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Introduction. The present paper is a continuation of [U] by the second author. For
the sake of simplicity, we will refer to that paper by I. For example, I-Theorem 2.1
means Theorem 2.1 in [U].

Dur main goal is to study closed space curves. We will show that the following
theorem can be used to improve some known results and reprove others. Dur improve
ments will concern results of A. I(neser [I(n] and Segre [Se] on the osculating planes of
spherical curves and Sedykh's foul' vertex theorem [Sd]. We will also be able to improve
Ghys' theorem on extremal points of projective line diffeomorphisms and obtain same
new results about them.

Theorem 0.1. Let / : SI --+ Ra be a C 2 -regular convex simple closed nonplanar space
curve with nonvanishing curvature. Then, has at least jour sign changes 0/ clear
vertices, meaning that it has two clear maximal vertices Pl, pa and two clear minimal
vertices P2, P4 such that Pl )- P2 )- Pa )- P4 holds, where )- is the rotational order 0/ the
curve /.

A closed space curve is called convex if it lies on the boundary of its convex hull.
Here a clear maximal (resp. minimal) vertex (cf. I-Definition 4.4) is a point which is an
absolute maximum (resp. minimum) of the height function with respect to the binormal
vector at that point. Moreover, if the level set of absolute maxima (resp. minima) is
connected, it is called a clean maximal (resp. minimaQ vertex.

If the curve , in Theorem 0.1 satisfies one of some additional conditions, the foul'
points can be chosen to be clean vertices so that the osculating planes of / at these
points are mutually different. (See Corollary 1.6.) To prove the theorem, we will use
and further develop the method of intrinsie circle systems introduced in I-§1.

As an application of Theorem 0.1, we will improve results of A. I(neser [I<:n] and
Segre [Se] on spherical curves. If,: S1 --+ S2 is a simple closed curve, then Segre
proved that if P lies in the convex hull of I without lying on " then the osculating
planes of at least four distinct points of , pass through p. We will show that this is
still true for any convex space curve I with nowhere vanishing curvature and a point
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p that lies "in the interior of the domain containing the curve which is bounded by
the osculating hyperplanes at the foul' clear vertices, whose existence is claimed in the
theorem.

Another application is the following foul' vertex theorem for space curves which may
not be convex: Let I be a C 2-regular simple closed curve in R 3 with nowhere vanishing
curvature. Assume there is a point p in the interior of its convex hull such that no
ray starting in p intersects I in two 01' more points 01' is tangent to I in some point.
Then the curve I has at least foul' honest vertices. Here an honest vertex is a point
at which the curve does not cross the osculating plane. This improves Sedykh's foul'
vertex theorem for convex space curves, see [Sd].

We will also discuss how this relates to Arnold's Tennis Ball Theorem [Al] and the
theorem of Möbius [M] on inflection points of curves in the projective plane.

As a further application, we also use the abstract methods in section 1 to improve a
theorem of Ghys on extremal points of projective Ene diffeomorphisms (see [OT] and
[T]) and to arrive at new results about them.

§1. Compatible pairs of intrinsic circle systems.

We let Sl denote the unit circle with a fixed orientation. Let >- denote the order
induced by the orientation on the complement of any interval in SI. Any two distinct
points p, q E Sl divide Sl into two closed arcs [P, q] and [q, p] such that on [P, q] we have
q >- P and on [q, p] we have p >- q. We let (p, q) and (q, p) denote the corresponding
open ares. We also use the notation p t q, which means p = q 01' P ~ q.

Let A be a subset of 8 1 and p E A. We denote by Zp(A) the connected component
of A containing p. The concept of an intrinsic circle syste1n was introduced in I-§l as
a lnultivalued function on SI satisfying certain axioms. It was used there to prove an
abstract Bose type formula. Here we recall the definition.

Definition 1.1. A family of nonempty closed subsets F := (Fp)PESl of S1 is called an
intrinsie circle system on S1 if it satisfies the following three conditions for any p E Sl.

(11) If q E Fp , then Pp = Fq.
(12) If q E 51 \ Fp, then Fq C Zq(Sl \ Pp). (01' equivalently, if p' E Fp, q' E Fq and

q t p' t q' t p(t q), then Fp = Fq holds.)
(13) Let (Pn) nE N and (qn) nE N be two sequences in 5 1 such that limn -.. 00 Pn = P

and limn -.. oo qn = q respectively. Suppose that qn E Fp" (n = 1,2,3, ... ). Then
q E Fp holds.

We will let rank(p) denote the number of connected components of Fp •

The proof of the following fundamental fact, which plays an important role in the
previous paper, only uses property (12).

Fact 1.1 (I-Lemma 1.1). Let F be an intrinsic circle system. Let p, q be distinct points
on S1 such that q E Pp. Suppose that (p, q) rt Fp . Then there exists a point x E (p, q)
such that rank( x) = 1.

We will now give an application of I-§1,§2 by discussing pairs of intrinsic circle
systems satisfying the following compatibility condition.

2



Definition 1.2. A pair of intrinsie circle systems (Fe, FO) is said to be compatible if it
satisfies the following two conditions.

(Cl) F; n F; = {p} for all pE Sl.
(C2) Suppose that ranke(p) = 1 (resp. rankO(p) = 1). Then there are no points of

ranko = 1 (resp. ranke = 1) in a sufficiently small neighborhood of p.

For each p E 51, we denote by ranke(p) (resp. rankO(p)), the number of connected
components of F; (resp. F;).

The following are examples of compatible pairs of intrinsic circle syste1ns.

Example 1. Let,: 51 --+ R 2 be a C2-regular simple closed curve which is not a circle.
Let r be the set of all oriented circles and lines in R 2 . The curve , separates the plane
into two closed domains. We denoted by De(,) the compact domain bounded by /
and by DO(,) the noncompact one. We assume that , is positively oriented, meaning
that the compact domain ne(,) is on the left of ,. For each pE" there is an element
C; E r (resp. C; E r) which has the smallest (resp. largest) curvature among CEr
that are tangent to , in p and satisfy C c ne

(,) (resp. C c D O
(,)). We call C;

(resp. C;) the maximal (resp. minimal) circle at p. Now we set

(1.1 ) F O.- n Co
p .-, p'

Then (Fe, PO) is a pair of intrinsic circle systems. (See I-Proposition 3.1.) Condition
(C1) of Definition 1.2 trivially holds. For a point p of ranke (p) = 1 (resp. ranko(p) = 1),
the osculating circle Cp at p coincides with C; (resp. C;). (See I-Proposition A.5.)
In particular, condition (C2) of Definition 1.2 is also satisfied. Thus (Fe, FO) is a
compatible pair. Instead of r, we can use a system of Minkowski circles in the plane.
(See I-§3 for details.)

Example 2. An immersed closed space curve , : 51 -t R 3 is called convex if it lies on
the boundary 8H of its convex hull H. We fix a nonplanar C2-convex simple closed
curve , and assume that its curvature function is positive. The boundary 8H of the
convex hull is homeomorphic to a sphere and / divides aH into two domains. Let aHe
(resp. aHa) be t~e left-hand (right-hand) closed domain bounded by ,. We set

(1.2) F; := {q E ,; pq c aH e
}, (resp. F; := {q E,; pq c aHO}).

By I-Theorem 4.8, Fe and FO are intrinsic circle systems if , satisfies one of the
following two conditions.

(1) For each point pE" there exists a supporting plane Up such that Up n, = {p}.
(2) , has uo planar open subarcs.

Moreover, (Fe, FO) is a compatible pair if , satisfies one of the following three condi
tions.

