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Moduli of half eonformally flat struetures

Mitsuhiro Hoh

ABSTRACT The moduli of half conformally flat structure8 on a 4-manifold is studied.

The moduli is equipped with areal analytic ·variety strueture and a eanonical L2-metrie

structure.

This moduli with the L2-metric turns out in a K3 surface ease to be isometrie through the

period map with a domain in the Grassmannian SO(3,19)/SO(3)xSO(19) . The moduli of

zero scalar eurvature type, the subspace of the full moduli is also investigated.
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1. We would like to study in this arlicle the moduli of "confonnal structures" on a given

4-manifold. Here the moduli of confonnal structures or more precisely the moduli of half

confonnally Hat structures means the set of all half confonnally flat structures [g] on a

4-manifold M module the action of the gauge group Diff(M)) the diffeomorphism group

of M.

There is a significant notion in conformal geometry, the confonnal ßatneas.

A Riemannian n-manifold (M,g) is called confonnally ßat if (M,g) has at every

point a locally defined conformal map into a Euc1idean ßat spate IRn . When n ~ 4 this is

equivalent to the vanishing of the Weyl confonnal t~r W .

In four dimensional case one haB a notion "half conformal ßatneas", in other words,

the vanishing of a half part of W , W+ or W-.

Let (M,g) be an oriented Riemannian 4-manifold. Then a 2-fonn a E n2 splits

with respect to the star operator * into the self-dual part a+ = (a + *Q)/ 2 and the

anti-self-dual part a- = (a - *a)/2, a = a++a- .

The Weyl confonnal tensor W viewed aB an End(TM)-valued 2-form decomposes

into W = w+ + W- and we say (M,g) ia self-dual or anti-self-dual (or simply half

conformally ßat) if W- = 0 or W+ = 0 .

Obviously a conformally flat 4-manifold is self-dual and anti--fielf-dual.

Examples of confonnally ßat manifolds which are well known are manifolds of

constant curvature and Riemann surfaces. These manifolds are divided into spaces cf

positive, negative or zero curvature.

Similarly the sign of the scalar curvature divides the set of all Riemannian

4-manifolds up to conformal change into three classes (see § 2 for the details and [5],

[44]) 80 that a half conformally flat structure [g] is called type positive, zero or

negative according to the sign of the scalar curvature.

We denote by '6M the set of sIDooth confonnal structures on a given compact

connected oriented 4-manifold M and define an action Y: ~M --t IR ;
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Y( r) = iLIWeg) I~ dVg = iLTr Weg) A*Weg) for W = Weg) • the Weyl

conformal tensor of a representative g of 7.

The topological identity T(M) =~J(1w+ 12-1 W-1 2)dV then indicates the
121" g

absolute inequalitYi Y( 7) ~ 61"2 1T(M) 1 for the Hirzebruch signature of M, r(M),

and n = 11 holds Hand only H 7 or g is self-dual (necessarily T(M) ~ 0 ) or

anti-self-dual (r(M) 50) .

The moduli .At = .AtM of anti-se1I-dual conformal structures on M is defined as

all equivalence classes of anti-se1I-dual conformal structures. Here 7, 71 E ~M are

*equivalent H gl = cp g for a diffeomorphism' cp of M and for sorne representatives g

*
and gl of 7 and 71' respective1y and we write 71 = cP 7·

DEFINITION 1 The moduli of anti-6elf-dual conIormal structures vK M is defined as

the quotient

.AtM = {7 = [g] E ~M ; W(g)+=O} /Ditr-(M) ,

modulo the group of orientation preserving diffeornorphisIDs of M , Ditr-(M) .

To simplify the argument we deal mainly with anti-self-dual case, since reversing

the orientation transfers an anti-6elf-dual conformalstructure into self-dual conformal

structure.

Another type of definition of the moduli is

where Dirf>(M) denotes the group of diffeomorphisms homotope to the identity idM .
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Then .JfM ----+ .AtM is a fibration whose fibre is the "mapping dass group".

The moduli .JfM corresponds to the Teichmüller moduli of Riemann surfaces and

its analysis is much easier to deal with than ~hat of .AtM .

Works for moduli of BOrne special geometrie structurea, for instance the moduli of

Einstein metries on 4-manifolds are recently done by several geometers ( [31], [1], [42])

and our investigation of the moduli of half conformally flat structures seems to be an

approach along the similar lines.

However, there are other moduli spaces which share eommon feature with our moduli

from conformal geometrie viewpoint, the moduli of Riemann surfaces and the moduli of

Yang-Mills instantons ([7], [16]).

Heing guided by established theories of these moduli spaces one ean develop the study

of our moduli.

Like the Yang-Mills instanton case OUt moduli has altquantum number" ,the

Hirzebrueh signature corresponding to the instanton number. It admits also an elliptic

complex deseribing the loeal data.

We have few examples of manifold for which the moduli is completely known.

For 84 .At consists of a single point, the standard conformally flat atructure ( [35]).

The complex projective plane (p2 has the Fubini-8tudy metric aB an isolated point

in .At ([27], [43]).

The conIormally flat case ia another example whose moduli is 80mewhat DOwn. In

fact each conformally flat structure has by making use of the developing map a holonomy

correspondence 7r1(M) --+ 80(5,1) ,the conformal group of 84 with the standard

metric, 80 that the moduli of conformally flat structures is mapped into the representation

space .9t ('X'I (M);80(5,l)) , the spare of conjugacy cIasses of representations

W"l(M) ----+ 80(5,1) .

A product 4-manifold E:k )( (pI with metnes of opposite constant curvatures is a

nontrivial example of conformally ßat 4-manifold. Here E:k denotes a genus k(> 1)
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compact Riemann surface.

By counting the dimensions the moduli of conformally flat structures on ~ x (pI is

naturally embedded in fit(W"I(~);SO(5,1)),since dim fit = 30(k-l) is the minus sign of

the index (1.1).

As in the Yang-Mills instanton case ~ is in general described locally as a

conformal group quotient of areal analytic subvariety in a finite dimensional vector space,

the first cohomology group HI of the elliptic complex:

CCD(TM) --+ CCD(Hom(O+,O)) --+ CCD(SO(O+)) (see § 3, (ii) for the precise definition).

This complex has the index

dim HO - dim BI + dim H2 = ~ (29'T(M) + 15X(M)) (1.1)

!rom the Atiyah-Singer index theorem (X(M) is the Euler characteristic of M ).

The o-th cohomology group HO = Ker L at "E ~M ia the Lie algebra of the

conformal group CO(1) = {cp E DiaO(M)j tp* 1 = 1} .

By applying a slice theorem (Theorem 3.3, § 3) and the Kuranishi map (Theorem 3.4,

§ 3) one has indeed

THEOREM 2 For any 1 E .AtM there exists a neighborhood U1 represented by the

group quotient of the zero's of a map t: H1 --+ H2 j

By virtue of the formulation of ~M given in § 3 the tangent space T 1 ~M is

identified with CCD(Hom(O+,0)) . A positive definite inner product on it is defined as
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in terms of a "canonical" volume form dVg , where A* is the adjoint of A : n- --+ n+

The notion t1 canonical" requires dVg to s&tisfy the conformal invariance and the

naturality with respect to diffeomorphisms, from which the inner product IIAI1 2 is

Ditrt(M)--invariant.

