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Intr ion:
Let K be a finite dimensional G—space, where G is a p—elementary abelian group,
ie. G (Z/pI)". The Borel—Quillen—Hsiang localization theorem states that
UHE(K;IF p) — Hé(KG;IFp) is an isomorphism modulo H:;({point};IF p)—torsion, where
Hé is Borel’s equivariant cohomology ([B] [Q] [Hw] ). The above theorem is not true for
infinite dimensional spaces in general. As we shall see below, the Sullivan conjecture
~ implies that such a localization holds for infinite dimensional G-spaces Map(Eq.K) ,
where dim K < o . Conversely, the main result of Section 2 proves that if the
'\:Borel—Qui]len—Hsia.ng localization holds for Map(EG,X) , then E x X is G-homotopy
equivalent to EG x K with dim K < o . Here EG is the usual universal contractible free
G-space. This provides an answer to a problem posed in [A2]. This question and other
problems of this nature arise naturally in the geometric and differential topological aspects
of transformation groups of manifolds. In particular, at present most methods of

constructing group actions on a given manifold yield only infinite dimensional free
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G—spaces. See [A1] [AB] [W] and their references.

While the localization theorem applies to p—elementary groups, and the Sullivan
conjecture holds only for p—groups, we have formulated our results for all finite groups.
The proof of the main topological results, (Theorem 2.4) is reduced to the case of cyclic
groups of prime order using an inductive argument. The main tool which provides such a
local—to—global passage is the algebraic result (Theorem 1.1) of Section 1 which is a
projectivity criterion for integral and modular representations occuring as the cohomology
of certain G—spaces.

The proof of our converse of the localization theorem for G = Z/pZ does not use the
proof of the Sullivan conjecture, but merely a statement of this kind. Therefore, it seems
_ appropriate to present the statement and proofs in a sufficiently flexible manner to
accommodate the possible improvements. Since the Borel-Quillen Localization theorem is
essentially of homological nature, so are the proofs of our theorems. Thus, "the
quasicompletion functors" which are modeled homologically after Bousfield—Kan’s
completion functors will also work in the context of Section 2. This approach emphasizes
those homological properties of these functors which are relevant for our purposes and how
they are used in the course of the proof. To apply the converse to the localization theorem,
one needs to develop computation tools. At present, Lannes’ results in [L] are the best
available for G = (Z/pI)" . Such results in cc;njunction with our theorems yield more
general results for finite groups which are not necessarily p—elementary abelian. In

non—technical terms, let us mention one corollary:

Corollary: Let G be a finite group and let X be a free G-space. Then there exists a finite
dimensional G—space K such that EG x K is G-homotopy equivalent to X if and only

if for each prime p| |G| , and a representative p—Sylow subgroup G p C G, there exists a
finite dimensional Gp—Space K(p) such that EGp x K(p) is Gp—homotOpy equivalent to



An interesting feature of the localization theorem as pointed out by Quillen in [Q] is
that it is valid for compact G—spaces even if they are infinite dimensional. This motivates

the following.

Problem: Suppose G = Z/pZ and X is a compact G—space. Does the Sullivan fixed point
conjecture hold for X ?

ion 1. Algebraic Preliminaries

Let G be a finite group, and let k be an algebraic closure of l]:p = the field with
p—elements. All modules are agssumed to be finitely generated. A classical result of Rim
[R] states that a ZG—module M is ZG—projective if and only if its restrictions M | ZP
are IP-—projective for all Sylow subgroups P C G . Chouinard has refined this result [Ch]
by replacing the p—Sylow subgroups in Rim’s theorem by (maximal) p—elementary abelian
subgroups. Thus the projectivity of M is detected by all its restrictions to M|ZA for all
p—elementary abelian AL G ,ie. AN Ep ) IIp ®.. @ le . To decide the projectivity of
M |ZA , it suffices to consider the kA—module M @ k . Thus, let A be a p—elementary
abelian group of rank n and with {e,,....e } a set of generators, and let I be the
augmentation ideal. It is possible to choose a k—subspace L C I with dika =r and such

