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A ßSTRACT. In t.his paper we eonsider the t.heta eorrespondenee between Irr(GSp(2))
and Irr(GO(X)) when k is a nonarehimcclean loeal field anel dimk X = -I. \Vhen
dct(X) = I! wc deter mine all the elemcn ts of Irr(GO (X)) that oeeurin the eorre­
sponclenee, anel when det(X) '# ] 1 we find all thc infinite dimensional elements of
Irr(GO(X)) timt, oeeur in t.hc corrcspondcllce. \Ve apply this result to pl'OVC a case
of a eonjeeturc of S.S. J\udln conecrning t.he tlrst oecuranec of a representation in
thc theta eorrespondcnee, anel to construet serics of supereuspiclal represent.ntions of
GSp(2, k).

Supposc ];: is a nonarchilneelean IDeal field of eharaeteristie zero anel odel resid­
ual characteristic, _Y is an even diluensional nonelegenerate synuuetric bilincar
space over k anel n is a nonnegative integer. Let w be the Weil represcntation
of Sp(n, k) X Oe);) corrcsponding to a fixed choice of nontrivial additive character
of 1.:, anel let ~x(Sp(n, k)) be the set of clelucnts of Irr(Sp(n, k)) that are nonzero
quotients of w; SiUlila.rly deHne ~1l(O(4Y)). By [\~T], the eonclition that Ir 0c (J be a
nonzero quotient of w for 7r in ~x(Sp(n, k)) anel a in ~ll(O(..;Y)) clefines a bijection:
between ~x(Sp(n,k)) and ~ll(O(~Y)). By [RL the extension of w to the subgroup
R of GSp(11., A:) x GO(..;\) eonsisting of pairs w hose entries have the SaJ1le sinlili tude
factor also clefines a weH behaveel corrcspondence betwecn 11'1'(GSp(n, k)+) anel
Irr(GO(_Y)). Here, GSp(n, A:)+ is the subgroup of elerncnts of GSp(n, k) having
SiIl1i1ituele factors cqual to thc sinülitude faetor of SOI1le eleluent of GO();). More
precisely, let ~x(GSp(n,1.:)+) be the set of elCI1lents of Irr(GSp(n, k)+) whose re­
strictions to Sp(n, 1.:) are Inultiplicity free find have CL constituent in ~x (Sp( 11., A~))j

siInilarly deHne :Rn (G0 (..;\)). Then the condi tion

defincs a bijcction betwcen ~x(GSp(n,1.:)+) anel :RJj(GO(4Y))' In this paper we
consider ~2 ( GÜ(4\'")) w hen dinlk)[ = 4. In this casc, all cleinents of 11'1'( Gü (X) )
have I1lultiplicity free restrietions to Ü(4Y)' and by thc theta dichot0I11Y conjecture,
GSp(2, k)+ can bc replaced \vith GSp(2, k). If clct(..;\) = 1 then we eletermine

During the period of this work t.he author was a Research Associate with the NSF 1992­
1994 special projeet Theta Functions, Dual Pairs .. and Automorphic Fornl.s at the University
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~2(GO(..-\)) conlpletely, and if det(.-\) =1= 1, then we find all the infinite dilnensional
cleUlents of ~2(GOCY)). vVe also givc two applicatiolls of this rcsult. Thc first is
a proof of a case of a new conjeeture of S.S. h~udla coneerning the first appearancc
of a representation in the theta co1'respondencc. Thc second is the eonstruetion of
series of supereuspidal reprcsentations of GSp(2, k). A suullllary of previous v'lork
on this exanlple appears near thc end of this introeluction.