Hy using a basis of H+ = {self-dnal harmonie 2-forms}, for instance, which is

orthonormal with respect to the cup product on H2(M;1l) one can exhibit such a canonical

volume fonn (see § 3 v) for the details).

Thus this L
2
-inner product is able to descend to the quotient ~M/DirtJ(M) .

Hy restricting this inner product we have

THEOREM 3 The moduli of anti-fielf-dual confonnal struetures is endowed with a

Riemannian metri.c even if a point 7 has a quotient singularity.

We would like to state several consequenees and applieations of our theorems.

The first one is a loeal Torelli-type theorem on a"periodie map".

There ia a natural map, the period map, p: ~M ----+ a++(H2
) = {positive

b
2

b+-planes in H2(MjlR) ~!Rb } ,where H2(MjlR) is equipped with the cup product of

type (b+,bJ ([17, Appendix] ). At a tangential level this is

(1.3)

for the spaces H% of se1f-dual (anti-fielf-dual) harmonie 2-forms.

THEOREM 4 For a K3 surface M the P. restricted to the tangent space of r M at
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any Rieci Hat metrie becomes an isometry with respect to the L2-metrie and the invariant

metrie on Hom(H+,Hj, so that the eomponent of .JfM containing a Rieci Hat metric

(and henee a type zero anti--self-dual conformal strueture) is isometrie onto some open

domain in the symmetrie space SO(3,19)/SO(3)xSO(19) .

This theorem is already shown in terms of polarized Rieci Hat Kähler metries ([31],

[8] and see also for the brief survey [2]). However it will be verified from our formulation

of .AiM in § 5 (Proposition 5.2).

As a consequence of this theorem there is no type negative anti--self-dual eonformal

stmeture on a K3 surface M, close to any Rieci Hat metrie.

The moduli .AlM is divided into disjoint three parts

r M = .AlM(+) ..L..L .AiM(O) ..L..L .AiM(-) according to the sign of constant sealar

curvature.

The presence of each piece implies a geometrie restriction. In faet, if .AiM(+) is not

empty, then the quadratic form on H2(Mjll) is negative or zero 80 that from the definite

intersection form theorem M is homeomorphie to (P2 # ... # (P2 (b2-times) provided

M is simply connected.

On the other hand, if .JfM(O) f tP and H+ f 0 ,then M roust be a Kähler surface

with an extremal Kähler metric in the sense of Calabi [13] (see § 2, and [28] for the

classifieation of eandidates of those M's of nonempty vf((O».

So we obtain a map from .AlM(O) into the moduli of eomplex struetures on M,

J'M'
For a ruled surface, a typical anti-se1f-dual 4-manifold of which .AtM(O) f ; we

are able to present .AiM(O) as in the representation space

.92 ('K1(M); SL(2,IR)xPU(2», PU(2) =SU(2)/Z whose dimension coincides with the
2

dimension of J'M (see Theorem 5.1).
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This phenomenon can be explained by the investigation of a fibred Spate strueture of

.At'M(0) over j'M in a more general setting, namely for M of b+ = 1 (Le. Pg = 0 ).

Infinitesimally for a fixed pair (J,g) , a complex strueture and a zero scalar eurvature

Kähler metric traeeless symmetrie 2--ten80rs which are J-invanant give rise to the

II vertical tl direction oI ; M(O) --t f M and the "horizontal11 direction is just a traceless

symmetrie 2-tensor induced from a complex structure deformation.

We discuss this observation in § 5 and aB a result from Theorem 5.3 and Propositions

5.4,5.5,5.6 we can assert at least that for M of Pg = 0 j: Al'M(O) -- J'M has a

fibre space structure over the image j( r M(O)) , some number oI connected components

of .!M . Us vertical tangent space must be in terms of the first cohomology description

the linear subspace of {J-invariant h ET"7 Al' ( H~} annihilated by the Ricci form of

g . For the precise statement see Proposition 5.6. This linear subspace is thought to be the

exact space describing the "vertical l1 tangent direction of the j .

The importance of half eonformally ßat 4-manifolds is that they are equipped with

twistor spaces. It is an interesting question how our moduli relates with the moduli of

complex structures on the twistor space, while we only remark on it in § 5.

However, more interesting is an investigation of the ends of the moduli of half

conformally ßat structures. The action Y( 7) = 6.,;2 1 r(M) I for 7 E vi'M so that a

bubble off phenomenon may occur at points where the Weyl conformal tensor concentrates.

A Uhlenbeck's type theorem is expected as in the Yang-Mills instanton ease.

The essential difference from the Yang-Mills instanton case is that by bubbling off a

half conformally ßat 4-manifold may separate into BOrne half conformally ßat 4-orbifolds

M1,... ,Mk such that M = M1 # ... # Mk (see also [2], [42]). So possibility of bubble

off is detected by the quadratic form on ~2(M;1l) ([23]). Here the connected sum is

considered as generalized one being attached along homology ~phere. At any rate the one

point blown up of (2 with anti-selI-dual Kähler metrie whose conformal eompactification
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is (P2 with the Fubini-Study metric ([30], [40]) and the Eguchi-Han80n metric on an

ALE 4-manifold must play roles as "1-instantons ll in the compactification of the moduli.

We discuss in § 2 the scalar curvature type and the connected sum operation. In § 3

we review briefly the fundamental properlies of the Weyl conformal tensor and study the

moduli of half eonformally flat structures to show the main theorems (the real analytie

subvariety theorem and the L2-metric theorem).

We specify our argument in § 4 to the moduli of Ricci flat metrics of unit volume,

identified with the moduli of type zero eonformalstructures when the Hitehin's bound

X +~ T = 0 is satisfied, and exhibit the detailed proof for the local Torelli-type theorem.

§ 5 is devoted to the investigation of the moduli .AiM(O) in terms of eomplex structures.

Indeed we derive the "horizontal" direction theorem from the i complex-homomorpbism

between the Kodaira-Speneer deformation complex and the half conformally flat

deformation complex (Theorem 5.2) and obtain also the t1vertieal" direetion theorems, as

Propositions 5.4, 5.5, 5.6.

We summarize in Appendix some formulae needed in deriving the linearization of the

Weyl eonformal tensor.

For general referenees of (half) conformally flat manifolds we refer to [37], [4], [8],

[15], [28], [39].

The author would like to express bis gratitnde to T. Mabnehi and C. LeBrun for

useful eonversation and eriticism and also to Max-Planck-Institut für Mathematik for

supporting bis stay in Bonn.
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2. Scalar curvature type

i) Before discussing the moduli of half confonnally Hat structures we begin with scalar

curvature type.

As is shown as Yamabe problem 80lved by Aubin, Schoen, a compact connected

oriented Riemannian 4-manifold (M,g) admits a constant scalar curvature metric,

conformally equivalent to g ([5], [44]).

A conformal change g' = rg, fE Cm(M) , > 0 , has the scalar curvature p'

oheying the equation

p' f3 = 6 ~f + pf (2.1)

for the Laplacian A = äg and the scalar curvature p of g .

From (2.1) one has the following proposition from which the value of constant scalar

curvature is unique up to volume normalized confonnal change provided the value is

nonpositive.

