
Max-Planck-Institut für Mathematik
Bonn

On topological type of periodic self-homeomorphisms of
closed non-orientable surfaces

by

Grzegorz Gromadzki
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ON TOPOLOGICAL TYPE OF PERIODIC SELF-HOMEOMORPHISMS

OF CLOSED NON-ORIENTABLE SURFACES

GRZEGORZ GROMADZKI, BÃLAŻEJ SZEPIETOWSKI

Abstract. Let Sg denote a closed non-orientable surface of genus g ≥ 3. At the beginning

of 1980s E. Bujalance showed that the maximum order of a periodic self-homeomorphism

of Sg is equal to 2g or 2(g − 1) for g odd or even respectively, and this upper bound is

attained for all g ≥ 3. In this paper we investigate rigidity of topological type of cyclic group

actions on Sg of order N > g− 2, with prescribed ramification data. As an application, we

compute, for N between max{g, 3(g − 2)/2} and 2g, the numbers of different topological

types of actions of ℤN on Sg. This is an analogue, for non-orientable surfaces, of a result

of S. Hirose which was the original motivation for this paper, along with a connection with

topological properties of moduli spaces of purely imaginary real algebraic curves.

1. Introduction

By an effective action of a finite group G on a closed surface S we understand an em-

bedding of G into the group Homeo(S) of homeomorphisms of S. Two such actions are

topologically equivalent if the images of G are conjugate in Homeo(S). The topological

classification of finite group actions on closed surfaces is a classical problem going back to

Nielsen [14].

Let ℳg denote the moduli space of complex algebraic curves of genus g ≥ 2 and consider

its subset ℳg(G) consisting of points representing curves with a finite group G of birational

automorphisms. It is intuitively plausible, and Teichmüller-Royden theory provides a more

precise justification, that ℳg(G) is smaller for bigger G. In other words, a curve is better

described by its group of automorphims when this group is bigger. By the famous Hurwitz

bound its order does not exceed 84(g − 1).

Particularly interesting are the cases when a curve X is determined, up to birational

equivalence, by the topological type of the action of G, or only by its ramification data, by

which we understand the genus of the orbit space X/G and the branching indices of the

projectionX → X/G, or even only by the order ofG. More specifically, when ∣G∣ > 12(g−1),

then by the Hurwitz-Riemann formula and elementary Teichmüller theory, ℳg(G) is finite

and topological and birational types of the action coincide, see [8, 11, 16, 15]. For example,

the main discovery of the paper [12] by Hirose, translated to the language of complex

algebraic curves, asserts that with a few exceptions, a complex curve of genus g ≥ 2 having

an automorphism of order N ≥ 3g is determined (up to birational equivalence) by N . The

condition N ≥ 3g turns out to be quite restrictive, as it forces N to be one of 4g + 2, 4g,
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3g + 3 or 3g for g > 12. On the other hand, there are infinitely many rational numbers q

and r, such that for infinitely many g ≥ 2 there is a homeomorphism of a closed orientable

surface of genus g having order N = qg + r satisfying 2(g − 1) < N < 3g. In [1] a

more general situation is studied, when the order of a cyclic group of automorphisms of a

compact Riemann surface of genus g ≥ 2, or the ramification data of the action, determine

its topological type. Importance of such results follows from their connection with topology

of the singular locus of the moduli space of complex algebraic curves, see [10].

Motivated by [12] and [1], in this paper we consider analogous problems for purely imag-

inary real curves, which can also be seen as compact, unbordered, non-orientable surfaces

with dianalitic structure (see [5] for a definition). The study of dianalitic automorphisms

of such surfaces is equivalent to the study of their periodic self-homeomorphisms, because

every periodic homeomorphism of a surface Sg of topological genus g ≥ 3 is a dianalitic

automorphism with respect to some dianalitic structure on Sg. Bujalance showed in [2]

(see also later paper of S. Wang [18]) that the maximal order of such automorphism of a

non-orientable surface of genus g ≥ 3 is equal to 2g or 2(g−1) for g odd or even respectively,

and this upper bound is attained for all g ≥ 3. The case g = 3 is well understood, as the

mapping class group of S3 is isomorphic to GL2(ℤ) (see [7]), and the classification of conju-

gacy classes of torsion elements in the latter group is known. Another interesting problem

concerning cyclic periodic actions on non-orientable surfaces was considered in recent paper

[3], where the authors investigated such actions which can not be extended to any bigger

group.

Throughout the whole paper we denote by S or Sg a closed non-orientable surface of

genus g ≥ 3. In this paper we study the extent to which the order N or the ramification

data of a cyclic group G acting on Sg determine the topological type of the action, which

is important in virtue of the connection with topological properties of moduli spaces of

purely imaginary real algebraic curves, similar as in the case of orientable surfaces. More

specifically, in Section 3 we investigate rigidity of topological type of cyclic group actions

of order N > g − 2 with prescribed ramification data. We consider a quite large family of

actions, where the order N has the form N = qg + r, for infinitely many rational q and

r. Furthermore, for each such pair q, r, there is an action of ℤN on Sg for infinitely many

genera g. As an application, in Section 4 we calculate, for N between max{g, 32(g− 2)} and

2g, the numbers of topological types of cyclic actions of order N on Sg. This should be seen

as an analogue, for a non-orientable surface, of the main result of [12].

2. Preliminaries

2.1. Principal definitions. Our approach is based on algebraic properties of the discrete

subgroups of isometries of the hyperbolic plane ℋ, called NEC-groups. We refer the reader

to the monograph [5] for an extensive exposition of the theory.