2 as k—vector spaces. Then L generates kA as a k—algebra and for each

that INL®I
A€EL, (A+1)P =1. The elements o € kA of the form o = A+1, A € L (for such an
L ) are called "shifted units" and the cyclic subgroups S = (o) of order p are called
"shifted cyclic subgroup". (See [Cj]). In [D] Dade has proved that a given kA—module
M is kA—projective (hence kA—free since kA is local) if and only if M |kS is

kS—projective for all such shifted cyclic subgroups of kA . (Note that almost all shifted
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cyclic subgroups of kA do not come from cyclic subgroups of A .) We will fix L for the
rest of the following discussion.
In [A2], the author proved the following projectivity criterion which will be used in

Section 2.

1.1 Theorem. Suppose X is a connected G—space such that for each maximal
*
p—elementary abelian subgroup A C G, the H (—k)—spectral sequence
X——E, x 4X — BA collapses. Then ® H'(X;k) is a projective kG-module if and
i>0
only if it is projective as a kC—module for every subgroup C C G of order p . Similarly,
e Hi(X;H) is a projective ZG—module if and only if it is ZC—projective for all cyclic
i>0
subgroups C of prime order.

Note that if X is a Moore space with G—action and XG # ) , then the conditions of
Theorem 1.1 are satisfied, and we get a projectivity criterion for the cohomology of Moore

spaces with G—action.

Section 2. A Conver he Localization Theorem

By a "converse" we mean the following. Given a finite dimensional G—space X, the
Borel—Quillen—Hsiang theorem tells us how to get information about the cohomology of the
fixed point sets for G = p—elementary abelian. Now suppose instead of the finite
dimensional G-space X, we are given only the Borel construction r:Y — BG (or
equivalently the corresponding infinite dimensional free G—space ¥ = 7 (Eg;) ) and the
localized equivariant cohomology information of the type in the conclusion of

Borel—Quillen—Hsiang theorem. Then we can recover a finite dimensional G—space X
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whose Borel construction Eq x ~X — BG is "the same” as Y — BG (in the sense of
fibre homotopy equivalence). The key to such a construction is a statement of the type of
Sullivan’s fixed point conjecture.

In this section, we will use "completion functors”, homologically modeled after
Bousfield—Kan’s completion functors [BK]. For simplicity of exposition, we will assume
that our functors are defined for all topological spaces; however, such functors may have
smaller domains of definition in the course of applications, in which case, the appropriate
modification of the following properties is necessary. Recall that the Bousfield—Kan

I]:p—completion functor satisfies the following:

(Co) R is a functor from the category of topological spaces to itself.
(C1) R commutes with arbitrary disjoint unions and finite products.
(C2) There is a coefficient ring R associated to R such thatif f: X — Y

induces an isomorphism F : Hy(X;R) — H4(Y;R) , then
R(f) : Hy(R(X);R) — H(R(Y);R) is also an isomorphism.
(C3) There is a full subcategory of topological spaces Top(R) (associated to R)
and there is a natural transformation 7 :identity — R which satisfy:
i) If x,(X)=0,then X € Top(R) .
ii) If X € Top(R) then R(X) € Top(R) .
iii)  For all X € Top(R), themap 7(X):X — R(X) induces an
Hy(—;R)—isomorphism.

Definition (i) A functor R satisfying (C0)—C3) above is called a "quasicompletion
functor”.

(ii) Let G be a category of groups and R be a quasicompletion functor. We say
that R is adapted to G if the following is satisfied. Here E is a universal contractible
G—space.

