
BREUIL MODULES FOR RAYNAUD SCHEMES

DAVID SAVITT

Abstract. In this note, intended for publication as an appendix to the article
[Gee06] by Toby Gee, we present some calculations (in terms of Breuil’s theory
of filtered φ1-modules) of finite flat vector space schemes of rank one. As a first
example, suppose that K is a finite extension of Qp with ring of integers OK

and absolute ramification index e, and that E is a finite field. Then finite flat
E-vector space schemes of rank one over OK are in one-to-one correspondence
with d-tuples (r0, . . . , rd−1) satisfying 0 ≤ ri ≤ e, together with an element
γ ∈ E×. This generalizes a result of Raynaud to the case where E does not
necessarily embed into the residue field of K.

1. Breuil modules with coefficients, and E-module schemes

Let p be an odd prime, letK be a finite extension of Qp, let OK denote the ring of
integers inK, and fix a uniformizer π of OK . Breuil [Bre00] has given a classification
of finite flat group schemes of type (p, . . . , p) over OK ; these group schemes are
the integral models of group schemes over K arising from Fp-representations of

Gal(K/K). We begin by giving an extension of Breuil’s classification to the case
of finite flat E-module group schemes, where E is an Artinian local Fp-algebra.

Let k be the residue field of OK , let e be the absolute ramification index of K,
and as above let E (the coefficients) be an Artinian local Fp-algebra. Let φ denote
the endomorphism of (k ⊗Fp

E)[u]/uep which is the pth power map on k and u,
and trivial on E. We define BrModOK ,E to be the category of triples (M,M1, φ1)
where:

• M is a finitely generated (k ⊗Fp
E)[u]/uep-module which is free when re-

garded as a k[u]/uep-module,
• M1 is a (k ⊗Fp

E)[u]/uep-submodule of M containing ueM, and
• φ1 is a φ-semilinear additive map M1 → M such that φ1(M1) generates M

over (k ⊗Fp
E)[u]/uep.

The objects of BrModOK ,E are called Breuil modules with coefficients (or simply
Breuil modules). Morphisms of Breuil modules are (k ⊗Fp

E)[u]/uep-linear maps
which preserve M1 and commute with φ1. We will sometimes abuse notation and
denote the Breuil module (M,M1, φ1) simply by M.

Proposition 1.1. For each choice of π, there is an anti-equivalence of categories
between BrModOK ,E and the category of finite flat E-module schemes over OK .
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Proof. When the coefficient ring E is Fp, this result is Théorème 3.3.7 of [Bre00].
If (M,M1, φ1) is an object in BrModOK ,E , note that by forgetting the action of E
we obtain an object in BrModOK ,Fp

. Indeed, the only thing to be checked is that
φ1(M1) generates M as a k[u]/uep-module, which follows because φ1 is E-linear.
Note that morphisms in BrModOK ,E are precisely the morphisms in BrModOK ,Fp

which commute with the action of E.

By Théorème 3.3.7 and Proposition 2.1.2.2 of [Bre00] we have an anti-equivalence
of categories Gπ from BrModOK ,Fp

to the category of finite flat group schemes of

type (p, . . . , p) over OK . Let Mπ denote a quasi-inverse of Gπ . Let M0 denote
M regarded as an object of BrModOK ,Fp

, and observe that we have a map E →

End BrModOK ,Fp
(M0). It follows without difficulty that the group scheme Gπ(M0)

has the structure of an E-module scheme. Conversely, suppose that G is an E-
module scheme. Then M = Mπ(G) is an object in BrModOK ,Fp

with a map E →
End BrModOK ,Fp

(M). Since endomorphisms of Breuil modules with Fp-coefficients

are k[u]/uep-linear, we deduce that M is a (k ⊗Fp
E)[u]/uep-module. �

We now examine more closely the structure of Breuil modules with coefficients.
Let k0 be the largest subfield of k which embeds into E (equivalently, into the
residue field of E), and let S denote the set of embeddings of k0 into E. We will
allow ϕ to stand for the pth power map on any finite field. For each σ ∈ S let (kE)σ

denote the Artinian local ring k⊗k0,σ E, so that we have an algebra isomorphism

k ⊗Fp
E ∼= ⊕σ(kE)σ .

