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Introduction. The present paper is a continuation of [U] by the second author. For
the sake of simplicity, we will refer to that paper by I. For example, I-Theorem 2.1
means Theorem 2.1 in {U].

Our main goal is to study closed space curves. We will show that the following
theorem can be used to improve some known results and reprove others. Our improve-
ments will concern results of A. Kneser [Kn] and Segre [Se] on the osculating planes of
spherical curves and Sedykh’s four vertex theorem [Sd]. We will also be able to improve
Ghys’ theorem on extremal points of projective line diffeomorphisms and obtain some
new results about them.

Theorem 0.1. Letv:S! = R3? be a C%-regular convez simple closed nonplanar space
curve with nonvanishing curvature. Then ~ has at least four sign changes of clear
vertices, meaning that it has two clear mazimal vertices py,ps and two clear minimal
vertices py, py such that py > py > ps > ps holds, where > 13 the rotational order of the
curve v.

A closed space curve is called convez if it lies on the boundary of its convex hull.
Here a clear mazimal (resp. minimal) vertez (cf. I-Definition 4.4) is a point which is an
absolute maximum (resp. minimum) of the height function with respect to the binormal
vector at that point. Moreover, if the level set of absolute maxima (resp. minima) is
connected, it is called a clean mazimal (resp. minimal) vertex.

If the curve « in Theorem 0.1 satisfies one of some additional conditions, the four
points can be chosen to be clean vertices so that the osculating planes of « at these
points are mutually different. (See Corollary 1.6.) To prove the theorem, we will use
and further develop the method of intrinsic circle systems introduced in I-§1.

As an application of Theorem 0.1, we will improve results of A. Kneser [Kn] and
Segre [Se] on spherical curves. If v : §! = S$? is a simple closed curve, then Segre
proved that if p lies in the convex hull of v without lying on +, then the osculating
planes of at least four distinct points of v pass through p. We will show that this is
still true for any convex space curve v with nowhere vanishing curvature and a point



p that lies in the interior of the domain containing the curve which is bounded by
the osculating hyperplanes at the four clear vertices, whose existence is claimed in the
theorem.

Another application is the following four vertex theorem for space curves which may
not be convex: Let v be a C?-regular simple closed curve in R® with nowhere vanishing
curvature. Assume there is a point p in the interior of its convex hull such that no
ray starting in p intersects « in two or more points or is tangent to + in some point.
Then the curve v has at least four honest vertices. Here an honest verter is a point
at which the curve does not cross the osculating plane. This improves Sedykh’s four
vertex theorem for convex space curves, see {Sd].

We will also discuss how this relates to Arnold’s Tennis Ball Theorem {A1l] and the
theorem of Mdbius [M] on inflection points of curves in the projective plane.

As a further application, we also use the abstract methods in section 1 to improve a
theorem of Ghys on extremal points of projective line diffeomorphisms (see [OT] and
[T]) and to arrive at new results about them.

§1. Compatible pairs of intrinsic circle systems.

We let S? denote the unit circle with a fixed orientation. Let > denote the order
induced by the orientation on the complement of any interval in S'. Any two distinct
points p, g € S divide S! into two closed arcs [p, ¢] and [q, p] such that on [p, g] we have
g > p and on [g,p] we have p > q. We let (p,q) and (q,p) denote the corresponding
open arcs. We also use the notation p > ¢, which means p = q or p > q.

Let A be a subset of S! and p € A. We denote by Z,(A) the connected component
of A containing p. The concept of an intrinsic circle system was introduced in 1-§1 as
a multivalued function on S? satisfying certain axioms. It was used there to prove an
abstract Bose type formula. Here we recall the definition.

Definition 1.1. A family of nonempty closed subsets F := (Fp)},ecs1 of S! is called an
intrinsic circle system on S? if it satisfies the following three conditions for any p € S?!.
(I1) If ¢ € Fp, then F}, = F,.
(I2) If g € S* \ F,, then F, C Z,(S \ F}). (Or equivalently, if p’ € Fy, ¢’ € F,; and
q>=p' = ¢ = p(x q), then F, = F; holds.)
(I3) Let (pp)nen and (gn)nen be two sequences in S! such that lim, oo pr = p
and lim, o gn = q respectively. Suppose that ¢, € F}, (n =1,2,3,...). Then
q € F}, holds.

We will let rank(p) denote the number of connected components of Fy,.
The proof of the following fundamental fact, which plays an important role in the
previous paper, only uses property (12).

Fact 1.1 (I-Lemma 1.1). Let F be an intrinsic circle system. Let p, q be distinct points
on S! such that ¢ € Fy. Suppose that (p,q) ¢ F,. Then there ezists a point z € (p,q)
such that rank(z) = 1.

We will now give an application of I-§1,§2 by discussing pairs of intrinsic circle
systems satisfying the following compatibility condition.



Definition 1.2. A pair of intrinsic circle systems (F'*, F°) is said to be compatible if it
satisfies the following two conditions.

(C1) F;nFy = {p}foralipe S
(C2) Suppose that rank®(p) = 1 (resp. rank®(p) = 1). Then there are no points of
rank® = 1 (resp. rank® = 1) in a sufficiently small neighborhood of p.

For each p € S!, we denote by rank®(p) (resp. rank®(p)), the number of connected
components of Fy (resp. Fy).

The following are examples of compatible pairs of intrinsic circle systems.

Ezample 1. Let v: S' = R? be a C%-regular simple closed curve which is not a circle.
Let I" be the set of all oriented circles and lines in R%. The curve  separates the plane
into two closed domains. We denoted by D*(y) the compact domain bounded by ~
and by D°(v) the noncompact one. We assume that v is positively oriented, meaning
that the compact domain D*(+) is on the left of 4. For each p € «, there is an element
C; € T (resp. Cp € T') which has the smallest (resp. largest) curvature among C € T
that are tangent to vy in p and satisfy C' C D*(y) (resp. C C D°(y)). We call C;
(resp. Cp) the maximal (resp. minimal) circle at p. Now we set

(1.1) Fy=yNCy, F=yNnC,.

Then (F'*, F°) is a pair of intrinsic circle systems. (See I-Proposition 3.1.) Condition
(C1) of Definition 1.2 trivially holds. For a point p of rank®(p) = 1 (resp. rank®(p) = 1),
the osculating circle C, at p coincides with Cp (resp. Cp). (See I-Proposition A.5.)
In particular, condition (C2) of Definition 1.2 is also satisfied. Thus (F*,F°) is a

compatible pair. Instead of I', we can use a system of Minkowski circles in the plane.
(See 1-§3 for details.)

Ezample 2. An immersed closed space curve v : S! = R? is called convex if it lies on
the boundary dH of its convex hull H. We fix a nonplanar C?-convex simple closed
curve v and assume that its curvature function is positive. The boundary dH of the
convex hull is homeomorphic to a sphere and « divides 9H into two domains. Let 0H*
(resp. OH®) be the left-hand (right-hand) closed domain bounded by . We set

(1.2) Fy:={q€~v;pg COH"}, (resp. F,;:={q€~;pqCOH"}).

By I-Theorem 4.8, F'* and F° are intrinsic circle systems if 4 satisfies one of the
following two conditions.

(1) For each point p € «, there exists a supporting plane U, such that U,N~y = {p}.
(2) 7 has no planar open subarcs.
Moreover, (F*, F°) is a compatible pair if + satisfies one of the following three condi-
tions.
(a) v satisfies (1).
(b) ~ satisfies (2) and any tangent line of 4 meets « in only one point.

