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Abstract

We construct affinization of the algebra g(", of "complex size" matrices, that
contains the algebras g~ for integral values of the parameter. The Drinfeld-Sokolov
Hamiltonian reduetion of the algebra gl", results in the quadratic Gelfand-Dickey
structure on the Poisson-Lie group of all pseudodifferential operators of fractional
order.

This construction is extended to the simultaneous deformation of orthogonal and
simplectie algebras wh ich prod uees self-adjoint operators, and it has a eounterpart
for the Toda lattices with fractional number of particles.

1 Introduction

As a rule quadratic Poisson structures appear as either the Poisson bracket on a Poisson

Lie group or as a result of Hamiltonian reduction from the linear bracket on a dual Lie

algebra.

This paper is devoted to a relation between these two approaches to the classical

W n -algebras (calIed also Adler-Gelfand-Dickey or higher K dV-structures), natural infini te

dimensional quadratic Poisson structures on differential operators of nth order.

The noncommutative Hamiltonian reduction (see[2], [18]) for the Gelfand-Dickey struc

tures (associated to any reductive Lie group) is known as the reduction of Drinfeld and

Sokolov ([6]). They showed that those quadratic structures on scalar n th order differ

ential operators on the circle can be obtained as a result of the two-step process (re

striction to a submanifold and taking quotient) from the linear Poisson structure on

matrix first order differential operators. The latter object is nothing but the dual

space to an affine Lie algebra on the circIe ([9], [19]).

• Partially supported by NSF grant DMS 9307086
tPartially supported by NSF grant DMS 9401215
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On the other hand all Poisson Wn algebras can be regarded as Poisson submanifolds in

a certain universal Poisson-Lie group of pseudodifferential operators of arbitrary (complex)

degree([12]). In such a way differential operators DOn = {Dn + ul(x)Dn-l + u2(x)Dn-2 +
... +un ( x)} for any n turn out to be included as a Poisson submanifold to a one-parameter

family of pseudodifferential symbols 'I!DS).. = {DA +ul(x)D>.-l +u2(x)D>'-2 +... }.
At this point we bump into the following puzzle. While a natural description of the

Gelfand-Dickey structures through the above Poisson-Lie group exists for symbols of ev

ery complex degree ..\ , the Drinfeld-Sokolov reduction is defined essentially for diffential

operators, that is for integer ..\ = n and first n coefficients {u. (x)}. The latter restrietion

is due to the very nature of the Drinfeld-Sokolov reduction: it starts from the affine g[n

algebra and to find its counterpart for complex ..\ one needs to define groups OfAX A

matrices.

Actually the definition of g().., A E C has been known all the time since representation

theory of S(2 appeared. It is simply the universal enveloping algebra of 8(2 modulo the

relation: Casimir element is equal to (..\ - l)(A +1)/2. It was Feigin, however, who placed

this object in the proper context (deformation theory) and applied it to calculation of the

cohomology of the algebra of differential operators on the line, see [8].

For technical reasons we have here to replace the algebra g(>. with its certain extension

g[)... We further construct an affinization of the latter g[>.. This gives a family of algebras,

A being the parameter, such that for integral ..\ the algebra has a huge ideal and the

corresponding quotient is the conventional affine Lie alegebra gln' We prove the following

conjecture of B. Feigin and C. Roger.

Theorem 1.1 The classical Drinfeld-Sokolov reduction defined on g~ admits a one·para·

meter deformation to the Hamiltonian reduction on gi)... As a Poisson manifold the result

0/ the reduction coincides with the entire Poisson-Lie group 0/ pseudodifferential operators

equipped with the quadratic Gelfand-Dickey structure.

It should be mentioned that, unlike integral ..\ case, for a generic ..\ we can not use the

formalism of the Miura transform (cf.[I6]) or embedding of scalar higher order differential

operators into first order matrix ones by means of Frobenius matrices. Both the operations

are main tools in the classical gin-case.

Feigin constructed also a simultaneous deformation of the symplectic and orthogonal al

gebras. We show that the corresponding deformation of the Hamiltonian reduction results

in the Gelfand-Dickey bracket on self-adjoint pseudodifferential symbols.

We finish with a construction of the continuous deformation of Toda lattice hierarchies.
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The paper is essentially selfcontained. The Section 2 is devoted to basics in Pois

son geometry and Drinfeld-Sokolov reduction. Then we outline the construction of the

Poisson-Lie group of pseudodifferential operators and define the Adler-Gelfand-Dickey

structures explicitly (Sect.3.1). Further we recall definition of gl,\ and define its extension

and affinization (Sect.3.2) which we beleive is of interest by itself. Remark that a similar

interpolating object appears aB a sine-algebra and the algebra of "quantum torus" (see

[3]). In the Section 3.3 we construct the universal reduction of that algebra, resulting in

the structure on the Poisson -Lie group. Section 4 is devoted to proofs. We conclude with

discussion of .sp--, so-cases of the reduction and with consideration of adeformation of the

Toda lattices.
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2 Poisson manifolds and Drinfeld-Sokolov reduction

2.1 Preliminaries on Poisson geometry and Hamiltonian reduc
tion

1. Poisson algebras. Symplectic manifold is a pair (M, w), where M is a manifold and w is

a symplectie structure, Le. non-degenerate skew-symmetric 2-forrn on M. The symplectic

form can be viewed as a non-degenerate fiberwise linear map

(1)

where TM (T*M) is a tangent (cotangent resp.) bundle over M. For any I,g E Coo(M)

set

{I, g} = dg(Odl).

where n = w- 1
: T* M -r TM. The bracket {.,.} makes Coo(M) a Poisson algebra,

meaning that the following holds:

the space Coo (M) is a Lie algebra with respect to {., .}

the Leibnitz identity {I, gh} = {I, g}h +g{J, h} fulfills.
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Let Vectw(M) be a Lie algebra of Hamiltonian vector fields on M:

Vectw(M) = {X E Vect(M): Xw = O}.

Then the map no d: COO(M) -+ Vectw{M) is a Lie algebra homomorphism.

2. Hamiltonian reduction. Let a Lie group G act on a symplectie manifold M by

symplectomorphisms, i.e. by diffeomorphisms preserving the symplectic form w. Then

there arises amorphisms of Lie algebras: 9 -+ Vectw(M), where 9 is 'a Lie algebra of G.