Suppose that a finite group G acts effectively by homeomorphisms on a closed non-

orientable surface Sg of genus g ≥ 3. Fix a dinanalitic structure on S, with respect to which
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G acts by dianalitic automorphisms. Then S is conformally isomorphic to the orbit space

ℋ/Γ for a torsion-free NEC group Γ isomorphic to ¼1(S). Such Γ is called non-orientable

surface group. Furthermore, G is isomorphic to the quotient Λ/Γ, for some other NEC-group

Λ, a subgroup of the normalizer of Γ in the group of all isometries of ℋ (Λ is equal to that

normaliser if and only if G is the full group of dianalitic automorphisms of S). Equivalently,

there is an epimorphism µ : Λ → G with kernel Γ, usually called smooth epimorphism to

underline the fact that its kernel is torsion-free. This motivates the following definition.

Definition 2.1. Suppose that Λ is a NEC group, G is a finite group, and µ : Λ → G is an

epimorphism. We say that µ is a NSK-map (non-orientable-surface-kernel-map) if and only

if ker µ is a non-orientable surface group.

Two effective actions of G on Sg are topologically conjugate (by a homeomorphism of Sg)

if and only if the associated NSK-maps are equivalent in the sense of the next definition (see

[4, Proposition 2.2] and its proof; the same argument applies to closed surfaces).

Definition 2.2. We say that two NSK-maps µi : Λi → G, i = 1, 2, are equivalent if and only

if there exist isomorphisms Á : Λ1 → Λ2 and ® : G → G such that the following diagram is

commutative.

(2.1) Λ1

Á
// Λ2

G
® //

²²
µ1

G
²²
µ2

The ramification data of G is encoded in the signature ¾(Λ) of Λ, which in our case has

the form

(2.2) (ℎ;±; [m1, . . . ,mr]; {(−) k. . . , (−)}),

where k > 0 if the sign is “+” (see [2]). The orbit space S/G = ℋ/Λ has genus ℎ and k

boundary components, and it is orientable if and only if the sign is “+”. From the signature

one can also read a presentation of Λ in terms of canonical generators and defining relations

as follows. The generators are:

xi for 1 ≤ i ≤ r

cj , ej for 1 ≤ j ≤ k

al, bl for 1 ≤ l ≤ ℎ if the sign is “+”

dl for 1 ≤ l ≤ ℎ if the sign is “-”

The defining relations are:

xmi = 1 for 1 ≤ i ≤ r

c2j = 1, [ej , cj ] = 1 for 1 ≤ j ≤ k

x1 ⋅ ⋅ ⋅xre1 ⋅ ⋅ ⋅ ek[a1, b1] ⋅ ⋅ ⋅ [aℎ, bℎ] = 1 if the sign is “+”

x1 ⋅ ⋅ ⋅xre1 ⋅ ⋅ ⋅ ekd21 ⋅ ⋅ ⋅ d2ℎ = 1 if the sign is “-”
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Note that Λ is a proper NEC group, i.e. it contains orientation-reversing isometries.

Among the canonical generators, cj and dl are orientation-reversing, the remaining ones

are orientation-preserving. We denote by Λ+ the canonical Fuchsian subgroup of Λ, con-

sisting of all orientation-preserving elements of Λ. Finally, we have the Hurwitz-Riemann

ramification formula

g − 2 = ∣G∣¹(¾),
where

¹(¾) = ®ℎ− 2 + k +

r∑

i=1

(
1− 1

mi

)

is the normalized hyperbolic area of a (arbitrary) fundamental region for Λ. Here ® = 2 if

the sign of the signature is “+” and ® = 1 otherwise.

The following lemma, which is a special case of [2, Proposition 3.2], provides an effective

criterion for an NSK-map.

Lemma 2.3. Suppose that Λ is a NEC group with signature (2.2). A group homomorphism

µ : Λ → G is an NSK-map if an only if

(1) µ(xi) has order mi for 1 ≤ i ≤ r,

(2) µ(cj) has order 2 for 1 ≤ i ≤ k,

(3) µ(Λ+) = G.

In this paper we are interested in the case where G is a cyclic group ℤN .

Definition 2.4. Suppose that ¾ is an NEC signature (2.2) and N is a positive integer. We

say that the pair (¾,N) is admissible if there exists a NSK-map µ : Λ → ℤN with ¾(Λ) = ¾.

If, furthermore, such µ is unique up to equivalence, then we say that (¾,N) is rigid.

For two integers a, b we denote by (a, b) their greatest common divisor and we use the

additive notation for cyclic groups throughout the whole paper.

2.2. Automorphisms of NEC-groups vs mapping class groups. In this subsection we

recall the relationship between the outer automorphism group of an NEC-group Λ and the

mapping class group of the orbit space ℋ/Λ. For simplicity we assume that the signature

of Λ has the form

(ℎ;−; [m1, . . . ,mr]; {−}),
where the periods mi are all different. For a discussion of the general case see [4, Section 4].

Set S = ℋ/Λ and note that S is a non-orientable surface of genus ℎ with r distinguished

points, over which the projection p : ℋ → S is ramified. Let P denote the set of distinguished

points, U = ℋ∖p−1(P) and S0 = S∖P. Then p : U → S0 is a regular covering and Λ is its deck

group isomorphic to ¼1(S0)/p∗(¼1(U)). The canonical generators x1, . . . , xr and d1, . . . , dℎ

of Λ correspond to standard generators of ¼1(S0) and p∗(¼1(U)) is normally generated by

xmi
i for i = 1, . . . , r.
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We denote by Mod(S,P) the mapping class group of S relative to P, defined as the group

of isotopy classes of homomorphism of S preserving P. The pure mapping class group is the

subgroup PMod(S,P) of Mod(S,P) consisting of the isotopy classes of homomorphism fixing

each element of P. The groups PMod(S,P) and Out(Λ) are isomorphic by a generalisation,

for non-orientable S, of [11, Theorem 1] (see [6, Section 3]). Given an element of PMod(S,P)

one can find its image in Out(Λ) as follows. Represent this element by a homeomorphism

f : S0 → S0 fixing some base point. Then f∗ : ¼1(S0) → ¼1(S0) preserves p∗(¼1(U)), hence
it induces an automorphism of the quotient ¼1(S0)/p∗(¼1(U)) ∼= Λ.

