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Abstract

We consider the simplest generalization of the Intermediate Long Wave hierar
chy to show how to extend tbe Zakharov-Shabat dressing method to nonlocal, i.e.
integro-partial differential, equations. The purpose is to give a procedure of con
structing the zero-curvature representation of this class of equations. This result
obtains by combining the Drinfeld-Sokolov fonnalism together with the introduction
of an operator-valued spectral parameter, namely a spectral parameter which does
not conunute with the space variable x. This extension provides a connection be
tween the ILWk hierarchy and the Saveliev-Vershik continuum graded Lie-algebras.
In the case of ILW2 we find the Fairlie-Zachos sinh-algebra.
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1. INTRODUCTION

The Intermediate Long Wave (ILW) equation appears first in physics as it models
the propagation of long internal waves in a finite depth fluid [1-4]. From the mathe
matical side, this equation stays intermediate between the Korteweg-de Vries (KdV)
equation [5,6] and the Benjamin-Ono (BO) equation [7-9] (see below), and, as such, it
plays the same fundamental role in the theory of nonlocal integrable equations as the
KdV equation does in the theory of integrable partial differential equations. Indeed,
the solvability of the ILW equation by spectral analysis [10,11] originates from the
spectral problem associated with the differential Riemann-Hilbert problem

(1.1 )

where u(x, t) is a given function, A a complex spectral parameter and the solution
1/;(z, A, t) has to be analytic in the strip -2n < Imz < 0 of the complex z-plane with
the condition that its boundary values

'lj;+(x, A, t) = lirn 1/;(x - ie, A, t) , x€R
~-o+

lj;-(x, A, t) = lim ~(x - 2i1i + ie, A, t) , x€R
~-o+

(1.2a)

(1.2b)

satisfy the differential relation (1.1) (a subscript variable indicates partial differenti
ation, Le. lj;x - Blj;I Bx ).
Then the ILW equation

Ut = Tu xx + 2uux , u = u(x, t) (1.3)

obtains by requiring that the operator L = Bx + iu, which appears in the spectral
problem (1.1), naInely L'lj;+ = )...,p -, evolves in time according to the equation

where

M± = i8; - (T ± l)u x .

Here BI. == BIBI. and T is the convolution operator defined by the formula

1
+00

Tf(x) = (1/2/i)P.V. -00 dycoth[7r(y - x)/2n]f(y) ,

(lA)

(1.5)

(1.6)

1i being a positive paraIneter (this notation merely suggests noncommutativity con
ditions as appearing in quantum mechanies). The important property of the ILW
equation (1.3) of going into the KdV equation when n ~ 0 and the BO equation
when n-t 00 follows from the asymptotic behaviour

T = H + 0(n- 2
)

of the operator (1.6), where H is the Hilbert operator

2

n-tO

1i -t 00

(1.7a)

(1.7b)



Hf(x) = !P.V.j+oo dy f(y) .
7'l'" -0Cl Y - x

(1.8)

The ILW equation has proved to possess all beautiful properties of integrable sys
tems [10-12], and, in a general algebraic setting, it has been shown to be the simplest
equation of the hierarchy ILW k of nonlocal integrable equations [13]. Various inves
tigations in the direction of seeking other intermediate-type equations depending on
a parameter 11. with the property of going, as 11.. ---+ 0, into other well-known integrable
equations (such as, Li., the modified KdV equation or the Nonlinear Schroedinger
equation) and, as 11. ---+ 00, into the BO analogues, were made in [14-17].

In this paper we confine our attention to the ILW2 hierarchy of evolution equa
tions. In the same way as for the ILW equation (1.3), these equations are associated
with a differential Riemarm-Hilbert problem, i.e. LtjJ+ = A.,p-, where, however, L is
the second order (rather than first order, see (1.1)) differential operator

