bounded and measurable function G on M by

rviG] = LW[GY -2GLY[G]

is a non-negative function (cf. for instance the book of Bakry, Gentil and Ledoux [3]). It follows that

-E,m [J
0

(1) F()

L(l)[Fz](X(l)(s))ds] < —2E,0 U F(X(l)(5))L(1)[F](X(1)(5))ds]

A

2E,m) UT |F(X(1>(s))L(1)[F](X<1)(S))|ds]

0

= J+OO B [1oc,o0[F(XW () LYF)(XD(s))[] ds

For any s > 0, taking into account Lemma [21], we have

B [Loaro[FXO ) LOFIX ()] = By [Pxagls < 7IFXO () LY FIX(s))]]
2exp(—s)E u“) [|F(X 1)(5))[/ )[F](X(l)(3)>|]

2exp(—s)u V[ FLYF]|]

AN

where we used the invariance of 1V (meaning that for any s > 0, the law of X((s) is equal to p®
when the initial law is p(!)). We have thus proven that

+00
WO[F?] < j 2 exp(—s)uV[[FLV[F]|] ds
0

pO[F?] < 4pO[(LO[F])?

The fact that L") is a non-positive self-adjoint operator enables to see that this relation extend to any
function in the domain of L™ with Dirichlet condition on V. It follows that the spectrum of —L®) with
Dirichlet condition on V' is above 1/2, which amounts to (44).

|
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As already mentioned, the Steklov Markov kernel K associated to L) and V is the same as
K. Since in general the generator L(!) cannot be written under the form P® — I, where P® would
be a Markov kernel on M, the definitions and must be slightly generalized: denote for any

feB(V),
VeeM, FY@) = E[f(XD(FM))] (45)
vaeV,  KOf])() = LOFP|(2)+ f(o)

where 7 was defined in Lemma . The latter expression for K may appear strange at first view;
it is due to the fact that it is a Markov kernel operator. If we rather consider the Steklov generator
SW = KM — I, we get the more natural formulation: SW[f] = LW[F;], for f € B(V), as in the section
on finite Markov process. Coming back to our previous convention of Steklov Markov kernels, note that
for any x € V', we have

LOTFON@) + f(2) = LIF)@) + F (@)

::j¢mea@>

more in adequacy with . Note furthermore that the function F;l) defined by is the LM-harmonic
extension of f to M: it satisfies

LY[F;]=0, on M\V
FO=f, onV

Since L(Y) = L, with ¢ non-vanishing, the condition LV[F;] = 0 is the same as L[F}] = 0. It follows
that F}l) = F; and finally KW[f] = K[f]. By completion, this is true on L2(v), i.e. K& = K. The
equality F }Sl) = I is also obvious from the probabilistic point of view, since X (M) is a time change of X
(as seen in the proof of Lemma , which itself is the Poissonisation of the Markov chain Z with the
same initial condition and associated to P: let (&,)nen be independent exponential random variables of
parameter 1, X can be constructed from Z via

Vit=0, Xi = Z,, whereneZ, issuchthat 37 & <t< Z;:ll &

The previous considerations are also valid for the operators K 1), defined in a similar fashion for
A e A(V) and we get that KS) = K 4. We can now apply Theorem |18 with respect to the generator L1,
which by construction admits a Dirichlet gap on M\V. The Lh.s. in the two convergences of Theorem
correspond to the generators given by and the r.h.s. are given by and , according to the
above discussion. These convergences are our final approximation results for the quantities (o)ren and

(01(A)) aca -
We can now come to the

Proof of Theorem [14l

The upper bound is an immediate consequence of the definition of oy. Indeed for every (A1, ..., Ax) € Ay

it is enough to consider the vector space generated by a family {f,, € L*(A;,u) : [ € [k]} of test

A [f"’i(jEIgAj)[f"’l]] tends to 01(A4;) as n — o0.
1WUn,l

For the lower bound, similarly to , define for any r > 0,

functions such that

VkeN, A = inf  maxA\\”(4)
(A1 ..... Ak)E.Ak; lEIIk]]



We have seen in [29], extending the similar result Lee, Oveis Gharan and Trevisan [25] gave in a finite
setting, that there exists a universal constant ¢ > 0 such that

C

Vr>0¥keN, A > 5

Ay (46)

Fix some k € N. The first convergence of Theorem [18 shows that the 1.h.s. converges to o as r goes to
+00. Its uniform convergence leads to

lim Al(:) = Ki
r—+00

so we can pass to the limit in to obtain the announced inequality.