The action of G on M is called Poisson if in addition the latter morphism lifts to a

Lie algebra morphism 9 -+ COO{M). Denote by Ha E COO{M), a E g, the image of a in

COO{M), i.e. the Hamiltonian function corresponding to an infinitesimal action a.

Denote by g'" aspace' dual to g. The group G naturally acts on g'" (via eoadjoint

action). For any Poisson action action of G on M there arises a G-equivariant mapping

called momentum map:

p: M-+g"', <p{x),a>=Ha{x), forxECOO{M),aEg.

Fix a E g'" and denote by Ga C G its stabilizer. Obviously, the set Ma = p-l{a) is

preserved by Ga. Assume now that, first, Ma is a manifold and that, second, so is the

quotient space Fa = Ma/Ga. One ean show that Fa is a sympleetic manifold with respect

to the symplectic form wdefined by setting

w{(, il) = w{~, 1]),

where ~ and 7J are arbitrary preimages of ( and Ti with respect to the natural projection

T Ma -+ T Fa (see [18]).

The described passage from a symplectic manifold M to a symplectic manifold Fa of

dimension less than dimension of M by 2 dimGa is called (noncommutative) Hamiltonian

reduction

Example 2.1 T*M is canonically a symplectic mani/old /or any M. T"'C is a symplectic

manifold with a Poisson action ofC by left translations. The momentum T"'G -+ g'" ::::: Te"'C

is given by right translations to the unit (e) 0/ the group C. The result 0/ the hamilto

nian reduction with respect to the element a E 9 is the orbit Ga 0/ a in the coadjoint

representation equipped with the celebrated Lie-Poisson-I(irillov-I(ostant symplectic form.

3. Symplectic leaves. We saw above that for any symplectic manifold M its algebra of

functions is a Poisson algebra. More generally, M is called a Poisson manifold if COO{M)

is a Poisson algebra with respect to a certain bracket {.,.}.
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The bracket {.,.} determines a Lie algebra morphism Coo(M) ~ Vect(M). It follows

that {.,.} can be regarded as a fiberwise linear map n: T- M ~ TM, where n already

does not necessarily come from a symplectic form (1). Corank of restriction of n to a fiber

measures how far {.,.} is from being induced by a symplectic structure. A notion of a

symplectic form has the following substitute for a generic Poisson manifold.

The assignment M 3 x H- n(T;M) C TxM defines a distribution on M. The integral

submanifolds of this distribution are called symplectic leaves of M. One shows that each

symplectic leaf is indeed a symplectic manifold (and, therefore, is also a Poisson manifold).

A Poisson submanifold is a manifold being a union of symplectic leaves. The embedding

of a Poisson submanifold of M into M is a Poisson morphism, meaning that the induced

morphism of algebras of functions is a morphism of Poisson algebras.

Example 2.2 The dual space 0- is a Poisson mani/old, the bracket being defined by:

{/,g}(x) =< [dx/,dxg],x >,

where /, 9 E Coo (0-), dx / signifies the value 0/ the differential 0/ a fun ction at the point

x j there/ore dx/, dxY E g, and so the right hand side 0/ the equality is understood as a Lie

bracket 0/ a pair 0/ elements 0/ g. Symplectic leaves 0/ g- are exactly orbits 01 the coadjoint

action, see Example 2.1.

Suppose a Lie group G acts on a Poisson manifold M by diffeomorphisms preserving

the Poisson structure. Such an action is called Poisson if, first, it preserves all symplectic

leaves and, second, the induced Lie algebra morphism of 9 to Vect(M) lifts to a Lie

algebra morphism 9 ~ Coo(M). In this case one can define amomenturn p: M ~ g* so

that its restrictions to the symplectic leaves are exactly momenta of the above discussion.

Assuming further that for some a E g- , Ma and Fa = Ma/Ga are manifolds one shows that

Fa is naturally a Poisson manifold and that its symplectic leaves are exactly symplectic

manifolds obtained via Hamiltonian reduction applied to symplectic leaves of M.

Example 2.3 Let 0 be a subalgebra 0/ 9 and N be the Lie group related to o. A coadjoint

action 0/ N on g- is Poisson, the momentum being the natural projection g- ~ 0-. So,

g- / N is a Poisson mani/old.

An explicit calculation of the Poisson bracket of a pair of functions on Fa cau be carried

out as folIows. Let 'Fr : Ma ~ Fa = Ma/Ga be the natural projection. Let I, 9 E Coo(Fa).
Then 'Fr- I, 'Fr-g are functions on M a • Choose an arbitrary continuation of each of the

functions on the entire M and denote it also rr- /, rr-g. Set

{/,g}(rr(x)) = {rr-!,rr-g}(x), for any x E Ma •

5
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What was said above is enough to prove that, despite the obvious ambiguities in this

definition, the result is uniquely determined .

2.2 Drinfeld-Sokolov construction

Drinfeld-Sokolov reduction is the procedure outlined in 2.1.3, especially in Example 2.3,

in the case when 9 is an affine Lie algebra and n is its "nilpotent" subalgebra. To make a

preeise statement let us fix the following notations:

C[z, Z-l] is a ring of Laurent polynomials, C[[z]] is a ring of formal power series,

C((z)) = C[z, Z-l] + C[[z]];

9 = gin, n E 9 is the subalgebra of strietly upper triangular matrices;

a( z) = a 0 C( (z)) for any Lie algebra a; a( z) is ealled a loop algebra; its elements can

be thought of as "formal" functions of z E C· with values in a;

9= 9 EB C is the eorresponding affine Lie algebra, the universal eentral extension of 9

by the cocycle being given by cP(j(z),g(z)) = Resz=oTr(j(z)dg(z));

A, N, G, A(z), N(z), G(z), 6 are Lie groups related to o,n,g,o(z),

n( Z ), g( z ), 9.
The dual spaee g( zt is naturally isomorphie to g( z) by means of the invariant inner

produet ("Killing form")

(f( z), g( z)) = Resz=oTr f( z )g(Z)Z-l.

The dual spaee g. = g( (z)) ffi C can be identified wi th the spaee of 1st order linear

differential operators on the circle with matrix (n x n) eoefficients DOnxn .

The correspondence g. --1- DOnxn is established by

d
(j(z),k) t-+ -kz dz + j(z). (5)

Proposition 2.4 ([9), [19}) The identification aboue makes the coadjoint action 0/ the

group G[z, Z-l] on g. into the gauge action on differential operators:

T(z) . (j(z), k) = (-kzT(z)'T(z)-l +T(z)j(z)T(z)-l, k),

here and elsewhere ,,' "means the application 0/ the operator d/dz.

