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1 Introduction

At every point, a smooth plane curve can be approximated, to second order,
by a circle; this circle is called osculating. One may think of the osculating
circle as passing through three infinitesimally close points of the curve. A
vertex of the curve is a point at which the osculating circle hyper-osculates:
it approximates the curve to third order. Equivalently, a vertex is a critical
point of the curvature function.

Consider a (necessarily non-closed) curve, free from vertices. The classical
A. Kneser theorem [5] (see also [3, 10]), states that the osculating circles of
the curve are pairwise disjoint, see Figure 1. This theorem is closely related
to the four vertex theorem of S. Mukhopadhyaya [8] that a plane oval has at
least 4 vertices (see again [3, 10]).

Figure 1 illustrates Kneser’s theorem: it shows an annulus foliated by
osculating circles of a curve.

Remark 1.1 This foliation is not differentiable! Here is a proof. Let f be a
differentiable function in the annulus, constant on the leaves. We claim that
f is constant. Indeed, df vanishes on the tangent vectors to the leaves. The
curve is tangent to its osculating circle at every point, hence df vanishes on
the curve as well. Hence f is constant on the curve. But the curve intersects
all the circles that form the annulus, so f is constant everywhere.

1



Figure 1: A spiral and its nested osculating circles

Remark 1.2 Kneser’s theorem has an analog in plane Minkowski geometry,
see [11].

We will prove a number of analogs of Kneser’s theorem; in each case, we
will obtain a non-differentiable foliation with smooth leaves.

2 Osculating Taylor polynomials

Let f be a smooth function of one real variable. Fix n ≥ 1 and let t ∈ R. The
osculating (Taylor) polynomial gt of degree n of the function f at the point
t is the polynomial, whose value and the values of whose first n derivatives
at the point t coincide with those of f :

gt(x) =
n
∑

i=0

f (i)(t)

i!
(x − t)i. (1)

The osculating polynomial gt is hyper-osculating if it approximates the func-
tion f at the point t up to n + 1-st derivative, that is, if f (n+1)(t) = 0.

Assume that n is even and f (n+1)(t) 6= 0 on some interval I (possibly,
infinite).
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Theorem 1 For any distinct a, b ∈ I, the graphs of the osculating polyno-
mials ga and gb are disjoint.

Proof. To fix ideas, assume that f (n+1)(t) > 0 on I. Let a < b and suppose
that ga(x) = gb(x) for some x ∈ R. It follows from (1) that

∂gt

∂t
(x) =

n
∑

i=0

f (i+1)(t)

i!
(x − t)i −

n
∑

i=0

f (i)(t)

(i − 1)!
(x − t)i−1 =

f (n+1)(t)

n!
(x − t)n,

and hence (∂gt/∂t)(x) > 0 (except for t = x). It follows that gt(x) increases,
as a function of t, therefore ga(x) < gb(x). This is a contradiction. 2

The same argument proves the following variant of Theorem 1. Let n be
odd. Assume that f (n+1)(t) 6= 0 on an interval I. Consider two points a < b
from I.

Theorem 2 The graphs of the osculating polynomials ga and gb are disjoint
over the segment [b,∞).
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Figure 2: Osculating quadratic polynomials of the function f(x) = x3

Figure 2 shows the graphs of the osculating quadratic polynomials of the
function f(x) = x3 and Figure 3 of the osculating cubic polynomials of the
function f(x) = x4.
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Figure 3: Osculating cubic polynomials of the function f(x) = x4

3 Osculating trigonometric polynomials

Let f be a 2π-periodic smooth function, that is, a function on the circle
S1 = R/2πZ. Fix n ≥ 1 and let t ∈ S1. A trigonometric polynomial of
degree n

gt(x) = c +

n
∑

i=1

(ai cos ix + bi sin ix)

is the osculating trigonometric polynomial of the function f(x) at the point
t if its value and the values of its first 2n derivatives at the point t coincide
with those of f .

Remark 3.1 The osculating trigonometric polynomial always exists. Actu-
ally, the following more general fact is classical (one reference is [10]). Let
fi, i = 1, . . . , N , be a system of functions on an interval I such that the
Wronski determinant of this system is nonzero everywhere on I. Then, for
any sufficiently smooth function g on I and any t0 ∈ I, there is a linear
combination of functions fi that, at t0, approximates g up to the derivative
of order N − 1. This boils down to solving the linear system

g(j)(t0) =
∑

cif
(j)
i (t0), j = 0, . . . , N − 1

with unknowns ci, which has a solution due to non-zero determinant. The
solution depends smoothly on t0.
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In our case, the functions fi are 1, cos t, sin t, cos 2t, sin 2t, etc., and
N = 2n + 1. The Wronskian of these functions is constant, which can be
seen by differentiating its columns. On the other hand, the functions are
linearly independent solutions of a N -th order linear differential equation,
hence the Wronskian is nonzero.