(a) 'Y satisfies (1).
(b) , satisfies (2) and any tangent line of, meets , in only oue point.
(c) , is a C3 -convex space curve whose torsion function has only finitely many

zeros.

3



In fact, (Cl) of Definition 1.2 is satisfied by definition. For definitions of concepts we
are now going to use, see the Introduction. Vvhen / satisfies (a) or (b), a point p on /
is of of rank· = 1 (resp. ranko = 1) if and only if it is a clean maximal (resp. minirnal)
vertex by I-Lemma 4.10. When / satisfies (c), a point p of rank· = 1 (resp. rank° = I)
is a clear maximal (resp. minimal) vertex by I-Proposition 4.15 and I-Proposition 4.20.
A clear maximal vertex eannot be a clear minimal vertex because / is not planar. Thus
(C2) of :Definition 1.2 also follows in any of these three cases.

We will give a further example in §3.

From now 011, we fix a compatible pair (p., PO) of intrinsic circle systellls.

Definition 1.9. If rank·(p) = 2 (resp. rankO(p) = 2), p is called a .-regular (resp. 0

regular) point. Ifrank·(p) ~ 2 (resp. rankO(p) ~ 2), p is called weakly .-regular (weakly
o-regular). An open are I of SI is ealled .-regular (resp. o-regular) if all of its points
are .-regular (resp. o-regular). More generally, an open are I of SI is ealled weakly
.-regular (resp. weakly o-regular) if all of its points are weakly .-regular (resp. weakly
o-regular) .

If (X, f) is a eircle system as defined in I-§3, the above definitions and notations are
eompatible with those in I-Definition 3.6.

Definition 1.4. (1) Let 1 be a closed are on Sl and A be a subset of 1. Then let
sUPI(A) and inf[(A) denote the least upper bound and the greatest lower bound of A
respeetively with respeet to the order >- on I.

(2) Let 1 = (Xl, X2) be a weakly .-regular are. For any p E I, we set

where Yp := Pp \Zp(Pp). (By Fact 1.1, one can easily show that Yp C SI \1.) Moreover,
we extend the definition of P± to the boundary of I as follows. If Xj (j = 1,2) is weakly
.-regular, we set

On the other hand, if x j is not weakly regular, we set

If I is a weakly o-regular are, {l± ean be similarly defined on I. We will refer to J.l±
and J.l± as antipodal maps.

Only parts (i), (ii) anel (iii) of the following Fact 1.2 will be used in the proof of
Theorem 1.4. V.,Te will not refer explieitly to the other parts and only bring them here
for the sake of completeness. Notice though that they are used in the proof of Fact 1.3
below.
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Fact 1.2. Let I = (Xl, X2) be a weakly .-regular (resp. o-regular) are on 51. Then the
antipodal maps J.L± := fl± (resp. J.L± := fl~J satisJy the Jollowing properties.

(i) For p E I 0/ ranke(p) = 2 (resp. rankO(p) = 2), [fl-(P),J.L+(p)] C P; (resp.
[fl- (p), J.L+ (p)] C P;) holds (wh ere possibly fl- (p) = fl+ (p)) .

(ii) J.L±(I) C 51 \ I.
(iii) Let p, q EIbe such that P t q. Then J.l+(q) t f..L+(p) and J.L-(q) t fl-(P) with

respeet to the order on 51 \ I. Moreover, i/ P; =f. p q
e (resp. P; =I- P;), then

f..L-(q) >- J.L+(p) holds on 51 \ I.
(iv) limx--+p_o f..L+ (x) = fl+ (p) holds Jor any p E (Xl, X2].
(v) lilllx--tp+O fl- (X) = J.L- (p) holds Jor any p E [Xl, X2)'

(vi) I/ I is .-regular (resp. o-regular)J then the open are (J.l+ (X2), fl- (Xl)) is .-regular
(resp. 0 -regular). MoreoverJ tor any q E (J.l- (p), {L+ (p)) J there exists p E I such
that q E P; (resp. q E P;).

Property (i) follows immediately from the definition and (ii) follows directly from
Fact 1.1. Properties (iii)-(vi) are proved in 1.3-1.7 in l-§1.

Each intrinsic circle system pe (resp. PO) induces an equivalence relation, which
in turn induces a quotient space SI/pe (resp. SI/PO). The equivalence class COIl

taining p E 51 will be denoted by [p]e (resp. [P]O). Then ranke([p]e) := ranke(p)
(resp. rankO([p]O) := rankO(p) ) is weil defined on SI/pe (resp. SI/pe) by virtue of
(11). We set

S(pe) := {[p]e E SI/pe; ranke([pt) = I},

S(PO) := {[P]O E SI/pO; rankO([p]O) = I},

T(pe) := {[Pt E SI/pe; ranke([p]e) ~ 3},

T(PO) := ([pt E 51
/ po; rankO([Pr) ~ 3}.

The set s(pe) (resp. S(PO)) is called the single tangent subset of 5 1 / pe (resp. SI/PO)
and T(pe) (resp. T(PO)) is called the tritangent subset of SI/pe (resp. 51 / PO). More
over, we set

s (pe) := the cardinality of the set S (pe) ,

S (PO) := the carrunali ty of the set 5 (PO) ,

t(pe) ;= 2: (ranke(p) - 2),
[p]·ET(F·)

t(PO) := L (rankO(p) - 2).
[p]OET(FO)

Definition 1.5. The single tangent set s(pe) (resp. 5(PO)) is said to be supported by a
continuous funetion T; 51 -+ R if for each p with ranke(p) = 1 (resp. rankO(p) = 1),
P; (resp. F;) is a connected component of the zero set of T.

In 1-§3, the following was proved by using the properties in Fact 1.2.
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Fact 1.3. Let (Fe, PO) be a compatible pair of intrinsic circle systems. Then the
following holds.

(i) If s(pe) < 00 (resp. s(FO) < 00), then t(Fe) < 00 (resp. t(FO) < 00). The
converse is also true if the single tangent set S(Fe) (resp. S(FO)) is supported
by a continuous function T : SI -+ R.

(ii) Suppose that s(Fe) < 00 (resp. s(FO) < 00). Then the following Bose type
formulas hold

We will give an applieation of the formulas in (ii) in Seetion 3.

We now eome to the main result of this section.

Theorem 1.4. Let (pe, PO) be a compatible pair of intrinsic circle systems. Then
there are four points PI, P2, P3, P4 E I satisfying PI >- P2 >- P3 >- P4 (>- PI) such that

Proof. Suppose there are less than four sign changes of rank one points. Since the
number of sign changes is even, it must be exactly two. We set

ye := {x E I j ranke(x) = I},

1/° := {x E,; rank°(x) = I},

and denote by Ve and VO their closures. Let I be the conneeted cOlnponent of SI \ yo
containing ye. We set

Xl := sup(ye)
I

X2 := iJ:!f(ye).
J

By condition (C2) of Definition 1.2, it holds that xl, X2 E I. Then the open interval
J := (Xl, X2) is a weakly .-regular are and so the antipodal funetions Il± are defined
on J. On the other hand, I is a weakly o-regular are and so J.l± are defined on it. By
(ii) of Fact 1.2, we have

We set

J.l±(J) Cl, J.l±(I) C J.

A = {p E J; Il~(/-l~(p)) )- p on J},

B = {p E J; J.l~(/-l+(p)) -< P on J}.

vVe suppose that P E J \ A. Sinee pe. ( ) n FO. ( ) = J.l~(p), we have p /; /-l~(J.l~(p)).
JJ_ P JJ_ P

Then we have
(on J).
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Hence (12) of Definition 1.1 for po yields that

This implies p E B. Thus we have

on [J.l~ (p), p].