PROPOSITION 2.1 Let g, g' be two conformally equivalent metries of same volume. H

they have constant Bcalar curvature ~ 0 ,then g' = g .

PROO We wawue f dV = 1 .he m tOc gi = f g is a colliorm change. So

f tidvg = 1 . The proposition is obvious if p = pi = 0 . So wswue p = pi < 0 . At a

POint x E M where f has the maximal value ~f = -gijO. O.f >0 so that from the
1 J -

equality (-p)f(l-r) = 6~f 1-r(x) ~ 0 and hence 1 ~ f on M. So f:: 1 because

f tidvg = 1 . The cwe pi ~ P < 0 is similarly proved. Q.E.D.

Now we divide ~M ' the set of confonnal structures, into three parts ~M(+) ,
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~M(O) , ~M(-) according to the sign of the constant scalar curvature and decompose

vlt'M aB Je"M = ~M(+) J..l .)tM(O) LL Jl
M

(-) .

To every 1 E ~M\ ~M(+) we choose a representative g of unit volume and

assign the value of constant scalar curvature of a conformal change of g within the volume

normalized conformal class. So we get a map, Diff(M)-invanant p: ~M\ ~M(+)~ IR

whieh descends to a. "smooth" funetion on IfM\ IfM(+ )1Dirt'(M) in certain Sobolev

norm.

ü) Non negative type

The following are known with respect to half conformally ßat 4-manifolds of

nonnegative type.

THEOREM 2.2 ([14], [9], [15], [28]). Let (M,g) be a connected 4-manifold endowed

with a complex Kähler structure. (i) If (M,g) is compact and self-dual, then (M,g) is a

complex spare form, i.e., (p2 with a Fubini-8tudy metric, (2/A with a ßat standard

metric, D2Ir with a standard Kähler metric, or a compact quotient of n1 )( (pI with

opposite curvature metries (here n1, n2 are the unit balls). (ii) (M,g) is anti-self-dual if

and only if the scalar curvature p =0 .

THEOREM 2.3 ([39]). Let (M,g) be a compact connected oriented anti--Be1f-dual

4-manifold of type positive or zero. Ir M admits a harmonie self-dual 2-form (J f 0 i.e.,

b+(M) > 0 ,then (M,g) carries a complex structure for whieh g is a Kähler metrie of

type zero and the normalized I (J 1-1 (J is the Kähler form.

It follows from Theorem 2.3 that (i) if ~M(+) f ; ,then b+(M) =0 , namely the

intersection form of H2(Mjll) is negative definite or zero so that for such M of 7r1 = 1 ,
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M ia homeomorphic to the connected sum oI b2(M) copies oI (p2 J (p2 with reveraed

orientation, due to Donaldson'a theorem [16] and (ü) if ~M(O) f ; and b+(M) > 0 ,

then vKM(+) = ; and M carries a complex structure with a Kä.h1er metric of zero scalar

curvature.

It is concluded moreover from Theorems 2.2, 2.3 that (i) type positive seU-dual

compact Kä.h1er surface is only (p2 with a Fubini-Study metric, (ii) type negative

self-dual compact Kähler anrface is only a complex space form of negative constant

holomorphic eurvature, (iii) a Kähler metrie is anti-self-dual if and only if it ia type zero

and (iv) compact conformally Hat Kähler surfaces are only a Kähler ßat torus T4 and a

compact quotient (D1x(pl)/r'

The last 4-manifold ia in the algebraie geometrie terminology a eomplex ruled surface

Mk ' a holomorphie (pI bundle over aRiemann surface ~ of genus k(> 1) .

We remark against this 4-dimensional special feature that every conformally Hat

Kähler manifold of complex dimension ~ 3 is Hat ([46]).

A Hopf surface, diffeomorphie to Sl xS3 , is an example of compact conformally ßat

4-manifold ([11], [38]). Its scalar eurvature type is positive.

iii) Connected SU.ID

A fundamental operation in eonfonnal geometry is taking the connected sumo The

class 01 conformally Hat manifolds is closed under the connected SUlD operation ([36]). The

subclass, a class of type positive conformally Hat manifolds is also closed under this

operation ( [45] ).

For half conformally ßat case the connected SUID operation must be specifically

important since the "quantum number" T behaves additively, r(M # N) = r(M) + r(N)

and it is reasonably expecied thai the operation # works on half conformally Hat

4-manifolds with "one instanton" (p2 with a Fubini-Study meiric. Actually the
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connected sum of neopies of (P2 for arbitrary n is endowed with a self-dual conformal

strueture ( [43] t [21] t [18], [41]).

iv) Negative type case

Type positive manifolds are weIl investigated because of Liehnerowicz-Hitehin

A-vanishing theorem for spin structure.

However, type negative 4-manifolds seem 80 rar 10 be less known.

THEOREM 2.4 Let M = N1 # N2 be a connected sum of compact connected oriented

conformally ßat 4-manifolds. If Ni ' i = 1,2 is a ßat torus T4 or a ruled surface Mk ,

k > 1 , with a conformally ßat structure, then M admits a conIormally ßat structure and

moreover auy conformally Hat structure on M must be negative.

PROOF From Kulkarni's theorem [36] M admits a conformally ßat structure. Let [g]

be any conformally ßat structure on M. A8sume its type is nonnegative. Since

b+(M) = b+(N1) + b+(N2) > 0, (M,g) must be Kähler from Theorem 2.3 so that M is

T4 (b2 = 6, X = 0) or Mk (b2 = 2, X = 4(1-k)). On the other hand

b
2

(M) = b
2

(N1) + b
2

(N2), X(M) = X(N 1) + X(N2) - 2 . So the topological type of M

differs from T4 and Mk .

REMARK The dass of type negative conformally Hat 4-manifold is closed under the

connected sum operation, as pointed out by Lafontaine ([38]).
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3. Moduli of anti-self-dual conformalstruetures

i) Let M be a eompact connected oriented 4-manifold. We fix for a teehnieal reason a

volume form dv on M.

For a smooth metrie g on M we denote by [g] the conformalstructure

represented by g.

We note first that any eonformal structure 7 has the unique representative metrie g

whose volume form dv = VliT dx1 Adx2 Adx3 Adx4 coincides with dv. We call this gg
the normalized representative of 7.

Sinee two metries g, g' on M are related as g' (X,Y) = g(h(X),Y) for a positive

definite symmetrie tensor h, we regard conformal struetures as smooth sections of a fibre

* *bundle V -----t M whose fibre at x E M ia S+(TxM)/IR+' Here S+(TxM) is the cone of

positive definite symmetrie bilinear forms on T M and R+ operates by scalarx

multiplica.tion; ~M ~ Cm(M;V) .

This is the standard description of conformalstruetures, valid for arbitrary

dimension.

We have another formulaton of ~M from the four dimensionality.

The star operator *: rJ2 ----t rr depending on a conformal structure and the

orientation of M gives the splitting n2 = n+ fB n-, x EM ,into :i': eigenspaees n+ ,x x x x

n- with n+ A n- = 0 so that the wedge product · A· : n2 ---+ n4 = IRdv ia positive onx x x
n+ and negative on n-, respectively.