Geometrically, we consider N -dimensional projective space and the curve
[f1 : ... : fN : g]. The osculating hyperplane of this curve at the point
t0 approximates the curve with N − 1 derivatives. The equation of this
hyperplane is g =

∑

cifi, and this gives the desired approximation.

The osculating trigonometric polynomial gt is hyper-osculating if it ap-
proximates the function f at the point t up to 2n + 1-st derivative, that
is, if f (2n+1)(t) = g

(2n+1)
t (t). Trigonometric polynomials of degree n are an-

nihilated by the differential operator D := d(d2 + 1)(d2 + 4) . . . (d2 + n2),
where d = d/dx. Therefore gt hyper-osculates a function f if and only if
(Df)(t) = 0.

Assume that the osculating trigonometric polynomials of degree n for a
function f do not hyper-osculate on an interval I ⊂ S1.

Theorem 3 For any distinct a, b ∈ I, the graphs of the osculating trigono-
metric polynomials ga and gb are disjoint.

Proof. It is not hard to see that the real number g
(2n+1)
t (t) depends con-

tinuously on t (indeed, the function gt depends continuously on t in the
C2n+1-metric).

To fix ideas, assume that f (2n+1)(t) > g
(2n+1)
t (t) for all t ∈ I. We will

show that ∂gt(x)/∂t > 0 for all t ∈ I and all x ∈ S1 (except t = x), and this
will imply the statement of the theorem as in the proof of Theorem 1.

Since gt is an osculating trigonometric polynomial, one has:

g
(j)
t (t) = f (j)(t), j = 0, . . . , 2n. (2)

Differentiate:
∂gt

∂t

(j)

(t) + g
(j+1)
t (t) = f (j+1)(t),

and combine with (2) to obtain:

∂gt

∂t

(j)

(t) = 0, j = 0, . . . , 2n − 1;
∂gt

∂t

(2n)

(t) + g
(2n+1)
t (t) = f (2n+1)(t). (3)
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The function ∂gt/∂t is a trigonometric polynomial of degree n. If this
trigonometric polynomial is not identically zero, then it has no more than 2n
roots, counting with multiplicities. If ∂gt/∂t ≡ 0, then (∂gt/∂t)(2n)(t) = 0,
and the last equality in (3) implies that gt hyper-osculates. Thus ∂gt/∂t is
not identically zero.

According to (3), the trigonometric polynomial ∂gt/∂t already has a root
at the point t of multiplicity 2n. Hence (∂gt/∂t)(x) 6= 0 for x 6= t. By the
assumption made at the beginning of the proof and the last equality in (3),
we have (∂gt/∂t)(2n)(t) > 0. Hence (∂gt/∂t)(x) > 0 for x sufficiently close to
t, and therefore (∂gt/∂t)(x) > 0 for all x 6= t. 2
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Figure 4: Osculating linear harmonics of the function f(x) = x3

Theorem 3 is illustrated in Figure 4 depicting the graphs of osculating
linear harmonics c + a cos x + b sin x for the function f(x) = x3.

Remark 3.2 Theorem 3 extends from trigonometric polynomials to Cheby-
shev systems of functions; the proof remains the same.

Remark 3.3 For n = 1, Theorem 3 implies Kneser’s theorem: it suffices to
consider the support function of the curve and use the fact that the support
functions of circles are linear harmonics.
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4 Osculating conics, cubics and fractional lin-

ear transformations

Fix d ≥ 1 and consider the space of algebraic curves of degree d. This space
has dimension n(d) = d(d + 3)/2. At every point, a smooth plane curve
γ can be approximated, to order n(d) − 1, by an algebraic curve of degree
d; this algebraic curve is called the osculating curve. One may think of the
osculating algebraic curve as passing through n(d) infinitesimally close points
of γ. A d-extactic point of the curve γ is a point, at which the osculating
algebraic curve hyper-osculates: it approximates γ to order n(d); see [1].

In this section, we extend Kneser’s theorem to osculating conics and os-
culating cubic curves. We assume that the curve γ is free from extactic
points. We also assume that the osculating conics and cubic curves along γ
are non-degenerate.

Consider a smooth function f with nowhere vanishing derivative. For
every t ∈ R, there exists a fractional-linear transformation gt, whose value
and the value of whose first two derivatives at the point t coincide with those
of f ; this is the osculating fractional-linear transformation. As before, it
hyper-osculates at the point t if the third derivatives coincide as well. This
happens if and only if the Schwarzian derivative of f vanishes:

(

f ′′′

f ′
−

3

2

(

f ′′

f ′

)2
)

(t) = 0.