Remark 2.5 The operators above can be viewed as differential operators on the circle

z = Aexp(Ar):

k :r + !():rexp(Ar)). (6)

Solutions to differential equations with matrix coefficients are uector junctions. Natural

action 0/ G[z, Z-l] on solutions induces the gauge action 0/ G on differential operators.
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Further we fix a hyperplane in 9by fixing a cocentral term: g; = {(f(z), 1), f(z) E g}.
Obviously, g~ C g" is a Poisson submanifold: the Lie-Poisson bracket on the dual space a;
admits restriction to the hyperplane.

The coadjoint action of the subgroup n on g~ is Poisson. Consider its momentum map

If the space n" is identified with lower triangular matrices then the momentum map p is

nothing but the projection of (functions with values in) matrices onto their lower-triangular

parts.

To start Hamiltonian reduction we need to fix a point in the image of the momentum

map. Regard the (lower triangular) matrix

A=

000
100
010
001

o 0
o 0
o 0
o 0

(7)

00010

as an element of n-. The preimage p-l (A) is a manifold. It is, in fact, an affine subspace:

p-l(A) = zd/dz + A + b((z)), where bEg is the subalgebra of upper tri angular matrices.

To perform the second step of the reduction we notice that the quotient space

p-l(A)/N[z,z-l] is also a manifold. Indeed, one can show that each N[z,z-l]-orbit con

tains one and only one element of the form

d
z-+

dz

b1(z) b2(z) b3 (z)
100
010
001

bn-1(z) bn(z)
o 0
o 0
o 0

o o o 1 o

The space of first order differential operators of this form ( the corresponding matrices

are sometimes called Frobenius matrices) is in 1-1 correspondence with (ordinary scalar)

differential operators DOn of order n on the circle:

b1(z) b2(z) b3 (z) bn - 1(z) bn(z)
1 0 0 0 0

d 0 1 0 0 0 cF _ lfl-1 -

z-+
0 0 1 0 0

H - +b1(r)(--) +... +bn(r),
dz drn drn- 1

0 0 0 1 0
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where bk(r) = bk(exp(Ffr)jFf), r E R.

The Hamiltonian reduction of Sect.2.1.3 of the Kirillov-Kostant structure on g~ equips

DOn with a structure of a Poisson manifold.

On the other hand the space DOn is known to carry a Poisson structure - the celebrated

"second Gelfand-Dickey structure".

Theorem 2.6 [6} The Poisson strueture on DOn obtained as a result 0/ the Hamiltonian

reduction described above is the second GelJand-Dickey strueture.

It is appropriate at this point to give adefinition of the second Gelfand-Dickey bracket

in the way Adler, Gelfand and Dickey did it, Le. by explicit formulas. We will, however,

refrain from doing so and instead describe a generalization of this construction to the case

when n is an arbitrary complex number.

3 Differential operators of complex order and ma
trices of complex size.

3.1 Poisson-Lie group of pseudodifferential symbols

In this section we describe the Inain underlying structure, the Gelfand-Dickey bracket on

the group of pseudodifferential symbols of complex powers following [12] (see also [7] for

related questions).

Points of the Poisson manifold under consideration are classieal pseudodifferential sym

bols, Le. formal Laurent series of the following type:

-1

G = {DA + L uk(z)DA+k!Uk E C((z)), A E Cl.
k:;;;:-oo

This expression is to be understood as a convenient written form for a semi-infinite

sequence of functions {Uk}.

This (infinite dimensional) manifold can be equipped with a group structure, where

product oftwo such symbols is a generalization ofthe Leibnitz rule Doj(z) = /(z)D+ f'(z)

(that explains the meaning of the symbol D = djdz). For an arbitrary (complex) power

of D one has:

(8)

where (~) = A(A-l)·~fA-t+I). The number ..\ is called the order of a symbol. It is easy

to see that every coefficient of the product of two symbols is a differential polynomial in

coefficients of the factors.
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Definition. The (quadratic generalized) Gelfand-Dickey Poisson structure on

G = {L = (1 + Lk~-oo uk(x)Dk)D>'} is defined as follows:

a) The value of the Poisson bracket of two functions at the given point is determined by

the restrictiong of these functions to the subset \l1 DS>. of symbols of fixed order A = const.

b) The subset A = const is an affine space, so we can identify the tangent space to this

subset with the set of operators of the form JL = (Lk~-oo JUkDk) 0 D>'.
We can also identify the cotangent space with the space of operators of the form

X = D->' 0 DO, where DO is a purely differential operator (ie. polynomial in D) using

the following pairing:

Fx(JL) :=< X,JL >= Tr(JL 0 X).

Here the product JL 0 X is a symbol of an integer order LPk(Z)Dk, and its trace Tr is

defined as the residue at z = 0 of P-l(Z).

c) Now it is sufficient to define the bracket on linear functionals, and

(9)

where VFx is the following Hamiltonian mapping Fx H- VFx (L) (from the cotangent space

{X} to the tangent space {JL}):

(10)

Remark 3.1 Usual/y this definition is gitJen only in the case when ,\ is a fixed posi

tive integer and L is a differential operator (L+ = L, here and abotJe "+" means tak

ing differential part 0/ a symbol 0/ integral order), cj.[l}, [5}. The set DOn 0/ purely

differential operators 0/ order n is a Poisson submani/old in the Poisson "hyperplane "

\l1 DS>'=n 0/ all pseudodifferential symbols 0/ the same order. Indeed, /or any operator

L = Dn + u_l(z)Dn-l + ... + u-n(z) and an arbitrary symbol X = DO 0 D-n the corre

sponding Hamiltonian tJeetor VFx (L) = (LX)+ L - L(XL)+ is a differential operator

0/ the order n - 1 and hence all Hamiltonian fields leave the submani/old DOn 0/ such

operators L invariant.

Exaetly those Poisson submani/olds anse as a resu/t 0/ Hamiltonian reduction in the

Drin/eld-SokolotJ construetion. For an arbitrary (noninteger) ,\ one has no counterparts 0/
"purely differential operators" (what would be the differential part 0/ u(z)Dl/2 '?) and 0/
the corresponding Poisson submani/olds.
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As we noted, regardless of '\, there is a natural homeomorphism between WDS>. and

semi-infinite sequence of coefficients {Ui(z)}:

\IJDS>. ~ rr C((z))
i~1

(11 )

The Poisson structure on the group induces a family {.,.} >. of Poisson structures on

TIi:2:1 C((z)), with polynomial dependence on ,\ (combine formulas (8 - 10)).