(C4) For all G € G and all finite dimensional G—spaces X such that Hy(X;R)
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and H*(XG;R) are finitely generated, the map of constants
X% — Mapg(EX)
induces an isomorphism Hy(R(X®);R) — Hy(Mapg(E,R(X))iR) .
When R = [Fp and Rp is the Bousfield—Kan [BK] [Fp—-completion, then Rp is
adapted to the category of all finite p—groups by the validity of the Sullivan’s conjecture
mentioned above. For the Bousfield—Kan Top(R) consists of IFp—good spaces [BK].

Remarks. (a) The condition on xl(X) in (C3) may be weakened to H,.,(rl(X);R) =0,o0r
even HI(X;R) = 0 in applications.

(b) The condition (C4) is essentially the Sullivan fixed point conjecture which has
been proved for p—group independently by G. Carlsson, J. Lannes, and H. Miller. The
important special case where G acts trivially on X was done by H. Miller in [M]. See
also [C] [L].

(c) Sullivan had stated his conjecture for p—groups. It is worth noticing that the
Sullivan fixed point conjecture is not true for G—spaces where G is not a p—group. In
[A3] the author has shown that for any finite group G which is not a p—group there
exists a fixed—point free G—action on R™ . These easily provide counterexamples. However,
one may still ask the following:

Under which circumstances for a finite G—CW complex X the existence of an

equivariant map E5 — X implies that xG +07?
We consider first the case G = Z/pZ . This case is sufficient for many applications.

2.1. Theorem. Let G = Z/pZ , and let X be a free G—space such that srl(X) =0 and
H.(X) is finitely generated. Let R be the Bousfield—Kan IFp—completion (or any
quasicompletion functor adapted to G = {Z/pZ} whose coefficient is F P ). The

conditions (A0)—(A2) together are necessary and sufficient for the existence of a finite
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dimensional G—complex Y such that: (i) YO € Top(R) , (i) Hx(YC) is finitely

generated, and (iii) E x Y and X are G—homotopy equivalent.

(A0) Map(E,R(X)) belongs to the image of R up to IFp—homology isomorphism.

(A1) There exists a finite dimensional complex F € Top(R) with Hy(F) finitely
generated, and amap n: F — MapG(E,X) such that "the induced map"
¥ R(F) — MapG(E,R(X)) induces Hy(—;F p)--isomorphism. (See the
remark below.)

(A2) The map A: MapG(E,R(X)) — Map(E,R(X)) induces a Borel—Quillen
localized isomorphism in Ha(—;[F p)—theory.

Remarks:

1. "The induced map" 4 is obtained as follows. The map 5 of (A1) has an adjoint
map 7: Ex F— X . Then ?] is the adjoint map of the composition
E x R(F) — R(E) x R(F) = R(ExF) -2, p(x) .

2. Let us observe that for G =Z/pZ and t € H2(G;H/pll) nilpotent for p = odd
or t € HI(H/ZIZ;IFz) for p =2, the Tate cohomology ﬂ*(G;[Fp) coincides with
H*(G;[F p) [%] . When X = point, the localized equivariant cohomology reads:
Hé(point ;[Fp) [%] o ﬁ*(G;le) . Thus, we may denote the functor Ha(—;IF p) [%] by
Hé(-;!Fp) for short and suggest the properties of Tate cohomology as well.

Proof. Suppose sucha Y exists, andlet F = YG . Consider "The map of constants"
F— MapG(E,Y) which becomes a homology equivalence upon applying R (by virtue
of condition (C4)): H*(R(F);[Fp) N H*(MapG(E,R(Y);IFp)) . For simplicity of notation,
H, denotes homology with [F p—coefﬁcients throughout this proof.

