Variations on A. Kneser's theorem

Serge Tabachnikov and Vladlen Timorin
Department of Mathematics, Penn State University University Park, PA 16802, USA
Institute for Mathematical Sciences, State University of New York at Stony Brook
Stony Brook, NY 11794, USA

1 Introduction

At every point, a smooth plane curve can be approximated, to second order, by a circle; this circle is called osculating. One may think of the osculating circle as passing through three infinitesimally close points of the curve. A vertex of the curve is a point at which the osculating circle hyper-osculates: it approximates the curve to third order. Equivalently, a vertex is a critical point of the curvature function.

Consider a (necessarily non-closed) curve, free from vertices. The classical A. Kneser theorem [5] (see also [3, 10]), states that the osculating circles of the curve are pairwise disjoint, see Figure 1. This theorem is closely related to the four vertex theorem of S. Mukhopadhyaya [8] that a plane oval has at least 4 vertices (see again $[3,10]$).

Figure 1 illustrates Kneser's theorem: it shows an annulus foliated by osculating circles of a curve.

Remark 1.1 This foliation is not differentiable! Here is a proof. Let f be a differentiable function in the annulus, constant on the leaves. We claim that f is constant. Indeed, $d f$ vanishes on the tangent vectors to the leaves. The curve is tangent to its osculating circle at every point, hence $d f$ vanishes on the curve as well. Hence f is constant on the curve. But the curve intersects all the circles that form the annulus, so f is constant everywhere.

Figure 1: A spiral and its nested osculating circles

Remark 1.2 Kneser's theorem has an analog in plane Minkowski geometry, see [11].

We will prove a number of analogs of Kneser's theorem; in each case, we will obtain a non-differentiable foliation with smooth leaves.

2 Osculating Taylor polynomials

Let f be a smooth function of one real variable. Fix $n \geq 1$ and let $t \in \mathbf{R}$. The osculating (Taylor) polynomial g_{t} of degree n of the function f at the point t is the polynomial, whose value and the values of whose first n derivatives at the point t coincide with those of f :

$$
\begin{equation*}
g_{t}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(t)}{i!}(x-t)^{i} . \tag{1}
\end{equation*}
$$

The osculating polynomial g_{t} is hyper-osculating if it approximates the function f at the point t up to $n+1$-st derivative, that is, if $f^{(n+1)}(t)=0$.

Assume that n is even and $f^{(n+1)}(t) \neq 0$ on some interval I (possibly, infinite).

Theorem 1 For any distinct $a, b \in I$, the graphs of the osculating polynomials g_{a} and g_{b} are disjoint.

Proof. To fix ideas, assume that $f^{(n+1)}(t)>0$ on I. Let $a<b$ and suppose that $g_{a}(x)=g_{b}(x)$ for some $x \in \mathbf{R}$. It follows from (1) that

$$
\frac{\partial g_{t}}{\partial t}(x)=\sum_{i=0}^{n} \frac{f^{(i+1)}(t)}{i!}(x-t)^{i}-\sum_{i=0}^{n} \frac{f^{(i)}(t)}{(i-1)!}(x-t)^{i-1}=\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}
$$

and hence $\left(\partial g_{t} / \partial t\right)(x)>0$ (except for $t=x$). It follows that $g_{t}(x)$ increases, as a function of t, therefore $g_{a}(x)<g_{b}(x)$. This is a contradiction.

The same argument proves the following variant of Theorem 1 . Let n be odd. Assume that $f^{(n+1)}(t) \neq 0$ on an interval I. Consider two points $a<b$ from I.

Theorem 2 The graphs of the osculating polynomials g_{a} and g_{b} are disjoint over the segment $[b, \infty)$.

Figure 2: Osculating quadratic polynomials of the function $f(x)=x^{3}$
Figure 2 shows the graphs of the osculating quadratic polynomials of the function $f(x)=x^{3}$ and Figure 3 of the osculating cubic polynomials of the function $f(x)=x^{4}$.