We end this section with Proposition [A]in the introduction.

Proposition 23 There is a universal positive constant ¢ such that

VkeN, Oo =

Proof
By [29], the proof of Proposition (12| can be extended here. In particular, we have

VkeN, A0>__ ¢ A0
7 logh(k + 1) F

and

1
V ke [v], Ay = gl

and the statement follows.

4 The Riemannian manifold framework

Let (M, g) be a compact Riemannian manifold of dimension n with smooth boundary. We assume that
M is connected. Recall the Steklov problem considered in the introduction:

%zaf, on 0M

{Afz(], in M

where v is the unit outward normal to the boundary. Our goal, as in the previous sections, is to relate

its eigenvalues 0 = 01 < 0y < -+ < 0, < --- / 0 to some isoperimetric constants. We first show that

that can be seen as a limit of a family of Laplace eigenvalue problems. This is already known due

to the results of Lamberti and Provenzano [23| [30]. They showed that the Steklov eigenvalue problem

(1) can be considered as the limit of the family of Neumman eigenvalue problems
A Aoef =0, in M

{ ﬁf:o ,p ! on oM (47)
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for € small enough (one can choose € for example smaller than the focal distance of 0M). Here M, :=
{reM: d(x,0M) < €}, and

ZORE DUV (9)
We denote the eigenvalues of problem by E
O=Al<N<- <A, < S
Then we have
Theorem 24 [25, [30] For every k € N
lim A}, = oy, (49)

e—0

Remark 25 We remark that Lamberti and Provenzano [23| 30] stated the above convergence for
bounded domains in R"™ with smooth boundary, and the definition of p. on dM is slightly different.
However, a verbatim proof also results the convergence on a compact Riemannian manifold (M, g)
with smooth boundary, see [30, Chapter 3] for the details of the proof.

m]
One can see the similarity of the above theorem with the statement of Proposition [3| and Theorem [18|
It would be very interesting to have an alternative approach to prove Theorem and Theorem
below by using the results of the previous section. We hope to obtain a unified approach in a future
work.

Let A = M be a nonempty open domain in M. Let d,A := AndM and 0;A := 0AnInt M be smooth
manifolds of dimension n — 1 when they are nonempty sets. We consider the mixed Dirichlet—Sobolev
eigenvalue problem
Af=0 in A
Y —of on 0.A (50)
f=0 on 0;A

We also need to consider the following mixed Dirichlet—Neumann eigenvalue problem

Af+Xpf=0 in A
a— on 0.A (51)
f=0 on 0;A

where p, is defined in (48)).

If ;A = J, then A = M and the first eigenvalue is zero. Otherwise the first eigenvalues of the
eigenvalue problem and are not zero and we denote their eigenvalues by

0<oi(A) <op(Ad) < <op(A) < /o

and

0<A(A) < N(A) < <A (A <+ /o

respectively. When 0. A = 0, our convension is that o4 (A) = oo, for every k € N. Denote by A the set
of nonempty open domains in M such that 0;A and J.A are smooth sub-manifolds of dimension n — 1
when they are nonempty. Let Ay be the set of k-tuple (A1, ..., Ax) of mutually disjoint elements of A.
We define

AS = i M (A 52
£, i A (A) (52)

The higher order Cheeger inequality for eigenvalues A, (M), k € N was proved by Miclo in [29]:
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Theorem 26 ([29]) There exists a universal constant ¢ > 0 such that for any compact Riemannian
manifold M with smooth boundary, the eigenvalues Aj, of Neumann eigenvalue problem satisfy

%Apsﬁ<A; VkeN
Remark 27 The above theorem in [29] is originally stated for closed manifolds. But the argument
remains the same when we consider the Neumann eigenvalue problem on a compact manifold with
smooth boundary.

