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Abstract. Some necessary conditions are given for represen-

tability of a given convex function g in a form g(x)=max Zt(x)
t

where Ly is a family of ljinear functions of x, Ck—smoothly

defending on an m~dimensional parameter t.

Introduction:

Functions represented as f(x)=mgx h(x,t) , where h(x,t)
is a differentiable function of variables x and t , appear
in various questions of analysis and optinLization. Recently some
new results have been obtained ([1], [2]), [6], [7], [8]),showing
that the reach techniques from smooth analysis can be applied in
study of maximum functions. In particular, it turns out, that
the high order differentiability of h with respect to both
variables x and t is strongly reflected in the intrinstic
structure of the maximum function £ ( [7], [8] ). The situation
here is somewhat dual: from one side, if we assume, that the
uniform bounds for the derivatives of h of some fixed order
k are explicitly known, wé obtain effective bounds for the
geometry of critical and "almost critical" points and values of
£ ( [8]). These restrictions can be used (and verified) in

effective computations with finite accuracy.

From the other side, in order to obtain conditions of
representability of f as maximum of Ck-smooth family, we must

exclude the explicit bounds of derivatives (al&q’because of a
compactness of the domain and the parameter space, which we al-

ways assume, some bounds exist). The corresponding "passing to

the limit" in geometric restrictions above leads to rather



delicate invariants, such as the fractional dimensions of criti-

cal values ([7]).

The gap between these two kinds of restrictions is big and
in general the present understanding of the structure of maxi-
mum functions is far from being complete. In particular, the
following basic question is answered only in a few very special
situations ([1], [2]), [7] ): what are the necessary and sufficient
condituons for rgpresentability of a given function f(x) as a
maximum of a Ck-smooth family h(x,t) with respect to a para-
meter t, belonging to an m-dimensional compact domain?

An important'special case of this problem concerns the re-
presentability of a given convex function g in a form
gi{x) = m%x Lt(x)', where Ly 1is a family of linear functions of
X , Ck-smoothly defending on a “"compact" m-dimensional parameter t.
The general question can be, in some sense, reduced to this

special one (see proposition 2.2 below).

As far as "polyhedral"” convex functions with a countable
number of {faces are concerned, the necessary conditions of re-
presentability, very close to the sufficient ones, were obtained
in [7] (theorem 4.1, theorem 4.4). But the method, used in [7]

does not work in general case.

The aim of the present'paper is to give necessary conditions
of a representability of generél (not only "polyhedral") convex

functions as maxima of smooth families of linear ones.

We give two different type of conditions: the first one
in terms of points, where the Hessian of our function (which
exists almost everywhere, by the Alexandrov-Buseman-Feller theorem)

fails to have the maximal rank.



The second condition concerns the critical values of
{(nonconvex) functions, which can be obtained by substracting
from our initial convex function any sufficiently smooth one.

These two kinds of conditions are shown to be independent;
both allow>to find many explicit examples of "nice" convex func-
tions, not representable as a maximum of a "too smooth" family
of linear ones.

For "polyhedral" convex function the first of our represen-
tability conditions coincides with the one of theorem 4.1 [7].
Presumably, it is also "almost sufficient" in this case (see
section 4 below). In contrast, for general convex functions,
there are strong indications that some additional "invariants of
representability” exist. We discuss this question in section 4
below.

The author would like to thank the Max-Planck-Institut fir

Mathematik, where this paper was written, for the kind hospitality.

2. Definitions and results:

To siﬁplify ndtations, we assume below, that the maximum
functions considered are defined on the unit closed cube
® = [0,11%cr™ . Ck-differentiability of the function on a
closed set always means below, that this function can be exten-

ded to a Ck-smooth function on some open neighbourhood of the set.

Definition 2.1. For n,m,k = 1,2,..., Sn n denotes the set
'

of functions 'f on 1" , representable as



f(x) = max. h(x,t) ’ x€In '

teT

where T" is a compact smooth n-dimensional manifold and

h: I"xT™sRisa k times continuously differentiable function.

k

For n,m,k = 1,2,..., Qn n denotes the set of convex
r

functions g on ° : representable as

g(x) = max Rt(x) , xe1®,
teT™

_ n
where zt(x) = a1(t:)x1+...+al_‘(t)xn + b(t) for x= (x1,...,xn) €R,
and a, (£)reees an(t), b(t) are k times continuously differen-

tiable functions on a compact smooth m-dimensional manifold ™,

One can easily show, that we can always assume the manifold

" in definition 2.1 to be a closed unit m-cube Imc: Rm. Notice

also, that the formula above defines functions from er(x n on all
. ’

the R". and not only on .

