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Abstract

Dirac operators are well known to provide an elegant generalisation of complex
analysis both to domains in higher dimensional Euclidean space (Clifford analysis) and
to closed manifolds {spin geometry). This paper is concerned with the meeting point of
these areas: Dirac operators on manifolds with boundary. The aim is to demonstrate
that many of the ideas from function theory in the plane have natural analogues on
Riemannian (or conformal spin) manifolds by providing, as far as possible, elementary
proofs of the main analytical results about the boundary behaviour of Dirac operators.
Emphasised throughout are the conformally invariant aspects of the theory, and also the
usefulness of the Clifford algebra formalism. A number of classical results from complex
analysis, and their counterparts in Clifford analysis, are extended to Dirac operators on
manifolds, including the Cauchy integral formula, the Plemelj formula, the Kerzman-
Stein formula, and the L2-boundedness of the Cauchy and Hilbert transforms.

Finally, the null space of the Dirac operator on a conformal spin manifold is shown to
define a conformally invariant Hilbert space of boundary values, such that the norm of
the pointwise evaluation of solutions on the interior gives rise to a conformally invariant
metric which is complete and has negative scalar curvature.
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INTRODUCTION

The idea of finding first order systems of cquations which factor a second order linear
differential operator is certainly a venerable one, but over the past thirty ycars or so, a
nuinber of different threads have been pulling together around what is now widely known
as a Dirac operator. Although it is possible to define Dirac operators quite directly, a
deeper understanding is acquired when these interrelated threads are brought into play.
Relevant ideas include: Clifford algebras, which provide the right setting and language
for Dirac operators just as the complex numbers do for the Cauchy-Riemann operator;
harmonic analysis, which expresses the relationship, with its analytical ramifications, of
Dirac operators to the representation theory of the spin group; and conformal differential
geometry, which enters the picture as soon as one observes that the Dirac operator is
conformally invariant, and provides a context for studying Dirac operators in a manifestly
invariant way.

The Clifford algebraic, function theoretic, and harmonic analytical aspects of Dirac
operators have been brought together very fruitfully through the work of many people within
the rapidly developing ficld of Clifford analysis [12, 19, 28, 37, 46]. Similarly, the use of Dirac
operators in differential geometry is widespread in areas as diverse as Riemannian geometry,
index theory, noncommutative geometry, general relativity and elliptic cohomology [1, 5,
7, 11, 35, 43, 50]. At present, however, the Clifford analysis and differential geometry of
Dirac operators are developed largely along separate lines. Yet these lines run very close
at times: in Clifford analysis, certain Dirac operators on submanifolds of R* are being
studied [37, 47, 48, 51, 52] and the geometry of Dirac operators is playing an increasingly
important role [19, 44, 47], while in differential geometry, knowledge of hard analytical
properties of Dirac operators can be invaluable [7, 26, 43]. Hence it seems worthwhile to
build more bridges betwecn these areas—this paper is intended as a step towards that end.
In [24], Gilbert and Murray described the analysis of Dirac operators both on domains in
R", as in Clifford analysis, and also on compact boundaryless manifolds, the usual sctting
in differential geometry. The focus here will be on the most obvious meeting point: compact
manifolds with boundary. The aim is to present a thorough treatment of the analysis of
Dirac operators on such manifolds, with particular reference to conformal invariance and
also to the potency of Clifford algebra as a language in which to express the results.

Much of the analysis studied here is already known in the context of elliptic pseudodif-
ferential operators—for example, some of the results are special cases of those of Seeley [49].
However, the theory of pseudodifferential operators on manifolds with boundary is morc
complicated than on closed manifolds, and the naterial is often too technical for a wide
audience. In [11], Boofl and Wojciechowski obscrve that many simplifications can be made
when one restricts attention to Dirac operators. Nonetheless, for some crucial steps in their
approach, they follow the technical computations of Seeley.

Here I wish to show that a function theoretic point of view provides an alternative,
more elementary approach to the analysis of Dirac operators on manifolds with boundary.
Indeed, using only integral Sobolev spaces, and no pseudodifferential operators or Fourier
analysis, proofs of the main analytical results are given. As in Clifford analysis, one pleasant
aspect of these proofs, is that the arguments are rccognisable even in some of the details as
generalisations of complex analytical methods. Consequently, many of the results obtained



are direct analogues of classical theorems in complex analysis, and so I shall refer to thein
by their classical names. The results established, for arbitrary Dirac operators on arbitrary
(Riemannian or conformal spin) manifolds with boundary, include Cauchy’s theorem, the
Cauchy integral formula, the Pompeiu representation formula, the Plemelj formula and
the I2-boundedness of the Cauchy and Hilbert transforms. To obtain such generalisations,
complex and Clifford analytical techniques must be supplemented by potent tools, such as
the Bochner-Weitzenbock formula, and formulated in a geometric context. This context, I
believe, sheds light even upon the two dimensional results. Furthermore, I claim that these
methods are not only illuminating, but also useful, in that they provide tools which are
casy to apply. To illustrate this, some function theoretic aspects of boundary problens for
Dirac operators are developed, and an application in conformal geometry is presented.

Since this paper is aimed at several audiences, I have tried to keep it reasonably self-
contained, which partly accounts for its length. There is consequently a certain amount
of well-established material. To Clifford analysts, I am labouring a familiar point when
I emphasise that Dirac operators are a generalisation of complex analysis, while to other
analysts, the avoidance of powerful pscudodifferential operator methods may seem perverse.
Also, the differential geometer will find herein yet another summary of the elliptic theory
of Dirac operators. I crave the indulgence of all these readers. I should also remark that. it
has been necessary at times to choose between conflicting notation and terminology; I have
tended to use geometrically invariant notation, but occasionally adopt analytical language
and conventions.

In the first two sections I briefly review the algebraic material used throughout, before
presenting, in sections 3-6, the analytical tools and elliptic theory of Dirac operators on
closed manifolds. Here I follow (7, 24, 35, 45], although Bochner-Weitzenbdck integral
formulac are established for a wider class of Dirac operators than is usual. In section 4,
I also recall (essentially from [32]) the important fact that the Dirac operator associated
to a spin structure is conformally invariant, in the sense that it is defined intrinsically ou
any conformal spin manifold. Most of the formulae obtained in later sections are explicitly
conformally invariant in this case.

In section 7, I present the generalisation of the Cauchy integral formula to manifolds
with boundary, the highlight being the analogue of the Pomnpeiu representation formula.
Applications of this Cauchy integral to mean value inequalitics, removable singularities and
residues are then discussed in section 8.

The heart of the paper lies in section 9, where the Hardy space H of L? boundary data
(the boundary values of sections in the null space of the Dirac operator) is introduced. As
observed in [11], much of the analysis of Dirac operators follows from a twisted orthogonality
property of this boundary data, and the aim here is to prove this property. This is done
by using the Cauchy transform and a generalisation of the Kerzman-Stein formula [34] to
establish I?-boundeduness results directly, thus bypassing a lot of the technical analytical
theory of elliptic boundary problems. In fact, the line of proof in this section is based quite
closely upon Bell’s monograph [6} on the Cauchy transform in the plane. In section 10,
further analytical aspecis of Dirac operators on manifolds with boundary are discussed,
such as the Bergman kernel and the Dirichlet problem for the square of the Dirac operator.

The final scction is devoted to an application of these tools in conformal geometry, which
was in fact the original motivation for much of the work presented here. The key point
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is that, for the conformally invariant Dirac operator, the I?-norm on the Hardy space H
depends only on the conformal structure, and so a canonical norm is obtained ‘for free’ on
a space of spinors with well defined intcrior values. This norm then trivialises the density
bundle. In other words, given a conformal structure on a compact spin manifold with
boundary, the Cauchy integral defines a conformally invariant metric on the interior. The
metric is complete with negative scalar curvature, and generalises the Poincaré metric on
the unit ball. Such a result was first obtained, in the Euclidean case, by Hitchin [33], who
observed that the Cauchy integral (as found in Gay and Littlewood [23]) is conformally
invariant and bounded. His results on the completeness and scalar curvature of this metric
gencralise readily to conformal spin manifolds, except that the negativity (rather than just
nonpositivity) of the scalar curvature relies on an integrability result for the Dirac equation
whose proof uscs the full machinery developed herc.
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I. ALGEBRAIC PRELIMINARIES
1 Clifford algebras

I work throughout with the algebras introduced by W. K. Clifford [17, 18] and H. Grass-
mann [27]. There are many ways to define these Clifford algebras; I will use the following:

1.1 Definition. Let V be a linear space. Then a Clifford algebra for V is an extension of
R & V to an associative algebra A with identity 1 € R such that

(1) A is generated (as a ring) by R V

(ii) v?eRforallv e V.
1t follows that v — v? defines a quadratic form on V. I will say that the Clifford algebra is
nondegenerate or positive/negative definite iff this quadratic form is. If ¢ is any quadratic
form on V, then A will be called a Clifford algebra for (V,q) if v® = ¢{v).

REMARK. Clifford algebras are also sometimes defined by the relation v?> = —q(v). This
may scem a trivial difference; however in Euclidean and Riemannian geometry it is usual
to work with positive definite quadratic forms, and so this extra minus sign leads to a
negative definite Clifford algebra. The focus herein will be on the positive definite case.

It is not immediately clear from the above definition that a Clifford algebra for (V,q)
always exists, so I will briefly recall a couple of constructions. A Clifford map on (V,q) is
defined to be a linear map ¢ from V to an associative algebra A such that :(v)? = g(v)1.
(If ¢ is injective then the subalgebra of A generated by the image is a Clifford algebra.)
There is a standard algebraic construction of a universal Clifford map m: V — CI(V, g).

1.2 Definition. Define CI(V,q) := @ V /{v ® v—q(v)1), the quotient of the tensor algebra
@ V by the relation v ® v = g(v)1, and let 7 be induced by the inclusion V — @ V.

This is clearly a Clifford map; the universal property is a consequence of the following:

1.3 Proposition. Let (V,q) and (W,r) be quadratic spaces, v: W = A o Clifford map, and
T:V — W an isometry (that is, r(Tv) = q(v) for all v € V). Then there is o unigue
algebra homomorphism T.: Cl(V,q) — A eztending T, in the sense that T, o = 1o T\
Note also that if A is a Clifford algebra and T 1s surjective, then so is T,.

Proof: toT:V — A is a linear map from V into an associative algebra, and so by the
universal property of the tensor algebra, there is a unique extension of ¢ o T to an algebra
homomorphism T,: @V — A. Since T is an isometry and ¢ a Clifford map, T, (v ®wv) =
(T ()2 = r(Tv) = q(v) = Tu(q(v)1), so T. descends to the quotient CI(V,q). O

Similarly there is a unique algebra antithomomorphisin from CI(V,q) to A extending T.

If there exists a Clifford algebra A for (V,g), then, taking T' to be the identity map in
the above proposition, it immediately follows that CI(V,q) is also a Clifford algebra. One
way to obtain existence is as follows (see for example [7, 24]). Let A(V) be exterior algebra
of V and let A(V, q) be the subalgebra of End A(V) generated by {c(v}) =€y + 1, : v € V},
where g,(x) = v Az and ¢, is contraction by v (with respect to g).

1.4 Proposition. A(V,q) is a Clifford algebra for (V,q).

Proof: First note that c(v)(1) = v, so R@® V embeds into and generates A(V,q). Now
2 =0, :2 = 0 and 1,6, = —€yty + ¢(v), by an easy computation, and so c(v)? = ¢(v). O



1.5 Proposition. For finite dimensional V, the evaluation map evy (at 1 € R) is a linear
isomorphism from A(V,q) to A(V). There is also a natural algebra isomorphism between
A(V,q) and Cl(V,q), and a basis is given by S = {eﬁ’“ el imy =0, 1}, where e,...6e,
is any orthogonal basis of V.

Proof: A simple inductive argument shows that ev; is surjective, since imev, contains
R = A%(V), and the highest degree part of evy(c(v)...c(ug)) is v) A+ Awvg. Also, by 1.3,
there is a surjective algebra homomorphisin from CI(V,q) to A(V,q). Since ejer = —exe;
for all § # k, S is a spanning set for any Clifford algebra, and so 2" 2> dim CI(V,q) >
dim A(V,q) 2 dim A(V) = 2". Hence equality holds all the way through and the surjective
linear maps are all bijective. a

Henceforth, A(V,q) will be identified with CI(V,q) and called the Clifford algebra of

(V,q). Its elements are sometimes called Clifford numbers or multivectors. CI{(V,q¢) is a
graded algebra: it may be written as a direct sum CI(V, q) = CI(V,q)** & CI(V, q)°%, with
Cl{V, ¢)®® a subalgebra, the even subalgebra. Frequent use will be made of the decomposition
vw = {v,w) +vAw of a product of vectors into its symmetric and skew parts, where {.,.)
denotes the induced inner product on V.
"% The Clifford algebra has several involutions, the most important being the chirality,
g"radz'ng, twisting or principel automorphism z — z* induced by the isometry v — —v;
its fixed point set is the even subalgebra. The antiautomorphism z — % induced by the
identity on V maps vy ... v to vg... v, and so is called reversion.

From now on, only the nondegenerate Clifford algebras Cl,, ,, or Cl,, will be considered;
here (p,m) is the signature of the inner product on V', and Cl, = Cly .

2 Spin groups and Clifford modules

2.1 Definitions. Let CI} ,, be the Lie group of invertible elements of Cl,, 1, and let clj
be its Lie algebra (which is Cl,,, with bracket [z,y] = zy — yz). The adjoint action
Ad: Cl; ,, — Aut(Cly ) is given by Adz(y) = zyz™', but if  is odd, it is often useful to

incorporate the grading of Cl,, ,, and define the twisted adjoint action Ad™: CIJ U C’l;:f“,',‘1 -
Aut(Cly ) by Ad} = Ad, for z even, but Ad%(y) = zy*z~! for z odd.