(c) 7 is a C*-convex space curve whose torsion function has only finitely many
ZEros.



In fact, (C1) of Definition 1.2 is satisfied by definition. For definitions of concepts we
are now going to use, see the Introduction. When + satisfies (a) or (b), a point p on
is of of rank® = 1 (resp. rank® = 1) if and only if it is a clean maximal (resp. minimal)
vertex by I-Lemma 4.10. When ~ satisfies (c), a point p of rank® = 1 (resp. rank® = 1)
is a clear maximal (resp. minimal) vertex by I-Proposition 4.15 and I-Proposition 4.20.
A clear maximal vertex cannot be a clear minimal vertex because 7 is not planar. Thus
(C2) of Definition 1.2 also follows in any of these three cases.

We will give a further example in §3.
From now on, we fix a compatible pair (F*, F°) of intrinsic circle systems.

Definition 1.8. If rank®(p) = 2 (resp. rank®(p) = 2), p is called a e-regular (resp. o-
regular) point. If rank®(p) 2> 2 (resp. rank®(p) > 2), p is called weakly o-regular (weakly
o-regular). An open arc I of S! is called e-regular (resp. o-regular) if all of its points
are e-regular (resp. o-regular). More generally, an open arc I of S! is called weakly
e-regular (resp. weakly o-regular) if all of its points are weakly e-regular (resp. weakly
o-regular).

If (X,T) is a circle system as defined in I-§3, the above definitions and notations are
compatible with those in I-Definition 3.6.

Definition 1.4. (1) Let I be a closed arc on S! and A be a subset of I. Then let
sup;(A) and inf;(A) denote the least upper bound and the greatest lower bound of A
respectively with respect to the order > on I.

(2) Let I = (z1,22) be a weakly o-regular arc. For any p € I, we set

pi(p) ==sup(Yy),  p2(p):= inf (Yp),
S1\J SINI

where Y, 1= F,\ Z,(F,). (By Fact 1.1, one can easily show that Y, C S\ I.) Moreover,
we extend the definition of pf. to the boundary of I as follows. If z; (j = 1, 2) is weakly
o-regular, we set

S (z;) = sup(¥Yz.), 1 (z;) := inf (Y7.).
) = sp¥e), () = B (V)

On the other hand, if z; is not weakly regular, we set

DACHES gg\g(Fz,-), HZ(zs) = inf (Fa,).

If I is a weakly o-regular arc, ui can be similarly defined on 1. We will refer to 8
and p§ as antipodal maps.

Only parts (i), (i1) and (iii) of the following Fact 1.2 will be used in the proof of
Theorem 1.4. We will not refer explicitly to the other parts and only bring them here
for the sake of completeness. Notice though that they are used in the proof of Fact 1.3
below.



Fact 1.2. Let I = (21,22) be a weakly e-regular (resp. o-regular) arc on S'. Then the
antipodal maps py = pl (resp. py 1= pd) satisfy the following properties.
(i) For p € I of rank®(p) = 2 (resp. rank®(p) = 2), [u-(p), p+(p)] C F; (resp.
[1-(p), 14 (P)] C F}) holds (where possibly u—(p) = p4(p)).
(i) pe() C S'\ L.
(iii) Let p,q € I be such that p = q. Then pui(q) = pv(p) and pu—(q) = p—(p) with
respect to the order on S'\ I. Moreover, if F; # F; (resp. Fy # F?), then

p—(q) > p4(p) holds on ST\ I.

(iv) limgp—o p4(x) = py(p) holds for any p € (z1,z2].

(v) limgopyop—(z) = p—(p) holds for any p € [z1,z2).

(vi) IfI is e-reqular (resp o-reqular), then the open arc (4 (z2), p—(z1)) i3 e-regular
(resp. o-regular). Moreover, for any q € (u—(p), u4+(p)), there exists p € I such
that g € F,) (resp. q € Fy).

Property (i) follows immediately from the definition and (ii) follows directly from
Fact 1.1. Properties (iii)-(vi) are proved in 1.3-1.7 in I-§1.

Each intrinsic circle system F* (resp. F'°) induces an equivalence relation, which
in turn induces a quotient space S!'/F*® (resp. S!'/F°). The equivalence class con-
taining p € S' will be denoted by [p]* (resp. {p]°). Then rank®([p]*) := rank*®(p)
(resp. rank®([p]°) := rank®(p)) is well defined on S'/F* (resp. S'/F*) by virtue of
(I1). We set

S(F*) :={[p]* € S'/F*; rank*([p]*) = 1},
S(F°) := {[p]° € §'/F°; rank®([p]°) = 1},
T(F*) :={[p)* € §'/F*; rank*([p]") > 3},
T(F°) = {[p]° € §'/F°; rank®([p]°) 2 3}.

The set S(F*) (resp. S(F°)) is called the single tangent subset of S /F*® (resp. S!/F°)
and T(F*) (resp. T(F°)) is called the tritangent subset of S'/F* (resp. $1/F°). More-

over, we set

s(F*) := the cardinality of the set S(F*),
8(F°) := the cardinality of the set S(F°),

HF):= Y (rank®(p) —2),

[p]*€T(F*)
t(F°):= Y (rank®(p) —2).

[plc€T(F°)

Definition 1.5. The single tangent set S(F'*) (resp. S(F°)) is said to be supported by a
continuous function 1 :S! — R if for each p with rank®(p) = 1 (resp. rank°(p) = 1),
F7 (resp. Fy) is a connected component of the zero set of 7.

In I-§3, the following was proved by using the properties in Fact 1.2.
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Fact 1.3. Let (F*,F°) be a compatible pair of intrinsic circle systems. Then the
following holds.
(1) If s(F*) < oo (resp. s(F°) < o0), then t(F*) < oo (resp. t(F°) < o0). The
converse is also true if the single tangent set S(F*) (resp. S(F°)) 1s supported
by a continuous function 7 : S' = R.
(i1) Suppose that s(F*) < oo (resp. s(F°) < o0). Then the following Bose type
formulas hold

s(F)—t(F*)=2  (s(F°)—t(F°) =2).

We will give an application of the formulas in (ii) in Section 3.
We now come to the main result of this section.

Theorem 1.4. Let (F*,F°) be a compatible pair of intrinsic circle systems. Then
there are four points py,p2,ps,pa € v satisfying p1 > p2 > ps > pa(> p1) such that

rank®(py) = rank®(py) = rank®(ps) = rank®(ps) = 1.

Proof. Suppose there are less than four sign changes of rank one points. Since the
number of sign changes is even, it must be exactly two. We set

V* = {z € v; rank®(z) = 1},
V® .= {z € v; rank’(z) = 1},

and denote by V* and V° their closures. Let I be the connected component of S\ V°
containing V*. We set

zy := sup(V*) zg = inf(V'*).
T 7

By condition (C2) of Definition 1.2, it holds that z,,z, € I. Then the open interval
J := (z1,72) is a weakly e-regular arc and so the antipodal functions p3 are defined
on J. On the other hand, I is a weakly o-regular arc and so p3 are defined on it. By
(ii) of Fact 1.2, we have

pi(N)cI,  pi(d)cd

We set
A={peJ;uZ(uZ(p)) > pon J},
B={peJ;ps(u3(p)) <ponJ}.