Conversely a choice of an appropriate 3-dimensional suhspace U in n2 on whichx

•A· ia positive determines uniquely a conformal strueture 7 at x E M 80 that U and

the subspace U.l annihilated by U give the splitting n2 = n+ fB n-, n+ = u, n- = Ul. .
X X X X X

So given a 4-m.anifold M fixing a eonformal structure means equivalently a choice of

an appropriate rank 3 subbundle n' of rr -----t M (see [21], [17, Appendix] for this

formulation). Thus, once we fix a conformalstructure 7 with splitting n2 = n~ fB 07 '

we can identify ~M with an open set in Cm(Hom(n~,n~);
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REMARK These two identifications are very natural because we have an

SO(4)--i80IDOrphisID between n+ e n- and SO(T*M) = {trace1ess symmetrie

2-tenaors} :

(3.1)

kl + - *hij = g "i k f7J.j (Lemma 4.6 [10]) and h E SO(T M) induces a hOIDomorphisID

A = Ah : n+ ---+ n-, A1J+ = (Al1+ij) ;

+ k+ k+ + +
A" .. = h. " k' + h. 11 'k' 1] EnIJ 1 J J 1

giving the inverse.

(3.2)

We adopt the Einstein summation convention throughout this article unless any

confusion oecurs..

ii) Elliptie complex

Dur next investigation is to derive the linearization of W+ , the se1f-dual part of

w.

The tensor W is composed of the Riemannian eurvature tensor R, the Ricci tensor

Rie and the sealar curvature p.

R is regarded as a self-adjoint operator:
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for an orthonormal basis {ei} of I-forms 80 that

with respect to the splitting r(l = n+ ED n- . Each of R++ , R- has

W% E Cm(SO(n:l:)) as the traceless component and actually

R++=W+ +hp
- - 1

R =W +ßP'

where SO(O+) denotes the traeeless symmetrie product of 0+ ([4], [24]).

Raising indices of W we eonsider W+ , W- as sections of n+ e so(3)+ ,

n- e 80(3)- , respeetively and then as End(TM)-2-forIDS

w+ = ~ (W+*W), W- = ~W-*W) .

Here 80(3)% is the Lie algebra of skew adjoint endomorphisms of T M caused by thex

operation of n: .

We denote by D = Dg : CllJ(SO(T*M)) ---+ CllJ(SO(n+)) the directional derivative

of W+ at 1 = [g] , D (h) = (6W+)(h) for h ET ~M . The tangent space T ~M
1 1 * 1

ia here identified through the first identification of '6M with Cm(SO(T M)) , the space of

traceless symmetrie 2-tensors, since as we note in i) we ean choose for any 1 E ~M the

normalized representative g uniquely.
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PROPOSITION 3.1 Let 7 = [g] be an anti-se1f-dual confonnal structure. Then the

directional derivative D is a Becond order differential operator represented as

(3.3)

that is, D(h) is the se1f-dual part of the directional derivative of the full Weyl conformal

tensor W .

PROOF The proof involves only calculation. By the definition of W+ ,

(bV{:-)(h) = (öWg(h))+ + ~ (6*g(h))(W(g)) .

* 1 *Since for any metric g1 ' the star operator satisfies *gl = (h1) 0 *g 0 (hi) for

h1 E Cm(End(TM)) given by 81(X,Y) = g(h1(X),Y) , the derivative (6*g)(h) is

(8*g)(h) = h 0 *g - *g 0 h where h is considered aB acting on n2 aB derivation. So

Dg(h) = (6Wg(h))+ + ~ h(*gW(g)) - ~ *g(hW(g)) reduces to (6Wg(h))+ , because

W(g) E Cm(SO(nJ) . Q.E.D.

The action of diffeomorphisms of M on ~M yields the Lie derivative operation on

the tangent spare T 'Y ~M by choosing a representative g within 'Y as

(3.4)

X... •L(X) ,

1 iL(X).. = V.X. + V.X. -lf (V.X )tz...
IJ 1 J J 1 ~ 1 UJJ
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We derive then a complex at any anti-self-dual 'Y = [g] ;

PROPOSITION 3.2 ([21]). This complex is elliptic.

This complex has the index ~29T(M) + 15X(M)) . See also [20].

iii) Slice theorem

To get the real analytic variety structure theorem for .AiM we discuss a slice

theorem and then a Kuranishi map theorem, even though these theorems are quite common

for the Yang-Mills instanton case ([22]).

Consider the 1 2-adjoint of 1
9

, [g] E ~M I denoted by 1* with respect to

Sobolev spaces

* p + pL : Lk+1{Hom{0 ,0)) --+ Lk(TM) .

The kerne! of L* , an L2-orthogonal to Im L , gives a slice in Lk+1(Hom(O+,0)) .

We use here the second identification, Bince ~M is considered as an open subset of

an affine space.

Consider the composite map

(3.6)
*

---+ ~M _L_-+. CCD{TM) ,
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where Diftl(M) ia completed by the Lk Sobolev norm and the first map is the

diffeomorphisID pull back.

To obtain the slice theorem we follow § 3, [22] and [19] .

•The partial derivative at (idM,O) 61t = L L is se1f-adjoint and elliptic. So the

restriction of t

_ : exp((Ker L)ol) )( ~M ---+ (Ker L).l (3.7)

has at (idM,O) the invertible partial derivative. By the implicit function theorem

~(cp,A) =°has then a unique solution f(J = CP(A) for A in a neighborhood U of 7 80

* *that one has a map f: A t---+ A = <P(A) (A), L (A) =°.
Since the conformal group CO( 7) = {f(J E Diftl (M); tp*7 = 7} acts on tfM as

isometries and leaves Ker L invariant, each ,E CO(7) maps (Ker L).l into itself and

hence on the group level exp(Ker L)ol into itse1f.

Thus for A= f(A) ,acts as .t(A) = (,rlcp(A);)*,t(A) and L*(,t (A» =°.
* *So f(, (A» = ; f(A) .

We can now follow the argument given by Ebin in the case of space of lliemannian

*metrics and we have the following theorem for a sufficiently small ball in Ker L .

THEOREM 3.3 For any 7 E ~M there exists a slice r.t/ in ~M' 7 E dI , a ball in

*Ker L such that

(i) any ; E CO( 7) fixes dI invariantly

(ii) if tp E Diftl(M), tp*(#) n dI *' ; ,then tp E C
O

( 7) ,

(iii) there exists alocal section X: Dirfl(M)/CO(r) --+ Dirfl(M) defined on*a

neighborhood U of the origin such that the map F: (u,A)~ (X(u)) (A) ;

U x cJ/ --t ~M is a homeomorphisID onto a neighborhood of 7,
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diffeomorphic off fixed points of CO(7) .

From this theorem for any 7 E ~M/Ditt>(M) there exists a neighborhood of 7 J

homeomorphic to dI/ CO( 7) and diffeomorphic off quotient singular points.

iv) Kuranishi map

Let 7 be an anti-self-dual conformalstructure on a 4-manifold M.

Consider the anti-fielf-dual equation in the slice r.!/ = rI/7

(3.8)

*
L (A) = °

The second equation is a gauge fixing equation. W+( 7+A) is the self-dual Weyl

confonnal tensor of a confonnal structure 7 + A dose to 7.