2.2 Proposition. For z € Cl,,, the following hold:
(i) ifzv=vz* Vo eV thenz e R
(1) if © is invertible and Yv € V zv(z™1)* € V, then v = zv(z~!)* is an isometry of V.

1

(iii) if z is a non-null vector then v — —zvz~" is a reflection in the hyperplane z+ < V.

This is straightforward, as is the next proposition, which is a consequence of the defini-
tions below and the fact that any isometry can be written as a composite of reflections.

2.3 Definition. The Clifford semigroup Ap,, consists of those elements of Cl, ,, which can
be written as a product of vectors, the Clifford group I'y ,, being the invertible elements
(with £z # 0). Define the Pin, Spin and Spiny. groups by:

Pin(p,m) = {z € Ay, : Tz = £1}

Spin(p,m) = {z € A}, : &z = %1}
Spin, (p,7n) = {z € AJY, : Tz =1}
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2.4 Proposition. Ad® defines an action of I'y,, on V' by isometries and on Cly ;n by auto-
morphisms. The homomorphism from Ty 1, to the group of isometries of V is surjective with
kernel R* and restricts to a two-fold cover of O(p,m) by Pin(p, m), SO(p,m) by Spin(p,m)
and SO, (p,m) by Spin_ (p, m).

The Lie algebra of these double covering groups will be denoted spin(p, m). It consists
of the bivectors in Clym = ¢} .., and the Lie algebra map ad: spin(p,m) — so(p,m) is an
isomorphism. More precisely:

2.5 Proposition. Given z,y € V, define a skew endomorphism zly of V by zhy(w) =
(z,wyy — {y,w)z. Then ad™ (zAy) = Lz Ay = —L(zy - yz).

Proof: The action of a € Spin(p,m) on V is given by v = ave™!, and so the action of
¢ € spin(p, m), obtained by differentiating, is v — {v — v€. After substituting £ = xy — yz,
a simple computation using the Clifford relation establishes the result. B

The convention v? = —(v,v) would give the opposite sign in this formula.

2.6 Definition. A Chifford module for Cl,,, is a vector space E on which Cl, ,, acts as
an algebra; that is, an algebra homomorphism Cl,,, — End(E) is given. Elements of a
Clifford module are often called spinors. A Clifford module is said to be graded if it has a
direct sum decomposition E = E~ @ E* preserved by Cly,.» and such that Cl;‘fm exchanges
the summands. By restriction, any Clifford module {and also either component of a graded
Clifford module) is a representation of Spin{p,m). Such a representation will be called a
spin representation.

Often E is equipped with an inner product such that Clifford multiplication by vectors
is either syminctric or skew. In the symmetric case, the inner product can only be definitc
if the Clifford algebra is positive definite, whereas in the skew case, the Clifford algebra
must be negative definite. This is the main difference between the positive and negative
definite Clifford algebras, and has the consequence that Dirac operators are skew-adjoint
in the positive definite case, and self-adjoint in the negative definite case.

The most natural example of a Clifford module is Cl,, ,,, acting on itself by left multipli-
cation. Since Clp ., is A(V') as a vector space, this may also be viewed as the natural action
of Clym on A(V). An inner product on Cl, ., is given by (z,y) = (Zy), where (.} denotes
the scalar part, although it is also of interest to work with the inner product Zy taking
values in Clp ., (see {12]). For v € V, (vz,y) = (Zvy) = (z,vy), so vectors are symmetric,
and for the positive definite algebra Cl,,, this inner product is positive definite.

The case of irreducible (graded) Clifford modules is also of some importance. The cor-
responding irreducible spin representations are often simply called the spin representations.
In fact there are, up to isomorphism, ounly two such representations in even dimensions, and
onc in odd dimensions. Other Clifford modules must decompose into a dircct sum of these,
although the decomposition is not canonically defined. For further details see [3, 16, 30, 35].



II. DIirRAC OPERATORS ON MANIFOLDS
3 Dirac operators and Bochner-Weitzenbock formulae

Let M be a (semi)Riemannian manifold. Then the Clifford algebra bundle Cl(M) is
the vector bundle whose fibre at 22 € M is the Clifford algebra CI(T;M). Using the metric
this is isomorphic to CI(T;M) and hence, as a vector space, it is isomorphic to AT} M.

Now suppose E is a Clifford module bundle on M, with covariant derivative D¥. Then
for each © € M there is a Clifford action ¢: TyM ® E, — E,, written c(a ® s) = c{a)s.

3.1 Definition. The (generalised) Dirac operator associated to (E, D¥) is the differential
operator ¥ = co DF: C®(M, E) - C®(M, E). A section in the kernel of a Dirac operator
will be called monogenic. (Other terms in common use are Clifford analytic functions and
harmonic spinors—however, for general Dirac operators, monogenic sections may not be
analytic, and on nonclosed manifolds, the kernels of ¥ and ¥* no longer agrec.)

3.2 Historical remarks. This definition has a long and complicated history. After the
Cauchy-Riemann operator, the first Dirac operator to be introduced was the quaternionic
Vi operator of Hamilton and Tait (a Dirac operator in 3 dimensions). In a remarkable
paper [21], Dixon studied “Hamiltonian functions” and gave an analogue of Cauchy’s inte-
gral formula for Hamilton’s operator. The Dirac operator in (3, 1)-dimensional space-time
was introduced by Dirac [20], and here the spinor transformation law was also identified.
The elliptic analogue in higher dimensions was described in Moisil [41], while Brauer and
Weyl [13] gave the general setting for the Dirac construction. Quaternionic function the-
ory was explored by Fueter and his school in the thirties, and later they extended their
methods to higher dimensions (see [29]). In the sixties Dirac operators were studied more
intensively, when they were rediscovered by Delanghe, Gay and Littlewood, Hestenes, If-
timie, and Stein and Weiss—see [12] or [46] for a thorough bibliography. Around the same
time, the Dirac operator began to play an important role in differential geometry through
the work of Atiyah and Singer [5], and Lichnerowicz [38].

3.3 Examples. A basic way to obtain examples of Dirac operators is from the representa-
tion theory of the spin group. More preciscly, let E be simultaneously a Clifford module for
Clym and a representation of Spin(p,m), such that the actions ¢ and . are compatible, in
the sense that c{aza™')a.yy = a.c(z)y for all a € Spin(p,mn), 2 € Cl, ., and ¢ € E. Let M
be a Riemannian manifold equipped, if necessary, with a spin structure (see section 4—this
is only needed if the representation of Spin(p, m) on E does not descend to SO(p,m)). Then
E gives rise, via the associated bundle construction, to a Clifford module bundle £ with a
covariant derivative induced by the Levi-Civita connection. The most important cases of
this are as follows.

(i) If Spin(p,m) acts on Clp, by conjugation, then E is the bundle AT*M = CI(M),
and the Clifford module structure is given by the action of the Clifford algebra bundle on
itself by left multiplication. The induced Dirac operator on E is then the Hodge-Kihler
d + J operator, where d is the exterior derivative, and § = —d* is the exterior divergence.

(it) If E is any Clifford module for Cl, ,, then by restriction it is a spin representation of
Spin(p, m)—a simple example is the action of Spin(p,m) on Cl,,, by left multiplication.
Now on any Riemannian spin manifold, E induces a spinor bundle E, and a special Dirac
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operator, the Atiyah-Singer or spinor Dirac operator, on E. This operator will simply be
referred to as the Dirac operator on M (associated to E). Its significance, over more general
Dirac operators, is that it is conformally invariant in a very interesting way—see section 4.

In practice Dirac operators are often “chiral” in the sense that £ = E~ @ E* and the
Dirac operator is given by ¥*: C®(M, E¥) - C®(M, E*); in other words, the Clifford
module bundle is graded and the Dirac operator is odd. This is clearly the case in the first
example above, and in any such example if E is a graded Clifford module. Even if E is
ungraded, the notation E* = E provides a useful way of differentiating between the domain
and codomain of a Dirac operator. The Dirac operators between E* are then “nonchiral”
if there is a distinguished equivariant isomorphism E* = E~ identifying them.

A central property of Dirac operators is that their square is a Laplacian on E; in
other words, its symbol is scalar, and is given by a nondegenerate bilinear form on M (the
metric). This follows immediately from the Clifford relation v? = (v,v), and is the key to
the analysis of Dirac operators. It also leads to the alternative definition [7]:

3.4 Definition. Let M be a manifold and ¥ a graded vector bundle. Then a Dirac operator
on E is an odd first order linear differential operator ¥ on E such that ¥? is a Laplacian.

From this definition it is immediate that the symbol of ¥? defines a (semi)Riemannian
metric on M, and that the symbol of ¥ defines a graded Clifford module structurc on E
(see 7] for details). It is also easy to see that any Dirac operator is transitive in the sense
that there exists a covariant derivative D” on E such that ¥ = co DF, as in 3.1. Note,
however, that D is not uniquely determined by V.

3.5 Examples. Some examples illustrating the scope of this definition are as follows.

(i) Suppose that A is a second order linear differential operator with nondegenerate
scalar principal symbol, acting on a bundle E~ and equipped with a given factorisation
A = Dy o D, into first order linear operators between £~ and another bundle E*. Now if
D, 0D has the same scalar principal symbol on E*, then D) and D, define a Dirac operator
on E~ @ E*. The Cauchy-Riemann equations and the Dirac equations fit this pattern.

(i1) Let M be a submanifold of a (semi)Riemannian manifold X such that the pullback
metric is nondegenerate. On M the tangent bundle of X splits into a direct sum T'@ N,
where T is the tangent bundle of M. The Levi-Civita derivative of X pulls back to a
covariant derivative on T @ N, given by the Levi-Civita derivative DT on T, a metric
compatible derivative D™ on N and the second fundamental form IT acting between T' and
N. If E is a Clifford module bundle associated to T®N (as in 3.3) then there are two induced
covariant derivatives on E, one coming from DT®N = DT @ DV, the other from DT®N 4+ 11
The second of these gives rise to an interesting submanifold Dirac operator, which for a
spacelike hypersurface in a Lorentzian spin manifold, is the hypersurface Dirac operator used
in Witten’s proof of the positive energy theorem [43]. This is also the type of Dirac operator
which is sometimes studied on submanifolds of R® or C* in Clifford analysis [12, 47, 51],
and used to analyse the Cauchy transform on a Lipschitz surface [37, 40, 42].

It is of crucial importance to have an explicit “Weitzenbock” formula for the Laplacian
2. The basic way of obtaining such a formula is to compare ¥? to the Bochner Laplacian
AE = v DT"®E o DE of some covariant derivative D¥ on E. Any covariant derivative can
be used, but simpler formulae are obtained if the derivative is rclated to the Dirac operator.



3.6 Definition. Let ¥ be a Dirac operator on E and D a covariant derivative. Then D¥
is called a Clifford derivative iff DFc = 0, in the sense that

DX (c{a® ¢)) = c(Dxa® ¢) + ca ® DX ),

where D is the Levi-Civita derivative. I will also say that D¥ is a Dirac compatible derivative
if ¥ = co DE. Finally, ¥ will be called a Clifford Dirac operator iff there is a compatible
Clifford derivative D® on E; that is, ¥ = co D and D®c = 0.

The following theorem is now very well known {24, 35, 45], although the short global
approach to the proof given below seems little used in the literature. The product rule
reduces this result to its essence: a decomposition into skew and symmetric parts. However,
despite its apparent simplicity, it proves to be extremely powerful tool.

3.7 Theorem (Bochner-Weitzenbéck). Let ¥ be a Clifford Dirac operator. Then
V2 = A%¢ + DR,

where AF is the Bochner Laplacian of the compatible Clifford derivative D, RE¢ is the
q}tmature AI(DT®E o DEg) and ) is the Clifford action of A*T*M on E.

Proof: Since DPc =0, DFoc = (id®c)oDT"®E and so ¥* = co(id®c)o DT"® o DF. Now
split this info skew and symmetric parts. On the one hand, co(id®c)(3 Alt(DT"®FoDF p)) =
@ (R¥¢), while on the other hand, because co (id @ c)(A (@@ B+ L@ ) ® P) = (a, B¢,
it follows that ¢ o (id ® c)(3 Sym(DT"®% o DF¢)) = tr DT"®E o D¢, O

If D¥ were not Clifford, then there would be a first order term in the above formula,
given by (coDEc)o DE. More gencrally, for any covariant derivative D” on E, one can write
¥ =co DP 4 A% with A® an endomorphism of E, and so obtain a Bochner- Weitzenbock
formula, with first order term (co DFc+ AP oc+ co AF) o DP.

It is well known [7, 25] that for any Laplacian, there is a unique covariant derivative
whose Bochner Laplacian differs from the given Laplacian by a zero order term. In the case
of ¥ there is the following interesting description of this derivative.

3.8 Proposition. Let ¥ be any Dirac operator and DF any covariant derivative on E with
Y =coDF 4+ A®. Then

¥ (c(X)9) + e(X)¥$ — o(VX)p = 2D + (c0 DPe(X) + AT 0 o(X) + e(X) 0 A)

where V denotes the d + § operator applied to vector fields (curl plus divergence).