L = 8; + Ul (x, t)8x + uo(x, t) , (1.9)

the coefficients Ul and Uo being two given functions. This dass of evolution equations
were investigated in [13] by extending the dressing method [18] based on Volterra op
erators, in the abstract form of pseudo differential operators, in order to deal with the
nonlocality introduced by the Riemann-Hilbert problem. In this approach, the evo
lution equation for the operator L are derived in the form (1.4), where the operators
M± are explicitly constructed by a recipe provided by the dressing technique. Our
main goal here is to give a method to derive the zero-curvature representation of the
ILW2 equations, to say in the form of a vanishing commutator, [8r - U,8, - V] = O.
To this aim, we have first to generalize to nonlocal evolution equations the alter
native version of the dressing method based on asymptotic expansions of dressing
operators in inverse powers of the spectral parameter A (for an introduction to this
method, although in a different context, see [19]). The appropriate way to do so is to
reformulate the second order scalar spectral problem L1j;+ = 'A.'lj;- in the equivalent
form of a 2 x 2 matrix first order equation. Among several possibilities, we adopt the
formalism introduced by Drinfeld and Sokolov [20] with the purpose of generalizing
their approach to the present case. In this respect, we take advantage also of the
results presented in [21], where our 2 x 2 matrix evolution equations are investigated
in the general algebraic theory of hamiltonian reduction. In the process of building
up the 'A.-dependent dressing technique we are naturally led to replace the ordinary
spectral parameter A with the operator-valued spectral variable

(1.10)

where A is the usual complex variable and exp( -2ih 8z ) is the shift-operator.
The appealing feature of the resulting theory is that the dressing operators are now
expressed as formal inverse powers series in the new "spectral parameter" ~, which
does not commute with the space variable x.

Once we have obtained the zero-curvature representation with our noncommu
tative spectral parameter, we prove that the resulting ILW2 evolution equations are
indeed weH defined (i.e. built out of the differential operator 8r and convolution
operator T, see (1.6)), and coincide with those obtained in [13].

Finally, two by-products of our investigation should be pointed out. First, our
observation that the ILWk hierarchy can be obtained as a special reduction of a
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eouple of KP hierarehies seems to be new, and it inay be very useful in construeting
explicit solutions. Second, the noncommutativity of t he spectral parameter (1.10)
naturally leads to replace the Kac-Moody algebra, which shows up in the loeal case,
with the continuum graded Lie algebras. The ease relevant to the ILW2 hierarchy is
briefly discussed in the last section.

2. PRELIMINARY OBSERVATIONS AND FORMULATION OF THE PROBLEM

In [13] the generalized ILW equations, tenned ILW k hierarchy, have been con
structed. Here we briefly review this construction for the typical representative ILW2.

Let us first obtain the differential operator L (1.9) by dressing the bare operator Bi,
namely assurne that a solution 'lj;( z, A, t) of the spectral problem

'lj;± = 'IjJ±(x, A, t) , (2.1)

where 'lj;± are the bOlli1dary values (1.2), obtains from a solution 'ljJ°(z, A) of the bare
problem ('ljJ0 = exp(ikz) , A = _k 2 exp( -2k-n)),

where K is the dressing operator

K(z, t, 8z ) = 1 + L Kj(z, t)8;j
j~l

(2.2)

(2.3)

and Kj(z, t) are analytic funetions in the strip II 2h = {zl- 2-n < Imz < O}. Then, it
is easily seen that this assumption implies that the boundary-value operators

x€R, (2.4)

. transfonn the operator a; into the operator L according to the equation

(2.5)

Gf course, with obvious notation, Kt(x, t) = J<j(x - iO+, t) and Kj(x, t) = Kj(x 
2i-n + iO+, t), in agreement with definition (1.2). Inserting in the equation (2.5) the
expressiQns (2.4) and (1.9) yields, for the coefficients K j , the recursive equation

K;+2 - Kt+2 = (8; + u l 8x + uo)Kt + (28x + tLI)Kt+1 , j 2: 1 , (2.6)

with the initial conditions

K~- K+
1 - 1 = UI , (2.7)

which allow to obtain the functions Uo and tLI from a given dressing operator I{, or,
viceversa, via a step-by-step calculation, all the coefficients Kj(z, t) of the dressing
operator [<, see (2.3), from the knowledge of Uo and UI. Solving the latter problem
requires the Sokhotsky-Plemely fonnulae, wmch allow to reconstruct a function fez),
analytic in the strip II2h, from the difference of its botuldary values f±(x), namely
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fez) = (1/4ih) i:= dycoth[7l"(Y - z)/2h][r(y) - f+(y)] , zdb , (2.8)

and, therefore, also the boundary values themselves, Le.

x€R, (2.9)

where T is the integral operator defined by (1.6) (and, of course, assuming appro
priate conditions on Uo and Ul, such as smoothness and fast vanishing as Ix I ---t 00).