Similar to Definiton , we define

Ki 1= inf max o1(4;)
(A1 ..... Ak)EAk le[[kﬂ

Theorem 28 There exists a universal constant ¢; such that for any compact Riemannian manifold M
with boundary and for any k € N, the eigenvalues oy (M) of problem satisfy

C1

%mk < 0 < Ky
As a consequence of Theorem [28 we get the higher order Cheeger—Steklov inequalities, see Theorem
below. We first define the Cheeger—Steklov constants in this setting similar to those already discussed
in the previous sections. For any open subset A of M with piecewise smooth boundary, let 11(A) denote
its Riemannian measure and p(0dA) be the induced (n — 1)-dimensional Riemannian measure of 0A. We
define for every A € A the isoperimetric ratios

(i A)
A) =
i) p(A)
/ /i(azA)
A) = —
A = R
Note that n/(A) = o0 if An M = . Let
p(A):= inf  n(B) (53)
~ BcA
p(A):= Inf 0/(B)
B'cA
B’m&ﬁl:@

For any k € N we define the k-th Cheeger—Steklov constant of M by

M) = inf AN o' (A).
L (M) (A1,~--1,Iilk)eAk1;rel[[z}ci<p( )P (Ar)

The following theorem extends the results of Escobar [29] and Jammes [21].

Theorem 29 There exists a universal constant ¢ such that for any compact Riemannian manifold M
with smooth boundary and for any k € N, the eigenvalues o (M) of problem satisfy

C
>
O = k}GLk
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Remark 30

i) One can check that for every k € N one has tx(M) < t441(M). This is also true in finite and
measurable situation.

ii) Note that n'(B) is scale invariant. Hence, as mentioned in [21], the power of n(B) has to be one
so that ¢ (M) has the same scaling as oy (M).

Note that for k = 2, Theorem [29| gives a version of Jammes’ result [2I]. The above theorem is the
direct sequence of Theorem 28 and Lemma, [31]| below.

Lemma 31 Let o1(A) be the first eigenvalue of the Dirichlet-Steklov eigenvalue problem . Then
we have

Proof

Let f be the eigenfunction associated with o1(A). We repeat the same argument as Jammes’ argument
in [2I] to estimate o1(A).

SA|Vf‘2d/“L SAdeN (SA|fvf|d,u)2
Sa AP §, Py~ SaAde/i §4 2y

RN (SA |Vf2|du>
4 So.a fPd1s §4f2dp
where dp and dyu are n-dimensional and (n — 1)-dimensional Riemannian volume elements respectively.
Let h:= f? H;:= h™'[t,0) Then by the co-area formula we have

§,1Vh|du §.1Vh|du §o° (0, Hy)dt (2 w(o:H,)dt i} /
(SaeAhdu> ( Sahdu > (SO (0. H,) dt) (go (H,) dt) p(A)p'(A)

which completes the proof.

o1(A) =

It remains to prove Theorem [28]

Proof of Theorem [28]

Recall that by the variational characterisation of Steklov eigenvalues

where {f;} is a family of test functions in H'(M) with mutually disjoint supports and Ea(f, f) :=
§ vV fI2du is the Dirichlet form associated to A. Hence, the upper bound of o}, is a direct consequence
of the variational characterisation of Steklov eigenvalues.

We now prove the lower bound. We need the following key lemma.
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Lemma 32 There exists €g > 0 such that for every € € (0,¢€q) there exists a § > 0

1
Ai}é_]:ﬁk—i_é

In particular

1
o Ak =

Proof

Let (A1, -+, Ax) € A, and Hi(A;,0:A;) be the closure of {f € C*(4;) : f =0 on ¢;A;} in H'(A;).

