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Introduction:

Let K be a finite dimensional G-fipace, where G ia a ~lementary abelian group,

i.e. G ~ (7I.jp7I.)n . The Borel-Quillen-Hsiang localization theorem states that

.H~(K;IFp) ---i H~(KG;IFp) is an isomorphism modulo H~({point};IFp)-torsion, where

*HG is BoreI's equivariant cohomology ([B] [Q] [Hw]). The above theorem is not true for

infinite dimensional spaces in general. As we shall see below, the Sullivan conjecture

implies that such a localization holds for infinite dimensional G-fipaces Map(EG,K),

where dim K < (D • Conversely, the main reault of Section 2 proves that if the

.':Borel-Quillen-Hsiang locallzation holds for Map(EG,X), then EG x X ia G-homotopy

equivalent to EG )( K with dim K < (D • Here EG is the usual universal contractible free

G-space. This provides an answer to a problem posed in [A2]. This question and other

problems of this nature anse naturally in the geometrie and differential topological aspects

of transformation groupa of manifolds. In particular, at present most methods of

constructing group actions on a given manifold yield only infinite dimensional Iree
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G-Bpaces. See [Al] [AB] [W] and their references.

While the localization theorem applies to p-elementary groups, and the Sullivan

conjecture holds only for p-groups, we have formulated our results for all finite groups.

The prcof of the main topological results, (Theorem 2.4) is reduced to the case of eyeUe

graups of prime order using an induetive argument. The main tool whieh provides such a.

local-to-global passage is the algebraie result (Theorem 1.1) of Section 1 whieh is a

prajectivity eriterion for integral and modular representations occuring as the eohomology

of certain G--epaces.

The proof of our eonverse of the localization theorem for G = lI/plI does not use the

proof of the Sullivan eonjeeture, but merely a statement of this kind. Therefore, it seems

appropriate to present the statement and proofs in a sufficiently flexible mannet to

aeeommodate the possible improvements. Since the Borel-Quillen Localization theorem is

essentially of homological nature, 80 are the proofs of our theorems. Thus, "the

quasicompletion funetors" which are modeled homologically after Bousfield-Kan's

completion funetors will also work in the context of Seetion 2. This approach emphasizes

those homologieal properties ofthese funetors whieh are relevant for our purposes and how

they are used in the course of the proof. Ta apply the converse to the localization theorem,

one needs to develop computation tools. At present, Lannes' results in [L] are the best

available for G = CD./py")n . Such results in conjunetion with our theorems yield more

general results for finite groups whieh are not neceasarily p-elementary abelian. In

non-technieal terms, let us mention one eorollary:

Corollary: Let G be a finite group and let X be a free G-fipace. Then there exists a finite

dimensional G-space K such that EG )( K is G-homotopy equivalent to X if and only

if for each prime pli GI, and a representative p-Sylow subgroup Gp.c:. G , there exists a

finite dimensional G --epaee K(p) such that EG )( K(p) is G -homotopy equivalent to
p P P
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X.

An interesting feature of the localization theorem aB pointed out by Quillen in [Q] is

that it is valid for compact G-spaces even if they are infinite dimensional. Tbis motivates

the following.

Problem: Suppose G =7l/pll and X is a compact G---fipace. Does the Sullivan fixed point

conjecture hold for X 1

Section 1. Algebraic Preliminaries

Let G be a finite group, and let k be an algebraic closure of 0=p = the field with

p-elements. All modules are assumed to be finitely generated. A classical result of Him

[R] states that a 7lG-module M is 7lG-projective if and only if its restrictions M 11lP

are 7lP-projective for all Sylow subgroups P C. G . Chouinard has reflned tbis result [Ch]

by replacing the p-Sylow subgroups in Rim's theorem by (maximal) p-elementary abelian

subgroups. Thus the projectivity of M is detected by all its restrictions to M I7lA for all

p-elementary abelian A C. G , i.e. A ~ 7lp E9llp E9 ... E9 7lp . To decide the projectivity of

M I7lA , it suffices to consider the kA-module M S k . Thus, let A be a p-elementary

abelian group of rank n and with {e1,... ,en} a set of generators, and let I be the

augmentation ideal. It is p08sible to choose a k-subspace LeI with dimkL = r and such
2 r

thai I ~ L E9 I as k-vector spaces. Then L generates kA aB a k-algebra and for each

A E L, (A+1)P = 1 . The elements u E kA of the form u = A+1, A E L (for such an

L ) are called "shifted units" and the cyclic subgroups S == (u) of order p are called

"sbifted cyclic subgroup". (See [Cj]). In [D] Dade has proved that a given kA-module

M is kA-projective (hence kA-free since kA islocal) if and only if MI kS is

kS-projective for all such shifted cyclic subgroups of kA . (Note that almost all shifted
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cyclic subgroups of kA do not come !rom cyclic subgroups of A .) We will fix L for the

rest of the following discussion.