Figure 3: Osculating cubic polynomials of the function $f(x)=x^{4}$

3 Osculating trigonometric polynomials

Let f be a 2π-periodic smooth function, that is, a function on the circle $S^{1}=\mathbf{R} / 2 \pi \mathbf{Z}$. Fix $n \geq 1$ and let $t \in S^{1}$. A trigonometric polynomial of degree n

$$
g_{t}(x)=c+\sum_{i=1}^{n}\left(a_{i} \cos i x+b_{i} \sin i x\right)
$$

is the osculating trigonometric polynomial of the function $f(x)$ at the point t if its value and the values of its first $2 n$ derivatives at the point t coincide with those of f.

Remark 3.1 The osculating trigonometric polynomial always exists. Actually, the following more general fact is classical (one reference is [10]). Let $f_{i}, i=1, \ldots, N$, be a system of functions on an interval I such that the Wronski determinant of this system is nonzero everywhere on I. Then, for any sufficiently smooth function g on I and any $t_{0} \in I$, there is a linear combination of functions f_{i} that, at t_{0}, approximates g up to the derivative of order $N-1$. This boils down to solving the linear system

$$
g^{(j)}\left(t_{0}\right)=\sum c_{i} f_{i}^{(j)}\left(t_{0}\right), \quad j=0, \ldots, N-1
$$

with unknowns c_{i}, which has a solution due to non-zero determinant. The solution depends smoothly on t_{0}.

In our case, the functions f_{i} are $1, \cos t, \sin t, \cos 2 t, \sin 2 t$, etc., and $N=2 n+1$. The Wronskian of these functions is constant, which can be seen by differentiating its columns. On the other hand, the functions are linearly independent solutions of a N-th order linear differential equation, hence the Wronskian is nonzero.

Geometrically, we consider N-dimensional projective space and the curve $\left[f_{1}: \ldots: f_{N}: g\right]$. The osculating hyperplane of this curve at the point t_{0} approximates the curve with $N-1$ derivatives. The equation of this hyperplane is $g=\sum c_{i} f_{i}$, and this gives the desired approximation.

The osculating trigonometric polynomial g_{t} is hyper-osculating if it approximates the function f at the point t up to $2 n+1$-st derivative, that is, if $f^{(2 n+1)}(t)=g_{t}^{(2 n+1)}(t)$. Trigonometric polynomials of degree n are annihilated by the differential operator $\mathcal{D}:=d\left(d^{2}+1\right)\left(d^{2}+4\right) \ldots\left(d^{2}+n^{2}\right)$, where $d=d / d x$. Therefore g_{t} hyper-osculates a function f if and only if $(\mathcal{D} f)(t)=0$.

Assume that the osculating trigonometric polynomials of degree n for a function f do not hyper-osculate on an interval $I \subset S^{1}$.

Theorem 3 For any distinct $a, b \in I$, the graphs of the osculating trigonometric polynomials g_{a} and g_{b} are disjoint.

Proof. It is not hard to see that the real number $g_{t}^{(2 n+1)}(t)$ depends continuously on t (indeed, the function g_{t} depends continuously on t in the $C^{2 n+1}$-metric).

To fix ideas, assume that $f^{(2 n+1)}(t)>g_{t}^{(2 n+1)}(t)$ for all $t \in I$. We will show that $\partial g_{t}(x) / \partial t>0$ for all $t \in I$ and all $x \in S^{1}$ (except $t=x$), and this will imply the statement of the theorem as in the proof of Theorem 1.

Since g_{t} is an osculating trigonometric polynomial, one has:

$$
\begin{equation*}
g_{t}^{(j)}(t)=f^{(j)}(t), \quad j=0, \ldots, 2 n \tag{2}
\end{equation*}
$$

Differentiate:

$$
{\frac{\partial g_{t}}{\partial t}}^{(j)}(t)+g_{t}^{(j+1)}(t)=f^{(j+1)}(t)
$$

and combine with (2) to obtain:

$$
\begin{equation*}
{\frac{\partial g_{t}}{\partial t}}^{(j)}(t)=0, \quad j=0, \ldots, 2 n-1 ; \quad{\frac{\partial g_{t}}{\partial t}}^{(2 n)}(t)+g_{t}^{(2 n+1)}(t)=f^{(2 n+1)}(t) \tag{3}
\end{equation*}
$$

The function $\partial g_{t} / \partial t$ is a trigonometric polynomial of degree n. If this trigonometric polynomial is not identically zero, then it has no more than $2 n$ roots, counting with multiplicities. If $\partial g_{t} / \partial t \equiv 0$, then $\left(\partial g_{t} / \partial t\right)^{(2 n)}(t)=0$, and the last equality in (3) implies that g_{t} hyper-osculates. Thus $\partial g_{t} / \partial t$ is not identically zero.

