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Introduction. The main purpose of the various theorems of Riemann - Roch type is to
extract the topological information contained in a holomorphic vector bundle on a complex
manifold, or, more generally, in a coherent sheafl on a complex-analytic set. A typical theorem
of this type has two main parts. First, one constructs for any coherent sheaf £, the Chern
character ch (L) with values in a suitable space of differential forms. Second, one investigates
the functorial properties of this correspondence, particularily if it commutes with the operation
of proper product of complex spaces. This last property is expressed by the standard equality

fo((Todd M) - ch (L)) = (Todd N) - ch (fiL)

where [ : M — N is a morphism of complex manifolds, Todd M is the Todd class of the
manifold M , £ is a coherent sheaf on M | f. is the operation of the direct image on differential
forms (i.e. integration along the fibre of f ), anf fi is the operation of the direct image of
coherent sheaves.

There seem to be two main approaches to theorems of this type: the purely algebro-
geometric one in the case of algebraic varieties, and the approach via differential operators,
in the case of vector bundles on regular manifolds.

The purpose of this work is to explain an alternative approach, wich has its roots in operator
theory. In contrast to the theorems obtained by the use of differential operators, our method
works for coherent sheaves over any complex space, in particular a singular complex space.

The usual method of working with coherent sheaves — projective resolutions — has some
obvious disadvantages. First, such a resolution exists, in general, only in the algebraic category.
Next, it is difficult to take a canonical choice of a projective resolution. The construction of
the Chern character by the use of such a resolution is also very complicated; this is illustrated

e.g. by the work [A-LJ].

The main idea of our approach is to construct for any coherent sheaf its canonical globally
defined infinite-dimensional free resolution. This simplifies drastically the situation.

By infinite-dimensional free resolution we mean the following: a complex, consisting of
Frechet spaces X; , and differentials o;(z) : X; — X4, , depending holomorphically on the



variables z, such that the corresponding complex O+ of sheaves of germs of its holomorphic
sections is quasiisomorphic to the given coherent sheaf £. (Such a complex is necessarily
pointwise Fredholm, i.e. has at most finite-dimensional homology.)

The construction of the infinite-dimensional free resolution uses the Cech complex corre-
sponding to given coherent sheaf, and has its origins in the theory of Toeplitz operators. The
final result of the construction, however, does not involve operator-theoretic notions and can
be briefly formulated in the following way:

Main tool. There ezists an ezact functor, attaching to any coherent sheaf its infinite-
dimensional free resolution.

The functoriality of the resolution is a crucial property; it enables us to extend the Riemann-
Roch theorems obtained via this resolution to the case of the higher K-functors.

The main point in the theorems of Riemann-Roch type is the commutation of the Chern
character with the operation of the direct image under proper morphisms of complex spaces.
For this, we construct a topological homotopy of complexes between the resolution of the given
coherent sheaf and the resolution of its direct image. This topological homotopy is functorial
in the sheaf.

The infinite-dimensional free resolution constructed in this way immediately defines a Rie-
mann - Roch functor with values in the topological K-theory.

Furthermore, this resolution is crucial for our construction of the Chern character of a
coherent sheaf with values in a suitable space of differential forms. For this, one developes
in the infinite-dimensional context, namely for parametrized Fredholm complexes of Frechet
spaces, the analogues of the main ingredients of the theory of characteristic classes for vector
bundles, such as the trace, connection, and curvature. The construction of the corresponding
objects is again, in some sense, functorial, and compatible with the homotopy of the direct
image. It allows us to obtain analogues in the singular case and for higher K-functors of some
theorems known in the regular case, in particular of the Hermitian Riemann-Roch Theorem of

Bismut-Kéhler [B-K].

The content of the paper is as follows: in the first section we give a brief account of the
construction of the infinite-dimensional free resolution, given in [L1].

The second section contains the definitions of the trace and the Chern character of a holo-
morphic Fredholm complex of Frechet spaces. This enables us to construct the Chern character
of a coherent sheaf with values in the Hodge cohomology, and its extension to higher K-functors.

The present construction of the Chern character has some flexibility due to the fact that
it includes an arbitrary choice of a so-called essential homotopy of the complex. A choice of
an essential homotopy gives us an explicit differential form representing this Chern character.
In section 3 we associate to any scalar product a particular essential homotopy for which
our construction yields a singular analogue of the Hermitian Riemann-Roch theorem, proved
in the regular case by Bismut and Kohler [B-K]. As in the preceeding section, the results
include: the construction of Hermitian Riemann-Roch morphisms for higher K-functors, and
the independence of the Chern characters constructed in this way from the choice of the scalar
product.



Finally, in section 4 we consider the case of a linear bundle. We show that for a particular
essential homotopy our construction yields a Chern character with values hoth in the symmetric
differential forms and in the Chow ring. These Chern characters are the main ingredients
in the Aritmetic Riemann-Roch theorem conjectured by Bismut-Gillet-Soulé [S]. The present
approach should give further, more general results in this direction. The purpose of the paper

i1s to announce the results, and to outline the main ideas of their proofs with some details.
There are several gaps which are still to be filled, especially in the construction of the higher
Hermitian Chern characters in section 3.
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working conditions. The author would like to thank Dr. K. Kohler for his useful explanations
concerning aritmetic geometry, and Dr. M. Schroder for his help in preparing this work.

1. Construction of the resolution. The classical Riemann - Roch - Hirzebruch theorem
counts the Euler characteristics of the d-complex (5, Q% (M, E)) on the manifold M and vector
bundle £. In the case when M is singular complex space, and instead of vector bundle £ we
take a coherent sheaf £ on M, the J-complex is no more defined, but one can replace it by the
Cech complex (§,C* (M,U, L)) , consisting on the alternating cochains of the Stein covering U
of M with coeflicients in L.

1.1. Euristic remarks. In the Atiyah - Singer proof of the Riemann - Roch - Hirzebruch
theorem, the relevant operator-theoretic object (so-called Fredholm module), is given not only
by the complex (5, 0o (M, E')) , but also by representation of the algebra Co(M) of continuous
functions on M with finite support, at any stage of this complex. The latter is defined simply
by the operators M, of the multiplication by the continuous function f.

One could try to find a similar Fredholm module connected with the Cech complex. To
construct the corresponding representations, one could look (in the case of regular M) to
the standard bicomplex, connecting the & and § - complexes. This suggests the following
construction: one should take the complex (8, Cp (M,U, L)) , composed of the Hilbert spaces
['(2)(Ua, £) of square-integrable sections of £. The representation of Co(M) should be given
by the collection of Toeplitz operators Ty , f € Co(M) , acting in I'5)(Us L) by the formula
T; = Po M; , where P is the orthogonal projection from L*(U,, L) to I'iz)(Ua, L).

This construction would be sufficient for the proof of Riemann - Roch type theorem, provided
that the algebras of Toeplitz operators in all the spaces ['(2)(Ua, £) commute modulo compact
operators. However, this question is very difficult to be answered even in the regular case.
Fortunatelly, the use of Toeplitz operators can be avoided at all.