We can make this isomorphism explicit, as follows. For each σ ∈ S, define eσ =
−
∑

x∈k
×

0
x⊗ σ(x)−1. It is straightforward to check that:

• e2σ = eσ , and eσeτ = 0 if σ 6= τ ,
•
∑

σ eσ = 1, and
• (ϕ⊗ 1)(eσ) = eσϕ−1 ,

and we may then identify (kE)σ with eσ(k ⊗Fp
E). The second of the above facts

follows from the formula
∑

x∈k
×

0
xTrk0/Fp

(x−1) = −1.

If M is any (k ⊗Fp
E)-module, set Mσ = eσM . Then M = ⊕σMσ , and Mσ can

be characterized as the subset of M consisting of elements m for which (x⊗ 1)m =
(1 ⊗ σ(x))m for all x ∈ k0.

Proposition 1.2. A Breuil module with coefficients M which is projective as a
(k ⊗Fp

E)[u]/uep-module is free as a (k ⊗Fp
E)[u]/uep-module. In particular, this

is always the case when E is a field.

Proof. The proof is the same as the proof of Lemma (1.2.2)(4) in [Kis], but we
repeat it since we will make use of some of the details. It suffices to check that
the ranks of the free (kE)σ [u]/uep-modules Mσ are all equal, or equivalently that
the rank rkσ of Mσ as a k[u]/uep-module does not depend on σ. Suppose that
m ∈ (M1)σ . If x ∈ k0, then

(x⊗ 1)φ1(m) = φ1((ϕ
−1x⊗ 1)m) = φ1((1 ⊗ σϕ−1x)m) = (1 ⊗ σϕ−1x)φ1(m) .
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By the discussion preceding the Proposition we conclude that φ1 maps (M1)σ to
Mσϕ−1 . The map φ1 : M1/uM1 → M/uM therefore decomposes as a direct sum
of maps

(1.3) (M1)σ/u(M1)σ → Mσϕ−1/uMσϕ−1 .

But the map φ1 is bijective; see, for instance, the discussion before Lemma 5.1.1 of
[BCDT01]. Therefore the map in (1.3) is bijective. Since #M [u] = #(M/uM) for
any finite k[u]/uep-module M , we see that #((M1)σ/u(M1)σ) ≤ #(Mσ/uMσ).
We deduce that rkσϕ−1 ≤ rkσ , and since Gal(k0/Fp) is cyclic, the first part of the
result follows.

When E is a field, we have to check that Mσ is always a free (kE)σ [u]/uep-
module. But by definition M is a free k[u]/uep-module, so the direct summand
Mσ is a projective k[u]/uep-module, and thus also free. Since (kE)σ is a field, it is
easy to see that any (kE)σ/u

ep-module that is free as a k[u]/uep-module is free. �

Let (M,M1, φ1) be a Breuil module with M a projective (k ⊗Fp
E)[u]/uep-

module; define the rank of this Breuil module to be the rank of M as a (k ⊗Fp

E)[u]/uep-module. The E-linear bijection M1/uM1 → M/uM yields a (k⊗Fp
E)-

isomorphism k⊗ϕ,k (M1/uM1) → M/uM, whence M1/uM1 is a free (k⊗Fp
E)-

module of the same rank as the Breuil module M. In particular, if M has rank n,
then each (M1)σ can be generated by n elements over (kE)σ [u]/uep.

Suppose now that E is a field, so that each (kE)σ is a field. Recall [Bre00, Propo-
sition 2.1.2.5] that every object (M,M1, φ1) of BrModOK ,Fp

possesses a suitable
basis (base adaptée): a basis m1, . . . ,mn of M (as a free k[u]/uep module) such
that M1 is generated by ur1m1, . . . , u

rnmn for integers 0 ≤ r1, . . . , rn ≤ e. Note,
however, that the proof of [Bre00, Proposition 2.1.2.5] does not involve φ1, only M
and M1; hence the same argument proves the existence of a suitable basis of Mσ

with respect to (M1)σ . We thus obtain an analogous notion of suitable basis in
BrModOK ,E .

We remark that in general this is no longer possible when E is not a field.
Suppose, for instance, that E = Fp[t]/t

2 and e ≥ 2. Let M be free of rank two
generated by m1,m2, and let M1 = 〈um1 + xm2, um2〉 with x ∈ E. Then the pair
M,M1 has a suitable basis if and only if x ∈ E×.