We suppose that p € J \ 4. Since Fro oy N ER () = 12(p), we have p # u2 (p*(p)).

Then we have _
p=puZ(uZ(p))  (on J).
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Hence (12) of Definition 1.1 for F° yields that

()2 (p2(P)) = i (pi(p) = 1i(p) = 2(p)  on [uZ(p),p].
This implies p € B. Thus we have
(1.3) J=AUB.
We will now use Lemma 1.5 below. It says there that A is nonempty. We set

q := sup(A).
T

If ¢ € A, then Lemma 1.5 also yields that there is y € A such that y > q. Thus ¢ ¢ A,
that is ¢ € B by (1.3). Then by Lemma 1.5, there exists z € B, ¢ > z, such that
(z,9) N A =@, contradicting that g := sup5(4). O

Lemma 1.5. The sets A and B are nonempty subsets of the arc J. Moreover, for each
z € A (resp. € B), [z,y] C A and (z,y)NB =0 (resp. [y,z] C B and (y,z)NA = §)
hold, where y := p° (u2(2)).

Proof. We prove the assertion for A. (The corresponding assertion for B follows if one
reverses the orientation of S!.) First we prove 1 € A. In fact, if z; ¢ A, then z; € B.
Then

o> i (a))  on T
But this contradicts the fact that z; is the smallest point contained in J. This implies

z; € A. In particular, A is not empty. Now we fix an element ¢ € A arbitrarily. Then
by definition, we have

y=p(pi(z)) > zonJ.

We fix a point z on the interval (z,y) arbitrarily. Since z > z on J, applying (iii) of
Fact 1.2 we have

ut(2) = pi(z) on T.

Then applying (iii) of Fact 1.2 again, we have

pa(pi(2) = pZ(pl(e))(> 2).

This implies z € Aand z ¢ B. O

Corollary 1.6. Let~: S! — R?® be a C?-regular convez simple closed nonplanar space
curve with nonvanishing curvature satisfying one of the following two conditions.

(a) For each point p € v, there ezists a supporting plane U, such that U,N~y = {p}.
(b) v contains no planar open subarcs and no tangent line of v meets v n more
than one point.



Then ~ has at least four sign changes of clean vertices. Moreover, at these four clean
vertices the osculating planes of v are mutually different.

Proof. As mentioned in Example 2, the pair of intrinsic circle systems (F'*, F°) is
compatible if v satisfies either one of the conditions in (a) and (b). We now apply
Theorem 1.4. We know that each rank one point on % is a clean vertex by I-Lemma
4.10. From this it follows immediately that the four osculating planes are mutually
distinct. [J

We now can prove Theorem 0.1 in Introduction. Let € be the set of nonplanar
C?-convex simple closed space curves and €y be the subset of € consisting of convex
space curves which satisfy condition (a) of Corollary 1.6. It is sufficient to prove the
following lemma.

Lemma 1.7. For each v € €, there ezists a sequence (Yn)neN n & converging to ~y
with respect to the uniform C*-topology.

In fact, assuming the lemma, we can prove the theorem as follows: Let v be a C*-
regular convex nonplanar space curve with nonvanishing curvature. By Lemma, 1.7,
there exists a sequence (v,)nen In € converging to vy with respect to the uniform
C?-topology. Since the curvature function of v never vanishes, the same is true for
vn if n is sufficiently large. By Corollary 1.6, each -, has two clean maximal vertices

("),pg ™) and two clean minimal vertices pg ),p4 such that p1 (n) o pgn) > p3 ) pﬁ")

holds. If necessary, by going to a subsequence, we may assume that there exist points
(plvp27p3)p3) such that
lim (p{", p§™, p{”, p5™) = (p1,p2,p3, P3)-

n—o0

(n) ( (n)

Since P1 ) and p;y  (resp. py ~ and p4")) are clean maximal (resp. minimal) vertices,

the limit points p(n) and p_.g") (resp. p2 ) and p ) are clear maximal (resp. minimal)
vertices. Since # is not a plane curve, a clear maximal vertex is not a clear minimal

vertex. Thus the four points are mutually distinct and satisfy py > pa = p3 > ps. O

Proof of Lemma 1.7. To prove the lemma, we recall some fundamental properties of
convex bodies. A convex bounded open region 2 in R? is called a convez body. We fix
an interior point o of 2. Without loss of generality we may assume that o is the origin
of R®. We set

p(z) :==inf{t > 0; z € tQ2} (z € R?),

where t§) := {tz : = € Q}. Notice that = : Q0 — S? defined by #(z) := z/|z| is a
homeomorphism. We have the expression

(1.4) p(z) = zlp(z/lz]) = |zln ™" (z/z]).

Thus p : R® = R is a continuous function. Moreover the function p satisfies the
following properties (cf. Proposition 1.1.5 in [KR]).

(1) For each z € R3, p(z) > 0 and p(z) =0 if and only if z = o.

(2) p(az) = ap(z) for any real number a > 0.

(3) p(z +y) 2 p(z) + ply) for all z,y € R,
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Furthermore €2 can be expressed as
(1.5) Q= {zeR’; p(z) < 1}.

The convex body §2 is called strictly convez, if for each boundary point p € Q, there is
a plane U passing through p such that Q NU = {p}. One can easily show that Q is
strictly convex if p satisfies the condition that

(1.6) p(z +y) < p(z) + p(y)

for any two linearly independent z,y € R®. Conversely, if there exists a continuous
function p: R® — R satisfying the three properties (1)-(3), the open subset Q defined
in (1.5) is a convex body.

Now we fix a C?-convex space curve v : {0,1] = R?. Let Q. be its convex hull.
Without loss of generality, we may assume that (2, contains the origin o in its interior.

Let p be the continuous function satisfying (1)-(3) associated to the convex body ..
We set

(1.7) 7= n(v),

where 7 : 30 — S? is the projection defined above. Then % : [0,1] = S? is a C?-regular
embedding. By (1.4), we have v = {p(7}}5. We set

Then p, satisfies (1)-(3) and also (1.6). Thus the associated convex body Q, is strictly
convex. We set

(1.8) T(t) = pa(3(1)) -4(t) (¢ €[0,1]).

Notice that p,(7(t)) is clearly C? in t although p, is only continuous. Thus each curve
7o is a C%-regular simple closed curve that lies in the boundary of Q,. Since Q,, is
strictly convex, v, satisfies condition (a) of Corollary 1.6. Moreover, it is obvious that
Yn converges to v in the uniform C?topology. O

We next give an example of a plane curve v with the following two properties:

(1) There are only four sign changes of clear vertices, although 4 has more than
four clean vertices.

(2) The number of clean or clear maximal vertices are not equal to the number of
clean or clear minimal vertices.

In particular, this example shows that we cannot improve the number of sign changes to
2n in Theorem 1.4 when the curve vy meets a circle in 2n points such that the rotational
order on « and the circle coincide. In fact, since the number of clean vertices exceeds
four, we may assume that the number of maximal clean vertices is at least three. By
(ii) of Fact 1.3, we have t(F*) > 1, i.e., there is a triple tangent enclosed circle C.