3. Rigid pairs

In this section we determine some rigid pairs (¾,N) and compute the numbers of equiva-

lence classes of NSK-maps for a family of signatures ¾ and N > g−2. The results presented

here are of two types. The first type concerns necessary and sufficient conditions for (¾,N) to

be admissible - most of them follows from a more general result in [9], where such conditions

are given for arbitrary NEC signature ¾. The other type of results concerns automorphisms

of NEC-groups and related mappings class groups of certain surfaces of low genus and small

numbers of boundary components and punctures. Some of these results are borrowed from

[4] and some of them are new. They will play a key role in Section 4 and we believe that

they are of independent interest.

3.1. Signature (2,−, [m], {−}). In this subsection we fix Λ with such signature. We also

fix canonical generators d1, d2 of Λ, satisfying single defining relation (d21d
2
2)

m = 1.

Lemma 3.1. Let y = d1, z = d1d2. Out(Λ) is generated by classes of automorphisms ®, ¯,

° defined by

® :

⎧
⎨
⎩
y 7→ yz

z 7→ z
¯ :

⎧
⎨
⎩
y 7→ y−1

z 7→ z
° :

⎧
⎨
⎩
y 7→ y

z 7→ z−1

Proof. Set S = ℋ/Λ and note that S is a Klein bottle with one distinguished point

x ∈ S. Recall from Subsection 2.2 that Out(Λ) is isomorphic to the mapping class group

Mod(S, {x}). By [13, Theorem 4.9] the last group is generated by 4 elements: Dehn twist,

crosscap slide and 2 boundary slides. However, only one boundary slide is needed, as the

second one can be expressed in terms of the remaining 3 generators (see [17, Theorem A.5],

where it is proved that the mapping class group of once-punctured Klein bottle is isomorphic

to (ℤ⋊ℤ2)×ℤ2). By computing the automorphisms of ¼1(S∖{x}) induced by the generators

of Mod(S, {x}) we deduce our lemma. □

The following lemma is a particular case of Lemma 5.9 in [9] for r = 1.

Lemma 3.2. (¾,N) is admissible if and only if either

∙ m∣N and N is odd, or

∙ 2m∣N and N
2m is odd.
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Proposition 3.3. Suppose that N is odd and (¾,N) is admissible. Then (¾,N) is rigid if

and only if (m, Nm) ≤ 3.

Proof. Let y and z be the generators of Λ from Lemma 3.1. By Lemma 2.3, a homomorphism

µ : Λ → ℤN is an NSK-map if and only if µ(z) has order m and if n is the order of µ(y), then

lcm(m,n) = N .

Set d = (m, Nm) and suppose d ∈ {1, 3}. Let µ2 : Λ → ℤN be any NSK-map. We are going

to show that µ2 is equivalent to µ1 defined by µ1(y) = 1, µ1(z) =
N
m . By post-composing µ2

with an automorphism of ℤN , we may assume µ2(z) =
N
m . Set a = µ2(y). Note that N

m and

a are coprime, in particular d ∤ a. We have a = kd± 1 and d = lm+ k′Nm for some integers

l, k and k′. Let ® be the automorphism of Λ from Lemma 3.1. We have

µ2(®
−kk′(y)) = µ2(y)− kk′µ2(z) = a− kk′

N

m
= klm± 1

Hence, by pre-composing µ2 with ®−kk′ we may assume a = ±1 (mod m). Since a is coprime

to m and to N
m , thus a ∈ ℤ∗

N . We have µ2(y) = a and µ2(z) = ±aN
m , hence either µ2 = aµ1

or µ2° = aµ1. Thus µ2 and µ1 are equivalent.

Now suppose that d = (m, Nm) > 3 and consider two NSK-maps µi, i = 1, 2, defined by

µi(z) =
N
m and µi(y) = i. We claim that µ1 and µ2 are not equivalent. For suppose there exist

Á ∈ Aut(Λ) and a ∈ ℤ∗
N such that µ2Á = aµ1. By Lemma 3.1 we have µ2Á(y) = ±2 + kN

m

for some k and µ2Á(z) = ±N
m . From the last equality we have a = ±1 (mod m). It follows

that 1 = ±2 (mod d), a contradiction. □

Proposition 3.4. Suppose that N is even and (¾,N) is admissible. Then (¾,N) is rigid if

and only if (m, N
2m) ≤ 3.

Proof. By Lemma 2.3, a homomorphism µ : Λ → ℤN is an NSK-map if and only if µ(z) has

order 2m and if n is the order of µ(y), then lcm(2m,n) = N .

Set d = (m, N
2m) and suppose d ∈ {1, 3}. Since N

2m is odd, we have d = (2m, N
2m). If

µ2 : Λ → ℤN is any NSK-map, then by the same argument as in the proof of Proposition

3.3, we may assume µ2(z) =
N
2m and µ2(y) = ±1 (mod 2m). It follows that µ2 is equivalent

to µ1 defined by µ1(y) = 1, µ1(z) =
N
2m .

Conversely, if (m, Nm) > 3, then by the same argument as in the proof of Proposition 3.3, it

can be shown that µi defined for i = 1, 2 by µi(z) =
N
2m and µi(y) = i are not equivalent. □

3.2. Signatures (0,+, [m], {(−), (−)}) and (1,−, [m], {(−)}). Here we fix NEC groups Λ1

and Λ2 with such signatures and fix canonical generators x, e, c1, c2 of Λ1, satisfying the

following defining relations:

xm = c21 = c22 = 1, ec1 = c1e, xec2 = c2xe,

and canonical generators x, d, c, of Λ2, satisfying the following defining relations:

xm = c2 = 1, d2xc = cd2x.
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The following two lemmas are proved in [4, Lemma 4.6, Proposition 4.10 and Proposition

4.12].