Definition 1.4. Let M be an object of BrModOK ,E. For our fixed choice of
uniformizer π, we obtain a finite flat E-module scheme Gπ(M), and we have an
E-representation of Gal(K/K) on the points Gπ(M)(K), which we denote Vst(M).
Following [BM02] and [Sav05], we set

Tst,2(M) = Vst(M)̂ (1)

where ̂ denotes the E-dual, and (1) denotes a twist by the cyclotomic character.
If E is a field, then the dimension of the E-representation Tst,2(M) is equal to the
rank of the Breuil module M.

Warning 1.5. When E is not a field, then even if M is a projective (k ⊗Fp

E)[u]/uep-module, we do not have a general result which says that Tst,2(M) is
a free E-module: the proof of [BM02, Lemma 3.2.1.3] does not succeed when the
ramification index e is large. However, [Sav05, Lemma 4.9(2)] tells us that Tst,2(M)
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is a free E-module when M = MR/IMR for a strongly divisible R-module MR

and R/I = E, which is always the case in the applications in [Gee06].

2. Vector space schemes arising from characters

In the remainder of this appendix, E will be a field. We remark that E can
naturally be identified as a subfield of (kE)σ via x 7→ (1 ⊗ x)eσ . In particular if
k0 = k we can identify E with (kE)σ . Suppose that G is a finite flat E-vector
space scheme over OK , with q = #E. If the dimension of the corresponding E-
representation of GK on G(Qp) is n, then the rank of G as a finite flat group scheme
is nq. We will refer to n as the rank of the E-vector space scheme G, but we point
out that some authors use this term to refer to nq.

Let (M,M1, φ1) be an object of BrModOK ,E corresponding to a finite flat E-
vector space scheme over OK of rank one, so that M is a free (k ⊗Fp

E)[u]/uep-
module of rank one, and each Mσ is a free (kE)σ [u]/uep-module of rank one. Let
d = [k0 : Fp], let σ0 be any element in S, and inductively define σi+1 = σi ◦ ϕ

−1,

so that M = ⊕d−1
i=0 Mσi

, and φ1 maps (M1)σi
to Mσi+1 . We will often abbreviate

(kE)σi
by (kE)i. Note that φ maps (kE)i to (kE)i+1, sending (x ⊗ y)eσi

7→
(ϕx⊗ y)eσi+1 .

Let m0 be any generator of Mσ0 . Then there is an integer r0 ∈ [0, e] such
that (M1)σ0 is generated over (kE)0[u]/u

ep by ur0m0. Define m1 = φ1(u
r0m0) ∈

Mσ1 , which is necessarily a generator of Mσ1 . Iterate this construction, so that
we obtain mi ∈ Mσi

and ri ∈ [0, e] for each integer 0 ≤ i ≤ d − 1, satisfying
φ1(u

rimi) = mi+1 for i < d− 1. Moreover we have φ1(u
rd−1md−1) = αm0 for some

α ∈ ((kE)0[u]/u
ep)×. It is easy to verify that each such collection of data defines a

Breuil module.

Suppose we repeat this construction, using a different generator m′
0 = βm0 of

Mσ0 . One checks without difficulty that the integers r0, . . . , rd−1 are unchanged,
while α is replaced by αφ(d)(β)/β, where φ(d) is the map on (kE)0[u]/u

ep which

fixes E, is ϕd on k, and sends u to upd

. In particular, choosing β = α replaces α

by φ(d)(α). Note that every power of u appearing in φ(d)(α) is divisible by upd

.
Recalling that uep = 0, we see by iterating this procedure that it is possible to
choose m0 so that α is an element in (kE)0. This element of (kE)0 is not uniquely
defined, but it does define a unique coset αH where H is the subgroup of (kE)×0
consisting of elements of the form φ(d)(β)/β for β ∈ (kE)×0 . However, H is precisely
the kernel of the norm map N(kE)0/E : (kE)×0 → E×, where E is identified with a
subfield of (kE)0 as above. So, finally, we see that to the Breuil module M we can
associate a well-defined element γ = N(kE)0/E(α) ∈ E×, and γ is independent of

the choice of σ0 since N(kE)0/E(α) = N(kE)i/E(φ(i)(α)). We have therefore proved:

Theorem 2.1. Let d = [k0 : Fp]. The finite flat E-vector space schemes of rank
one over OK are in one-to-one correspondence with d-tuples (r0, . . . , rd−1) satisfying
0 ≤ ri ≤ e, together with an element γ ∈ E×.

