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LARGE ABSOLUTE VALUES OF CYCLOTOMIC POLYNOMIALS AT
ROOTS OF UNITY

LILIT MARTIROSYAN AND PIETER MOREE

Abstract. The nth cyclotomic polynomial Φn(X) is the minimal polynomial of ζn := e2πi/n.
Given an integer m ≥ 1 and a prescribed set S of arithmetic progressions modulo m, we
define nx as the product of the primes p ≤ x lying in those progressions. Let d(n) denote the
number of divisors of n. It turns out that under certain conditions on S and m there exists
jx such that log |Φnx(ζjxm )|/d(nx) tends to a positive limit. Our aim is to determine those
conditions. We use the arithmetic of cyclotomic number fields, non-standard properties of
character tables of finite abelian groups and a recent theorem of Bzdȩga, Herrera-Poyatos
and Moree. After developing some generalities, we restrict to the case where m is a prime.

Our motivation comes from a paper of Vaughan (1975). He studied the case where S =
{±2 (mod 5)} and used it to show that the maximum coefficient in absolute value of Φn can
be very large.

1. Introduction

Let Φn(X) =
∑ϕ(n)

j=0 an(j)Xj be the nth cyclotomic polynomial, where ϕ denotes Euler’s
totient function. The height A(n) of Φn is defined as A(n) = max0≤j≤ϕ(n) |an(j)|. If z is on
the unit circle, then

(1) A(n) ≥
∑

0≤j≤ϕ(n) |an(j)|
ϕ(n) + 1

≥ |Φn(z)|
ϕ(n) + 1

.

This inequality shows that if we can identify n and z for which |Φn(z)| is large, then A(n)
must be large. Vaughan [15] identified appropriate n in the case where z is a fifth root of unity
and showed that for a certain sequence of integers nj with d(nj) tending to infinity, one has

(2) A(nj) ≥
τd(nj)/2

ϕ(nj) + 1
,

with τ = (1 +
√

5)/2, the golden ratio1. This lower bound can be compared to the upper
bound

(3) A(n) < e
1
2
d(n) logn,

due to Bateman [1]. Vaughan used his lower bound (2) to establish the following result.

Theorem 1 (Vaughan [15]). There exist infinitely many integers n for which

log logA(n) > (log 2)
log n

log logn
.

From (3) it can be inferred that this result cannot be improved in the sense that it becomes
false if log 2 is replaced by any larger number. However, it is possible to improve on (2).

Mathematics Subject Classification (2000). 11N37, 11Y60
1Vaughan, however, does not mention the golden ratio, cf. Remark 32.
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2 LILIT MARTIROSYAN AND PIETER MOREE

Theorem 2 (Bateman et al. [2]). Let α > 1 be arbitrary. There is a sequence nj with d(nj)
tending to infinity, for which

(4) A(nj) ≥
αd(nj)

ϕ(nj) + 1
.

Corollary 3. The sequence {log(A(n))/d(n)}∞n=1 is unbounded.

In the latter result and (2) the numbers nj are of a very particular form. We study more
systematically when |Φnj (ζ)| can get very large for a more general class of numbers nj (with
ζ a root of unity). As a byproduct, we obtain a new proof of Theorem 2. We now introduce
this more general class of numbers.

Let m ≥ 2 be an integer and S ⊆ (Z/mZ)∗ be a non-empty subset. Let

PS := {q : ∃ s ∈ S such that q ≡ s (mod m)},
where here and in the sequel the letter q is exclusively used to denote prime numbers. Given
a real number x, consider the prime product

(5) nx =
∏

q≤x, q∈PS

q.

We define
Ψn(m) = max

1≤j≤m, (j,m)=1
|Φn(ζjm)|.

Note that Ψn(m) 6= 0 if and only if n 6= m. Now suppose that n 6= m. As Φn(ζm) is an algebraic
integer the norm NQ(ζm):Q(Φn(ζm)) is at least one in absolute value, 1 ≤ |NQ(ζm):Q(Φn(ζm))| ≤
Ψn(m)ϕ(m), and thus Ψn(m) ≥ 1.

It follows from Vaughan [15] that, with the choice S = {2, 3} and m = 5,

log |Ψnx(5)| ≥ (log τ)d(nx)/2.

Let r ≥ 2 be an integer. Bateman et al. [2] took S = {2r− 1, 2r+ 1} and m = 4r and showed

log |Ψnx(4r)| > (log r)d(nx)/2.

This result, via (1), then implies Theorem 2.
Our main result on Ψn(m) is Theorem 5 and is proved in Section 4. Before formulating it,

we set forth an important definition.

Definition 4. Given an integer m and a non-empty subset S ⊆ (Z/mZ)∗, the set S of even
characters modulo m such that χ(s) = −1 for every s in S is said to be the S-clan. If S
is non-empty, then (S;m) is said to be a Vaughan pair. If for an integer m a Vaughan pair
exists, m is said to be a Vaughan number.

The mention of even characters might look odd, but is a consequence of the fact that only
even characters appear in (13), which is the basic identity we use. Likewise, the importance
of character values being −1 is related to the factor

∏
q|n(1− χ(q)) in (13) being maximal in

that case.
As usual, we let ω(n) denote the number of distinct prime factors of n.

Theorem 5. Let m ≥ 1 be an integer. Let Ĝ(m) be the multiplicative group of the Dirichlet
characters on the multiplicative group G(m) modulo m. For any χ ∈ Ĝ(m) we define

(6) Cχ(ξm) =
∑

g∈G(m)

χ(g) log(1− ξgm),
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where ξm is any mth primitive root of unity, log stands for the principal determination of the
logarithm in C \ R− and the notation g ∈ G(m) is a compact way of writing 1 ≤ g ≤ m and
(g,m) = 1.