The following filtration of the space TIi~1 C((z)) will be used later.

Represent it as TI:;1 C((z)) x TIi~k+1 C((z)) and let ik be the projection on the first

factor. This gives an embedding of the spaces of functions

k

ik : Fun(ll C((z))) Y Fun(II C((z))).
i;l i:2:1

Set Wk = ik(Fun(TI7;1 C((z)))). The sequence {Wk } forms the filtration

k k

W1 C W2 C ... C Fun(II C((z))), Ui~lWi = Fun(II C((z))). (12)
i;l i;l

Proposition 3.2 This filtration satisfies the condition:

(13)

ProoJ. Reformulating the statement one needs to extract from the definition above that

far Lo E \IJ DS>. the bracket

does not depend on LI if deg LI ::; ,\ - i - j, Lo E \IJ DS>..

It follows from the explicit formulas (9-10) :

Calculation of the degrees shows that the right hand side vanishes under the condition

deg LI ~ ,\ - i - j. 0

It should be mentioned that an analogous fact is basic for "quantum" counterparts of

the Gelfand-Dickey Poisson structures (calIed quantum W-algebras).

Remarks 3.3 (i) The Lie group structure oJ G is compatible with the GelJand-Dickey

structure and makes the gro'ltP info a Poisson-Lie one (see (lf}). lts Lie algebra 9 =
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{Lbl uk(z)D-k + .-\. log Dluk E C[z, Z-l], .-\ E C} is a Lie bialgebra. The formal

expression Log D can be regarded as the velocity vector to the one-parameter subgroup DA:

dld.-\I DA = log D 0 D>d = log D.
>'=0 1>.=0

and the commutation relation for the Log D and any symbol can be extracted from (8)

The dual space to 9 is also a Lie bialgebra. 1t is nothing but the unique central extension

DO of the Lie algebra 0/ all differential operators DO = {Li=l aj(z)Dj} on the circle

({lI}), known also under the name of Wl +oo • The 2-cocycle describing this extension can

be given in terms 0/ the outer derivation [log D, *]:

c(A, B) = Jres ([log D, A] 0 B) (14)

where A and Bare arbitrary differential operators (see fIS)}. The restrictions of this

cocycle to the subalgebra 0/ vector jields gives exactly the Gelfand-Fuchs cocycle

c(u(z)D, v(z)D) = ~ Ju"(z)v(z)'dz

which defines the Virasoro algebra.

(ii) Introduction 0/ fractional power D>' is a particular (Heisenberg algebra) case of

formalism 0/ /ractional powers 0/ Lie algebra generators, see {17j. This formalism has

been used for purposes of representation theory. It would be interesting to find its Poisson

interpretation for other Lie algebras.

3.2 Definition of g[,,\, AE C, and its extensions

3.2.1 What is a matrix of complex size?

Recall that .s(2 is a Lie algebra on generators e, h, fand relations {e, /] = h, {h, e] =

2e, [h, f] = -2/. There are different ways to embed S[2 in gin and, hence, there are

different structures of an sl2-module on gin' Generically, however, the structure of an

sl2-module on gin is independent of the embedding (see [13]) and is given by

(15)

where Vi stands for the irreducible i-dimensional s{2-module. The image of a generic

embedding of Sl2 in gin is called a principal .s12-triple. We do not discuss what exactly the

11



genericity condition is and confine to mentioning that an example of a generic embedding

is provided by sending

I~

000
100
010
001

o 0
o 0
o 0
o 0

(16)

o 0 0 1 0

and continuing this map on the entire S[2'

In view of the decomposition ( 15) it is natural to ask whether the space EBi~OV2i+l

admits a Lie algebra structure consistent with the existing structure of an s(2-module on

it. A construction of al-parameter family of such structures is as folIows.

Tbe universal enveloping algebra U(S[2) is a Lie algebra witb respect to the operation

[a, b] = ab - 00. The element C = eJ + Je + ~h2 generates the center of U(.a(2)' The

quotient
1

U(S[2)/(C - 2(;\ -1)(;\ + I))U(s[2), ;\ E C

is naturally a Lie algebra containing s(~. Tbe fact that its s[2-module structure is given

by ( 15) is a eonsequence of much more general results of [14]. We point out that in our

ease:

the elements hiei , hili form a basis of the algebra, and

the component \l2i+l is generatecl as an s[2-module by ei ,

(17)

(18)

B.Feigin classified Lie algebra struetures on EBi2:0V2i+1 j in particular he proved that

under a certain natural assumption there are no families of Lie algebra structures on

EBi2:0 \l2i+l different from the above mentioned, see [8]. One proves (see Remark 3.5 below)

that if ;\ is not integral the quotient is the sum of C and a simple (infinite dimensional)

algebra, and if ;\ = ±n, n E {1, 2, ...} then

contains an ideal and the quotient is isomorphie with g[n' For this reason tbe algebra

is denoted by g(>. for an arbitrary complex;\. Note that our notations are inconsistent in

the sense that g(>. is obviously different from tbe conventional g~ if ;\ = n. It is unfortunate

but seems unavoidablej we will denote the finite-dimensional algebra by g(n in tbe sequel.
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3.2.2 g(oo and extensions of g(>..

Here we define 2 extensions of g(>., both being related to g[oo and one of them incorporating

a formal variable.

Fix onee and for all an infinite dimensional space V with a basis {Vi, i = 0, I, 2, 3, ...}.

This space carries al-parameter family of .a(2-module structures determined by:

(19)

This, of course, makes V into a Verma module M()" - 1). Hence there arises the map

(20)

where gloo is the algebra of all linear transformations of V. Direct calculations show that

CVi = !().. - 1)().. + I)vi for any i. Therefore (20) factors through to the map

(21)

Lemma 3.4 The map (el) is an embedding.