With respect to trus construction, we should note that, if J-(x) - J+(x)€L1 (R) and
the solution J(z) is assumed to be everywhere bounded in the strip II 2h (including
the point at 00), then J( z) is unique except for an additional constant. In the fol
lowing, we set this arbitrary constant to zero since, in the solution of the dressing
equations (2.6), it merely causes, via (2.2), a change of the normalization of the
function t/J( z, "\, t).

Let us consider now the time evolution; an interesting (and convenient) way of
describing the dass ILW2 (or, more generally, ILWk) of evolution equations is to
consider it as a reduction of the KP hierarchy. More precisely, assume that each of
the boundary values K ± of K (z , t, az) separately satisfy the KP hierarchy

(2.10)

where

p± K± a;(I{±)-l , s = 1,2,3 ... ; (2.11)

here, and in the following, the operation (A) _((A)+) proj ects a pseudo differential
operator

N ~O,

00

A= L Aja;j,
j=-N

into its part containing only negative (nonnegative) powers ofax , namely

(2.12)

(A)_ = LAja;j ,
j~l

o

(A)+ = L Aj8;j .
j=-N

(2.13)

In order to set a connection between these two I{P herarchies sitting on the two
boundaries of the strip II2A, we now ask that K+ and K- be the boundary values
of an analytic operator related to each other by the dressing equation (2.5). Trus
readly implies (as it is easily found by differentiating (2.5) with respect to t and using
(2.10» that the operator L evolves in time according to the equation (see (lA»

(2.14)

where we have defined

(2.15)

and used the obvious fonnula p± = (p±)_ + (P±)+ together with the equation
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P- L - LP+ = 0 (2.16)

which follows from (2.5) and (2.11).
This dass of evolution equations are precisely the ILW2 hierarchy (the ILW k dass
similarly obtains by replacing, in the dressing equation (2.5), a; with a;). As a
side remark, we observe that this connection with the KP hierarchy opens the way to
construct solutions of the ILWk equations by starting with Backer-Achiezer functions
1/J (see (2.2)), or, equivalently, with the corresponding r-functions, associated with
the KP hierarchy. Indeed, solutions of the ILW k equations obtain by imposing on
the KP 1/'-function the condition of satisfying the linear spectral problem (2.1), and
this consequently implies special conditions on the general Riemann surface.
In this respect, we have been imormed by I.Krichever that he has recently constructed
a dass of solution of the ILW1 equations by using KP Backer-Achiezer functions, and,
in this simple example, he has explicitly given the corresponding restrietion on the
Riemann surface. Dur present derivation of the ILW k equations via a reduction of
the KP hierarchy provides, therefore, a natural way of understanding the result by
I.Krichever [22].

For future reference, we now rewrite the evolution equation (2.14) in the following
form. Note first that

where we have introduced the operator

w =K+ a;-2([(-)-1

therefore, because of (1.9) (say (L)+ = L),

where we have set

x = (W)_ .

(2.17a)

(2.17b)

(2.18)

(2.19a)

(2.19b)

(2.20)

These formulae imply that the evolution equation (2.14) may take the alternative
form

(2.21 )

The generic equation of the ILW2 dass obtains by inserting in (2.21) the power
expansion (see (2.20))

x = L a;j Xj(x, t)
j~l

6
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where the coefficients Xi obtain through the definitions (2.20) and (2.18) together
with the recursion relations (2.6) and (2.7). For instance, the simplest nontrivial
equation in this dass corresponds to s = 2 in (2.18) and reads

(2.23a)

with

or, more explicitly,

Xl =-UI, (2.24)

Ul t = (2UD - Ulx - 2iTu.l x - ui)x , (2.25a)

UDt = (UD - Ul x - iTul x)xx + Ul (UD - Ul x - iTulx)x - UI UDx - 2UD Ul x . (2.25b)

Let us emphasize, at this point, that the evolution equation (2.21) has a uni
versal form as it appears in different contextsj for instance, it has the same form of
the generalized KdV equations associated to the 81(2) algebra [20]. The distinction
with respect to the present case comes only with the construction of the coefficients
Xi through the equations (2.20), (2.18), (2.6) and (2.7) (in the !<:dV case, instead,
X = (K 8;-21(-1)_ where K satisfies the dressing equation K 8; 1(-1 = 8'; + UD).
Moreover, we note that the first equation of the ILW2 hierarchy, namely (2.25), ob
tains with 8 = 2 and, therefore, having obviously no counterpart in the !<:dV dass, is
peculiar of the nonlocal feature introduced by the Riemann-Hilbert spectral problem
(2.1).