Since MapG(E,E) has the homotopy type of a point, one has
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Mapq(E,X) = MapG(E,ExY) ~ MapG(E,E) x MapG(E,Y) on the level of path
components. Thus one has the map F — MapG(E,X) such that the composition below

induces an H,—equivalence:
R(F) — MapG(E,R(Y)) — MapG(E,E) x Map,(E,R(Y)) —
— MapG(E,E x R(Y) — MapG(E,R(E xY)) — Ma.pG(E,R(X)) .
(Note that the homotopy fixed—point set is an invariant of G-maps which are
non—equivariant homotopy equivalences.) Hence R(F) — Map,(E,R(X)) is also an

Hi—equivalence and conditions (A0) and (A1) are seen to be necessary. To see the

necessity of (A2), consider the diagram:

R(YG) b1 L YOS -»Y -+ Map(E,E x Y) ——— Map (E,X)
l° l
Mapg (E , R(Y))  Mapg(E,R(X)) —2—— Map(E ,R(X))

NS

Mapg(E,R(E x Y))
(Diagram 1)

In the above, all maps which are not labeled induce H,—equivalence, since various
spaces involved belong to Top(R) and R = IFp by the hypothesis. o is an
H,—equivalence since R satisfies (C4). h, induces ﬁG(—;[Fp)—isomorphism by the
Borel—Quillen localization theorem ( [Q] [Hw] ). It follows that A also induces such an
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isomorphism, and condition (A2) is also necessary.

We sketch now the proof that the above conditions are also sufficient. Consider the
composition f,= ¢ + 5 where n:F — MapG(E,X) , and
L: MapG(E,X) —— Map(E,X) are given by (A1) and the inclusion, respectively. The
strategy is to add (finitely many) free G—cells to F so that the map f; is extended to a
highly connected map. One obtains the diagram below:

F—1— Mapg(EX)
/| |
Yo———— Map (E,X)

(Diagram 2)

Here, Y(O; = F and we may assume that the cofibre of f is a Moore space with
finitely generated homology, since H,(X) is assumed to be finitely generated. At this
point, it may be helpful for the reader to consider the special case where rl(F) = 0, where
(C4) is true without any completion (according to the validity of the Sullivan conjecture in
this case.) In this case the proof is much simpler technically since f is readily seen to
satisfy the following claim.

We claim that f induces an isomorphism for the functor ﬁG(—;IFp) 8o that the
reduced homology of the cofibre of { is cohomologically trivial as a G—module. From this
claim, the proof of the theorem is completed as follows. Let Cf be the cofibre of f, and
H'(C,) be its reduced homology. Then H(G/H (Cy) & H(Cp{point}) vanishes
(IF,—coefficients), which is sufficient for the cohomological triviality of H' (CgF ;) for

*
G=1I/pl. Since H (Cf;ll) is finitely generated and we may assume it to be Z—free as
well, it follows that it is ZG—projective ([R] ). By standard arguments (e.g. [A3] Chapter
I and IT) we may add free G—cells to Y, and extend { to a homological equivalence,
which we continue to call f: Y — Map(E,X) . Since X and Y are 1—connected, this
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yields a homotopy equivalence. The evaluation map ¢ : E x Map(E,X) — X,

e(f,e) = f(e), e € E, is equivariant and a homotopy equivalence. Hence it is a
G-homotopy equivalence since both spaces are G—free. (Note that the action on

E x Map(E,X) is the diagonal action and the action on Map(E,X) is by conjugation, i.e.
B(x) = g{(g_l x).) This finishes the proof and it remains to establish the claim.

The proof of the claim is based on studying a number of commutative diagrams:

¢ {
F =Y, -+ Y, —~+ Map(E,X)
7 @ By
R(Y,)® ——— R(Y,) + R Map(E,X)
%2 By

Mapg (E, R(Yy)) — Map(E, R(Y,)) — Map(E, R(Map(E,X))

(p ' / s
v v

Map(E,R(X)) — Map(E,R(X))

(Diagram 3)

R(F)
> ~
MaPG(E:R(Yo)) —f MapG(E,R(X))

(Diagram 4)



F 1 4 Y,
G
R(Y)
ol A Uy |M
sy
R(F)-——2- -1y,
(Diagram 5)

In diagram 3 we have the following ﬁG—-isomorphisms: hl’ a;, ﬂl, a, ﬂ2 and 53 ;
and in diagram 4, we get o and ¢ induce Hy—isomorphisms. In diagram 5, the dotted
arrows exist by the functoriality of R and ) induces an H,—isomorphism. It follows
from spectral sequence a.rgulggnts that & induces a Borel—Quillen localized isomorphism.
Combining these with a study of the diagram:

h
Map (E,R(Y,)) ——>—— Map(E, R(Y,))

R(F)A\ lgo ‘ l?