In [A2] J the author proved the following projectivity criterion which will be used in

Section 2.

1.1 Theorem. Suppose X is a connected G-space such that for each maximal

*p-elementary abelian subgroup A.c G J the H (-;k)--spectral sequence

X ----. EA )( AX -----t BA collapses. Then .mHi(Xik) is a projective kG-module if and
1>0

only if it is projective as a kC-module for every subgroup C.c G of order p. Similarly,

E9 Hi(X;1l) is a projective 1lG-module if and only if it is 1lC-projective for all cyclic
i>O

subgroups C of prime order.

Note that if X is a Moore space with G-action and XG f 0 , then the conditions of

Theorem 1.1 are satisfied, and we get a projectivity criterion for the cohomology of Moore

spaces with G-action.

Section 2. A Conyerse to the Localization Theorem

By a "converse" we mean the following. Given a finite dimensional G-space X, the

Borel-Quillen-Hsiang theorem teIls us how to get information about the cohomology of the

fixed point sets for G = p-elementary abelian. Now suppose instea.d of the finite

dimensional G-tipace X, we are given only the Borel construction r: Y ----. BG (or

*equivalently the corresponding infinite dimensional Iree G-space J:t = r (EG» and the

localized equivariant cohomology information of the type in the conelusion of

Borel-Quillen-Hsiang theorem. Then we can recover a finite dimensional G-space X
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whose Borel construction EG )( GX --+ BG is "the same" as Y ---+ BG (in the sense of

fibre homotopy equivalence). The key to such a construction is a statement of the type of

Sullivan's fixed point conjecture.

In this section, we will use "completion functors", homologically modeled after

Bousfield-Kan's completion functors [BK]. For simplicity of exposition, we will asaume

that our functors are defined for all topological spaces; however, such functors may have

smaller domains of definition in the course of applications, in which case, the appropriate

modification of the following properties is necessary. Recall that the Bousfield-Kan

[f -eompletion functor satisfies the following:p

(CO) R is a functor !rom the category of topological spaces to itself.

(Cl) R commutes with arbitrary disjoint unions and finite products.

(C2) There is a coefficient ring R associated to R such that if f: X --+ Y

induces an isomorphism F.: H.(XjR) --+ H.(YjR) , then

R(f). : H.(R(X)jR) --+ H.(R(Y)jR) is also an isomorphism.

(C3) There is a full 8ubcategory of topological spaces Top(R) (associated to R)

and there is a natural transformation T: identity ---+ R which s&tisfy:

i) H rl(X) =0 , then X E Top(R) .

ii) H X E Top(R) then R(X) E Top(R) .

iii) For all X ETop(R) , the map T(X): X --+ R(X) induces an

H.(-jR~somorphism.

Definition (i) A functor R satisfYing (CO)-{C3) above is called a "quasicompletion

functor fl
•

(ii) Let G be a category of groups and R be a quasicompletion functor. We say

that 1Li! adapted to G if the following is satisfied. Here E is a universal contractible

~pace.

(C4) For all G E G and all finite dimensional G-spaces X such that H.(XjR)
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and H.(XG;R) are finitely generated, the map of constants

X
G

---+ MaPG(E,X)

induces an isomorphism H.(R(XG)iR) ---+ H.(MaPG(E,R(X))iR) .

When R = IFp and Rp is the Bousfield-Kan [BK] (fp-completion, then Hp is

adapted to the category of all finite p-groups by the validity of the Sullivan's eonjecture

mentioned above. For the Bousfield-Kan Top(R) consists of [fp-good 8paces [BK].

Remarks. (a) The condition on ~l(X) in (C3) may be weakened to lI*(~l(X);R)= 0 ,or

even Hl (X;R) = 0 in applications.

(b) The eondition (C4) is essentially the Sullivan fixed point eonjecture which has

been proved for p-group independently by G. Carlsson, J. Lannes, and H. Miller. The

important special case where G acts triviallyon X was done by H. Miller in [M]. See

also [Cl [L].