Lemma 3.5. Out(Λ1) is isomorphic to the Klein four-group and is generated by classes of

automorphisms ®, ¯ defined by

® :

⎧
⎨
⎩

x 7→ e−1x−1e

e 7→ e−1

c1 7→ c1

c2 7→ c2

¯ :

⎧
⎨
⎩

x 7→ e−1xe

e 7→ (xe)−1

c1 7→ c2

c2 7→ c1

Lemma 3.6. Out(Λ2) is isomorphic to the Klein four-group and is generated by classes of

automorphisms °, ± defined by

° :

⎧
⎨
⎩

x 7→ x−1

d 7→ x−1d−1x

c 7→ c

± :

⎧
⎨
⎩

x 7→ x

d 7→ (dx)−1

c 7→ (dx)−1c(dx)

Lemma 3.7. For i = 1, 2, (¾i, N) is admissible if and only if N is even and m divides N .

Proof. The “only if” part follows immediately for Lemma 2.3. For the “if” part, assume

2 ∣ N , m ∣ N and define µi : Λi → ℤN for i = 1, 2 by

µ1(x) =
N

m
, µ1(e) = 1, µ(cj) =

N

2
for j = 1, 2

µ2(x) =
N

m
, µ2(d) = 1 +

N

2
, µ(c) =

N

2

Note that Λ+
i is generated by conjugates of x, e and c1c2 if i = 1, and by conjugates of x

and cd if i = 2. It follows from Lemma 2.3 that µi are NSK-maps. □

Remark 3.8. Similarly as a few other signatures consider in this section, the above signature

¾2 is a special case of the one from Lemma 5.14 in [9] for r = 1. Unfortunately however,

there is an error in the statement of that lemma, and we take the opportunity to correct it

here: namely, the condition “and some of N/2, m1, . . . ,mr is even” must be deleted. In the

proof, the authors failed to observe that c0d ∈ Λ+ at the very end of page 182. Consequently,

assertion (iv) of Theorem 6.4 in [9] also has to be modified. Its final part should read “where

® = 0 if lcm(N/N1, . . . , N/Nr) = N , and ® = 1 otherwise.”

Proposition 3.9. Suppose that (¾i, N) is admissible for i = 1, 2. Then it is rigid if and

only if

(1) m ∈ {2, 3, 4, 6} and

(2) if m > 2 then m2∣N .

Proof. Case i = 1. Observe that for each a ∈ ℤ∗
N , the assignment µa(x) =

N
m , µa(cj) =

N
2

for j = 1, 2, and µa(e) = a defines NSK-map µa : Λ1 → ℤN .

Suppose that (¾,N) is rigid and fix a ∈ ℤ∗
N . Since µa is equivalent to µ1, it is of the form

µa = bµ1Á, where b ∈ ℤ∗
N and Á ∈ Aut(Λ1). By Lemma 3.5 we may assume Á ∈ {1, ®, ¯, ®¯}.
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It follows that N
m = b′Nm , where b′ = ±b, and a = b′ or a = b′(−1 − N

m). We have b′ = 1

(mod m) and a = 1 (mod m) or a = −1− N
m (mod m). Therefore, if ∣ℤ∗

m∣ > 2 then we can

find a ∈ ℤ∗
N such that µa is not equivalent to µ1. The order of ℤ∗

m is given by Euler’s totient

function '(m). Since (¾,N) is rigid, '(m) ≤ 2, hence condition (1). Furthermore, if m > 2

then for because µ−1 and µ1 are equivalent, we must have −1 − N
m = −1 (mod m), hence

condition (2).

Suppose that (1) and (2) are satisfied and µ : Λ1 → ℤN is any NSK-map. We have

µ(ci) = N
2 for i = 1, 2, and by post-composing µ with an automorphism of ℤN we may

assume µ(x) = N
m . Set a = µ(e). Observe that µ(Λ+

1 ) is generated by N/m and a. Since

µ(Λ+
1 ) = ℤN by Lemma 2.3, a is coprime to N

m . Suppose m > 2. Then (2) implies (a,m) = 1

and by (1) we have a = ±1 (mod m). In particular a ∈ ℤ∗
N . By pre-composing µ with ¯ if

necessary, we may assume a = 1 (mod m). But then µ = aµ1, hence µ is equivalent to µ1.

Suppose m = 2. If a is odd, then a ∈ ℤ∗
N and µ = aµ1. If a is even, then N

2 must be odd,

and µ¯ = a′µ1, where a′ = −(a+ N
2 ) ∈ ℤ∗

N .

Case i = 2. Suppose that 2∣N and m∣N . Set y = cd. Every NSK-map µ : Λ2 → ℤN

is equivalent (by multiplication by an element of ℤ∗
N ) to some µa defined by µa(x) = N

m ,

µa(c) = N
2 and µa(y) = a, where (a, Nm) = 1 (note that µa(Λ

+
2 ) is generated by N

m and a,

hence the last equality is equivalent to µa(Λ
+
2 ) = ℤN ). Suppose that (¾,N) is rigid and

fix a ∈ ℤ∗
N . Since µa is equivalent to µ1, it is of the form µa = bµ1Á, where b ∈ ℤ∗

N and

Á ∈ Aut(Λ2). By Lemma 3.6 we may assume Á ∈ {1, °, ±, °±}. It follows that N
m = b′Nm ,

where b′ = ±b, and a = b′ or a = b′(−1 − N
m). The rest of the proof follows as in the case

i = 1. □

3.3. Signature (0,+, [m1,m2], {(−)}). We fix an NEC group Λ with such signature and

generators x1, x2, c, satisfying the following defining relations:

xm1
1 = xm2

2 = c2 = 1, x1x2c = cx1x2.