Suppose that S ⊆ (Z/mZ)∗ is non-empty. Let j be coprime to m. We have, as x tends to
infinity,

(7) log |Φnx(ζjm)| = (−1)ω(nx)d(nx)qj(S;m) + o(d(nx)),

with

(8) qj(S;m) =
1

ϕ(m)

∑
χ∈S

Cχ(ζjm),

where χ ranges over the characters in the S-clan S. Furthermore, we have

(9) log Ψnx(m) = d(nx)q(S;m) + o(d(nx)),

with
q(S;m) = max{qj(S;m) : 1 ≤ j ≤ m, (j,m) = 1},

Corollary 6. If S and T have the same clan, then q(S;m) = q(T ;m).

Remark 7. The factor (−1)ω(nx) in (7) is a nuisance. The way Vaughan dealt with this is
to keep nx as it is if ω(nx) is odd and leave out 2 otherwise (in our setting this would be the
smallest prime factor of nx). Our way to deal with this technical complication is not to keep
j fixed, but maximize over all j that are allowed (that is we consider Ψnx(m)).

It follows from (9) that

lim
x→∞

log Ψnx(m)

d(nx)
= q(S;m).

We call q(S;m) the quality of the pair (S;m). Note that q(S;m) ≥ 0 (some of the numbers
qj(S;m) might be negative though). A necessary condition for the pair (S;m) to have positive
quality is that it is a Vaughan pair. Any Vaughan pair (S;m) with q(S;m) > 0 (which we
call a positive quality Vaughan pair) leads via (1) to a good lower bound for A(nx).

Proposition 8. Let (S;m) be a positive quality Vaughan pair, ε > 0 and nx as in (5). Then

(10) A(nx) ≥ e(q(S;m)−ε)d(nx)

ϕ(nx) + 1

for every x sufficiently large.

Proof. By (1) we have A(nx) ≥ Ψnx(m)/(ϕ(nx) + 1). Now invoke Theorem 5. �

The following result generalizes Theorem 1 and is proved in Section 5.

Theorem 9. If (S;m) is a positive quality Vaughan pair and nx is as in (5), then

log logA(nx) ≥ log 2
log nx

log log nx

(
1 +

1 + log |S| − logϕ(m)

log lognx
+O

( 1

(log log nx)2

))
,

for every x sufficiently large, with the implied error term depending at most on m.

Corollary 10. If |S| > ϕ(m)/e, then we have

log logA(nx) > log 2
log nx

log log nx

for every x sufficiently large.
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Proposition 8 and Theorem 9 suggest the relevance of the following problem.

Problem 11. Determine all Vaughan pairs (S;m) and their quality.

A crucial concept to make this problem more manageable is that of optimal Vaughan pair.

Definition 12. We say that a Vaughan pair (S;m) is optimal if there does not exist a Vaughan
pair (T ;m) with S ⊂ T such that the T -clan equals the S-clan.

Corollary 6 implies that if s is in S, then S and S ∪ {−s} have the same quality. We thus
infer that if S is optimal, then S = −S. A Vaughan pair (S;m) with S = −S can be regarded
as a pair (S;m) with S ⊆ (Z/mZ)∗/{±1}. In the rest of the paper, we only consider pairs
of the form (S;m) with S ⊆ (Z/mZ)∗/{±1}, where we write elements in S as ±b. Although
not entirely consistent with this, it turns out more practical to have ±b contribute two, rather
than one, to the cardinality of S.

As our aim is finding high quality Vaughan pairs, we will focus on the following problem.

Problem 13. Determine all optimal Vaughan pairs (S;m) with S ⊆ (Z/mZ)∗/{±1} having
positive quality.

This turns out to be quite challenging and we restrict here to the case where m = p is a
prime. As a warm up we consider two easy examples.

Example 14 (p = 11): Here there is no even character assuming the value −1. Hence, 11 is
not a Vaughan number.

Table 1. The even characters modulo 11 (with ω = ζ10)

χ ±1 ±2 ±3 ±4 ±5
χ1 1 1 1 1 1
χ2 1 ω2 −ω ω4 −ω3

χ3 1 ω4 ω2 −ω3 −ω
χ4 1 −ω −ω3 ω2 ω4

χ5 1 −ω3 ω4 −ω ω2

Example 15 (p = 13): There are two possible S-clans, namely χ5 and {χ4, χ5, χ6}. Note
that χ5 is the Legendre symbol. The Vaughan pairs (±2; 13) and ({±2,±6}; 13) are not
optimal. On the other hand (±5; 13) and ({±2,±5,±6}; 13) are (for their qualities, see Table
3). Furthermore, these two optimal pairs are the only two, cf. Theorem 19.

Table 2. The even characters modulo 13

χ ±1 ±2 ±3 ±4 ±5 ±6
χ1 1 1 1 1 1 1
χ2 1 ζ3 ζ3 −ζ6 1 −ζ6
χ3 1 −ζ6 −ζ6 ζ3 1 ζ3
χ4 1 ζ6 −ζ6 ζ3 −1 −ζ3
χ5 1 −1 1 1 −1 −1
χ6 1 −ζ3 ζ3 −ζ6 −1 ζ6

That 13 is a Vaughan number and 11 is not, is predicted by the following result.
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Proposition 16. The integer m is a Vaughan number if and only if 4 | ϕ(m).

Proof. This is a corollary of Theorem 28 below, stating that there is an even character modulo
m assuming the value −1 if and only if 4 divides ϕ(m). �

If we restrict to the case where m = p is a prime, the result already follows from Lemma
27, as (Z/pZ)∗ is cyclic.

We thus may assume that p ≡ 1 (mod 4). In Theorem 17, proved in Section 6, we exhibit
two optimal Vaughan pairs having positive quality. As

(−1
p

)
= (−1)(p−1)/2 = 1, the Legendre

symbol is an even character. It follows that we can write the set of quadratic non-residues
modulo p as N = {±n1, . . . ,±n(p−1)/4}. The equation x2 ≡ −1 (mod p) has two solutions
a1, a2 with 0 < a1 < p/2 < a2 < p and a2 = p− a1. Note that sin(πa1/p) = sin(πa2/p). Thus
the optimal Vaughan pair in part b exists and has a well-defined quality.