To state the luain theOre111 we neeel SOllle nlore tenllinology. Asslulle dimk .Y == 4.
Let 7r be eontained in 11'1'( GSOCY)). If 7r induces irredueibly to GO(.Y) \ve sa.y that
7r is regular; otherwise, we say that 7r is invariaJlt. Suppose that 7r is invariant. If y
in ..-Y is anisotropie, then the stabilizer in SO(..-Y) of y ean be identifieel \vith SO(1/~),

where )'~ is thc orthogonal cornplClnent to x. Suppose that 7r is invariant. VVe say
that Ir is distinguished if 7r is invariant anel there is a y such that

anel, if det(X) #- I, then y~ is isotropie. Suppose that 7r is elistinguisheel. Then

Since 7r is invariant, 1f extenels to bvo differcnt elClllcnts of 11'1'( GO(..Y)). Eaeh pro­
vieles an action of the nontrivial eleluent of 0CY)/ SO(Y) on thc above hOlllolllor­
phisnl spaee, anel sincc thc spacc is one elilllensional, the aetions are lllultiplication
by ±1. '~Te elenote by 7r+ the extension inelucing lllultiplieation by I, anel by 7r-.

the extension indueing lllultiplication by -1. The definitions of 7r+ alld 7r- do not
depend on the choicc of y.

Theorenl 6.3 (Main Theorelll). Asslllne clill1k.Y == 4. Let a be in Irr(GO( ..Y)).
In tbe ease det(.X) =1= 1, aSSUlne a is innllit,e dilnensiollal. Tllen a is in ~2(GO( ..Y))
if a.nd onl.y if a is not of tllc fon11 7r- for 80111C distinguis11cd 7r in Irr( GSO(..Y)).

This result is entirely analogous to the ease dinlk"-Y == 2n == 2 eonsidered by
Hceke, "Veil, .Jacquet, Langlands and others. In this ease, thc role of SO(J/) is
played by SO{-Y). For a deseription of this case, see seetion 7. Of course, we
expeet the theoreIll to hold for all a in the ease det(..Y) =J 1.

To describe the proof anel n1ake the theorelll eoncrete, we eharacterize of GSO(_X-)
in tenns of units of quaternion algebras. If det(X) == 1, either there is an cxact
sequenee

01' an exaet sequence

depending on the Hasse invariant of ~Y. In the first ease )( is isotropie; in the
second ease, )( is anisotropie. Here, D is the division quaternion algebra over h~. If
det(.Y) #- 1 thcn thcre is an exact sequenee
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Here, ]( = k( JelctC}{)). If det(.Y) = 1, the cxact sequence gives a bijection bebveen
Irr(GSO( ..\)) anel the subset of 7 0c 7' in Irr(Gl(2, k) X Gl(2, k~)) 01' Irr(D X

X D X
)

such that W r = W r " If elct(X) #- 1, thc cxact sequence givcs a two to one map frolll
11'1'(GS0 (..\)) onto the subset of 7 in 11'1'(G1(2, ]()) such that W r factors through N[{ ;
the two represent.ations lying over 7 corresponel to the characters through which W r

factors.
Using these ielentifications, regular, invariant anel distinguishccl havc the follow­

ing lueanings for a.n eleluent Ir of Irr(GSO( ..Y)). Suppose elet(.Y) = 1, ancl let 70c7'

correspond to Ir. Then Ir is regular if anel only if 7 ~ 7
1

, anel if 7T" is invariant, then
7T" is elistinguisheel. Suppose elct(..Y) #- 1, and let 7T" corrcspond to 7 anel the quasi­
character X of k: x. In this case, 1r is regular if and only if 7 is not Galois invariant. In
contrast to the case dct(.Y) = 1, not all invariant rcpresentations are clistinguisheel.
Inclccd, if 1r is invariant, so that 7 is Galois invariant, then 11" is clistinguishecl if anel
only if

HOIUGl(2,k)( 7, X 0 clet) #- O.

In thc nontrivial case when 7 is infinit.e clilnensional, nonvanishing is given by thc
following theorenl. Vve cIainl 110 originality for this result. Thc proof is a straight.­
foward generalization of argunlents fronl [H] anel [F], along with SOUle observations
frolu [HST] on [T]. In thc global casc, this theorelll goes back to [HLR,].