This expression, when divided by 2, is therefore a covariant derivative DE on E (right
hand side) defined purely in terms of ¥ (left hand side). DE defines an endomorphism A
of Eby¥ =co DE + A, and is characterised by the formula ¢ o DEctcoA+Aoc=0.
Proof: By the product rule DZ(c(X)¢) = (DPc)(X)¢p + (DX )¢+ ¢(X)DF¢. The result
follows by applying Clifford multiplication to this, using the Clifford relation to compute
coc(X)DP¢ =2D%¢ — ¢(X)(co DF)¢, and adding the AF terms. O

DE will be called the associated derivative of ¥. Its characterisation immediately gives
the following Bochner-Weitzenbock formula:

3.9 Theorem. Let D be the associated derivative of a Dirac operator ¥ = co DE 4 A.
Then Y2 = AP® — K, where K is the zero order operator —(C(E)RE +coDFA+ Az).
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A similar result appears in the paper [1] of Ackermann and Tolksdorf, although they
write the curvature terms differently by introducing additional covariant derivatives. The
above presentation arose from joint work with Tammo Diemer aimed at understanding {1)
in an explicitly invariant way. Various parts of 3.8 have appeared in other places. For
example, in {7], Berline, Getzler and Vergne give a formula for the derivative associated to
Y2 corresponding to the left hand side, which shows that D is the supercommutator of ¥
with Clifford multiplication by vector fields. Different formulations of the right hand side
of 3.8 can be found in [1, 26]. In practice it is most useful to compute D¥ (and then K) in
terms of a Clifford derivative. It follows in particular that if a Dirac operator is Clifford,
then the associated derivative is the only compatible Clifford derivative on E. The Dirac
operators in 3.3 are all Clifford, but submanifold Dirac operators in general are not.

The following property of DE is easily deduced from the Clifford relation ¢(X)? =
g(X, X), either by using the characterisation or by introducing a Clifford derivative.

3.10 Proposition. Let DE be the associated derivative of a Dirac operator. Then DEc s
skew, in the sense that (Dfif.c)(Y) = —(f){’:c)(X) for all vector fields X,Y .

In specific examples, it is interesting to calculate the Bochner-Weitzenbdck curvature
term K more explicitly. In particular, for the Dirac operator on the spinor bundle F
{(associated to E using a spin structure), there is the following result of Lichnerowicz [38]:

3.11 Theorem. The square of the Dirac operator on a spin manifold is given by the formula
v:=AF— %n, where & is the scalar curvature of the metric. In other words K = %rs.

Since K = —c@®R¥_ where RE is the action on E of the curvature of the Levi-Civita
derivative, this computation is a simple consequence of the Bianchi symmetry (see [35]).

4 Conformal invariance

Conformal geometry is central to section 11, and so I will review the basic notions and
give a proof of conformal invariance for the Dirac operator on a spin manifold.

4.1 Definition. Two inner products gy, g2 on a vector space V are said to be conformally
equivalent iff there is a nonzero real number A such that for all vectors v,w, g(v,w) =
Mgo(v,w). A conformal inner product on V is an equivalence class of inner products.
Given an inner product g on V, a conformal linear map with scale factor A € R* is an
invertible linear map T such that g(Tv, Tw) = A%g(v,w). A conformal frame is a basis of
orthogonal vectors of V' which all have the same length with respect to the inner product.

Clearly the notions of conformal linear map and conformal frame depend only on the
conformal equivalence class of the inner product, and the conformal linear maps act freely
and transitively on the conformal frames. Any vector v in an conformal inner product
space is an element of a conformal frame and this defines an element CV{(v) of A"(V)
which depends (up to a sign) only on v and the conformal inner product.

4.2 Definition. A density p on an n-dimensional vector space V' is a map from A™(V) to
R such that p(Aw) = |Mp(w) for all A € R and w € A®(V). The densities on V form a one
dimensional linear space denoted [A"V*|, and p(vy, ... v,) is written for p(vy A--- Awvy). An
inner product on V induces a nonzero density on V, the volume element. Finally, define
L = L(V) to be the space of maps p from A*(V) to R such that p(Aw) = |A7o(w).

11



Note that L™ = |[A™V?*, so the density bundle of L ® V is canonically trivial. An inner
product on L @ V will be called normalised iff its volume clement is the canonical one.

4.3 Proposition. There is a one to one correspondence between conformal inner products
on V and normalised inner products on L@ V.

Proof: Given any inner product (.,.) on L®V, define the conformal class of inner products
on V to consist of those g for which there is an element [ of L such that g(», w) = (@, (@w)
for all v,w € V. In the converse direction it suffices to define ({ ® v,! ® v). To do this
form CV(v) € AV and I" € L™. These are not uniquely defined, but it is easy to see that
the real number obtained by evaluating ™ on CV (v) and squaring is well defined, and that
taking the positive nth root gives a normalised quadratic form. O

4.4 Definition. Let M be a smooth manifold. Then the weightiess tangent bundle is
defined to be the bundle L @ TM where L is the trivialisable line bundle whose fibre at
x € M is Ly = L(Ty;M). A conformal structure on M is a normalised metric on the
weightless tangent bundle. This defines a conformal class of inner products on each tangent,
space. M is then said to be a conformal manifold. Such a structure is equivalently given by
tlie principal CO(p,m) bundle of conformal frames. Note that a trivialisation of L defines
a Riemannian metric on M and that L is the density bundle of M.

A conformal manifold does not have a canonical Levi-Civita derivative. Instead there is
a distinguished family of torsion free covariant derivatives on the tangent bundle called Weyl
derivatives, which are those derivatives compatible with the metric on the weightless tangent
bundle. For example, the Levi-Civita derivative of any metric in the conformal class of inner
products is a Weyl derivative. The difference between any two Weyl derivatives D and D, as
an endomorphism valued 1-forin, must be a section of T*M & co(TM) N §*T*M @ T M. This
bundle is isomorphic to T*M—iundeed there is a (scalar valued) 1-form + with Dx -Dx =
XAy —~(X)id, where XAy: M — so(TM) is the skew endomorphism given by X and vy
using the conformal structure.

The theory of general Dirac operators in section 3 may equally be devcloped on a
conformal manifold equipped with a Weyl derivative. A Dirac operator on £ is then a first
order odd operator E — L ® F whose symbol is a weightless Clifford action ¢: T"M @ F —
L ® E. The associated derivative may then be defined using the chosen Weyl derivative
instead of the Levi-Civita derivative of a (semi)Riemannian metric.

The rest of this section is devoted to the special case of the (Atiyah-Singer) Dirac
operator on a spin manifold.

4.5 Definition. A spin structure on an oriented manifold M is a principal (‘}Hff(n)-bundle,
together with a 2-fold cover of the bundle of oriented frames compatible with the (nontrivial)
2-fold cover GL*(n) = GL*(n). A manifold with a spin structure is called a spin manifold.

Not every manifold admits a spin structure, although it is possible to relax the ori-
entability requirement by considering “pin structures”. This will not be done here, nor will
topological obstructions be discussed (see [35] for a full treatment), but instead it will now
be assumed that M is conformal spin manifold. Therefore, the principal CO4(p, m) bundle
of oriented conformal frames has a double cover, a principal Spin, (p, m) x Rt bundle ['(M).
The aim is to show that this structure is sufficient to define the Dirac operator.
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4.6 Definitions. Let M bc a conformal spin manifold, and E be a Clifford module. Then
associated to T'(M) are the following vector bundles:

(i) the tangent bundle, TM = T'(M) x,, R*,

where p; is the standard representation of Spin(p, m) x Rt on R* (i.e., (a,\): £ — Aaza™!)

(i) the weightless tangent bundle, L@ TM = T'(M) x,, R*,

where po is the standard representation with R* acting trivially (i.e., (¢, A): z — aza™!)
(ii1) the Clifford algebra bundle, CI(M) = T'(M) x,, Cly m,

where p3 is the extension of ps to Gl (i.c., the adjoint action of Spin(p,m) on Clp )
(iv) the density bundle with weight w, LY = T(M) x,, R,

where g, is the action (a, A): a » A %«

(v) the spinor bundles with weight w, ELZ = T'(M) x,, E*,

where oy, is the weight w spin representation (a, A): ¥ — A" ¥azp.
Note that CI{M) is the conformal version of the Clifford algebra bundle defined earlier; its
fibre CI{M)z is the Clifford algebra of L; ® T, M with its normalised inner product. The
Clifford action on E is spin invariant, and so, for each w, E, is a bundle of modules for

CI{M), and therefore there is a Clifford action ¢,: T°M ® E;, = EL .

Given a Weyl derivative D, a Dirac operator may be defined for cach weight w as the
operator ¢, o D¥ from E, to E,41, where DF is the induced covariant derivative on E,,
and the symbol ¢, is independent of the Weyl derivative. The important fact is that,
provided thce weight w is chosen correctly, the Dirac operator itself is independent of the
Wey! derivative, and is therefore canonically associated to the conformal spin manifold.

4.7 Theorem. The Dirac operator ¢y, o DT does not depend upon the choice of the Weyl

. . . _ pn-l
derivative D iff w = 5=,

Proof: (c.f. Hitchin [32].) It must be shown that ¢, o (DF — DF) = 0 (for all possible
choices) iff w = "T_l The difference between any two Weyl derivatives on the tangent
bundle is given by Dx — Dx = XAy — y(X)id for some 1-form ~. 1t then follows from
Proposition 2.5 that the corresponding section of spin(M) @ R is %('yX - X7v) — (X},
where vX and Xy denote weightless Clifford multiplication and contraction of the weights.
Now the action of (&, 1) € spin(p,m} @& R on E, (from the weight w representation of

Spin(p,m) x R*) is ¢ = & — wptp. Therefore

(DF ~ D)o = e(rX = X7)+wr(X) = 5e(r(X) = X2)+ur(X)e,

and so (contracting the X variable with c¢,)

ch(DE—DE)¢=%%(7—n7)¢+wcw(7)¢>=(w— 5 )cw(’r)d>-

This is zero for all v iff w = ”T_l a

5 Inner products and the Green formula

Henceforth, I restrict attention to definite Dirac operators, i.e., the Clifford algebra
bundle on M will be definite. The two cases (positive or negative definite) are very similar,
and so only the positive definite case will be treated, partly in order to demonstrate that the
theory is just as pleasant as the negative definite case (which is more widely considered),
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and partly in order to emphasise the link between the Green formula and the product rule.
The negative definitc version is easily obtained by judicious insertion of minus signs.

The reason for the restriction to definite Dirac operators is that they are elliptic, and
so have a simpler and better-developed analytical theory. More naively, the analysis of
definite Dirac operators is easier because the Clifford module bundle may be given an
invariant definite inner product by averaging over the (compact) Spin group. To be precise,
it will now be assumed that the bundles £* are equipped with inner products whose real
parts are positive definite, and such that the Clifford action of any (co)tangent vector is
symmetric with respect to the induced inner product on E. It will also be assumed that
the Dirac operator is uncharged with respect to the inner product, in the sense that the
associated derivative D is compatible with the inner product (i.e., the inner product is
covariant constant) and A = ¥ — co DE is a skew endomorphism—it follows that K is
a symmetric endomorphism. More general Dirac operators can be decomposed into an
uncharged part and a contracted potential, but this will be discussed clsewhere.

In the case of the conformally invariant Dirac operator associated to a Clifford module E,
such an inner product bundle is easily obtained by equipping E with a definite inner product
such that vectors are symmetric (by averaging over the Pin group). The equivariance of
this inner product under Spin(n) x R* ensures that it induces inner products on the spinor
bundles, such that the inner product of a section of £y, with a section of £, is a section
of L¥1t%2, Any Weyl derivative D induces a covariant derivative D* on E with respect to
which this inner product is automatically parallel. Note also that D¥ is then the associated
derivative of the Dirac operator (computed using the given Weyl derivative D). From time
to time it will be necessary, during computation, to make such a choice of Weyl derivative,
for example by choosing a metric in the conformal class.

The aim now is to develop the analytical properties of gencral Dirac operators, in such
a way that in the case of the Dirac operator on a conformal spin manifold, the forinulae
obtained are manifestly conformally invariant. To this end some notation will be useful.

5.1 Notation. In the conformally invariant case, E* will be used for the weight %, and
E* for the weight "—'}1 (so the Dirac operator acts from E~ to E’*). The L*~! valued inner
product on E will be denoted {.,.). For more general Dirac operators, E* = L®E*, and the
chosen inner product (.,.) on E will be assumed to take values in L"~! as in the conformal
invariant case. On a Riemannian manifold the line bundles LY are each trivialised by a
natural section, and so may be ignored when conformal aspects are not being considered.

As in (7], integration will be defined in terms of densities, rather than n-forms, although
they are equivalent in the orientable case. Integration over M is then a linear functional
fart O (M, L") = R, where C(M, L™) the space of smooth compactly supported sections
p of L™. Given such a p and a vector field X, define div(X ® p) to be the Lie derivative
Lyp. It is easy to see that this is well defined (indeed it is the trace of D(X @ p) for any
torsion-free derivative D) and that the Divergence formula

/M div(X @ p) = f6 M(x, )

holds. Here the boundary integrand is the contraction of X with p along OM, a section of
L*~1! over M which may be defined as follows. Let v be any outward pointing vector field
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along dM, and « the section of 7°M along OM such that a{v) = 1 and kera = T(9M).
Then (X, p) = a(X)p(v,=)|sp- If M is a Riemannian (or conformal) manifold then this
equals (X, v)p(v, —), where v is the (weightless) outward unit normal.

5.2 Theorem. Let ¥ be any (uncharged) Dirac operator on E, and let ¢, be sections of
E~ and E*. Then:

div (c(.)p, %) = (V'o,%) + (¢, YV ¢),
where (c(.)¢, ) is a vector field density; that is, an L™ valued linear map on T*M.
Proof: The divergence will be calculated directly—in the conformal case a Weyl derivative
needs to be chosen for this computation. By assumption, DF is compatible with (., .) and

so the product rule gives the following formula for the Levi-Civita or Weyl derivative D
applied to (¢{.)d, ¥):

D (c()$,%) = (D) )¢, %) + (c()D®¢, %) + (¢,¢(.) DF4).
The divergence is obtained by taking the trace of this equation. To do this, observe that

tre(.)DEp = c(DE@) and tr DFc = 0 (by 3.10). Since ¥ = co DF + A with A skew, the
right hand side of the stated formula is obtained. a

5.3 Corollary (Green formula). If ¢ and 1 are compactly supported sections, then there
is the following integration by parts formula for ¥:

/BM (el)é,v) = /M (V¢ 9) + /M (. ¥79).