Theorem 17. Let p ≡ 1 (mod 4) be prime.
a) Let N be the set of quadratic non-residues. Then (N ; p) is an optimal Vaughan pair having
quality

q(N ; p) =

√
p

p− 1
L
(
1,
( ·
p

))
.

b) Let a be a solution of a2 ≡ −1 (mod p) with 0 < a < p. Then ({±a}; p) is an optimal
Vaughan pair having quality

q({±a}; p) =
1

2
log
(sin(πa/p)

sin(π/p)

)
.

The qualities appearing above are positive. In case (a) it is a very classical fact that
L
(
1,
( ·
p

))
6= 0 (a crucial ingredient in Legendre’s proof that there are infinitely many primes

in any primitive residue class modulo p), in case (b) it is obvious. Furthermore, note that all
the pairs under (a) satisfy the condition of Corollary 10, but for the pairs under (b) only if
p = 5.

A small sample of numerical data related to Theorem 17 is given in Table 3.

Table 3. Some optimal Vaughan pairs

p q(N ; p) a q({±a}; p)
5 0.2406059125 . . . 2 0.2406059125 . . .
13 0.1991272028 . . . 5 0.6813902247 . . .
17 0.2618390684 . . . 5 0.7342783356 . . .
29 0.1176593675 . . . 12 1.0936958650 . . .
37 0.1384322140 . . . 6 0.8746623453 . . .
41 0.2079563567 . . . 9 1.0588226638 . . .
... ... ... ...
97 0.1942579811 . . . 22 1.5025608718 . . .

For p = 5 the two qualities coincide as the two optimal Vaughan pairs are the same in that
case (and only in that case).

In Proposition 18 (proved in Section 7) we give estimates for the quantities in Table 3,
where for compactness of exposition we let ap be the unique solution of

(11) a2p ≡ −1 (mod p), 0 < ap < p/2.
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Proposition 18.
a) Let ε > 0 be arbitrary. For all primes p ≡ 1 (mod 4) sufficiently large we have

(12)
1

4
log p− ε < q({±ap}; p) <

1

2
log
( p
π

)
+ ε,

with ap as in (11). For a positive fraction of all primes p ≡ 1 (mod 4) we have

q({±ap}; p) >
1

2
log
( p
π

)
− ε.

b) We have

max{q(N ; p) : p ≡ 1 (mod 4)} = q(N ; 17) =
1

8
log(4 +

√
17) = 0.2618390684 . . .

The primes p = 5, 17, 41, 97, and no other primes p ≡ 1 (mod 4), satisfy q(N ; p) ≥ 0.16.
c) We have q({±ap}; p) ≥ q(N ; p), with equality only if p = 5.

Given a Vaughan number m, we define its top quality as

q(m) = max{q(S;m) : (S;m) is an optimal Vaughan pair}.

Note that q(m) = max{q(S;m) : (S;m) is a Vaughan pair}. Proposition 18a shows that the
top quality is unbounded in case m ranges over the primes, which, when combined with
Proposition 8, yields a proof of Theorem 2 different from the one given by Bateman et al. [2].

If p = 4p1 + 1 with p1 an odd prime, we will prove (in Section 8) that there are no optimal
Vaughan pairs other than the ones that appear in Theorem 17.

Theorem 19. Let p ≡ 5 (mod 8) be a prime such that (p− 1)/4 is also a prime. Then there
are precisely two optimal Vaughan pairs, namely the ones given in Theorem 17. For the top
quality q(p) we have

q(p) = q({±ap}; p) =
1

2
log
(sin(πap/p)

sin(π/p)

)
,

with ap as in (11).

In case p ≡ 5 (mod 8) and (p− 1)/4 is a composite number, further optimal Vaughan pairs
may occur. We determined all of those for p < 100, see Table 4. This analysis is discussed in
detail in Section 9 with the help of various tables.

The reader might be more ambitious than the authors and ask for the determination for
Φn(ζjm) for all n, rather than just for the integers nx. This only seems feasible for small values
of m and is discussed in Bzdȩga et al. [3] for m ∈ {3, 4, 5, 6, 8, 10, 12}.

2. Preliminaries

2.1. The basic tool. Our basic tool to evaluate |Φn(z)| in roots of unity z is the following
result [3, Theorem 1].

Theorem 20. (Bzdȩga et al. [3]). Let n,m > 1 be coprime integers. In the notation of
Theorem 5 we have

(13) log |Φn(ξm)| = 1

ϕ(m)

∑
χ∈Ĝ(m)
χ(−1)=1

Cχ(ξm)χ(n)
∏
q|n

(1− χ(q)),

where the product is over the prime divisors q of n.
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If (j,m) = 1, then

(14) Cχ(ζjm) = χ(j)Cχ(ζm).

To see this, note that

Cχ(ζjm) =
∑

g∈G(m)

χ(g) log(1− ζjgm ) = χ(j)
∑

g∈G(m)

χ(jg) log(1− ζjgm ) = χ(j)Cχ(ζm).

Thus in some sense it suffices to study Cχ(ξm) in case ξm = ζm.
When χ is even, which is the only relevant case by (13), there is a more practical formula

for Cχ(ζm).

Proposition 21. If χ is an even non-principal character, then

Cχ(ζm) =
∑

g∈G(m)

χ(g) log sin
(πg
m

)
.

Proof. We have

2Cχ(ζm) =
∑

g∈G(m)

χ(g) log(1− ζgm) +
∑

g∈G(m)

χ(−g) log(1− ζ−gm ) =
∑

g∈G(m)

χ(g) log |1− ζgm|2,

and hence

(15) Cχ(ζm) =
∑

g∈G(m)

χ(g) log |1− ζgm|.