Choose metrics g, gl ' for instance, the volume normalized representatives of 7,

1 + A , respectively. Since * = (h1*)-1 0 * 0 (h1)* for h = hA E Coo(End(TM» ,
81 g

+
g(X,Y) = gl(h(X),Y) , the first equation is replaced by (hA(W(7 + A») 8 = 0 . So we

rewrite (3.8) &s

+
(hA(W( 7 + A») g = 0

(3.8) ,

*L (A) = °.

Define a map
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(3.9)

and expand w+ (A) as

with a remainder term R(A) = Rg(A) . So for anti-fielf-dual 7 we have

(3.10)

As a routine business for solving the equation W+(A) = 0 we introduce a map

8 = 8g , the Kuranishi map, from a small ball in Lk+l(Hom(n+,nj) into

Lk+l(Hom(O+,OJ) j

*8:A~A + D G(R(A)) (3.11)

* * +for D ,the adjoint of D and G, the Green operator of DD on Lk(So(O )).

As was discussed in the deformations of complex structures ([34]) we can show the

following, since 8 islocally invertible and CO( 7)-equivariant.

THEOREM 3.4 (i) There exists for small E > °a CO( 7)--equivariant map t from an

E-ball H; of H~ ~ Ker L* n Ker D to H; ~ Ker D D* : A --.+ 7l"R(S-l(A)) such

that anti--self-dual conformal structures in the slice rJI 7 are described aB
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Zero(t) = {A E H;i t(A) = o} and (ü) each gauge equivalence class 1 E .AiM has a

neighborhood, homeomorphic to the quotient Zero(.)/Co(7) , diffeomorphic off singular

points. Here 'X" is the projection of Cm(SO(n+)) onto H~.

v) L2-metne

As a first step towards for defining a Riemannian metrie on the moduli .AtM we

define a Dirrt (M)-gauge invariant L2-metrie on ~M .

Throughout this section as in iv) we keep the identifieation

~M (CtD(Hom(O+,Oj).

For A E ClD(Hom(n+,n) define the adjoint A· : n~ --+ n~ with respect to the

volume form dvg (g is a representative of 7), in other words

(3.12)

*Then the trace -Tr AA is a sealar function on M, positive definite and dependB

onlyon 7.

In fact, choose at a point orihonormal basis {"t}, {1]iJ of n::l::1 ' i.e. ,

::1::::1::. +'- *- *.+
::I:: 1] . A " • = 6..dv , 1 = 1,2,3 and set A1]. =A.J" .. Then A 1]. = A .J1]. has

1 J IJ g 1 1 J 1 1 J*.. • ..
A iJ = -Al and hence -Tr AA = AiJAl is positive definite.

From tbis definition the trace is obviously independent of the ehoiee of g .

A diffeomorphism cp acts on CtD(Hom(O+,Oj):

A E CtD(Hom(0+,n"J
7

)~ ACP E CtD(Hom(n+ ,0- )), 71 = cp·7 by the following
7 71 '1

diagram
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•
n~ ,C?{x) f{J._x -t1 n+•

rp g,x

Acp( x)1 cp: 1(AlI')x

n~,<,o(x) )n-*
rp g,x

where x E M and g is a representative of 7. So (AfIJ) = rp* 0 A,,./ ) 0 (rp*)-1 and
x x '#"\x x

(AfIJ)* = rp* 0 (A*),,./ ) 0 (rp*)-1 . Then the pointwise inner product satisfies
x x If"\x x .

(-Tr Arp ACP*)(x) = (-Tr AA*)(cp(x» . (3.13)

To define an L2-inner product on ~M ' invariant under Di~(M)-action we need

!rom (3.13) a "canonical" volume form g..............- dV satisfying the confonnal invariance,
g *

dVfg(x) = dV (x), fECfM), > 0 , and the naturality, dV * (x) = (cp dV )(x) .
g cp g g

Assume the existence of the canonical volume form. We then abtain an L2-inner

product on Cm(Hom(n~,ni) as

(3.14)

integrated in terms of the canonical volume form.

So the remaining problem is to verify the existence of such a volume form.

To investigate it we notiee that the quadratie fonn indueed !rom the cup produet:

H2(M;11) )( H2(M;11) ----+ H4(M;11) ~ 11 gives a nondegenerate symmetrie form on

H2(M;IR) of type (b+,bJ , identified with the wedge produet on the de Rham

cohomologies: H2(M;IR»)( H2(M;IR) ----+ H4(M;IR) = IR [dv] ; ([0] , [ cu] ) I---) [() A cu]

(dv is a volume form of unit volume).

For any metrie g H: ={{anti-) self-dual harmonie 2-forms} are
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b%-dimensionalsubspaces of H2(M;IR) J respectively.

To simplify the argument we &Bsume b+ > 0 (when b+ = 0 J b- > 0 is assumed

80 that anyway b2 > 0 is primarily assumed).

We choose an onhonormal basis {,t = '~,i} I 1:S i :S b+ ,of H~ . The

orthonormality ia measured by the cup productj [,t] "['1"] = 6ij [dv] .

Define

b+

dVg(x) = l lI,tll:(x)dvg(x) t x EM
i=1

(3.15)

where li-li ia the norm measured by g.g

This does not depend on choices of orthonormal basis. This ia conformally invariant

since for each i 11,.11 2
dv =,s. A *,. = ,. " , ..

1 g g 1, 1 1 1

The canonical volume form (3.15) depends smoothly on the metric g, since

b+ = dim H+ is a topological invariant (see for example Theorem 4.5, p. 178 [34]).g
The naturality of dV (x) is indicated as follows. Any f{J E DifF(M) induces a

quadratic form isometry (}: H2(M:71) --+ H2(M:71) so that {c/fit} gives rise to an

orthonormal basis of H+* and hence
cp g

= L11 fit11:(tp(x))((/dvg)(x)
i

Thus one has
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PROPOSITION 3.5 The inner product (3.15) is positive definite and

Dirrt(M)-inva.riant.

Theorem 1, § 1 is concluded from Theorems 3.3, 3.4 and 3.5.

REMARK dVg is the Riemannian volume form dVg multiplied by a nonnegative weight

function which has in general discrete zero from the result of [3]. Bowever in same special

case dVg coincides with dvg up to a constant scalar factor. Indeed this is the case if each

of ,t has constant norm.

*We also remark that through the identification (3.1) -Tr AA is just 4 Tr hh ,

A = Ah hom (3.2).



-26-

4. K3 surfaces

Recall the following fonnula for a compact connected oriented Riemannian

4-manifold (M,g)

(4.1)

(see p. 72 [24]). So as an easy observation Hom (4.1)

PROPOSITION 4.1 Let M be as before a compact connected oriented 4-manifold. If M

satisfies 2X(M) + 3r(M) = 0 (this is the ease for a complex torus, a quotient of a complex

torus, a K3 surface, an Enriques surface and the quotient of an Enriques surface by an

antiholomorphie involution [26]). Then any anti--fie1f-dual Riemannian metrie g is of

zero sealar curvature if and if g is Rieci flat.

The moduli ~~0) of type zero anti--tielf-dual conformal structures on M of

2X + 3r = 0 is then identified with the moduli of Ried flat metrics of unit volume.

Now let M be a K3 surface, a simply conneeted compact eomplex surface with the

trivial canonical bundle KM'

The topological invariants are X = 24, b2 = 22, (b+,bJ = (3,19) so r =-16

and 2X + 3r = 0 .