Proof The map (21) is a morphism of S[2- modules. Therefore it is enough to prove that

each irreducible component of gl>. is not annihilated by (21). But this is obvious: V2i+1 is

generated by ei (see (18)) and ei is a non-trivial operator on M ().. - 1). 0

From now on we will identify g(>. with its image in g[oo' The passage from a specific )..

to a formal parameter t makes (20) into the luap

(22)

M().. - 1) is irreducible unless ).. = 1,2,3, ... and if the latter condition is satisfied

then it eontains the unique proper submodule J>. spanned by v>., V>'+ll ..• the corresponding

quotient heing V>.. This along with the definitions implies that the image of U(.a(2) under

( 22) consists of matrices A = (aij), i, j 2:: 0 satisfying the following conditions:

(i) for any matrix A = (aij), i,j ~ 0 there exists a number N such that aij = 0 if

i > j +N;

(ii) for any fixed n, ai,i+n is a polynomial in i;

(iii) if ).. = 1,2,3, ... then aij()..) = 0 once i < ).. and j 2:: )... (We naturally identify

matrix elements with polynomials in t.) In other words, in this case A has the following

block form:

13



Remark 3.5 The property (iii) explains why, under the integrality condition ,\ = n, gl>.

"contains" the usual g~: gin ~ gl>../J, where J = {A E gl,,: Im(A) CI>.}.

Denote by gl the subalgebra of g(oo 0 e[t] satisfying the property (i) above and the

following weekened version of (ii) and (iii):

(*) for any matrix A E gl the properties (ii) and (iii) can only be violated in a finite

number of rows.

The algebra gl is one of the algebras we wanted to define. Definition of the other is

based on the following general notion which will be of use later.

Let W be a vector space and A a subset of W ® C[t]. The image of A in Wunder the

evaluation map induced by projection C[t] -+ /(t - ()C(t] ~ C, (E C, will be denoted by

A( and called specializalion.

We now define g{>. to be a specialzitaion of gl when t = '\. The following is an alternative

description of gl>. (it will not be used in the sequel): gl>. is obtained from gl>. by, first, allowing

infinite series of the form Li;?:O aiei, ai E C(h], (see (17)) and, second, extending the result

by the ideal of operators with finite-dimensional image.

3.2.3 Affinization and Coadjoint Representation of gl>.

1. Trace. The following simple and crucial construction was communicated to us by

J .Bernstein. 0 bserve t hat for any A = (aij) E gl>. the surn

N-l

P(A, N) = E aii
i=o

is a polynonlial in N ( this is a consequence of (*)). Set

Tr A = P(A,A). (23)

It follows that both gl>. and the loop algebra gl>.(z) = gl>. ® C( (z)) carry an invariant

non-degenerate inner product defined by

(A, B) = Tr AB,

(A(z), B(z)) = Resz=oTr A(z)B(z)z-ldz (resp.).

Observe that the restrietion of the trace to g[>. and gl,,(z) is degenerate if ..\ is a positive

integer.

2. Affinüalion and coady"oint representation The loop algebra gl>.(z) admits a central

extension determined by the cocycle

< A(z), B(z) >= Resz=o Tr A(z)'B(z) dz.
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This provides the central extension 0'(>. = g(>. (z) ffi C . c.

Using trace we make identifications (g(>.)- ~ g(>., (g(>.(z)t ~ g(>.(z), (0'(>.)- ~ gl>.(z) ffi C

and extract subspaces (gi>.); C (0'(>.)" k E C, where (gl>.)- is all functionals equal to k

on the central element c. The tbird identifieation implies that elements of (gl>.)k are pairs

(A(z), k), A(z) E gl>.(z). It follows from the definitions that

ad;(%)(A(z), k)) = ([X(z), A(z)] - kzX(z)', k) (25)

3. Nilpotent subalgebra and subgroup. Let n>. C gl>. be a subalgebra of strietly upper

triangular matrices and n>.(z) tbe corresponding loop algebra. Set N>.(z) = id ffi n>.(z),
wbere id stands for the identity operator.

Lemma 3.6 N>.(z) is a group and the map

is a homeomorphism.

Proo! is an easy exercise.

Exponentiating ( 25) one obtains tbat tbe coadjoint action of tbe group N(z) is given

by

Adx(z)«A(z), k)) = (-zkX(z)'X(Z)-l + X(z)A(z)X(z)-t, k). (26)

3.3 Drinfeld-Sokolov reduction on gl.\

Tbe general theory (see seet. 2.1.3 and Lemma 26) give the following:

(i) (g(>.t and (n>.(z)t are Poisson manifolds;

(ii) action of N>.(z) on (glY is POiSSOD;

(iii)the natural projection (momentum)

is Poisson and N>. (z )-equivariant.

Analogously to what we did above (see sect. 2.2), cosider the matrix

00000
10000

f= 0 1 0 0 0
o 0 1 0 0

15



as an element of (n>. (z)t . (To j ustify the notation 0 bserve that fronl the S(2 - point of

view the matrix above is simply the image of / E .8(2 in g(oo') Restrict the momentum

P>. to (g[>.)~. It is obvious that, firstly, PÄ 1
(/) :::::: / + b>.(z), where b>.(z) is the sublagebra

of uppertriangular matrices, and, seeondly, that N>.(z) is the stabilizer of /. Henee there

arises the quotient spaee p>.l(!)>./N>.(z), ..\ E C.

Proposition 3.7 (i) Each N>.(z)-orbit in p>.l(f) contains one and only one Frobenius

matrix, i. e. an element 0/ the form

b1(z) b~(z) b3(z)
100
010
001

(ii) Elements of N>.(z) have no fixed points on pÄ1(f).

(iii) Fo r any ..\ th e quotien t spaee P>.1 (f) / N>. (z ) is isomorphie to the direet produet

ni~l C«z)) equipped with the topology 0/ projeetive limit.

Again the general theory says that p>.l(f)/N>.(z) is a Poisson manifold with the Poisson

strueture being redueed from the Kirillov-Kostant structure on (g(>.t. It is naturally

isomorphie to 'I! DS>. as a topologieal spaee, the isomorphism being independent of ..\ (cf.

( 11)).

Theorem 3.8 The spaees p>.l (f)/ N>.(z) (equipped with the redueed Poisson strueture) and

'I! DS>. (equipped with the quadratie Gel/and-Diekey structure) are isomorphie as Poisson

maniJolds Jor any ..\.

Remark 3.9 The (finite dimensional) g[n -quotient 0/ the algebra g[>. (Jor integral ..\ = n)

over the maximal ideal J eorresponds preeisely (via affinization and the classieal DrinJeld

Sokolou eonstruetion) to Poisson submaniJolds DOn oJ purely differential operators in the

affine space 'I! DS>.. Indeed, /unctions uanishing on a Poisson submanifold form an ideal

in the Lie algebra oJ Junctions on the entire Poisson t1laniJold. The corresponding quotient

is nothing else but the Poisson algebra 0/ functions on the submaniJold.