For every € small enough (will be determined at the end) and every f € H}(A;, 0;A;), j € [k] we have
G, [V Pde§, (95
Saypef?dp = 3 85uc fPdu+ef, £ du

where A5 = {z € A; :d(r,0.A;j) < e}. Note that if d.A; = ¢, inequality is trivial. We bound the

denominator of the r.h.s. of inequality from above. For every f e Hj(A;, 0;A;) consider 1,4, f as
an element of H'(M). Then

(54)

1 1
R
€ A;,e € M.

There exists ¢y > 0 such that for every € € (0, ¢) the map
E:0M x (0,e) — M,
(2,t) — exp,(—tv(z))

is a diffeomorphism. Note that |det DE(x,t)| = 1 + O(t). Hence, by choosing ¢, even smaller, we can
impose that for all (x,t) € M x (0,¢)

|det DE(z, )]
sup
(z,5)€0M % (0,t) | det DE(I‘, S)|

< 2, which also implies, |det DE(z,t)| <2
Let F'e H'(M) and by abuse of notation, denote F' o E by F. For a.e. (x,t) € M x (0,¢) we have

¢
F(z,t) <F(x,0)+f |6—F(x,s)|ds
o 0s

Thus
1 1 re
-f Frdp < 7| | a0 dot DEGe, o) dud
€ JM. € Jo Jom
1 (5[

tOF ?
<F(az,0) + J |g(az, s)|ds) | det DE(x,t)|dpdt
0

N
|
e—

oM
2 (€

oM

€ t 2
+gf f <J |a—F(:p,8)|d$> | det DE(x,t)|dudt
€ Jo Jonr \Jo ' 0s
|det DE(z, 1)

2 (€ t oF
4 F(z.0)%d = t] |— 2| det DE ds dudt
LM (2,0) M+ELLM L'as@“s)" et DE (s 3)| o s

4f F2dg+26f \VE*du
DA e

F(z,0)?| det DE(z,t)|dudt

N
|
—

N

N
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Taking F' = 14, f in the above inequality we get

1
- frdp <4 fdu + 24 \VE2du
€Jas, B A A

We proceed with bounding the second term.

EJ frdu < e)\l(Aj)_lf IV f|2du

Aj

< qu() | |VePa

Aj

where )
i _ §4. IV fIPdp
M(4;) = inf e
feH§(A;,0:4;) SAJ. frdu
is the first Dirichlet-Neumann eigenvalues of A; with Dirichlet condition on 0;A;, and py(M) is the k-th
Neumann eigenvalue of M. Note that in the last inequality we use the fact that

pe(M) < max Ay (A;)
Jjelxl

Hence, for any € € (0, ¢y) we get

§, (TSPl §,, IV fdp
SA]- pef?dp - 4Sae,4]. f?du+ 2e SA]- IV fPdp + epr (M)~ SA]- AAROT

|V fPdu
ey

SaeAj fPdp

where 1, : (0,00) — (0,0) defined as

vl = e T D

is an increasing function. Remark that ¢, is independent of the set A; and depends only on M.
If £ =1 then X{(M) = o1(M) = 0 and there is nothing to prove. Thus we can assume k > 2 to make
sure that p,(M) > 0. Let f; be the eigenfunction associated with A{(A;).

|V filPdu
max A\j(4;) = max SAJ—]Q
jel] sk § 4, pef? dp

" SAj ’ijPdM
et N\ S,
%ﬁ?%ﬁe(al(/‘lj)) = %(ggﬁffl(/lj))

. inf maxoq(A;
w((Al,"‘»Ak)EAk Jjelk] 1< j>>

\%

WV

WV

This completes the proof of the lemma.
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We continue the proof of the theorem. By Theorem we have