To explain the idea, consider the Euclidean space C" , a pseudoconvex domain U/ C C"
and a coherent sheaf £ on U. Let ['5)(U, £) be, as above, the space of square-integrable sections
of £ on U (under some Riemamian metrics), and denote by (1},...,T,) the operators of the
multiplication by the coordinate functions of C* , acting in the space [')(U, £).



Definition 1.1.1. The main role in what follows will play the parametrized Koszul complex
of the operators (74, ...,Ty) , i.e. the Koszul complex' of the operators (T) — z211,..., T, — z,1)
, considered as a complex holomorphically depending on the parameter 2 = (2),...,2,) €
C". We shall denote this complex by K (U,L£)(z) , and let K, (U, £)(z) be the analogous
complex constructed for the operators above acting in the nuclear Frechet space ['(U, L) of all
holomorphic sections of £ over U/. The next assertions, which can be proved on a standard
way (see [L2]), show the connection between the Koszul complex given above, the algebra of
Toeplitz operators, and the sheaf L:

Proposition 1.1.2. The complezes K! (U, L) (2) and K, (U,£)(z) are Fredholm for z €
C™"\F , where F := bU Nsupp(L). The complezes OK* (U,L) (2) , resp. OK,(U,L)(z) , of
sheaves of germs of holomorphic sections of these complezes are quasiisomorphic by a natural
quastisomorphism (we will call it evaluation map) to the sheaf Ly ;

OF 5 Ly =0

Proposition 1.1.3. Suppose that the Toeplitz operators on I'()(U, L) commute modulo
compact operators. Then the class of K} (U,L) (z) in the group K®(C™"\F')} coincides with the
Alezander dual to the element of K\(F) , determined by the algebra of Toeplitz operators.

Remark 1.1.4. Combining the propositions above, one obtains a very short proof of (a
generalization of) the Boutet de Monvel’s index theorem for Toeplitz operators (and therefore,
of the Atiyah - Singer index theorem). Indeed, prop. 1.1.2 proves that the complex K} (U, £) (z)
carries the index class for the algebra of Toeplitz operators, and prop. 1.1.3 shows that this
class can be calculated by an arbitrary locally free resolution of £. In particular, if £ is a
holomorphic vector bundle on the strongly pseudoconvex domain ¥ on the complex manifold
M , then, taking an embeddinge: M — C" , a domain U C C" such that UNe(M) =V , and
L :=e.(F) , one obtains the usual Boutet de Monvel’s index formula.

1.2. Main construction. (see [L.1]). Now, one can "replace” the Toeplitz operators
with the corresponding Koszul complexes. One can use now the spaces I'(U,, L) instead of
[(2)(Uq, £}, and there is no need of the use of hard analytic technics. The construction proceeds
as follows:

Let M be a complex space, regularily embedded? in the complex manifold M. Take a
covering U = {U;},, of M by contractible pseudoconvex domains. Suppose that each domain
Uy :=U;, N...NUi, , where o = {11,...,11} C I, has a fixed coordinate system, and therefore
a fixed parametrized Koszul complex K (U,, L) (z) , defined as in 1.1.1. For any o C / , one
can transfer the complex K*(U,,L)(z) onto U,. It can be extended on the whole M as a
smooth complex, exact outside of U, ; we will denote it by the same symbol. Put

IThe Koszul complex of n commuting endomorphisms of a linear space can be defined as the total complex
of the n-cube diagramm formed by these endomorphisms.

*The assumption of the embeddability into a complex manifold is not necessary. It is shown in [L1] that
each complex space possess an embedding in an almost complex manifold, and such an embedding is sufficiently
good for the construction which follows.



Xeplz) = @ K* (Uay £) (2)

lo|=p

Then this complex is an infinite-dimensional free resolution on M of the sheaf C? (U, L) (i.e.
the complex of sheaves of its holomorphic sections is quasiisomorphic to the latter sheaf). The
family of complexes X, ,(z) does not form a bicomplex. Neverthless, one can define for them
some substitute of the total complex of a bicomplex.Indeed, a simple algebraic reasoning shows
that there exist ”correcting” maps

Tepm(2) + Xop(2) = Xoonpyns1(2)

such that the total complex, assembled by all X, ,(z) , with differentials determined by the
differentials of these complexes and by the correcting maps r¢,.(z) , is indeed a complex (i.e.
the product of two consecutive differentials is zero) and is quasiisomorphic via the evaluation
map to the complex of sheaves C* (U, L). The only non-zero entries of the correcting maps
are acting from I'(U,, L) to ['(Ug, L) for a C G; they are depending holomorphically on the
parameter near U, , and are smooth far from it. Moreover, these maps depend only on the
covering U and the choosen coordinate systems on its elements. One easily can see that any
two sets of correcting maps are linearily homotopic.

In [L1] the complex,constructed above, is denoted by KC, (M,U, L) (z). Here, for the sake
of brevity, we will denote it by X£(2) , or by X¥%(z) , or by XM#£(2). Let us note some of
its properties:

Proposition 1.2.1. The complex X*(z) satisfies the following statements:

1/ XE(2) is a smooth complez of nuclear Frechet spaces. Locally it splits to a direct sum
of a holomorphic complex and smooth exact complex. The sheaf of holomorphic sections of the
former being quasiisomorphic to the sheaf L. Roughly speaking, there exists a quasiisomorphic
epimorphism of complexes of sheaves on M :

0% 5 Co(U,L) = 0

2/ XE(z) is an ezact functor of the sheaf L ; to any morphism of coherent sheaves © : L —
M there corresponds a canonical constant morphism of complezes® X : X5(z) = XM(z) (In
particular, this shows that the construction above immedialely extends to perfect complezes of
Frechet sheaves).

3/ Let us adopt the convention: when speaking on the covering U , we will assume that its
definition includes also the choosen coordinale systems on its elements, as well as the correcting
maps v4p(2). So, we will write Uy C U, , if Uy contains all the elements of U, , and coordinate
systems and correcting maps for these elements in Uy are the same as in U,.

Then, if Uy C U, , then there ezists a canonical constant quasiisomorphic monomorphism
of complezes X{(z) = XiL(z).

3By morphism of complexes, we mean any homomorphism, preserving the grading and commuting with the
differentials.



4/ For any vector bundle E on M, the complez E ® X£(2) is naturally (with respect to £ )
quasiisomorphic to the complex XE®%(z). '

1.3. Behavior under proper maps. Let U € C* , V C C™ be Stein domains with
coordinate functions z;,...,2, , resp. wy,...,Wwy, , and £ be a coherent sheaf on U x V. Let
f be the projection of / x V on U. Let T,...,T, , resp. 51,...,5n. be the operators of
multiplication by the coordinate functions in ['(U x V, £).

Denote by K! (U x V,L)(z,w) , t € C, the Koszul complex in C**™ of the operators
Ty—= 0, ., Th—2,0 , 1.5 —w1,...,t.5, — W , acting in the space [(U x V, L). Fort =1 we
obtain the complex K, (U x V, L) (z,w) and for ¢ = 0 - the complex 1/, (U, f.L) (w) , where
¢ is the coordinate embedding of C* in C**™ | and 4, is the corresponding Koszul - Thom
complex; the complexes K. (U x V, L) (z,w) form a continuous family of complexes, joining it,
and therefore realize a (topological) homotopy between it.