(e) Sullivan had stated his conjeeture for p-groups. It ia worth noticing that the

Sullivan fixed point conjecture ia not true for G---fipaces where G is not a p-group. In

[A3] the author has shown that for any finite group G which ia not a p-group there

exists a fixed-point free G-action on IRn . These easily provide counterexa.mples. However,

one may still ask the following:

Under whieh circumstanees for a finite G-eW complex X the existence of an

equivariant map EG ---+ X implies that XG 'f 0 ?

We eonsider first the case G = ll./pll. . This case is ,sufficient for many applieations.

2.1. Theorem. Let G = 71lp7/. , and let X be a free G-space such that 7r1(X) = 0 and

H.(X) is finitely generated. Let R be the Bousfield-Kan [fp--eompletion (or any

quasicompletion funetor adapted to G = {ll./p71} whose eoefficient ia 0=p ). The

conditions (AOHA2) tagether are necessary and sufficient for the existence cf a finite
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dimensional G-complex Y such that: (i) y G E Top(R) ,(ii) H.(yG) is finitely

generated, and (iü) E)( Y and X are G-homotopy equivalent.

(AO) MaPG(E,R(X)) belongs to the image of R up to IFp-homology isomorphism.

(Al) There exists a finite dimensional complex F E Top(R) with H.(F) finitely

generated, and a map 1J: F ----. MaPG(E,X) such that "the induced map"

~ : R(F) --+ MaPG(E,R(X)) induces H.(-;IFp)-isomorphism. (See the

remark below.)

(A2) The map ;\: Mapa(E,R(X)) ----. Map(E,R(X)) induces a Borel-Quillen

•localized isomorphism in Ha(-jlFp)-theory.

Remarks:

1. "The induced map" ~ is obtained as follows. The map " of (Al) has an adjoint

map ,.,: E )( F --+ X . Then ~ is the adjoint map of the composition

E )( R(F) --+ R(E) )( R(F) ~ R(E)(F) ReID t R(X) .

2. Let U8 observe that for G = ll./p71. and t EH2(Gjll./P71) nilpotent for p =odd

or t E H\1l/271;ff2) for p = 2 , the Tate cohomology tI.*(Gjffp) coincides with

H*(G;ffp) [}] . When X =point, the localized equivariant cohomology read8:

* 1..A· * 1
HG(J>ointjn=p) [tl ~ J1 (Gjg:p) . Thus, we may denote the functor Ha (-;IFp) [tl by

tI.~(-jffp) for 8hort and suggest the properties of Tate cohomology a8 weil.

Proof. Suppose such a Y exists, and let F = yG . Consider "The map of constants"

F --+ Mapa(E,y) which becomes a homology equivalence upon applying R (by virtue

of condition (C4)): H.(R(F)jlFp) ~ H.(Mapa(E,R(Y);1Fp)) . For simplicity of notation,

H* denotes homology with 0=p--eoefficients throughout this proof.

Since Mapa(E,E) has the homotopy type of a point, one has
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Mapa(E,X) ~ Mapa(E,Exy) ~ MaPG(E,E) x MaPG(E,Y) on the level of path

components. Thus one has the map F --+ MaPO(E,X) such that the composition below

induces an H*--equivalence:

(Note that the homotopy fixed-point set is an invariant of O-maps which are

non--equivariant homotopy equivalences.) Hence R(F) --+ MaPO(E,R(X)) is also an

H*--eqwvalence and conditions (AO) and (Al) are seen to be necess&ry. To see the

necessity of (A2), consider the diagram:

R( yG) h1 Y --""""tl Y ------tt Map(E,E x Y) ---tl Map (E ,X)

lu 1
Mapo (E, R(Y)) ------tt Mapa(E,R(X» -------tt Map(E ,R(X))

\ /
MaPO(E,R(E x V))

(Diagram 1)

In the above, all maps which are not labe1ed induce H*--eqwvalence, since various

spaces involved belong to Top(R) and R = IFp by the hypothesis. u is an

H*--equivalence since R satisfies (C4). h1 induces ilG(-jlFp)--isomorphism by the

Borel-Quillen localization theorem ([Q] [Hw]). It follows that ~ also induces such an
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isomorphism, and condition (A2) is also necessary.