The graph of a fractional-linear transformation is a hyperbola with vertical
and horizontal asymptotes (or a straight line); we refer to these graphs as
the osculating hyperbolas. Assume that the osculating hyperbolas for the
function f do not hyper-osculate on an interval I. Let γ be the graph of f
over I.

From the projective point of view, all non-degenerate conics are equiva-
lent; since our results are projectively-invariant, we assume that the osculat-
ing conics of γ are ellipses. In the case of cubic curves, we assume that the
osculating cubics of γ have two components, an oval and a branch going to
infinity, and that the ovals, not the infinite branches, osculate γ. With these
assumptions, we have the next theorem.

Theorem 4 1) The osculating ellipses along γ are pairwise disjoint;
2) the ovals of the osculating cubic curves along γ are pairwise disjoint;
3) the osculating hyperbolas of γ are pairwise disjoint.
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Theorem 4, case 2) is illustrated by Figure 5.
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Figure 5: Osculating cubic curves of a spiral

Proof of Theorem 4. We will argue about cubic curves, indicating the
difference with the case of conics and hyperbolas, when necessary.

Give the curve γ a smooth parameterization, γ(s). Let Γs be the oval
of the osculating cubic curve at the point γ(s), and fs(x, y) = 0 its cubic
equation. It suffices to prove that the curves Γa and Γb are nested for distinct
parameter values a and b, sufficiently close to each other.

Give the ovals Γs a smooth parameterization, Γs(t), such that the tan-
gency point with the curve γ corresponds to t = 0, that is, Γs(0) = γ(s).
Let F be the map (s, t) 7→ Γs(t). We claim that, for t 6= 0, this map is an
immersion. This claim implies that Γa and Γb are nested for sufficiently close
a and b.

To prove the claim, we need the following lemma.
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Lemma 4.1 Suppose that F (s, t) = (x, y). The Jacobian of F vanishes at
point (s, t) if and only if

∂fs

∂s
(x, y) = 0, fs(x, y) = 0. (4)

Proof of Lemma. The covector dfs is nowhere zero since the curve Γs

is non-degenerate. This covector vanishes on ∂F/∂t, the tangent vector to
the curve Γs. Therefore the Jacobian of F vanishes exactly when dfs also
vanishes on the vector ∂F/∂s.

Differentiate the equation fs(F ) = 0 with respect to s:

∂fs

∂s
◦ F + dfs

(

∂F

∂s

)

= 0.

Thus dfs vanishes on the vector ∂F/∂s if and only if fs = 0 and ∂fs/∂s = 0.
2

Now we need to prove that the system of equations (4) has no solutions
for t 6= 0 and point (x, y) on the oval Γs. Both equations in (4) are cubic,
and they are not proportional since γ(s) is not an extactic point (in the
case of osculating conics, the two equations are quadratic). By the Bezout
theorem, the number of solutions is at most 9 (and 4, for conics). In the case
of hyperbolas, fs(x, y) = (x − a)(y − b) − c where a, b and c depend on s;
hence ∂fs/∂s = 0 is a linear equation in x and y, and system (4) has at most
2 solutions.

For any parameter value s, the point γ(s) is a multiple solution of system
(4). Since the curve {fs = 0} is the osculating curve of degree d for the curve
γ at the point γ(s), the function s′ 7→ fs(γ(s′)) has zero of order n(d) at
point s′ = s. We can view fs(γ(s′)) as a smooth function of two variables s
and s′. This function vanishes on the line s′ = s. According to a version of
the preparation theorem for differentiable functions [4, 6] (see also [7]), there
exists a smooth function φ of two variables such that

fs(γ(s′)) = (s − s′)mφ(s, s′)

and φ(s, s) 6= 0 locally near a given value of s. Restricting this equation to a
line s = const, we obtain m = n(d). Differentiating with respect to s, we see
that ∂fs

∂s
(γ(s′)) starts with terms of order n(d) − 1 in s− s′. Then ∂fs

∂s
(Γs(t))

9



vanishes for t = 0 with order n(d) − 1, because Γs approximates γ up to
order n(d) at γ(s). Hence the multiplicity of the solution γ(s) of system (4)
is n(d) − 1.

For d = 2 (the case of osculating ellipses), this multiplicity is 4, and hence
there are no other solutions. For d = 3 (the case of osculating cubics), the
multiplicity is 8, and there may be one other solution. However, the number
of intersection points of an oval with any curve is even, and therefore the
9-th point (if it exists) lies on the other branch. Therefore system (4) has no
solutions for t 6= 0.

Finally, in the case of hyperbolas, the multiplicity of the solution of system
(4) at the point γ(s) is 2, therefore there are no other solutions again. This
completes the proof. 2

Remark 4.2 It is interesting to compare Theorem 4 with three results on the
existence of “vertices”: a plane oval has at least six sextactic (i.e., 2-extactic)
points [8]; a closed plane curve, sufficiently close to an oval of a cubic curve,
has at least ten 3-extactic points [1]; and the Schwarzian derivative of a
diffeomorphism of RP1 has at least four zeros [2] (see also [9, 10]).