9



Expanding C slightly by a homothety with the same center as C, we get a circle C,
which meets < in six points whose order on C, coincides with that on +.
The curve v is constructed as follows: Consider the ellipse

2

T
M T+y2=1

that we assume to be positively oriented (i.e. with an inward pointing normal vector).
We shrink it by a homothety with the dilation factor /1 — €, where ¢ > 0is a sufficiently
small number. Then we have another ellipse
z? 2
Yo Y +y‘=1—¢

that we assume to be negatively oriented (i.e. with on outward pointing normal vector).
We also consider the parabola

T =4y’ -1
oriented in the negative direction of the y-axis.
B
BV
P s
AV)A
Ql
Q ‘D/
D
Figure 1-a. Figure 1-b.

Then +; (resp. v2) meets the parabola in two points P, @ (resp. P',Q’) as in Figure
1-a. Note that with the orientation chosen above and notation as in Figure 1-a the arcs
@D, D'Q’' and PP’ are curvature decreasing and BP, P'B' and Q'Q are curvature
decreasing. We can round the corners at P,Q (resp. P’, Q') introducing exactly one
(resp. three) vertices using the method of Proposition 2.3 in [KU], and get a simple
closed curve 7 as in Figure 1-b with the following vertices

A,B,P, P_’_I,PO"PI’,B” A’) Df, ,—laQé)’ ,lsQaD'
Here P’,, P}, P| (resp. Q",, @f, Q}) are the vertices which appear after rounding
the corner at P’ (resp. Q'). More precisely, Py, Qq (resp. P.,, P{, Q@_,, @}) are local
maxima (resp. minima) of the curvature function. By construction,  has 14 vertices.
The clean (clear) maximal vertices are P, Pj, @, Q). The clean (clear) minimal vertices
are B, D, A’. (In fact, if € is sufficiently small, other vertices cannot be clear vertices.)

Thus the number of clean maximal vertices is greater than the number of clean minimal
vertices. Moreover, the clean vertices lie on the curve « in the order

B’ P’ P(;’ A,’ Q(’)? Q) D)
so the number of sign changes of clean vertices is only four.

We end this section by giving a further corollary of Theorem 1.4. It is a refinement
of the four vertex theorem for convex curves.
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Corollary 1.8. Let v: S' = R? be a C?-regular convex plane curve with length 2,
which is not a circle. Then the function xk* — 1 changes sign at least four times, where
k: S = R is the curvature of ~.

Proof. We may assume that « > 0. We use the notation in Example 1. Let py,...,pq
be points as in Theorem 1.4 and C; (j = 1, ...,4) the osculating circle at p;. Then as
mentioned in Example 1, we have

(1.9) Ci=C, CD*(v) (=1,3),
and
(1.10) C;=Cy D) (=24)

Since « is not a circle, the lengths of €, Cs (resp. Cy,Cy) are less (resp. greater) than
27 by (1.9) and (1.10). In particular, k > 1 at p;,ps and k < 1 at py,py. O

It should be remarked that there is an elementary proof of Corollary 1.8 using
integration that we now want to explain.

An alternative proof of Corollary 1.8. We parametrize the curve according to arclength
t (0 <t < 27) and write v(t) = (z(t),y(t)). We assume that « > 0. Since the length
and total curvature of v are both 27, we have the following identity

(1.11) j:ﬂ(n(t) —1)(az'(t) + by'(t) + ¢)dt = 0,

where a, b, c are arbitrary real numbers. If we set @ = b = 0 and ¢ = 1, this implies that
& — 1 changes sign even number of times. Suppose that the sign changes are only two.
Then we may assume that there exists ¢g € [0,2n] such that Kk — 1 > 0 on [0,%p] and
k—1<0on [ty,2r]. We can choose the numbers a, b, ¢ so that the line az + by +¢ =0
passes through the two points 4'(0) and v'(¢0). Then (k(¢) — 1)(az'(t) + by'(t) + ¢) is
a nonpositive or nonnegative function. By (1.11), this implies x is identically 1, which
is a contradiction. O
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§2. Applications to space curves.

With the methods of section 1 at hand it is remarkably easy to improve some well-
known theorems and show how others follow as corollaries. In this section we will use
Theorem 0.1 (which is a corollary of Theorem 1.4) to improve a result of A. Kneser
[Kn] and Segre [Se| on spherical curves. We will also discuss how this improvement
relates to the Tennis Ball Theorem of Arnold [A] and the Theorem of Mébius [M] that a
simple closed curve in the projective plane that is not nullhomotopic has at least three
inflection points. We will also prove a four vertex theorem for closed simple space
curves that improves a result of Sedykh [Sd]. Instead of convexity we assume that the
curve satisfies a condition of starshapedness. We do assume that the curvature does
never vanish and our theorem seems to improve existing results on this class of curves.

Assume that v : S! — S? is simple, closed and regular. Then Segre [Se] proved the
following (p. 243):

(1) If p € R? lies in the convex hull of 4 without lying on «, then the osculating
planes of at least four distinct points of v pass through p.

(2) If p lies on v and p is not a vertex, then the osculating planes of at least three
distinct points of «, all of which differ from p, pass through p.

(3) If p is a vertex of 7, then the osculating planes of at least two distinct points
of 7, both of which differ from p, pass through p.

A. Kneser proved part (2) of the above theorem as an application of the Theorem
of Mébius. This was a step in his proof of the four vertex theorem for simple closed
curves in the Euclidean plane. Segre does not say explicitly in the statement of his
theorem that the points he finds in (2) and (3) all differ from p, but this seems to be
what he proves.

Segre pointed out on p. 258 of his paper that the claim in (1) also holds for a point
p in the convex hull of a space curve v: S — R3, if p € v and no ray starting in p is
tangent to + or meets v in two or more points. This is proved by simply projecting ~

radially onto a sphere with center in p. We will also use this argument in the proof of
Theorem 2.2 below.

Our improvements of the results of A. Kneser and Segre will consist in the following:

(1) We will consider more general space curves.

(2) Instead of the convex hull of the curve, we can prove (1) for points p in the
interior of a certain polyhedron A that contains the curve and only has vertices
of the curve in its boundary.

(3) We will show that the osculating planes found in the theorem of A. Kneser
and Segre can under certain conditions been chosen to be at points different
from the vertices of the curve. This will be needed to prove the Tennis Ball
Theorem and the Mobius Theorem as corollaries. Segre also discusses such
things in his proof without summarizing them in the statement of his theorem.
We will give an example that shows that this is not true for all choices of p in
the boundary of the convex hull of the curve. This example will also show that
some of the osculating planes at the different points A. Kneser and Segre find
might coincide.
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We will be dealing with a C?-regular simple closed convex nonplanar space curve
v : 8! —» R?® with nowhere vanishing curvature. Notice that this situation is more
general than the one in the theorem of A. Kneser and Segre.

We know from Theorem 0.1 that 4 has at least four clear vertices t; = to = t3 > t4
such that ¢; and ¢3 are maxima of the height functions in the direction of the binormal
vectors at the respective points, and ¢ and ¢4 are minima of the corresponding height
functions. Let II; be the osculating plane of v at f;. Then v is contained in one of
the closed halfspaces bounded by II;. We denote this halfspace by S;. The binormal
of o at t; points out of S; if 1 is 1 or 3 and in to S; if 2 is 2 or 4. We cannot exclude
that II; = II3 and II; = II4, but it follows that II; # II;4+; since v is not planar. Let
A denote the intersection of these halfspaces or, what is the same thing, the closure
of the connected component of R® \ (I, U Il U I3 U Il4) containing 4. Then A is a
simplex if no two of the osculating planes II; coincide or are parallel. Otherwise A is
a polyhedron that might be unbounded.