The following lemma is proved in [4, Proposition 4.10]

Lemma 3.10. If m1 ∕= m2 then Out(Λ) has order 2 and is generated by the class of

automorphism ®, defined by

® :

⎧
⎨
⎩

x1 7→ x−1
1

x2 7→ x1x
−1
2 x−1

1

c 7→ c

The next one is proved in [2, Theorem 3.5 and Corollary 3.3] and it is also particular case

of Lemma 5.16 in [9] for r = 2.

Lemma 3.11. (¾,N) is admissible if and only if N = lcm(m1,m2) and N is even.

Proposition 3.12. Suppose that (¾,N) is admissible, m1 ∕= m2 and k = (m1,m2). There

are exactly '(k) equivalence classes of NSK-maps Λ → ℤN . In particular, (¾,N) is rigid if

and only if k ≤ 2.
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Proof. Every NSK-map µ : Λ → ℤN is equivalent (by multiplication by an element of ℤ∗
N )

to µa defined by µa(c) =
N
2 , µa(x1) =

N
m1

and µa(x2) = a N
m2

for some a ∈ ℤ∗
m2

. We are going

to show that µa is equivalent to µa′ if and only if a = a′ (mod k).

Suppose that µa is equivalent to µa′ . Then µa = bµa′Á for some b ∈ ℤ∗
N and Á ∈ Aut(Λ).

By Lemma 3.10, for every Á ∈ Aut(Λ) either Á(xi) is conjugate to xi for i = 1, 2, or Á(xi)

is conjugate to x−1
i for i = 1, 2. It follows that µa(xi) = b′µa′(xi) for i = 1, 2, where b′ = b

or b′ = −b. We have b′ = 1 (mod m1) and b′a′ = a (mod m2), hence a′ = a (mod k).

Conversely, suppose that a′ = a (mod k). By Chinese Reminder Theorem, there exists

unique b ∈ ℤ∗
N such that b = 1 (mod m1) and b = (a′)−1a (mod m2), where (a′)−1 is the

inverse of a′ in ℤ∗
m2

. We have µa = bµa′ .

To finish the proof it suffices to note that for each d ∈ ℤ∗
k there exists a ∈ ℤ∗

m2
such

that d = a (mod k). Hence, equivalence classes of NSK-maps Λ → ℤN are in one to one

correspondence with elements of ℤ∗
k. □

Remark 3.13. If m1 = m2 = N then there exists Á ∈ Aut(Λ) which swaps the conjugacy

classes of x1 and x2. Consequently, µa and µa′ are equivalent if and only if either a = a′

or aa′ = 1. Hence, the number of equivalence classes of NSK-maps Λ → ℤN is '(N)
2 + z,

where z is the number of elements of order 2 in ℤ∗
N . Note that z depends on the number of

different prime divisors of N .

3.4. Signature (1,−, [m1,m2], {−}). In this subsection we fix Λ with such signature and

canonical generators x1, x2, d of Λ, satisfying the following defining relations:

xm1
1 = xm2

2 = 1, x1x2d
2 = 1.

Lemma 3.14. If m1 ∕= m2, then Out(Λ) is isomorphic to the Klein four-group and is

generated by classes of automorphisms ®, ¯ defined by

® :

⎧
⎨
⎩

x1 7→ x1

x2 7→ (x2d)x
−1
2 (x2d)

−1

d 7→ x2d

¯ :

⎧
⎨
⎩

x1 7→ (x2d)
−1x−1

1 (x2d)

x2 7→ x2

d 7→ (dx2)
−1

Proof. Set S = ℋ/Λ and note that S is a projective plane with 2 distinguished points

x1, x2 ∈ S. Recall from Subsection 2.2 that Out(Λ) is isomorphic to the pure mapping class

group PMod(S, {x1, x2}). By [13, Corollary 4.6] the last group is generated by 2 boundary

slides and is isomorphic to ℤ2×ℤ2. By computing the automorphisms of ¼1(S∖{x}) induced
by the generators of PMod(S, {x1, x2}) we deduce our lemma. □

The next lemma is a special case of [9, Lemma 5.8] for r = 2.

Lemma 3.15. (¾,N) is admissible if and only if N = lcm(m1,m2) and N
mi

are odd for

i = 1, 2.
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Proposition 3.16. Suppose that (¾,N) is admissible, N is odd, m1 ∕= m2 and k = (m1,m2).

There are exactly
⌈
'(k)
2

⌉
equivalence classes of NSK-maps Λ → ℤN . In particular, (¾,N)

is rigid if and only if k ∈ {1, 3}.

Proof. Every NSK-map µ : Λ → ℤN is equivalent (by multiplication by an element of ℤ∗
N )

to µa such that µa(x1) = N
m1

and µa(x2) = a N
m2

for some a ∈ ℤ∗
m2

. Since N is odd, µa(d)

is determined by the relation 2µa(d) = −(µa(x1) + µa(x2)). Similarly as in the proof of

Proposition 3.12 it can be shown that µa is equivalent to µa′ if and only if a = ±a′ (mod k)

(the only difference is that now Λ admits an automorphism, e.g. ® from Lemma 3.14,

such that ®(x1) and ®(x2) are conjugate respectively to x1 and x−1
2 ). If k > 1, then it

is impossible that a = −a (mod k) for a ∈ ℤ∗
m2

, because k is odd. Hence, there are '(k)
2

equivalence classes of NSK-maps if k > 1, and one class if k = 1. □

Proposition 3.17. Suppose that (¾,N) is admissible, N is even, m1 ∕= m2 and k =

(m1,m2). There are exactly '(k) equivalence classes of NSK-maps Λ → ℤN .