(1.3) J= AUB.

We will now use Lemma 1.5 below. It says there that A is nonempty. VVe set

q := sup(A).
j

If q E A, then Lemma 1.5 also yields that there is y E A such that y )- q. Thus q rt A,
that is q E B by (1.3). Then by Lemma 1.5, there exists z E B, q )- z, such that
(z, q) n A = 0, contradicting that q := supj(A). 0

Lemma 1.5. The sets A and Bare nonempty subsets 0/ the are J. Moreover, /or each

xE A (resp. xE B), [x,y] CA and (x,y)nB = (/) (resp. [y,x] C Band (y,x)nA = 0)
hold, where y := J.l~ (J.l~ (x)).

Proof. We prove the assertion for A. (The corresponding assertion for B follows if one
reverses the orientation of 51.) First we prove Xl E A. In fact, if Xl rt A, then Xl E B.
Then

Hut this contradicts the fact that Xl is the smallest point contained in J. This implies
Xl E A. In particular, A is not empty. Now we fix an element X E A arbitrarily. Then
by definition, we have

Vve fix a point z on the interval (x, y) arbitrarily. Since z )- X on J, applying (iii) of
Fact 1.2 we have

J.l~(x) t J.l~Jz) on /.

Then applying (iii) of Fact 1.2 again, we have

This implies z E A and z f/. B. 0

Corollary 1.6. Let / : SI --+ R 3 be a C 2 -regular convex simple closed nonplanar space
curve with nonvanishing curvature satislying one 01 the lollowing two conditions.

(a) For each point p E" there exists a supPOrting plane Up such that Up n/ = {p}.
(b) / contains no planar open subares and no tangent line 01 / meets f in more

than one point.
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Then I has at least jour sign changes oj clean vertices. Moreover, at these four clean
vertices the osculating planes of f are mutually different.

Proof. As mentioned in Example 2, the pair of intrinsic circle systems (p., PO) is
compatible if f satisfies either one of the conditions in (a) and (b). We now apply
Theorem 1.4. We know that each rank one point on I is a clean vertex by I-Lemma
4.10. From this it follows imlnediately that the foul' osculating planes are mutually
distinct. 0

We now can prove Theorem 0.1 in Introduction. Let \! be the set of nonplanar
C2-convex simple closed space curves and ~ be the subset of (!: consisting of convex
space curves which satisfy condition (a) of Corollary 1.6. It is sufficient to prove the
following lemma.

Lemma 1.7. For each I E Q.':, there exists a sequenee (-"In) nE N in <.to eonverging to f
with respect to the uniform 0 2 -topology.

In fact, assuming the lemma, we ean prove the theorem as folIows: Let f be a 0 2
_

regular convex nonplanar space curve with nonvanishing curvature. By Lemma, 1.7,
there exists a sequence (fn)nEN in l!o converging to f with respect to the uniform
C2-topology. Sinee the curvature function of f never vanishes, the same is true for
rn if n is sufficiently large. By Corollary 1.6, each rn has two clean maximal vertices
pin),p~n) and two clean minimal vertices p~n),p~n) such that p~n) >- p~n) >- p~n) >- p~n)

holds. If necessary, by going to a subsequence, we luay assume that there exist points
(PI, P2 , Pa , Pa) such that

r ((n) (n) (n) (n)) ( )
1m PI , P2 , Pa , P4 = PI, P2 , Pa ,Pa .

n-+co

Since pin) and p~n) (resp. p~n) and p~n)) are clean luaximal (resp. minimal) vertices,

the limit points pin) and p~n) (resp. p~n) and pin)) are clear maximal (resp. minimal)
vertices. Since / is not a plane curve, a clear maximal vertex is not a cleal' minimal
vertex. Thus the foul' points are mutually distinct and satisfy PI >- P2 >- P3 >- P4. 0

Proof 0/ Lemma 1. 7. To prove the lemma, we recall some fundamental properties of
convex bodies. A convex bounded open region n in Ra is called a eonvex body. We fix
an interior point 0 of n. Without loss of generality we nlay assurne that 0 is the origin
of R 3

. We set
p(x) := inf{t > 0 j x E tfl} (x E R 3

),

where tn := {tx x E n}. Notice that 7r : an -t 3 2 defined by 7r(X) := xiixiis a
homeomorphism. We have the expression

(1.4) p(x) = Ixlp(x/lxl) = Ix l7r- 1 (xllxl)·

Thus p : R 3 -t R is a continuous function. Moreover the function p satisfies the
following properties (cf. Proposition 1.1.5 in [I(R)).

(1) For each x E R 3
, p(x) ~ 0 and p(x) = 0 if and only if x = o.

(2) p(ax) = ap(x) for any real nUlnbel' a ~ O.
(3) p(x + y) ~ p(x) + p(y) for all x,y E R3.

8



Furthermore n can be expressed as

(1.5) n = {x E R 3
; p(x) < 1}.

The convex body n is called strictly convex, if for each boundary point p E n, there is
aplane U passing through p such that n n u = {p}. One can easily show that 0 is
strictly convex if p satisfies the condition that

(1.6) p(x + y) < p(x) + p(y)

for any two linearly independent x, y E R 3 . Conversely, if there exists a continuous
function p : R 3 --+ R satisfying the three properties (1)-(3), the open subset 0 defined
in (1.5) is a convex body.

Now we fix a C2 -convex space curve I : [0,1] --+ R3. Let S1, be its convex hull.
Without loss of generality, we may assume that 0, contains the origin 0 in its interior.
Let p be the continuous function satisfying (1)-(3) associated to the convex body 0,.
We set

(1. 7)

where 1r : ao --+ 52 is the projection defined above. Then 1 : [0,1] --+ 52 is a C2-regular
embedding. By (1.4), we have 1= {p('1')}i'. We set

Pn(X) := p(x) + l:l.
n

Then pn satisfies (1)-(3) and also (1.6). Thus the associated convex body On is strictly
convex. vVe set

(1.8) In(t) = Pn(1(t)) . i(t) (t E [0,1]).

Notice that Pn(i(t)) is clearly C 2 in t although Pn is only continuous. Thus each curve
In is a C 2 -regular simple closed curve that lies in the boundary of S1 n . Since S1n is
strictly convex, In satisfies condition (a) of Corollary 1.6. Moreover, it is obvious that
In converges to I in the uniform C 2-topology. 0

We next give an example of aplane curve I with the following two properties:

(1) There are only four sign changes of clear vertices, although I has more than
foul' clean vertices.

(2) The number of clean or clear maximal vertices are not equal to thc number of
clean or clear minimal vertices.

In particular, this exalnple shows that we cannot improve the number of sign changes to
2n in Theorem 1.4 when the curve / meets a circle in 2n points such that the rotational
order on / and the circle coincide. In fact, since the number of clean vertices exceeds
foul', we mayassume that the number of maxin1al clean vertices is at least three. By
(ii) of Fact 1.3, we have t(p. ) 2:: 1, l.e., there is a tripIe tangent enclosed circle C.
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Expanding C slightly by a homothety with the same center as C, we get a circle C~

which meets 1 in six points whose order on C~ coineides with that on l'
The curve f is constructed as follows: Consider the ellipse

x2

11: - + y2 = 1
4

that we assume to be positively oriented (i.e. with an inward pointing normal vector).
We shrink it by a homothety with the dilation factor~, where E: > 0 is a sufficiently
small number. Then we have another ellipse

x2

12: - + y2 = 1 - E:
4

that we assmne to be negatively oriented (i.e. with on outward pointing normal vector).
We also consider the parabola

x = _4y2 - 1

oriented in the negative directiou of the y-axis.