For real α, we have

1− e−iα = e−iα/22i sin(α/2) = 2 sin(α/2)ei(π−α)/2.

Thus, when 0 < α < 2π, we have

log(1− e−iα) = log(2 sin(α/2)) + i(π − α)/2

for the principal determination of the logarithm. We infer that

log |1− e−iα| = log 2 + log(sin(α/2)).

Inserting this into (15), we obtain

Cχ(ζm) =
∑

g∈G(m)

χ(g) log sin
(πg
m

)
+ log 2

∑
g∈G(m)

χ(g).

Since the latter sum is zero, the proof is complete. �

Remark 22. The character sums Cχ are related to special values of Dirichlet L-series. Indeed,
if χ is a primitive character modulo m and (j,m) = 1, then Dirichlet (cf. [16, p. 37]) proved
that

L(1, χ) = −χ(−j)τ(χ)

m
Cχ(ζjm),

where τ(χ) =
∑m

k=1 χ(k)ζkm is the Gauss sum.
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2.2. Abelian number fields and their character groups. Let K/Q be abelian. By the
Kronecker-Weber theorem there exists an integer m such that K is a subfield of Q(ζm). Let
H be the subgroup of G(m) which corresponds to K by Galois theory. We let X(K) be the
group of all characters which are equal to unity on H. We extend each of these characters first
to a Dirichlet character modulo m, and then to a primitive character. As an example, consider
the even characters modulo m in X(Q(ζm)). These form a subgroup equal to X(Q+(ζm)), see,
e.g., Narkiewicz [13, Proposition 8.3]. We are interested in the case where m = p is a prime
satisfying p ≡ 1 (mod 4). The characters that are unity on the subgroup {±1,±ap} form a
subgroup of (Z/pZ)∗ equal to X(Lp), with Lp := Q(ζp + ζ

ap
p + ζ

−ap
p + ζ−1p ). As an application

we obtain the following result.

Lemma 23. Let p ≡ 1 (mod 4) and let ap be as in (11). Let S be the S-clan of {±ap}. Then

µS(b) :=
1

|S|
∑
χ∈S

χ(b) =


1 if b = ±1;

−1 if b = ±ap;
0 otherwise.

Proof. We consider the even characters χ that are not in the S-clan. These satisfy χ(ap) = 1
and form a group. Let us denote them χ1, . . . , χ(p−1)/4. Their fixed field is Lp, which is of
degree (p− 1)/4. By orthogonality we then have

∑(p−1)/4
j=1 χj(b) = (p− 1)/4 if b ∈ {±1,±ap}

and zero otherwise. By orthogonality again it follows from this that µS(b) = 0 if b 6∈ {±1,±ap}.
As clearly µS(±1) = 1 and µS(±ap) = −1, we are done. �

Example 24 (p = 13): It is instructive to verify the above argument in this case using Table
2 and the identity 1 + ζ3 − ζ6 = 0. The reader might also want to apply Galois theory and
write down all subfields. One of them is L13, which is of degree 3 and has minimal polynomial
x3 + x2 − 4x + 1. For details, see, e.g., Narkiewicz [13, pp. 429–430]. For a Hasse diagram of
the subfields of Q(ζ13) see, e.g., Dummit and Foote [7, p. 512].

2.3. Two simple results involving trigonometric functions. In our proof of Theorem
17b we will need Lemma 26, the proof of which makes use of the following lemma.

Lemma 25. Let b > 1 be a real number. The function sin(bx)/ sin(x) is non-increasing for
x ∈ (0, πb ).

Proof. The derivative of the function is Fb(x)/ sin2 x, with Fb(x) = cos(bx)b sinx−(cosx) sin(bx).
It suffices to show that Fb(x) ≤ 0 in the interval (0, π/b). As Fb(0) = 0, it is enough to show
F ′b(x) ≤ 0 in the said interval. However, as F ′b(x) = (1− b2) sin(bx) sinx this is obvious. �

We will use that sinx is increasing for x ∈ (0, π/2).

Lemma 26. Let 1 ≤ a < m/2 be an integer coprime to m. Then

max
{sin(πja/m)

sin(πj/m)
: 1 ≤ j < m, (j,m) = 1

}
=

sin(πa/m)

sin(π/m)
,

where ja denotes the unique number 1 ≤ j1 < m such that j1 ≡ ja (mod m).

Proof. As the result is trivial for a = 1, we may assume that a ≥ 2. For brevity we will put
ma = sin(πa/m)/sin(π/m). Since clearly the maximum is ≥ ma ≥ 1, it suffices to consider
only those quotients of the form sin y/ sin z with y > z and so we may assume that j1 > j.
Note that j1 ≤ ja. It now follows by Lemma 25 with b = j1/j that sin(πj1/m)/sin(πj/m) ≤
sin(πj1/jm)/sin(π/m), which on its turn is bounded above by ma as j1/j ≤ a < m/2. �
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3. Relevant properties of character tables

The next lemma deals with a special case of Theorem 28.

Lemma 27. Let m ≥ 3. Suppose that (Z/mZ)∗ is cyclic. There is an even character modulo
m assuming the value −1 if and only if 4 divides ϕ(m).

Proof. Let g be a generator. The order of the group is ϕ(m) = n is even. Recall that the
characters of a cyclic group of order n are given by

χk(g
r) = e

2πikr
n , 0 ≤ k < n, 0 ≤ r < n.

Put b = n/2. On noting that gb = −1, we see that χk is even if and only k is even. In
case k is even χk(−1) = χk(g

b) = χk(g)b = 1 and so χk(g) is a b-th root of unity. If b
is odd, it now follows that χk(gr) = χk(g)r 6= −1 for every r ≥ 0. If b is even, trivially
χ2(g

b/2) = e
2πib
2b = −1. �

For ease of notation we work in the proof of the next theorem with additive notation (and
thus if χ is a character of a cyclic group we write χ(b) for χ(gb), with g some fixed generator
of the group).