We denote the closure of the connected component of R® \ (II; U II;) containing ~
by Si12. Let II; denote the osculating plane of v at t. We want to show that for every
point p € Sy, there is a t € [¢1,13] such that p € II,. Notice that the conditions on ~
as well as the conclusions we are aiming at can all be phrased in terms of projective
geometry. We can therefore, if necessary, apply a projective transformation that sends
the line in which II; and II, intersect to infinity. Hence we can assume that the planes
II; and II; are parallel and the curve + lies in between the planes. The set 52 is thus
a slab. The binormal vector of 4 at #; points out of the slab and at ¢, it points into it.

Now assume that p € 512 is not contained in any osculating plane 11, for t € (¢4, t2).
Let g; be the point on II; closest to p and let v; be the unit vector at ¢; pointing in the
direction from p to g;. The vector v is perpendicular to II, for all ¢ € {t;,2]. Notice
that vy, points out of the slab S;, since p lies in its interior, i.e., vy, points in the same
direction as the binormal vector at y(t1). By continuity, v; points in the same direction
as the binormal vector at ~(¢) for all ¢t € [t1,%2]. It follows that the binormal vector
at y(t2) points out of the slab, which is a contradiction. We have thus proved that for
every point p € Sy, there is a t € [t1, %3] such that p € II,.

We can repeat the argument above for the pairs (t2,%3), (¢3,%4) and (t4,%1) and
prove that for every point p in the interior of A = Sj2 N S23 N S34 N S41, there is an
$; € (ti,tiy1) such that p € II,;. It follows that every point in the interior of A lies in
the osculating planes of four different points of ~.

This already improves part (1) of the theorem of Segre for the following reason: A
point p in the convex hull of 4 which neither lies in the interior of A nor on + is in the
convex hull of the vertices in one of the osculating planes II;. Since # is a spherical
curve in Segre’s theorem we can choose the points t1,...,%4 to be clean vertices. It
follows that II; contains an open arc of vertices of 4 and that II; is the osculating
plane at each point of this arc. There are therefore infinitely many points of v whose
osculating planes contain p. Notice that we do not claim that these osculating planes
are different. We will see in an example below that the number of osculating planes
containing such a point p can be three. One does of course not need to assume that ~
is spherical to prove the claim in part (1) of Segre’s theorem. It is enough to have a
condition that guarantees that the vertices ¢1,...,%; are clean.
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Part (2) of the theorem of A. Kneser and Segre also follows since any point on «
which is not a vertex lies in the interior of A.

Assume that the osculating planes IIy,...,II4 are all different and let p be in the
interior of the face ANII;. Then the above argument shows that there are sy € (f2,1%3)
and s3 € (t3,14) such that p € II,, and p € II,,. Since p is also in II; we see that every
point in the open face in A NII; lies in the osculating planes of at least three different
points of 4. This improves part (3) of the theorem of Segre since the planes II;, ..., II,
are all different if v is spherical. The argument cannot be applied to points in the open
1-simplices of A in II; N3 and II; N 114, but they contain no points on ~.

We summarize what we have proved in the next theorem.

Theorem 2.1. Let v be a C%-regular convez space curve with nowhere vanishing cur-
vature. Let A be the closed polyhedron containing ~ that is bounded by osculating
supporting planes Iy, Ilz, II3 and 114 at ¢y > tg9 > t3 = t4 respectively such that II;
and II3 are mazimal and Iy and [14 are minimal. Then every point in the interior of
A 1s contained in osculating planes of at least four different points of ~. If the planes
ITy, Iy, I3 and Il4 are all different, then every point in the open faces of A lie in the
osculating planes of three different points of .

As we will see below, it is quite important in applications to know that the osculating
hyperplanes that we find do not belong to honest vertices. Recall that ¢ is an honest
vertez if the following holds: Let II; be the osculating plane of v at ¥(f) and s; and
s are such that v([s1, s2]) is the connected component of v N II; containing v(t), then
there is an € > 0 such that y(s; — ¢, s1) and (s2, 2 +€) lie on the same side of II;. In
loose terms, ¢ is an honest vertex if v does not cross II; in ¢.

The question is therefore whether one can improve Theorem 2.1 and show that the
osculating planes whose existence is claimed do not belong to honest vertices. We will
see that the answer is yes and no. Notice that Segre discusses this question in his proof
without summarizing the results in the statement of his theorem.

In part (1) of the next theorem we give an easy positive answer to this question if
p is contained in the interior of the convex hull of v. The method of proof is based on
Segre’s observation on p. 258 in his paper on how to use the spherical curve case to get
similar informations on more general curves. In part (2) we generalize Sedykh’s four
vertex theorem [Sd] that says that a convex simple closed space curve with nowhere
vanishing curvature has at least four honest vertices

Theorem 2.2. Let v : S' — R3 be a C?%-regular simple closed curve in R® with
nowhere vanishing curvature. Assume there is a point p in the interior of the convez
hull of v such that no ray starting in p intersects v in two or more points or is tangent
to v in some powint. Then

(1) there are four distinct points on v, none of which is an honest vertez, whose
osculating planes contain p.
(2) the set of honest vertices on ~ has at least four connected components.

Proof. We project ~ radially from p onto a sphere $%(p) with center in p. We denote
the new curve by 4. It follows that p lies in the interior of the convex hull of 4 and
that an osculating plane of 4 that passes through p and does or does not correspond to
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an honest vertex of 4 has the same properties with respect to 4. It is therefore enough
to prove the claim in (1) for 4. Notice that ¥ satisfies the conditions that we assumed
in Theorem 2.1 whereas v might not. Using the same notation as above, let ¢; and
t2 be points such that ¢; is a maximum of the height function in the direction of the
binormal vector at ¢; and ¢; is a minimum of the height function in direction of the
binormal vector at t;. Let II; be the osculating plane of 4 at #;. Then 7 lies between
the planes II; and II;. Denote the osculating plane at ¢ by TI; and let D} and D}
denote the disjoint open halfspaces bounded by II; such that the binormal of 4 at ¢
points into D. We define the following sets

A={tet,ta]; p¢ DF}

and
B ={telt,t:]; p¢ Dy }.

Since p is an interior point of the convex hull, we have t; € A and t; € B. Moreover,
we set '

s1 = sup(4), and s] = inf(B N [s1,12]).

If sy = s, then the osculating plane II,, of 4 at s; passes through p and s, is clearly not
an honest vertex since no neighborhood of 3; maps onto one side of II,,. If 57 < 3,
then for every t € [s1,s]], the osculating plane at ¢ passes through p. Hence the
osculating circles of F|[,, 5] on S*(p) are all great circles and therefore intersect. It
follows that the torsion of 4 vanishes for all ¢ € [s;, s]] since the osculating circles of a
spherical curve segment with nonvanishing torsion do not intersect. As a consequence
:Y|{81.8’,] is planar. It follows that :Y|[31,s’1] 1s a great circle arc since it is contained in the
osculating plane II,,. No neighborhood of [s1, s]] maps onto one side of II,,. Hence we
have proved that s, is not an honest vertex. We repeat this argument for the segments
(t2,t3), (t3,t4), (t4,t1) and get the four points s;, 57,53, 54 as claimed in (1).