Theorenl 5.3 (HakiIn-Flicker). Let T in Irr(Gl(2, ]()) be infinitc dimensional
anel Galois invariant. Let W r = X 0 Ni:". Tllcn tllC following are cquivalcnt:

(1) HOIUGl(2,k)(T,X 0 elet) #- 0:,
(2) For evelY quasi-character ( of ](X extending X,

(3) T is the base c11Bllge of an elelllellt of Irr(GI(2, k)) with centnJ character

XW/\"jk·

\Vith these interpretations, we ean explain the proof of the lnain theorenl. "Ve
need to show that anelcr the hypothcscs of the theorenl that every elelnent of the
fonu 7r- is not in ~2(GO(..Y)), anel that cvcry elcll1cnt of Irr(GO(X)) not of thc"
fonn 7r- is in ~2(GO(.Y)). The first statenlent follows by an arglunent analogous
to one in [HE:]. This proof dcpends on a Icnln1a that. follows dircctly frOlll a l'esult.
of D. Prasacl [P]: every distribution on 8(_y2) invariant under SO(1f

) is invariant
under O(Y·), for any Y· as above.

To prove the second statelucnt, we use the loeal analogue of thc global lucthocl
of COll1puting a Fourier coeffieient. Let a in Irr(GO( ..Y)) not be of the fonn 7r-. Let
z bc in ..y 2 • If dct( z, z) #- 0, wc will say that z is nondcgcneratc. As above, if z is
nondegenerate, then the eOlnponellts of z gcnerate a nondegenerate subspaee, and
thc stabilizer in O(.Y) is isolllorphie to O(Z), where Z is the orthogonal cOlnplcluent
of the subspaee. By Frobenius l'ceiproci ty, to show that a is in ~2 (G0 (X)) it sufficcs
to show that

3



for SOUle uonelegencrate z. See scction 6. First consicler the ease when a is not
induccd froln a regular elelnent of 11'1'(GSO( ~Y")) 01' is not of the fonn 7f+. Then
det (..Y") f:. 1, and ais the extension of an e1elnent of 11'1'( GS0 (~Y")) corresponding to
a T in Irr(Gl(2, ]()) and a quasi-charactcr X of h: x such that

HonlGI(2,k) (T, X 0 elct) = O.

'~Tith a proper ehoicc of z and quasi-chaJ:acter ( of ](X extencling X, using the
IGrillov 1l10clcl of T v, we show

L(f) = Z((-l, f, 1/2)

is the reqllired linear fllnetional. Here, Z ((-1, f, s) is the zeta funetion associated to
f in T v anel (. In partieular, the invariance of L follows froln thc functional equation
for Z((-l,/,S). Vihen a is induccd fronl a regular elelnent 7f of Irr(GSO(_Y")) 01' is
of the fonn 7[+ there is a silnplification. In this ease, by Theoreul 4.4, it suffices to
show that

for SOUle 110nclegencrate z. "Vhen _Y" is isotropie wc accolllplish this by S0111e IGri110v
lnodel constructions, in part analogous to those of the previolls paragraph, anel
\vhen ..Y" is anisotropie, we use Tunnell 's work [T].

In cOlnbinatio11 with S0111e other results, the llutin thcorern can be uscd to prove a
easc of a conjecture of 5.5. Kudla. To state thc eonjecture, suppose for the nlornent
that dinlk.Y" is arbi trary. For a in 11'1'(GO (..Y) ), let n (a) be the slnallcs tinteger 11:
such that 0' occurs in the theta correspondenec with GSp(n, k)+.

Conjecture 7.1 (5.5. Kudla). If er is in Irr(GO(~Y")) then

n(0') + n( 0' 0c sign) = dilllk ~Y.

Aetua11y, 5.5. Kuclla nlade his conjecture for the correspondcnce for isoilletries,
hut this is equivalent to the conjecture stated here. This conjecture is known to
be true whcn dinlk.\ = 0 01' 2, but. is open for a11 other cases. There is anothcr
conjecture of 5.5. Kudla for representations of GSp(n, h~). See scction 7. \Ve prove
the following theorelll. In the theorcrn, in the case det( ~Y") f:. 1, IrTB C i 11 f(G0 (..\)) is
a certain large set of elelnents of Irr(GO( ..Y)) that includes a11 the supercuspidals.
See section 7 for thc definition.