(The integrals are well defined in the conformal case, since (¥*¢,¢) and (¢, ¥ ¢) are
sections of L™, and (c(v)d, ) is a section of L™, as v is weightless.)

5.4 Corollary (Cauchy’s theorem). If ¥¢ =V =0 on M, then [, (c(v)$,¥) =0.

REMARK. The proof of theorem 5.2 makes essential use of the compatibility of D with
the inner product. In fact it is easy to see that if the divergence formula in 5.2 holds then
DE is compatible with the inner product and A is skew.

The Green formula is a formal skew-adjointness result. One way to interpret this is by
means of distributions. Let C§°(M, V) denote the space of smooth compactly supported
sections of V vanishing (to infinite order) on the boundary of M.

5.5 Definition. The space of distributional sections of a bundle V, denoted D(M,V) is
defined to be the continuous dual of CP(M, V* @ L") with respect to the C®-topology of
uniform smooth convergence on compact subscts. Note that any s € C*(M, V) determincs
the functional fyeM(s(y) ,.) on CS°(M, V*® L"), where (.,.) denotes the L™ valued contrac-
tion of V*®L™ with V. For each y € int M and 6, € V;, the functional 6,06, : f = 6,(f(y))
is continuous and so is a distribution. Thus the delta function &, is in D(M,V*® L") @V,
where D(M, V*® L") is the continuous dual of C§°(M, V).

5.6 Proposition. In the case of a spinor bundle, (E7)"® L™ =
CP(M,E™) is D(M, E7), with C®°(M, E™) embedded into D(M,
tionals [y, (#,.), and similarly for the positive spinors.

Hence the Dirac operators ¥*: C(M, ET) = CP(M, E*) are formally skew-adjoint,
in the sense that the adjoint (transpose) of V™, when restricted to the smooth spinor fields
(of weight ™51 ) vanishing on the boundary, is -V

and so the dual of

£,
E7) as the linear func-
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This also shows that ¥*: C®(M,E™) — C®(M, E*) extends to a continuous linear
operator D(M, E~) — D(M, E*), namely (=¥ )*, the transpose of the formal adjoint.

I now turn to the Bochner-Weitzenbdck formula of section 3—since this involves %2,
a metric on M (or at least a Weyl derivative) is required. The Bochner-Weitzenbock
formula is a powerful tool for establishing important properties of ¥, particularly when it
is rcexpressed using the inner product on E. Such a formulation is easily obtained using
the Green formula for the Dirac operator and a well known Green formula for a covariant
derivative on a vector bundle with compatible inner product. For the associated derivative
on E, the latter Green formula arises from the following:

div((¢,¥)ta) = (r DF(a® §) , ¥} +(a® ¢, D"y).

The operator tr DZ is often called the covariant divergence. Since it is the operator ap-
pearing in the Bochner Laplacian, it is now a straightforward matter to prove:

5.7 Theorem (Inner product form of Bochner-Weitzenbock). For sections ¢,1 of
E, there are the following equalities between pointwise inner products:

(V6,Vy) = div(c(.)¥,¢) = (-V*¢,9) = (D¢, DFy) + (K¢, 9) —div(D"¢, ).
5?8 Corollary (Integral form of Bochner-Weitzenbéck). For ¢, € C*(M, F),
[ 00,05+ [ (kp 0= [ F6,9%) = [ ((ct)¥ - DE)p. .
M M M oM

The operator in the boundary integrand is ¢(v)¥? where Y7 is a Dirac operator on
OM (the tangential part of ¥). Since K is a symmetric endomorphism, the above formula
implies ¢(v)¥7 is a formally self-adjoint differential operator on M (in fact it is an example
of a Dirac operator with a negative definite Clifford algebra bundle).

There are two immediate and important consequences of the Bochner-Weitzenbdck in-
tegral formula: an I? estimate and a vanishing theorem. Both require M to be compact.

5.9 Garding’s inequality. For M compact and ¢ € C*°(M, E),

1D 8% < 196l + (sup IKDIGIE: — | (c)¥",9)
where | K| denotes the pointwise operator norm.

On a closed manifold, or more generally if ¢|,,, is in the span of the positive spectrum
of ¢(v)¥T, the boundary term disappears.

5.10 Theorem. Suppose that M is compact, and the symmetric endomorphism K is non-
negative. Then every monogenic spinor (satisfying the above spectral boundary condition if
M 1s not closed) 1s DE parallel, and identically zero if K is somewhere (strictly) positive.

Proof: By 5.8, [,,(D?¢,DE¢) + [,,(K¢,$) is nonpositive, since ¥¢ = 0 and the bound-
ary integrand is nonpositive. But K is nonnegative, so DE¢ =0 and (K¢, ¢) = 0. O

This type of vanishing result (on closed manifolds) goes back to Bochner [8]. In the case
of the Dirac operator on a conformal spin manifold, the Lichnerowicz formula 3.11, with
respect to any chosen metric in the conformal class, gives K = %n, and so the above theo-
rem reduces to the Lichnerowicz vanishing theorem [38]. The extension of Lichnerowicz’s
theorem to spectral boundary conditions was given in [10], where it was used to study the
moduli space of metrics of positive scalar curvature.
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6 Elliptic theory on closed manifolds

This section sumimarises the well known elliptic theory of Dirac operators on closed
manifolds. This will be done within the framework of (integer) 12 Sobolev spaces of sections
of a vector bundle V, denoted L;’r(M, V). Roughly speaking, a section s is in L?(M, V) iff
its derivatives up to order j are all in I2(M, V). The derivatives can be defined with respect
to a covariant derivative DY on V. sz is a Hilbert space with norm

k _ 1/2
Ishy = (LU0 VslEs)
3=0

Any differential operator of order k is continuous from L?(M, V) to L?_k(M, V) for j 2 k.

Most of the properties of elliptic operators can be deduced from elliptic estimates for
the Sobolev norms. A notable feature of Dirac operators is that these estimates are easy
to establish, requiring no local computations with pseudodifferential operators or Fourier
analysis, and no parametrix machinery. The proof below is based on Roe {45].

6.1 Proposition. Let M be a closed manifold. Then for each 7 € N there is a consvtant
Cj such that for any ¢ € C®(M, E), the inequality |I¢||Lf+1 < Cj(quHLJg + ||Y7¢||L§) holds.
Thus if ¢, Vo € L? then in fact ¢ € L?_H.

Proof: For j = 0, this is immediate from 5.9. Now use induction on j. To estimate
the L? 41-norm of ¢, it suflices to estimate the L?-norm of f)fgqb for any vector field X,
which, by induction, is bounded by C;j_; (| D% Hlla_, + I¥ DE ¢l )+ Since both D% and

A gn A LY - = ~ A g

[V,I?f;] = VYDE — DEY are first order operators, the LZ_j-norms of DY, DEV¢ and
(¥, Df]qb are bounded by L'Jz--norms of ¢ and ¥¢, and the required estimate follows. O

From these estimates and some elementary functional analysis (the Sobolev embedding
theorem, the Rellich compactness theorem, and an abstract closed range theorem) the
following properties of Dirac operators on closed manifolds are easily deduced:

6.2 Local elliptic regularity. Let U be an open subset of M, and suppose that ¢ €
[?(M, E) with ¥¢ (represented by) a smooth function on U. Then ¢ is smooth on U.

Secondly, suppose Vqﬁj =0 on U and ¢; > ¢ in L2(W, E) for all compact subsets W of
U. Then ¢; = ¢ locally uniformly in all derivatives on U, and hence Vé=0onU.

6.3 Theorem. On a closed manifold, ¥*: C®(M, E¥) - C®(M, £*) has a finite dimen-
sional kernel and o closed range, and the orthogonal complement of ker ¥~ in C®(M, E*)
is imY¥7, and similarly for the negative spinors. (Morve precisely ker ¥~ and im V™ are
mutual annihilators with respect to the pairing of C°(M, EY) and C®°(M, E*).)

There is a similar result for the Dirac operator acting between Sobolev spaces. Note
also, that in the case of the d + 4 operator, this gives a straightforward proof of the Hodge
decomposition: C®(M,AT*M) = imd & (kerd Nker §) @ im 4.

In order to study Dirac operators on manifolds with boundary, it is convenient to use
an extension of the given Dirac operator to an invertible operator on a closed manifold
containing the given manifold with boundary. In fact it is always possible to construct such
an extension, thanks to the following unique continuation property.

6.4 Theorem. Let Q be a connected open set and ¢: @ — E a section with ¥¢ = 0.
Suppose ¢ vanishes on an open subset of Q. Then ¢ vanishes on (2.
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One way to prove this is to apply a result of Aronszajn [2] to the squarc of the Dirac
operator—for another proof, see [11]. The theorem below only uses the weaker continuation
property that on a connected manifold with nonempty boundary, a monogenic function
vanishing on the boundary vanishes identically.

6.5 Theorem. Let M be a compact connected Riemannian manifold with nonempty bound-
ary and a Dirac operator ¥*: C®(M,E~) = C®(M, E"). Then there is a closed manifold
M containing M as a submanifold of the same dimension, and an exztension of ¥* to a
Dirac operator on M which is invertible.

The proof of this theorem (see [11] or [14] for the details) involves doubling the manifold
M and gluing E* to E~ across the boundary using Clifford multiplication by the unit
normal. This twist gives the Clifford module bundle on M a special global structure, and
it is this which accounts for the invertibility of the Dirac operator.

III. Dirac OPERATORS ON MANIFOLDS WITH BOUNDARY

7 The Cauchy integral formula
g

i I will now turn to the analysis of ¥ on a manifold M with boundary, using an invert-
ible extension of ¥ to a closed manifold M, and the restriction map r: C°(M,E™) —
C(8M, E7). The main object of study is the following (see Secley [49]):

7.1 Definition. The Cauchy integral is the operator
ct = (c(u) oro (V_)—])* = (Y/"—)'_l or*oe(v): C®(OM,E™) — D(M,Eﬁ),

where (i) c(v): C®(8M, E~) = C®(8M, E*) is the action of the (weightless) unit normal,
(i) 7*: C®(OM,E*) = D(M, E") is given by r*$[] = Jons (@,79), and
(iif) (¥7)*~L: D(M,E*) - D(M,E") is the inverse of the transpose (¥ ™)* = -¥*,

Similarly, there is a Cauchy integral C~ for E*. Since (¥~)~! is bounded from I3(M,E")
to L2(M, E*) and r is bounded from L#(M, E*) to 12(OM, E*), it follows that:

7.2 Proposition. The Cauchy integral is a bounded linear map 12(OM,E™) = 13(M,E™).

This simple result will not be used until much later. Instead some more informative
expressions for the Cauchy integral on smooth functions will be developed, starting with:

7.3 Proposition. The Cauchy integral is given by the formulae

C* dp] = /8 (), (7)) = /M (6.4) + /M(m, (7)),

where in the last expression ¢ has been extended to M. Hence if ¢ is monogenic on M then
C*(rd) = ¢ as distributions on int M. Also note that ¥ (C*¢) =0 on M ~ OM.

Proof: The first expression is a matter of unravelling the definition:
Crel) = (P )~ ortoc() )] = (r*(c(v)¢) (V)" '9] = /E]M (cv)¢, (¥7)71y).

The second expression then follows from the Green formula, and hence if V¢ = 0, C*(ré)
and ¢ agree on test functions 1. For the last part it nust be shown that (V"o C*¢)[¢] =0
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for any test function ¢ € C®(M, E*) supported in int M. But ¥* on distributions is given
by —=(¥7)*, s0 (V" o C*@)[yp] = —r*(c(v)$) ] = — [op (c(v)¢, 7)) = O since rp=0. O

This proposition is already a distributional version of the Cauchy integral formula. It
gives direct expression to the fact that a monogenic function is determined by its boundary
values. However, it is of little use unless the Cauchy integral is described more explicitly.
In particular, since C¢ smooth away from dM (by elliptic regularity), it should be possible
to give an expression for its point values. This can be done using the fundamental solution.

7.4 Definition. Recall that for each z € M there is a delta function §; € D(M, E~)® E;.

Define the distribution Gf by Gf = (¥*)*~16, € D(M,E*) ® E;, so that Gi[y] =

(V) 16,) ] = 5 (V) 1] = (Y1)~ 14h)(z). Now (V)* is the action of =¥~ on distri-

butions, and so ¥~ G} = 0 outside {z}. Hence over {(:z:,y) EMxM:z# y}, one can

define the fundamental solution of ¥* to be the point values G*(z,y) € E} ® E; of G}.
Likewise ¥~ has a fundamental solution G~ (z, ).

An important fact to be established is that the distributions G5 are actually represented
by the fundamental solutions y = G*(z,y), since a priori G may harbour a genuine
distribution on the diagonal. However, it is at least clear that if ¢ = 0 near z, then

(F*))(z) = f (6 (@) $W) -

yeM

7.5 Proposition. For z # y, G (y,z)" = —G¥(z,y), where 7 denotes transposition of
tensors: E ®E; & E;@E;. Hence the fundamental solutions are smooth in both variables.

Proof: 1t follows from the Green formula that [y (¢,(¥™")7') + [ (V*)"1¢,4) = 0.
For ¢, with disjoint support, this implies:

/yeﬁ? (W ’[jm (") ”P(m))) + f i ( /y i (C )8 ) ,¢(z>) =0.

Since this holds for all such ¢, 1, the equality follows. O
It is now possible to describe the Cauchy integral operator more explicitly.