Theorem 28. There is an even character modulo m assuming the value −1 if and only if 4
divides ϕ(m).

Proof. For m ≤ 2 the result is obvious and so we may assume m ≥ 3. If (Z/mZ)∗ is cyclic we
are done by Lemma 27, and so we may assume it is not cyclic. Then

(Z/mZ)∗ ∼= C(2a1)× · · · × C(2ar), r ≥ 2,

is a direct product of at least two cyclic groups of even order and so 4 | ϕ(m). This follows from
the group structure of (Z/mZ)∗ that is determined in many introductory books on algebra or
number theory, e.g. in the book by Ireland and Rosen [10, Chapter 4].

To finish the proof we have to show there is an even character assuming the value −1.
The residue class −1 modulo m corresponds with (a1, . . . , ar) and so χ is an even character

if and only if χ((a1, . . . , ar)) = 1.
Suppose that one of the ai’s is even, say a1. Then we can take χ = χ1 × · · · × χr such that

χ1(a1/2) = −1 and χi(ai) = 1 for all i 6= 1. Then χ((a1, . . . , ar)) = 1 and χ((a1/2, . . . , ar)) =
−1.

If all ai’s are odd, then take χ = χ1 × · · · × χr, such that χ1(a1) = −1 and χ2(a2) = −1
and χi(ai) = 1 for i > 2. Then χ((a1, . . . , ar)) = 1 and χ((a1, 0, a2, . . . , ar)) = −1. �

Note that Proposition 16 is a corollary of this result.
The next lemma concerns the character table of (Z/pZ)∗/{±1} for certain primes p such as

p = 13 (cf. Table 2). We return to the usage of multiplicative notation.

Lemma 29. Let p ≡ 5 (mod 8) be a prime such that (p− 1)/4 is a prime also, and let ap be
as in (11). Let χ be any even character modulo p and b an integer coprime to p. If χ(b) = −1,
then b ≡ ap (mod p), b ≡ −ap (mod p) or χ is the Legendre symbol.

Proof. By assumption p− 1 = 4q with q an odd prime. For every integer 0 ≤ k < p− 1 there
is a character χk satisfying

χk(g
j) = e

2πi
p−1

jk
= e

2πi
4q
jk
.

There are no further characters. Since −1 ≡ g2q (mod p), we have χk(−1) = 1 iff k is even. It
thus suffices to determine when

χ2r(g
j) = e

πijr
q = −1, with 0 ≤ r < 2q, 0 ≤ j < 4q.
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Since by assumption q is prime, there are only two cases:
Case 1. j = q or j = 3q. Here we note that, modulo p, we have {gq, g3q} = {ap,−ap}.
Case 2. r = q. We observe that χ2q(g

j) = −1 iff j is odd, and hence χ2q is the Legendre
symbol. �

Remark 30. It is not difficult to show that one can take g = 2, that is that 2 is a primitive
root for the primes under consideration, see, e.g., the survey [12, p. 1306]. This implies that
either ap ≡ 2(p−1)/4 (mod p) or ap ≡ −2(p−1)/4 (mod p).

4. The proof of Theorem 5

Proof of Theorem 5. First we will establish (7), which we will do by determining the various
contributions of the different characters χ to the sum in the right hand side of formula (13).
Write ξm = ζjm.

If χ ∈ S, then
∏
q|nx(1 − χ(q)) = 2ω(nx) = d(nx), where in the last step we use that

nx is square free. The contribution is (−1)ω(nx)d(nx)Cχ(ζjm)/ϕ(m). On adding the various
contributions we obtain (−1)ω(nx)d(nx)qj(S;m).

If χ 6∈ S and χ is odd, then there is no contribution.
If χ 6∈ S and χ is even, then χ(s) 6= −1 for some element s of S and putting r = |1−χ(s)|/2,

we obtain

(16) 2ω(nx)
∣∣χ(nx)

∏
q|nx

q≡s (mod p)

(1− χ(s))

2

∣∣ ≤ 2ω(nx)rπ(x;p,s),

where π(x; p, s) denotes the number of primes q ≤ x such that q ≡ s (mod p). Since we have
|1 − χ(s)| < 2, it follows by Dirichlet’s theorem on primes in arithmetic progression that
rπ(x;p,s) tends to zero as x tends to infinity, and hence the contribution of χ is o(2ω(nx)).

Next we establish the estimate (9). It immediately follows from the estimates (7) in case
ω(nx) is even. In case ω(nx) is odd, it follows if we show that

q(S;m) = max{−qj(S;m) : 1 ≤ j ≤ m, (j,m) = 1}.

We claim that

(17) {−qj(S;m) : 1 ≤ j ≤ m, (j,m) = 1} = {qj(S;m) : 1 ≤ j ≤ m, (j,m) = 1}.

Let j be as in (17). By (14) we see that ϕ(m)qj(S;m) =
∑

χ∈SCχ(ζjm) =
∑

χ∈S χ(j)Cχ(ζm).
If k is any element in S, then

ϕ(m)qjk(S;m) =
∑
χ∈S

Cχ(ζjkm ) =
∑
χ∈S

χ(jk)Cχ(ζm) = −
∑
χ∈S

Cχ(ζjm) = −qj(S;m)ϕ(m),

since χ(k) = −1 for every χ in S. It follows that qk1(S;m) = −qj(S;m) with 1 ≤ k1 < m
such that k1 ≡ jk (mod m). �

5. The proof of Theorem 9

Proof of Theorem 9. Put δ = |S|/ϕ(m). By two equivalent versions of the prime number
theorem for arithmetic progressions we have

(18) log nx =
∑

p≤x, p∈PS

= δx (1 +O(log−2 x)),
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respectively

(19) ω(nx) =
∑

p≤x, p∈PS

= δ
x

log x
+ δ

x

log2 x
+O

( x

log3 x

)
.