Theoren17.5. Let dilllk_X" = 4 and 0' be in Irr(GO(..Y)). In tlle ease clet( ..Y) f:. 1
aSStllne a is infinite diznensional, a is in IrrBc inf(GO(){)), and Conjecture 7.2 (5.5.
J(udla) for n = 1. Tllen

n(a) + n(O' 0c Sigll) = 4.

To prove the thcorelll, we characterizc 1{1 ( GO(..Y)) and 1{3 ( G0 (.X) ). That is,
under the sallle assuruptiollS as in the thcorelll, we specify n(a). To do so, we ruake
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use of thc lnain theorenl and [S] and [Co]. For a prescntation of the infonnation:
see the tables in section 7.

The lnain thcorenl also ean be used to construct series of supercuspiclal reprc­
sentations of GSp(2, k) pa1'alnet1'izecl by series of representations of GI(2, h~), D x

anel Gl(2, ](). In the following theoreln, if (J is in ::R2 ( G0 (X) ), then let B( (J) be thc
corresponding elelnent of 11'1'( GSp(2, k)).

Theorenl 8.2. ASSlJ1lle X is as above anel det( ..X) = 1.

(1) (regular series In) Supposc){ is isotropie. JfT,T' in Irr(GI(2,k)) are su­
pcrcuspiela.l, distinet (:l.nd have tllc S8JnC eentral chaJ"acter, anel iE 7f is tl1e
e1clnent of 11'1'( GSO( ..Y)) lying over T 0c T', tllen

C'O( \')
8(Ind~ 50"( X) 7f)

in 11'1'( GSp(2, k)) is supereuspidal.
(2) (regular series Ib) Suppose ~y. is anisotropie. H T, T' in Ir1'(DX) arc distinct

and have the saJlle ccntral cllaraetcr, and if 7r is tlle eleUlcnt oflrr(GSO(~Y))
lying over T 0c TI, then

ll(1 IGO(X) )
u ne GSO(X) 7r

in Ir1'( GSp(2, h:)) is supercuspidal.

If det(~Y) :/= 1 then we also eoustruet two series of supercuspidal representations
of GSp(2, h:). However, in eontrast to thc det(.Y) = 1 ease, the two se1'ies do not
correspond to the two foul' dinlensional synlll1etric bilinea1' spaees with the saBle
detenninant different fronl 1. In fact, eonjecturally, thcse two synunct1'ic bilinear
spaees together give one co1'1'espondence. See section 1; in the statenlcnt of thc
following theorcnl wc a.';;Slunc this discussion. .

Theorenl 8.3. Asslllne ..Y is as above aJlel cl = det(.:Y) =J. 1. ASSLUlle furtller that
Conjeeture 1.3 (theta dichotOlllY) wi tll dinlJ.; )( = 4 and 11. = 2, anel Conjecture 7.2
with 11. = 1 hold.

(1) (regular series cl) Jf T in 11'1'( GI(2, ]()) is supercuspidal, not Galois invariant,
bu t has Galois invarian teen trftl character, anel iE 7r anel 7r

1 in Ir1'( GSO(~Y))
lie over T, tl1en

8(1 IGO(X) I)
11e GSO(X) 7r

in Irr(GSp(2, k)) are Sllpercuspidal.
(2) (Invariant series d) Let T in 11'1'( Gl(2, ]()) be supercuspidal ällel Galois in­

variant. Exa,ctly one 7r in Irr(GSO(){)) lying over T is not distinguisheel,
alld if (Jl and U2 are tlle two extensions of 7r to GO(X), tllen 8(Ul) anel
8(U2) in Irr(GSp(2, h:)) are supercllspida.l.

In this paper we do not c011sider applications to functorality and the theory of L­
packets. For sonle discussion of these topics see [V] and [HST]. In the appendix, we
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give tables sho\ving the passage anel bifurcation of the appropriate representations
of D X x D x, GI(2, A:) x Gl(2, k) aud Gl(2, !() frolll these groups to GSO(4Y), GO(.X)
anel finally GSp(2, k). Thc tablcs nlay be useful to the reader interesteel in these
topics.