A = ﬁAZ
Passing to the limit and applying Lemma [32] and Theorem [49) we conclude:
e Co. c
o,(M) = lg% A(M) = w lli%Ak(M) > 2—k6/€k(M)
[ |
Similar to Propositions [12| and we have the following improvement on manifolds.
Proposition 33 There is a universal positive constant ¢ such that
C/
VkeN, oo = L
2 log(k + 1) g
Proof
Due to [25, 29], there is a universal positive constant ¢; such that
C1
VkeN, o = ——A;
7 log?(k+1) "
Passing to the limite and using Lemmas [31] and [32] we get
1 1
VkeN, O =2 ——5——Kp = ———————L
2 41og*(k + 1) g 161og*(k + 1) .
[ |

Remark 34 The methods and results above can be adapted and remain true for a more general Steklov
eigenvalue problem

div(pVf) =0, in M
Z—I{ =ovf, on OM

where v is a continues positive function on dM and ¢ is smooth function on M. But in this paper we
stick with the so-called the homogenous Steklov problem when ¢ = 1 and v = 1.

Remark 35 We now give a more explicit relationship between the higher order Cheeger constants and
the higher order Cheeger—Steklov constants. Let

M) = inf A
pr(M) (Al,..}ﬁk)eAk?éﬁi{p( 1)

We show that

M) = inf Ay) =t hyp(M 55
pr(M) = nf maxn(Ar) = hi(M) (55)
where hy (M) denotes the k-th Cheeger constant. Indeed, it is easy to check that p(A) < n(A) which
implies pr(M) < hy(M). Thus it is enough to show that for every € > 0, we have hy(M) < pr(M) + €.
Note that
VBCA  o(B)>p(A)
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Recall the definition of p(A) in (p3). For every e > 0, there exists B € A subset of A such that
Bn ;A= and

0<n(B)—p(B) <n(B)—p(Ad) <e (56)
Let A{ be a subset of Ay such that
V(A A e AL, 0<n(A) —p(A) <€, Vie[k]

We claim
inf A = inf A
(Al,---l,Izl4k)€Ak IIIGI[%(/)( 2 (Al,"'lyIzl“k)GAi I};Eﬁfﬂ( 2
Indeed, let
[(Ay, -, Ap)] = {([11, L Ap) € A - max p(4) = maxp([ll)}
le[[k] le[k]
The definition of p; does not change if we choose a representation in each class [(Ay, - -+ , Ax)] and only

take infimum over the family of representations. By , it is clear that each class has a representation
in Aj,. This proves the claim. Therefore

M) = inf A inf A) —e=hpy(M) —
pr(M) R Ilgﬁ?p( D) > T R rlrelﬁ?n( 1) — €= hp(M) —e€
This proves identity . Now for a given (Ay,- -, Ax) € Ay, let lnax € [£] be such that

N(Appae) = max n(A;)

Then we define

BAM) = i ‘A
k( ) (Al,lﬁk)gAkp( lmax>

It is easy to check that we have the following lower bound for ¢ (M)
(M) = hy(M)hi, (M) (57)

Similarly we can define

'(M) = inf (A
(M) (Ah“.lg‘k)mkrlgﬁ?p( )

With the same argument as above, the following equality holds.

'(M) = inf "(A) =: (M
(M) (Al,-..lﬁk)eAﬁﬂ?"( 1) (M)

For a given (Ay, -+, Ax) € Ay, let I/ .. € [k] be such that

max

' (Ap,,.) = maxn'(A)

le[k]
Then define
E M = i f A /
k( ) (A1,~~-17I114k)6-'4k P( lmax)
and we get

(M) = hy(M)hi, (M)

Jammes in [21] considered several examples to show that for £ = 2 the geometric quantities n(B) and
n'(B) appearing in the definition of ¢; (M) are both necessary in the lower bound of o3(M). Inspired by
his examples, we give examples which show the necessity of quantities such as n(B) and n'(B) in the
lower bound for all £ € N.
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Example 1 Ezemple 4 of [21] can be used to show the necessity of quantities such as n(B) and n'(B)
in the definition of v for all k = 2: Consider M,, = N x (0, L,,), where N is a closed manifold and
L,, = % The Steklov spectrum of M,, can be calculated explicitly, see [10, Lemma 6.1]. They are