B

B'

D'
D

Figure l-a. Figure I-b.

Then 11 (resp. 12 ) meets the parabola in two points P, Q (resp. P', Q') as in Figure
l-a. Note that with the orientation chosen above and notation as in Figure l-a the arcs
QD, D' Q' and PP' are curvature decreasing and B P, P'B' and Q'Q are curvature
decreasiug. We cau round the corners at P, Q (resp. P', Q') introducing exactly one
(resp. three) vertices using the method of Proposition 2.3 in [I(U], and get a simple
closed curve 1 as in Figure I-b with the following vertices

A, B, P, P~l' p~, P{, B', A', D', Q'-l, Q~, Q~, Q, D.

Here P!...l' p~, P{ (resp. Q'-l' Q~, Q;) are the vertices which appeal' after rounding
the corner at P' (resp. Q'). More precisely, p~, Q~ (resp. P!...l' P{, Q'-l' Q;) are loeal
maxima (resp. minima) of the curvature function. By construction, 1 has 14 vertices.
The clean (clear) maximal vertices are P, P~, Q, Q~. The clean (clear) minimal vertices
are B, D, A'. (In fact, if E: is sufficiently small, other vertices cannot be clear vertices.)
Thus the number of clean maximal vertices is greater than the number of clean Ininimal
vertices. Moreover, the clean vertices lie on the curve f in the order

B, P, P~, A', Q~, Q, D,

so the number of sign changes of clean vertices is only foul'.

We end this section by giving a further corollary of Theorem 1.4. It is a refinelnent
of the foul' vertex theorem for convex curves.
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Corollary 1.8. Let,: SI -t R 2 be a C 2 -regular convex plane curve with length 271",
which is not a circle. Then the junction K,2 - 1 changes sign at least jour times, where
K, : 51 -t R is the curvature oj ,.

Proof. We mayassurne that K, 2:: O. We use the notation in Example 1. Let Pl, ... , P4
be points as in Theorem 1.4 anel Cj (j = 1, ... , 4) the osculating circle at Pj. Then as
rnentioned in Example 1, we have

(1.9)

and

(1.10)

(i=I,3),

(j = 2,4).

Since, is not a circle, the lengths of Cl, C3 (resp. C2 , C4 ) are less (resp. greater) than
271" by (1.9) and (1.10). In particular, K > 1 at P],P3 and K, < 1 at P2,P4. 0

It should be remarked that there is an elementary proof of Corollary 1.8 using
integration that we now want to explain.

An alternative prooj oj Corollary 1.8. We paralnetrize the curve according to arclength
t (0 ::; t ::; 271") and write ,(t) = (x(t),y(i)). We assume that K, 2:: O. Since the length
and total cuI'vatuI'e of, are both 271", we have the following identity

(1.11) 1
21t'

o (K,(t) - 1)(ax'(t) + by'(t) + c)dt = 0,

where a, b, c are arbitrary real numbers. If we set a = b = 0 and c = 1, this implies that
K - 1 changes sign even number of times. Suppose that the sign changes are only two.
Then we lnay assurne that there exists io E [0,271"] such that K, - 1 2:: 0 on [0, to] and
fi, - 1 ::; 0 on [to, 271"]. We cau choose the numbers a, b, c so that the line ax + by + c = 0
passes through the two points ,'(0) anel ,'(to). Then (K(t) - 1)(ax'(t) + by'(i) + c) is
a nonpositive or nonnegative function. By (1.11), this irnplies fi, is identically 1, which
is a contradiction. 0
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§2. Applications to space curves.

With the methods of section 1 at hand it is reluarkably easy to improve some well
known theorems and show how others follow as corollaries. In this sectioll we will use
Theorem 0.1 (which is a corollary of Theorem 1.4) to improve a result of A. Knesel'
[I(n] and Segre [Se] on spherical curves. We will also discuss how this iluprovement
relates to the Tennis Ball Theorem of Arnold [A] and the Theorelu ofMöbius [M] that a
simple closed curve in the projective plane that is not nullhomotopic has at least three
inflection points. We will also prove a foul' vertex theorem for closed simple space
curves that improves a result of Sedykh [Sd]. Instead of convexity we assume that the
curve satisfies a condition of starshapedness. We do assume that the curvature does
never vanish and our theorem seems to improve existing results on this class of curves.

Assume that , : SI ~ S2 is simple, closed and regular. Then Segre [Se] proved thc
following (p. 243):

(1) If p E R 3 lies in the convex hull of, without lying on " then the osculating
planes of at least foul' distillct points of, pass through p.

(2) If p lies on , and p is not a vertex, then the osculating planes of at least three
distinct points of" all of which differ from p, pass through p.

(3) If p is a vertex of " then the osculating planes of at least two distinct points
of " both of which differ from p, pass through p.

A. I(neser proved part (2) of the above theorem as an application of the Theorem
of Möbius. This was a step in his proof of the foul' vertex theorem for simple closed
curves in the Euclidean plane. Segl'e does not say explicitly in the stateluent of his
theorem that the points he finds in (2) and (3) all differ from p, but this seems to be
what he proves.

Segre pointed out on p. 258 of his paper that the claim in (1) also holds for a point
p in the convex hull of aspace curve , : SI --+ R 3

, if p rJ. / and no ray starting in p is
tangent to , 01' meets , in two 01' more points. This is proved by simply projecting ,
radially outo a sphere with center in p. We will also use this argument in the proof of
Theorem 2.2 below.

Dur improvements of the results of A. Kneser and Segre will consist in the following:

(1) We will consider more general space curves.
(2) Instead of the convex huH of the curve, we cau prove (1) for points p in the

interior of a certain polyhedron ~ that contains the curve and only has vertices
of the curve in its boundary.

(3) We will show that the osculating planes found in the theorem of A. Knesel'
and Segre can under certain conditions been chosen to be at points different
from the vertices of the curve. This will be needed to prove the Tennis Ball
Theorem and the Möbius Theorem as corollaries. Segre also discusses such
things in his proof without summarizing them in the statement of his theorem.
We will give an example that shows that this is not tl'ue for all choices of p in
the boundary of the convex hull of the cul've. This eXaIuple will also show that
some of the osculating planes at the different points A. Knesel' and Segre find
might coincide.
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We will be dealing with a C 2-regular simple closed convex nonplanar space curve
1 : SI --+ R 3 with nowhere vanishing curvature. Notice that this situation is more
general than the one in the theorem of A. Kneser and Segre.

We know from Theorem 0.1 that I has at least foul' clear vertices t 1 ~ t2 ~ t3 ~ t4

such that t1 and t3 are maxirna of the height funetions in the direction of the binormal
vectors at the respective points, and t2 aud t4 are miuilna of the corresponding height
funetions. Let l1 i be the oseulating plane of 1 at ti. Then 1 is contained in one of
the closed halfspaces bounded by l1 i . We denote this halfspaee by Si. The binormal
of 1 at ti points out of Si if i is 1 01' 3 and in to Si if i is 2 01' 4. We eannot exclude
that 111 = 113 and 112 = 114 , but it follows that l1i =1= l1i+1 since 1 is not planar. Let
~ denote the intersection of these halfspaces 01', what is the same thing, the closure
of the conneeted component of R 3 \ (111 U 112 U 113 U 114 ) containing ,. Then ~ is a
simplex if no two of the osculating planes l1i coincide 01' are parallel. Otherwise ~ is
a polyhedron that might be unbounded.