The following proposition relates the classes S and Q:

Proposition 2.2, Let f¢€ S]; m ' k 2 2. Then there is K20 such
I



that the function g = £ + Ko is convex and belongs to
k-1 - 2 _ .2 2
Q,nem where o(x) =ikxH" = xJ + ... + x .
Conversely, if g GQﬁ m’ then for any k times continuously
| 4

differentiable function u on I, g + uE:Sﬁ m°
14

Proof. Let fEISk . Pix some representation f(x) = max h(x,t).
n,m teTm

Since h is k times continuously differentiable on In:tTm,

k22, all the second partial derivatives of h are bounded. Put
2
a"h(x,t
K = :ug "(—5,—[{-—5-;‘-?“ i, 3=1,...,n ,
14

where | || denotes the Euclidean norm of the (nx n)-matrix
(__Qf_h__)
axi axj

Consider the function H(x,t) = h(x,t) + Ko({x). By the

2
choice of K, for any x,t the matrix (3%—%3—) is positively
19%.

defined. Hence for any tE:Tm, the function Ht = H{(-,t) 1is a

n
convex function on I'. Therefore,

g(x) = £(x) + Ké(x) = max (h(x,t) + Ké(x)) = max Ht(x)
t t

is convex, as the maximum of a family of convex functions Ht'

Moreover, each H can be represented as H,_ = max £ , (x),
t t Liegn it

where kt,t' is the supporting linear function of H

t at the

point t' e1”. Clearly, lt £ depends k-1 times differen-
’

tiably on (t,t') €T xI” . Thus g(x)= . max 2 o (x) € Q]ri::u

(t,e')€ TR? trt m

Conversely, if geqﬁ m ! i.e. g= max zt(x), then
’

ter™®



_ k
g(x) + u(x) = txgﬁ(zt(x) + u(x))e Sn'm .

Proposition is proved.

To give our conditions of representability we need the

notion of the entropy dimension:

Definition 2.3. Let Ac<R? be a bounded subset. For any

e>0 denote by M(e¢,A) the minimal number of balls of radius ¢,

covering A. The entropy dimension of A , dime A, 1s defined as

dimeA = inf {B/3K, s.t. Ve, 0<es 1, M(g,A)s K(%)B} .

We do not discuss here in detail the properties of the
entropy dimension (see e.g. [3],[5],[9]). We mention only that
for a "nice" sets A, e.g. for compact submanifolds in Rq ’
dime coincides with the Hausdorff dimension dimh and with
the usual topological dimension. In general, dime A;;dimhK
and the difference between these two dimensions becomes essential

1 1

(] n 3 1_ — 2 commm—
for "scarce" sets. E.q. dim, {1'2a""'px'"'- T

Hausdorff dimension of any countable set is zero.

, while the

To formulate our main condition of representability, we

remind the notion of the second differential we need:

Definition 2.4. A quadratic polynimial P(x) is called the

second differential of a function f at xOEIin, if

1£(x) - P(x)| = of lx=x, 7).



If the secdnd differential of f at Xq exists, it is unique

and is denoted by dzfxO(x).

By the Alexandrw-Buseman-Feller theorem, for any convex
function .g on In, the set Gg of points z €£n where d2gz
exists, has measure 1. For any zEEGg we define the first and
the second order partial derivatives of g at 2z in the

usual way through the coefficients of dzgz. In particular, we

define the grad g(z) as the vector (gg ,...,gg ) and the
x1 Xn 2

(_.g_z_g_)
axiax. z"®

Hessian matrix H_(2z) as H_(z) =
g9 g 3

Definition 2.5 Let for a convex function g on i , and for

-]
q=0,1,...,n, Sq(g) ch c In be the set of points zEGg,

where the rank Hg(z) sq.
Let aq(g) cR" be the set

{grad gq(z), zesq(g)} .