Proof. Let µ : Λ → ℤN be a NSK-map. After multiplication by an element of ℤ∗
N we may

assume that µ(x1) =
N
m1

and µ(x2) = a N
m2

for some a ∈ ℤ∗
m2

. We have 2µ(d)+µ(x1)+µ(x2) =

0, and since N is even, µ(d) is determined by µ(x1) and µ(x2) only modulo N
2 . Suppose

that µ′ : Λ → ℤN is another NSK-map, such that µ′(x1) = N
m1

and µ′(x2) = a′ N
m2

for some

a′ ∈ ℤ∗
m2

. We claim that µ and µ′ are equivalent if and only if either

(1) a = a′ (mod k) and µ′(d) = bµ(d), where b is the unique element of ℤ∗
N satisfying

b = 1 (mod m1) and ba = a′ (mod m2), or

(2) a = −a′ (mod k) and µ′(d) = b(µ(d) + µ(x1)), where b is the unique element of ℤ∗
N

satisfying b = −1 (mod m1) and ba = a′ (mod m2).

To prove the claim we note µ and µ′ are equivalent if and only if µ′ = bµÁ for some b ∈ ℤ∗
N

and Á ∈ Aut(Λ). By Lemma 3.14 we may suppose that Á ∈ {1, ®, ¯, ®¯}. If Á = 1 or

Á = ®¯, then after replacing b by −b in the latter case, we have µ′(xi) = bµ(xi) for i = 1, 2

and µ′(d) = bµ(d). Thus b satisfies b = 1 (mod m1) and ba = a′ (mod m2). By Chinese

Remainder Theorem, such (unique) b exists if and only if a = a′ (mod k). Similarly, if

Á = ¯ or Á = ®, then after replacing b by −b in the latter case, we have µ′(x1) = −bµ(x1),

µ′(x2) = bµ(x2) and µ′(d) = b(µ(d) + µ(x1)). Such (unique) b exists if and only if a = −a′

(mod k). This completes the proof of the claim.

Suppose k > 2. It follows from the previous paragraph that there is a surjection ½ from

the set of equivalence classes of NSK-maps onto ℤ∗
k/{−1, 1}, defined by ½[µ] = [a mod k],

where µ is as above, [µ] is its equivalence class, and [a mod k] is the element of ℤ∗
k/{−1, 1}

represented by (a mod k). We note that ½ is two-to-one. Indeed, take µ and µ′ as above and
suppose that they are not equivalent, but ½[µ] = ½[µ′]. Then either aaa

(1′) a = a′ (mod k) and µ′(d) = bµ(d) + N
2 , where b is as in (1) above, or

(2′) a = −a′ (mod k) and µ′(d) = b(µ(d) + µ(x1)) +
N
2 , where b is as in (2) above.
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In case (1’) µ′ is equivalent (by multiplication by b−1) to µ1 defined by µ1(x1) =
N
m1

, µ1(x2) =

a N
m2

, µ1(d) = µ(d)+ N
2 . In case (2’) µ′ is equivalent (by multiplication by −b−1) to µ2 defined

by µ2(x1) = N
m1

, µ2(x2) = −a N
m2

, µ2(d) = −µ(d) − N
m1

+ N
2 . Observe that µ1 and µ2 are

equivalent (by (2) with b = −1), hence they represent the unique class [µ1], such that

[µ1] ∕= [µ] and ½[µ1] = ½[µ]. It follows that the number of equivalence classes of NSK-maps

Λ → ℤN is 2 ∣ℤ∗
k/{−1, 1}∣ = '(k).

Suppose k = 2. By (1) every NSK map is equivalent to µ : Λ → ℤN such that µ(x1) =
N
m1

and µ(x2) = N
m2

. Fix such µ and define µ′ by µ′(xi) = µ(xi) for i = 1, 2 and µ′(d) =

µ(d) + N
2 . We have to show that µ and µ′ are equivalent. Let b be the unique element

of ℤ∗
N such that b = −1 (mod m1) and b = 1 (mod m2). By (2) it suffices to show that

µ′(d) = b(µ(d) + µ(x1)). We have

2bµ(d) = −b(µ(x1) + µ(x2)) = µ(x1)− µ(x2) = 2(µ(x1) + µ(d))

Either bµ(d) = µ(d)+µ(x1) or bµ(d) = µ(d)+µ(x1)+
N
2 . The former equality is not possible,

because µ(x1) =
N
m1

is odd (by Lemma 3.15) and µ(d)(b− 1) is even. Hence

b(µ(d) + µ(x1)) = bµ(d)− µ(x1) = µ(d) +
N

2
= µ′(d)

It follows that all NSK-maps Λ → ℤN are equivalent. □

4. Automorphisms with large periods

Let C(g,N) denote the number of topological types of actions of ℤN on a closed non-

orientable surface of genus g ≥ 3. It is proved in [2] that C(g,N) = 0 for N > 2g, and if

g is even then C(g,N) = 0 for N > 2(g − 1). In this section we compute C(g,N), for all

g ≥ 3 and N > max{g, 32(g − 2)}.

For an admissible pair (¾,N), let c(¾,N) denote the number of equivalence classes of NSK-

maps µ : Λ → ℤN , where Λ is an NEC-group with ¾(Λ) = ¾ (see Section 2 for definitions).

Then C(g,N) is the sum of all c(¾,N) such that (¾,N) is an admissible pair satisfying

N¹(¾) = g − 2.

We begin by determining the possible signatures ¾ of the form (2.2) satisfying 0 < ¹(¾) <
2
3 . By a straightforward calculation we obtain the following list.