The moduli .Al~0) ia well investigated in terms of the periodie map. Aetually the

quadratie form qM on H2(M;1l) has type (3,19) and the Grassmannian

Gt = 50(3,19)/50(3)"50(19) of oriented positive definite 3-planes in H2(MjlR) gives

the Ricci flat Kähler metrics on M provided we ignore the action of Aut(H2(M;1l);qM) j

p: K ----t G! . Here 8 denotes the moduli of Ricci Hat metries of unit volume.

Then ~ admits a strueture of 57 dimensional symmetrie space with an invariant
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metrie. This means that the space HOlD(H+,H) = H-. (H+)· gives the tangent spate

T ~ and the invariant metrie is -Tr XXt , X E Hom(H+,Hj !rom the standard
g

argument of symmetrie Space8.

On the other hand the index of the complex (3.5) is --52 and dim HO = 0 and

moreover from Corollary A.5 in Appendix dim H2 = 5 . The virtual dimension oIour

moduli at each 7 represented by a Ricci flat metrie g is then at most 57.

The following proposition asseIts aB exhibited in Theorem 4, § 1 that .Jf~0) has

&etually 57 dimension and the eonnected component of .JfM containing .Jt~0) is itself

.At~0) and is isometrie to p( K) in a! .AB an easy observation there is no type

negative anti-;;elf-dual eonformal strueture nearby r ~0) .

PROPOSITION 4.2 Let g be a Rieci ßat metrie on a K3 surface M . Let ,~E H+ ,

a = 1,2,3 and 'b E H-, b = 1,... ,19 be harmonie 2-forms being orthonormal basis oi

H+ J H-) respectively. Then 'b S ,~ E~ (0 H+ ) 1 ~ a 5 3 J 1 ~ b ~ 19 form

through the identifieation H+ ~ (H+)* an orthonormal basis of the tangent space

T_ .JfM J 7 = [g] with respect to the L2-metrie.
'Y

PROOF First we remark that the metrie g is Kähler from Theorem 2.3 and each 1h~ is

covariantly constant so that dV = 3 dv and then the L2-inner produet (3.14) is just

g r g •
the ordinary inner product 11 h11

2
= iI Tr hh dvg 01 CO!(SO(T M» through the

identifieation (3.1).

Let h E CCD(SO(T*M)) be given through the map (3.1) by 'b S ,~ . Then

h = (hoo ) ia h.. = gkt.,s~k.ft. = ,s~k,+k ..
IJ IJ 1 -t..J 1 J

*We verify h E Ker L n Ker D at g.

Sinee d*jJ- = 0 and V,+ = 0, L*(h) ia from (3.4)
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L*(h) = -2gtjV~jt = -2lj{Vjfjkhl+kt =0 • HO h E Ker L* .

To show Dh = 0 we make use of the anti~-dualityof , and apply (3.3) and

(A.l), Appendix. Apply ~+kt to Vjfjk + Vj'iri + Vk'ij =0 . Then we have

V.h· D - V.h. D + Vf;.. · ,+s D = 0
1 J.(, J 1.(, S IJ .(,

and hence

VkV.h' D - VkV.h' D + (VkV .,...);+S D = 0 ,
1 J.(, J h.. S IJ .(,

or interchange k and t

So the tensor U E C(l)(n2~) defined in (A.2) is

(4.2)

(4.3)

(4.4)

(4.5)

D(h) is the SO(O+)-eomponent of U since g is Ricci flat.

Without 10s8 of generality we can assume ,t = iIJ , the Kähler form and '! ' ,1
are the real and imaginary parts of a covariantly constant holomorphic 2-form,

respectively.

We use the complex coordinate indices.

+ /+i . +i . ..
For , = iIJ, I' .= A If., , "9 =-{=f ~, I,J = 1,2 and others are zero.

. J J J J

Then Uijkt = 0 for k,l. E {1,2} and i,j E {1,2,I,~ since [Vk,Vt] = 0 and also

Uijkt = 0 for i,j E {1,2} and k,l E{1,2,I,2} sinee ,- is a (l,l)-form.

Similarly Uijkt = 0 for all indices running over I, 2" . Therefore the components of
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U in n+en+ remain are only the ~w-eomponent.But it is

...·n ...·n ... gPg Uijkl = gPg (VkVl + VlVk);i] which vamshes from the fact that , is

primitive.

The similar argument worke for other ,1 ),1 80 that 'b GD ,~ E Ker L* n Ker D

for any a, b .

That 'b ~ ,~ J 1 ~ a ~ 3, 1 ~ b ~ 19 enjly an L2-orthonormal basis of

T" vifM followB !rom the definition of the L2-inner product (3.14) and the remark

mentioned at the beginning of the proof. Q.E.D.
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5. Half conformal flatness and complex atruetures

i) Moduli on ruled surface

Sinee any ruled surface M = Mk has T = 0 J every anti-self-dualstrueture is

conformally flat. Also .Jf~+) = ; because b+ = 1 . The moduli

.JfM = f ~0) .L.L f ~-) J the moduli of "conformally flat ll struetures on Mk is

considered to lie inside the representation Spate ~(rl(Mk); 80(5,1)), as explained in

§l.
Now we are interested in .At~0) , the moduli of type zero conformally flat

structures on Mk .

Let 1 E f ~0) . Then one haB from Theorem 2.3 a representative g of 7 Ja

Kähler metne of zero scalar curvature. From Theorem 2.2 (Mk,g) is then covered by the

Kähler product n1 )( (pi; (Mk,g) = n1 )( (piIr for a discrete subgroup r of

Aut(D1)(G:p1) = SL(2,1R) )( PU(2) acting frOOy and properly diseontinuously. Since every

a E PU(2) has a fixed point, r is the graph cf a homcmorphism

; :r1 ( SL(2,1R) ----t PU(2) = Aut(G:P1
) , where r1 is a subgroup isomorphie to it'1(E.k)

acting on D1 freely and properly discontinuously.

It follows then that every type zero conformally flat structure '7 E .At~0)

one-to-<>ne eorresponds to an appropriate eonjugacy class of representation

7r1(E.k) ----t SL(2,1R) )( PU(2) . More precisely, .Jf~0) is exacily the set of all conjugacy

classes [;] , ;: 7r1(E.k) ----t SL(2,1R) )( PU(2) satisfyjng thai ; ia the composite of

;1 : r 1(E.k) ----t SL(2,1R) and ;2: Im(;1) ( SL(2,1R) ----t PU(2) and ;1 acts on the disk

n1 freely and properly discontinuously.

Since the homomorphism ;2 induces a PU(2) flat connection on a complex vector

bundle over the Riemann surface E.k = D1/Irn ;1; D1
lC;2(2 ---+ E.k ' the following

fibration structure theorem is available.
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THEOREM 5.1 The moduli .r~0) on a ruled surface M = Mk , k > 1 has a structure

of fibration .J!'k0) ---+ .J!'~ , the Teichmüller moduli of Riemann surfaces, whose

fibre over aRiemann surlace represented by [;1] , ;1: r 1(~) -----+ SL(2,1R) is the

moduli of PU(2) ßat connections on the complex smooth vector bundle induced by

;2 : Im "1 ----+ PU(2) .