Mapg (E,R(X)) ——2—— Map(E, R(X))

we finally conclude that I induces a Borel—Quillen localized isomorphism. This is used in
conjunction with a spectral sequence argument to show that in the diagram below f

induces a Borel—Quillen localized isomorphism:

Y, —L— Map(E,X)

S

Map(E, R( Y,)) ——— Map(E, B(X))
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Here B, = By By B, - Thus, ﬁG(Cf,{Point}) =0 and the claim is established.

For the case of finite complexes, we find obstructions in KO(IG) which are algebraic
in nature and may be treated separately from the homotopy—theoretic side of such

problems.

2.2. Theorem. Given G,X, and R asin Theorem 2.1, suppose that (A0)—A2) are
satisfied, and in (A1) F is a finite complex with similar properties. Then there is an
obstruction w(X) € K 6(EG) such that w(X) = 0 if and only if there exists a finite
G—complex Y such that Ex Y and X are G-homotopy equivalent and YG =F. The
obstruction w(X) does not depend on F aslong as F satisfies (A1). ( R(’)(ZG) isa
certain subquotient of RO(IIG) in general).

2.3. Remark. It is not always true that w(X) is independent of F for any finite group

G .For G = I/pl , this is a consequence of the triviality of the Swan homomorphism

0 (Z/pL)* — K (ZG) . Thus, in this case if such a finite Y exists, and if F’ is any

finite complex which admits an F p—homotopy equivalence F/ —— F, then there exists a
finite G—complex Y’ such that (Y’)G =F’ and E x Y’ is G-homotopy equivalent to
X as well (cf. [A3]).

2.4. Example. Let R be the Bousfield—Kan 23—completion functor, and let G be the
cyclic group of order 23 actingon M & Z/47Z via the inclusion of

G C Aut(Z/470) ~ T /461 . The calculations of Swan shows that there is no finite
G—complex X with Hy(X)~ M asa ZG—module. However, there are finite dimensional
G—complexes Y such that H,(Y) ¥ M as ZG—modules. For any such Y
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H(Y;[F23) =0 and YC € Top(R) . However, it i8 not possible to find a finite G—complex
K such that E x K and E x Y are G-homotopy equivalent.

Next, we briefly outline how we can generalize 2.1 from Z/pZ to general finite
groups. Let G be a finite group and p be any prime dividing order of G . We define the
following sets of subgroups of G :

Pp(G)E{P_CG |P| is a p—power }, P(G)EplllJcle(G);

Ap(G) = {(P,P,)|P; € Pp(G), i=12 P,<P, and

P[Py (2/pI)" forsome r20}, A(G)= pILIJG | Ap(G) .

The following proposition provides us with the necessary conditions for "finiteness" of
G—spaces in the appropriate context. A similar result with appropriate modifications hold
for finitely dominated G—spaces in the equivariant sense. As pointed out earlier, the recent
proofs of the equivariant Sullivan conjecture show that the quasicompletion functors which

are used in the following proposition form a nonempty set !