Theorem 2.6. For any gE.Qﬁ o’ k22, and for g =0,1%1,...,n
’
m- ]
dim oq(g) sq' + .T‘I_ ,

where ¢gq' = min (q,m).

Proof. Write g as g(x) = max Lt(x),
t€
where zt(x) = a1(t)x1+...+an(t)xn + b(t), a1,...,an,b - k times

continuously differentiable functions on ™,

We consider an auxiliary mapping ¢:13“*Rn, defined by

B(t) = (a (t),...,a (L)) € rR",



Lemma 2.7. Let z€ Sq(g), q=20,1,...,n, and let tz€ ™ be such
that

g(z) = max_ &, ,(z) = Lt (z).
z

te™
Then t, is a critical point of rank q of the mapping ¢
(I.e. the rank of the first differential d@(t):R"+R", or of
the restriction of this differential to the boundary aTm, if

tz € a-r“‘, is at most q).

We give the proof of lemma 2.7 below, and now we complete the

proof of theorem 2.6.

Clearly, for any z¢€ Sq(g) c Gg ’

by lemma 2.7 we have an inclusion éq(g) CAq(¢) . where Aq(¢)

grad g(z) = ¢(tz). Hence

is the set of critical values of rank q of @ (i.e. the values
of ¢ at the points, where the rank d4¢ is at most q). But
by theorem 1.3, (5], dimeAq((b) sq' + E%L' , and hence

- 1
dim, o (g) sq° + F‘T‘L , @' = min (m,q).

Theorem is proved.

Proof of lemma 2.7.

Let 2z € Sq (g). After an appropriate affine coordinate trans-

formation in R" we can assume that 2z = 0 ERn.

By definition of Sq(z) we have rank Hg(z) S q. Hence we
can find an n-g-dimensional subspace Vc R" » such that for any

\£) ,vze v, v1Hg(z)v2 = 0,

Let VgreserV be the vertices of the regular simplex in V,

n-q
centered at 0Q0€ VE Rn, vy = (vi‘,...,vi) . For p > 0 denote by



zi(p) r 1 =0,...,n-q, the points zi(p) = pvi.

Remind that toe ™ is one of the values of the parameter t,
for which zt is the support linear function of g at 0. Hence

0
for any i = 0,...,n-q, and p20 we have

g(zg(p)) 22, (z;(p)) ,
0
and by definition of the second differential,
(*)  glz;(p)) - &,_ (z,(p)) = o(p?)
i to i

as P * 0 , since the points vy belong to the null space of the

Hessian Hg(O).

Now we want to show that the derivatives of li(zi(p)) with
respect to t at to are small. The following lemma can be

proved by elementary computations:

Lemma 2.8. Let ¥ be a twice continuously differentiable function

on the domain D in Rq, and let lldz\l’(y) Il s K for any yE€D.

Let M= max VY(y).
y €D

Then for any yE€D, Ilc’l\ll(y)H:Z S 4K(M - ¥(y)), assuming that
the distance of y to the boundary of D 1is at least (!:%iXL)1/2.

Assume in additon that the point ty belongs to the interior

of T" . Considerations in the case ty € aT™ are completely similar.

Differentiating L.(x) = a,(t)x +...+a (t)x + b(t) with

respect to t we obtain;

dtlt(x) = da1(t)x1+...+dan(t)xn + db(t).
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In particular, for x = 2 = 0 and for ¢t = to we obtain

(since zt(O) attains its maximum at ¢t = to)

42 (0) |pog = lEg) = 0.

At each point zi(p), i=0,...,n~q, p20, we, therefore,

have
2, (2, (0)) = da, (t.)vip+...+ da_(t,)vDp
£02100) jeae 1{Eg)ViPte. -t Ca I%pIV4P -

Dividing these equations by p we get finally the following

system of linear equations for daj(to):

1 -1 4
(*%) vida1(t0)+ cee TV da (to) =5 at t(z (p))lt =t '

i = 0'1,-..'n"q .

Notice that the left hand side of this system does not depend
on p . To estimate the right hand side, we apply lemma 2.8 to

the function V¥ (t) = 2t(zi(p)) on T at the point to .

Since the family zt by assumptions is twice continuously

differentiable on a compact manifold T™ , we can assume that

Hdzwllsx. M = max ¥ 1is in our case g(zi(p)).