{o Lon ™Y, A/ Me(N) tanh(n/ A (N) Lon ), A/ Mo (V) cothi(n/Ae(N) L) : keN} (58)

where \,(N) are the Laplace eigenvalues of N. It is clear that for every k e N, oy, = O(%) as m — oo,
while ho(M,,) = ¢ for some positive constant ¢ independent of m as shown in [21, Ezemple 4]. Note
that hy.(M,,) is a non-decreasing sequence in k. Hence we have hy(M) = ho(M,,) = ¢, for every k = 2.
This together with and Theorem show the necessity of a quantity such as n'(B) in the definition
of tx(M,,) for all k € N.

Example 2 Let M,, = N,, x (0,m) where N,, is a family of closed manifold of dimension n > 3
satisfying the following properties

(a) the (n — 1)-dimensional Riemannian volume u(N,,) tends to 0 as m — oo ;
(b) for every k € N, \p(N,,) = O(m™2) as m — o0.

The existence of such family of closed manifolds is guaranteed by the results in [11] and [26, Theorem
1]. One can choose the family {N,,} so that u(M,,) is bounded below and above by positive constants
independent of m. Indeed, given any closed manifold N of dimension at least three, Lohkamp showed
that for any positive constant V> 0 and any sequence 0 = a; < as < --- < ay there exists a Riemannian
metric on N such that the corresponding Riemannian volume u(N,g) =V, and \((M) = a;, for any
l € [I]. Thus, for every m € N, one can choose a metric ¢,, on N such that u,,(N) = 1/m and
N(N, gn) ==, Le [m]. The family {(N, gn)} has the desired properties.

The set of Steklov eigenvalues o (M,,) is given by (b8 . Hence for any fized k € N, and m > k we
have o, (M) ~ mA(Ny,) as m — co. Therefore

VkeN, lim o4 (M,,) =0

m—00

We shall see that there ezists a positive constant C independent of m such that h}(M,,) = C. Note
that hi.(M,,) is a non-decreasing sequence in k. Thus it is enough to show that hly(M,,) = C for some
constant C > 0 independent of m. Since u(N,,) — 0, for m large enough we have

1 p(Nm) <max{ u(6:A) g({)l-AZ)}
2 2u(Nw) ~ 14(0eAr)” (0 Az)

where {Ay, Ao} is an arbitrary partition of M,,. Hence hj(M,,) = hy(M,) = 5. On the other hand if

we choose Ay = (& ;)m b x Ny, Le [k] then

w(0iA) 2k
hi(M,,) < max <——0, m,/ /o
Hl le[k]  p(Ay) m 4

This example shows the necessity of a quantity such as n(B) in the definition of tx(M,,) for all k € N.
For k =2, a simpler example is given in [21)].

We remark that one can also choose N, to be a family of surfaces satisfying properties (a) and (b)
above due to results in [11]. However one may not control the volume of M,y,.
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Example 3 (Cheeger dumbbell) Polterovich and Girouard studied a family of Cheeger dumbbells
M, and showed that lim._,qor(M.) = 0 for every k € N. In their example, M, is a domain in R?
consists of the union of two Fuclidean unit disks Dy U Dy connected with a thin rectangular neck L.
of length € and width €3. It is easy to check that ho(M.) — 0 as € — 0. We show that for k > 3,
hi(M.) = ¢ > 0, where ¢ is a constant independent of €. Since hy,(M.) = h3(M,), it is enough to show
that h3(M.) > c. By contrary, we assume that h3(M.) — 0 as € — 0. Hence there is a family of

(AS, A5, AS) such that
A€ Ac Ac
max {H(az El) , M(al 62) ; M(aﬁ 63) } N O, € — 0
p(AS) - p(Ag)  p(As)
Hence we should have 0;AS < L., for alll € [3] (notice that this uses the fact that M, is a subset of R?.