We denote the closure of the connected component of R 3 \ (111 U 112 ) containing,
by S12. Let I1 t denote the osculating plane of, at t. We want to show that for every
point p E S12 there is a t E (tl, t2] such that p E I1 t . Notice that the conditions on ,
as weIl as the conclusions we are aiming at can all be phrased in tenns of projective
geometry. We can therefore, if necessary, apply a projective transformation that sends
the line in which 111 and 112 interseet to infinity. Hence we can assurne that the planes
111 and 112 are parallel and the curve , lies in between the planes. The set S12 is thus
a slab. The binonnal vector of, at t1 points out of the slab and at t2 it points into it.

Now assurne that p E S12 is not contained in any osculating plane I1 t for t E (tl, t2)'
Let qt be the point on I1 t dosest to p and let Vt be the unit veetor at qt pointing in the
direetion from p to qt. The veetor Vt is perpendicular to I1 t for all t E [it, t2]. Notice
that Vtl points out of the slab S12 since p lies in its interior, i.e., Vtl points in the same
direetion as the binormal vector at ,(td. By continuity, Vt points in the SRIne direction
as the binormal vector at ,(t) for all t E [tl, t2]' It follows that the binormal veetor
at ,(t2) points out of the slab, which is a contradiction. We have thus proved that for
every point p E 5 12 there is a t E [/t, t2 ] such that p E I1 t .

We ean repeat the argument above for the pairs (t 2 , t 3 ), (t 3 , t 4 ) and (t41 t 1 ) and
prove that for every point p in the interior of ~ = 5 12 n 5 23 n 5 34 n 54 1, there is an
siE (t i , t i+1) such that p E 1109 i' It follows that every point in the interior of ~ lies in
the osculating planes of foul' different points of I'

This already improves part (1) of the theorem of Segre for the following reason: A
point p in the convex huB of, which neither lies in the interior of ~ nor on , is in the
convex hull of the vertiees in one of the osculating planes l1i. Since, is a spherical
eurve in Segre's theorem we ean choose the points tl" .. ,t4 to be clean vertices. It
follows that l1i contains an open are of vertices of , and that l1i is the oseulating
plRIle at eaeh point of this are. There are therefore infinitely many points of, whose
oseulating planes eontain p. Notiee that we do not claim that these oseulating planes
are different. We will see in an eXaInple below that the number of oseulating planes
containing such a point p eRIl be three. Oue does of course not need to assurne that /
is spherieal to prove the clailn in part (1) of Segre's theorem. It is enough to have a
eondition that guarantees that the vertiees tI, . .. 1 t4 are clean.
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Part (2) of the theorem of A. Kneser and Segre also follows since any point on ,
which is not a vertex lies in the interior of 6.

Assurne that the osculating planes II l , .•• ,II4 are all different and let p be in the
interior of the face ß n II l . Then the above argument shows that there are 82 E (t2, t3)
and 83 E (t3, t4) such that p E TI.'l4 and p E II.'l3' Since p is also in TI I we see that every
point in the open face in 6 n II I lies in the osculating planes of at least three different
points of ,. This improves part (3) of the theorem of Segre since the planes TI l , ••. ,II4

are all different if, is spherical. The argument cannot be applied to points in the open
I-siInplices of 6 in II I n II3 and II2 n II4 , but they contain no points on ,.

We summarize what we have proved in the next theorem.

Theorem 2.1. Let, be a C 2-regular convex space curve with nowhere vanishing cur
vature. Let ß be the closed polyhedron containing , that is bounded by osculating
supporting planes TI l , II2 J II3 and TI4 at t l >- t2 >- t3 >- t 4 respectively such that II I

and II3 are maximal and 112 and 114 are minimal. Then every point in the interior 01
ß is contained in osculating planes 01 at least lour different points 01/. 11 the planes
TI I J TI2 , II3 and TI4 are all different, then every point in the open laces 01 ß lie in the
08culating planes 01 three different points 01,.

As we will see below, it is quite ilnportant in applications to know that the osculating
hyperplanes that we find do not belong to honest vertices. Recall that t is an honest
vertex if the following holds: Let TI t be the osculating plane of , at ,(t) and 81 and
82 are such that ,([81,82]) is the connected component of, n TI t containing ,(t), then
there is an c > 0 such that ,(81 - c, 81) and ,(82,82 +c) lie on the same side of II t • In
loose terms, t is an honest vertex if, does not cross II t in t.

The question is therefore whether one can improve Theorem 2.1 and show that the
osculating planes whose existence is claimed do not belong to honest vertices. V\fe will
see that the answer is yes and no. Notice that Segre discusses this question in his proof
without summarizing the results in the statement of his theorem.

In part (1) of the next theorem we give an easy positive answer to this question if
p is contained in the interior of the convex huH of ,. The method of proof is based on
Segre's observation on p. 258 in his paper on how to use the spherical curve case to get
similar informations on more general curves. In part (2) we generalize Sedykh's foul'
vertex theorem (Sd] that says that a convex simple closed space curve with nowhere
vanishing curvature has at least foul' honest vertices

Theorem 2.2. Let, : SI --+ R 3 be a C2-regular simple closed curve in R 3 with
nowhere vanishing curvature. Assume there is a point p in the interior 01 the convex
hull 0/, such that no ray starting in p intersects / in two or more points or is tangent
to , in some point. Then

(1) there are lour distinct points on. 'J none 01 which is an honest vertexJ whose
osculating planes contain p.

(2) the set 01 honest vertices on , has at least lour connected components.

Proof. We project , radially from p onto a sphere S2(p) with center in p. We denote
the new curve by ::y. It follows that p lies in the interior of the convex hull of ::y and
that an osculating plane of::Y that passes through p and does 01' does not correspond to
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an honest vertex of 1 has the same properties with respect to ,. It is therefore enough
to prove the claim in (1) for 1. Notice that 1 satisfies the conditions that we assumed
in Theorem 2.1 whereas / might not. Using the same notation as above, let t l and
t 2 be points such that tl is a maximum of the height function in the direction of the
binonnal vector at t 1 and t2 is a lninimum of the height function in direction of the
binornlal vector at t 2 . Let II i be the osculating plane of 1 at ti. Then 1 lies between
the planes II I and II2 . Denote the osculating plane at t by II t and let DT and D;
denote the disjoint open halfspaces bounded by II t such that the binormal of 1 at t
points into DT. We define the following sets

and

Since p is an interior point of the convex hull, we have t l E A and t2 E B. Moreover,
we set

81 = sup(A), and s; = inf(B n [SI, t2]).

If SI = S~, then the osculating plane II"1 of 1 at 81 passes through p and SI is clearly not
an honest vertex since no neighborhood of 81 maps onto one side of II s1 • If 81 < 8~,

then for every t E [81, S~], the osculating plane at t passes through p. Hence the
osculating circles of 11[sl ,s~] on 5 2 (p) are all great circles and therefore interseet. It
follows that the torsion of 1 vanishes for all t E [Sb S;] sinee the osculating circles of a
spherical curve segment with nonvanishing torsion da not interseet. As a consequence
1'1{SI ,s~l is planar. It follows that 11[SI1S~1 is a great circle are since it is contained in the
osculating plane II s1 • No neighborhood of [81, S;] maps onto one side of II"I' Hence we
have proved that SI is not an honest vertex. We repeat this argument for the segments
(t 2 ,t3 ), (t 3 ,t4 ), (t4 ,tt} and get the foul' points 81,S2,83,84 as claimed in (1).