So the good functorial properties of the Koszul complexes permit us to construct the cor-
responding homotopy globally. Take a proper morphism f: M — N of complex spaces, and
regular embeddings opr : M = M , oy : N — N. Then (ops foon) : M — M x Nis again a
regular embedding, and the projectiom M x N — N agrees with the map f. Take coverings U
, resp. V ;| of M , TEsp. N, in the above sense, i.e. together with the coordinate systems and
the correcting maps. Then L{ x V determines a covering of M x N.

Take a smooth embedding 7 : M — R*N = CV such that the normal bundle to i (1\/[) has a

complex structure. Denote by X. *V:£(2,w) the Koszul - Thom transformation of the complex
XUxViL(z w) inder the embedding ¢ x I; using the trivialisations of the normal bundle, it can

be represented as a smooth complex of Frechet spaces on CY x N | ?infinitesimally holomorphic”
near the subset 2 (M) x N.

Now, including the parameter ¢ € C , we obtain a complex on CV x N x C , which will be
denoted by X/**(z,w,1).
This complex is supported on the subspace t.: (1'17{) x N of CV x N; its restriction for ¢ = 1

coincides with X¥*V:£(z, w) given above, and its restriction to ¢ = 0 is equal to the [{oszul -

Thom transformation of the complex X ¥'V/1¢(14) under the embedding N ~» N x{0} NxCV.
Roughly speaking, so-defined complex determines a canonical topological homotopy between
(some Koszul-Thom transformations of ) the complexes f.XM*(z) and XN /£(z).

The homotopy X **(z,w,t) has properties similar to these of X*(z):

Proposition 1.3.1. X/'“(z,w,t) has the following properties:

1’/ The complex of sheaves of sheaves of germs of holomorphic sections of X{*(z,w,1)
is quasi-isomorphic to the direct image of the sheaf L under the mapping z € M ~» (f(z),t-
i(2),t) € NxCNxC (its specialisation ont = 1 andt = 0 coincides with £ and fi.L respectively).

2/,3/,4/ are the same as in 1.2.1,
1.4. Technical problems. Let us note two types of technical difficulties, appearing in the
process of work with the complex constructed above:

1/ The spaces X, , forming the complex X%(z) , are not Hilbert. They are nuclear Frechet
spaces. However, scaling the domains of the covering 4 , one can include these spaces in



a nuclear scale of nuclear Frechet spaces. More precisely, we obtain a scale X7(z) with a
real parameter T , such that for 7 < 7’ the morphism of complexes X7¢(z) = X7"%(z) is a
quasiisomorphism, and the operators X7*¢ — X7 are nuclear embeddings of Frechet spaces.
Some functional-analytic technics (see [L1], part 1) show that one can operate with such a scale
of complexes in the same way as with complexes of Hilbert spaces.

2/ The complex X£(z) is not analytic; roughly, it divides into an analytic part and exact
smooth part. If we denote the differentials of this complex by a.(z) , then this means that the
morphisms of complexes da,(z) , d0a,(z) , ... are canonically homotopic to zero. This will be
essential in the rest of the paper, and will allow us to neglect the "non-analytic” part.

In the algebraic case, i.e. when M is a quasiprojective variety, and the covering is affine,
the constructions above can be performed without ”smooth part”; however, the spaces involved
become more complicated from the functional - analytic point ol view.

To fix the ideas, we, perhaps oversimplifying, will speak of the complex X%(z) as of a
holomorphic complex of Hilbert spaces.

1.5. Riemann - Roch theorem in the sense of Baum - Fulton - Macpherson.
The work [B-F-M 2] gives a construction in the algebraic category (i.e. under the assumption
that any coherent sheaf on M has a projective resolution on the ambient projective space) of
a natural transformation of functors aps : K&9(M) — KEP(M) from the Grothendieck group
Kgfg(IW) of the category of all coherent sheaves on the complex space M, to the corresponding
topological K-group K¢P(M) := K° (M‘, 1\71'\114) , commuting with the proper maps of complex
spaces.

Our construction proves this theorem in the complex-analytic case. Indeed, the complex
XE(2) considered as a continious Fredholm complex of Frechet spaces, determines an element
ap ([£]) of the topological K-group K° (ﬁ:!, M\Mr) , and the topological homotopy X{*“(z,w,1)
constructed above proves the equality fiap([L]) = apm([/i£]). Moreover, since the construc-
tions are functorial with respect to £ , then, applying it on the classifying space of the category
of coherent sheaves (in the sense of Quillen or Waldhausen), one obtains:

Proposition 1.5.1. On the category of coherent sheaves on complex sets there exist Rie-
mann - Roch transformations on higher K-functors :

oyt KE9(M) = KIP(M)
commuting with the proper direct images.

Similar, but more complicated, construction, gives a proof in the analytic category of the
Riemann-Roch theorem for higher bivariant K-functors in the sense of Fulton - Macpherson.

Composing the homomorphism o, above with the topological Chern character, one obtains
a Riemann - Roch theorem with values in de Rham homology. In the rest of the paper we show
that one can retrieve from the construction above some more precise Riemann - Roch theorems.

2. Riemann - Roch theorem in Hodge cohomology. We propose here a construction
of the Riemann - Roch theorem for coherent sheaves on the complex space M with values in



the Hodge cohomology @ H}; g}ﬂjf, ro gﬂt:f)). A theorem of this type in the analytic category
was proved first by mainly combinatorial methods in series of papers by O’Brian -Toledo-Tong
in the 80-s. Our approach, which can be applied for higher K-functors also, yields more exact
theorems of the Riemann - Roch type.

In the paper [A-LJ] , Angeniol and Lejeune-Jalabert show that the characteristic classes of
the coherent sheaves can be expressed by the derivatives of the differentials of its locally free
resolutions.

The construction in the above paper (involving the Illusie’s trace for the endomorphism of
a perfect complex) can be made explicite only in some particular cases. The definition of the
derivatives of differentials of a complex need coordinate frames, which exist only locally, and
the operators of change of the basis make the formulas very complicate.

The situation seems to be different when using the infinite-dimensional free resolution con-
structed above. In the present section we will define, in the spirit of [A-LJ], the Chern character
of a coherent sheaf £ by the use of the parametrized complex of Frechet spaces X5(z). As we
noted, for the sake of simplicity we will consider X£(z) as a holomorphic complex of Hilbert
spaces.

2.1. Trace of a closed endomorphism of holomorphic Fredholm complex. Let
X,(2) = {X;,@i(2)} be a holomorphically depending on the parameter z € M pointwise Fred-
holm complex of Hilbert spaces, defined on the complex manifold M. Denote by Hom,, (X,, X,)
the space of all endomorphisms of X,(z) ol order p ,i.e. of all sets of (bounded and linear) op-
erators Fy = {F;: X; = Xiy,},.7z. The standard differential of this complex is defined as the
commutator |-, a,(z)] with the differential a,(2) of the initial complex. The vector-function
F,(z) with values in the space of the p-endomorphisms Hom, (X,, X,) will be called closed, if
it is annihilated by this differential, i.e. if [Fo(2), as(2)] = 0.