It follows from (18) that log x = O(log log nx) and more precisely that log x = log log nx −
log δ +O((log lognx)−2). Combining the various estimates we infer that

(20) ω(nx) =
log nx

log lognx

(
1 +

1 + log δ

log lognx
+O

( 1

(log log nx)2

))
,

as x (and hence nx) tends to infinity. The implied error terms depend at most on (S;m).
Moreover, since for fixed m there are only finitely many choices for S, the implied error term
depends at most on m.

The proof is now completed on noting that d(nx) = 2ω(nx) and invoking Proposition 8. �

6. The proof of Theorem 17

The proof of part a will make use of a beautiful result from the 19th century.

Lemma 31. Let p ≡ 1 (mod 4) be a prime. Then

p−1∏
k=1

(
1− ζkp

)−( k
p
)

= e
√
pL(1,χ1) = ε

2hp
p ,

where χ1 denotes the Legendre symbol, εp is the fundamental unit of the quadratic number field
Q(
√
p) and hp its class number.

Chowla and Mordell [4], reproduced in Narkiewicz [14, pp. 84-85], gave a beautiful elemen-
tary proof of the first identity in Lemma 31. They go on to infer that the product is 6= 1 and
hence that L(1, χ1) does not vanish, a crucial fact in the proof of Dirichlet’s prime number
theorem for the arithmetic progressions modulo p.

The second identity is a consequence of Dirichlet’s class number formula

(21) L
(
1, χ1) =

2hp log εp√
p

,

cf. Lang [11, Theorem 5.2, p. 87] or Washington [16, Exercise 4.6].

Remark 32. Vaughan works with logα =
√

5L(1, χ1)/4 in (4). By (21) with p = 5 we see
that α =

√
τ , see [8, p. 193] for a direct derivation.

Remark 33. (Refined version of Lemma 31.) Let p ≡ 1 (mod 4) be a prime. Then we have

(22)
(p−1)/2∏
k=1

sin
(πk
p

)−( k
p
)

=

(p−1)/2∏
k=1

(
1− ζkp

)−( k
p
)

= e
√
pL(1,χ1)/2 = ε

hp
p .

This yields, e.g., sin(π2/5)/ sin(π/5) = τ . Note that (22) implies Lemma 31. The product is
easily seen to be a quadratic unit of norm −1. The identity then implies that εp has norm −1
and hp is odd. See the book [9] for proofs.

The proof of part (b) will make use of a more explicit formula for qj(S;m), namely (23)
below.
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Lemma 34. Let (S;m) be a Vaughan pair having S as S-clan. Let j be coprime with m. We
have

qj(S,m) =
|S|
ϕ(m)

∏
g∈G(m)

µS(g) log(1− ζjgm ),

where

µS(g) =
1

|S|
∑
χ∈S

χ(g).

Alternatively, we can write

(23) qj(S;m) =
|S|
ϕ(m)

∏
g∈G(m)

µS(g/j) log sin
(πg
m

)
.

Proof. The first claim follows on inserting the expression (6) for Cχ in (8) and swapping the
order of summation.

It follows from Proposition 21 and Cχ(ζjm) = χ(j)Cχ(ζm) that

Cχ(ζjm) =
∑

g∈G(m)

χ(g/j) log sin
(πg
m

)
.

On inserting this in (8) and swapping the order of summation, the proof is concluded. �

The proof of Theorem 17. a) Recall that if χ is a non-trivial character, then
∑p−1

b=1 χ(b) = 0 by
character orthogonality. It follows from this and |χ| ≤ 1, that if χ(a) = −1 for every quadratic
non-residue a modulo p, then χ(a) = 1 for every quadratic residue a, and so χ must be the
Legendre symbol χ1. Since χ1(−1) =

(−1
p

)
= (−1)(p−1)/2 = 1, χ1 is an even character. We

conclude that the S-clan consists only of χ1 if S = N . As N is the maximum set on which χ1

assumes the value −1, it is clear that (N ; p) is an optimal Vaughan pair.
By Theorem 5 we have

(p− 1)qj(N ; p) =

p−1∑
b=1

χ1(b) log(1− ζbjp ) = χ1(j)

p−1∑
b=1

χ1(bj) log(1− ζbjp ) = −χ1(j)
√
pL(1, χ1),

where the final identity is a consequence of Lemma 31. It now follows from (8) that

q(N ; p) = max{−√pL(1, χ1)/(p− 1),
√
pL(1, χ1)/(p− 1)} =

√
pL(1, χ1)/(p− 1),

as L(1, χ1) > 0.
b) Put S = {±ap}. If χ is any even character, then χ(ap)

2 = χ(a2p) = χ(−1) = 1 and so
χ(ap) ∈ {−1, 1}. As ap 6= ±1, there is at least one even character χ such that χ(ap) = −1. By
orthogonality, we then have precisely (p− 1)/4 even characters satisfying χ(ap) = −1. Let us
denote them χ1, . . . , χ(p−1)/4. Now suppose that (S; p) is not optimal. This implies that there
is b 6= ±ap such that S ∪ {±b} has a clan consisting of χ1, . . . , χ(p−1)/4. We then must have
χ1(b) = . . . = χ(p−1)/4(b) = −1. We infer that χ(bap) = 1 for all even characters. This implies
bap ≡ ±1 (mod p), contradicting our assumption that b 6= ±ap. We conclude that (S; p) is an
optimal Vaughan pair.

Combination of (23) with Lemma 23 yields

qj(S; p) =
1

2
log
( sin(πj/p)

sin(πjap/p)

)
,
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with jap denoting the unique number 1 ≤ j1 < p such that j1 ≡ jap (mod p). We have to
show that

q(S; p) = max{q1(S; p), . . . , qp−1(S; p)} =
1

2
log
(sin(πap/p)

sin(π/p)

)
.