Fix a uniformizer π of OK and σ0 ∈ S. The corresponding Breuil modules each
have the form:
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• Mσi
= (kE)i ·mi,

• (M1)σi
= uriMσi

, and
• φ1(u

rimi) = mi+1 for 0 ≤ i < d − 1 and φ1(u
rd−1md−1) = αm0, where

α ∈ (kE)×0 is any element with N(kE)0/E(α) = γ.

Remark 2.2. Theorem 2.1 is a generalization of [Ray74, Corollaire 1.5.2]. There,
Raynaud enumerates the finite flat E-vector space schemes of rank one over OK ,
under the hypothesis that the coefficient field E embeds into the residue field k;
we remove this latter hypothesis. Alternatively, let K ′ be an unramified extension
of K such that E embeds into its residue field. One could start from Raynaud’s
description of finite flat E-vector space schemes of rank one over OK′ , and count
how many ways these schemes can obtain descent data from OK′ to OK . We note
that Ohta [Oht77, Proposition 1] uses this base extension trick to find the (inertial)
characters which can arise from finite flat E-vector space schemes of rank one over
OK , but not the vector space schemes themselves.

For the Breuil modules in Theorem 2.1, we would like to determine the corre-
sponding character GK → E×. We consider first the situation of [Ray74], where E
embeds into k, so that d = [E : Fp], each (kE)i = k, and each element σ ∈ S is
an isomorphism k0

∼= E. Let (M,M′, φ1) be a Breuil module as in Theorem 2.1,
and let G be the corresponding finite flat E-vector space scheme of rank one. Let
F (x) be the polynomial such that xe − pF (x) is the Eisenstein polynomial for our
chosen uniformizer π.

The affine algebra of G is described by [Bre00, Proposition 3.1.2]. Indeed, let-
ting α̃ ∈ W (k) denote the Teichmüller lift of α, the matrix Gπ (in the notation of
[Bre00, Section 3.1]) can be taken to be the matrix




0 1 · · · 0
...

. . .
...

0 0 · · · 1
α̃ 0 · · · 0




whose entries immediately above the diagonal are all equal to 1, whose lower left-
hand entry is α̃, and whose other entries are zero. (We will continue to label our
basis vectors for M from 0 to d−1, where Breuil uses the labels 1 to d.) Proposition
3.1.2 of [Bre00] therefore applies, and we see that the affine algebra RM of G is
isomorphic to

OK [X0, . . . , Xd−1]/I

where I is the ideal generated by Xp
i + πe−ri

F (π) Xi+1 for 0 ≤ i < d− 1 together with

Xp
d−1 + α̃πe−rd−1

F (π) X0.

Next we must determine the action of E× on RM. To do this, we examine the
proof of [Bre00, Proposition 3.1.5]. There, Breuil constructs a canonical morphism

(2.3) HomOK
(RM,A) → Hom′(Mod/S1)(M̃,Ocris

1,π (A))

where Ocris
1,π is a certain sheaf on the small p-adic formal syntomic site over OK , A is

a formal syntomic OK-algebra, and M̃ is the S1-module S1 ⊗k[u]/uep M associated
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to M by [Bre00, Proposition 2.1.2.2]. Let λ ∈ E×, and take A = RM; since the
morphism (2.3) is canonical, we obtain a commutative square

(2.4)

HomOK
(RM, RM) −−−−→ Hom′(Mod/S1)(M̃,Ocris

1,π (RM))
y[λ]

y[λ]

HomOK
(RM, RM) −−−−→ Hom′(Mod/S1)(M̃,Ocris

1,π (RM))

in which the horizontal arrows are both isomorphisms. Begin with the identity map
in the upper left-hand corner; suppose this maps to g in the upper right-hand corner,
and then to g′ in the lower-right. In the notation of the proof of [Bre00, Proposition
3.1.5] we have: ai,0 = Xi and ai,j = 0 for j > 0; and g is the map which sends mi

to X i + γp(u
ri−1Xi−1) for i > 0, and which sends m0 to X0 + α̃−1γp(u

rd−1Xd−1).

Noting that the action of [λ] on mi is multiplication by σ−1
i (λ), we see that g′ is

the map which sends mi to σ−1
i (λ)(X i + γp(u

ri−1X i−1)) for i > 0, and similarly
for m0.