¾0 = (0;+; [2, 2, 2], {()})
¾1 = (1;−; [2, 2, 2], {−})
¾2 = (0;+; [2,m], {()}) for m > 2

¾3 = (1;−; [2,m], {−}) for m > 2

¾4 = (0;+; [3,m], {()}) for m > 2

¾5 = (1;−; [3,m], {−}) for m > 2

¾6 = (0;+; [4,m], {()}) for 11 ≥ m ≥ 4

¾7 = (1;−; [4,m], {−}) for 11 ≥ m ≥ 4

¾8 = (0;+; [5,m], {()}) for 7 ≥ m ≥ 5

¾9 = (1;−; [5,m], {−}) for 7 ≥ m ≥ 5
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Signature ¾ Parameter m Order N Genus g

¾2 g 2g odd

¾2 2(g − 1) 2(g − 1) arbitrary

¾3 2(g − 1) 2(g − 1) even

¾4 3(g − 1)/2 3(g − 1)/2 g ≡ 1 (mod 4)

¾4 (g + 1)/2 3(g + 1)/2 g ≡ 3 or g ≡ 7 (mod 12)

¾5 3(g − 1)/2 3(g − 1)/2 g ≡ 3 (mod 4)

¾5 (g + 1)/2 3(g + 1)/2 g ≡ 1 or g ≡ 9 (mod 12)

¾6 6 12 9

¾6 7 28 19

¾6 8 8 7

¾6 9 36 25

¾6 10 20 15

¾6 11 44 31

¾8 6 30 21

¾9 7 35 25

¾10 2(g − 2) g > 4

¾11 2(g − 2) g > 4

¾12 2(g − 2) g > 4 and 4 ∣ g

Table 1. All admissible pairs (¾,N) such that N > max{g, 3(g − 2)/2}

¾10 = (0;+; [2], {(), ()})
¾11 = (1;−; [2], {()})
¾12 = (2;−; [2], {−})

In the cases where a signature ¾i depends on the parameter m, we will also denote it as

¾i(m). Now, for each of the above signatures we determine all admissible pairs (¾i, N), such

that N > g, where g = N¹(¾i) + 2.

Theorem 4.1. Let g ≥ 4 and suppose that (¾,N) is an admissible pair, such that N >

max{g, 32(g− 2)}, where g = N¹(¾i)+ 2. Then ¾, N and g are as in Table 1. Furthermore,

(¾,N) is rigid except for the following two cases

c
(
¾4(3(g − 1)/2), 3(g − 1)/2

)
= 2 for g ≡ 1 (mod 4),

c(¾6(8), 8) = 2 for g = 7.

Proof. For i ∈ {0, 1} the only admissible pair is (¾i, 2) by [2, Theorem 3.5 and Theorem

3.6], which does not satisfy N > g as N = 2 and g = 3 .
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By Lemma 3.11 a pair (¾2, N) is admissible if and only if N = lcm(2,m). Such pair is

rigid for every m by Proposition 3.12. We have ¹(¾2) =
1
2 − 1

m . If m is odd then N = 2m

and g = N¹(¾2) + 2 = m. If m is even then N = m = 2(g − 1).

By Lemma 3.15 a pair (¾3, N) is admissible if and only if N = m is even and m/2 is odd.

Every such pair is rigid by Proposition 3.17. We have N = 2(g − 1) and g is even.

By Lemma 3.11 a pair (¾4, N) is admissible if and only if N = lcm(3,m) and m is even.

We have ¹(¾2) =
2
3 − 1

m . If 3 ∣ m then N = m = 3
2(g − 1) and g ≡ 1 (mod 4). In this case

we have c(¾4, N) = '(3) = 2 by Proposition 3.12. If 3 ∤ m then N = 3m and g = 2m − 1.

We have g ≡ 3 or g ≡ 7 (mod 12). In this case (¾4, N) is rigid by Proposition 3.12.

By Lemma 3.15 a pair (¾5, N) is admissible if and only if N = lcm(3,m) and m is odd.

For m = 3 we have N = g = 3, hence we assume m > 3. Every such pair is rigid by

Proposition 3.16. If 3 ∣ m then N = m = 3
2(g − 1) and g ≡ 3 (mod 4). If 3 ∤ m then

N = 3m and g = 2m− 1. We have g ≡ 1 or g ≡ 9 (mod 12).

By Lemma 3.11 a pair (¾6, N) is admissible if and only if N = lcm(4,m). We have

¹(¾2) =
3
4 − 1

m . For m = 4 we have N = g = 4 which contradicts N > g. For m ∈ {7, 9, 11}
we have N = 4m and g = 3m − 2. For m ∈ {6, 10} we have N = 2m and g = 3

2m. For

m = 8 we have N = 8 and g = 7. By Proposition 3.12 we have c(¾6, 8) = '(4) = 2 and

c(¾6,m) = 1 for m ∕= 8.

It follows from Lemma 3.15 that (¾7, N) is admissible if and only if N = m, 4 ∣ m and m
4

is odd. This holds only for m = 4, but then N = g = 4 which contradicts N > g.

By Lemma 3.11 a pair (¾8, N) is admissible only for m = 6, N = 30 and g = 21. By

Proposition 3.12 this pair is rigid.

By Lemma 3.15 a pair (¾9, N) is admissible only for m = N = 5 and (m,N) = (7, 35).

In the former case we have g = 5 which contradicts the assumption N > g. In the letter

case we have g = 25 and the pair is rigid by Proposition 3.17.

By Lemma 3.7 for i ∈ {10, 11} a pair (¾i, N) is admissible if and only if N is even, and

such pair is rigid by Proposition 3.9. We have N = 2(g − 2). Note that N > g only for

g > 4.