We sketch now the proof that the above conditions are also sufficient. Consider the

composition fO== L • ,., where ,.,: F --+ MaPG(E,X) , and

L : MaPG(E,X) --+ Map(E,X) are given by (Al) and the inclusion, respectively. The

strategy is to add (finitely many) free G-eells to F 80 that the map iQ is extended to a

highly connected map. One obtains the diagram below:

F _-....1]_-+. M a PG (E,X)

j1 l'
y 0 • Map (E,X)

(Diagram 2)

Here, Y~ = F and we may &Bsume that the cofibre of f is a Moore space with

finitely generated homology, since H*(X) is assumed to be finitely generated. At tbis

point, it may be helpful for the reader to consider the special case where %"I (F) = 0 , where

(C4) is true without any completion (according to the validity of the Sullivan conjecture in

this case.) In this case the proof is much simpler technically since f ia readily seen to

satisfy the following claim.

We claim that f induces an isomorphism for the functor ftG(-;IFp) so that the

red~ced homology of the cofibre of f is cohomologically trivial as aG-module. From tbis

claim, the proof of the theorem is completed &s follows. Let Cf be the cofibre of f , and

n*(Cf) be its reduced homology. Then ft(GiIr*(Cf)) ~ fta(Cf'{point}) vanishes

*((f -coefficients), which is sufficient for the cohomological triviality of H (CplFp) for
p *

G = ll./pll. . Since H (C[ill.) is finitely generated and we may &Saume it to be ll.-Iree as

weil, it follows that it is llG-projective ([R]). Hy standard arguments (e.g. [A3] Chapter

I and 11) we may add Iree ~ells to YO and extend f to a homological equivalence,

which we continue to call f: Y --+ Map(E,X) . Since X and Y are l-eonnecied, ihis
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yields a homotopy equivalence. The evaluation map f: E x Map(E,X) --i X,

c:(f,e) =f(e), e E E , is equivariant and a homotopy equivalence. Hence it is a

G-homotopy equivalence &ince both spaces are G-free. (Note that the action on

E x Map(E,X) is the diagonal action and the action on Map(E,X) is by conjugationJi.e.

~(X) == gf(g-lX).) This finishes the proof and it remains to establish the claim.

The proof of the claim is based on studying a number of commutative diagrams:

h1 f
F - Y~ -------tl Y0 I Map(E JX)

PI laI lßI
R(Y o)G • R(Y0) ~ R Map(E ,X)

1 1a2 lß2

Mapa (E, R(Yo)) --+ Map( E, R(Yo)) --i Map(E ,R(Map(E,X))

l~ lT / ß
3

MaPG(EJR(X)) ---+ Map(E,R(X))

(Diagram 3)

(Diagram 4)
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(Diagram 5)

In diagram 3 we have the following tlG-isomorphisms: hl' Q1' ßl' Q2' ß2 and ß3 j

and in diagram 4, we get (1 and '{J induce H*-i80IDOrphisIDS. In diagram 5, the dotted

arrows exist by the functoriality oe R and 70 induces an H*-isoIDorphism. It follows

from spectral sequence argu~~ts that ~ induces a Borel-Quillen localized isomorphism.

Combining these with a study of the diagram:

h3Y Mapa(E,R(Yo)) -----tl Map(E, R(YO))

R(F)~ 1'{J lr
1/ MaPG(E,R(X)) ---.....-fl Map(E,R(X))

we finally conclude that I induces a Borel-Quillen localized iSOIDOrphisID. This is used in

conjunction with a spectral sequence argument to show that in the diagram below f

induces a Borel-Quillen localized i80morphism:

Y0 __f_--tl Map(E,X)

0 31 lß4

Map(E, R ( Y0)) __1_--+1 Map (E, R(X))
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Here ß4 = ß3 •ß2 •ß1 . Thus, tIG(Cf'{Point}) = 0 and the claim is established.

o

For the case of finite complexes, we find obstructions in ftO(llG) which are algebraic

in nature and may be treated separately from the homotopy-theoretic aide of such

problems.

2.2. Theorem. Given G,X, and R as in Theorem 2.1, suppose that (AOHA2) are

satisfied, and in (Al) F is a finite complex with similar properties. Then there is an

obstruction w(X) E Rü(llG) such that w(X) = 0 if and only if there exists a finite

G-complex Y such that E)( Y and X are G-homotopy equivalent and y G = F . The

obstruction w(X) does not depend on F as long as F aatisfies (Al). (ftÜ(11G) is a

certain subquotient of RO(llG) in general).