Let λ̃i denote the Teichmüller lift of σ−1
i (λ), so that λ̃i = λ̃pi

0 . We can now check
that the map g′ is exactly the one which comes, via the bottom horizontal arrow

in the diagram (2.4), from the map sending Xi 7→ λ̃pi

0 Xi. Indeed, again tracing
through the proof of [Bre00, Proposition 3.1.5] we find that the map obtained from

Xi 7→ λ̃pi

0 Xi sends mi 7→ σ−1
i (λ)Xi + γp(u

ri−1σ−1
i−1(λ)X i−1) for i > 0, and similarly

for i = 0. Since γp(u
ri−1σ−1

i−1(λ)X i−1) = σ−1
i (λ)γp(u

ri−1Xi−1), the claim follows.
We have therefore proved the following.

Proposition 2.5. Suppose in Theorem 2.1 that E embeds into k. The affine algebra
of the finite flat E-vector space scheme of rank one over OK corresponding to M
is

OK [X0, . . . , Xd−1]/I

where I is the ideal generated by Xp
i + πe−ri

F (π) Xi+1 for 0 ≤ i < d − 1 together with

Xp
d−1 + α̃πe−rd−1

F (π) X0. Moreover, λ ∈ E× acts as [λ]Xi = λ̃pi

0 Xi.

Let q = pd = #E, and let jq denote the tame character jq : IK → µq−1(K),
as defined in [Ray74, Section 3.1]. Let ψi denote the composition of the reduction
map µq−1(K) → k×

0 with the isomorphism σi : k0 → E.

Corollary 2.6. With notation as in Proposition 2.5, set

η = (−p)1/(p−1)(α̃ · π−(r0pd−1+r1pd−2+···+rd−1))1/(q−1) .

Then Vst(M) is the character ψ(g) = ψ0(g(η)/η). In particular, ψ|IK
= Ψ ◦ jq,

where Ψ = ψe−r0
1 ψe−r1

2 · · ·ψ
e−rd−1

d , and so Tst,2(M)|IK
= (ψr0

1 ψ
r1
2 · · ·ψ

rd−1

d ) ◦ jq.

Proof. The first statement follows easily from the fact that X0 satisfies the equation

Xq
0 = ηq−1X0 (recall that πe/F (π) = p), together with the fact that [λ]X0 = λ̃0X0.

The second statement follows in the manner of [Ray74, Théorème 3.4.1]. Note that
ωK |IK

= ψe
1 · · ·ψ

e
d, where ωK is the mod p cyclotomic character of GK . �



BREUIL MODULES FOR RAYNAUD SCHEMES 7

Now let us return to the general situation, and suppose [E : Fp] = nd. In this
case we will only determine the inertial character. Let (M,M′, φ1) be a Breuil
module as in 2.1, and define the integers r0, . . . , rd−1 as before. As in [Oht77],
let K ′ be the unramified extension of K of degree n, so that E embeds onto a
subfield k′

0 of its residue field k′. Let G be the finite flat E-vector space of rank
one over OK corresponding to M, and let G ′ = G ×OK

OK′ . Let ψ and ψ′ be the
characters associated to G and G ′ respectively; since K ′/K is unramified, we have
ψ′|IK′

= ψ|IK
, and so to find ψ|IK

we can reduce to the Raynaud situation.

By [BCDT01, Corollary 5.4.2], the Breuil module associated to G ′ is M′ =
k′ ⊗k M, with the action of E coming from the E-vector space scheme structure
acting on the second factor. Let (r′0, . . . , r

′
nd−1) be the nd-tuple arising from M′

1, as
in Theorem 2.1. Let σ be any embedding k0 → E; since Mσ is the set of elements
m ∈M such that (x⊗ 1)m = (1⊗ σ(x))m for all x ∈ k0, it follows that k′ ⊗k Mσ

decomposes as the sum ⊕τ (M′)τ , the sum taken over embeddings k′
0 → E such

that τ |k0 = σ. We deduce immediately that r′j = ri where i is the residue of j
(mod d) in the interval [0, d− 1]. We conclude the following.

Corollary 2.7. Let q = pd = #k0, and let jq denote the tame character jq : IK →
µq−1(K), as defined in [Ray74, Section 3.1]. Let ψi : µq−1(K) → E× denote the
composition of the reduction map µq−1(K) → k0 with the embedding σi.