According to (3), the trigonometric polynomial $\partial g_{t} / \partial t$ already has a root at the point t of multiplicity $2 n$. Hence $\left(\partial g_{t} / \partial t\right)(x) \neq 0$ for $x \neq t$. By the assumption made at the beginning of the proof and the last equality in (3), we have $\left(\partial g_{t} / \partial t\right)^{(2 n)}(t)>0$. Hence $\left(\partial g_{t} / \partial t\right)(x)>0$ for x sufficiently close to t, and therefore $\left(\partial g_{t} / \partial t\right)(x)>0$ for all $x \neq t$.

Figure 4: Osculating linear harmonics of the function $f(x)=x^{3}$
Theorem 3 is illustrated in Figure 4 depicting the graphs of osculating linear harmonics $c+a \cos x+b \sin x$ for the function $f(x)=x^{3}$.

Remark 3.2 Theorem 3 extends from trigonometric polynomials to Chebyshev systems of functions; the proof remains the same.

Remark 3.3 For $n=1$, Theorem 3 implies Kneser's theorem: it suffices to consider the support function of the curve and use the fact that the support functions of circles are linear harmonics.

4 Osculating conics, cubics and fractional linear transformations

Fix $d \geq 1$ and consider the space of algebraic curves of degree d. This space has dimension $n(d)=d(d+3) / 2$. At every point, a smooth plane curve γ can be approximated, to order $n(d)-1$, by an algebraic curve of degree d; this algebraic curve is called the osculating curve. One may think of the osculating algebraic curve as passing through $n(d)$ infinitesimally close points of γ. A d-extactic point of the curve γ is a point, at which the osculating algebraic curve hyper-osculates: it approximates γ to order $n(d)$; see [1].

In this section, we extend Kneser's theorem to osculating conics and osculating cubic curves. We assume that the curve γ is free from extactic points. We also assume that the osculating conics and cubic curves along γ are non-degenerate.

Consider a smooth function f with nowhere vanishing derivative. For every $t \in \mathbf{R}$, there exists a fractional-linear transformation g_{t}, whose value and the value of whose first two derivatives at the point t coincide with those of f; this is the osculating fractional-linear transformation. As before, it hyper-osculates at the point t if the third derivatives coincide as well. This happens if and only if the Schwarzian derivative of f vanishes:

$$
\left(\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\right)(t)=0
$$

The graph of a fractional-linear transformation is a hyperbola with vertical and horizontal asymptotes (or a straight line); we refer to these graphs as the osculating hyperbolas. Assume that the osculating hyperbolas for the function f do not hyper-osculate on an interval I. Let γ be the graph of f over I.

From the projective point of view, all non-degenerate conics are equivalent; since our results are projectively-invariant, we assume that the osculating conics of γ are ellipses. In the case of cubic curves, we assume that the osculating cubics of γ have two components, an oval and a branch going to infinity, and that the ovals, not the infinite branches, osculate γ. With these assumptions, we have the next theorem.

Theorem 4 1) The osculating ellipses along γ are pairwise disjoint;
2) the ovals of the osculating cubic curves along γ are pairwise disjoint;
3) the osculating hyperbolas of γ are pairwise disjoint.

Theorem 4, case 2) is illustrated by Figure 5.

Figure 5: Osculating cubic curves of a spiral

Proof of Theorem 4. We will argue about cubic curves, indicating the difference with the case of conics and hyperbolas, when necessary.

Give the curve γ a smooth parameterization, $\gamma(s)$. Let Γ_{s} be the oval of the osculating cubic curve at the point $\gamma(s)$, and $f_{s}(x, y)=0$ its cubic equation. It suffices to prove that the curves Γ_{a} and Γ_{b} are nested for distinct parameter values a and b, sufficiently close to each other.