To prove (2) notice that the spherical curve 7 on §%(p) changes its convexity in s;
and s. We can assume that 7|, ,,) is a locally convex spherical curve. Then the curve
4 crosses its osculating plane at s; in the direction of its binormal vector in s; and it
crosses its osculating plane at s; in the direction opposite of the binormal vector at sz
(or the other way around). The same holds true for the curve 4. By continuity, there
is a point 71 € (s1,52) where the curve 7 is locally on one side of the osculating plane.
This point is an honest vertex. By repeating this argument for (s2,s3), (s3,34) and
(s4,51), we find four different honest vertices, which belongs to different components
of the set of honest vertices. O

Remark. Theorem 2.2 has at least two well-known results as immediate applications
as we now would like to explain.

Arnold’s Tennis Ball Theorem [A] says that a C%-regular simple closed curve v on
the unit sphere $? that divides the area of the sphere into two equal parts has at
least four inflection points. Here an inflection point is a point p on the curve with the
property that locally around the connected component containing p of the intersection
of 4 with the tangent great circle C, the curve does not lie on one side of C. Notice
that the origin must lie in the interior of the convex hull of ¥ since we may assume
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that the curve is not a great circle. In fact, one can slightly generalize the Tennis Ball
Theorem by assuming that the origin lies in the interior of the convex hull of « instead
of assuming that v divides the area of S$? into two equal parts. There are therefore
at least four different points on 4 that are not honest vertices whose osculating planes
pass through the origin. It follows that the osculating circles on $? of « at these points
are great circles. Thus they are inflection points since they are not honest vertices.
This application was pointed out to us by S. Tabachnikov.

A closed curve in the projective plane which is not nullhomotopic must have at
least one inflection point. Here an inflection point is defined as for spherical curves by
replacing ‘tangent great circles’ by ‘tangent projective lines’. One sees this as follows:
if v does not have an inflection point, then we have a continuous normal vector field
along it pointing to the side « is curving. This is a contradiction since a closed curve
that is not nullhomotopic does not admit any such normal vector field. This argument
can be used to prove that the number of inflection points of such a curve must be odd,
if it 1s finite.

Mobius proved the following theorem in [M]: If 4 is a C?-regular simple closed curve
in the projective plane, then it has at least three inflection points. This follows from
Theorem 2.2 by the following argument: Let us think of the projective plane as the
plane z = —1 in R?® with a line added at infinity. Let 4 be the curve on $? whose points
are the intersections of the lines with S$? that connect the origin with the points on ~.
There are two points on 4 corresponding to a point on . Notice that ¥ is connected
since « is not nullhomotopic. It is clear that the origin lies in the interior of the convex
hull of 4, since we may assume that v is not a line. It follows that there are at least
four different points on ¥, none of which is an honest vertex, whose osculating planes
pass through the origin. These four different points correspond to at least two different
points in the projective plane that are inflection points. Since v has an odd number
of inflection points, there are at least three inflection points. Of course one can also
deduce the Mobius theorem from the Tennis Ball Theorem.

The next theorem is a consequence of the Theorem of Mobius. The proof is similar
to an argument by A. Kneser [Kn].

Theorem 2.3. Let v be a C3-regular convez simple closed curve in R® with nowhere
vanishing curvature and let p be a point on v. Assume that no ray starting in p meets
~ in two or more points or i3 tangent to v in some point. If p is not an honest vertez of
~, then there are at least three different points on v, all of which differ from p and none
of which is an honest vertez, such that the osculating planes at these points contain p.
If p 1s an honest vertez, there are at least two such points.

Proof. Let P be a plane supporting v in p and let II be the osculating plane of 4 in p.
The planes P and II can only coincide if p is an honest vertex. Let L be the tangent
line of ¥ in p. We project v radially from p onto a sphere S?(p) with center in p.
Notice that the image curve which we denote by # lies in a hemisphere of §?(p) that is
bounded by the great circle P N $%(p) and is not closed since p corresponds to the two
antipodal points in L N S%(p). Let 4 be the curve in the projective plane PZR that we
get by composing ¥ with 7 : $%(p) = PR where r is the identification of antipodal
points.
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Without loss of generality, we may assume that the point p is the origin. Then the
curve 4 is given by

() = ~(t)/|v(2)].
We assume that v(0) = p. By the Bouquet formula, it holds that

y(t) = et + n(t)ng + o(t?),

where e is the unit tangent vector at p, n is the unit normal vector at p, x(t) the
curvature and ¢ is the arc length parameter. So it can be easily shown that ¥ : S —
P?R is an immersion (at ¢ = 0), if and only if x(0) # 0.

Notice that 4 is still C? except in the point p corresponding to p where it might only
be C?. Let A be the line in P?R that is the image of I1 N S%(p). Then A is tangent to
4 in p. If p is an honest vertex, then 4 does not cross Il in p. Consequently, ¥ crosses
A 1n p, and we see that p is an inflection point of 4. Similarly we see that if p is not
an honest vertex, then p is not an inflection point of 4. Let ! be the line in P?R. that
is the image of P N S%(p). The mod 2 intersection number between 4 and ! is equal
to one, since 4 changes sides of [ locally around p and only there. It follows that 4 1s
not nullhomotopic. By the Theorem of Mdbius, 4 has at least three inflection points.
Notice that an inflection point of 4 different from p corresponds to a point on 4 with
osculating circle on S?(p) being a great circle. Hence the corresponding osculating
plane of v passes through p. It follows that if p is not an honest vertex, there are at
least three points all of which are different from p whose osculating planes pass through
p. It is also clear that none of these points is an honest vertex. If p is an honest vertex
there are at least two such points. O

We end this section by giving an example. We will need the following lemma in
which we denote the closed unit ball by By.

Lemma 2.4. Let v : S' — S?% be a smooth reqular spherical curve which may have
self-intersections, and let © be a point in By. Assume there are points p,q € v such
that the osculating planes at p and q pass through x. Then there 13 at least one honest
vertex on the open arc 7](,,’,?).

Proof. We divide the proof into two parts:

(Case 1) If z lies on the sphere S, then z is an intersection point between the osculating
circle C), at p and the osculating circle Cy at g. Then the assertion follows immediately
from the result of A. Kneser that the osculating circles of an arc without vertices do
not intersect.

(Case 2) Assume that = lies in the interior of B;y. Let II, and II; be the osculating
planes of the curve v at p and g respectively. We set

L:=1,nII,.

Since z € II, NIl L is not empty. Thus L is a line passing through the point z. Since
z is an interior point of By, the line L must meet $? in two points. Let y be one of
them. Then we have y € II, N II; and the assertion follows from the first case. 0O
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Remark 1. Notice that Lemma 2.4 together with the Theorem of A. Kneser and Segre
immediately implies the four vertex theorem. This is very similar to A. Kneser’s original
proof.

Remark 2. Using the same argument, one can easily generalize the assertion of the
lemma to a simple closed C2%-curve v on a smooth convex surface with positive Gaussian
curvature and a point z in the compact region bounded by the surface. (Instead of the
result of Kneser, apply I-Lemma A.9 to Example 2 in [-§2.)

We give an example of a simple closed spherical curve ~ with the following property:
There 18 a point q in the boundary of the convez hull of v such that there are four
distinct points whose osculating planes contain q, but there are only two such points
which are not honest vertices. This example seems to contradict section 9 in Segre’s
paper [Se|, where he claims that if p is in the convex hull of 4, but not in its image,
then there must be more than two points which are not honest vertices and whose
osculating planes contain p. Notice that we have proved in Theorem 2.2 that if p lies
in the interior of the convex hull of v, then there are at least four such points.