Now by inequality (*) above and since to is an inner point
of Tm, the conditions of lemma 2.8 are satisfied for o

sufficiently small. We obtain:

d
WEE Lel230P) jeee I § 2(k|g(z, (o)) - “to‘zi“’”“m -

= o(p), 1 =20,...,n-q, by the inequality (¥*).



1 4
Hence 3 It Lt(zi(p))lt=t0+ 0 as p-+>0, and passing to

the limit in the system (**), we finally obtain the following

linear system:

1

_ . ) i )
vida1(to) + sl + vidan(to) =0 ,1i=20,...,n-q.

Since vi = (vl,...,v?) are the vertices of a nondegenerate
simplex, the rank of this system is n-q, and hence the rank of

d¢(to) = (da1 (to),... dan(ty)) is at most q .
Lemma 2.7 is proved.

The criterion of representability, given by theorem 2.6,
concernes the behavior of the second order derivatives. Our next

result gives the "first order® criterion,

Definition 2.9 Let f be a continuous function on In. The

point x € 1" is called a critical point of £ if the first
differential df(x) exists and is equal to zero. The values of
f at all the critical points form the set A(f) €cR of

critical values of f.

Clearly, any convex function can have at most one critical
value. Thus to get nontrivial restriction for a representability
of a given convex function g, we first "destroy" its convexity

by substracting some auxiliary smooth function u.

Theorem 2.10 Let a convex function g on ° belong to Qﬁ m
’

Then for any k times continuously differentiable function u

on In,
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n+m
dimeA (g-u)s * -
Proof. By proposition 2.2, g-ue€ Sﬁ m ° Then by theorem 3.1
L4

n+m
R .

[71, dime A(g-u) =

Remark 1. The criterion of theorem 2.10 takes into account only
the "smooth" critical points and values of g-u. Using the version
of the Morse-Sard theorem for maximum functions, proved in [ 8],

one can give similar bounds for the entropy dimension of "nonsmooth”

critical values of g-u.

Remark 2, Both the results of theorem 2.6 and theorem 2.10 remain
valid also in the case where the parameter manifold is not compact,
with the only alteration: the entropy dimension should be replaced

by the Hausdorff dimensien.
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3. Some examples

The criteria of representability of convex functions
as maxima of linear families, given by theorem 2.6 and 2.10,
respectively, are independent (see examples below). They also
differ in their applicability. The first one is usually easier
to check, but the construction of examples, based on this
criterion, requires some accuracy. The second criterion allows
to construct immediately a lot of examples of convex functions,
not representable as a maximum of a "too smooth” linear family:
it is enough to take any function on 1™ with a "big" set of
critical values, and to make it convex, adding KHxﬂz with
sufficiently big K. However, the vertication of this criterion

in concrete situations can be rather difficult.

The following propositions and examples make these remarks

more precise.

Proposition 3.1 For any countable bounded set rcR? there

exists a convex function g on 1 with oi@containing I .

Moreover, if the cond Ic?d conv X, i.e. if all the con-
densatien points of I belong to the boundary of the convex
hull of I, then there exists a convex function g on In,

for which co(g) = X, oq(g)-oo(g) =@ , 9= 1,.0.,n.

Proof. For a given bounded countable set tcR® one can easily

construct by induction a piecewise linear convex function g on

n

I , with a countable number of linearity domains, such that for

any V€I , grad g(x) = v at any inverse point x of one of the
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linearity domains of g. Since ng = 0 at any such x ,

we obtain Ic % (g).

If cond Ic 3 convi, then g can be constructed in such
a way, that the linearity domains of g condensate only to

the boundary of 1.

exists, are
n 2 Yo
Therefore, the inner points of I, where d“ g ' exactly the
inner points of the linearity domains of g. By definition we

obtain o,(g) =X, oq(g)\ oplg) =9 for q=1,...,n.

Remark. In the last case, i.e. for cond Xc 3 conv I, we can

easily make our function g c”-smooth in the inferior of I”.

Corollary 3.2, For any q = 0,1,...,n, and for any countable

bounded set rcR*™9 with cond Iec 3 conv I, there exist a convex

function g on In, with

Op(g) =@ ’ P<q ,
op(g) = rx19cRr? 9 «r9 = R",
op(g) = oq(g) P2Qq .