By Lemma 3.2 a pair (¾12, N) is admissible if and only if 4 ∣ N and 8 ∤ N . Such pair is

rigid by Proposition 3.4. We have N = 2(g − 2) and 4 ∣ g. □

Theorem 4.2. Suppose that g ≥ 11 is odd and g /∈ {15, 19, 21, 25, 31}. If N > 3
2(g− 2) and

C(g,N) > 0 then

N ∈
{
2g, 2(g − 1), 2(g − 2),

3

2
(g + 1),

3

2
(g − 1)

}
.
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Furthermore, C(g, 2g) = C
(
g, 2(g − 1)

)
= 1, C

(
g, 2(g − 2)

)
= 2, and

C
(
g,

3

2
(g + 1)

)
=

⎧
⎨
⎩
1 for (g mod 12) ∈ {1, 3, 7, 9}
0 for (g mod 12) ∈ {5, 11}, g ∕= 11

C
(
g,

3

2
(g − 1)

)
=

⎧
⎨
⎩
2 for g ≡ 1 (mod 4)

1 for g ≡ 3 (mod 4).

Proof. The assumptions about g guarantee that the numbers 2g, 2(g− 1), 2(g− 2), 32(g+ 1)

and 3
2(g − 1) are all different (the only exception is g = 11, for which 2(g − 2) = 3

2(g + 1)),

and also that there are no admissible pairs (¾i, N) for i ∈ {6, 8, 9} with such g in Table 1.

Thus, the only possible values for N are those given in the theorem. For each of these values

we calculate C(g,N) by adding up c(¾,N) for all admissible pairs (¾,N) from Table 1.

C(g, 2g) = c(¾2(g), 2g) = 1

C(g, 2(g − 1)) = c(¾2(2(g − 1)), 2(g − 1)) = 1

C(g, 2(g − 2)) = c(¾10, 2(g − 2)) + c(¾11, 2(g − 2)) = 2

For N = 3(g + 1)/2 we have

C(g,N) = c(¾4(N/3), N) = 1 for (g mod 12) ∈ {3, 7}
C(g,N) = c(¾5(N/3), N) = 1 for (g mod 12) ∈ {1, 9}

For N = 3(g − 1)/2 we have

C(g,N) = c(¾4(N), N) = 2 for g ≡ 1 (mod 4)

C(g,N) = c(¾5(N), N) = 1 for g ≡ 3 (mod 4) □

Theorem 4.3. Suppose that g ≥ 4 is even. If N > 3
2(g − 2), N > g and C(g,N) > 0 then

either N = 2(g − 1) or N = 2(g − 2). Furthermore, C
(
g, 2(g − 1)

)
= 2 and for g > 4

C
(
g, 2(g − 2)

)
=

⎧
⎨
⎩
3 if 4 ∣ g
2 if 4 ∤ g

Proof. As in the proof of Theorem 4.2, we use Table 1 to compute C(g,N). For N = 2(g−1)

we heve

C
(
g,N

)
= c

(
¾2(N), N

)
+ c

(
¾3(N), N

)
= 2

and for N = 2(g − 2) and g > 4

C
(
g,N

)
= c

(
¾10, N

)
+ c

(
¾11, N

)
= 2 if 4 ∤ g

C
(
g,N

)
= c

(
¾10, N

)
+ c

(
¾11, N

)
+ c

(
¾12, N

)
= 3 if 4 ∣ g □

Theorem 4.4. The following is the complete list of values of C(g,N) such that N > g ≥ 3,

N > 3
2(g − 2) and C(g,N) is not as in Theorem 4.2.

C(5, 6) = 4 C(7, 12) = 2 C(7, 8) = 2 C(9, 12) = 3 C(15, 20) = 1

C(19, 28) = 1 C(21, 30) = 3 C(25, 35) = 1 C(25, 36) = 3 C(31, 44) = 1
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Proof. We consider odd genera excluded by the assumption of Theorem 4.2. For g = 3 we

have only two admissible pairs with N > g, namely (¾2(3), 6) and (¾2(4), 4). Since each of

them is rigid by Proposition 3.12, we have C(3, 4) = C(3, 6) = 1, which agrees with Theorem

4.2. For g = 5 we have 2(g−2) = 3
2(g−1) = 6 and C(5, 6) = c(¾10, 6)+c(¾11, 6)+c(¾4(6), 6) =

1 + 1 + 2 = 4. For g = 7 we have 2(g − 1) = 3
2(g + 1) = 12 and 8 < 3

2(g − 1) < 2(g − 2);

C(7, 12) = c(¾2(12), 12) + c(¾4(4), 12) = 2 and C(7, 8) = c(¾6(8), 8) = 2. For g = 9 we

have 12 = 3
2(g − 1) and C(9, 12) = c(¾4(12), 12) + c(¾6(6), 12) = 2 + 1 = 3 For g = 15 we

have 20 < 3
2(g − 1) and C(15, 20) = c(¾6(10), 20) = 1. For g = 19 we have 3

2(g − 1) <

28 < 3
2(g + 1) and C(19, 28) = c(¾6(7), 28) = 1. For g = 21 we have 30 = 3

2(g − 1) and

C(21, 30) = c(¾4(30), 30) + c(¾8(6), 30) = 2 + 1 = 3. For g = 25 we have 36 = 3
2(g − 1) and

C(25, 36) = c(¾4(36), 36)+ c(¾6(9), 36) = 3 and C(25, 35) = c(¾9(7), 35) = 1. For g = 31 we

have 44 < 3
2(g − 1) and C(31, 44) = c(¾6(11), 44) = 1, □

Corollary 4.5. Suppose that g ≥ 5 is odd and g ∕= 5 (mod 12). Let N be the maximum

odd integer such that C(g,N) > 0. Then

N =

⎧
⎨
⎩

3

2
(g + 1) for g ≡ (mod 4),

3

2
(g − 1) for g ≡ 3 (mod 4).

Furthermore, C(g,N) = 1.
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Selsk 15 (1) (1937), English transl. in Jakob Nielsen collected works, Vol. 2, 65–102.

[15] D. Singerman. Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210 (1974),

17–32.



16 GRZEGORZ GROMADZKI, BÃLAŻEJ SZEPIETOWSKI
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