2.5. Propogition. Suppose that G is a finite group and p is any prime dividing |G| ,
and let Rp be the Bousfield—Kan completion or any quasi—completion functor whose
associated coefficients is [F p Assume that Y is a finite dimensional G—space such that
H*(YP;IF p) is finitely generated for each P € Pp(G) and YP belong to Top(Rp) . Let
X be a free G—space such that EqxY and X are G-homotopy equivalent. Then for
each P € P(G) and each (P,P,) € Ap(G) the following hold:
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(BO) All spaces Ma.pP(E,Rp(X)) are H*(—;IFp)—equiva.lent to spaces in the image
f R_.
o Rp
(B1) There exist finite dimensional complexes F(P) € Top(Rp) with finitely

generated H*(F(P);[Fp) and maps 7(P) : F(P) — Mapp(E,X) such that
n:R (F(P))——rMa.pP(E,Rp(X)) is an Hy(—F)-equivalence.

(B2) The map A(P,P,): Mapp (E,R (X)) — Mapp (E,R (X)) induces a
1 P1 P P2 P

Borel—Quillen localized isomorphism for the group A =P,/P, .

Proof. Let F(P)=Y® and n(P) asin Theorem 2.1 (where F(P) and n(P) are denoted
by F and # respectively). Since the first two conditions are consequences of the
properties gf -quasi—completion functors as in Theorem 2.1, we will justify the last

condition only. Consider the following commutative diagram.

F(P,) - - MapP (E,Y)
a;/ \ /
F(P,) L + Mapp (E,Y) 7
R (F(P))) L Mapp (B,Ry(Y)
"\ e '”

R (F(P,)) - Mapp2(E,Rp(Y))

The maps F(Pi) — Mapp, (E,Y) are given by the maps of constants
1

Y i——»M:e.pl:,_(E,Y) , and the maps 7; and o; induce H,—isomorphisms, where Hy
1

denotes homology with ﬂ:p—coefﬁcients a8 in 1.1. Moreover, since dim F(P,) <o, a;
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induces a Borel—Quillen localized isomorphism in A A—theory, where A =P /P, . Thus
A A(F(Pz)’F(Pl)) = 0 . Comparison of the Serre spectal sequences of the Borel

constructions of various spaces involved show that the map

Mapp (E,R,(Y)) —— Mapp (E.R,(¥)

induces also a Borel—Quillen localized isomorphism as well. Since E x Y and X are

G—homotopy equivalent, the map

A: MapPI(E,Rp(X)) —_ Mappz(E,Rp(X))

induces a Borel—Quillen localized isomorphism, as in Theorem 2.1.

2.6. Theorem. Let G, p, and Rp be as in Proposition 2.1 above. Let X be a free
G—space such that the conditions B(0)-B(2) of Proposition 2.1 are satisfied. Then there
exists a finite dimensional G—space Y such that H,(YP;IFP) are finitely generated,

YF € Top(R)) for each P € P(G), and ExY and X are G-homotopy equivalent. If
the complexes F(P) are taken to be finite complexes, then there exists an obstruction
w(X) € Ké(ﬂG) such that w(X) =0 if and only if Y is G-homotopy equivalent to a

finite G—complex.

Outline of proof: In order to prove that such a Y exists, we actually proceed to

construct the p—singular set of Y ,ie. S (Y)= U YP foreach pl|G] ,in
P I#PEP (G)

order to obtain maps hp : Sp(Y) —— Map(E,X) which are equivariant and such that the
induced maps ﬁpP : Rp(Sp(Y)P) — MapP(E,Rp(X)) induce H,—isomorphisms for
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each P € Pp(G) , where Hy = H*(—;[Fp) as before. By adding free G—cells to U Sp(Y)
P