Proof, First we find, using proposition 3.1, the convex function
§ on 1™9, with 00(3) = £ , Now we define g on

1" = 1" 9% 19 as g(x,y)= Fx) + % iy , xer™?, yerd.
Computations of the second differential of g show immediately

that g has the required properties.
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Now for any a , 0S a<p, one can easily find bounded

countable sets }:mcRp with d:i.me Za=u . Let e.qg.

1 _ 1
g ooy —E’..'}’ dime AB = _-—.1"‘6

1
28 r
I, = Ag,cRP , with B8'= g -1, we

AB c [0,1] be the set {1,

(see e.qg. [3]). Now taking

have dimé Ly = = a, Clearly, cond IGC:B conv Ia. One

P
1+8*
r

also has ' dim_ I, xI' = a + r.
e

Hence the proposition 3.1 and corolary 3.2 show, that the
_invariant dime oq(g), q=20,1,...,n, are independent in the

following sense: for any q = 0,1,..,n and a, gsSa<n, one can

find a convex function g on 1"

q,a

P<q , dim Op(gq'a) =a, Pp29g.

with dim op(gq'a) =0,
k . m-q'
By theorem 2.6, gq,a’!Qn,m for q' + X < a, or
-y §
for k>%:%r » where gq' = min(m,q).
Now we turn to applications of theorem 2.10.

Proposition 3.3. Let ¢ be a £ times continuously differentiable

function on 17,222, and let dime A(e) =a . Then for any sufficientl

big K , the function g = ¢+ K HxH2 is convex and AL~-smooth

and g ¢ Qﬁ,m for any k and m, such that E%E <a .

n+m
k ’

Proof. We have ¢= g - K llxllz, and by theorem 2.10,a = dime A(p)s
k
if gEIQn'm .

As an example consider the Whitney function wn:In-vR, where

) is Cn-1

n -smooth on I® and A(wn)=[0,1]. (See [4]).
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Since dim[0,1] = 1, we obtain the following:

Corollary 3.4. For any n2 3 and for any sufficiently big K,

the convex function 9, =@, * K lixll 2 does not belong to

k .
Qn,m s if k > n+m.

The sensibility of the entropy dimension to countable sets

allows also here to give examples of very simple and "nice" convex

functions, not representable as maxima of "too smooth” families.

Corollary 3.5. Let for s= 4,5,... ?s be the convex function

on [0,1], defined by Ys(x) = x° cos(%) + szxz.

k
Then Ws ¢ Q1,m for k>(s + 1) (m + 1).

1
s+1

Proof. One can easily check that dimeA(xscos(%)) =

Notice that ¥, is an [s/2]- 1 -smooth function on [0,1]

and it is real-analytic on (0,1].

Now we consider two examples, showing that the criteria of

representability, given by theorem 2.6 and 2.10, are independent.

First of all, corollary 3.5 gives an example of the situation,
where theorem 2,10 works, and fheorem 2,6 gives not restrictions.
Indeed, by definition, W;(x)> 0 for any x € [(0,1]. Hence
gy (¥g) = @. But the bound for the entropy dimension dimeo1(Ws)s 1

is apriori satisfied, since 01(Ws)c:k.
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Construction of opposite examples is more complicated.
Denote by W the set in the plane x,y , defined by the
inequalities 0sxs1, /xsys2/x (See fig. 1).

Let A={124> g, > 0, >... > 0} be some sequence,

1 2

converging to zero. Let &, be the horizontal line {y = 04}

2

and let =z, = (oi, oi) be the intersection point of &, with

i
the curve y =vx .

1

Let also Li be the vertical line {x = oi} . We consider

the function h on [0,1}, defined as follows:

A
1. If the lines zi and 2i+1 intersect inside W, then
hA = 0; on (oi+1 . oi 1.
2. If the lines zi and 2i+1 intersect outsige W, then
h, =0, on (%2,02] , and h, = 2/ on (o2, H1 .

{See Fig. 1).

4(// 60 = 4 e,

[ T} I A i
[ 7Y tﬂ
T
b e :
L, e, &

" Figure 1

hA is a monotone piecewise-continuous function. Let
X

’

g, (x) = f h,(t) dt, x€[0,1] . Then g, is a convex function, and

by construction, o,(g,) = A.
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Hence theorem 2.6 gives the following restriction for

representability of g, ¢

k . m
9o £ Q) p if k> dim_a
Notice, that the sequence A can be chosen to have any

entropy dimension between 0 and 1.