From this theorem it is expected that the fibration yields a Riemannian submersion

with respect to the L2-metrie and the Weil-Petersson metrie on .J!'~ such that the

L2_metric restricted to each fibre is the metric introduced in [29].

Since SL(2,IR)xPU(2) is immersed in 50(5,1) a.s a proper subgroup, ~ (~1(~) j

5L(2,1R) x PU(2)) and hence .At~0) are immersed in .9t(~l(Mk)j SO(5.1)) .Therefore

COROLLARY 5.2 Any ruled surface admits type negative anti-self-dual structures

around a type zero anti-self-dual structure. Namely, if .Jfk0) f " ,then vi"k-) ia

also not empty.

REMARK There exists a ruled surface admitting no type zero anti-se1f-dual conformal

structure ( [12]).

ü) Moduli of complex structures

Let M be a compact complex surface. We investigate how the moduli of complex

structures J M of M affects our moduli.

The Kodaira-Spencer complex for complex structure deformations has the index

~ (7 C~(M) - 5 c2(M)) = ~ (21 T(M) + 9 X(M)) ([33]).

This index is for M = Mk ' a ruled surface, 6(1-k) , so that H1(Mk,TM) has the

virtual complex dimension 6(k-1). This dimension coincides from Theorem 5.1 with the
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"complex dimension" of .Jf~0) .

This phenomenon is fortunately not accidental.

Let M be now a compact complex surface of Pg = 0 (or equivalently b+(M) = 1 ).

Then from Theorem 2.3 every type zero anti-self-dual structure " E ~(O) yields the

unique eomplex structure J" (np to diffeomorphisms) 80 that one has a map

j: .J!'~0) --+ j'M = {complex structures}/Diftl(M) j 7 0-----+ [J 7] .

Relative to a fixed complex strnetnre there are two possibilities of conformal

strueture deformations. One is a deformation fixing a eomplex strueture and varying a

metrie and another is a deformation varying a complex strueture.

We postpone investigating the first possibility.

Consider the second one from whieh we derive information on .Jf~0) being affeeted

by/M ·

Let J be a eomplex strueture on M and g a zero scalar eurvature J-Kähler

metrie.

Consider adeformation of complex structures J(t) of J . The infinitesimal
i 8 .

deformation I = j (0) = I. --r e drl then satisfies
J 1Jx1

IJ + JI =0, 6NJ(I) =° (5.1).

Here NJ is the Nijenhuis tensor and öNp} = ~ NJ(t}It=o .

From the first equation I E C(I)(End(TM» is regarded as a section of 0°,1 e TM ,

I = Ii... --!. e dJ for a complex coordinate (zl ,z2) and the second equation means 19I = 0
J lJzl

for -n = -n
J

: C(I)(OO,l e TM) --t C(l)(OO,2 GD TM) , where nO,p is the (O,p)-form bundle

and TM = T1,OM is the holomorphie tangent bundle.



-33-

Trivial defonnations LXJ , X E CQ)(TM) are obviously sections of (5.1). Since

7JZ = 1 (LXJ)(l,l) for X = Z +Z, Z E CQ)(TM) ([8]), we obtain the
2y=r

Kodaira-Speneer complex

(5.2)

THEOREM 5.3 Let (M,J,g) be a compact complex surface with an anti-self-dual Kähler

metrie. Then there exist homomorphisms between eomplexes (3.5) and (5.2);

ClD(TM) -~----tl ClD(OO, 1eTM) -~--+I ClD(OO, 2eTM)

Ipl IP2
ClD(TM) -----+. CQ)(SO(T*M ) ) I ClD(So (0+)) .

(5.3)

For the proof of Theorem 5.3 we need to define homomorphisms ti, r1' .
r/(I), 1 E ClD(nO,leTM) is defined aB &-(1) = hl ' the traceles8 symmetrie tensorj

h1(X,Y) = g(IX,Y) + g(X,IY) .

Note that Ker rf consists of those I's being g-skew symmetrie.

To define rJ we introduee an operator d: ClD(OO,2eTM) -----. ClD(OO,2QK)0,2) aB

the composite of the operators

(5.4)

r? is the traeeless symmetrie part of the real fonn of d. Here # is the opera.tor raising
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and lowering indices so that for a = ~ ak --!.. dJ A dzi E Cm(OO,2. TM)
JA 8z1

(5.5)

PROOF of Theorem 5.3 What to show is that ,a2~I)) = D(hI) for any

I E ClD(OO,10!0TM) .

We calculate t9(»(I) ) from (5.5) as

(5.6)

On the other hand from Proposition 3.1 and the formula (A.1) in Appendix D(h) is

D(h) = U(h)+ + V(h)+

where U(h)+ J V(h)+ are the SO(O+)-components of U = U(h) , V = V(h) J

respectively;

(5.7)

(5.8)
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Since Bic E n1,1 for the Kähler metric g ud the self-dual 2-form bundle is

n+ = IR", 6» nt, nt = (n2,°tBO°,2)1R for the Kihler form "', V+ vanishes and also the

So(nt~omponentof U agrees with that of (5.6). Moreover the n+ew-component of U

is zero since (hI)i] = ° . Q.E.D.

We would like to define a homomorphism between 1st cohomology groups. But this is

not automatically defined because of the lack of o-th homomorphisID. However for any

1 * ,JI EHJ = Ker -a n Ker -a , p (I) belongs to Ker D . We add a compensating term

* ..J. ..J. * ..J. 1 *-LGL (p (I)) such that p (I) - LGL (p (I)) is in H
1

= Ker L n Ker D . So we derive

a homomorpmsm

(5.9)

*Here G is the Green operator of L L .

PROPOSITIQN 5.4 For the infinitesimal deformation pl(l) E Ker D caused by I E H}

the scalar curvature derivative op vanishes.

PROOF For the scalu CtTVa cre derivation fp is CAh) = g (mi; - h aad from

(A.6), Appendix (tffi).. = l (V DV.h~ + VD V.h~ - VD Vth..) . Since the metric g is Kähler
IJ L. .{,.. I J (,.. J I .{,.. IJ

aad h = &-(1) is type (0.2), in complex coordinates Cp(h) is g3i( CR)ij . But

1 .... . *
(6R)jl" = 2" {V-r<Vrhlj) + Vj(Vihll")} vanishes because 1 = I

I

JE Ker -n and hrJ is given

by h... .., = I... .., + I.. ... . Q.E.D.
IJ IJ JI

From tms proposition the deformation of metrics ~ induced !rom any complex

structure deformation in the above way keeps the scalar curvature constant zero.
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We remark that the geometrie genus Pg gives rise to an obstruetion of the

injectivity of the ßl :H~ --t Ker D . Indeed we can show

PROPOSITION 5.5 The kernel of ßl restrict~ to H} is isomorphie with

HO(M,t7(KM)) .

PROOF Let I E H} be in the kerne!. Then this means that (X,V)~ g(IX,Y) is a

skew symmetrie tensor Ir t1i A dzJ E ClD(OO,2) . On the other band 7JI = 0, Le.