Denote by Hom{ (X,, X,) the subcomplex of Hom, (X,, X,) , consisting on the operators
with a finite-dimensional image. The assumption that X,(z) is Fredholm implies

Lemma 2.1.1. The embedding Hom;f (X, Xo) 2 Hom, (X,, X,) is a quasiisomorphism.

This quasiisomorphism can be noncanonically inverted. We will call the given set of op-
erators S,(z) = {Si(2): X; = X;_1} an essential homolopy for the complex X, (z) , i all the
operators [S(z),a(z)] — [ are finite - dimensional, and an ezact homotopy, if all [S(z2),a(2)] =1
are zero operators (the latter may happen only if X,(2) is an exact complex).

Now, if F(z) is closed, and S,(2) is an essential homotopy, then the homomorphism F(z) —
[S(z) o F(2),a(z)] is finite-dimensional and homological to F{(z); so, any essential homotopy
defines a map from Hom, (X., X,) to Hom{ (X,, X,).

Denote by Q%2 Hom, (X,, X,) the sheaf of germs of differential forms on M of degree (0, p)
with smooth sections of Hom, (X,, X,) as a coefficients. These sheaves form a bicomplex
Q%* Hom, (X,, X,) with first and second differentials  and [, a(z)] respectively. Since a(z) is
supposed holomorphic, these differentials commute. Denote the total complex of this bicomplex
by QHom, (X,,X,). Then the lemma above implies that the embedding Q Hom! (X,, X,) —
QHom, (X,, X,) is a quasiisomorphism also.

In this case, as well as above, the choice of essential homotopy S,(z) for the complex X,(z)
enables us to find for any closed section F,(z) of QHom, (X,., X.) a closed section f(z) of



QHom{ (X,, X,) homological to F,(z). The procedure of finding f from F is the well-known
diagram-chase, or zig-zag, on the stages of the bicomplex Q% Hom, (X,, X.).

As usual, for any element f = {f;: X; — X!'}iez € Homé (Xo, X,) of order zero one defines
the trace (or supertrace) of f by the formula ¢r (f) := S(=1)tr (f;). It is easy to see that if f
is of the form f = [G,«(z)] , then tr f = 0. So one can formulate

Definition 2.1.2. Let f(z) be any section of QHom{ (X,, X.) , and f,0(z) be its component
in Q°?Hom} (X.,X.) . Then one defines tr f(z) € Q07 (11;1) as the (0,p) - differential form
ir fp_o(z).

Lemma 2.1.8. The trace defined above is a morphism of the complez of sheaves
QHom{! (X,, X,) into the Dolbeauz complex of sheaves Q°* M).

Definition 2.1.4. Let F(z) be a closed endomorphism of X,(z) of order p, depending
holomorphically on z. Then it determines a closed section of the complex QHom, (X,, X,)
also. Let f(z) be any section of QHom{ (X,, X,) , homological to F(z). Then one defines the

trace tr F(z) of F(z) as the class of tr f(z) in the Dolbeaux cohomology group H°? (M,OM).

Remark 2.1.5. [n the definition above only the d-cohomological class of the form ¢r F(z)
is determined. However, if we fix the essential homotopy S,(z) for the complex X,(z), then
we obtain a concrete choice for f(z) , and therefore a concrete differential form representing
this class. To emphasize the dependence on S,(z) , we will denote it by trsF(z) (note that
this form depends linearily on F,(z) ). The diagram chase procedure of finding f from F can
be described as follows: the element F(z) is of bidegree (0, p) ; multiplying by S , and then
applying @ , we obtain an element of bidegree (1,p — 1) , and so on, until we reach the degree
(p,0) , where we find the element f,o(z) involved in the definition of the trace.

Let us note also that if S.(z) is an exact homotopy, then trsf(z) is zero.

2.2. Trace with values in local cohomology. Suppose that the set of the points z ,
such that X,(z) is not exact, is contained in the complex set M C M. Then one can define

a modification of the trace above with values in the local cohomology Hyy (1\71, OJ‘T]). Indeed,
any element of Hyf (M,OM) can be represented by a pair (w,@) , where w € Q°P (1171) ,
o € Qr-! (A:I\M) , 0w =10, 00 = w . Alternative representation: imposing some growth
conditions on @ near M , one can extend @ as a current on the whole M and then consider

the form w — 8 ; this is a differential form of the type (0,p) with currents as coefficients,
concentrated on M (we will denote the space of all such forms by Q37 (ﬂjf)) , which represents

the same element of M3y (1\7{, OM).

Now, take f(z) as above, and let f(z) be a section of the complex QHom (X,, X,) on M\M
, such that the image of f(z) under the differential of this complex is equal to f(z). Then one
can take w = tr fo0(2) , and @ = tr f,_1o(2). The pair (w,&) represents tr F(z).

To take a concrete representative for the local trace, one must choose an essential homotopy
S,(z) for X5(z) on M , and an exact homotopy S,(z) on M\M |, such that S,(z) — S,(z) is
finite-dimensional.



2.3. Traces of a higher order. We will need

Lemma 2.3.1. Suppose that for any non-empty subset I = (1p,...,7;) C {0,...,n} one
has a fized essential homotopy Si(2) of the complex X (z). Let F(z) be a closed holomorphic
endomorphism of X,(z) of order p , p > n. Then there exist differential forms wy € Q%% (1171)
, such that:

1/ for any i € {0,...,n} one has wyy = trs, F(2)

2/ and for any I = (11,...,%) C {1,...,n} one has:

k
Owr = Y (—1Ywy ., wherel; :=1\{i;}
i=1

Proof. Denote by C, = {C,,,Ap(z)}p (or, when necessary, by C%) the cone of the em-
bedding QHom! (Xe, Xo) = QHom, (X,, X,). Then C, is an exact complex of sheaves, and
any essential homotopy S of X,(z) defines an uniquely determined exact homotopy of C, ; we
will denote it again by S(-). We will define the trace on C, as a superposition of the canoni-
cal epimorphism C, = QHom{ (X,, X,) with the trace QHom{ (X,, X,) = Q°° (1\7!) defined
above.

Now let F,(z) be a closed holomorphic endomorphism of X,(2) of degree p. Then F,(z)
defines a closed (i.e. annihilated by the differential A,(z)) section of C,. Denote Fi(z) :=
S (F). We have A,_1(2)Fi(z) = Fu(z). For any i < j the element G} := F} — F] is closed,
and one defines Fi7 := S;;(G%7) ; then A,_o(2)F¥ = G, Again, for any triple i < j < k the
section GL9F := Fik — Fii _ Ok is closed, and its image by Si;x is denoted by F!¥*. Using
an induction on |/|, one can construct for any [ with |/| = k a section F!(z) of C,_; such that

k
Apeil2)FI(z) = 30 (~1Y Fi(2)
=1
Then the differential forms w; := tr F/(2) will satisfy the requirements of the proposition.