we make the map U hp U Sp(Y) — Map(E,X) highly connected and we obtain
Y p

f: Y, — Map(E,X) so that the cofibre Cf of f is a Moore space, and
Sp(YO) = Sp(Y) . Then we try to show that Hy(CgZl) is ZG—projective. In cases where we
deal with finite complexes, the class [H«(Cy)] € RO(ZIG) will represent the finiteness
obstruction w(X) which will be only well-defined up to ambiguity arising from different
choices of SP(Y) in the course of this construction. This leads, then, to a well-defined
obstruction, denoted again by w(X) (by abuse of notation) in a subquotient of KO(HG) .
In order to show that H,.,(Cf;ll) is ZG—projective, we use the projectivity criterion
Theorem 1.1 to reduce the problem to showing that H(CgZ)|ZC is ZC—projective for
each CC G, |C| = p.Butin this case, we are in the situation of Theorem 2.1, since by
construction Rp(YOC) — MapC(E,Rp(X)) induces a homology isomorphism, and other
conditions are also satisfied, as one can check from the hypothesis. Hence the proof of
Theorem 2.1 shows that H¢(Cy)|ZC is ZC—projective for any such C .
Fixa K € P(G) . It remains to show how to construct sp(\()K . We proceed by
induction on the lattice of p—subgroups Pp(G) . Suppose that
nt Sp(Y)P —— Map(E,X) is constructed for all subgroups P such that K :(I:: P,

hpP : Rp(Sp(Y)P) — Mapp(E,R (X)) induces an Hy—isomorphism. Let L denote
S,(Y) for short. We add free W(K) = N(K)/K cells to LK and extend it to G—orbits
(which are added to L in the usual fashion) so that the map a : Ly — Map(E,X) in
this way satisfies the following: the cofibre of a(K) : LOK — MapK(E,K) , call it
C(a(K)) has homology (i.e. H*(—;[Fp)) only in one dimension, i.e. it is a

Hy(—F p)——Moore space. Now H(C(a(K))) is an IFp(W)—module and we claim that it is
IFp(W)--free. Using the modular version of the projectivity criterion (Theorem 1.1), we

need to check this for each cyclic subgroup of order p,say CCW, |C| = p. We have

the exact sequence: 1 — K — K’ —— C——1 where |K’| =p - |K| . Hence, by
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4
the induction hypothesis Rp(LOK ) — Mapy /(E,R) p(X)) induces an

’ 4
H,—~isomorphism. Translating this into W--actions, we have (LOK)C = LOK and
Rp((LOK)C — MapC(E,Rp(X)K) is @ homology isomorphism. On the other hand, by

studying the diagram

L K a(K)

0 %MapK(E,X)
| l

(L, L Map,(E,Xx)C
= I=

LK ¢ - Mapy/ (E,X)
: K’ ¢ l

Ry(Ly" ) » Mapy / (E, R (X))

as in Theorem 2.1, we conclude that H,(C(a(K))) is cohomologically trivial, hence
[FpG—projective. This [F pG—projeci;ive module can be killed and the map a(K) will be

made more connected 8o we achieve the inductive step. o
We have the following interesting application:

2.7. Theorem. Let G, p, and Rp be as in Proposition 2.5. Let X be a G—space such that
X and Mapp(E,X) belong to Top(R p) for each P € Pp(G) . Then there exists a finite
dimensional G—complex K such that E x X and E x K are G-homotopy equivalent, if
and only if for each cyclic subgroup C; of order p; there exists a finite dimensional

Ci—complex K, such that E x X and E x Ki are Ci—homotopy equivalent.
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ion 3. Some Applications and Probl

To show that the theorems of Section 2 are useful, we need to verify the hypotheses
in some geometrically interesting situations. This involves, in particular, cohomology
computations of some equivariant function spaces, or equivalently, the space of sections of
fibrations over B(Z/pI)" arising from Borel constructions. In this respect, J. Lannes’work
[L] is quite relevant. Combined with some cohomology calculations of certain classifying
spaces, Lannes’ theorem leads to finiteness results, from which we derive the validity of the
hypotheses of the main theorem 2.1 for G = Z/pZ . Then Theorem 2.7 allows us to derive
the finiteness conclusions for a general finite group.

We recall below the following theorem of Lannes (conjectured by H. Miller in
[Mm]). Let » be a p—elementary abelian group, and let K be the category of unstable
algebras over the mod p Steenrod algebra. For any space X a homotopy class of maps
Bx — X induces a homomorphism H*(X;[Fp) — H*(B x[F p) in K.