'Ve willnow lnake SOlne reInarks ahout previous work on tbe '~Teil representation
aud theta correspondence for sinlilittldes when elilllk ~Y = 4 and n = 2. In [PSSJ
anel [SolL in the case cletCY,) = 1 anel ..:\ isotropie, the inclllceel '~Teil representation
[R,] is used to lift clell1ents of Irr(GSO(X)) to rcprescntations of GSp(2, A:). This
construction is an analogue of the global definition of theta lifts, and uses elell1ents
of ,~Thittaker nloclels in plaee of autoll1orphic fOrIl1s. The problell1 of whether these
representations of GSp(2, k) arc irreelucible is not resolved in [PSS] or [Sol]. The
\vork [HPS] in part investigates the ease elet(4Y) = 1 anel )( anisotropie. In this
case, as a consequcnce of ThcorCll1 9.1 of [HPS], every elell1ent of 11'1'( GSO(..:Y)) is an
SO(~X") quotient of w. Using this result, one could prove the 1l1ain theorCIl1 in this
case using Theorell1s 4.3 and 4.4. Using thc inelueed '~Teil represcntation, results
fronl the previously lllentioneel papcrs, anel thc strong multiplieity one theorelTI
for GSp(2) of [802], aglobai argullleilt in [V] lifts elcll1ents of Irr(GSO(..:\)) that
are the loeal components of cuspielal, not invariant, automorphic representations
of GSO( ~X") to 11'1'( GSp(2, k)). Incluelccl in these rcprescntations are the supe1'cnsp­
iclal representations. Since it uses 'Vhittakcr 11lodels, in the case det(.X") =I I, this
1l1ethod fails to construct the rcpresentations that co1'responcl to one of the exten­
sions to GO(..:X") of the invariant but not elistinguisheel elenlellts of Irr(GSO(4Y))'
Finally, [HST] 1l1akes nlHUY 1'enHl.rks and observations abont the cases when ..:Y is
isotropic, though it is lnainly concerneel with a certain global theta lifting, anel its
application to another problein. In partieular, after thc COlllputation of thc Fourier
coefficient of the global theta lift it 1l1akes a eonjectllre essentially equivalent tü
thc main theorenl in the case 4Y is isotropic; see the guess on page 399. However,
insteael of using the concept of clistinguishecl representations, the guess is phrased
in t.ernlS of € factors. Even so, \ve rely hcavily on thc understaneling of these €

faetors from Lell111W, 14 of [H8T].
In the first section \ve recall the thcory of the theta corresponelence for siInili­

tucles frorn [H.]. In the second section we characterize GO(4X") in terIns of the units
of quaternion algebras. Using this account, in the third section we paralneterize
Irr(GO( ..Y)). In the fourth seetion we clefinc the concept of being distinguishecl, and
relate it to the theta co1'responclence. Distinguished 1'epresentations for det(}{) =I 1
are investigated in the fifth section. The lnain theorC1TI is proven in the sixth section.
In the relnaining two sections we lnake the applications to S.8. I<uella's conjecture
anel the construction of supercuspiclals.

I woulel like to thank 8.5. Kuella for 1l1any usefnl conuuents, and especially for
telling nIe about his conjectures. Thanks are also clue to .T. Hakilll for sonle helpful
conversations eoncerning his theorelu.

'"!V~e use the following notation. Let .J be a group of tel-type, as in [Cl. Thcn Irr( J)
is the set of equivalcnce classes of snlooth achuissible irreducible rep1'esentations of
J. If Ir is in 11'1'( J) then Ir v in 11'1'( J) is the contrag1'edient representation of Ir, and W1t'

is the central character of Ir. A quasi-character of J is a continuous hOl1101110rphislll
frolll J to CX

, anel a unitary character of J is a continuous hOlnolnorphislll fronl J
to the group of conlplex nlunbers of absolute valuc 1. The trivial representation o~
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J on C will be denoted by 1. V'ole will also use the notation of [G K] for restrietion
theory. Throughout the paper k is a nonarchinlcelean local fielcl of characteristic
zero anel oelel residual characteristic. Let D be the division quaternion algebra. over
k, with canonical involution * and rcclucecl nonu N dcfinecl by N(.?;) = xx* = x*x.