2.3. Remark. It ia not always true that w(X) ia independent of F for any finite group

G . For G = 11/p1/. , this ia a consequence of the triviality of the Swan homomorphism

(1G : (ll/pll)x ---+ Ro(llG) . Thus, in this case if such a finite Y exists, and if F I is any

finite complex which admits an IFp-homotopy equivalence F' ---+ F , then there exists a

finite G-<omplex y' such that (y/)G = F' and E)( y' is G-homotopy equivalent to

X as well (cf. [A3]).

2.4. Example. Let R be the Bousfield-Kan 0=23--rompletion functor, and let G be the

cyclic group of order 23 acting on M ~ 11/4711 via the indusion of

G CAut(1l/47"8.) ~ 71/46"8. . The calculations of Swan shows that there is no finite

G-eomplex X with Ir*(X) ~ M as a 7lG-module. However, there are finite dimensional

G-eomplexes Y such that lI*(Y) ~ M as llG-modules. For any such Y
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II(YjlF23) = 0 and yG E Top(R) . However, it is not possible to find a finite G-complex

K such that E)( K and E)( Y are G-homotopy equivalent.

Next, we briefly outline how we can generalize 2.1 from 1l.lp1/. to general finite

groups. Let G be a finite group and p be any prime dividing order of G . We define the

following sets of subgroups of G :

Pp(G) :: {P .c G 11 Plis a p-power}, p(G) == U Pp(G) ;
pllGI

P I/P2 ';;; (1/./p7L)r fot some r ~ O}, A(G) == U A (G) .
pllGI p

The following proposition provides us with the necessa.ry conditions for "finiteness" of

G-ßpaces in the appropriate context. A siInilar result with appropriate modifieations hold

for finitely dominated G-spaces in the equivariant sense. As pointed out earlier, the reeent

proofs of the equivariant Sullivan conjeeture show that the quasieompletion {unetors whieh

are used in the following proposition form a nonempty set!

2.5. Proposition. Suppose that G is a finite group and p is any prime dividing IGI,

and let Rp be the Bousfield-Kan completion or any quasi-<:ompletion funetor whose

associated coefficients is IFp . Assume that Y is a finite dimensional G-spaee sueh that

H*(yP;1Fp) ia fini tely generated for each P E Pp(G) and yP belong to Top( Rp) . Let

X be a free G-space such that EG )( Y and X are G-homotopy equivalent. Then for

eaeh PEp(G) and each (Pl'P 2) E Ap(G) the following hold:
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(BO) All spaces Mapp(E,Rp(X)) are H.(-;0=p)--equivalent to spaces in the image

of Rp '

(BI) There exist finite dimensional complexes F(P) E Top(Rp) with finitely

generated H.(F(P);IFp) and maps q(P): F(P) ----t Mapp(E,X) such that

~ : Rp(F(P)) ----t Mapp(E,Rp(X)) is an H.(-jO=p)--equivalence.

(B2) The map ~(P1,P2):. MaPP1
(E,Rp(X)) --+ MaPP2

(E,Rp(X)) induces a

Borel-Quillen localized isoIDorphism for the group A =Pl/P2 .

Proof. Let F(P) =yP and q(P) aB in Theorem 2.1 (where F(P) and q(P) are denoted

by F and 1/ respectively). Since the first two conditions are consequences of the

properties of.quaBi-<:ompletion funetors as in Theorem 2.1, we will justify the last
/ ..

condition only. Consider the following commutative diagram.

The maps F(P.) ----t Mapp (E,Y) are given by the maps of constants
1 .

1
p.

Y 1 ----t Mapp (E,Y) , and the maps T. and q. induce H*-isomorphisms, where H*
. 1 1
1

denotes homology with IFp-<:oefficients as in 1.1. Moreover, since dim F(P2) < CD, 01
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induces a Borel-Quillen localized isomorphism in tIA-theory, where A == P I/P2 . Thus

tIA(F(P2),F(P1)) = 0 . Comparison of the Serre spectal sequences of the Borel

constructions of vanous spaces involved show that the map

induces also a Borel-Quillen localized isomorphism aB well. Since E)( Y and X are

G-homotopy equivalent, the map

~ : Mapp (E,R (X)) -------+ Mapp (E,R (X))
1 P 2 P

induces a Bore1-Quillen localized isomorphism, aB in Theorem 2.1.

o

2.6. Theorem. Let G, p ,and Rp be aB in Proposition 2.1 above. Let X be a free

G-space Buch that the conditions B(O)-B(2) of Proposition 2.1 are satisfied. Then there

exists a finite dimensionsl G-space Y such that H.(yP;1Fp) are finitely generated,

y P ETop(Rp) for each P E Pp(G) ,and E)( Y and X, are G-homotopy equivalent. If

the complexes F(P) are taken to be finite complexes, then there exists an obstruction

w(X) E :Rü(llG) such that w(X) =0 if and only if Y is G-homotopy equivalent to a

fini te G-romplex.