The argument does not hold in higher dimensions). Therefore, there exists | € [3] such that Aj < Le.
We conclude that for € small enough

w(0iA7) > l

u(A) e
Indeed, for e small enough, among domains B < L. of volume equal to ju(As), the length of 0;B is
minimized by € the length of the width of L.. Thus

w(0: A7) e’
u(AS) ~ p(Le)

=

A | =

which 1s a contradiction.

This example as in Ezample |1] shows the necessity of n'(B) in w,(M.). However, in Ezample |1 the
volume of the family of manifolds tends to zero, while in this example the area and the boundary length
of M, are uniformly controlled.

A Continuity properties

In the context of Section [3] it is natural to wonder if the mapping P — K is continuous in some sense.
In particular it could provide an alternative approach to the acceleration technique in the deduction of
Theorem [14{ when P has no Dirichlet gap on M\V. We give here an example of a strong continuity result
useful in this direction, but under quite restrictive assumptions of hyperboundedness on K (holding e.g.
when L?(v) is finite dimensional) and of ergodicity (see Lemma [37| below).

For any € € (0, 1), consider
P. = (1—¢)P+eu

where p is seen as the Markov kernel given for any = € M by p(z,dy) = p(dy). It is clear that u is
still reversible with respect to the Markov operator P.. Its advantage is that P. has a Dirichlet gap on
M\V larger than p(V)e > 0 (consider the function F := 1,y in its definition as an infimum). Let K,
be the Steklov Markov kernel associated to P, and V' (all notions relative to P. will receive € in index).
A strong approximation property holds under certain circumstances:

Lemma 36 Let & stands for the normalisation of the restriction of u to M\V and let v be the law
of Z(1v), where (Z(n))nez, is a Markov chain starting with initial law & and transition kernel P, and
where Ty is the hitting time of V. Assume that

e The Radon-Nykodim density dv/dv belongs to 1L2(v).

e The operator K 1is hyperbounded, in the sense there exist 1 < q < 2 such that K is bounded from
Li(v) to L3(v).
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Let || - ||, stands for the operator norm in L*(v), then we have
lim K — K[, = 0
e—04
Proof
To simplify the notation with respect to , introduce

T = Ty

F = inf{neN: Z(n)eV}
so that for any f € L?(v), we have,
v-a.s. inz eV, K[fl(x) = E.[f(Z(7))]
and similarly,
v-as.in,xeV K J[fl(x) = E[f(Z(7))]

The transitions of the Markov chain Z, can be interpreted in the following way: at each time, the chain
chooses with probability 1 — ¢ to go through a transition dictated by P and with probability ¢ a new
position is sampled according to u. It follows that for any f € L?(v) and x € M,

E.[f(Z(7))] = Elf(Z(7)(1— €]+ E[(1—(1—e)7)] JEy[f(Zg(n))] p(dy) (59)
The last integral is just E,[f(Z.(7.))] and we remark that

Eulf(Z)(m)] = n(V L]+ u(M\V)Ee[f(Z) (7))

Ee[f(Z(F))] = Ee[f(Z(7))(1 = )] + Ee[(1 = (1 = ) )]E,[f(Ze(7))]
= B/ (Z2(7)(1 = )]+ Ee[(1 — (1 = ) (u(V)v[f] + n(MAV)Ee[f (Ze(7))])

1.e.

B/(2)() = cu(p) = SO JLLRC = 0 ] (60)

Putting together these computations, we get

K [fl(x) = EJf(ZF)1— )]+ C(fE[(1 ~ (1~ ¢€)7)]

so that

and



By using twice Holder’s inequality with respect to the exponents r,7" > 1 and s,s" > 1 such that
1/r+1/r =1and 1/s +1/s'" = 1, we get that

|- - i) < B EEPELG -7 - )P v
_ f (K1) P E[(1 — O — 172 w(da)

1/s’