Second proof. One can give an alternative, rather geometric, proof of the above propo-
sitton. Take a slightly different version of it; let Sp(z),...,S.(2) be essential homotopy for
the holomorphic Fredholm complex X,(z) on M. Let o be an n-dimensional simplex, and
ty,...,ty be linear coordinates on o. Consider the complex X,(z) as a complex defined on
o x M with differentials not depending on ¢. Then one can take an analog of the bicomplex
Q% Hom, (X., X,) , replacing the second differential 3, with 9, — d; (obviously it will commute
with the first differential [, as(z)]).

Since all the essential homotopy of a given Fredholm complex form an affine set, one can
define a family of homotopy S.(z,¢) , ¢ € o , such that its values on the vertexes of o will
coincide with the given homotopy So(2),...,S:(z).

Calculating tr F(z) in the bicomplex Q% Hom, (X,, X,) defined on ¢ x M , by the use of
homotopy S.(z,%) , one obtains a differential form w(z,¢) which can be decomposed as

n

w(z,t) = Y wiz,1)

1=0
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where w;(z,t) is its homogenious part of degree ¢ with rapport to d¢. Since w 1s (_52 — dg) -
closed, then we have dyw; = 9,wiy,. For any set [ = (i0,.-.,1k) C {0,...,n} denote by o; the
corresponding subsimplex of ¢. One can define the forms wy , involving only z-differentials, by
the equality wil,, = wr Adti; A ... A dt,; then, applying Stokes formula to the equality above
for i = n— 1, and making the obvious computations, we obtain 9, w, = ¥ (—1)'wy;s , where b;
is the i-th face map.

The construction above can be applied to any simplicial complex with fixed essential homo-
topy at any vertex; taking the baricentric subdivision of a simplex, we obtain the lemma.

Remark 2.3.2. If in the second proof one chooses S4(z,%) to be a linear function of ¢ |
then one will obtain the same forms w; as in the first proof. However, in the section 3 we will
need some different choice of S,(z,t) , corresponding to the variation of the scalar product.

2.4. Chern character of a Fredholm complex. Take an analytic pointwise Fredholm
complex X,(z) = {X;, ei(z)} as above, and put (da(z))” = da(z) o... o da(z) - a product of p
factors. Then, differentiating the equality a(z) o a(z) = 0, one obtains that (de(z))* commutes
(in the graded sense) with the differential a(z) and therefore is a closed holomorphic section
of the complex QHom, (X.,X. ® Oro (M)) The tensor factor Q7P (M) does not change
seriously the situation described above;at least, one can take locally a p-tuple of holomorphic
vector fields [, ..., and consider dy,cv0 ... 0 dj, as a section of QHom, (X.,X,). Taking

account of the lincarity of the trace, one obtain #r (da(z))” as an element of H? (J'l;[, Qe (A;[))

Definition 2.4.1. One defines the p-th Newton class of the complex X,(z) by the formula
VP (X,) = tr (da(z))® € HP (ﬂTI,Q”'O (ﬂjf)) Using the local construction, it can be taken in
HY, (M’, Qro (1\7[)). The Chern character of X,(z) with values in Hodge cohomology is defined
by

ch(X) = lt?‘ (de(2))?

250 p!
(If the homotopy S is fixed, we will write it as chg (X,).)

This construction can be interpreted in the terms of theory of superconnections, developed
by Quillen; indeed, if one consider the superconnection D := d + «(z) , then its curvature is
D? = da(z), and the construction above fits in the standard scheme.

One can represent the same differential form as the "essential part” of the Chern character
of an usual connection. Fix the essential homotopy S , and consider the connection D, =
d—S5(z)oda(z). Let us denote by (w), .y the component of the differential form w lying in the
space (P9,

Lemma 2.4.2. Under the notations above for any natural n one has

n : d n if ==
(s (01), = 6 DT

The things can be made more explicit for a good choice of the homotopy 5. Take a decom-
position X(z) = E,(z) @ L.(z) as a sum of finite-dimensional subcomplex F,(z) and exact
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subcomplex L,(z) , smootly depending on z € M. Then for any i the vector bundle F i(z) can
be considered as a finite-dimensional subbundle of the trivial infinite-dimensional bundle with
fiber X;. One can define an essential homotopy S,(z) ; = 0 and S|z is an exact
homotopy for L.(z). Then [S,a] = 7 — P, where P = P,(z) is the projection from X, to E,
parallel to L,. Define the connection [); on the bundle F;(z) by the formula D;§ := Pi(z)odé(z)
, where £(z) is a section of E;(z).

Lemma 2.4.3. Under the choice of the homolopy S given above for any natural n one has

; n trs (de)* i p=qg=n
(Zever (o) =g gz
! (p.a)

2.5. Chern character of a coherent sheaf. The definition above, applied to the
resolution X&(z) , gives the Chern character ch(L) of a coherent sheaf £ on M. Namely,
denote

ra(L) = ch (XE(z)) . ch(L) = (Todd §1) - 14(C)

The next assertion shows that ch(L) does not depend on the choice of the embedding
o:M—= M.

Lemma 2.5.1. If M — N is a smooth embedding of complez manifolds with a normal
bundle E, then

%(L) = (Todd E) - 7y (L)

Indeed, if one take the coordinate system on N such that the intersection of M with any
chart on N is a coordinate subspace of this chart, then the complex XV#£(z) will coincide
with the Koszul - Thom transform of the complex /\f‘”’ £(2) with respect to the normal bundle

E.

Remark 2.5.2. The assertion of the lemma is still valid if N is smooth (non-complex)
manifold and the normal bundle E possess a complex structure. This fact is important in the
proof of the covariance of the Chern character under proper maps.

The construction of the Chern character can be extended to the higher K-groups. We will
describe this first in the simplest case corresponding to the Chern character for the functor
K. Take an exact sequence of sheaves € : 0 = £, — £ — L£" — 0, and the corresponding
exact sequence of complexes 0 - X5'(z) = X5(z) = XE'(z) = 0. Suppose we have fixed
the homotopy S’ , S, S” for each of these complexes. Lifting $” (which does not change the
traces), one can consider S’ @ S” as a homotopy for X(z). Then, for the construction above,
one finds an element ch(£) € @ NPP-! ( 'I) such that

Jch(€) = chs(L) — chs,@su(ﬁ) = chs(L) — chs:(L') — chsn(L")

In the general case, denote by coh M the category of all coherent sheaves on M, and recall
that by the Waldhausen definition (see [W]) the higher K-group K2*(M) can be defined as k+1
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-th homotopy group of the classifying space of the simplicial category * which we will denote by
W.coh M. The k- simplexes in this category are given by the filtered objects o : £; C ... C L.
We will write £, := L.

To construct the higher Chern characters ch(o) , or rather 7(o) , one can use an induction
on k as in lemma 2.3.1. Suppose that for any such a k-simplex ¢ we have fixed an essential
homotopy S, for the complex X&e(z).