By (17) and the monotonicity of the logarithm, we see that it suffices to show that

max
{sin(πjap/p)

sin(πj/p)
: 1 ≤ j < p

}
=

sin(πap/p)

sin(π/p)
.

That the latter identity holds is a consequence of Lemma 26. �

Remark 35. An alternative proof of part (a) can be given on using Proposition 21 and (22).
The details are left to the interested reader.

7. Proof of Proposition 18

Proof. a) We only consider primes p ≡ 1 (mod 4), and let ap be as in (11). We use the
formula for q({±ap}; p) given in Theorem 17b. The upper bound in (12) follows on noting
that sinx ∼ x as x tends to zero and the trivial estimate sinx ≤ 1.

Since ap ≥
√
p− 1, we find that sin(πap/p) ≥ πe−2ε/

√
p for all p large enough. On noting

that 1/ sin(π/p) ≥ p/π, it then follows that q({±ap}; p) > 1
4 log p− ε for every p large enough.

Duke et al. [6] proved that if f is a quadratic polynomial with complex roots, then for
0 ≤ α < β ≤ 1 we have

(24) |{(p, ν) : p ≤ x, f(ν) ≡ 0 (mod p), α ≤ ν

p
< β}| ∼ (β − α)π(x),

where π(x) denotes the number of primes p ≤ x. Choose 0 < δ < 1 such that sin(π2 δ) ≥ e
−2ε.

By (24) with f(X) = X2 + 1 we have for a positive fraction of primes p that δp/2 < ap < p/2.
For each of those primes p we have sin(

πap
p ) > sin(π2 δ) ≥ e−2ε and therefore q({±ap}; p) >

1
2 log(p/π)− ε.
b) By Theorem 17 we have q(N ; p) =

√
p

p−1L
(
1, χ1). Since ε17 = 4 +

√
17 and h17 = 1 we

obtain by (21) the claimed formula for q(N ; 17). Using the easy estimate L(1, χ) ≤ 2+log p, cf.
Narkiewicz [13, Lemma 8.5], we conclude that q(N ; p) < 1.0003p−1/2(2 + log p) for p ≥ 4177.
As the right hand side is non-increasing for p ≥ e2, we infer that q(N ; p) ≤ q(N ; 4177) < 0.16
for p ≥ 4177. The proof of part b is finished by direct computation of q(N ; p) for the remaining
primes p ≡ 1 (mod 4).

c) Using the sine inequality 2
πx ≤ sin(x) ≤ x valid for 0 < x < π/2, and observing that

ap ≥
√
p− 1, we obtain q({±ap}; p) > 1

2 log
(
2
π

√
p− 1

)
. The latter quantity is > 0.39 for

p ≥ 13. Combining this information with part b and Table 3, part c follows. �

8. Proof of Theorem 19

Lemma 29 says that if there is an −1 assumed by an even character, then that character is
the Legendre symbol or the −1 is in the ±ap column, cf. Table 2.

Let (S; p) be an optimal Vaughan pair. Since ({±ap}, p) is an optimal Vaughan pair by
Theorem 17b, we may assume that S contains an element b 6= ±ap. We claim that S = N , the
set of non-residues modulo p. Note that we must have

(
b
p

)
= −1. As there is no further even

character χ satisfying χ(±b) = −1, the S-clan only contains the Legendre symbol. The same
will hold true if S contains all elements s for which

(
s
p

)
= −1, that is if S = N . By Theorem

17a the Vaughan pair (N ; p) is optimal.
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It is a consequence of Proposition 18c and Theorem 17b that

q(p) = max{q({±ap}; p), q(N ; p)} = q({±ap}; p) =
1

2
log
(sin(πap/p)

sin(π/p)

)
.

9. Further optimal Vaughan pairs with p < 100

In this section we determine all Vaughan pairs (S; p) with p < 100 that are not covered by
Theorem 17, which we call non-standard. They are recorded in Table 4.

The smallest example occurs for p = 17. From Table 5 one sees that there is one non-
standard optimal Vaughan pair. It has S = {±2,±8} and S-clan {χ3, χ7}.

Table 4. Further optimal Vaughan pairs with p ≤ 100

p |S| S
17 2 2, 8
37 3 6, 8, 14
41 5 3, 14
41 2 2, 5, 8, 9, 20
61 5 11, 21, 29
61 3 8, 11, 23, 24, 28
73 9 10, 22
73 6 3, 24, 27
73 3 7, 10, 17, 21, 22, 30
73 2 3, 6, 12, 19, 23, 24, 25, 27, 35
89 11 12, 37
89 2 5, 9, 10, 17, 18, 20, 21, 34, 36, 40, 42
97 12 33, 47
97 8 6, 16, 22
97 6 8, 12, 18, 27
97 4 4, 9, 24, 33, 43, 47
97 3 19, 20, 28, 30, 34, 42, 45, 46
97 2 2, 3, 8, 11, 12, 18, 25, 27, 31, 32, 44, 48

For readability and compactness we write a, rather than ±a in Table 4.

Table 5. Even characters modulo 17 (with ω = eπi/4)

χ ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8
χ1 1 1 1 1 1 1 1 1
χ2 1 −i ω −1 −ω −ω3 ω3 i
χ3 1 −1 i 1 i −i −i −1
χ4 1 i ω3 −1 −ω3 −ω ω −i
χ5 1 1 −1 1 −1 −1 −1 1
χ6 1 −i −ω −1 ω ω3 −ω3 i
χ7 1 −1 −i 1 −i i i −1
χ8 1 i −ω3 −1 ω3 ω −ω −i
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Table 6. Part of even character table modulo 37 (with ω = eπi/9)