To show that the criterion of theorem 2.10 does not work

for functions ; we need the following simple lemma:

9a
Lemma 3.6 Let u' be acontinuoucly differentiable function on
[0,1] . Then there is n>0 , such that the graph of u' does

not intersect W for 0sxsn .

Proof. Assuming that the graph of u' intersects W for
arbitrarily small x, we obtain immediately that (u")’ tends

to infinity for some sequence of x, , converging to 0.

i
Now fix some k 22 and consider the function gA - u,

where u is k times continuously differentiable on [0,1].

By lemma 3.6, the critical points of g, - u belong to [n,1]

for some n >0. But the interval [n,1] can be subdivided into

a finite number of subintervals, on which 9 is analytic, and

hence g, - u is k times smooth. By theorem 1.3 [§5],

the entropy dimension of the critical values of g, - u on each

of this intervals does not exceed 1 . Since the number of intervals

k
is finite, we always have dim_ A(qA -u) ¢ % . Thus the inequality

of theorem 2.10,
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dime A(gA - u)s-]—]'z-lE + 1is always satisfied for any kz 2,

m=1,2,..., and a k-smooth u , and this theorem gives no

restrictions for representability of g, -
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4. Some open gquestions.

We discuss in this section some additional properties
of canvex functions, representable as maxima of smooth linear
families, which seem to be important in attempts to give

necessary and sufficient conditions of such a representation.

Consider first of all the case of piecewise-linear convex
functions g with a countable number of "faces". In this case
it seems to be possible to give the necessary and sufficient
conditions of representability in terms of the geometry of the
set oo(g) only. But the geometric invariant, more precise than

the entropy dimension, should be considered.

Definition 4.1 (cf. [9]). Let for B>0 and for X.,,...,X_€ Rq,

minimum of the 1 p

pB(x1,...,xp) be theYsum of B-th degrees of lengths of edges

in all the polygonal lines, connecting x1,...,xp. For a bounded

subset AcRY define the B-spred of A,

V. (d) , as V

8 B(A) =  sup pB(x1,...,xp).

p,x1,...,xp€ A

Some properties of the B8-spread and the applications of this
invariant are given in [9].
with g countible numler ‘{ E1 X8

Conjecture 1. The piecewise-linear convex functio;-T;\/;;- In

belongs to Qi n if and only if Vm (00(9)) < o,
f —

LY

For convex functions of one variable and for m = 1 this
conjecture is true ([7], theorem 4.4). For n = 1 and arbitrary

m the condition Vm(oo(g))< o (which is stronger, than the
K



condition dime oo(g) s % of theorem 2.6) is necessary for

k
9€Q o -

In contrast, for general convex function g the geometry
of sets oq(g), together with the structure of critical values
of g - u , seems to be insufficient for complete characterizing

the representability of g as maximum of linear family.

One additional property we discuss here, concerns the

existence of high-~order derivatives almost everywhere.

Definition 4.2, A continuous function £ on Rn is said to

have the k~-th differential at xoe Rn, if there exists a poly-
nomial P:R™+ R of degree k, such that |[|f(x) - P(x)| = o(Mx—xOHk)

(Compare definition 2.4 above).
By the Alexandrov-Buseman-Feller theorem any convex function

has the second differential almost everywhere.

Conjeture 2. Any convex function gEiQi m has the k~th differential
[

almost everywhere.

This conjecture is true in some special cases, say for - -

functions in Q? 7 {iw
' :

The last type of invariant, we mention here, conc
geometry of nonsmoothness points, of convex functions conZM TH€§.
In [6] one such an invariant was considered, which was defined,

roughly, as the integral along the "edges" of the absolute value

of the jump of the gradient of our function. This ivariant was
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shown to be effectively bounded for functions, representable
as the maximum of twice differentiable families.
Conjecturally, for functions from Qﬁ m e can integrate
’
along the edges some power a of the jump of the gradient,

where a<1 depends on n,m,k, and still the integral converges.

Once more, in some special cases, e.g. for piecewise-linear

convex functions of one variable, this conjecture is true.
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