Next, if oy C o, , then L,, is a factor-sheaf of a subsheafl of £,,. Then we will fix an
embedding o o o0 including extension by zero (on the stage of subsheaf) and lifting (on
the stage of factor-sheaf). It is important to note that the lifting does not change the trace of
the finite-dimensional component.

Fix the natural p ; then for any coherent sheaf £ one has an closed endomorphism FF5(z) :=
(das(2))" of the complex X5(z). The property 2 in 1.2.1 shows that for any morphism of
sheaves ¢ : L — M there is an equality

FE(z) o) = @Y o FM(2)

Therefore, the pair (Xf(z), F,‘:(z)) determines an exact functor from the category of co-
herent sheaves to the category of Fredholm complexes endowed with a closed holomorphic
endomorphism of degree p.

Suppose that we are in the situation described above, i.e. that for any coherent sheaf £ one
has an functoriarily depending on £ closed endomorphism FZ(z) of the complex X£(z). Using
the inductive construction of lemma 2.3.1, we obtain

Proposition 2.5.3. One can attach to any k-simplex o a section F7(z) of CPC_“L_ such that:
1/ if o ={L}, then F?(z) coincides with the endomorphism FE<(z) fized above, and
2/ for any k-simplez o one has

v
Apsy (FU(2)) = 3 (=1) FJ9(2)

=0
where for 1 =0 and 1 = k in the right hand side one takes the liftings, described above.

Taking the trace morphism tr : Cfe — Q°¢ (1’171) , one can define tr,(F) := tr (F,(2)) €
QpP=k+l and, finally

(o) = > -1—'tra ((da)?y , ch(o) = (Zl!joafdfﬁ’)_1 -Ty{o)

2k P
Summarizing, we obtain

Proposition 2.5.4. There exists a« mapping ¢ ~ ch(o) attaching lo any k-simplez o €
Wicoh M a differential form ch(c) € @ QPr-kt+! (M) such that for any ¢ one has:

p2k—1

k
Dch(o) = Y (=1) ch(bi(o))

=0

4Usually denoted by S.coh M.
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where bi(o) denotes the i-th face map for o.

The mapping, stated in the proposition, defines the higher Riemann - Roch functors:

chi: Kp(M) — @ HP™* (M,07° (M)
p2k
Indeed, the mapping o ~ ch(c) above can be extended by linearity to a mapping m ~» ch(r)
defined for any simplicial complex # C W.coh M and satislying

Jch(m) = ch(br)

with b denoting the simplicial boundary of m. Taking 7 to run over the generators of the k+1
- th homotopy group of W.coh M | one obtains the group homomorphism chy.

It is easy to describe how the Chern character, defined above, depends on the choice of the
homotopy S,:

Proposition 2.5.5. Suppose one has fized two different choosing maps o~ S, , o~ 57
, and let ch'(c) , ch”(o) be the corresponding Chern characters. Then there exists a map
o~ R(o) , Wycoh M — @ Qrr~* (M) such that for any k-simplex o one has

p2k

OR(0) = ch'(o) = ch"(a) — 3 (~1)' R(bi(o))

The proof uses the lemma 2.3.1 in the same way as in the construction of ch(o) above.
Indeed, consider the simplicial space W.coh M x [0,1] with chosen homotopy S/ for ¢ C
W.coh M x {0} and SV for ¢ C W.coh M x {1} , and extend this choice up to a choice of
homotopy for any simplex of the whole simplicial space W.coh M x [0,1]. Now, if we denote by
R(o) the differential form corresponding to the simplicial complex ¢ x {0,1] , then the equality
of the lemma follows from the construction.

2.6. Functoriality under the direct image. We will use the construction from section
1.3. Let f: M — N be a proper morphism of complex spaces, and M — M , N = N be
regular embeddings. Embedding M into CV and then in N x CV in the way described there,
one obtains from 2.5.1

oy =1 .
e (L) = (Todd M)~ - (Todd N) - 7i5(L)

We have to prove the equality f.rg cw (L) = 75 (fiL). This can be done using the topo-
logical homotopy X{4(z,w,t) on CN x N x C. Let us recall that in our case the projection
CN x N extends the map f , and therefore the action of the functor f, on the differential forms
on CV x N can be defined as an integration with respect of this projection, i.e. along the z -
coordinate, z € CV.

For the proof, chose the essential homotopy S,(z,w,1) of the complex X{*(z,w,t) , which
ts an exact homotopy for this complex outside a subset which is compact with respect of z , and
with respect to ¢. Consider the endomorphisms (da)” of this complex. Here a(z,w,t) is the
differential of the complex X/£(z,w,t) above, and its derivatives in the expression da(z,w,t)
are taken with respect of all the variables except ¢. Since a(z,w,t) depends holomorphically
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on ¢ € C, then one can take the analog of the bicomplex Q2%* Hom, ( (e X;"'E) , with second

differential equal to 8, + 8, + 9;. Denote by ir (da)® the trace of (da)? , obtained with the
help of the homotopy S.(z,w,t) in this bicomplex. Summing up, one defines the corresponding
Chern character, which obviously can be written in the form

ch (Xf'c(z,w,t)) =Y %t'r (da)P = w(z,w,t) = wi(z,w,t) + woz,w, 1) Adl

where w; and w, do not contain differentials with respect to ¢{. Note that the form w(z,w,1)
has compact support with respect to z and ¢.

The fact that w(z,w,1) is closed with respect to O, + 0w + 0 implies that w, € @ QPP is
g,_'w - closed, and 3, wy = %wl. It is easy to see that w(z,w,1) represents ToxCN (L) , and
w(z,w,0) represents 7y (fil). Taking the standard solution of the @ problem on the t-plane,

we obtain:

- = 1 1 1 -
wi(z,w,1) — wi(z,w,0) = (82 +0w) ~ 9 /wg(z,w,t) (I - m) dt A dt

Integrating this equality along the z-coordinates, one obtains:

Fergeey (€) = 1 (FiL) = 0, T (£)
where we denoted by T (L) the integral with respect to z of the differential form, included into

brackets in the preceeding equality.

The same construction applies to the higher K-groups®. For this, choose for any simplex
o € Wicoh M essential homotopies S!(z,w) for X5 (z,w) , and S%(z,w) for X% (z,w). It
can be extended up to a homotopy S!(z,w) for the complex X7/“7(z,w,1).