3.1. Theorem (J. Lannes [L]). Let X be a simply—connected space such that
dim Hi(X;in) < o forall i2 0. Then the natural map

. * *
[BxX] — HomK(H (X;ll:p) , H (Bar;le))
is bijective.

The first interesting case that we consider is a classical problem. Let X be a free

G—space which is (non—equivariantly homotopy equivalent to the n—sphere s™.

3.2. Problem. When does there exist a G—action on S® such that EG x ST ig

G-homotopic to X ?
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In homotopy theory, this is a problem about spherical fibrations. Let % +(Sn) be
the monoid of self~maps of degree one of S™ . Then the spherical fibration
X — X/G — BG is classified by amap A:BG— B #_(S") provided that G
acts on X by degree one homeomorphisms. Problem 3.2 now translates into a lifting
problem for the fibration B Top +(Sn) —B K +(Sn) for the map A . A more refined

question is the following:

3.3 Problem. When is a spherical fibration over BG fibre homotopy equivalent to an
ortthogonal fibration ?

This problem involves a similar lifting problem for the fibration
BO(n+1) — B ¥ +(s“) for A.

According to Theorem 3: 1 this is reduced to a lifting problem on the level of
cohomology over the Steenrod algebra (which is not an easy problem in general either !).
Now let us recall that according to Theorem 2.7, it suffices to solve the lifting problem of
3.2 for Z/pl . (Note that Bousfield—Kan’s completion [BK] suffices in this case). The
lifting problem of 3.3 for G = I/pZ in fact can be solved on the level of cohomology due
to deep calculations of the structure of H*(B X +(Sn);ﬂ:p) over the Steenrod algebra due
to F. Cohen [CLM] and related computations of J. Milgram and Madsen—Milgarm (Cf.
[MJ], [Mj] and [MM] for example).

Positive solutions to Problem 3.3 for G = 7/pZl and Theorem 2.7 give a partial
answer to Problem 3.2. Namely, let X be a free G—space such that X = S™ . Then there
exists a finite dimensional G—complex K such that EG x K is G-homotopy equivalent
to X .Infact K may be taken equivariantly finitely dominated in the appropriate
context. This result is the first step towards a complete solution of Problems 3.2 and 3.3

via methods of equivariant surgery, and it suggests that there are interesting relationships
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between Problem 3.3 and Atiyah’s theorem on the K—theory of BG (to the effect that
K(BG) is the I-adic completion of the representation ring R(G) CF. [At]).

Another interesting case is to consider G—actions on simply—connected Moore spaces.
Let X be a Moore space on which a finite group of square—free order acts freely. Suppose
that H,(X) has the following property with respect to the induced ZG—module structure:
For each prime order subgroup C C G, Ho(X)|ZC 2P @ Q, where P is ZC—projective
and Q isindecomposable. (P and Q depend on C ). Then there exists a finite
dimensional G—space K such that EG x K is G-homotopy equivalent to X . The proof
of the existence of the G—space K is reduced to the special case G = Z/pZ , thanks to
Theorem 2.7 above. In this case, ﬁ*(C;Q) is isomorphic to either ﬁ*(C;ﬂ) or ﬁ*(C;I) ,
where I is the augmentation ideal. This allows one to modify the arguments (involving the
Sullivan fixed point conjecture and Lannes’ Theorem 3.1) for the above special case

X = S™ in order to construct the desired K .

Finally, the above discussion leads us to the following conjecture which has intersting
implications for the topological realizability of homotopy actions and the Steenrod
problem, cf. [A2] for related discussions.

3.4. Conjecture. Let M be a finitely generated Z—torsion free ZG—module, where G is a
finite group. Suppose that there exists a Moore space X with G—action such that H,(X)
is isomorphic to M as ZG—modules. Then there exists a finite dimensional Moore

G—space K with the same property.
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