Let us now turn our attention to the introduction of a A-dependence in the
evolution equations. This can obtain by means of the second version of the dressing
technique, namely with dressing operators which are inverse power expansions in ,\
rather than in the differential operator 8x (see (2.3)). To this aim we the coefficients
Xi through the equations (2.20), (2.18), (2.6) and (2.7) (in the !<:dV Ca5e, instead,
X = (1<8;-21{-1)_ where K satisfies the dressing equations K8';K-I = 8; + Uo)'
Moreover, we note that the first equation of the ILW2 hierarchy, namely (2.25),
obtains with s = 2 and, therefore, having obviausly uo counterpart in the KdV
class, is peculiar of the nonlocal feature introduced by the Riemann-Hilbert spectral
problem (2.1).

Let us now turn our attention to the introduction of a A-dependence in the
evolution equations. This can obtain by means of the second version of the dressing
technique, namely with dressing operators which are inverse power expansions in A
rather than in the differential operator 8x (see (2.3)). Ta this aim we have first to
transform the (scalar) spectral problem (2.1), with (1.9), into a matrix form, and we
da so by rewriting the scalar second order differential operator L, see (1.9), as a first
order 2x2 matrix operator according to the formulae [20,21]

(2.26a)
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can_(Ul UO)
q = 0 0 ' (2.26b)

(2.27)

These imply that the spectral problem (2.1), which formally reads (see (LID))

takes the matrix form

(2.28)

where

{,can( A)'lJ = 0 (2.29)

(2.30a)

- (0 A)
A = 1 0 ' (2.30b)

In contrast with the scalar formalism, in this 2x2 matrix setting it has been shown in
[21] that the I LW2 hierarchy in the form (2.21) can be recast in the usual Lax form;
this follows from the hamiltonian approach (for which we refer the reader to [20,21]),
which leads to the equation

J:..can - [Grad l ' {,can]t - q x, ,

where {,can is defined by (2.26) and

Grad ix = (X2 X 2x - ~IXX + (UI X1)x - Uo Xl)
q Xl X2+UIXI-Xlx

(2.31 )

(2.32)

In this last expression the functions X I and X 2 are the first two coefficients of the
expansion (2.22), and the evolution equation (2.31) coincides with the system (2.23).
Of course, these formulae apply as wen to the local Ca<3e, namely for n = 0; on the
other hand, in this case, it is well-known that the (KdV cIass of) equations (2.31),
with (2.32) and X = L: 8;i Xi = L(~-2)/2, can be lifted up to the so-called zero-

i~I

curvature representation with dependence on the spectral parameter A, which reads

where, according to our notation (2.30),

A= e~) .
The main point here is that the matrix V(A) is polynomial in A of degree

s = s/2 if s is even and s = (8+ 1)/2 if s is odd ,

with s introduced by (2.11), i.e.

8
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(2.35b)

where the coefficient Va is (as it should, see (2.31)) the matrix gradq ex given by the
expression (2.32) (with X = L(lJ-2)/2).

The main purpose of this paper is to extend to the nonlocal case, i.e. to the
I LW2 equations, the zero-curvature representation (2.33). We show that lifting up
the equation (2.31) to this representation is indeed possible, but non trivial as it
requires substituting the matrix A (see (2.34)) with the operator-valued matrix A
(see (1.10) and (2.30)). Because of the noncommutativity of Awith x, the polynomial
expression V(A) turns out to be rather formal, but we prove that the coefficient Va is
again the matrix Gradq lx, as given by (2.32) with X constructed according to the
formulae (2.20) and (2.18).

As a by-produet, Dur investigation naturally leads to look at the algebra where
the time evolution takes plaee. In the loeal (say KdV) case, the equation (2.33)
shows that the lifting up to the '\-dependent zero-eurvature representation takes into
play the gf(2) Kac-Moody algebra [20]. In the present case, the lifting up to zero
curvature representation of the ILW2 equations with a noncommutative spectral
parameter leads us to find the cross-product algebras considered by Saveliev and
Vershik [23], in partieuhu the Fairlie-Zachos sinh-algebra [24].