Outline of prcof: In order to prove that such a Y exists, we actually proceed to

construct the p-singular set of Y ,Le. Sp(Y) = U y P for each p I IGI, in
I:f;PEPp(G)

order to obtain map8 hp : Sp(Y)~ Map(E,X) which are equivariant and such that the

induced map8 A P : R (8 (Y)p)~ Mapp(E,R (X)) induce H.-i80morphis1D8 forp p p p
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each PEP (G) ,where H. = H.(-j[f ) as berore. By adding free G-cells to US (Y)
P P p P

we make the map Uh : US (Y) --+ Map(E,X) highly connected and we obtain
p p p P

f : Y0 --+ Map(E,X) 80 that the cofibre Cf of f ia a Moore space, and

Sp(Yo) == 5p(Y) . Then we try to show that 1r.(Crill) ia llG-projective. In cases where we

deal with finite complexes, the class [JI.(Cf)] E ftO(llG) will represent the finiteness

obstruction w(X) which will be only well-defined up to ambiguity arising from different

ehoices of Sp(Y) in the course of this construetion. Thisleads, then, to a well-defined

obstruction, denoted again by w(X) (hy abuse of notation) in a subquotient of ftO(llG) .

In order to show that 1r.(C[ill) is llG-projective, we use the projectivity criterion

Theorem 1.1 to reduce the problem to showing that H.(C[ill) IllC is lle-projeetive for

each C.c. G, ICl = p . Hut in this case, we are in the situation of Theorem 2.1, since by

construetion Rp(YOC) --+ MaPC(E,Rp(X)) induces a homology isomorphism, and other

conditions are also satisfied, as one ean check from the hypothesis. Hence the proof of

Theorem 2.1 shows that H.(Cf) IllC is llC-projective for any such C.

Fix a K E Pp(G) . It remains to show how to construct Sp(y)K. We proceed by

induction on the lattice of ~ubgroups Pp(G) . Suppose that

hP : S (Y)p -------t Map(E,X) is construcied for allsubgroups P such that K CP ,
p f

h P : R (5 (Y)p) --+ Mapp(E,R (X)) induces an H.-isomorphism. Let L denotep p p p

S (Y) for short. We add free W(K) == N(K)/K cells to LK and extend it to G-orbitsp

(whieh are added to L in the usua! fashion) so that the map a: Lo--+ Map(E,X) in

tbis way s&tisfies the following: the eofibre of a(K) : LOK --+ MaPK(E,K) , call it

C(a(K)) has homology (i.e. Ir.(-jlFp)) only in one dimension, i.e. it is a

H.(-j[fp)-Moore space. Now II'.(C(a(K))) is an IFp(W}-module and we claim that it is

IFp(W)-free. Using the modular version of the projectivity criterion (Theorem 1.1), we

need to check tbis for each cyelie subgroup of order p, S&y C CW, IC I = p . We have

the exact sequence: 1 ---+ K ---+ K I --+ C --+ 1 where IK I I = p • IK I . Hence, by
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the induction hypothesis Rp(LOK' ) --+ MaPK' (E,R)p(X» induces an

H*-isomorphism. Translating this into W-aetionB) we have (LaK)C' = LaK' and

Rp((LaK)C ----i MaPc(E,~(X)K) is a homology isomorphism. On the other hand, by

studyjng the diagram

L K a(!9 •MaPK(E, X)a

1 1
(La K)C •MaPK(E, X) C

1= 1=
K'

• MaPK' (E, X)La

1 ,
t'

1
Rp(LaK ) I MaPK' (E,Rp(X»

aB in Theorem 2.1, we conclude that H*(C(a(K») is cohomologically trivial, hence

(fpG-projective. This (fpG-prOjective module can be killed and the map a(K) will be

made more connected so we achieve the inductive step. Cl

We have the following interesting application:

2.7. Theorem. Let G, p ,and R
p

be as in Proposition 2.5. Let X be a G---fipace such that

X and Mapp(E,X) belong to Top(Rp) for each P E Pp(G) . Then there exists a finite

dimensional G-complex K such that E)( X and E)( K are G-homotopy equivalent, if

and only if for each cyclic subgroup Ci of order Pi there exists a finite dimensional

Cr-eomplex Ki such that E)( X and E)( Kj are Cj-homotopyequivalent.