Let M be a Breuil module as given in Theorem 2.1. Then Vst(M) |IK
= Ψ ◦ jq,

where Ψ = ψe−r0
1 ψe−r1

2 · · ·ψ
e−rd−1

d , and Tst,2(M) |IK
= (ψr0

1 ψ
r1
2 · · ·ψ

rd−1

d ) ◦ jq. In
particular the images of Vst(M) |IK

and Tst,2(M) |IK
lie inside the subfield E0 of

order q in E. (This last remark also follows from Proposition 1 of [Oht77].)

Proof. Number the embeddings τ : k′
0 ↪→ E so that τ0 |k0 = σ0 and τi+1 =

τ ◦ ϕ−1. Let ψ′
i denote the composition of µpnd−1(K

′) → k′
0 with τi, and let

jpnd denote the tame character jpnd : IK′ → µpnd−1(K
′). We see easily from

Corollary 2.6 and our calculation of r′j that ψ |IK
= NE/E0

◦ Ψ′ ◦ jpnd , where

Ψ′ = (ψ′
1)

e−r0(ψ′
2)

e−r1 · · · (ψ′
d)

e−rd−1 . But NE/E0
◦ ψ′

i ◦ jpnd is precisely ψi ◦ jq :
this follows directly from the definition of the tame character j (see the very end of
[Ray74, Section 3.1], and note that since K ′/K is unramified, jq is the same map
for K and K ′). �

3. Descent data

Let G be a finite flat E-vector space scheme over OK . If λ ∈ E, let [λ] denote
the corresponding endomorphism both of G and of the Breuil module M(G).

Suppose now that the underlying finite flat group scheme is endowed with generic
fibre decent data from K to L in the sense of [BCDT01], so that the Breuil module
corresponding to the underlying finite flat group scheme obtains descent data from
K to L, again in the sense of [BCDT01]. For any g ∈ Gal(K/L), let the superscript g

denote base change by g. Let 〈g〉 denote the g-semilinear descent data map G → G,
and also the corresponding descent data map M(G) → M(G). Finally, let [g] be the
corresponding morphism G →g G of finite flat group schemes (see e.g. the diagram
on [Sav05, p.155]).
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Proposition 3.1. The action of E on G commutes with the descent data — i.e.,
the descent data is actually descent data on the finite flat E-vector space scheme,
and not just the underlying finite flat group scheme — if and only if the action of
E on M(G) commutes with the descent data on M(G).

Proof. Choose λ ∈ E, and note that 〈g〉 commutes with [λ] on G if and only if
g[λ] ◦ [g] = [g] ◦ [λ], if and only if the morphisms f1, f2 of Breuil modules M(gG) →
M(G) corresponding to g [λ]◦[g] and [g]◦[λ] are equal. However, one checks without
difficulty that the maps [λ]◦〈g〉, 〈g〉◦[λ] : M(G) → M(G) are obtained by composing
f1, f2 respectively with the isomorphism of Corollary 5.4.5(1) of [BCDT01]. �

Suppose henceforth that K/L is a tamely ramified Galois extension with relative
ramification degree e(K/L), and suppose π ∈ K is a uniformizer such that πe(K/L) ∈
L. Let l be the residue field of L. The group Gal(K/L) acts on k⊗Fp

E via Gal(k/l)
on the first factor and trivially on the second. Let η : GK → K× be the function
sending g 7→ g(π)/π, and let η be the reduction of η modulo π.

Let G be a finite flat E-vector space scheme over OK , with M the corresponding
object in BrModOK ,E . Combining Proposition 3.1 with [Sav04, Theorem 3.5], we
immediately obtain the following.

Proposition 3.2. Giving generic fibre descent data on G is equivalent to giving,
for each g ∈ Gal(K/L), an additive bijection [g] : M → M satisfying:

• each [g] preserves M1 and commutes with φ1,
• [1] is the identity and [g][h] = [gh], and
• g(auim) = g(a)(η(g)i ⊗ 1)uig(m) for m ∈ M and a ∈ k⊗Fp

E.

Suppose now that G is a rank one E-vector space scheme with descent data, so
that M is a free (k ⊗Fp

E)[u]/uep-module of rank one. If g ∈ Gal(K/L), define

the integer α(g) so that the image of g in Gal(k0/Fp) is ϕα(g); one checks that
g(ei) = ei+α(g). Let D denote the index of the image of Gal(K/K) in Gal(k0/Fp),
i.e., D is the greatest common divisor of d and all the α(g). For any integer i, let [i]
denote the residue of i (mod D) in the interval [0, D − 1]. We have the following.