The canonical involution of the quaternion algebra ~h(A:) will also be elenoted by *;
in this case the reduceel nonn is det. Let ( , )1.: denote thc Hilbert sYlnbol of k. If!{
is a quaclratic extension of k, then w l\"/ I.: is the nontrivial character of A~ x / Ni((!{ X).
For d E k X /k x2 we let €(d) = (-1, -d)k.

1. The theta correspondence for shllilitudes. In this section we recall SOUle
results anel definitions froln [R.]. Suppose that (.Y, ( , )) is a nonclegenerate synunct­
ric bilinear space over A: of even dinlension rn., anel let n be 30 nonnegative integer.
Let GO(..Y) be the set of k lineal' aute)1norphisll1S h of ..Y such that therc cxists A in
k:x such that (h(x), h(y)) = A(:7:,y) for x anel y in ..Y. If 11. is in GO(..Y), thcn such
a A. is nnique, anel will bc denoted by A(h). Let O(X) be thc subgroup of all 11. in
GO (){) such that A(h) = 1. Let sign : GO(){) ---? {±I} be the uni tary character
defined by sigll(h) = det(h)/A(h)m/2. '.;\Te let GSO(..Y) = ker(sign). '.;Ve will often
clescribe GO(.X) in tenns of GSO( ..Y) and an extra elclnent of GO(.Y). Let 11. 0 in
GO(.Y) be such that 11.6 = 1 anel 11. 0 is not in GSO( ..Y). There is an action of the
group {I, hol on GSO(.X) gi.ven by ho .11. = hohho, anel an isolnorphisru

GSO(.X) ~ {I, ho} ~ GO(.X)

that takes (11,,8) to 11,5. Next, let GSp(n, k) be the group of a11 9 in Gl(2n, k) such
that for SOlne ). in k x ,

t (0 111 ) \ (0 In)
9 -ln 0 9 = A -ln 0 .

Again, if 9 is in GSp(2n, A:), then such 30 ). is uniqne ancl will be clenoted by ).(g), Let
Sp(n,A~) be the subgroup of 3011 gin GSp(n,A-:) such that ..\(g) = 1. Let GSp(n,k)+
be the subg;roup of a11 9 in GSp(n, k) such that there exists h in GO(.Y) such that
..\(g) = ..\(h). The group GSp(n, k)+ is 30 proper subgroup of GSp( n, k) if anel only
if det(.X) i= 1. If det(.Y) i= l~ then [GSp(n, A:) : GSp(n, k)+] = 2. Fix a nontrivial
acldi tive character -l/J of k.

To 1/;, .X anel n, there is associatecl the Weil representation W of Sp(n, A:) x
O(.X) on s( ..yn). In this paper we only will neecl to know the action of w(l, 11.) for
h in O(.X), which is given by left translation:

w(l, h)· tp(x) = L(h)tp(x) = tp(h- 1x).

There exists of an extension of w to a. representation of the larger group

R = {(9, h) E GSp(n, A:) x GO( ..Y) : ..\(g) = ..\(h)}.

This extension, called the extended Weil representation , will also be elenoted
by w, anel is very Sirllply definecl by

w(g, 11)'1' = w(g ( ~ ).(gO)-I)' 1)L( 11 )'1'.

The \~Teil representation elefines a correspondencc between Irr(Sp(n, k)) anel
Irr(O(X)). Let ~x(Sp(n, k)) be the set of all elelllents of Irr(Sp(n, A:)) that are
nonzero quotients of w, anel silllilarly define :Rn(O(.Y)) . As 30 consequence of 30

1110re general theorelll of [WJ, wc have
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Theorenl 1.1 (Howe-Waldspurger). The set

{(1r, a) E ~x(Sp(n: k)) X ~IJ(O( ..Y)) : HOIUSp(n,k)Xü(X)(w, 1r ®c a) =I- O}

is t}le graph oi a bijectioll betweell ~x(Sp(n, h~)) alld ~n(O(..Y)).