Cl
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Section 3. Some Applications and Problems

To show that the theorems of Section 2 are useful, we need to verify the hypotheses

in some geometrically interesting situations. This involves, in particular, cohomology

computations of some equivariant function spates, or equivalently, the space of sections of

fibrations over B(1/./p1/.)n arlsing {rom Borel constructionB. In this respect, J. Lannes'work

[L] is quite relevant. Combined with BOme cohomology calculations of ceriain classifying

spaces, Lannes' theorem leads to finiteness results, from which we derive the validity of the

hypotheses of the main theorem 2.1 for G = 1/./p1/. . Then Theorem 2.7 allows us to derive

the finiteness conclusions for a general finite group.

We recall below the following theorem of Lannes (conjectured by H. Miller in

[Mm]). Let 1" be a ~ementary abelian group, and let K be the category of unstable

algebras over the mod p Steenrod algebra. For any spate X a homotopy class of map8

* *B~ ---+ X induces a homomorphism H (X;IFp) ---+ H (B1r;n=p) in K.

3.1. Theorem (J. Lannes UJJ.. Let X be a simply--eonnected space such that

dim Hi(XjlFp) < m for all i ~ 0 . Then the natural map

is bijective.

The first interesting case that we consider is a classical problem. Let X be a free

G-space which ia (non--equivariantly homotopy equivalent to the n-sphere Sn.

3.2. Problem. When does ihere exist a G-action on Sn such that E
G

)( Sn ia

G-homotopic to X?
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In homotopy theory, this is a problem about spherical fibrations. Let J{+(Sn) be

the monoid of self-maps of degree one of Sn . Then the spherical fibration

X --+ X/G --+ BG is classified by a map ~: HG --+ B eN+(Sn) provided that G

acts on X by degree one homeomorphisms. Problem 3.2 now tra.nslates into a lifting

problem for the fibration B TOP+(Sn) --+ B H +(Sn) for the map ~. A more refined

question is the following:

3.3 Problem. When is a spherical fibration over BG fibre homoiopy equivalent io an

orithogonal fibraiion ?

This problem involves a similar lifting problem for the fibration

BO(n+l) --+ B tN+(Sn) for ~.

According to Theorem 3.1 ihis is reduced to a lifting problem on ihe level of

cohomology over ihe Steenrod algebra (which is not an easy problem in general either I).

Now let UB recall that according to Theorem 2.7, it auflices to solve the lifting problem of

3.2 for 1/.lp1/.. (Note that Bousfield-Kan's completion [BK] su.ffices in this case). The

lifting problem of 3.3 for G = 71lp7/. in fact ca.n be 80lved on the level of cohomology due

* nto deep calculatioDB of the structure of H (B tN+(8 )jlFp) over the Steenrod algebra due

to F. Cohen [CLM] and related computations of J. Milgram and Madsen-Milgarm (Cf.

[MJ] , [Mj] and [MM] for example).

Positive solutions to Problem 3.3 for G = 7/./p7/. and Theorem 2.7 gjve a partial

anBwer to Problem 3.2. Namely, let X be a free G-space such that X ~ Sn . Then there

exists a finite dimensional G-eomplex K such that Ea )( K is G-homotopyequivalent

to X. In fact K may be taken equivariantly finitely dominated in the appropriate

context. This result ia the first step towards a complete solution of Problems 3.2 and 3.3

via methods of equivariant surgery, and it suggests that there are interesting relationships
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between Problem 3.3 and Atiyah's theorem on the K-theory of BG (to the effect that

K(BG) is the l-adie completion of the representation ring R(G) CF. [At]).

Another interesting case is to consider G-aetionB on simply-connected Moore spaces.

Let X be a Moore spare on which a finite group of square-free order acts freely. Suppose

that H.(X) has the following property with respect to the induced 1lG-module strueture:

For each prime order subgroup C CG, 1I.(X) IllC ~ P f& Q) where P is llC-projeetive

and Q is indecomposable. (P and Q depend on C). Then there exists a finite

dimensional ~pace K such that EG )( K is G-homotopy equivalent to X. The proof

of the existence of the G-space K is redueed to the special case G = 7l./p71 , thanks to

Theorem 2.7 above. In this ease, tr*(C;Q) is isomorphie to either il*(C;ll) or il*(C;l) ,

where l is the augmentation ideal. This allows one to modify the arguments (involving the

Sullivan fixed point conjecture and tannes' Theorem 3.1) for the above special case

X = Sn in order to construct the desired K.