χ ±2 ±5 ±6 ±8 ±13 ±14 ±15 ±17 ±18
χ1 ω ω5 −1 ω3 −ω2 −ω6 −ω4 ω7 −ω8

χ2 ω3 −ω6 −1 −1 −ω6 −1 ω3 ω3 −ω6

χ3 ω5 ω7 −1 −ω6 ω ω3 −ω2 −ω8 −ω4

χ4 ω7 −ω8 −1 ω3 ω5 −ω6 ω −ω4 −ω2

χ5 −1 −1 −1 −1 −1 −1 −1 −1 −1
χ6 −ω2 ω −1 −ω6 −ω4 ω3 −ω8 ω5 ω7

χ7 −ω4 −ω2 −1 ω3 −ω8 −ω6 ω7 ω ω5

χ8 −ω6 ω3 −1 −1 ω3 −1 −ω6 −ω6 ω3

χ9 −ω8 −ω4 −1 −ω6 ω7 ω3 ω5 −ω2 ω

For the next case, p = 37, we deleted the rows and columns not having a −1 in the table
of even characters, leading to Table 6. Note that there is one non-standard optimal Vaughan
pair, namely ({±6,±8,±14}; 37). In fact, that table contains more information than we need
in order to determine the non-standard optimal Vaughan pairs for p = 37. All that matters
are the entries that are −1. Also the columns having only one −1 can be deleted. These only
contribute to the standard Vaughan pair with S the set of non-residues. Taking these remarks
into account we can then consider the next two cases: p = 41 and p = 61 (see Tables 7,
respectively 8). These tables together with consideration of what happens for the next three
primes 73, 89 and 97 (not tabulated here), suggest that the following is true.

Conjecture 36. Let p ≡ 1 (mod 4) be a prime. Then for every divisor d of (p − 1)/4, there
is a unique optimal Vaughan pair (S; p) with S having cardinality 2d and S-clan having p−1

4d
characters. These are the only optimal Vaughan pairs.

As for p ≡ 3 (mod 4) there are no Vaughan pairs, this conjecture would give a complete
classification of all optimal Vaughan pairs for prime modulus.

The number (p−1)/4 has always the divisors 1 and (p−1)/4, corresponding to the optimal
Vaughan pairs ({±ap}; p), respectively (N ; p). In case (p−1)/4 is a prime, there are no further
divisors and the conjecture claims that these are all the optimal Vaughan pairs. By Theorem
19 this is true.

In a sequel to this paper, we hope to make progress on establishing this conjecture and to
address the issue of computing the qualities of the non-standard pairs in a systematic way.
Preliminary work suggests the following conjecture.

Conjecture 37. Let p be a prime number. If (S; p) is a Vaughan pair, then its quality q(S; p)
is positive.
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Table 7. Relevant part of even character table modulo 41

χ ±2 ±3 ±5 ±8 ±9 ±14 ±20
χ1 -1
χ2 -1 -1
χ3 -1
χ4 -1 -1 -1 -1 -1
χ5 -1 -1
χ6 -1
χ7 -1
χ8 -1 -1
χ9 -1
χ10 -1
χ11 -1 -1
χ12 -1 -1 -1 -1 -1
χ13 -1
χ14 -1 -1
χ15 -1

Table 8. Relevant part of even character table modulo 61

χ ±8 ±11 ±21 ±23 ±24 ±28 ±29
χ1 -1
χ2 -1 -1 -1
χ3 -1 -1 -1 -1 -1
χ4 -1
χ5 -1 -1 -1
χ6 -1
χ7 -1
χ8 -1 -1 -1 -1 -1 -1 -1
χ9 -1
χ10 -1
χ11 -1 -1 -1
χ12 -1
χ13 -1 -1 -1 -1 -1
χ14 -1 -1 -1
χ15 -1
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[3] B.Bzdȩga, A.Herrera-Poyatos and P.Moree, Cyclotomic polynomials at roots of unity, Acta Arith. 184
(2018), 215–230.

[4] S. Chowla and L.J.Mordell, Note on the nonvanishing of L(1), Proc. Amer. Math. Soc. 12 (1961), 283–284.
[5] Dirichlet character table generator, https://www.di-mgt.com.au/cgi-bin/dirichlet.cgi
[6] W.Duke, J.B. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime

moduli, Ann. of Math. (2) 141 (1995), 423–441.
[7] D.S.Dummit and R.M.Foote, Abstract algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.
[8] H.M.Edwards, Fermat’s last theorem. A genetic introduction to algebraic number theory, Graduate Texts

in Mathematics 50, Springer-Verlag, New York-Berlin, 1977.
[9] A. Fröhlich and M.J.Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics 27,

Cambridge University Press, Cambridge, 1993.
[10] K. Ireland and M.Rosen, A classical introduction to modern number theory, Second edition, Graduate

Texts in Mathematics 84, Springer-Verlag, New York, 1990.
[11] S. Lang, Cyclotomic fields I and II, Combined second edition, With an appendix by Karl Rubin, Graduate

Texts in Mathematics 121, Springer-Verlag in Mathematics, New York, 1990.
[12] P.Moree, Artin’s primitive root conjecture – a survey, Integers 12A (2012), No. 6, 1305–1416.
[13] W.Narkiewicz, Elementary and analytic theory of algebraic numbers, Second edition, Springer-Verlag,

Berlin; PWN—Polish Scientific Publishers, Warsaw, 1990.
[14] W.Narkiewicz, The development of prime number theory. From Euclid to Hardy and Littlewood, Springer

Monographs in Mathematics. Springer-Verlag, Berlin, 2000.
[15] R.C.Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1975), 289–

295.
[16] L.C.Washington, Introduction to cyclotomic fields, Second edition, Graduate Texts in Mathematics 83,

Springer-Verlag, New York, 1997.

Lilit Martirosyan
University of North Carolina, Wilmington, Department of Mathematics and Statistics, 601 South College Road,
Wilmington, NC 28403-5970.
e-mail: martirosyanl@uncw.edu

Pieter Moree
Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany.
e-mail: moree@mpim-bonn.mpg.de


	25_Martirosyan_cover
	25_Martirosyan