We first prove the following:

There is a smooth simple closed curve v : S — R? satisfying the following two
properties:

(1) - has three 1solated clean vertices py,ph,ps and a closed arc I := |z 4 con-
sisting of clean mazimal vertices.
(2) The curvature function of v never vanishes except on p,ph,ph and I.

To see this consider the functions

_ [N (el 2 ),
flo) = { 0 (2| < 1).
and
g(z) = —z? +2.

The graphs of these functions meet in two points that we denote by p and ¢, see fig. 2.

2

[ 19\
Figure 2

Denote by 4 the closed curve that we get by joining the graphs of f and g between
p and q. Using the method of rounding corners in Proposition 2.3 in [KU], we find
a curve v’ that agrees with 4 except close to p and ¢ and has exactly the following
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vertices: one vertex close to p, another one close to g, one at the top of the graph of g
and finally the whole interval [0,1] on the z-axis.

Set y = moy : 81 — S? where # : R? = §? is the inverse of the stereographic
projection and «' is a curve with the two properties (1) and (2). Set

T:= :rr(:r'), Y= W(y’)a pj = ‘;T(p;-) (.7 = 1?2a3)'

Without loss of generality, we may assume that (z >)ps > ps > p1 > y > z holds.
Then 7[5,y lies in a common osculating supporting plane Ilg. Let g be the midpoint
of the line segment 7. Then g lies in the boundary of the convex hull of v. On ¥y 5,
and 9|(p,,5), there is no point whose osculating plane passes through ¢. In fact, if such
a point would exist, then there would be an honest vertex on |, 5,) (resp. ¥|(ps,z)) by
Lemma 2.4, which is a contradiction. By an intermediate argument as in the proof of
Theorem 2.1, there is at least one point on ¥[(p, py) (t€SP. Y|(py.ps)) Whose osculating
plane passes through g. We denoted it by z, (resp. z2). Since |(p, p,) and ¥|(pq,ps)
have no vertices, there is no other such point on v|(,, 5,) (resp. ¥|(p,,ps)) by Lemma
2.4. Thus the points whose osculating planes pass through ¢ are exactly zy, z; and all
points on 'y|[z’y]. Among them only z; and z; are not honest vertices.

Thus the curve v and the point ¢ in the boundary of its convex hull are the example
we have been looking for.

§3. Extremal points of projective line diffeomorphisms.

Let P'R denote the real projective line. Let f : PR — P'R be a diffeormorphism
and £ € P'R. Then there is a unique projective transformation 4; : P'R — P!R
whose 2-jet at = coincides with that of f. Let us call A, the osculating map of f at =.
If the osculating map A, has the same 3-jet as f in z, we call z a projective point of f.
One owes to Ghys the beautiful theorem that any diffeomorphism f : PR — P!R has
at least four distinct projective points, see [OT] and [T]. In fact he proved somewhat
more: f has at least four extremal points (see the definition below).

Ghys’ theorem is of course reminiscent of the four vertex theorem. We will reprove it
here as an application of the theory of compatible intrinsic circle systems 1n section 1.
As a consequence we can prove a Bose type formula as well as an analogue of part (2)
of the theorem of A. Kneser and Segre that was discussed in the last section.

Ghys proved his theorem by translating it into an equivalent statement about curves
in the Lorentz plane. This will also be our approach. For a proof using Sturm theory
see [OT] and [T). It is interesting to notice that in one of the first papers on vertices
[Kn], A. Kneser already considers curves in the Lorentz plane and arrives at a result
that we will use below. More precisely, he proves that two osculating hyperbolas of a
curve segment 4 with no timelike tangent vectors in the Lorentz plane do not meet if
the curvature of v does not have local extrema. The corresponding statement for curves
in the Euclidean plane is well-known and can be found in many elementary textbooks
on differential geometry. It was also first proved by A. Kneser in the same paper.

We will always assume for simplicity that the diffeomorphism f is orientation pre-
serving. The orientation reversing case then follows by composing f with an orientation
reversing projective transformation.
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As will become clear when we set up the correspondence with Lorentz geometry,
the result of A. Kneser that we mentioned above implies the following fact about a
diffeomorphism f: If z € P'R is not a projective point of f, then the fixed point z
of fo A7 is either an attractor (sink) or an expellor (source). Consequently, if z is
neither an attractor nor an expellor of f o A7, then z is a projective point of f. We
call a point z an eztremal point of f, if there is a neighborhood I of the connected
component Fy of the fixed point set of fo AZ! containing = such that fo AJ! attracts
the points in I on one side of F; towards F; and expels those on the other side. If
f o AZ! attracts points in I on the left of F, and expels points on the right, then we
call the points in F, minimal points of f, otherwise they are called mazimal points.

Another consequence is that if z is not an extremal point, then f and A, agreein a
disconnected set. Hence a point z with the property that f and A, only agree on an
interval containing z must be an extremal point. We call such an = a clean eztremal
point of z. It is now clear what we mean by a clean minimal and a clean mazimal
point of f. Notice that the notions of maximal and minimal points depend on the
orientation of P!R given by the parametrization. Changing the orientation, a minimal
point becomes maximal and vice versa.

We are now in a position to state a more precise version of Ghys’ theorem.

Theorem 3.1. Let f : P!R — PR be a diffeomorphism Then

(1) the number of connected components of extremal points of f is even if it 1s finite.
More precisely, between any two minimal points there 13 a mazimal point and
vice versa.

(2) f has at least two distinct connected components of clean minimal points and
at least two distinct connected components of clean mazimal points.

The proof of the theorem follows immediately when we have associated to a diffeo-
morphism f a pair of compatible intrinsic circle systems.

Remark. Notice that we do not claim that there are clean maximal points between two
connected components of clean minimal points. This is not expected to be true, see a
counterexample in the similar case of planar curves in section 1, figure 1.

Before we associate a pair of compatible intrinsic circle systems to a diffeomorphism
f of PR, we explain how it relates to planar Lorentz geometry.

By composing f with a rotation if necessary, we can assume that f has a fixed
point. We choose the fixed point as the point at infinity and restrict f to the reals,
R = P'R — {00}, keeping the notation f for the restriction. We are therefore in
the situation of a surjective strictly increasing function f : R — R with a nowhere
vanishing positive derivative. The orientation preserving projective transformations of
P!R correspond to the linear fractional transformations

_a:z:-l—ﬁ
P(z) = po——:

with aé — B8y = 1. Their graphs are the nonvertical lines with positive inclination if
they have oo for a fixed point (i.e., ¥ = 0), otherwise their graphs are hyperbolas of
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the type
(z —a)(y —b) = —¢

with ¢ # 0. Notice that a hyperbola satisfying the above equation is asymptotic
to the perpendicular lines z = a and y = b and corresponds to a linear fractional
transformation sending a to co. The branches of the hyperbola lie in the second and
the fourth quadrant of R? with z = a and z = b as axes. The osculating map of f at
a point zg corresponds to such a line or hyperbola that has second order contact with
the graph of f in (zo,y0) where yo = f(zo). To simplify the exposition we call the
lines and hyperbolas of the above type admissible hyperbolas or only hyperbolas. Notice
that a point z is an extremal point of f if and only if the osculating hyperbola at z is
locally around the connected component containing x of the set where it coincides with
the graph of f on one side of the graph of f. It is a minimal point if the osculating
hyperbola is locally below the graph, otherwise it is a maximal point.