A correspondcnce for siInilitudes is definecl by the extenclecl Weil representation.
Let ~x(GSp(n,k)+) be the set of a in Irr(GSp(n, h~)+) such that aISp(n,k) is ll1Ul­
tiplicity free and has a constituent in ~x(Sp(n,k)). SiIuilarly definc ~n(GO(X)).

Fronl [R], section 4, we have:

TheorelTI 1.2. TIle set

{(1r, a) E ~x(GSp(n, k)+) X ~n(GO( ..Y)) : HOIUR(W, 1r 0c a) i=- O}

is the graph oi a bijectioll betwecll ~x(GSp(n, h~)+) allel ~n(GO( ..Y)).

If 7T" is in ::Rx(GSp(n, k)+) 01' a is in ~ll(GO(~Y)), then we denote the corre8pond­
iug eleluents of ~n(GO(..Y)) ancl ::Rx(GSp(n, h:)+) by B(1r) anel B(a), respectively.

The problelll of whcther thc cxtcnded V'Veil representation defines a weIl behaved
corresponclence between Irr(GSp(n, k)) and GOCY) when GSp(n, k)+ is a proper
snbgroup of GSp(n, k) i8 also dealt wi th in [R]. To deseribe the results, suppose
that GSp(11., k)+ is a proper subgroup of GSp(n, k), i.e., that det( ~Y) =I- 1. Then
the 11lUltiplicity free aSslllllption is unneccssary since [GSp(11, h~)+ : k x . Sp(11., h:)] =
(GO( ..Y) : h: x . O(..Y)] = 2. See, for exanlple, [GK]. One woulellike to know if the
condition

HonlR(w, 7r 0c a) =I- 0

defines a bijection between ~x(GSp(n,k)), the set of aH1r in Irr(GSp(n, h~)) such
that salue canstituent of 7rISp(n,k) lies in ::Rx(Sp(n, I.~)), anel :R((GO(~Y))). In [R.] it
is shown that this conelition defines such a bijection if anel only if a ccrtain criterion
i8 satisfied.

To state this criterion, we neeel to il1troeluce the other l10ndegenerate syuulletric
bilinear space ..Y' of eliIllension rn. and deternlinant elet( ..Y). FrOIU the \\Titt decolil­
position thcoreln we sec that )[' can be taken to have the sanle vector space as ..Y,
hut with synunetric bilinear fann 111ultiplied by an clenlent of h~ x. Assullle that _Y'
has this fonll. Then GO(..Y) = GO(..Y'), anel the restrietions of the \\Teil representa­
tions W anel w' associateel to ..Y anel )C', respectively, to O()C) = O( ..Y /) are ielentical.
It follows that 9tn (O(X)) = 9t1l (O(..Y')) anel ::R 71 (GO(..Y)) = 9tn (GO(..Y')). However;
the correspondences clefined by w anel w' 111ay eliffer. In [R] it is proven that the
above condition elefines a bijection if and only if the corresponelences defined by w

anel w' are elisjoint, i.e., ~x(Sp(n, k)) n 9tx /(Sp(n, 1.:)) = 0.
Suppose 9tx (Sp(n, h~)) n::Rx/(Sp(n, h:)) = 0. Fronl [R] we have the following. Let

9 be a representative for thc nontrivial coset of GSp(n,h~)/GSp(n,h:)+. Let a be
in ::Rn(GO(X)) = ::Rn(GO(..Y')), ancllet 1r anel 'Tr' in Irr(GSp(n, h:)+) corresponc1 ta
a with respect to w anel w', respectively. Thcn 9 . 1r = 1r', anel

I dGSp(n1k)
n GSp(n,k)+ 1r

in 9tx (GSp(11., I.~)) corresponds to a.
\~Then the criterion is expecteel to hold depenels on rn, anel rl. If the underlying

bilinear spaces lie in the stable range, i.c., if 1'n ~ 4n + 2, then the criterion c10es
not hold. Frolu [Hh~S], we have have the following conjecture.
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Conjecture 1.3 (Theta dichotolny). H 111. ::; 2n, tllCl1

9tx (Sp(n., k)) n 9tx ,(Sp(n, k)) = 0.