To prove (2) notice that the spherical curve :y on 52 (p) changes its convexity in 81

and 82. We can assurne that 11(81'''2) is a locally convex spherical curve. Then the curve
:y crosses its osculating plane at 81 in the direction of its binormal vector in 81 and it
erosses its osculating plane at 82 in the direetion opposite of the binormal vector at 82

(or the other way around). The same holds true for the curve /. By eontinuity, there
is a point Tl E (81,82) where the eurve f is loeally on one side of the oseulating plane.
This point is an honest vertex. By repeating this argument für (82, 83), (83,84) and
( 84 , SI), we find foul' different honest vertices, whieh belangs t'o different components
of the set of honest vertices. D

Remark. Theorem 2.2 has at least two well-known results as immediate applieations
as we now would like to explain.

Arnold's Tennis Ball Theorem [A] says that a C2-regular simple closed eurve / on
the unit sphere 52 that divides the area of the sphere into two equal parts has at
least foul' inflection points. Here an infleetion point is a point p on the curve with the
prüperty that loeally around the connected eornponent containing p of the intersection
of , with the tangent great circle C, the eurve does not lie Oll oue side of C. Notice
that the origin must lie in the interior of the convex huH of 1 sinee we lnay assume
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that the curve is not a great circle. In fact, one can slightly generalize the Tennis Ball
Theorem by assuming that the origin lies in the interior of the convex hull of, instead
of assuming that , divides the area of 52 into two equal parts. There are therefore
at least foul' different points on , that are not honest vertices whose osculating planes
pass through the origin. It follows that the osculating circles on 52 of, at these points
are great circles. Thus they are inflection points since they are not honest vertices.
This application was pointed out to HS by S. Tabachnikov.

A closed curve in the projective plane which is not nullhomotopic IllUSt have at
least one infiection point. Here an infiection point is defined as for spherical curves by
replacing 'tangent great circles' by 'tangent projective lines'. One sees this as follows:
if , does not have an infiection point, then we have a continuous nonnal vector field
along it pointing to the side , is curving. This is a contradiction since a closed curve
that is not nullhomotopic does not admit any such normal vector field. This argument
can be used to prove that the number of infiection points of such a curve must be odd,
if it is finite.

Möbius proved the following theorem in [M]: If, is a C 2-regular simple closed curve
in the projective plane, then it has at least three infiection points. This follows from
Theorem 2.2 by the following argument: Let us think of the projective plane as the
plane z = -1 in R 3 with a Ene added at infinity. Let 7 be the curve on 52 whose points
are the intersections of the lines with 52 that connect the origin with the points on ,.
There are two points on 7 corresponding to a point on ,. Notice that 7 is connected
since, is not nullhomotopic. It is clear that the origin lies in the interior of the convex
huB of 7, since we may assume that , is not a line. It follows that there are at least
foul' different points on 7, none of which is an honest vertex, whose osculating planes
pass through the origin. These foul' different points correspond to at least two different
points in the projective plane that are inflection points. Since, has an odd number
of infiection points, there are at least three inflection points. Of course one can also
deduce the Möbius theorelll from the Tennis Ball Theoreln.

The next theorem is a consequence of the Theorem of Möbius. The proof is similar
to an argument by A. I(neser [I(n].

Theorem 2.3. Let, be a C 3 -regular convex simple closed curve in R 3 with nowhere
vanishing curvature and let p be a point on ,. Assume that no ray starting in p meets
, in two or more points or is tangent to '/ in some point. // p is not an honest vertex 0/
" then there are at least three different points on" all 01 which differ lram p and none
0/ which is an honest vertex, such that the osculating planes at these points contain p.
/1 p is an honest vertex, there are at least two such points.

Prao/. Let P be aplane supporting, in p and let II be the osculating plane of, in p.
The planes P and II cau only coincide if p is an honest vertex. Let L be the tangent
line of , in p. We project 'Y radially froln p onto a sphere S2(p) with center in p.
Notice that the image curve which we denote by 7 lies in a hemisphere of 5 2 (p) that is
bounded by the great circle P n 52 (p) and is not closed since p corresponds to the two
antipodal points in Ln S2(p). Let 1 be the curve in the projective plane P 2 R that we
get by composing i' with 7r : 5 2 (p) --t P2R where 7r is the identification of antipodal
points.
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Without loss of generality, we may assume that the point p is the origin. Then the
curve ~ is giyen by

-y(t) = ,(t)/!,(t)l.

We assume that ,(0) = p. By the Bouquet formula, it holds that

where e is the unit tangent veetor at p, n is the unit normal vector at p, fb(t) the
eurvature and t is the are length parameter. So it ean be easily shown that 1 : 51 -t

P 2 R is an immersion (at t = 0), if and only if K:(O) =I- O.
Notiee that 7 is still C3 exeept in the point ß eorresponding to p where it might only

be C2. Let A be the line in P 2 R that is the iinage of II n S2(p). Then A is tangent to
7 in ß. If p is an honest vertex, then , does not cross II in p. Consequently, 7 crosses
A in ß, and we see that ß is an inflection point of 1. Similarly we see that if p is not
an honest vertex, then ß is not an infleetion point of i. Let 1 be the line in P 2 R that
is the image of P n 52 (p). The fiod 2 intersection number between 1 and I is equal
to one, since 7 changes sides of 1 locally around ß and only there. It follows that 7 is
not nullhomotopic. By the Theorem of Möbius, 1 has at least three illfiection points.
Notiee that an inßection point of 1 different from ß corresponds to a point on 1 with
osculating eircle on S2 (p) being a great circle. Hence the corresponding osculating
plane of, passes through p. It follows that if p is not an honest vertex, there are at
least three points all of whieh are different from p whose oseulating planes pass through
p. It is also eIear that none of these points is an honest vertex. If p is an honest vertex
there are at least two such points. 0

We end this seetion by giving an exaluple. We will need the following lemma in
whieh we denote the closed unit ball by BI.

Lemma 2.4. Let f : SI -+ S2 be a smooth regular spherical curve which may have
self-intersections, and let x be a point in BI. Assume there are points p, q E , such
that the osculating planes at p and q pass through x. Then there is at least ane honest

vertex on the open are ,I(p,q).

Proof. We divide the proof into two parts:
(Gase 1) If x lies on the sphere S2, then x is an intersection point between the osculating
circle Cp at p and the osculating circle Cq at q. Then the assertion follows immediately
from the result of A. I(neser that the osculating circles of an arc without vertices do
not intersect.
(Gase 2) Assume that x lies in the interior of BI. Let IIp and II q be the oseulating
planes of the curve , at p and q respectively. We set

Sinee x E IIp n IIq , L is not empty. Thus L is a line passing through the point x. Since
x is an interior point of BI, the line L must meet S2 in two points. Let y be oue of
them. Then we have y E IIp n II q and the assertion follows from the first case. 0
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Remark 1. Notice that Lemma 2.4 together with the Theorem of A. I(neser and Segre
immediately implies the foul' vertex theorem. This is very similar to A. Kneser's original
proof.

Remark 2. Using the same argument, one can easily generalize the assertion of the
lemma to a simple closed C 2-curve fon a smooth convex surface with positive Gaussian
curvature and a point x in the compact region bounded by the surface. (Instead of the
result cf I(neser, apply I-Lemma A.9 to Example 2 in I-§2.)

We give an example of a simple closed spherical curve f with the following property:
There is a point q in the boundary 0/ the convex hull 0/ f such that there are Jour
distinct points whose osculating planes contain q, but there are only two such points
which are not honest vertices. This example seems to contradict section 9 in Segre's
paper [Se], where he claims that if p is in the convex hull of" but not in its inlage,
then there fiust be more than two points which are not honest vertices and whose
osculating planes contain p. Notice that we have proved in Theorem 2.2 that if p lies
in the interior of the convex huH of I, then there are at least foul' such points.