7.6 Theorem (Point values of the Cauchy integral). Away from M, C*¢ is given
by the smooth function

Cp(z) = fa (-GZ.e)e)

Proof: For ¢ supported away from M,
CURY I COTON IR CTERTO)

= [ Lo, (6700100 )

using 7.5 and the continuity of the integrand. This gives the stated formula. O
7.7 Corollary {(Boundedness of the Cauchy integral). In the oriented line L1,

o), 0o < ([ @) ([ (. G;))m’

where the last integral is contracted to lie in L17'.
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Therefore the Cauchy integral extends to a continuous linear mayp from the {conformally
invariant) Hilbert space (M, E) to C®(int M, E).
Proof: This is just the Cauchy-Schwarz inequality for the E, valued pairing of G} and
¢, dressed up in conformally invariant language. It immediately follows that the pointwise
Cauchy integral is continuous, but also since [, (G5, G} is smooth for z € int M, it is in
I? on compact subsets. Now the Cauchy integral is monogenic, and so the continuity (on
the dense subspace of smooth boundary functions) follows from 6.2. O

7.8 Corollary (Cauchy integral formula). If ¢ is smooth on M and ¥*¢ =0 on int M
then

H(z) = f? (=62 elw)e)

forxz € int M. Hence the Cauchy integral on boundary values of stnooth monogenic functions
s an evaluation map.

This generalises the standard formula in Clifford analysis {12, 24] (and thence the clas-
sical formula), as can be seen by computing the fundamental solution on R*. Since such
computation is also essential in order to understand the behaviour of the fundamental
sg)lution on a general manifold more concretely, I will recall it here.

7.9 Proposition. The inverse of the Dirac operator on S™ is represented at x € R* by the
ffmdamental solutz'onA G(z,y) = i[zi:ﬁ?’ where wy, is the area of S*~! and x —y acts from
E* to E~, or from E™ to E™.

Proof: Tt must be verified that ¥*G(z,.) = 6., with G(z,y) as stated. In other words that
G(z,.)[V¢] = ¢(z) for test functions ¢. The left hand side may be written as

lim [ (Gle,y), V) = lin (=)@ 1) 40)),
20 Jye M B, (2) =0 Jyeon, (z)
since G(z,y) = iﬁﬁ; is monogenic in y for y # z (a straightforward verification—also see

below). Here v = ﬁ is the outward normal on 8B,{z), and so —c(v)G(z,y) = m%,"—_r.
Therefore the integral is the average of ¢ over a small sphere centred at x, which tends to
¢(z) as r — 0, since ¢ is continuous. d

REMARK. The conformal invariance of the Dirac operator on S™ suggests that the fun-
damental solution should be viewed as being “constant” away from the singularity. More
precisely, by the vanishing theorem 5.10, constant spinors on R" do not extend to mono-
genic spinors over §™. Thus, if a constant spinor 1 on R” is transformed by the conformal
map z =+ z/|z|? of 8", the result is a monogenic function on S™ ~ {0}. This is easily com-
puted to be ﬁ;@b, which is a comnponent of the fundamental solution at 0. This gives an
casy way of seeing that the fundamental solution is monogenic away from the singularity.

An important aspect of the above proposition is that the inverse of the Dirac operator
on the sphere is represented by its fundamental solution. One way to establish the same
result more generally is to show that the inverse of a Dirac operator on a general manifold
can be approximated by the fundamental solution on the sphere. To see this, it is necessary
to calculate.
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7.10 Lemma. Let ¢ be a smooth spinor valued function on R* \ {0} of bounded support,
such that |¥Y(z)| < C/r* with k < n (here » = |z|). Then |p(z)| < C/r*~! plus a
logarithmic term if k = 1.

Proof: Writing ¢ = ¥¢ and Q2 = supp 1 and applying the fundamental solution, it suffices

to establish that 1
/yen Ww’(y)l

has the stated growth at the origin. In order to estimate the integral when |z| = 7, split
it into integrals over |y] < 7/2, r/2 < |y| < 3r/2 and |y| > 3r/2, and integrate in polar
coordinates (around the origin). The integral over |y| < r/2 is bounded by

/r/2 . anl C < él

y|=0 -L:Jn'f'n_l W = pk=10

since k < n. Similarly for |y| > 3r/2, one can estimate

gn-1 C Co
waly" N e o < 5
[yl>3r,’2 " wa(ly| = r)n=1yl* S k-l

For the integral over /2 < |y| < 3r/2, it is necessary to separate out the pole of the
fundamental solution in |y — z| < r/2. For the integral without the pole, there is the
bound,

+ log term if k = 1.

/37‘/2 B gn—1 ¢+ é3
Y

L T S

since |y| is approximately . It remnains to estimate

1
‘/|y"‘$1<r/2 Wld)(y)l

Now this can be integrated in polar coordinates around z, which removes the singularity of
the fundamental solution, leaving | (y)|r/2 < édr’"‘l, since again |y| is approximately 7.
Putting these estimates together completes the proof. O

This shows that if V¢ = O(r‘k) then ¢ = O(r‘“‘—l)) (plus a possible log term), where
O(r'k) is the usual notation for a function which, when multiplied by r*, is bounded near
r = 0. A similar argument shows that if ¥¢ is logarithmic, then ¢ is bounded.

These results will be used to construct a correction term for the following parametrix.
At each z € M introduce Riemannian normal coordinates, and trivialise E locally by radial
parallel transport. Using a bump function on R® which is identically 1 ncar the origin, it
is then straightforward to lift the Euclidean fundamental solution to produce a function
G(z,y) which is smooth off the diagonal, equal to the Euclidean fundamental solution in
normal coordinates (at z) when y is sufficiently close to z, and zero when y is far from z.

7.11 Proposition. The inverse of the Dirac operator on M is represented by a fundemental
solution G(z,y) = G(x,y) + O{dist(z,y)~"%). Since Glz,y) = O(dist(z,y)~™=1), it
follows that G(z,y)dist(z,y)"~" is bounded. From the construction of G it also follows that
in a normal coordinate chart

Glo,y) = — —U—Jro(—l—).

wn fo =yl |z —y|"~?
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Proof: The function O(dist(z,y) (=3} must be constructed so that ¥*G(z,.) = §,. For
1 close to z introduce normal coordinates centred at « and trivialise the spinor bundles
using radial parallel transport. Then g;;(y) = 6;; + O(r2), where r = |y|. Also, the symbol
of the Dirac operator on M differs from the Euclidean Clifford multiplication by a term of
order r, and the connection on F differs from the flat connection by a 1-form of order r. It
follows that the Dirac operator differs from the Euclidean Dirac operator by a zero order
operator O of order r. In these coordinates, G (z,y) is the Euclidean fundamental solution
near the origin and so if ¥* = —¥ is applied, the result is 6, + ©G(x, ) up to a bounded
terin, and so the delta distribution is obtained with error ¢; = O(r—("_‘z)). Applying
the (truncated) Euclidean fundamental solution gives a first correction term ¢;, which is
O(r=™=3)) by the lemma. Applying the Dirac operator to ¢; corrects the crror e, but,
therc remains an error e2 = @¢; (up to a bounded term), which is O('r"(""")). Repeating
this process gives further corrections ¢ = O(r~(*=27%)) to the O(r~("~%) function and
the error is reduced to a bounded term. Extending this 0(7"(”_3)) function to M, adding
it to G(z, .} and applying the Dirac operator gives the delta distribution with a bounded
error. The final correction is obtained by applying ¥~ to this. O

7;12 Corollary. If ¢ € C°(M, E*) then

(F*)"'9)() = lim f roney (@0 IW),

r—=0
where B(z) denotes the ball of radius r (using a metric near z).

In fact it is not necessary to write the integral as a limit, since the integrand is integrable
over the n-manifold M.

7.13 Theorem. The Cauchy integral of the restriction of ¢ € C®°(M, E™) to OM is given,
for « € int M, by the following formula:

C*p(x) = plz) - fM (G!, %" ).

Proof: By 7.3, the Cauchy integral paired with a test function ¥ supported in int M, is
given by

Cl] = /M (&,9) + /M (P4, (7))

Substituting the formula from 7.12 for the inverse of ¥, and changing the order of inte-

o= [ o= [ ([ (61.970).00),

which establishes the result. |

gration gives

Combining this with the Cauchy integral theorem 7.6 gives:

7.14 The Pompeiu representation formula. Any smooth spinor field ¢ on M is given
at © by the formula

o(z) = [8 (=62 cl)9) + fM R
on int M.

This result was obtained in the Euclidcan case by Moisil [41], but sec also [12, 31].
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8 Applications of the Cauchy integral formula

8.1 Proposition (Mean value inequalities). If ¢ is monogenic near z, then in a normal
coordinate chart at z, and for all v sufficiently small,

C
I$(z)] < ~— [6 !

Integreting r"~!¢(z)| from O to r gives

e <S4

™ JB(z,r)
Proof: Apply the boundedness of |G(z, y)||z — y|"~' to the Cauchy integral formula. O

The next result concerns the extension of monogenic functions to submanifolds. Such
removable singularity results arc known to exist for arbitrary differential operators (see for
example Bochner [9]), but the proof below is interesting, because it is a simple application
of the Cauchy integral formula, exactly as in complex analysis.

8.2 Proposition (Removable singularities). Let S be a compact submanifold of M of
codimension k 2 2 and suppose ¢ is a smooth function on M ~ S which 15 monogenic
on int M~ S. If ¢p(z)dist(x, 5)*=! — 0 as z — S then ¢ extends smoothly to S and is
monogenic on int M.

Proof: The idea is to extend ¢ to S using the Cauchy integral formula. To do this the
boundary of M must be nonempty, but this is not really a restriction, since there is certainly
a manifold with boundary containing §. Let 5, be a e-tubular neighbourhood of S in M
so that the area of 35, is bounded by a constant times e¥~1 (S has finite volume). Then
for z € int M \ S choose § < 1 such that z € int(M \ S5). Now for any ¢ < 4,

#(z) = [6 s, (G

by the Cauchy integral formula on M < S.. But, for fixed z, G, is bounded on 35,
independently of €, and so the integrand is of order o(e~*~1). But the area of 3, is
O(e*~!) and so the integral over 85, can be made arbitrarily small for small e. Now the
rest of the expression is independent of ¢, and so

$(z) = fa (<Gac)e).

But this formula defines a monogenic extension of ¢ to S. o

This suggests that a monogenic spinor which does not extend to a surface of codimension
> 2 has some sort of “pole” there. Indeed, in the Euclidean case, a residue theory has been
developed by Delanghe, Sommen and Souéek [19], using the Leray-Norguet residue. There
is a simple and direct generalisation to arbitrary Dirac operators (see also [52]).

8.3 Definition. Let S be a closed submanifold of M. Then the space H(S) of monogenic
functions on S is defined to be the direct limit of the spaces of smooth monogenic functions
on neighbourhoods of § in M; that is, the space of germs of monogenic functions near S.
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The idea is to define the residue on S of function ¢ monogenic on M \ S as a linear
functional on H(S) in such a way that for any % monogenic on M,

[ (c(v)$,9) = (Resg §) (1],
M

where % is the germ of 9 along S. One can almost take this as the definition of the residue,
the main point being to show that the left hand side depends only on the germ of 4. More
precisely let U CC V be any open neighbourhoods of S in M with smooth boundaries.
Now if ¢ is monogenic on ¥V \ § and % is monogenic on V, then both arc monogenic on
V \ U and so by Cauchy’s theorem

| cwe = [ e,

where v denotes the outward normal to V and U. It follows that
(Ress )[4 = [ ), )

is well defined, independent of the choice of a (sufficiently small) neighbourhood U of S and
the extension of the germ % to a monogenic function on U. The notion of residue simply
férnlexlises the idea that the bad behaviour of ¢ is local to S, and the following theorem is
immediate:

8.4 Residue theorem. Let S, 5: be disjoint closed submanifolds of int M and suppose
that ¢ i3 monogenic on M ~ 81 and v is monogenic on M < Sy. Then

[a (el)6 ) = (Ress, )] + (Ress, ¥) (4]

As an example, observe that the residue of G, on the submanifold {z} is just the delta
function é;. This i8 just a reformulation of the Cauchy integral formula.

9 Hardy space theory for Dirac operators

Let M®(M, ET) be the space of ¢ € C®(M, E¥) with ¥*¢ = 0 on int M. Such sections
¢ have boundary values in C*°(9dM, EF). This section is devoted to the following:

9.1 Definition. The Hardy space H* is defined to be the closure of the space of boundary
valucs of elements of M™®(M, ET) in the boundary [2-norm. The orthogonal projection
from [2(OM, E¥) to H* will be denoted P*.

Note that these definitions are intrinsic to M, and that in the conformally invariant case,
the boundary I2-norm (and hence H*) are defined without choosing a particular metric.

Cauchy’s theorem 5.4 states that H* and ¢(v}H ™ are orthogonal in I#(8M,E~). The
main goal of this section is to prove that they are orthogonal complements (9.19). This is
done by studying the boundary values of the Cauchy integral of ¢ € C®(dM, E™). If ¢ is
any cxtension of ¢ to M and z € int M then by 7.13,

C*o(@) = () - [ (62,9"9).
M
However, it is not a priori clear that the integral has a limit as z = M.
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9.2 Proposition. Let 1 € [Z(M,E"), extended by zero to M. Then (Y1)~ is in
L3(M,E"™), and for 1 smooth on M, (¥*)™14 is smooth on int M, where it is given by

() p(z) = f (G*(z,9) () -
yEM

This is immediate from local elliptic regularity and the representation of ¥~! by the
fundamental solution. Taking 1 = ¥*$ on M (and extending by zero) shows that the
Cauchy integral of a smooth ¢ is in L2, which at least gives an L? trace on the boundary.