< LD (Bl -0 = 17 vian))
Due to the hyperboundedness assumption there exists C' > 1 such that
vgeli(v), v[(K[g)*'? < v[g"]
So with g = f", r = 2/q = s, we get
V(KL < (Ol 1YY = Ol f?]

and thus with

we deduce

~ ~ ) 1/r
[EEEO -0 = < o (f Ex[<<1—e>7—1>’“]2v<dx>) P

By dominated convergence, we have

lim | E[(1—¢)" —1)"Pv(dz) = 0

E—>O+

thus we obtain

lim  sup f]Ei[f(Z(?‘))((l — e)F —D]v(dz) = 0

=0+ feB(L2(v))

where B(L?(v)) is the unitary ball of L?(v).
Since dominated convergence also implies

lim | E2[(1— (1 —¢)D)]v(dz) = 0

e—04
to get the announced convergence, in view of , it remains to show that

sup C*f) < +w
ce(0,1), feB(L2(v))

Indeed, by the definition of C.(f) given in (60)), we have

JEEL(Z D] + 1> (V)r[f]
1 —p(M\V

Yee (0,1), C*(f) <

—_

N
N
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thus

2 2
v iy < gl )
ce(0,1), feB(L2(1)) w(V)

The first assumption of Lemma[36]is linked to the square integrability of 7 := inf{n e N : Z(n) € V}
where Z = (Z(n))nez, is a Markov chain whose transition kernel is P and initial distribution v:

Lemma 37 Assume the ergodic theorem holds for Z. Then with the notation of Lemma |30, we have

(@] = 26

with the convention that the r.h.s. is +00 when E,[T] = +o0.

Proof

Of course, it is sufficient to consider the case where E,[T] < 4+c0. Then for any measurable and bounded
function g on M\V, we have

E, [Z g(Z(n))] = p(M\V)E,[7I¢]g] (62)

This is a classical consequence of the ergodic theorem: consider the sequence of passage times by V'
defined by the iteration

’7~'0 =0

VpeZ,, Tpy1 = inf{n>7, : Z(n) eV}
and the process Y = (Y (p))pez, trace of Z on V:
VpelZ,, Y(p) = Z(7,)

Note that Y is a stationary Markov chain whose transition are given by K, leaving v invariant. Consider
the mapping G defined on V' by

VaxzelV, G(r) = E, lig(z(n))]

n=1

and extend g on M by making it vanish on V. Then we have a.s.

1 p
lim —— (Y,) = v[G]
p—w0 P + )
1 7N;p-%-lfl
lim — Zy) = = u(M\V
Jim = nZ::O 9(Zn) = nplgl = p(M\V)E[g]
lim 2L — E,[7]
p—op+1
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The relation then follows from the equality

P Tp+1—1
V p € Z+7 Z G(Yn) = Z g(Zn)
n=0 n=0

Taking g = Ly, we get E,[7 — 1] = p(M\V)E,[7] in (62), which can be written under the form

E, [Z g(Z(n))| = E,7-1]¢9]

n=1

Consider f a measurable and bounded function on V' and associate the mapping g defined on M\V
by

Vee M\V, g(x) = EJ[f(Z(7))]

On one hand, we have by definition,

A = ELHZ@) = €l = — 5y
On the other hand, we compute that

EV[ZQ(Z(n))] = D E[Lig(Z(n))]

= > By [LhcrEzi [F(Z(F)]]
= Y B, [Laexf(Z(7))]

where we used the Markov property and the fact that {n < 7} belongs to the o-field generated by
(Z(p))pern)- The last sum is equal to

E, [Z ln<;f(Z(?))] = E [T -1)f(2(7))]

neN
By Cauchy-Schwarz’ inequality the last term is bounded by

E, [(7-1)f(Z VE[(F — D)2 [(K[f1)?]
\/E [(T — 1)?|v[f?]

NN

Putting these observations together, we get

WAl < [[< 1]” 07

first for any f measurable and bounded function on V' and next by completion for all f € L?(v). The
announced result follows by the Hilbert space’s duality.
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