We first prove the following:
There is a smooth simple closed curve I : SI -t R 2 satisJying the Jollowing two

properties:

(1) , has three isolated clean vertices p~, P; l P; and a closed are I := ,1[x l IV'] con
sisting 0/ clean maximal vertices.

(2) Th e curvature Junction 0/ I never vanishes except on p~ ,p~ ,p; and I.

Tc see this consider the functions

{

e-l/(lxl-l)
f(x) := o

(lxi ~ 1),

(lxi< 1).

and
g(x) = _x 2 + 2.

The graphs of these functions meet in two points that we denote by p and q, see fig. 2.

Figure 2

Denote by ~ the elosed curve that we get by joining the graphs of fand 9 between
p and q. Using the method of rounding corners in Proposition 2.3 in [I(U], we find
a curve " that agrees with ~ except elose to p and q and has exactly the following
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vertices: one vertex elose to p, another one elose to q, one at the top of the graph of 9
and finally the whole interval [0,1] on the x-axis.

Set, = 1r 0 " : SI -+ S2 where 1r : R 2 -+ S2 is the inverse of the stereographie
projection and " is a curve with the two properties (1) and (2). Set

x := 1r(x'), y:= 1r(Y'), Pj:= 1r(pj) (j = 1,2,3).

Vvithout loss of generality, we mayassurne that (x >- )P3 >- PZ >- PI >- Y >- x holds.
Then ,I[x,y] lies in a cornmon osculating supporting plane IIo. Let q be the rnidpoint
of the line segment Xv. Then q lies in the boundary of the eonvex hull of ,. On ,I(y,pt]

and ,1{P3I X )' there is no point whose oseulating plane passes through q. In fact, if such
a point would exist, then there would be an honest vertex on ,1(YlP!l (resp. ,I(pa, x ») by
Lemma 2.4, whieh is a contradiction. By an intermediate argument as in the proof of
Theorem 2.1, there is at least one point on '[(Pl,P2) (resp. '[(P2,pa») whose osculating
plane passes through q. We denoted it by ZI (resp. Z2). Since ,1(PtlP:l) and ,1(P2,pa)

have uo vertices, there is no other such point on ,1(PllP2) (resp. ,1(P2lPa») by Lemma
2.4. Thus the points whose osculating planes pass through q are exactly ZI, Zz and all
points on '[[x,y]. Among them only ZI and Zz are not honest vertiees.

Thus the curve, and the point q in the boundary of its convex hull are the example
we have been looking for.

§3. Extremal points of projective line diffeomorphismso

Let pI R denote the real projective line. Let f : pI R -+ pI R be a diffeomorphism
and x E pI R. Then there is a unique projeetive transformation A x : pI R -+ pI R
whose 2-jet at x eoineides with that of f. Let us eall A x the osculating map 01 f at x.
If the osculating map A x has the same 3-jet as f in x, we eall x a projective point 01 f.
aue owes to Ghys the beautiful theorenl that any diffeomorphism f : pI R -+ pI R has
at least four distinet projeetive points, see [aT] and [Tl. In fact he proved sOlllewhat
more: f has at least four extremal points (see the definition below).

Ghys' theorem is of course reminiscent of the four vertex theorem. We will reprove it
here as an applieation of the theory of compatible intrinsic cirele systellls in section 1.
As a eonsequence we ean prove a Bose type formula as well as an analogue of part (2)
of the theorem of A. !(neser and Segre that was discussed in the last section.

Ghys proved his theorem by translating it into an equivalent statcluent about curves
in the Lorentz plane. This will also be our approach. For a proof using Sturm theory
see [aT] anel [Tl. It is interesting to notiee that in one of the first papers on vertices
[I(n], A. I(neser already considers curves in the Lorentz plane and arrives at a result
that we will use below. More preeisely, he proves that two oseulating hyperbolas of a
eurve segment, with no timelike tangent veetors in the Lorentz plane do not meet if
the eurvature of, does not have loeal extrema. The corresponding statement for eurves
in the Euclidean plane is well-known and ean be found in many elementary textbooks
on differential geometry. It was also first proved by A. !(neser in the same paper.

We will always assulue for simplicity that the diffeomorphism f is orientation pre
serving. The orientation reversing ease then follows by composing f with an orientation
reversing projective transformation.
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As will become dear when we set up the correspondence with Lorentz geometry,
the result of A. Kneser that we mentioned above implies the following fact about a
diffeomorphism f: If x E pI R is not a projective point of f, then the fixed point x
of f 0 A;I is either an attractor (sink) 01' an expellor (source). Consequently, if x is
neither an attractor nar an expellor of f 0 A;I, then x is a projective point of f. We
call a point x an extremal point 0/ fJ if there is a neighborhood I of the connected
component Fx of the fixed point set of f 0 A;I cantaining x such that f 0 A;I attracts
the points in I on one side of Fx towards Fx and expels those on the other side. If
f 0 A;I attracts points in I on the left of Fx and expels points on the right, then we
eall the points in Fx minimal points 0/ f, otherwise they are ealled maximal points.

Anather eonsequence is that if x is not an extremal point, then f and A x agree in a
diseonneeted set. Hence a point x with the property that fand Ax only agree on an
interval containing x must be an extrerual point. We eall such an x a clean extremal
point 0/ x. It is now clear what we mean by a clean minimal and a clean maximal
point 0/ f. Notice that the nations of maximal and minimal points depend on the
orientatian of pI R given by the parametrization. Changing the orientation, a minimal
point beeomes maxirnal and vice versa.

We are now in a position to state a ruore preeise version of Ghys' theoreru.

Theorem 3.1. Let f :pI R --+ pI R be a diffeomorphism Then

(1) the number 0/ connected components 0/ extremal points 0/ f is even i/ it is finite.
More preciselYJ between any two minimal points there is a maximal point and
vtce versa.

(2) f has at least two distinct connected components 0/ clean minimal points and
at least two distinct connected components 0/ clean maximal points.

The proof of the theorem follows immediately when we have associated to a diffeo
morphism f a pair of eompatible intrinsie circle systems.

Remark. Notice that we do not claim that there are clean maximal points between two
connected eomponents of clean minimal points. This is not expected to be true, see a
eounterexample in the similar case of planar curves in seetion 1, figure 1.

Before we assoeiate a pair of cornpatible intrinsie circle systems to a diffeomorphism
f of pI R, we cxplain how it relates to planar Lorentz geometry.

By eomposing f with a rotation if necessary, we ean assume that f has a fixed
point. We choose the fixed point as the point at infinity and restriet f to the reals,
R = pI R - {oo}, keeping the notation f far the restrietion. We are therefore in
the situation of a surjective strictly increasing function f : R --+ R with a nowhere
vanishing positive derivative. The orientation preserving projective transformations of
pI R correspond to the linear fractional transformations

p(x)=ax+ ß,x +8

with 00 - ß, = 1. Their graphs are the nonverticallines with positive inclination if
they have 00 for a fixed point (i.e., / = 0), otherwise their graphs are hyperbolas of
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the type
(x - a)(y - b) = _c2

with c =f:. O. Notice that a hyperbola satisfying the above equation is asymptotic
to the perpendicular lines x = a and y = b and corresponds to a linear fractional
transformation sending a to 00. The branches of the hyperbola lie in the second and
the fourth quadrant of R 2 with x = a anel x = b as axes. Thc osculating map of f at
a point Xo corresponds to such a line or hyperbola that has second order contact with
the graph of f in (xo, yo) where Yo = f(xQ). To simplify the exposition we call the
lines and hyperbolas of the above type admissible hyperbolas or only hyperbolas. Notice
that a point x is an extremal point of f if and only if the osculating hyperbola at x is
locally around the connected component containing x of the set where it coincides with
the graph of f on one siele of the graph of f. It is a luinimal point if thc osculating
hyperbola is locally below the graph, otherwise it is a maximal point.