Remark 3.10 Th e first (Linear) Gel/and- Diekey structure is defined by the form ula VA (L) =

(LA - AL)+. Unlike the second (quadratie) structure aboue the first 0 ne exists not on

the entire group 0/ \IJ DS, but only on the subspaees 0/ integral degree .x ({6J). Drinfeld

Sokolov reduction represents the linear Poisson structure on sealar differential operators

oJ n th order as the reduction 0/ a eonstant Poisson strueture on g(: (i. e. on first order

16



matrix differential operators). This eonstant Poisson strueture on the dual spaee is ob

tained by the /reezed argument prineiple applied to the [(irillov-[(ostant strueture at the

point (0, eIn) E 91:. Here 0 is the eoefficient at z :z' and eIn is the eurrent on SI with the

only nonvanishing entry equal 1 at (l,n)-plaee.

One ean literally repeat the arguments for the Hamiltonian reduction from g(>.. Then

the finite matrix e1 n is to be replaeed by an infinite matrix, an element 0/ g(~ with the only

nonvanishing entry at the same plaee (l,n). This entry is singled out by the block structure

of gl>. for integer'" = n. However, for a generie '" no such element is specijied, and no

linear Poisson strneture exists on the spaces \IJ DS>. after reduetion.

4 Proofs

4.1 Affinization and Coadjoint Representation of gl

Proposition 3.7 says what canonical form of a matrix under the action of the group N>.(z)

iso In our case, as it sometimes happens, it is easier to find a canonical form of a family of

matrices than to do so with a single matrix. In order to realize this program we need to

extend some of the above introduced notions to the case of the algebra gl.

4.1.1 Affinization

The algebra gl (incorporating the formal variable t) admits the trace: observe that for any

A = (aij) the expression
N-1

P(A, N) = E aii
i=o

is a polynomial on N and set

Tr A = P(A, t).

It follows that both gl and the loop algebra gl(z) = g( 0 C((z)) carry an invariant non

degenerate C[t]-valued inner product defined by

(A, B) = Tr AB,

(A(z), B(z)) = Resz=oTr A(z)B(z)z- l dz (resp.).

The loop algebra g[(z) admits the central extension determined by the cocycle

< A(z), B(z) >= Resz=o Tr A(z)'B(z) dz.

This provides the central extension gl = g((z) EB C[t].

17
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4.1.2 Coadjoint Representation

Let as usual C[[t]] be the ring of formal power series, C((t- l )) = C[t, t-l] + C[[t- l]].

C((t- l )) is a C[t]-module and C[t] C C((t- l )) its C[t]-submodule. We identify t- lC[[t-l]]

with the quotient C((t-l))/C[t]. This equips t-lC[[t- l]] with a C[t]-module structure

coming from C((t-l))/C[t].

Existence of a nondegenerate invariant C[t]-valued inner product on g( gives that

(28)

The isomorphism is established by assigning to the pair

(g(t), A(t)), g(t) E t-lC[[t- l]], A(t) E gl a functional by the formula

< g( t )A(t), B( t) >= Rest=og(t )TrA(t )B( t).

Similarly, g((zt ~ t-lC[[t-l]]~C(t)g[((z))and (grt ~ t-lC[[t-l]]~C[t]g(((z))E9t-lC[[t-l]],

where element (0, g(t)) sends (A(t, z), h(t)) to Rest=og(t)h(t).
For any g(t) E t-lC[[t- l]] set

(gl);(t) = {(g(t)A(t,z),g(t)), A(t,z) E gr((z)).

It is tempting to say that the dual space g(;(t) for a fixed g(t) is in one-to-one corre

spondence with gl((Z)). At least there is a map

gr((z)) -+ (gt);(t), A(t, z) ~ (g(t)A(t, z), g(t)). (29)

Properties of this map, however, essentially depend on the properties of g( t ). Call

an element of t-1C[[t- l]] rational if it is equal to Laurent expansion at 00 of a rational

function of tj otherwise an element of t-lC[[t- l]] is called irrational.

Lemma 4.1 (i) 11 g(t) is irrational then the map ( 29) is a one-to-one correspondence.

(ii) Let g(t) = p(t)/q(t) lor some mutually prime p(t), q(t) E C[t]. Then the map is a

surjection with "kerne.l" equal to the set 01 all matrices with entries divisible by q(t).

Proof. View elements of (gl);(t) a.s matrices with coefficients in g(t)C[t]/(g(t)C[t] nC[t])

( see ( 28)). Such a matrix determines the zero functional if and only if all its entries are

equal to 0, Lemma folIows. 0

The definitions imply that the coadjoint action of gt(z) preserves affine subspaces (gr);(t).

Lemma 4.1 implies that the space (9l);(t) is always identified with gl((z)) in the sense that

18



in the case (ii) elements of g((z)) have to be viewed as lnatrices with entries in the quotient

ring C[t]/q(t)C[t]. Having this in mind one obtains that

adX(t,z)(A(t, z)) = [X(t, z), A(t, z)] - zX(t, z)', A(t, z) E (g();(t). (30)

The specialization map g( -+ g(" induces elnebddings

Direct calculations show that in fact

(0(,,); y (gl);/(t_,,),

where l/{t - .x) is viewed as aseries Li?O.x i /t i+1,

The left dual to ( 31) is as follows

1 1
(-,A(t, z), -,) t-+ A(.x, z).
t-" t-"

(31)

(32)

Indeed, Lemma 4.1 implies that O(;/t-.\ is in one-to-one correspondence with g((z))
modulo the relation t ~ .xj this produces the desired evaluation map.

In exactly the same way as in the g(.\ -case one defines the nilpotent subalgebra n C g(,

the corresponding loop algebra n(z), the corresponding group N(z) = id EB n(z) and proves

that this group is exponential.

Exponentiating ( 30) one obtains that the coadjoint action of the group N(z) is given

by

where, as always, if the assumption of Lemma 4.1 (ii) is satisfied, then all matrix entries

are considered modulo the relation q(t) ~ O. In particular, when q(t) = t - .x one obtains

the coadjoint action of N.\[z, Z-l] on (0(,,);,. This also means that the embedding ( 31) is

N(z)-equivariant, where N(z) operates on (gl,,)i via the evaluation map N(z) -+ N,,(z)

4.1.3 Conversion of a matrix to the Frobenius form - Proof of Proposition

3.7

Fix g(t) E t- 1C[[t- 1]]. Consider the natural projection
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and denote its restrietion to the subspace gr;(t) by Py(t). As above, cosider the matrix

00000
1 0 0 0 0

1= 0 1 0 0 0
00100

as an element of (n( z ));( t). The following isa natural generalization of P roposition 3.7.