Give the ovals Γ_{s} a smooth parameterization, $\Gamma_{s}(t)$, such that the tangency point with the curve γ corresponds to $t=0$, that is, $\Gamma_{s}(0)=\gamma(s)$. Let F be the map $(s, t) \mapsto \Gamma_{s}(t)$. We claim that, for $t \neq 0$, this map is an immersion. This claim implies that Γ_{a} and Γ_{b} are nested for sufficiently close a and b.

To prove the claim, we need the following lemma.

Lemma 4.1 Suppose that $F(s, t)=(x, y)$. The Jacobian of F vanishes at point (s, t) if and only if

$$
\begin{equation*}
\frac{\partial f_{s}}{\partial s}(x, y)=0, \quad f_{s}(x, y)=0 \tag{4}
\end{equation*}
$$

Proof of Lemma. The covector $d f_{s}$ is nowhere zero since the curve Γ_{s} is non-degenerate. This covector vanishes on $\partial F / \partial t$, the tangent vector to the curve Γ_{s}. Therefore the Jacobian of F vanishes exactly when $d f_{s}$ also vanishes on the vector $\partial F / \partial s$.

Differentiate the equation $f_{s}(F)=0$ with respect to s :

$$
\frac{\partial f_{s}}{\partial s} \circ F+d f_{s}\left(\frac{\partial F}{\partial s}\right)=0
$$

Thus $d f_{s}$ vanishes on the vector $\partial F / \partial s$ if and only if $f_{s}=0$ and $\partial f_{s} / \partial s=0$.

Now we need to prove that the system of equations (4) has no solutions for $t \neq 0$ and point (x, y) on the oval Γ_{s}. Both equations in (4) are cubic, and they are not proportional since $\gamma(s)$ is not an extactic point (in the case of osculating conics, the two equations are quadratic). By the Bezout theorem, the number of solutions is at most 9 (and 4, for conics). In the case of hyperbolas, $f_{s}(x, y)=(x-a)(y-b)-c$ where a, b and c depend on s; hence $\partial f_{s} / \partial s=0$ is a linear equation in x and y, and system (4) has at most 2 solutions.

For any parameter value s, the point $\gamma(s)$ is a multiple solution of system (4). Since the curve $\left\{f_{s}=0\right\}$ is the osculating curve of degree d for the curve γ at the point $\gamma(s)$, the function $s^{\prime} \mapsto f_{s}\left(\gamma\left(s^{\prime}\right)\right)$ has zero of order $n(d)$ at point $s^{\prime}=s$. We can view $f_{s}\left(\gamma\left(s^{\prime}\right)\right)$ as a smooth function of two variables s and s^{\prime}. This function vanishes on the line $s^{\prime}=s$. According to a version of the preparation theorem for differentiable functions [4, 6] (see also [7]), there exists a smooth function ϕ of two variables such that

$$
f_{s}\left(\gamma\left(s^{\prime}\right)\right)=\left(s-s^{\prime}\right)^{m} \phi\left(s, s^{\prime}\right)
$$

and $\phi(s, s) \neq 0$ locally near a given value of s. Restricting this equation to a line $s=$ const, we obtain $m=n(d)$. Differentiating with respect to s, we see that $\frac{\partial f_{s}}{\partial s}\left(\gamma\left(s^{\prime}\right)\right)$ starts with terms of order $n(d)-1$ in $s-s^{\prime}$. Then $\frac{\partial f_{s}}{\partial s}\left(\Gamma_{s}(t)\right)$
vanishes for $t=0$ with order $n(d)-1$, because Γ_{s} approximates γ up to order $n(d)$ at $\gamma(s)$. Hence the multiplicity of the solution $\gamma(s)$ of system (4) is $n(d)-1$.

For $d=2$ (the case of osculating ellipses), this multiplicity is 4 , and hence there are no other solutions. For $d=3$ (the case of osculating cubics), the multiplicity is 8 , and there may be one other solution. However, the number of intersection points of an oval with any curve is even, and therefore the 9 -th point (if it exists) lies on the other branch. Therefore system (4) has no solutions for $t \neq 0$.