It is now easy to prove the claim in part (1) of Theorem 3.1. Let z and y be
minimum points and assume that there are no extremal points between them. Then
the osculating hyperbolas between z and y do not intersect by the result of A. Kneser
in [Kn] that we have already mentioned. It follows that the graph of f cannot be locally
above the osculating hyperbolas both in z and y. Hence there is a point z between z
and y in which the graph must lie locally below the osculating hyperbola.

We now begin with the definition of the intrinsic circle systems. We choose a point
(a,b) on the graph of f. The branches of the admissible hyperbolas tangent to the
graph of f in (a,b) fill up the first and the third quadrant of the complement of z = a
and y = b. Furthermore, they only meet in the point {a,b). Notice that we have a one
parameter family of these hyperbolas. We assume the parameter to go from minus to
plus infinity. Being a diffeomorphism, f only meets the lines = a and y = b in the
point (a,b). We can therefore find admissible hyperbolas that are tangent to the graph
of f in (a,b), lying above it and not meeting it any other point. Let H be the set of all
such admissible hyperbolas. Then H either corresponds to an open or closed half line
of the parameter. Denote the hyperbola that corresponds to the endpoint of H by H,.

If H, is not a line, we define the set

Ey={zeR|(z, f(z)) € Ha}.
If H, is a line, then we set
Fp = {z € R| (s, f(x)) € Hy} U{w}.

The set F,; 1s defined analogously using hyperbolas that lie below the graph of f. The
sets Fy and F; are clearly independent of the choice of the point at infinity. It follows
that we can associate the sets Fy and F? to all points ¢ € P'R, including the one that
was chosen to be at infinity.

A more intrinsic way to define F is as follows. Let P denote the one-parameter
family of projective transformations whose 1-jets at a € P!R agree with the 1-jet of f
at a. We assume that this family is parameterized by the real numbers. We consider
fo P! for P, € P. 1t follows from the considerations above that there are numbers
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to <ty such that if ¢t & [to,#,], then fo P, only has a fixed point in a. We assume the
parameter chosen so that fo P,”! moves points locally on the left of a away and brings
those on the right closer, if ¢ < to. Assume that the interval [tg,?;] is the smallest
possible with the above property. Then F; is the fixed point set of f o P.' and Fy is
the fixed point set of f o P,Tl.

Theorem 3.2. Let f: PR — PR be a diffeomorphism that is not a projective trans-
formation. Then (F?).epir and (FY)eepir are compatible intrinsic circle systems.

Proof. We first prove that (Fy).epir is an intrinsic circle system. Let a,b be such
that b € F;. We can assume that a,b € R. Then b € H,. It clearly follows that
H, = H, and hence that F} = F;. Hence (F,),ep:r satisfies (I1). Property (12)
follows from the fact that two distinct admissible hyperbolas intersect at most in two
points, or equivalently that two distinct projective transformations agree in at most
two points. Property (I3) is clear. We have thus proved that (F}),epir is an intrinsic
circle system. The proof that (Fy).epir is an intrinsic circle system is completely
analogous.

We now prove that the intrinsic circle systems are compatible. Property (C1) is
immediate since f is not a projective transformation. Assume that rank®(a) = 1 and
a € R. Then rank®(a) > 1 since f is not a projective transformation. Also a is isolated
in F°(a) for the same reason. We have thus proved (C2). This completes the proof. O

In section 1 we associated two equivalence relations ~; and ~; to an intrinsic circle
system. We denote the quotient spaces of P'R with respect to these relations by
PIR/F* and P'R/F° respectively. The sets S(F*), S(F°), T(F*) and T(F°) were
defined in section 1 as well as the numbers s(F'*), s(F°), t(F*) and ¢(F°) associated to
them. Notice that s(F*) (resp. s(F°)) is the number of connected components of the
set of clean maximal (resp. minimal) points of f. Hence the number s(f) of connected
components of clean extremal points of f equals s(F*) + s(F°).

We would like to interpret the meaning of the sets T(F*) and T(F°) in terms of
properties of the diffeomorphism f. The equivalence class of a is in T(F*) if and
only if there is a projective transformation P such that the fixed point set of the
mapping f o P~! has at least three connected components, one of them containing
a, and f o P! moves all points in the complement of the fixed point set of f o P!
against the orientation of P'R. Similarly, the equivalence class of a lies in T(F°) if
and only if there is a projective transformation P such that the fixed point set of the
mapping f o P~! has at least three connected components, one of them containing a,
and f o P! moves all points in the complement of the fixed point set of f o P~ with
the orientation of P!R. We set t(f) = ¢(F*) + t(F°). It follows from section 1 that
t(f) is finite if 3(f) is finite.

The following Bose type formula follows from section 1. Notice that it has part (2)
of Theorem 3.1 as in immediate corollary.

Theorem 3.3. Let f : P!R — P!R be a diffeomorphism that is not a projective
transformation and assume that s(f) is finite. Then s(f) —t(f) = 4.
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Remark. It follows from Lemma 1.2 in [OT] that the sets S(F*) and S(F°) are sup-
ported by a certain continuous function. So by (i) of Fact 1.3, s(f) < oo if and only if

t(f) < 0.

A further consequence of section 1 is the following theorem.

Theorem 3.4. Let f : PR — P!R be a diffeomorphism that is not a projective
transformation. Then there are four points ay = a3 > a3z = ag on PR such that a,
and as are clean mazimal points of f and ay and ayq are clean mintmal points of f.

We would now like to prove as a corollary of Theorem 3.4 a result that is similar to
part (2) of the Theorem of A. Kneser and Segre that we quoted in section 2: If pis a
point on a simple closed curve v on the unit sphere S? that is not a vertex, there are
at least three distinct points p1, p2, ps on 7, all of which are different from p, with the
property that the osculating planes at p;, p2, and ps3 pass through p. If p is a vertex,
one can find two such points.

Theorem 3.5. Let f: PR — P!R be a diffeomorphism and a € P'R. If a is not a
clean extremal point of f, then there are three distinct points by, by and bz, all different
from a and non of which is an extremal point, such that the osculating maps of f at
by, by and by all agree with f in a. If a is a clean eztremal point, then we can find at
least two such points by and bs.

Proof. The idea of the proof is exactly the same as the one we used to prove Theorem
2.1. Assume that a is not a clean extremal point. By Theorem 3.4 there are four points
a; > ay > az > aq on P'R such that a; and a3 are clean maximal points of f and a,
and a4 are clean minimal points of f. We choose the point at infinity between a4 and
a; and assume that it is different from a. We also assume that a lies between a4 and
ay. The the graph of f lies between its osculating hyperbola at a; and its osculating
hyperbola at a;. As we move from ay to a; we must by continuity go through a point
by such that the osculating hyperbola of the graph of f at b; passes through the point
(a, f(a)). We can use exactly the same argument as in the proof of Theorem 2.2 to
show that b; can be chosen such that it is not an extremal point of f. We apply exactly
the same argument to the intervals (az,a3) and (a3, a4) to find the points by and bs.
The case that a is a clean maximal point is similar. This proves the theorem. 0
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