3. DRESSING TECHNIQUE WITH NONCOMMUTATIVE SPECTRAL PARAM
ETER

Here we dress the "naked" spectral equation

.co 'lJo = 0 (3.1a)

.co - 8x - A , (3.1b)

wher Ais defined by (2.30b) and (1.10) with ,\ and k related to each other by the
equation ,\ = -k2 exp( -2/ik). We start by mimiking the loeal version of the dressing
method, namely we look for an operator G which canonically takes the bare operator
.co into the dressed operator (2.30a), namely

(3.2)

As a consequence, the vector

(3.3)

is a solution of the spectral equation (2.29). Rewriting the dressing equation (3.2) in
the form

(3.4)

clearly shows that, while in the loeal case (A = A, see (2.34)) G is a 2x2 matrix
satisfying an ordinary differential equation, in the present case, G is an operator
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valued 2x2 matrix, which, however, depends on the differential operator 8r, only
through the shift operator exp( -2i-n8x ) (see (1.10)). As in the standard (local) case,
a solution of the dressing equation (3.4) may be formally represented as an inverse
power expansion, i.e. (in this section the dependence on time t is irrelevant, and,
therefore, omitted)

00

G = L An(x)~-n ,
n=O

(3.5)

with respect to the operator-valued spectral parameter ~, whose matrix coefficients
An(x) (as WO and Win (3.3)) are the boundary value on the real axis (from below,
see (1.2a)) of a function analytic in the strip IIUt (here, and wherever is convenient,
we drop the upper sign "+" we have previously used to indicate such boundary
value). Inserting the expansion (3.5) in (3.4), and noticing that the action of ~ on
the boundary value An(x) is well-defined l as it reads (with 0 bvious notation)

(3.6)

easily yields a recursion equation for the coefficients An. Apart from unessential
constants of integration, the solution of this equation turns out to be expressed in
terms of the coefficients Kn(x)(= K;t(x), see (2.4)) of the dressing operator K,
namely (see the derivation in appendix A)

A - (K2n + K 2n- 1x
n - K 2n -

1
(3.7)

whieh, in particular, implies (see (2.7) and (2.9)) that the first coefficient is not the
unit matrix, as it reads

(3.8)

A simpler expression of the expansion coefE.cients of the dressing operator G obtains
if the expansion is performed in inverse powers of the matrix Ä (see (2.30b)), rather
than of the operator~. These new matrix coefficients Gn are therefore introduced
by the formula

00

G= LGn(x)Ä-n ,
n=O

(3.9)

which, however, does not uniquely define the matrices Gn(x). Indeed, because of the
following property

(3.10)

of the off-diagonal matrix Ä, these exists an expansion, with non vanishing matrix
coefficients, which is identically zero. As is easily verified, this is explicitly displayed
by the expression

00

L Zn(x)Ä -n = 0
n=O

10
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Z ( ) _ (on(x)
n x - ßn(X)

-on+l(X))
-ßn+l(X) ,

n = 0,1,2, ... (3.11b)

where {on(X)} and {ßn(X)} are two sequences of functions whieh, except for the
eondition 00 = ßo = 0, are arbitrary (and note that this property of the expansions in
(>owers of Ahold~ true also in the loeal ease sinee the operator eharaeter of the element
..\ of the matrix A is eompletely irrelevant). As a eonsequenee of this observation, the
general solution of the dressing equation (3.2) (or, equivalently, (3.4)), in the fonn
(3.9), reads

n = 0,1,2, ... (3.12)

where the matrices Zn are given by (3.11b) in terms of the arbitrary fWletions O:'n(x)
and ßn(x),

We now display few expressions, whieh the eoefficients Gn(x) ean take by ap
propriately choosing the arbitrary flUletions O:'n(x) and ßn(x). The simplest form of
G n is the upper-triangular matrix

Go = (~ n' (3.13)

which obtains from the general expression (3.12) by setting

ß2n = -!(2n-l, ß2n+l = 0

An alternative fonn is the lower-triangular matrix

(3.14a)

(3.14b)

Go = (~ n' (3.15)

whieh eorresponds to the choice

Q'2n = 0 , (3.16a)

ß2n = -](2n-l - K 2n - 2x , (3.16b)

A third expression may be the diagonal matrix

Go = Gn' (3.17)

whieh obtains with

02n = 0 , (3.1Sa)

(3.18b)
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In the following, if an explicit expression of Gn had to be used, we will adopt that
oue given by (3.13).

These findings can be summarized by the following Lemma 1: if the ftlllctions
Kn(x)(= Kt(x)) are the solution of the Riemann-Hilbert recursive problem (2.6),
with (2.7), or, equivalently, the coefficients of the operator (2.4) which solves the
dressing equation (2.5), then the solution of the dressing equation (3.2) with the
noncommutative spectral parameter ~ is provided by (3.5), with (3.7), or, alter
natively, by (3.9) and (3.13) (with the observation that alternative expressions are
possible, such as, f.i., (3.15) and (3.17)).