Finally, in the case of hyperbolas, the multiplicity of the solution of system (4) at the point $\gamma(s)$ is 2 , therefore there are no other solutions again. This completes the proof.

Remark 4.2 It is interesting to compare Theorem 4 with three results on the existence of "vertices": a plane oval has at least six sextactic (i.e., 2-extactic) points [8]; a closed plane curve, sufficiently close to an oval of a cubic curve, has at least ten 3 -extactic points [1]; and the Schwarzian derivative of a diffeomorphism of $\mathbf{R} \mathbf{P}^{1}$ has at least four zeros [2] (see also [9, 10]).

Remark 4.3 In fact, the osculating hyperbolas are the osculating circles in Lorentz metric [2, 12].

Remark 4.4 Theorem 4 does not generalize to osculating quartics. This can be seen on Figure 6, where several osculating quartics for the curve $x^{2 / 3}+y^{2 / 3}=1$ are drawn. Each quartic in the picture splits into two ovals, one being below and one above the curve. One can see that nearby ovals below the curve intersect.

5 Infinitesimal intersection indices

In this section, we give some more general results that may highlight the proof of Theorem 4.

Consider a smooth map F of a region in \mathbf{R}^{2} to a region in \mathbf{R}^{2}. The map F gives rise to a family of curves. Namely, for any $s \in \mathbf{R}$, we have the parameterized curve $\Gamma_{s}: t \mapsto F(s, t)$, where the parameter t runs through all real numbers such that (s, t) is in the domain of F. Suppose that the curve

Figure 6: Osculating quartics of the curve $x^{2 / 3}+y^{2 / 3}=1$.
Γ_{s} is given locally by an equation $f_{s}=0$, which depends smoothly on s. We will assume that $d f_{s}$ never vanishes (e.g., if f_{s} are polynomials, then we are talking about nonsingular algebraic curves Γ_{s}).

Let (x, y) be a point $\Gamma_{s}(t)$ on a curve Γ_{s} so that $F(s, t)=(x, y)$. Define the infinitesimal intersection multiplicity of Γ_{s} at point (x, y) as the order of vanishing of the function

$$
t \mapsto \operatorname{Jacobian}[F](s, t)
$$

at point t. In particular, if the infinitesimal intersection multiplicity is zero, then the family F looks like a foliation locally near the point (x, y) and for parameter values near s (however, the curves from the family F corresponding to far-away parameter values may also pass through $(x, y))$. The infinitesimal intersection index of a curve Γ_{s} (in the family F) is the sum of local intersection multiplicities at all points of this curve. The following theorem is an infinitesimal version of the classical Bezout theorem:

Theorem 5 Suppose that all curves Γ_{s} are algebraic of degree d. Then the infinitesimal intersection index of each curve Γ_{s} is at most d^{2}.

The proof of this theorem is based on the following lemma:

Lemma 5.1 The infinitesimal intersection multiplicity of Γ_{s} at a point (x, y) is equal to the intersection multiplicity of the curves $\Gamma_{s}=\left\{f_{s}=0\right\}$ and $\left\{\frac{\partial f_{s}}{\partial s}=0\right\}$ at the same point.

This is a direct generalization of Lemma 4.1.
Proof. The Jacobian of F is, by definition, $\operatorname{det}\left(\frac{\partial F}{\partial s}, \frac{\partial F}{\partial t}\right)$. We have $d f_{s}\left(\frac{\partial F}{\partial t}\right)=$ 0 , and neither the 1 -form $d f_{s}$ nor the vector field $\frac{\partial F}{\partial t}$ ever vanish. It follows that the Jacobian of F is $d f_{s}\left(\frac{\partial F}{\partial s}\right)$ times a nowhere vanishing differentiable function. In particular, the order of vanishing of the Jacobian coincides with the order of vanishing of the function $d f_{s}\left(\frac{\partial F}{\partial s}\right)$ at the same point, and, by the equality

$$
\frac{\partial f_{s}}{\partial s} \circ F+d f_{s}\left(\frac{\partial F}{\partial s}\right)=0
$$

with the order of vanishing of $\frac{\partial f_{s}}{\partial s} \circ F$ at the same point. Restrict all functions considered to a curve Γ_{s} and express them it terms of the local parameter t. Then the order of vanishing of the function $\frac{\partial f_{s}}{\partial s}$ is, by definition, the intersection multiplicity of the curves Γ_{s} and $\left\{\frac{\partial f_{s}}{\partial s}=0\right\}$.