Proposition 4.2 (i) Euch N(z)-orbit in p;(~)(f) contains one and only one Frobenius

matrix
b1 ( t, z) b'J (t, z) b3 ( t, z)
100
010
001

where i/g(t) is rational then bi ( t, z) is understood as an element 01 an appropriate quotient

nny.

(ii) Elements 0/ N( z) haue no fixed points on p;(~) (/).

Items (i) and (ii) of Proposition 3.7 follow from Proposi tion 4.2 as an easy consequence

of properties of maps ( 31, 32). Item (iii) follow from (i) and (ii) because all Frobenius

matrices by definition belong to p~l (/). The rest of this section is devoted to proving

Proposition 4.2.

Suppose for simplicity that g(t) is irrational. Element X E N(z) converts A E g[(z) to

the Frobenius fOrIn if and only if the following equation holds

-zX'+XA= BX (34)

for some Frobenius matrix B, see ( 33). We will show that for any A E gl(z), the equation

( 34) can be effectively solved for unknown X and Band that the solution is unique. This

is achieved by the following recurrent "diagonalwise" process.

Let X = (Xij(t, z)), A = (aij(t, z)) and B be as above. (Note that all matrix entries

are "functions" of z and t.) By definition, Xii(t, z) = 1. Therefore ( 34) for diagonal entries

glves

XOl(t,Z) = -bdt,z) +aoo(t,z), aii(t,z) +Xii+l(t,Z) = Xi-li(t,Z), i ~ 1.

This implies that

i

Xii+l(t,Z) = - Lajj{t,z) - bdt,z), i ~ 1.
j=O
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The condition (*) in the definition of g[ rneans that Xn-l n(n, z) = 0 for an sufficiently large

positive integers n. So,
n-l

b1(n, z) = L: a.1.1(t, z) .
.1=0

Hut the surn in the last expression is a polynornial in n, due to the definition of g( , and

this uniquely determines bdt, z) as a polynomial in t.

Suppose we have fouod b1(t,z), ... bn_1(t,z) and Xi.1(t,Z), 0 ~ i < 00, i < j ~ i+n-1

for some n > 1, so that Xii+k(t, z) is a polynomial k for an sufficiently large k. Equation

( 34) implies

-ZXOn-l (t, z)' + aOn-l (t, z) + xOlal n-l (t, z) +... + xOn-lan-l n-I (t, z) + Xo n

= b1(t, Z)XO n-l + b2(t, Z)Xln-l + ... + bn- 1x n-2n-l + bn,

-ZXin+i-l (t, z)' + ai n+i-dt, z) + Xi i+l ai+l n+i-l (t, Z) ... Xin+i-l an+i-l n+i-l (t, Z) + Xl n+i

= Xi-l n+i-l, i > O.

As above we see that solving the i-th equation for Xin+i we obtain

Xin+i(t,Z) = q(i,t,z) +bn(t,z)

for some polynomial q(i, t, z) and all sufficiently large i. Again the definition of g[ implies

that Xin-i(n + i, z) = 0 for an sufficiently large positive integers n, and hence bn(t, z) =

-q(t - n, t, z).

The described process shows that for any A E p;(~)(/) there is at most one element of

N(z) converting it to the canonical form. It is easy to see that the infinite matrix (Xi.1)

calculated above is an element of N (z). P roposition 3.7 follows in the case of irrational

g(t).

As to the rational g( t) case, observe that, although the value of an element of the

quotient ring at a point does not make sense, vanishing of an element of the quotient ring

at a point does make perfeet sense in our case (see again property (*) in the definition of

gl), and so, the same conversion process cOlnpletes the proof. 0

Remark 4.3 We point out another consequence 0/ the conversion process. Por any A, g[n

embeds naturally into g(.\ by 1neans 0/ rnatrices with only finite number 0/ non-zero columns

and rows. This gives rise to the embedding 0/ the algebra of loops in the upper triangular

matrices and of the corresponding loop group. It is easy to see that this embedding is

equivariant if A = N for all sufficiently large positive integers N. In partieular it induees

an embedding 0/ the quotients DOn y. \IJ DS.\. Note that the last embedding is not Poisson

if A > n.
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4.1.4 Proof of Theorem 3.8

A. Filtrations of ni~l C((z)) and p).l (/). Recall that there is a filtration (c.f. ( 12))

k k

W1 C W2 C ... C Fun(II C((z))), UWi = Fun(II C((z))).
i=l i~l i=l

Similarly one represents p-l (/h. as p-l (f)k X p-l (/)-1., k 2: 0, where p-l (f)±k is the

set of matrices f + (aij), where aij = 0 if j ~ i + k - 1 (j > i + k - 1 respectively). Again

let jk be the projection on the first factor and set Uk = jZ(Fun(p-l(f)k)), k 2: 1. The

result is the following filtration

U1 C U2 C ... C Fun(p-l(f)), UUi = Fun(p-l(f)).
i~l

Consider the projection 1T': p-l(f)>. -t ni2:1 C((z)). The group action is compatible with

the filtration and therefore

B. Proof of Theorem 3.8. Let {,.,} be the Poisson bracket on (g(>.)*, {., .}~ be the

Poisson bracket on ni~l C((z)) obtained as a result of hamiltonian reduction, {., .}>. be

the second Gelfand-Dickey structure on ni~l C((z)). W,e have to show that {., .}~ = {., .}>.
for all ..\.

Let f E Wi , 9 E Wj • Recall that {!,g}:\, {f,g}>. are polynomials on ..\. Therefore it

is enough to prove that

{!,g}N = {!,g}N

for all sufliciently large N.

By definition,

Recall also ( see ( 13) ) that

{Wi , Wj } >. C Wi+j .