4. CONSTRUCTION OF THE HIERARCHY OF EVOLUTION EQUATIONS

In section 2 the ILW2 hierarchy of evolution equations has been given in the
fonn (2.14) by using the se~ar dressing fonnalism. Here we derive the hierarchy of
evolution equations in the A-dependent version of the dressing method, and prove
that these equations coincide with the I LW2 class. To this aim, we eonsider first
the class of operators which i) eommute with 120 = ax - 11 (see (3.1b )), ii) depend
on the operator BI, only through the shift operator, i.e. the operator ~ (see (1.10)),
and iii) are polynomial in ~. This dass is 0 bviously given by All, S = 1, 2, 3, ... , and,
therefore, by standard arguments, we dress, by llleans of the operator G introduced in
the previous section, the (trivial) equation [at - A~,aI, - A] = 0, which then becomes

[at - GtG-1 - GA IIc-1 , Lcan(A)] = 0 (4.1)

where, of course, we have used (3.2). At this point, we observe that the operators
GtC-1 and CAIIC-l, because of the representation (3.5), ean be formally expanded
in powers of A. This expansion is indeed formal sinee, if s > 1, it requires eomputing
the action of ~n on a ftlllc tion f (x), for n > 1, whieh can be done only if f (x) satisfies
the strong condition of heing the boundary value on the real axis of a function analytic
in the domain x€R, -2nn :S y ~ o. Nevertheless, we proceed in a formal way, and
introduce the projections

of the operator

o
(F)+ = L Fn ~ -n ,

n=-N

00

<Xl

(F)_ = L Fn ~-n

n=l

(4.2)

F= L Fn~-n

n=-N

(4.3)

in its nonnegative and negative power expansions. Of course, a similar definition of
the projections (.)+ and (.)_, hut with respect to the powers of the matrix Arather
than to the spectral parameter X, would be meaningless because of the equations
(3.11).

Let us now ask that the evolution in time be such that

[GtC- 1 + GA~C-l]_ = 0 ;

this, together with (4.1) and the definition (see (2.35a))

12
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,;

V(x, t,~) = L Vn(x, t)~n = [GtG- 1 + GA:'G-1 ]+ ,
n=O

(4.5)

imply the following zero-curvature representation of the dass of evolution equations
associated with the equation (4.4)

or, equivalently (see (2.30)),

(4.6)

[at - v, ßx - U] = 0 , U - A" can= -q (4.7)

In order to show that, indeed, this construction leads to lifting up the I LW2 dass of
equations to the zero-curvature representation with the spectral parameter, we state
the following Lemma 2: if the dressing operator G satisfies the evolution equation
(4.4), then the dressing operator 1«= K+, see (2.10) and (2.11)) solves the equation

(4.8)

and viceversa, i.e. (4.4) is equivalent to the I(P hierarchy (4.8). The proof of this
result is given in appendix B. As a simple eonsequenee of (2.17a) and (2.20), the fol
lowing eorollary holds true: the equation (4.4) is equivalent to the evolution equation

(4.9)

for instanee, the evolution of the first eoefficient of the expansion (2.4) reads

(4.10)

At this point, it remains to prove that the equation (4.6), for ,,\ = 0, namely (see
(4.5))

(4.11 )

does indeed coincide with the already known equation (2.31), with (2.26a); or, more
precisely, the following Th eorem holels: if G satisfies the evolution equation (4.4) and
V(x, t,~) is defined by (4.5), then

(4.12)

where the r.h.s. of this equality is explicitly given by (2.32). In eontrast with the
loeal ease, because of the noneommutativity of the operator ~ with x, the equivalence
of the evolution equation (4.11) with (2.31) is not evident. Th~ prüüf of this theorem
is provided in appendix B.
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5. CONCLUSIONS

In this paper we have confined our attention to the class I LW2 of evolution
equations with the purpose of introducing the novel dressing technique to deal with
a nonlocal (or intermediate) generalization of the KdV hierarchy. The appropriate
formalism, based on expansions in powers of the operator-valued spectral parameter
,x, see (1.10), cau be applied, of course, to the more general class ILWk, kfZ. In the
paper [25], we apply trus approach to the generalized MKdV and two-dimensional
Toda lattice to construct their nonlocal partners.