It is now easy to prove the claim in part (I) of Theorem 3.1. Let x and Y be
minimum points and assume that there are uo extremal points betweeu them. Then
the osculating hyperbolas between x and y do not intersect by the result of A. I(neser
in [Ku] that we have already mentioned. It follows that the graph of f cannot be locally
above the osculating hyperbolas both in x and y. Hence there is a point z between x

and y in which the graph must lie locally below the osculating hyperbola.
We now begin with the definition of the intrinsic circle systems. We choose a point

(a, b) on the graph of f. The branches of the admissible hyperbolas tangent to the
graph of f in (a, b) fill up the first and the third quadrant of the complement of x = a
and y = b. Furthermore, they only meet in the point (a,b). Notice that we have a one
parameter family of these hyperbolas. We assume the parameter to go from minus to
plus infinity. Being a diffeomorphism, f only meets the lines x = a and y = b in the
point (a, b). We can therefore find admissible hyperbolas that are tangent to the graph
of f in (a, b), lying above it and not meeting it any other point. Let 1i be the set of all
such admissible hyperbolas. Then 1-l either corresponds to an open or closed half line
of the parameter. Denote the hyperbola that corresponds to the endpoint of 1i by Ha.

If Ha is not a line, we define the set

F: = {x E R I (x, f(x)) E Ha}.

If Ha is a line, then we set

F: = {x E R I (x, f(x)) E Ha} U {oo}.

The set F: is defined analogously using hyperbolas that lie below the graph of f. The
sets F: and F: are clearly independent of the choice of the point at infinity. It follows
that we can associate the sets F: and F: to aU points a E pI R, including the one that
was chosen to be at infinity.

A more intrinsic way to define F; is as follows. Let P denote the one-parameter
family of projective transformations whose I-jets at a E pI R agree with the I-jet of f
at a. We assume that this family is parameterized by the real numbers. We consider
f 0 p t-

1 for Pt E P. It follows from the considerations above that there are numbers
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t o ~ tl such that if t rt [to, t l )1 then f 0 p t-
I only has a fixed point in a. We assurne the

parameter chosen so that f 0 p t-
I moves points locally on the left of a away and brings

those on the right closer, if t < t o. Assume that the interval [to, t l ] is the slllallest
possible wi th the above property. Then F; is the fixed point set of f 0 Pt~ I anel F: is
the fixed point set of f 0 Pt~l .

Theorem 3.2. Let f : pt R --+ pI R be a diffeomorphism that is not a projective trans
formation. Then (F;)aEPIR and (F:)aEPIR are compatible intrinsic circle systems.

Proof. We first prove that (F;)aEPIR is an intrinsic circle system. Let a, b be such
that b E F;. We can assurne that a, b E R. Then b E Ha. It clearly follows that
Hb = Ha and hence that Fb• = P;. Hence (P;)aEPIR satisfies (11). Property (12)
follows from the fact that two distinct admissible hyperbolas intersect at most in two
points, or equivalently that two distinct projective transformations agree in at most
two points. Property (13) is clear. We have thus proved that (P;)aEPIR is an intrinsic
circle system. The proof that (P;)aEPIR is an intrinsic circle system is completely
analogous.

We now prove that the intrinsic circle systems are cOlnpatible. Property (Cl) is
immediate since 1 is not a projective transformation. Assume that rank· (a) = land
a E R. Then ranke (a) > 1 since f is not a projective transformation. Also a is isolated
in pO(a) for the same reason. We have thus proved (C2). This completes the proof. D

In section 1 we associated two equivalence relations "'1 and f'V2 to an intrinsic circle
system. We elenote the quotient spaces of pt R with respect to these relations by
pIR/ p. and pIR/po respectively. The sets S(p·), S(PO), T(P·) and T(PO) were
defined in section 1 as well as the llmnbers 8 (p. ), 8 (PO), t (p.) and t (PO) associated to
them. Notice that s(pe) (resp. s(PO)) is the number of connected components of the
set of clean maximal (resp. minimal) points of I. Hence the number s(/) of connected
components of clean extremal points of f equals 8(P·) + 8(FO).

We would like to interpret the meaning of the sets T( pe) and T( FO) in terms of
properties of the diffeomorphism f. The equivalence class of a is in T(pe) if and
only if there is a projective transformation P such that the fixed point set of the
mapping f 0 p-l has at least three connected components, one of them cOl1taining
a, and f 0 p-l moves all points in the complement of the fixed point set of f 0 p-l
against the orientation of pl R. Similarly, the equivalence class of a lies in T( FO) if
and only if there is a projective transformation P such that the fixed point set of the
mapping f 0 p-t has at least three connected components, Ol1e of them containing a,
and f 0 p-l moves all points in the complement of the fixed point set of f 0 p-l with
the orientation of pI R. We set t(/) = t(Fe

) + t(FO). It follows from section 1 that
t(f) is finite if 8(f) is finite.

The following Bose type formula follows from section 1. Notice that it has part (2)
of Theorem 3.1 as in immediate corollary.

Theorem 3.3. Let f : pI R -+ pt R be a diffeomorphism that is not a projective
transformation and assume that 8(f) is finite. Then s(/) - t(f) = 4.
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Remark. It follows fronl LeInIna 1.2 in [OT] that the sets S(p·) and 5(FO) are sup
ported by a certain continuous function. So by (i) of Fact 1.3, 8(/) < 00 if and only if
t(f) < 00.

A further consequence of section 1 is the following theorem.

Theorem 3.4. Let f : pI R --+ pI R be a diffeomorphism that is not a projective
tmnsJormation. Then there are Jour points al >- a2 >- a3 >- a4 on pI R such that al

and a3 are clean maximal points 01 fand a2 and a4 are clean minimal points 01 f.

We would now like to prove as a corollary of Theorem 3.4 a result that is similar to
part (2) of the Theorem of A. I{neser and Segre that we quoted in section 2: If P is a
point on a simple closed curve 1 on the unit sphere 52 that is not a vertex, there are
at least three distinct points PI, P2, P3 on 1, all of which are different from P, with the
property that the osculating planes at PI, P2, and P3 pass through p. If P is a vertex,
one cau find two such points.

Theorenl 3.5. Let f : pI R --+ pI R be a diffeomorphism and a E pI R. 11 a is not a

clean extremal point 01 f, then there are three distinct points bI, b2 and b3 , all different
Irom a and non 01 which is an extremal point, such that the osculating maps 01 f at
b1 , b2 and b3 all agree with 1 in a. 11 a is a clean extremal point, then we can find at
least two such points b1 and b2 •

Proof. The idea of the proof is exactly the same as the one we used to prove Theorem
2.1. Assurne that a is not a clean extremal point. By Theorem 3.4 there are foul' points
al >- a2 >- a3 >- a4 on pI R such that al and a3 are clean maximal points of f and a2

and a4 are clean minimal points of f. We choose the point at infinity between a4 and
al and assurne that it is different from a. We also assllme that a lies between a4 and
al. The the graph of flies between its osculating hyperbola at al and its osculating
hyperbola at a2. As we lnove from al to a2 we fiust by continuity go through a point
b1 such that the osculating hyperbola of the graph of f at b1 passes through the point
(a, f( a)). We cau use exactly the same argument as in the proof of Theorem 2.2 to
show that b1 can be chosen such that it is not an extremal point of f. We apply exactly
the sarne argument to the intervals (a2, a3) and (a3, a4) to find the points b2 and b3.

The case that a is a clean maximal point is similar. This proves the theorem. 0
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