The last formula along with compatibil~tyof 1T' with the filtrations implies that

It follows that functions 1T'.!, 1T'.g and their commutators are uniquely determined by

their restrictions to gln(z) E (gl). (see Remark 4.3) for sufficiently large n. Let x E gln(Z) E

(gl)*. One has
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{f,g}N(1TX)

= {1T-f,1T-g}N(X)

= {1T- flgl
n

' 1r-9lgl
n

} N

= {f,9}N(rrx),

(35)

(36)

where (35) follows from ( 4), ( 36) follows Remark 4.3, Theorem 2.6 and ( 4). Theorem 3.8

has been proved. 0

5 Two more examples of deformation of Poisson
structures

Algebra g(n plays a universal role in mathematics for the reason that almost any algebra

maps ioto it. The algebra g[" is expected to playa similar role in the deformation theory.

Here are a few examples.

5.1 Deformation of Drinfeld-Sokolov reduction on orthogonal
and symplectic algebras

In this section we construct 2 involutions: oue on the space of \J! DS", another on the

algebra gl.\, such that the Hamiltonian reduction sends a certain invariant subspace of oue

to a certain invariant subspace of another.

1. Gelfand-Dickey .sp, .so·brackels.

To describe the Gelfand-Dickey structures corresponding to the Lie algebras .sp and .so

we introduce the following involution * on the set \J! DS" of pseudodifferential symbols:

o 0

( E uk(z)D"+kr = E (-I)kD"+k uk(z)
k=-oo k=-oo

Definition. A pseudodifferential symbol L is called self·adjoint if L- = L.

The set of self-adjoint pseudodifferential sYlnbols \J! DSfA can be equipped with the

quadratic Poisson structure in the same way as the set \J! DS". Having restricted the space

of linear functionals to self-adjoint symbols oue can use the same Adler-Gelfand-Dickey

formula ( 10).

We would like to emphasize that the traditional definition of the SP2n- ( 502n+l-)

Gelfand-Dickey brackets confines to the case of seIf-adj oint (skew self-adjoint) genuine

differential operators of order 2n (2n + 1, resp.).
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2. The simultaneous deformation of the algebras 8P2n, 802n+l'

Define the antiinvolution (1 of .6[2 to be the multiplication by -1. Observe that (1

preserves the Casimir element C = e/ + fe + ~h2. Therefore (1 uniquely extends to an

antiinvolution of g[>., which will also be denoted by the same letter (1. It is easy to see that

the eigenspace of a related to the eigenvalue -1 is a subalgebra. Denote it by po>.. The

family of algebras po)" ..\ E C is adeformation of both the families .sP2n, .s02n+l: if ..\ = 2n

(..\ = 2n + 1) the algebra po>. contains .6P2n (.s02n+d as a quotient, see [8].

Remark 5.1 Th e algebra g(), is a direet sumolS(2 -submodules ffii2:: 0 V2i+ 1. The inuolution (1

aels trivialty on the subspace EBi2:: 0 Y4i+l and it aets by multiplication by -Ion the subspaee

ffi i 2::0 Y4i+3 .

A direet ealeulation shows that if the embedding 01.6[2 into g[n is given by the image 0/
I ( 16):

0 0 0 0 0
1 0 0 0 0

Ir-!; 0 1 0 0 0
0 0 1 0 0

0 0 0 1 0

then the involution a aels on g(n the loltowing way, It transposes a matrix with respeet to

the "second diagonal" (not the m,ain diagonal, but the other one)J and changes the sign 01
alt entries that are situated on every other shortened diagonal counting Irom the main one:

0'(ai j) = (-1 )i-
j a n-j-l n-i-l' Unlike the definz'tion 01 0' we used previouslYJ the latter can

not be earried ouer to the case 01 g(>..

One can extend the not ions of trace, affinization, nilpotent subalgebra etc. to the case

of the algebra po>..

Theorem 5.2 The Hamiltonian reduclion 0/ the J(iriltov-J(ostant Poisson structure on

the algebra po), results in the quadratic Gelland-Dickey struelure on lhe space 01 pseudod

ifferential symbols \lt DSfA.

Proo/. This is an equivariant version of the main theorem 3.8. Again, the result holds

in virtue of the finite dimensional analog proved for SP2n and S02n+l by Drinfeld and Sokolov

( [6]) and polynomial dependence on ..\. 0

Remark 5.3 Note that in the approach above it is possible to treat the cases 01 sell-adjoint

and skew sell-adjoint operators on the same looting.
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5.2 Deformation of the Toda lattice

Recall the construction of the classical nonperiodic Toda lattice. Let Eij be the matrix

whose only non-zero entry is situated at thc intersection of the i-th row and j-th column

and is equal to 1. Let bn C g(n be the subalgebra of upper-triangular matrices and b;; C g(n

tbe algebra of lower-triangular matrices. Identify b~ with b;; by means of the trace. Set

n-l

An = L Ei+1i E b~.
i=1

Let 0 An be the orbit of An in the coadjoint representation.

The dynamical system on OAn related to the flow generated by tbe function H'l(A) =
Tr(A + El)'l where e = Li~11 i(n - i + 1)Eii+1 is called Toda lattice. Note that the

element e can be replaced by any linear combination of Eii+1 with non-zero coefficients;

our choice is motivated by the generalization to the öl). -case, see below. The function H'l

includes in tbe family Hi , 2 ~ i ~ n, where Hi(A) = Tr(A +El)i. Functions Hi are g(,.

invariant, they Poisson commute as functions on gI: ::::::: g[n and, moreover, their restrietions

to b;; also Poisson commute, see [1]. Calculations show that dimO An = 2n - 2. So, the

Hamiltonian of the Toda lattice has been included into the family of Poisson commuting

functions, the number of functions being equal to half the dimension of the phase space.

This proves complete integrability of the Toda lattice. (In fact one ·also has to establish

tbe independence of the functions, see [1].)
This all immediately carries over to the case of gl)., ,\ E C:

Let b). C gl). C g(oo be the subalgebra of upper triangular matrices, b~ ~ b~ subalgebra

of lower triangular Inatrices.

Proposition 5.4 The subalgebra b). can be exponentiated to a Lie group.

Proof. Cf. Lemma 3.6 and the Campbell-Hausdorf formula.

Set
00

A = l::Ei+1i E b~.
i=1

(We denoted this element f in sect.3.) Denote by 0 A the corresponding orbit.

Take the element e = e E gl).. Now we have infinitely Inany invariant functions Hj(A) =
Tr( A + e)i, i ~ 2, their restrietions to 0 Aare again independent and Poisson commute

(this is an obvious corollary of the corresponding finite dimensional result). Therefore we

have exhibited a family of infinite dimensional integrable dynamical systems, "containing"

classical Todda lattices at the points ..\ = n E Z, and being approximated by the latter as

n --+ 00.
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