Finally, the above discussion leads us to the following conjecture which has intersting

implications for the topological realizability of homotopy actions and the Steenrod

problem, cf. [A2] for related discussions.

3.4. Conjecture. Let M be a finitely generated ll-torsion free llG-module, where G is a

finite group. Suppose that there exists a Moore spate X with G-action such that H.(X)

is isomorphie to M aB llG-modules. Then there ex:ists a finite dimensional Moore

~pace K with the same propeny.



[Al]

[A2]

[A3]

[AB]

[At]

[B]

[BK]

[Br]

[Cj]

[Cl

[Ch]

[CE]

[CLM]

-21-

References

Assadi, A.: "Extensionslibres des actions des groupes finis", Proc. Aarhus

Top. Con!. 1982, Springer LNM 1051 (1984).

Assadi, A.: "Homotopy Actions and Cohomology of Finite Groups", Proc.

Conf. Transf. Groups, Poznan, July 1985, Springer-Verlag LNM 1217 (1986)

26-57.

Assadi, A.: "Finite Group Actions on Simply-eonnected Manifolds and CW

complexes", Memoirs AMS 257 (1982).

Assadi, A. - Browder, W.: "Construction of finite group actions on

simply-eonnected manifolds tl (to appea.r).

Atiyah, M.F.: "Characters and Cohomology of Finite Groups", Publ. I.H.E.S.

Borel, A. et at "Seminar on Transformation Groups", Annals of Math.

Studies, Princeton University Press, Princeton, N.J.

BousJield-Kan: "Homotopy Limits, Localizatian, and Completion",

Springer-Verlag LNM na. 304 (1972).

Brown, K.: "Cohomology of Groups", Springer-Verlag GTM, no. 87 (1984).

Carlson, J.: "The varieties and the cohomology ring of a module" J J. Algebra

85 (1983), 104-143.

Garlsson, G.: "The Homotopy Limit Problem", (Preprint 1986).

Chouinard, L.: nprojectivity and relative projectivity for group rings", J. Pure

Appl. Alg. 7 (1976), 287-302.

Gartan, H. - Eilenberg, S.: "Homological Algebra", Princeton University

Press, Princeton, N.J.

Gohen, F. R. - Lada, T. J. - May, P. J.: "The Homology of Iterated Loop

Spaces", Springer LNM 533, (1976).



[D]

[Hw]

[L]

[M]

[Mm]

[Mj]

[MJ]

[MM]

[Q]

[R]

[Su]

[W]

-22-

Dade, E.: "Endo-permutation modules over p-groups 11", Ann. of Math. 108

(1978), 317-346.

Hsiang, w: Y:: nCohomology Theory of Topological Transformation Groupsn,

Springer, Berlin (1975).

Lannes, J.: "Sur la Cohomologie Modulo p des p--Groupes Abeliens

Elementaires", (Preprint 1986).

Miller, H.R.: tlThe Sullivan Conjecture on Maps from ClassifYing Spacestl,

Annals of Math. 120, (1984), 39-87.

Miller, H.R.: "Massey-Peterson Towers and Maps from Classifying Spaces",

Proc. Alg. Top. Aarhus 1982, Springer LNM 1051 (1984).

Milgram, J.: "A Survey of the Cla.Bsifying SpateS Associated to Spherical

Fiberings and Surgery", Proc. Symp. Pure Math. 32 AMS (1978) 79-90.

Milgram, J.: "The mod-2 Spherical Chara.cteristic Classestl , Ann. Math. 92

(1970) 238-261.

Madsen, 1. - Milgram, J.: "Tbe Classifying Spaces for Surgery and Cobordism

of Manifolds", Ann. Math. Studies, Prlnceton University Press (1979),

Princeton, N.J.

Quillen, D.: "The spectrum of an equivariant cohomology ring 1", and "II"

Ann. of Math. 94 (1971),549-573 and 573-602.

Rim, D.S.: "Modules over finite groups", Ann. Math. 69 (1959), 700-712.

Sullivan, D.: "Genetics of Homotopy Theory and the Adams Conjecture", Ann.

Math. 100, (1974) 1-79.

Weinberger, S.: "Constructions of group actions: A survey of recent

develapments fl
, Contemporary Math. Val. 36 A.M.S. (1985).