Finally, we note that the lifting up the ILWk hierarchy to zero curvature rep
resentation with a noncommutative spectral parameter clearly changes the algebra
where the evolution takes place in the local case. In order to point out the type of
algebras which therefore appear in the nonlocal case, it may be convenient to consider
the simplest class, i.e. the I LW I equations. In this particular case ,c = 8x +u - ,x and

,,-1

V ='x" + L: vn(x,t),Xn. Thus, the relevant Lie algebra is generated by operators of
n=O

the form V n (x),X n. More precisely, if the functions V n(x) are supposed to be periodic
in x, then it is natural to define the generators

(5.1)

where Ti = (nI, n2) is a two-dimensional vector with nI, n2€Z. As it is easily verified,
this expression of T( ii) satisfies the standard sinh-algebra commutation relations

[T(n), T(m)] = sinh[1i(n x rTi)]T(ii + m) ,

with Ti x m= nl m2 - n2 ml. Combining this observation with the formulae reported
in [23], it is apparent that the I LWk hierarchy leads to evolutions in the so-called
cross product Lie algebras introduced by Saveliev aud Vershik. This direction of the
present investigation certainly deserves a detailed investigation.
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Appendix A
Here we show that the power expansion (3.5) of the dressing operator G, with

the coefficients (3.7), satisfies the equation (3.4). To this aim, we first note that the
equation (3.3), together with the expression (2.30b) of the vector 'I1 in terms of the
solution 'lj;, implies that

(A.I)

where we have introduced the operator-valued matrix elements of the dressing oper
ator G, i.e.

14



(A.2)

and, of course, 1f;0 = exp(ikx). Since "po is a solution of the undressed equation,

1f;~x = ~1/;0

the relation (A.l) is equivalent to the two conditions

(A.3)

(A.4)

which give the matrix (A.2) the general structure

(A.5)

as the reader may easily verify, this condition on G is consistent with the dressing
equation (3.4).

We then ask that the solution 'lj; of the linear problem (2.28), which is the second
component of the vector (see (3.3) and (2.30b»

w- Gwo - (1/;x)- - 1/; ,

be the solution given by the dressing operator K (see (2.2», say

GwO = ((~~Jx) .

(A.6)

(A.7)

Therefore the operators G and K, when applied to the bare solution, are simply
related to each other, and, in particular, combining (A.5) with (A.7), we have

(A.8)

It now remains to use the expansions (2.4) and (3.5), and to 0 bserve that ,\ exp( i kx) =
(ik)2 exp(ikx), to obtain from (A.8) the equality

L[A~1(ik)-2n+l+ A~2(ik)-2n] = 1 + L Kn(ik)-n , (A.9)
n~O n~l

which obviously implies

with the notation (see (3.5»

A22 Kn = 2n, (A.IO)

An = (1~: 1~n . (A.l1)

The expression (3.7) of the matrix coefficients An finally follows from (3.5), (A.5) and
(A.lO). Ta complete our task, one has to substitute (3.7) inta the dresssing equation
(3.4) to merely verify that this is satisfied because of the recursion equation (2.6).
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Appendix B
Here we prove Lemma 2, and the Theorem, stated in section 4. In the following,

computations involving powers of the operator .x are formal, and we assume that, if
need be, a function f(x) is analytic off the real x-axis in a strip large enough to give
meaning to expressions such as .x n f(x) = f(x - 2inn).xn . We further observe that,
in order to compare a power expansion in ~ with a power expansion in 8x , we have
to consider their action on Tj; 0 = exp( i kx ), or on the dressed solution Tj; = !{Tj;° (see
(2.2)). In fact, thc connection fonnulae are the linear problems (see (A.3) and (2.28)
with (1.9))

Tj;0 = exp(ikx) , (B.l)

As a consequence, we have that, for any integer n,

~nVJo = 8;nVJo = (ik )2n7/Jo ,

while, if n is a nonnegative integer, n 2 0, then

(B.2)

(B.3)

(BA)

where yen) is a purely differential oeprator of order 2n, whose expression is easily
found to be

yen) = L(n-l) L(n-2) ... L(I) L (B.5)

where L is the second order differential operator (1.9), and L(n) is the second order
differential operator which obtains by shifting Ln times, namely

L(n) = exp( -2inn8x )Lexp(2in1i8x ) = 8; + Ul(X - 2inn)8x + uo(x - 2in1i) , (B.6)