It is possible to do much better than this by exploiting the freedom in the choice of
the extension ¢. In order to find a good extension some technical tools are needed, but
these tools are entirely elementary. In fact this approach follows the book of Bell [6] on the
Cauchy integral in two dimensions.

First of all a defining function p for M needs to be chosen. This is a function on M
such that p # 0 on int M and p = 0,dp(v) > 0 on M. Such a function is easily constructed
using a partition of unity. The following lemma is the main technical computation (see [6}]).

9.3 Lemma. Let iy € C®(M, E). Then for each k 2 0 there is a smooth section ¢ which
vanishes on OM, but such that 1p — V¢, vanishes to order k on OM in the sense that
P — Y = pFT10x for some smooth 0.

Proof: Let 1 be a smooth function which is identically 1 on a neighbourhood of M but
vanishes on a neighbourhood of the critical points of p and define c(dp)~! to be zero on the
critical points. Write ¢g = pxo so that Yo = p¥Wxo + c(dp)xo. Hence if xo = ne(dp) 19
then ¥ — Yo = pby with 8y = (1 — n}p — ¥xo. Now, continuing by induction on k,
write ¢ox = ¢x_1 + p*TIxk. Then ¥ = Vet + pFH¥xi + (k + Dp*c(dp)xr = ¥ +
POk_1 + P ¥ xk + (k + 1)pFc(dp)x. Defining xix = gigne(dp)~0k_y gives  — Yy =
(1 —)p*0k_y — pFT'¥xx = p*116; for some O, which proves the lemma. O
9.4 Proposition. If ¥ € C®°(M,E*) and ¢ € C®(IM,E™), then (¥Y*)" ' and C*¢ are
smooth on M. More precisely, for each k 2 0 there are smooth sections ¢g vanishing on
OM and smooth extensions ¢y of ¢, such that 1) — ¥V ¢r and ¥y vanish to order k on
OM. The formulae

delz) + / IRCACIONUEL A0
Yy

and

e = [ (660, 97 u0)

then define L,2c_|_1 extensions of (WH)~'4 and C*¢ from int M to M. (Of course the exten-
sions are arbitrary on M \ M)

Proof: The existence of ¢ was given in the lemma, and the first formula follows by
extending ¥ ¢y — 3 by zero to M, giving a C* integrand on M. It is therefore in L2 and so
applying ¥ ! gvcs a function is L2 +1- Next, if $ is any extension of ¢ then taking 1!) Yo
it follows that ¢L = ¢ — ¢y are also extensions of & and the rest easily follows. O

9.5 Definition. The Cauchy transform on 0M is the linear map
Ct: C®(dM,ET) - C®(OM, EF)

given by restricting the Cauchy integral to the boundary.
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Since C*®(OM, E~) has a canonical inner product, it is natural to ask whether the
Cauchy transformn has a formal adjoint.
9.6 Proposition. Define (C*)*y =4 — c(v)C™ (c(v)p). Then (C*)* is formally adjoint to
C*. The analogous result holds for C™.
Proof: Let ¢ be a (sufficiently good) extension of ¢ to M. Then, omitting the tilde:

[ erom=[ (-] (@ ¥ow) ve)
f.m(‘t’ ) /ﬁewfyw ((67 (@), ¥*6(0) ()
;)[BM 6, 9) - /yEMLEBM (76w, (-6~ (,5),$(=)))
- fo (60 - [y (0w € () o)
_ /a (@) fy " (em)ew) ¢~ (1) )

wluch establishes the proposition, provided that the change of order of integration at (*) is
Jllstlﬁcd To see this, choose the extension ¢ such that V¢v vanishes on @M. This ensures
that the singularity of the fundamental solution does not cause problemns as y —» M. O

At present C*¢ has only been defined for smooth ¢, but for such ¢ the following formula
is now straightforward. It will be seen shortly that it holds for all ¢ in L2,

9.7 Theorem (Kerzman-Stein formula). For ¢ € C°(OM, E), Cé = P(¢p+(C—C*)¢).
Proof: Simply check ¢+Cd—C*¢ = Cp+c(v)C(c(v)¢). Now C¢ is in H and c(v)C(c(v)¢)
is in HL by Cauchy’s theorem, and so the theorem is proven. a

The beauty of the Kerzman-Stein formula is that ¢ — C* is a much better behaved

operator than €. This will turn out to be a consequence of the following piece of abstract
functional analysis (see for example Folland [22]).

9.8 Proposition. Let VW be vector bundles on a closed m dimensional manifold X, and
K(z,y) € L(Vy, W;) be a function continuous off the diagonal, such that for some a < m,
K(z,y)dist(z,y)* is bounded. Such a K defines in an obvious way an operator Tk from V
Lo W by integration of the y variable ageinst a section of V. Then Tk is a compact operator
from 12 to 12, and K is called an integral kernel of order a.

To apply this result, an analogue of the classical Plemelj formula will be used to give a
(singular) integral kernel for C, and then the integral kernel of C — C* will be computed.

The fundamental solution is an integral kernel of order n — 1 and defines the compact
operator ¥~ on M. On &M, the closely related Cauchy kernel can only define a singular
integral opcrator.

9.9 Definition. The Hilbert transform H* on C*°(0M, E™) is given by the singular integral

HYp(z) =2 lim «[BM boie) (—G;,c(u)gb) ,

r—0

where z € M. Similarly one can define H~.
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Of course it is not immediate that H*¢ exists as a smooth function on M. The integral
kernel used here is twice the Cauchy kernel (used in the Cauchy integral), so naively one
might expect to obtain twice the Cauchy transform. This is not the case, as the following
result on the boundary behaviour of the Cauchy kernel shows (compare Folland [22]).

9.10 Proposition. If ¢ € M>®(M,E™) then

s _ 0 forscEM\M
/(SM( G rel)9) {¢(m) forz €int M

and for z € OM, .

. +

llf»rtl) 8M~ By (z) (=Gz,clv)¢) = §¢(m)'
Proof: The integral is zero outside M by Cauchy’s theorem, and the integral for z € int M
is ¢(z) by the Cauchy integral formula, so it remains to calculate the singular integral.

Choose a metric near z (if necessary). Since the boundary is differentiable at z, for any

£ > 0 there is a § > 0 such that the image Y of T,0M under the exponential map is close to
dM in the sense that for all y € Y N B;(z), dist(y, M) < er, where r = dist(z,y). Hence
M N B,(z) = 3B, ()}, with an error of order ¢ for r < §. Now the integral over &M ~ B,(z)
can be replaced by the integral over (M \ B,(z)) provided the integral over M N 3B.(x)
is subtracted. The integral over &(M ~ B,(z)) vanishes by Cauchy's theorem, because G
and ¢ are both monogenic on M ~\ B;(z). (The lack of smoothness of the boundary does
not cause any problems.) It remains to compute lx_r}% Trine B, (z) (=G¥,c(v)g), where v is
the inward normal to B,(z). By estimating the integral in normal coordinates using the
Euclidean fundamental solution, the limit is casily seen to be %d)(:{:). O

The last part of this proposition is used to prove the following immportant result.

9.11 Theorem (Plemelj formula). For ¢ € C®(6M,E™), C*¢ = 1(¢ + H*¢).

Proof: This formula can be verified at a point £ € dM, by finding a monogenic function ¢
with ¢o(z) = ¢(z). To do this, observe that for # € M~ M close to z, the fundamental solu-
tion G~ (&, z) is nondegenerate and so, by contracting with a spinor in B, ¢o can be found
such that ¥'¢g = 0 on M and ¢o(z) = ¢(z). Consequently |¢(y) —do(y)| < const.|y—z| for
y near x in local coordinates on @M. Therefore C*(¢ — do)(z) = [5,, (=G5 . c(v)(d — d0))
because the integrand is locally integrable, and so

Cro(x) = Ctepo(z) + lim (]:.;M ) (—-G’:,c(u)qﬁ) - /

=0 M~ Br(z)

(-G, C(V)%))-

Now C*¢o(z) = ¢o(x) = ¢(z) and by the lemma, the second integral converges to 3¢o(z) =
%(j)(z) Hence the first integral converges and the result follows. O

It follows from the Plemelj formula that Cé — C*¢ = L(H¢ + c(v)H(c(v)$)), which is
an (a priori singular) integral operator with kernel A(z,y) = (c(vy)G(z,y) + G(x, y)c(vz)).
9.12 Proposition. A(z,y)dist(z,y)" is twice differentiable as a function of y at y =x. It

vanishes, together with its first derivative at y = x, and the second is given by

Dﬁ‘uA -1 ((Suw)u — u(Su)),

Wn

where Su = D,v is the Weingarten map applied to u.
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Proof: To compute the limiting behaviour of (e(vy)G(z,y) + Gz, y)e(vy)) dist(z, y)™ as y
approaches z, introduce normal coordinates for M at z, and note that it suffices to work
with the Euclidean fundamental solution and the Euclidean distance function, since the
error terms are of higher order. Thus the function to be computed as y — z is fz(y) =
i(uy(:c —y) + (z — y)vz). Now to second order, a point y on a geodesic (in M) starting
at z in direction u € T,OM isgiven by y = z +eu — %sz(u , D)y +0(e?), where v, is the
normal at z. Also vy, = vz +eDyr + ofe). Therefore: ' ‘

1 .
f2(y) = — ((uz + eDyv)(—eu + %Ez(u , Dyvivg) + (—eu + %E)'(’u. , Duu)uz)yz) + o(e?)

n

= i("'(V:::U + uvg) +e((u, Dyv) — (Duu)u)) + o)

Wn

62

= ---~(u(Du1/) — (Duu)u) + o(e?),
2wy
since vyu 4+ uvy = 2(vy ,u) = 0. This shows that f, and its first derivative vanish at x, with

the second derivative as stated. O
From this the analogue of the theorem of Kerzman and Stein [34] is immediate.

9.13 Theorem. C — C* is a compact operator on the inner product spuce C*(0OM, E).

Proof: It suffices to prove that C — C* is given by an integral kernel of order n — 2. As
observed above,

(Ch—C*$)(z) = — lim / oty (49,906
¥ ~Brl(z

r—0

Hence it must be shown that A(z,y)dist(z,y)? 2

is bounded, which is only in doubt for
y close to . But the boundedness as y — 2 follows from the above proposition, so the

integral is not singular, and C — C* is a compact operator. a

REMARK. Boo8 and Wojciechowski [11] base their analysis of Dirac operators on a very
similar result, namely that that C — P is a compact operator. This is essentially equivalent
to the above, since by the Kerzman-Stein formula, C — P = P(C — C*}. However, their
proof of this fact involves some delicate estimates following closely the paper of Seeley [49].

9.14 Theorem. The Cauchy transform C* estends to a bounded operator on [2(OM, E™),
with image H, and I?-adjoint (C)*. Hence the Kerzman-Stein formula is valid for any L2
section, and by the Kerzman-Stein theorem, the Cauchy transform is essentially self-adjoint.
Proof: Since C—C* is compact, it extends to a bounded operator on I2(9M, E™). Therefore
P(id + (C—C*)} is also a bounded operator. By the Kerzman-Stein formula, this defines an
extension of the Cauchy transform, and the image is H by definition. It is now immediate
that the adjoint of  is C* since they are formally adjoint on the dense subspace of smooth
spinor fields. O

9.15 Corollary. The Hilbert transform is a bounded operator on I12(OM,E~) and so the
Plemelj formula is valid for arbitrary I? sections over the boundary.

Proof: By the Plemelj formula, H*¢ = 2C*¢ — ¢, which is a bounded operator. O
9.16 Proposition. imP| . = (kerC)/(H* NkerC) is finite dimensional.
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Proof: P — C is a compact operator on [# and so P|ker ¢ 18 also compact. Let K¢ =
_L . » o
H~nNkerC be its kernel. Thenim(P|,, .) = 1m(P|kermKCl

on this closed subspace of [?, so it is bounded below. Therefore im(P|_..) is a closed
subspace of I?. Since P is a compact operator this must be finite dimensional, O

}. Now P is a projection injective

These results, while interesting, are not intrinsic to M in that the Cauchy and Hilbert
transforms involve the fundamental solution of ¥ on the closed manifold M. The intrinsic
analysis of M is captured by the Hardy spaces H* with their associated projections P*.
The above work establishes threc important properties of H and P.

Firstly, functions in H have well defined interior values, given by the Cauchy integral. Tt

was shown in 7.2 that the Cauchy integral is bounded from [2(0M, E) to [?(M, E). Therc
is also the following result, a simple case of a nice argument in Seeley [49].