Theorem 5 now follows.
The following statement provides a description of families F that consist of osculating algebraic curves to a given plane curve:

Theorem 6 Under the assumptions of Theorem 5, suppose also that there is a smooth plane curve γ parameterized by s and such that $\gamma(s) \in \Gamma_{s}$ for each s, and each curve Γ_{s} has infinitesimal intersection multiplicity $n(d)-1$ at the point $\gamma(s)$. Then Γ_{s} are osculating algebraic curves of degree d for the curve γ.

This theorem generalizes the well-known algorithm of finding the envelope of a family of lines: the envelope coincides with the locus of points, where two infinitesimally close lines intersect.

Proof. Since $\frac{\partial f_{s}}{\partial s}=0$ on γ, the curve γ is the envelope of curves Γ_{s} (this follows from the classical description of the envelope).

Then the function $s^{\prime} \mapsto f_{s}\left(\gamma\left(s^{\prime}\right)\right)$ has a multiple zero at point $s^{\prime}=s$. By the preparation theorem for differentiable functions [6, 4, 7], we have

$$
f_{s}\left(\gamma\left(s^{\prime}\right)\right)=\left(s-s^{\prime}\right)^{m} \phi\left(s, s^{\prime}\right)
$$

where $m>1$ is an integer and ϕ is a smooth function of two variables such that $\phi(s, s) \neq 0$ locally near a given value of s. In particular, the curves Γ_{s} approximate the curve γ up to order m for s in the chosen neighborhood. Reparameterize curves Γ_{s} to make $\Gamma_{s}(t)$ coincide with $\gamma(s)$ for $t=0$. Then $\frac{\partial f_{s}}{\partial s}\left(\Gamma_{s}(t)\right)$ vanishes at point $t=0$ with order $m-1$. On the other hand, the order of vanishing is $n(d)-1$, hence $m=n(d)$.

Acknowledgments. We are grateful to Dan Genin for useful discussions and for making figures for this paper in Mathematica. The first author is grateful to MPIM in Bonn for its hospitality.

References

[1] V. Arnold. Remarks on the extactic points of plane curves, The Gelfand mathematical seminars, Birkhäuser, 1996, 11-22.
[2] E. Ghys. Cercles osculateurs et géométrie lorentzienne. Talk at the journée inaugurale du CMI, Marseille, February 1995.
[3] H. Guggenheimer. Differential geometry, Dover, 1977.
[4] L. Hörmander. On the division of distributions and polynomials, Arkiv för Math. 3 (1958), 555-568.
[5] A. Kneser. Bemerkungen über die Anzahl der Extreme der Krümmung auf geschlossenen Kurven und über vertwandte Fragen in einer nichteuklidischen Geometrie, Festschrift H. Weber, 1912, 170-180.
[6] S. Łojasiewicz. Sur la problème de la division, Studia Math. 8 (1959), 87-136.
[7] B. Malgrange. Ideals of differentiable functions, Oxford Univ. Press, 1966.
[8] S. Mukhopadhyaya. New methods in the geometry of a plane arc, Bull. Calcutta Math. Soc. 1 (1909), 32-47.
[9] V. Ovsienko, S. Tabachnikov. Sturm Theory, Ghys Theorem on Zeroes of the Schwarzian derivative and flattening of Legendrian curves, Selecta Math. 2 (1996), 297-307.
[10] V. Ovsienko, S. Tabachnikov. Projective differential geometry, old and new: from Schwarzian derivative to cohomology of diffeomorphism groups, Cambridge Univ. Press, 2005.
[11] S. Tabachnikov. Parameterized curves, Minkowski caustics, Minkowski vertices and conservative line fields, L'Enseign. Math. 43 (1997), 3-26.
[12] S. Tabachnikov. On Zeroes of the Schwarzian Derivative, Amer. Math. Soc. Transl., ser. 2, v. 180, 1997, 229-239.