Remark 4.3 In fact, the osculating hyperbolas are the osculating circles in
Lorentz metric [2, 12].

Remark 4.4 Theorem 4 does not generalize to osculating quartics. This
can be seen on Figure 6, where several osculating quartics for the curve
x2/3 + y2/3 = 1 are drawn. Each quartic in the picture splits into two ovals,
one being below and one above the curve. One can see that nearby ovals
below the curve intersect.

5 Infinitesimal intersection indices

In this section, we give some more general results that may highlight the
proof of Theorem 4.

Consider a smooth map F of a region in R2 to a region in R2. The map
F gives rise to a family of curves. Namely, for any s ∈ R, we have the
parameterized curve Γs : t 7→ F (s, t), where the parameter t runs through all
real numbers such that (s, t) is in the domain of F . Suppose that the curve
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Figure 6: Osculating quartics of the curve x2/3 + y2/3 = 1.

Γs is given locally by an equation fs = 0, which depends smoothly on s. We
will assume that dfs never vanishes (e.g., if fs are polynomials, then we are
talking about nonsingular algebraic curves Γs).

Let (x, y) be a point Γs(t) on a curve Γs so that F (s, t) = (x, y). Define
the infinitesimal intersection multiplicity of Γs at point (x, y) as the order of
vanishing of the function

t 7→ Jacobian[F ](s, t)

at point t. In particular, if the infinitesimal intersection multiplicity is zero,
then the family F looks like a foliation locally near the point (x, y) and
for parameter values near s (however, the curves from the family F corre-
sponding to far-away parameter values may also pass through (x, y)). The
infinitesimal intersection index of a curve Γs (in the family F ) is the sum
of local intersection multiplicities at all points of this curve. The following
theorem is an infinitesimal version of the classical Bezout theorem:

Theorem 5 Suppose that all curves Γs are algebraic of degree d. Then the
infinitesimal intersection index of each curve Γs is at most d2.

The proof of this theorem is based on the following lemma:
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Lemma 5.1 The infinitesimal intersection multiplicity of Γs at a point (x, y)
is equal to the intersection multiplicity of the curves Γs = {fs = 0} and
{∂fs

∂s
= 0} at the same point.

This is a direct generalization of Lemma 4.1.

Proof. The Jacobian of F is, by definition, det( ∂F
∂s

, ∂F
∂t

). We have dfs(
∂F
∂t

) =
0, and neither the 1-form dfs nor the vector field ∂F

∂t
ever vanish. It follows

that the Jacobian of F is dfs(
∂F
∂s

) times a nowhere vanishing differentiable
function. In particular, the order of vanishing of the Jacobian coincides with
the order of vanishing of the function dfs(

∂F
∂s

) at the same point, and, by the
equality

∂fs

∂s
◦ F + dfs

(

∂F

∂s

)

= 0,

with the order of vanishing of ∂fs

∂s
◦F at the same point. Restrict all functions

considered to a curve Γs and express them it terms of the local parameter
t. Then the order of vanishing of the function ∂fs

∂s
is, by definition, the

intersection multiplicity of the curves Γs and {∂fs

∂s
= 0}. 2

Theorem 5 now follows.
The following statement provides a description of families F that consist

of osculating algebraic curves to a given plane curve:

Theorem 6 Under the assumptions of Theorem 5, suppose also that there
is a smooth plane curve γ parameterized by s and such that γ(s) ∈ Γs for
each s, and each curve Γs has infinitesimal intersection multiplicity n(d)− 1
at the point γ(s). Then Γs are osculating algebraic curves of degree d for the
curve γ.

This theorem generalizes the well-known algorithm of finding the envelope
of a family of lines: the envelope coincides with the locus of points, where
two infinitesimally close lines intersect.

Proof. Since ∂fs

∂s
= 0 on γ, the curve γ is the envelope of curves Γs (this

follows from the classical description of the envelope).
Then the function s′ 7→ fs(γ(s′)) has a multiple zero at point s′ = s. By

the preparation theorem for differentiable functions [6, 4, 7], we have

fs(γ(s′)) = (s − s′)mφ(s, s′),
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where m > 1 is an integer and φ is a smooth function of two variables such
that φ(s, s) 6= 0 locally near a given value of s. In particular, the curves Γs

approximate the curve γ up to order m for s in the chosen neighborhood.
Reparameterize curves Γs to make Γs(t) coincide with γ(s) for t = 0. Then
∂fs

∂s
(Γs(t)) vanishes at point t = 0 with order m − 1. On the other hand, the

order of vanishing is n(d) − 1, hence m = n(d). 2
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