Now, performing to the simplicial category of all such complexes on N x CV the construction
of the higher Chern character from the proposition 2.5.4, one obtains a set of differential forms

wo(2,w,8) = wy(z,w,t) + w(z,w,1) A dl

wie @ W (N x ) w?e Gt (N x CV)

p>k—1 p>k

The equality (_a—z,w + 5;) Wy = Z(—l)"wb_.(,,) translates into:

gzuwwclr = Z(_l)iw;,‘(a)

8Since the operation of direct image maps the category of coherent sheaves into the category of perfect
complexes, all the constructions must be done in the Waldhausen classifying space of the latler category, whose
definition is slightly more complicated. Here, we will not pay attention to this.
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d i

Ew; — Druty = Z(—l) wt?;(a)
The first equation shows that w,(z,w,1) = 74 o~ (0} , and w,(z,w,0) = 75 (fio).
Denote by T'(o) the integral along the z-coordinate of the differential form

L wi(z,w,1) (%— —LI) dt A dl

2me -

The integral along z of the restrictions ol the form w;(z,w,t) on ¢ =1 and ¢ = 0 are equal
to fug, o~ (o) and to Ty (fio) respectively. Taking the solution of the 8, - problem as above,
one obtains:

Proposition 2.6.1. There ezisls a« mapping o ~ T(c) attaching to any k-simplex from
Wicoh M a differential forms T(o) € @ QPP=*-1 (N) , such that

_ k

forguer(o) = (fio) = 8T(0) + Y- (=1)T (bi(0))

1=0

Corollary 2.6.2. The Riemann - Roch morphisms chy, , defined in the preceeding section,
commute with the direct image.

Remark 2.6.3. One can prove in the same way as in the proposition 2.5.5 that the form
T (o) depends on the choice of the homotopy S%(z,w) (with fixed 5%(z,w) and S} (z,w) ) only
up to a canonically choosen d-exact form.

3. Hermitian Riemann - Roch theorem. To formulate the results above in a more
precise and natural form, we endow the spaces forming the complex X%(z) with inner products.
This permits, first, to make a canonical choice of the homotopy S.(z) , and second, roughly
speaking, to replace everywhere d with 9.

Let £ is a coherent sheaf endowed with an Hermitian metrics. More precisely, suppose that
the spaces (U, L) , forming the components of the complex X£(z) , can be represented as
limits of the spaces of the type ['(2)(U, £) of square-integrable sections of £ with a fixed inner
(scalar) products. This can be done, in particular, when £ is a coherent sheaf endowed with
an Hermitian metrics, and the inner products are determined by the given metrics. Then one
has a canonical choice of the homotopy S(2) such that its images are orthogonal to the kernels
of a(z) (let call it "orthogonal homotopy™).

The construction of the orthogonal homotopy can be described as follows. Let A.(z) :=
[aa(2), }(2)] = {Ai(2)}; be the Laplacian of the complex X£(z). If this complex is exact, one
can define the homotopy S,(z) inductively:

5’:‘(2) = aj_(z)o0 ([ - §i+1(z) ° a;(z)) ° (Ai(z))—l

In the case of Fredholm complexes, in general, the orthogonal homotopy can be defined only
locally; namely, fix a point zp € M , and take € > 0, not belonging to the spectrum sp A,(2q)
of the Laplacian, such that the intersection of the interval {0,¢] with sp A.(z0) contains only
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eugenvalues of finite multiplicity. For z in a sufficiently small nelghborhood of zy , denote by
£2(z) the subcomplex of X£(2) consisting of the spectral subspaces of A,(z) corresponding to
[0,¢], and by Lf(z) its orthogonal complements, which consists of spectral subspaces for [, c0)
and is a subcomplex also. Let A%(z) the restriction of A,(z) on Lf(z).

Now one can define in this neighborhood the essential homotopy 52(z) by the formula above
with A,(z) replaced by Aj(z). On M\M (which we suppose to be non-empty) one can take
the exact homotopy S,(z) as above.

The representatives of the Newton classes in Q5f (ﬁ;f,) , constructed by the means of S¢(z)
and S5,(z) , does not depend on ¢ and therefore are defined globally: indeed, if we take 0 < ¢ < &’
satisfying the conditions above, then the orthogonal complement of £:(z) in E£'(z) is an exact
subcomplex which is invariant with respect to S,(z) , and therefore its contribution to the
characteristic classes is killed.

Proposition 3.1.1. The Chern character form chs (X.C(z)) , constructed by the use of the
orthogonal homotopy given above, is Hermitian-symmelric and @ and O-closed.

Proof. We will use the proposition 2.4.3. Since the decompositions X; = Ef(z) @ Li(z) are
orthogonal, then the connections D; := Pg, od are preserving the induced Hermitian metrics on

Ef(z) and therefore ch (£f, D;) are symmetric differential forms. Then proposition 2.4.3 shows
that

chs (XE(2)) = 3 (=1) ch (&£, D;)
which proves the assertion.
In other words, for any coherens sheaf £ one has
mu(L) € DA (M)
p20

where ARf (117[) is the space of the Hermitian-symmetric differential forms of bidegree (p,p)

with coefficients currents concentrated on M |, which are both 8- and J- closed.
“\ -1
Choosing a symmetric differential form, representing (ToddM) , one obtains the Chern
“y -1
character ch(L) := (Todd JW) - (L) (we will call it Hermitian Chern character) as a differ-

ential form, belonging to the same space @ ALY (!\7{)
p20
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In order to extend the definition to the higher IX-functors, we will need the following analog
of lemma 2.3.1:

Lemma 3.1.2. Let L be a coherent sheaf on M and suppose that for i =0,...,n one has
an inner product h; on the components of the complex XE(z). Then for any non-emply subsel

I={io,...,ix} C{0,...,n} there exists a differential form w; € A5 " P~F (M’) , such that

1/ wiiy coincides with the Hermitian Chern character chy, (X ,‘:(z)) , constructed with respect
of the inner product h; , and

2/ for any I

35(91 =

le.
—

(=1Ywy, , wherel;:= I\ {i;}

J_

Sketch of the proof. One can use arguments similar to that of the second proof of 2.3.1.
All the inner products in a Hilbert space form a contractible set. Therefore, one can define a
continuous family of inner products h, , where ¢ runs over the n-dimensional simplex o, such
that its values at the vertexes of ¢ will coincide with the given metrics hg, ..., h,. Let S,(z,1)
be the orthogonal homotopy for the complex X£(z). Then, by lemma 2.4.3, one reduces to the
case of hermitian vector bundles F;.

When o is an 1-simplex, then one can use the Bott - Chern construction ([B-C], prop.
3.15) which construct explicitely ch(o) corresponding to the homotopy between the connec-
tions induced by the deformation of the induced Hermitian metrics on the bundles E;(z). For

the higher dimensions, one needs to prove some higher-dimensional analog of the Bott-Chern
formula.

Having the proposition above, one can proceed for the definition of the higher Chern char-
acters in the same way as in the section 2.5. Let U = {U},, be a fixed covering of M as
above. Denote by hcohM the category consisting of all the coherent sheaves on M | together
with fixed "inner products” on the spaces ['(U,, L) , @ C [; that means, a presentation of all
such spaces as inverse limits of Hilbert spaces.

Proposition 3.1.3. There exists a mapping o ~ ch(o) attaching to any k-simplez o €
Wihcoh M a differential form ch(c) € @ . ait et (M) such that

a/ If the filtration determining o conszsts on a single sheaf L , then ch(o) coincides with
the Hermitian Chern character ch(L) constructed above.
b/For any simplex o one has:

k

ddch(a) = Z ) ch (bi())

where bi(o) denotes the i-th face map.