9.17 Proposition. The Cauchy integral is bounded from HNL}(OM, E) to L3(M, E).

Proof: Tt suffices to establish the result for ¢ € M*(M, E), so that 1|,,, is smooth.
(Note that C(4],,,) = ¥ on M.} To do this choose a smooth extension 1 of ¥|;,, to M. It
is possible to do this so that the LZ-norm of 1 is controlled by the LZ-norm of 4| anm - Now
let ¢ equal 1 on M and 1 on M <\ M. This will not be smooth, but in fact lies in L%(M, E)
with ¥¢ = 0 on int M and equal to Y1 on M ~ int M. One way to scc this is to observe
that ¢ is certainly in I? and compute its weak derivative, using small neighbourhoods Uy
of M in M . and the Green formula on M ~ Us. In any case, it follows that the L2-norm
of ¥¢ on M is bounded by the LZ-norm of 3, and hence the L%-norm of %) is controlled by
the L2-norm of |,,, . O

The second result is a regularity result for /:

9.18 Theorem. If ¢ is smooth on OM, then so is P¢.

Proof: By the Kerzman-Stein formula PC = C and P(id — C*} = 0. Therefore C, id — C*
have orthogonal images and so ||(id + C — C*)@||? = ||Co|2 + |\(id — C*)@||2. This is zero
iff C¢p = 0 and C*'¢ = ¢, which only holds if (¢,d) = (¢,C*¢) = (Cé,$) = 0, and so
F =id +C — C* is injective. But € — C* is compact, and so F is Fredholm of index zero
on I?, and hence is invertible. Now F and F* both map smooth functions to smooth
functions, and hence F is an invertible map on smooth functions. The result now follows

because P = CF~L. O
Finally, there is the theorem whose proof was the main goal of this section:

9.19 Theorem. The spaces HY and c(v)H™ are orthogonal complements in L*(OM,E™).

Proof: By Cauchy’s theorem, these spaces are orthogonal, so suppose ¢ € H L. Then
0= (C,¢) = (¥,C¢) for all 3, and so ¢ = ¢(v)C(c(v)¢) by definition of C*. Thus
¢ € c(v)H. . ad

Boof and Wojciechowski [11] refer to this as the “twisted orthogonality of the boundary

data” and use it to present an extensive survey of global elliptic boundary value problems
for Dirac operators. The prototype is the following:

9.20 Proposition. For ¢ € 12(M, E*), the equation ¥*¢ = 3 and PH{¢lypy) = 0 has
a unique solution ¢ € L}(M,E™), and there is a bound ||¢||L? < const.|[¢|z. Also, if
P € C®(M, E) then so is ¢.
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Proof: For 3 smooth, let  be a smooth extension to M , otherwise extend 1 by zero. Let
$o = ¥ ~'4. The solution ¢, which is clearly unique, is obtained by subtracting from ¢ the
monogenic extension of P(¢ol,,,). If 1 is smooth, so is P(¢y|,,,) and hence the monogenic
extension is in M®(M, E). Therefore ¢ € C¥(M, E). In gencral, ¢g = ¥~ 19 € L:f(M, E7),
where 1 is now the extension by zero. It follows that C(¢olgss ) = 0 (using the formula 7.13)
and 50 ¢y, lies in kerC. But P is a smoothing operator on this space (by 9.16 and 9.18),
and so it is bounded from L2 to L?. The Cauchy integral is bounded on L? by 9.17, and so
¢ € L? with the bound as stated. ]

Although the proof of this result uses ¥~! on M, it is clearly intrinsic to M. In fact, it
provides sufficient analytical information to remove M from the picture. In this spirit, the
Cauchy kernel and the fundamental solution on M will be replaced by two integral kernels
canonically associated to M, the Szegé kernel and the Green kernel.

For z € int M, the Cauchy kernel —c(v)G} represents the Cauchy integral ¢ = C*(z)
of ¢ € I*(OM, E™). For ¢ € H™, this reproduces the value at z of the monogenic extension
of ¢, which is intrinsic to M. Define the Szegd kernel by S = P*(—c(v)G}), Then:

9.21 Proposition. The Szegd kernel represents the functional Sl = C*(P*¢)(z). It
z'_33 stnooth on OM and lies in H*Y, so it has interior values, S € M®(M,E™) given
by SF(yy = faur (S;,S:). Thus S*(z,y) = S} {y) is monogenic in z,y € int M, and
S™(y,z)" = 8*(z,y). (Note, though, that S*(z,z) becomes singular on the boundary.)
From the definition, 8} = —c(v)GZ — c(v)®] (on 8M) for some smooth &} € H™,

which therefore extends to a monogenic function on M. Define the Green kernel on M by
G = GI+®7, s0 that =¥~ G = 6, on int M and on the boundary G = ¢(v)S] € c(v)H?.
9.22 Proposition. Forz £y inint M, G (y,z)" = —G*(z,y).

Proof: Observe that f,,, (G}, ¢(v)G, ) = 0 and apply the residue theorem 8.4: the residue
of G; at z applied to G, gives G, () and similarly the residue at y gives G (y). a
9.23 Corollary. For each fized y € int M, G5 (y), as a function of x € M, lies in (H*)L,
Thercfore if ¢(z) = GF[1] then W*¢ = 1 and P¥(dl,y,,) = 0. In other words G*(¢] solves
the boundary problem 9.20.

I will finish this section by giving a more concrete description of the Hardy space H,
showing how it generalises the two dimensional theory. So far H has only been described as
an I?-closure, whereas one would like to see that it is a space of boundary values of suitably
well behaved monogenic functions on int M, and give some sort of characterisation. To do
this, using a metric near M, introduce the normal geodesic flow from the boundary (a local
l-parameter family of diffeomorphisms), which identifies @M x {0, 6] with a neighbourhood
of M in M, for some small §. Trivialise £ in the normal direction by using parallel
transport along normal geodesics. Let M, = M ~ (M x [0,¢]) and let r. denote the
restriction map from functions on M to functions on dM given by restricting to M, and
identifying with M. The main result to be established is the following.

9.24 Theorem. For ¢ € M*®(M, E)

f (¢, ) < const. f é,4),
OM, oM

for some constant independent of ¢ and €.
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Proof: The integral of (¢, @) over 3M,, denoted I{e), is smooth with respect to g, for

e € [0,6]. It will be shown that I'(e) < M {g), for a constant A independent of ¢ and e.

Integrating this inequality from 0 to € gives I(g) < e*I(0) € eMI(0). To estimate I'(e),

identify OM, with M and let vol. be the volume form on M, pulled pack to M. Note

that the outward normal to dM, is identified with the outward normal at M. Therefore
E), @a=g [ ol

!
vol,

— - NE
‘faM, 2(DU¢,¢)+fBM‘ (6,9)

Z/M, _2(BE¢,DE¢)+f —2(K¢,¢)+f8 (¢, )

b
M, M, ‘UOIE

1]
vol,

by the Bochner-Weitzenbock integral formula. The first integral is negative, and the second
is bounded in terms of sz (¢, ). But ¢ on M, is given by its Cauchy integral, which is
[?-bounded by 7.2. Therefore the second and third integrals are bounded by I(e). O

9.25 Corollary. The Cauchy integral of a function ¢ in H (which exists as an I? monogenic
function on int M by 7.2) is a smooth function i on int M with r.p bounded in 12(OM, E)
independent of €. Furthermore e — ¢ in 1?2 as e = 0.

Proof: Approximate ¢ by boundary values of ¢ € M®(M, E). It is immediate then that
the [? estimate applies to ¢. Therefore it also applies to ¢ — rg¢x and so in the estimate

IreC¢ — &l < Ire(Cd — di)ll + lredr — rodell + lIrode — &1,

the first term is bounded by a constant multiple of ||¢ — rodi|. Hence, like the last term, it
can be made arbitrarily small for large k. Now ||re¢r — ro¢di| approaches zero with ¢ since
it is a continuous function of € > 0 (¢ being continuous on M). O

Conversely there is the following result.

9.26 Proposition. Suppose that ¥ is monogenic on int M with [, (re1,7c9) is bounded
independent of €. Then ¢ is a Cauchy integral of a function ¢ on the boundary with ¢ € H,
and so ra1) — ¢ in norm.

Proof: Since every bounded sequence in L? has a weakly convergent subsequence (Banach-
Alaoglu), there is a sequence of values of £ with r.4 converging weakly to a function ¢ in
[?(0M, E). Now % is monogenic on int M and so

C¢ - 7,1) = Cd’ - Ce(d)‘aMc)
= C((;b - TE’(,()) + C(fg’l,b) - Ce("l)'aM')

The first term can be made arbitrarily small by weak convergence, while the remaining
terms are small for fixed z in int M because G, on M, converges uniformly to Gz on OM.
To sce that ¢ € H it suffices to show that f;,, (¢,c(v)8) = 0 for all § € M®(M, E). But
this follows from |, oM, (1, c(r)8) = 0, by taking a weakly convergent subsequence, and using
the uniform convergence of G, again. Although only weak convergence of a subsequence
has been used so far, the strong convergence now follows from 9.25. O

To summarisc, H is a space of [? boundary values of monogenic functions on the interior,
and the Cauchy integral is an isomorphism between H and the space of monogenic functions
on int M with uniformly bounded [*-norm on hypersurfaces near M.
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IV. APPLICATIONS

10 The Green kernel and boundary value problems

The relationship hetween a spinor field and its boundary values is central in this section.

10.1 Theorem. Suppose ¢ € L3(M, E~). Then for any 8 in M>®(M,E"),

f (e(v)g,0) =f (V"4,0).
am M
Hence for o € I2(M,E™"),

/B (ewg*.0) = [ w.0).

Proof: 8 is monogenic, so this is just the Green formula. O

10.2 Corollary. For ¢ € [?(M,E*) and x € [2(0M,E™) the equation ¥ ¢ = 3 on M,
$=x on OM, has a solution iff [,,, (c(v)x,0) = [,, (¥,0) for all 6 in M*(M,E*). Note
that in general, the boundary values are attained in an 1? sense.

Izroof: By the first part of the theoremn, the compatibility condition on (%, x) is necessary.
Gonversely take ¢g = G[¢]. Then it suffices to show that ¢ — x is a boundary value of a
monogenic function, which by 9.19 follows if ¢ — x i1s orthogonal to ¢(v)H on the boundary.
But by the second part of the theorem, this is precisely the compatibility condition. O

10.3 Definition. The Bergman space H?(M, E*) s defined as the closure of M®(M, E*) -
in L2(M, E*). By 6.2, its elements lie in the kernel of ¥*. The orthogonal projection B*
onto the Bergman space is called the Bergman projection.

10.4 Corollary (to 10.1). If¢|,,, € H* then ¥ ¢ L H*(M,E™), and ifp L H*(M, EY)
then G []| 50, = 0. Therefore the orthogonal complement to the Bergman space is the image
of ¥* on the space of L? functions vanishing on OM. Consequently, smooth sections are
dense in H?(M, EYYL and so any 12 solution of ¥~ ¢ = 0 is in H*(M, E™).

10.5 Proposition. The image of the Szegd integral ST: ¢ > CT(P* ) lies in the Bergman
space, and its adjoint is ¢ — c(v)(GT[])| 5y, with image in the Hardy space.

The Bergman projection is related to boundary value problems for the Laplacian ¥2.

10.6 Proposition. The solution (in L?) to the problem ¥2¢ = 4, Blyps = 0 (where 3 € I?)
is given by ¢ = G|[(id — B)G[¢]].
Proof: Clearly ¥¢ = (id — B)G[4], and applying ¥ again kills BG[y] leaving 1. The
boundary condition ¢|,,, = 0 holds because (I — B)G[¢] is orthogonal to H?*(M E). O
Strictly speaking, 10.6 only gives a distributional sclution, but by local elliptic regularity
¢ is in L3 on compact subsets of int M. One would like to see directly that ¢ € Li(M, E),
but it has not been shown that B is bounded on L2. A priori then, it is possible that ¥¢
behaves badly near dM. However, by the Bochner-Weitzenbock integral formula, ¢ satisfies
fﬂ4(b’3¢,DE9) + [y (K¢ +1,8) =0 for all § € C5°(M, E), and so standard arguments
(such as difference quotients) give a global L3 bound for ¢. In other words:

10.7 Proposition. For any ¢ € 12, let ¢ denote a solution to ¥?¢ = ¢ and Blops = 0.
Then ||¢lly.z < const.[[¢ll 2, the constant being independent of .
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It is now clear that there is a well defined solution operator @: I12(M, E) — L3(M, E),
and id — B = ¥ o Qo ¥, ecither by 10.6, or by noting that QW{;ﬁIaM = 0 and using 10.4.
Regularity results for B can now be deduced from regularity results for Q. It can be shown,
in fact, that if ¢ € L?(M, E) then Qv € L§+2(M, E), and hence if ¢ € C®(M, E) then Q¢
is also smooth up to the boundary, not just on int M. Consequently:

10.8 Proposition. B is bounded on L:f and maps C®°(M, E) into itself.

Next suppose that x € L2(dM, E) has a L3 extension. Then, by the regularity of Q, it
has unique Poisson extension Py satisfying ¥2Px = 0. In fact a Poisson extension exists
for more general x. For example, if x is in H then the Cauchy (or Szeg) integral gives
the required extension. Now supposc that ¢ is in L2(M, E). If ¢lape € H then BY¢ =0
by 10.4. More generally, Q[BW¢]|BM = Q[W¢]|8M, which gives the orthogonal projection
of ¢|5,, onto HY. Consequently if Plgpy € HL then G[BY¢] gives a Poisson extension
independent of the chosen L? extension ¢.

10.9 Theorem. @ =G o (id — B) o G and for ¢ € L3(M, E):

P(Blapr) = Sldlap] + G[BY ¢
B =VP(G[¢llyp,) = ¢ — YQ(V)
YP(¢lypy) = BV
G[Bg] = P(G[8lloar) = G¢ — QY ).

The integral kernels of these operators will now be briefly studied. Firstly, it is clear
from the mean value inequalities that ¢ — Be(«) is continuous for each x € int M, and so:

10.10 Proposition. ¢ — B¢(z) ts represented by an integral kernel By € C®(M, E).

This is the Bergman kernel and is a reproducing kernel on H?(M, E). Similarly Q is
represented by @, = Qd,, the Green function for ¥2 on M, and the Poisson extension is
represented by the Poisson kernel P,. From the Green formula

/M((V2¢,¢) - (¢,9%)) =/ ((c()V,9) = (6, c(v)V¥))

aM

and the fact that Q.|;,, = 0, it casily follows that Q(z,y) is symmetric, and that P, =
c(v)(¥ Qzlyp ), Which is a normal derivative of Q. Using the formulas in 10.9, one can
establish other identities between the kernels. For example:

10.11 Theorem. The Bergman kernel is given by By = V& (G, + ¥ Q) = Y (S[c(v)Pz]).
In this way, many results from potential theory in the plane can be seen to have direct
generalisations to Dirac operators on manifolds with boundary.
Rather than develop these ideas further, an approximation result for ¥ will be deduced
from 9.20 together with unique continuation, following Lax [36].
10.12 Theorem. Let Q be an open subset of M. Then any monogenic function on Q may
be approzimated (locally uniformly in all derivatives) by monogenic functions on M.