On the other hand, for n 2 0, the action of the differential operator 8r; on Tj; IS

equivalent to an operator polynomial of ~ according to the fonnula

(B.7)

where the polynomials zin
) and Z6n

) can be computed from the recursion equations
(use (B.2) to eliminate 8;)

Z
(n+l) _ Zen) _ Zen) + Zen)
1 - 1 x 1 Ul 0 ,

Z (n+l) _ Zen) + Z(n)( \ _ )o - Ox 1,r\ Uo ,

together with the obvious initial condition

(B.8a)

(B.8b)

z(O) - °1 - , (B.9)

Oue more technical observation is the following Lemma 3: if the (possibly x
dependent) coefficients an, bn and C n do not depend on k, then the equations
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L(an8x + bn)5... -n'ljJ0 = 0 ,
n

(B.lO)

(B.ll)

where 'ljJ0 is given by (B.l) and the range of values of n in the sum needs not to
be specified, respectively imply, if satisfied for all values of k, the vanishing of the
coefficients, i.e.

an = bn = 0 ,

and

Cn = 0 .

The proof is a simple consequence of (B.3).
As for the proof of Lemma 2, our starting point is the relation

(B.12)

(B.13)

(B.14)(G G-l + GAlJC-1)w = ({(Kt K -
1+ K 8~K-l )TjJ]x)

t (!<t!<-l + !(8;K-1 )TjJ

whose derivation easily goes via (A.6), (A.7) and (3.1). Assurne now that the dressing
operator G satisfy the evolution equation (4.4), then, using the notation (4.5) with

Vn = (~i: ~i~) , (B.15)

the second component of the vector equation (B.14), together with (A.6), implies the
scalar equation

s
(KtK- 1+ K8;K-1)'ljJ = L(V;18x + V;2)5... n'ljJ ,

n=O

(B.16)

where s is defined by (2.35a). Since K is the pseudo-differential operator defined
by the expansion (2.3), and since the differential operators y(n) introduced by (B.4)
allow to write the operator acting on 'lj; in the r.h.s. of (B.15) as a differential operator,
we can define the coefficients In(x, t) through the equation

j ~

KtK- 1 + !<8;K-1 - L(V;18x + v;2)y(n) - (L fn8;n)K-1
n=O n=-lJ

In this way, the equation (B.16), with (2.2), reduces to

n=-ß

(B.17)

(B.IS)

which, because of Lemma :1 (see (B.II) and (B.13)), implies f n = 0, and, finally, the
!(P hierarchy

(B.19)
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and the relation (M = M+, see (2.15) and (2.11))

j

M = L(V;18x + v;2)y(n) (B.20)
n;;;:O

The opposite implication can be proved in a similar way. Assume that the
dressing operator /( satisfy the evolution equation (B.19), then

6

/(t](-l + ](a;K- 1 = M = L M n 8: (B.21)
n=O

In this case, the equation (B.14) reads

(B.22)

ohserve now that the relation (B.7) and the expression (A.6) of \l1 imply that

(B.23)

where zi n
) and Z~n) are polynomials in ~. This naturally leads to define the matrix

coefficients Fn ( x, t) via the relation

Mnx) (zin
+

1
)

M Z
(n)

n 1

so that the equation (B.22) also reads

(n+l)) <Xl

Zo = (" F ~-n)G-l
Z(n) - ~ n ,

o n=-"
(B.24)

(B.25)

Since the two components of this vector equation takes the form (B.10), the Lemma
3 readly implies Fn = 0, and, therefore, the evolution equation (4.4).

Let us now prove the theorem of section 4, namely the equality (4.12). V\fe first
observe that the expression (2.19a) can be rewritten as

(B.26)

this resulting from computing (XL )+ with (2.22). Moreover1 for the I LW 2 dass of
evolution equations, because of Lemma 2, the equation (B.14) becomes

(B.27)

This equation has two consequences; the first is

(B.28)

and the second is

18



(V21 8x + V22 )"p = M"p .

By using the linear problem (B.2), the equation (B.28) takes the fonn

while the equation (B.29), with (B.26), becomes

(B.29)

(B.3D)

where the action of the differential operator (W)+ on 'ljJ has been appropriately
rewritten in powers of ~.

Arguments similar to those used in provillg Lemma 2 easily take the equation
(B.3D) and (B.31) into operator equations, which are

(B.32)

(B.33)

It now remains to set ,\ = 0 in these equations to obtain the coefficient Va of the
polynomial (4.5), \vhose expression turns out to be precisely that given by (2.32).
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