One can show that the definition does not depend essentially on the choice of the inner
products. Namely, suppose that we have two functors from coh M to hcoh M inducing the
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identity functor on sheaves; that means, two ways of choice of inner products for any shealf.
Let ch'(o) , ch”(o) be the corresponding Chern characters. Then we have

Proposition 3.1.4. In the conditions above there exists a map o ~» R(o) , Wicoh M —
@ Q5 kek (M) such that
p>k

QOR(0) = ch'(o) — ch"(o) + 3 (— (o))

The covariance of the Hermitian Chern character with respect to the proper morphisms can
be proved in the same way as in the preceeding section. We will sketch it for the case of A}
, L.e. for the functor £ ~+ ch(L). In this case, one consider again the complex X/¢(z,w,1)
on CY x N x C. The scalar products on the complex X*(z) determine the scalar products on
X{%(z,w,t) (and the scalar products on X/*¢(w) on N).

The construction is similar to that from 2.6,but this time, unlike 2.6, we will include in
the definition of the exterior derivatives da(z,w,t) of the differential a(z,w,t) of the complex
X1*(z,w,t) the differentiation with respect to all variables - z , w and t. Denote by w(z,w,?) €
o AP (1{’ X (CN) the Hermitian Chern character of this complex, calculated in the same way
as in 2.6. If one denotes by w(z,w,t) the part of w(z,w,t) , not containing d¢ and dt , and

by we(z,w,t) A dt A dl - the part containg both dt and dl , then the 9 and O-closedness of the
differential form w(z,w,t) implies

d d -
- (lzwl(z W, 1) = Oy w0 wwa(z,w, 1)

and one has to solve the corresponding 99 problem on the ¢ - plane. One obtains:

2
w'(z,w,1) — w'(z,w,0) = 0,4,0:w —--)1— /wz(z,w,t) log (—li-) dt A dt
2m1 [t — 1]

On the other hand, it is easy to sce from the construction that w!(z,w, 1) and w'(z,w,0)
represent the Hermitian Chern characters of the complexes X£(z,w) and X/“(w) correspond-
ingly. As above, one integrates along the z-coordinates and denotes by T'(L£) the integral from
the differential form included in the brackets in the right hand side.

Performing an analogous construction for the higher K-functors, one obtains:

Proposition 3.1.5. There exists a mapping o ~ T(o) attaching to any k-simplex from
Wihcoh M a differential form T(o) € @ AR FP=* (I'V) , such that
p2k

Fergeen(9) = T fio) = 80T (o +Z(1 T (bi(o))

1=0

The forms T(c) depend on the choice of the inner products on X%(z) in some canonical
way; namely, one has:
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Proposition 3.1.6. Suppose that, as in 3.1.4, we have two different choices of inner
products on the objects of the category W.coh M |, and let T'(0) , T"(o) be the corresponding
torsion forms constructed in the assertion above. Then one can attach to any simplez o a

differential form L(c) € @ A F-1r=F! (N) such that
p2k+1

09 L(o) = T'(0) — T"(0) = 32 (=1) L(bi(0))

Suppose that we have an Hermitian metrics on the coherent sheaf £ , and one takes the
scalar products on X% (z) induced by this metrics.Then it must be noted that the Hermitian
Chern character, constructed on this way, will depend on the covering U ; this happens because
the Hermitian metrics on £ induced by its representation as a homology sheaf of the complex
of Hilbert spaces X£(z), will not coincide with the original Hermitian structure on £ ( it will
be somehow averaged along the elements of & ). In order to obtain the Chern character for the
original metrics, one has to prove the following:

Conjecture 3.1.7. When the diameter of the covering U lends to zero, then the corre-
sponding Hermitian Chern characters of X (z) converge some limit, coinciding in the regular
case with the Chern character of the given metrics.

4. Riemann - Roch functor with values in the Chow ring. We will briefly describe
how the approach developed above can be applied, under suitable choice of homotopy, to the
Riemann - Roch functor with values in the Chow ring. It seems important for us that the
Chern character with values in the Chow ring, and the Hermitian Chern character constructed
in the section 3 (which are the main components of the ” Aritmetic Riemann - Roch theorem”,
conjectured and partially proved in the regular case by Bismut - Gillet - Soule), can be treated
in a parallel way.

As we noted, in the construction above one can obtain the representatives of the Chern
character as differential forms with currents as coeflicients. So the problem is: how to choose
Se(2) (perhaps a generalised functions of z) such that the constucted differential form repre-
senting the Chern character is a sum of terms of the type dz , which denotes the current of
integration over the regular part of the cycle Z.

We will show on a particular case of a linear bundle that the construction of such a represen-
tatives can be connected with the Hermitian Chern character, considered in the last paragraph.

“ake the [ree infinite dimensional resolution XZ(z) of a linear bundle E: namely, suppose
that the homology sheaf of X£(z) in the degree zero is isomorphic to £ , and others are trivial.
Let s(z) : C — E be a section of this bundle, having a regular zero set which will be denoted
by Z. The map s can be lifted up to a smooth map 3(z) : C — ker ap(z). One can choose 3(z)
such that its image is orthogonal to the image of a_;(z).

The map 3(z) can be considered as a morphism of complexes Co — XZ(z) , where Cq
denotes the complex with C at stage zero and zero elsewhere. Denote by 7?(;/) the cone of
this morphism: then obviously XF(z) and _)T:E(z) have the same Chern character. Take the
orthogonal homotopy S,(z) for XZ(z) , constructed in the last paragraph; then, the map 57!
, together with S,(z) , determines an exact homotopy S,(z) for :J-\?:E(z) on M\Z. lts extension
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as an operator-valued current on the whole M can be considered as an essential homotopy for
this complex. Applying the construction form section 2, one obtains that the Chern character
in this case will coincide with the fundamental current éz of the cycle Z:

chs (XJ(2)) = 6z

Both S,(z) and 5,(z) are orthogonal on M\Z , and its difference is finite-dimensional.
Using the constructions from the section 3, one shows:

Proposition 4.1.1. There exists a smooth differential form o on M\Z, salisfying
90pi = chs (XE(z)) - chs (X)(2)) = chs (XE(2)) - &2

Remark. The differential form ¢g is a Green form for Z, and the pair (Z,¢g) , is the
aritmetic Chern character of £ in the sense of Bismut-Gillet-Soule (see [S]).

To deal with the general case, one should lift the whole thing on the Grassmanian. The
construction of the Chern character in the Chow ring for a complex of vector bundles is given
by the Macpherson Grassmannian - graph construction (see [B-F-M1]); for our purposes it will
be better to follow the variant of it, constructed by Iversen [I}. The same construction of the
Grassmannian should be performed for the infinite-dimensional free complexes appearing in the
our construction; so the complex should be canonically lifted on the Grassmannian, where its
homology sheaves should have sufficiently many sections, and then one should use, as above,
the essential homotopy determined by these sections. One may conjecture that, in this way, one
should define the aritmetic Chern character of the complex X£(z) , and, using the homotopy
XE(z,w,1) , should be able to prove its covariance under proper maps.
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