Proposition 3.3. There exists a generator m ∈ M and integers 0 ≤ ki < e(K/L)

for i = 0, . . . , D−1 such that [g]m = (
∑d−1

i=0 (η(g)k[i]⊗1)eσi
)m for all g ∈ Gal(K/L).

Proof. This follows as in [Sav04, Proposition 5.3], provided that we can prove the
analogue of [Sav04, Lemma 4.1] with k replaced everywhere by k ⊗Fp

E. The
proof of the latter goes through mutatis mutandis, except for the justification that
H1(Gal(k/l), (k ⊗Fp

E)×) = H2(Gal(k/l), (k ⊗Fp
E)×) = 0, and the calculation of

Hom(I, (k ⊗Fp
E)×))G/I .

For the former, note that the vanishing of these two groups is equivalent (see
e.g. [Ser79, Proposition 8]), and for H2 it amounts to the surjectivity of the norm
map Nk/l,E : (k ⊗ E)× → (l ⊗ E)×. By an application of the extended inflation-
restriction sequence we are reduced to the case l = Fp. Recall that ϕ ∈ Gal(k/Fp)
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induces a map (kE)i → (kE)i+1, and note that ϕd : (kE)0 → (kE)0 is a gen-
erator of Gal((kE)0/E), identifying E with a subfield of (kE)0 via x 7→ (1 ⊗ x).
If s =

∑
i si with si ∈ (kE)×i , it follows without difficulty that Nk/Fp,E(s) =

N(kE)0/E(s0ϕ
d−1(s1) · · ·ϕ(sd−1)). Since the si are arbitrary and the usual norm

N(kE)0/E is surjective, the claim follows.

For the latter, every element of Hom(I, (k⊗Fp
E)×)) has the form

∑d−1
i=0 (η |ki

I ⊗
1)eσi

with 0 ≤ ki < e(K/L), and one verifies that this is invariant by g ∈ Gal(K/L)
if and only if ki = ki+α(g); it follows that ki = k[i] for all i. �

For additive bijections [g] as in Proposition 3.3 (extended to all of M in the
necessary manner) to form descent data, one must impose the conditions that
each [g] preserves M1 and commutes with φ1. For the former, it is necessary and
sufficient that ri ≥ ri+α(g) for all i and g; this is equivalent to the equality ri = r[i]
for all i. For the latter, write ur =

∑
i u

rieσi
, so that M1 is generated by urm,

and suppose φ1(u
rm) = cm with c ∈ ((k ⊗Fp

E)[u]/uep)×. Then the relation
φ1 ◦ [g](urm) = [g] ◦ φ1(u

rm) becomes:
(

d−1∑

i=0

η(g)p(k[i−1]+r[i−1])eσi

)
cm =

(
d−1∑

i=0

η(g)k[i]

)
g(c)m,

or equivalently g(c)/c =
∑d

i=0 η(g)
p(k[i−1]+r[i−1])−k[i]eσi

. But this equation shows
that the right-hand side is a coboundary in H1(G, (k ⊗E)×), and is equivalent to

(3.4) k[i] ≡ p(k[i−1] + r[i−1]) (mod e(K/L))

for all i, as well as g(c) = c.

Now we can apply the argument preceding Theorem 2.1: setting m′ = cm, we see
that [g] still acts on m′ as in Proposition 3.3, while φ1(u

rm′) = φ(c)m′. Repeating
this process, we see that we can suppose c ∈ (k⊗Fp

E)×, and in fact since g(c) = c

we have c ∈ (l⊗Fp
E)×. In summary, we have proved the following.

Theorem 3.5. With π chosen as above, every rank one object of BrModOK ,E with
(tame) generic fibre descent data from K to L has the form:

• M = ((k ⊗Fp
E)[u]/uep) ·m,

• (M1)σi
= ur[i]Mσi

,

• φ1(
∑d−1

i=0 u
r[i]eσi

m) = cm for some c ∈ (l⊗Fp
E)×, and

• [g]m = (
∑d−1

i=0 (η(g)k[i] ⊗ 1)eσi
)m for all g ∈ Gal(K/L),

where 0 ≤ r[i] ≤ e and 0 ≤ k[i] < e(K/L) are sequences of integers satisfying
k[i] ≡ p(k[i−1] + r[i−1]) (mod e(K/L)) for [i] = 0, . . . , D − 1.