Proof: By 6.2 it suffices to prove approximation in I? for any Qg compactly contained in
Q. Let V] be the spacc of monogenic functions on £ and V, the space of restrictions to
of monogenic functions on M. The idea is to suppose ¢ L V5 in 1?(Qq, E7), and show that
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¥ L V). To do this, extend 4 by zero to M and solve the (adjoint) equation ¥~ ¢ = 1) on M
with ¢|BM = (. This is possible by 9.20 and 10.1, and by the unique continuation property,
¢ = 0on M\ Qq. Now apply the Green formula on any smoothly bounded domain €,
sandwiched between Q and {2y, and using any monogenic 8 on :

O:fam (c(u)qb,ﬁ):[nl (W‘¢,9)+Ll (¢,V+9)=/ﬂo (1 ,6)

and so 1 is orthogonal to V, as required. O

10.13 Theorem (Integrability of the Dirac equation). Suppose ¥ = co D¥. Then
Joranyz € int M, £ € B, and o € kere € T ® E, there is ¢ monogenic ¢ on M with
é(x) = € and DP¢(z) = a.

Proof: Let 9 be any spinor field with (z) = ¢ and DEy(z) = a, so Yy(z) = 0. Firstly it
will be shown that 1 can be approximated by monogenic functions. To do this, first work
on a small ball B, (z) around z, and for y € B,(z), construct the Cauchy integral

; B(y) = /; oy (G el) = ) - / INCICR Ol

Since Y1 (z) vanishes at z it may be written locally as (z — 2)x(z) for some bounded ¥,
and so the integrand is approximately h—}ﬁ}_—, The integral over B,(z) is therefore order
r2, with derivative of order r. Hence both ¢ and its covariant derivative are close to those
of ¢ at £ and the approximation is arbitrarily close on a small enough neighbourhood. But
for cach such neighbourhood, ¢ may be approximated arbitrarily closely by a monogenic
function on M, by 10.12, hence so can .

Now apply this approximation result to a basis for E, @ kerc. For a sufficiently good
approximation, the corresponding monogenic functions will also form a basis, and the result
now follows from the lincarity of the Dirac operator. d

This is in marked contrast to closed manifolds, on which ker ¥ is only finite dimensional.

11 The Szegd kernel and conformal geometry

The analytical results will now be applied to the particular case of the conformally in-
variant Dirac operator on a manifold with boundary. The aim is to show that the Cauchy in-
tegral formula defines a conformally invariant metric on the interior of M, which is complete
and has negative scalar curvature. This was established by Hitchin [33] in the Euclidean
case, using arguments which easily generalise to arbitrary spin manifolds with boundary.
However, the proof that this metric has negative (rather than nonpositive) scalar curvature
uscs the integrability result 10.13, and this relies upon the full analytical theory developed
above. Also the analysis adds some flesh to the constructions below, by identifying the con-
formally invariant Hilbert space H as a Hardy space, rather than an abstract I?-closure,
and providing useful information about the intimately related Szegé kernel.

The conformally invariant metric arises as follows. By 7.7 the evaluation map evy: H —
E, at each x € int M (given on smooth functions by the Cauchy integral) is bounded. Now
because B, has an L?~! valued inner product, the norm squared of ev; is an element of
L2~1 rather than R. If it can be shown that this defines a (smooth) trivialisation of L"~!
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then this trivialisation equips int M with a (smooth) metric defined canonically in terms of
the conformal structure.

-A simple way to obtain a smoothly varying norm is to observe that the evaluation map
evy on H is represented by the Szegé kernel S, € H ® E;. The [?-norm of this, contracted
to lie in L?~!, is clearly smooth in z, since by the reproducing property of the Szegd kernel,
it is given by (S(x, z)), where the angle brackets denote the the contraction in E,.

11.1 Proposition. The norm (S(z,z)) of evy is nonzero for all T € int M.

Proof: It suffices to show that for each = € int M there is a monogenic spinor on M which
is nonvanishing at z. This follows from 10.13, but there is a more explicit approach given
by reintroducing the closed manifold M. The claim is that for each = € int M there is a
y € M ~ M such that Gy(z) # 0. Now by 7.5 it suffices to show that there is such a y with
Gy(y) # 0. But if G, is zero on an open subset of M ~ M, it must be zero on M \ {z} by
unique continuation. This contradicts the fact that it is the fundamental solution at z. O

Thus (S(z, z)) is a smooth trivialisation of L*~! over int M and so defines a conformally
invariant metric there. Following Hitchin [33], a slightly different point of view will be
adopted in order to establish that this metric has negative scalar curvature.

11.2 Proposition. The 12-norm (S(z,x)) gives the Hilbert-Schmidt norm of evy, defined
by lleva||3,¢ = tr{evy o evl) = tr(ev] o evg), where evy: B} — H is the transpose of
evy. Hence if ¢p € M®(M,E) form an orthonormal basis for H, then |evg|% s =
2 (Bx(z) , drlz)).

Proof: The equality of the two traces is elementary since E; is finite dimensional. Now
for ¥z € Ey, the transpose evi(yz) is given by ) (¢, evzdi)dy, and so tr(ev; o evl), is
given by 3 (5, evz¢x)?, where ; form an orthonormal basis for E;. This is clearly the
[2-norm of S. The final expression is the other trace, namely tr(ev} o evy). (|

11.3 Corollary. If {.,.) denotes the conformally invariant metric, > (¢r,¢x) = 1.
Proof: The metric was defined by identifying the norm in L™ with1 € R a
11.4 Proposition. S (¢, ¢x) converges in C®(int M, L™™1); that is, all derivatives con-
verge uniformly on compact subsets.

Proof: The sum converges pointwise to a continuous limit, so by Dini’s theorem it con-
verges locally uniformly, and hence locally in I2. Convergence in all derivatives can be
established by the same technique as is often used to prove local elliptic regularity. Namely,
it suffices to show that > p (¢« , ¢x) converges in L? for all j and all bump functions p. This
follows by induction on j, using the elliptic estimate for each ¢y. O

The analytical tools are now in place to prove the following theorem, due to Hitchin in

the Euclidean case—the proof on general spin manifolds is not materially different.

11.5 Theorem. The conformally invariant metric has negative scolar curvature.

Proof: Let the smooth sections ¢, form an orthonormal basis of H. Then by the Lich-
nerowicz formula (see 3.11 and 5.7) the following holds for each & and at each z € int M:

(DE¢p(z), DE () + tr(z)(drlz), d(z)) = div(DE ey, di)(z) = div{gy, DZ ) (x).
But (DE¢y, ¢r) + (¢, DPdr) = d{dx, ¢k, s0
(DE¢(z), DE @y (2)) + Lu(z)(d(z), dr(2)) = 50{x , b} ().
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Now sum this formula over k. Since Y (¢x(z), ¢x(z)) = 1 (locally uniformly in all deriva-
tives), the second term is summable, and the third term sums to Al = 0. Hence:

35(z) = = Y (D d(z), DPulx)) <0

Therefore the scalar curvature is negative at a point z iff there is a monogenic spinor on M
with nonvanishing covariant derivative at z. In the Euclidean case, the monogenic affine
spinors will do. More generally, the integrability result 10.13 ensures such spinors exist. [

It now remains to discuss the completeness of this metric. Since M is compact, it
suffices to show that the conformally invariant metric blows up sufficiently fast close to the
boundary with respect to any metric (on all of M) in the conformal class. Fixing such a
metric, it must be shown that the norm of the evaluation map (with respect to this metric)
blows up closc to the boundary. Certainly ||evz|? is less than | f,,,(Gy,Gy)|, but here
a lower bound i3 needed. Let y be a point on OM and £ > 0 be so small that y is the
closest point to z,2 = y £ ev(y) (so € M and z € M ~ M). Now G, is monogenic on
M and so G,(z) = ev,(G,) = f0M<C(V)G:r::Gz)- Thus |eve|? > |Gz(a:)|2/|ﬁr)M(Gz,Gz)|.
The denominator is can be seen to have order 1/e"~!, by the asymptotic behaviour of

G, while the numerator is clearly of order 1/e2"~2. Thus n-l

evg|[* > const./e™"!, and
so the corresponding section of L? is grows as fast as 1/e2, which is sufficient to ensure
completeness by standard arguments.

To summarise, the following theorem has been established:
11.6 Theorem. Let M be a spin manifold with nonemply boundary and a conformal struc-

ture [g]. Let S be the Szegd kernel of the Dirac operator on M. Then [g)(S(z, z))¥®"=1 isq
conformally invariant metric on int M which s complete and has negative scalar curvature.

An example of this metric is the following:

11.7 Proposition. On the unit ball in S™ with the standard conformal structure, the metric
defined by the evaluation map (expressed in terms of the flat metric 6;;) is given by:

1 5.
wr/ I )2

gij(2) =

This is the Poincaré metric, and is complete with constant negative scalar curvature.

Since conformal transformations act transitively on the unit ball, the above metric is
characterised, up to a constant, by its conformal invariance. This gives a way of computing
it, and indeed also the Szegd kernel. Alternatively, the Szegé kernel can be obtained directly,
by observing that for || < 1,|y| = 1 the Cauchy kernel is

yly — =) 1-yz
o) Galy) = wply — x| N wn|l — yz|*’

which extends to a monogenic function of y for |y| < 1. Therefore the Cauchy kernel is
a boundary value of a monogenic spinor, and so the final expression actually is the Szegd
kernel for |z| < 1,]y| € 1 (with a singularity on the boundary diagonal). The formula
S(z,z)%"=1) then gives the Poincaré metric.

It is interesting to see the form of this kernel in the conformal chart on S™ which maps
the unit disc (the lower hemisphere in S") to a half plane (z,e,) > 0. Using either the
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transformation law for spinors, or direct inspection of the Cauchy kernel on the half space,
the following formula for the Szegd kernel is obtained:

€nT + Yen

Sz, y) = ——m———.
(@) WnlenT + yeu|"

This immmediately gives the half space model for the hyperbolic netric.
Another interpretation of the Szegdé kernel on the disc or half plane is given by the
method of images. From this point of view, the identity

z/r? -y T l-yz
wplz/r2 —y|hrt T wy|l — yz|?

(where r = |z|) means that the Szeg6 kernel at a point z in the disc is given by the Green
kerncel at the image point x/r?, transformed appropriately. One advantage of this viewpoint
is that, with a little thought, it leads to a power series for the Szegd kernel on an annulus.

11.8 Proposition. Let M be an annulus in R" between spheres of radii 1 and A < 1,
centred at the origin. Then the Szegd kernel is given by

1 P
Sxy) == (Vg
Wn gz |A=E — Meyzin’
which is a sum of image charges.

Proof: The series is monogenic in both = and y, and is equal, for y € M, to —c(vy,)G(z,y)
where ¢(v;) is the outward normal to the annulus, and

1 Aeg — X—ky
Gla,y) = — ) (-
Wy g; Az — A—ky|n
This is the fundamental solution at = plus a function monogenic on the annulus. d

By conformal invariance this gives a power series for the Szeg6 kernel on a finite cylinder.

CONCLUSION

A number of the ideas outlined in this paper would benefit from further exploration,
and so a couple of final remarks are in order.

Firstly, a problem in analysis: to establish the boundedness of the Cauchy transform
under minimal smoothness assumptions. The results in this paper have all been stated for
smooth manifolds with smooth boundaries, but it is quite straightforward to make weaker
assumptions, provided that the conclusions are appropriately weakened. However, there
are limits as to how far some of the methods in this paper can be pushed. They should
apply, for instance, if the boundary is C' with a Lipschitz normal vector field, but if the
boundary itself is merely Lipschitz, then the Kerzman-Stein theorem fails and the methods
of section 9 collapse. In the Euclidean case, Murray and Mclntosh have used different
Clifford analysis methods to establish boundedness results for the Cauchy transforin on
Lipschitz domains [37, 40, 42}. It remains to be seen whether these methods can be applied
to arbitrary Dirac operators on manifolds.
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Secondly, more detailed properties and examples of the conformally invariant metric of
scction 11 are needed. One immediate question is: what differential equation does it satisfy?
In [39], Loewner and Nirenberg used the conformal Laplacian to construct a conformally
invariant metric on the interior of a conformal manifold with boundary. It is then immediate
from their construction that their metric satisfies a differential equation: it has constant
scalar curvature. However, for the metric described here, a computation of the asymptotics
near the boundary shows that its scalar curvature is not constant in general. The unit disc,
because it admits a transitive group of conformal transformations, is exceptional in this
regard. Clearly explicit descriptions of further examples would be helpful. In particular,
computations on a non-conformally flat manifold have yet to be carried out: perhaps the
easicst case to try is §% x S2.

A third area which needs further exploration in this framework, is the topic of global
elliptic boundary problems. Section 9 essentially established the well known fact that the
Caldéron projection onto the Cauchy data gives a well posed global elliptic boundary prob-
lem [11], while section 10 discussed some simple local boundary value problems. However,
it is geometrically more interesting to study spectral boundary conditions [4, 10, 26] and
the associated 7 invariant of the boundary.

i This third topic is not at all independent from the others. As was briefly mentioned
at the end of section 5, spectral boundary conditions enter in a very natural way via the
Bochner-Weitzenbock formula, the boundary operator then being a submanifold Dirac op-
erator to which the methods of this paper apply. The functional calculus of such an operator
on a Lipschitz surface also lies at the heart of the results of [40, 42]—see also [37]. Finally
the asymptotics of the conformally invariant metric produce invariants of the embedded
boundary, which should be closely related to the n-invariant.
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