Vt:I...... = V...I... 'I:" 80 it follows that V...I... 1:" = 0 for all i, j, k . Applying the Rieci identity
JlIJ JIJl IJ.&

we see I... ...c1z1 A dJ is covariantly constant. So the kerne! {I E HJ
1, pl(I) = O} ia

1 J
isomorphie through the complex conjugation with the spa.ce of covariantly conatant

(2,O)-forms. This space ia from Lemma 3.1, [28] exact1y HO(Mj t7(K M)) .

Q.E.D.

Now we consider the inverse image of the map j: .AtM ----+ f M .

We let (J,g) be a complex structure and an anti-fielf-dual J-Kähler metric.

Let gt be adeformation of anti-fielf-dual J-Kähler metric. Then ~ satisfies

St A tut =°for the Ried form St = R R~ Jdzi A dJ .Let ftSt ' ft E ClD(M) , > °be

a conformal change so that its volume form agrees with dv . Then

I
* g

h =~ ftgt E C(J)(SO(T M)) satisfies D(h) = 0 . We differentiate *tCUt = CUt (CUt:
t=O

the Kähler form of ~ ) and have h(*w)--*h(w) = i.r--*w . From (3.2) h(cu) En- so the
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anti-self-dual part (w)- is (w)- = h( w) . From St A Wt = 0 we have ~ A cu + S A W= 0 .

But ~ iB an exact fomr so by integration JSA(W)- = JSAh(w) = o. ThuB we have

PROPOSITION 5.6 Let gt' ~ = g be an anti-self-dual J-Kähler metric deformation.

*Let h E C(l)(SO(T M)) be an infinitesimal deformation of ~ . Then the anti-self-dual

harmonie part of h(w) is annihilated by [S] as a cohomology element, where w, S are

the Kähler form and the Rieci form of g.

For any anti-self-dual J-Kähler metrie g on a ruled surface Mk , the Ricci form

S tOspans H~ (b- = 1) so that from Proposition 5.6 there is no anti-self-dual

J-Kähler metric deformations gt' go = g . This means that the map

j : .At~0) ----t f M I is an immersed map and moreover from Proposition 5.5 the injective

homomorphism ßl :H} ----t Ker Dg must give the inverse of j*.

,We expect that these arguments explain a fihred spare structure of .Ai~0) when

M is one of other complex surlaces of p = 0 admitting an anti--self-dual Kähler metric,g

for instance, a Ricci flat Enriques surface.

ili) Remark for twistor Spates

By the twistor correspondence any anti~f-dualconformal strueture 7 on a

4-manifold induces a complex structure J 7 on the unH sphere bundle U(O+) over M,

called the twistor space Z = ZM = (U(O+),J 7) ([27]).

This correspondence induces a canonical map from .AtM to the moduli J Z of

complex structure on Z. This map is an embedding since there is a twistorial

charaeterization of complex 3-manifold (Th. 13, 69 [8]).

Correspondingly to this we have a homomorphism between the complex (3.5) and the
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Kodaira-Spencer complex of Z (see (3.3) in [21]);

(5.10)

which induces the injective homomorphisID of 1st cohomology groups, the "tangent spaces ll

of .rM and "M'
A conformally flat structure correspondB to a holonomy homomorphism

1f1(M) -4 80(5.1) . As was pointed out in p. 439, [4] the natural homomorphism

80(5.1) -4 80(6,() --+ P8L(4,() then defines on the twistor spate U(O+) a

projective flat complex structure ( [25], [32]).

The twistot spa.ce of a conformally flat 4-manifold is in fact represented locally as a

neighborhood in (p3 containing a complex line.

Our investigation of the moduli of conformally flat 4-manifolds yields examples of

family of projectively flat complex 3-manifolds.

A projectively flat complex compact 3-manifold ZM satisfies for ehern numbers

16 c3(Z) =; clc2(Z) =c1
3(Z) = 32X(M) (p. 135, [32] and [27]).
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Appendix

In this appendix we will show

PROPOSITION A.l Let g be an anti-fielf-dual conformal structure. Then the linear

map: ClD(SO(T*M» ----; ClD(SO(O+»i h..............- (6 Wg(h»+ is written as

(A.l)

(A.2)

(A.3)

The proof needs a straightforward calculation. Für two metrics g, g we calculate

the difference of the Christoffel symbols as

(AA) .

for h = (hik) E Cm(End(TM)), g(hX,Y) = g(X,Y) .

From this one has

(A.5)

d i ikh.. = 'n" 2 ..(0), h. = g hk · .
IJ UI. UIJ J J
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Applying the chain rule, one gets

and then from (A.5)

Hence

The Weyl conformal tensor W has three parts

W=R+R'+R" ,

(A.6)

(A.7)
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Hyealculating effi' and c5R" we derive the following fonnula valid for any

metrie and any h E CCD(S2(T*M)) .

FORMULA A.2

(A.I0)

Now &ssume that g is anti-;;elf-dual and h is traceless. Then the SO(O+)--eomponent

(6' Wg(h))+ ia

where y+ is the SO(O+)--eomponent of the third term Y of (A.I0), since the first term

and the last two terms of (A.I0) vanish when we take the SO(O+)--eomponent. Here we

characterize the traceless symmetrie produet SO(O+) as

LEMMA A.3 The traeeless symmetrie product So(O~) of O~ at x is {Z = (Zijkt) ;

Z ia Rieci ßat eurvature like tensor satisfying the first Bianchi identity;

ik
Zijkt = - Zjikt = - Zijtk = Zkt.ij' g Zijkt = 0, Zijkl + Ziktj + Zitjk = O} .

We substitute R = W-R'-R" into Y as
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1 (ht R I I ht R I I )+~ i tjkt + j itkt

and take its SO(n+)-component. Then

from which the proposition folIows.

REMARK H g is anti-fielf-dual and Einstein, then V+ = 0 , namely

(6Wg(h))+ = U+ .

*We would like to obtain a formula for the adjoint D of

D : c(l)(SO(n+)) -----t C(l)(SO(T*M)) .

*PROPOSITION A.4 For an anti--se1f-dual conformal structure 1 = [g] the adjoint D

haB the form

* VkVt VtVk kt(D Z)" = Z'k tJ ' + Z'k tJ • + R Z'k D 'IJ 1 (..J 1 o{,J 1 o{,J

*PROOF D is defined by

(A.ll)
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L(h,D·Z)dvg = L(Dh,Z)dvg

of which the right hand side we calculate aB (Dh,Z) = (U+,Z) + (v+ ,Z) from Proposition

A.l.

Here

and

( + ) iktjV ,Z = hij~tZ .

Then the formula (A.l1) is derived from the integration

f (U+ Z)dV = f h..(V V Ziktj + V V Ziktj)dv .
, g IJ k t .l k g

REMARK This formula is appeared already in [6] as the first variational equation

*D W = 0 of the funetional Y: ~M ----4 IR (see also Lemma 1, [15]).

As a consequence of Proposition A.4

COROLLARY A.5 Let M be a K3 surface or a complex 2-torus and g be a Ried ßat

(i.e., type zero) anti-fie1f~ual metrie on M. Then the second eohomology group of the

complex (3.5) is H2 ~ 1R5 . In fact \ a... ,te,t , a·· E IR, ~. = a .. , \ a.. = 0, span
g - l IJ 1 J IJ IJ J1 l 11

H: for self-dual harmonie (Le., eovariantly constant) 2-fonns flt ' i = 1,2,3 .
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