Remark 3.6. Given r0, . . . , rD−1, a necessary and sufficient condition for such a
sequence {k[i]} to exist is that pD−1r0 + . . .+rD−1 be divisible by (e(K/L), pD−1),

and then k0 can be any solution of pD−1r0+. . .+rD−1 ≡ (1−pD)k0 (mod e(K/L)).

Example 3.7. Suppose we are in the situation of [Gee06]: suppose k embeds

into E, set L = W (k)[1/p], and fix π = (−p)1/(pd
−1) with d = [k : Fp] = [k0 : Fp].

Set K = L(π), so that e(K/L) = pd − 1, K/L is totally ramified, and Gal(K/L)
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acts trivially on k ⊗Fp
E. Then D = d, and the condition in Remark 3.6 is simply

pd−1r0 + . . .+ rd−1 ≡ 0 (mod pd − 1); if this is satisfied, k0 may be arbitrary. Let
M, then, be a Breuil module with descent data as in the statement of Theorem
3.5. Since k = l we can use the argument of the paragraph preceding Theorem 2.1

to assume that c has the form (1 ⊗ a−1)eσ0 +
∑d−1

i=1 eσi
for some a ∈ E×, and we

do so. We will determine Tst,2(M) using the method of Section 5 of [Sav05].

Let si = p(rip
d−1 + ri+1p

d−2 + · · · + ri+d−1)/(p
d − 1) with subscripts taken

modulo d, and define κi = ki +si. Observe from (3.4) that κi ≡ piκ0 (mod pd−1).
Define another rank one Breuil module with descent data M′ with generator m′,

satisfying M′
1 = M′, φ1(m

′) = cm′, and [g]m′ = (
∑d−1

i=0 (η(g)piκ0 ⊗ 1)eσi
)m′ =

(1 ⊗ σ0(η(g))
κ0)m′. We can define a morphism M′ → M by mapping eσi

m′ 7→
usieσi

m. One checks that this is a morphism of Breuil modules with descent data:
for instance, the filtration is preserved since si > ri, and the morphism commutes
with φ1 because si+1 = p(si − ri). By an application of [Sav04, Proposition 8.3],
we see that Tst,2(M) = Tst,2(M

′).

Let F = W (E)[1/p], let σ̃i be a lift of σi to an embedding L ↪→ F , and let
ẽi be the idempotent in L ⊗Qp

F corresponding to σ̃i, so that ẽi is a lift of eσi
.

Note that the image of η lies in L×, and that since K/L is totally ramified, η is
actually a character of Gal(K/L) and (abusing notation) of Gal(L/L). Let ã be
the Teichmüller lift of a, and let λea, λa denote the characters of Gal(L/L) sending

arithmetic Frobenius FrobL to ã, a respectively. Set c̃ = (1 ⊗ ã−1)ẽ0 +
∑d−1

i=1 ẽi.

By the method of Examples 2.13 and 2.14 of [Sav05], and using the notation and
conventions of Section 2.2 of loc. cit., the admissible filtered (ϕ,N,K/L, F )-module
D = DK

st,2((σ̃0 ◦ η
κ0)λea) is a module (L⊗Qp

F )e satisfying

N = 0 , ϕ(e) = pc̃e , g(e) = (1 ⊗ (σ̃0 ◦ η(g)
κ0))e for g ∈ Gal(K/L) ,

and Fili(K ⊗L D) is 0 for i ≥ 2 and (K ⊗L D) for i ≤ 1. For instance, one checks
easily that D is admissible (indeed tH(D′) = tN (D′) = m for any (ϕ,L)-submodule
D′ of dimension m), and the fact that ϕd(e) = pd(1 ⊗ ã−1)e implies that the
unramified part of V L

st,2(D) sends FrobL to ã.

Let SK,W (E) be the period ring of [Sav05, Section 4]. One checks without dif-
ficulty that SK,W (E)[1/p] ⊗L D contains a strongly divisible module with W (E)-
coefficients M (in the sense of [Sav05, Section 4]), namely M = SK,W (E)e, and that
(M/pM) ⊗SK

k[u]/uep = M′. Combining Theorem 3.14 and Corollary 4.12(1) of
[Sav05] and the discussion in Section 4.1 of loc. cit., we deduce that (σ̃0 ◦ η

κ0)λea is
a lift of Tst,2(M

′), so that

Tst,2(M) = Tst,2(M
′) = (σ0 ◦ η

κ0)λa .
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