For progress on the conjecture, see [KR] anel [HI-::8]. The theta elichotOIllY conjec­
ture fo11ows fronl another strong anel preeise eonjeeture of 8.8. I(uella. See section
7.

2. Four Ditnensional Synulletric Bilinear Spaces. In this section we reeall
the eharaeterization of the group of siInilitueles of a foul' diInensional synllnetric
bilinear space in tenns of the units of a quaternion algebra. For the renlaineler of
this paper, d will will be aJl elenlent of k x / k x 2. If d = 1 then let !( = k: x k; if
cl i= 1 then let J( = k( Vd). Let Gal(J(/ h:) = {1, -}.

Foul' diInensional synlll1etric bilinear spaces can be constructecl fronl quatcrnioI~

algebras over ](. Let B be a quaternion algebra defined over ](, with eanonical
involution *. vVe say that a h~ linear ring autoIllorphisIn 8 of B is a Galois action
on B if 8

2 = 1 anel s(ax) = as(x) for a in ]( and x in B. Let 8 bc a Galois
action on B. DeHne ..:\(s) to be the set of a11 x in B such that 8(X) = x*. Then
)( (s) is a foul' clilnensional vector space over k, anel equipped with the restriction
of the sYIllInetric bilinear fonn corresponcling to the reclucecl nOl'ln of B, )((8) is
a nondegenerate synul1etric bilinear space. The detenninant and Hasse invariant
of ~}{ (8) are cl and E( d)E( S), respcctively. Here, to define E(s), let B(s) be the fixecl
points of s. Then B(8) is a quaternion algebra over k, anel E(8) = 1 if B(8) is split
anel E(8) = -1 if B(s) is rarnifiecl.

Thc elenlents of k x x B x give elClnents GS0 (_Y). DeHne a Ieft action p of
k x x B x on 4X" (..~) by

p(t,g)x = t-1gxs(g)*.

Then p(t: g) is in GSO(..-Y (8)) for (t, g) in k x x B x. There is an inclusion of ]( x In
["k X x B X that sends a to (N,!.:\(a),a).

Theoren12.1. For e,rery foul' dilnensional nondcgenera te synllnetric bilineaJ' space
..-\ of detenninBnt d over h~ tl]erc exists a quaterion algebra B over ]( ClJ]d a Ga­

1ais ac tion s on B su cl] tl] at ..-\ == ..-Y (s) as synllJ1etric bilinear spaces. For cvery
quaternion algebra B aver ]( Rnd Galois action s on B tlle sequence

is exact.

Proof. Let B be the even Clifford algebra of _Y. Ta see that that B is a quaternion
algebra over ]{, anel construct 5, let Xl, X2, X3, x4 be an orthogonal basis for 4Y. Let
Z be the center of B. Then Z = J.: + h:a;tX2:l:3X4, anel (XIX2X3<'r4)2 = d. Hence, Z
is iS01110rphic to ]( as a k algebra, anel B is an algebra over]e Let i = X2X3 anel
. Cl 1.2 1 ·2 . 1 x cl .• .• L k .• Tl · . kJ = X3 X I· ear y, 1 ane J are In",: ,an IJ = -Jl. et = IJ. len 1, 1,J, are
linearly independent over k, and Ba = k + ki + kj + kk is a quaternion algebra ovel'
h:. The Illap fronl ]{ ®,!.: Ba to B that sencls a ® x to ax is an isoInorphisIll of ](



algebras, anel so B is a quaternion algebra over !(. Define s by s(a 0 x) = Ci 0 x.
Then s is a Galois action on B.

To prove the first statelnent, we note that ..Y represents 1 [0], anel so we 111ay
assllInc that (X4, X4) = 1. Define a lllap T fron1 )( to ~Y(s) by T( x) = X X4. Then T
is a \vell defined iSOll1etry. Thc second statell1CIÜ follows fron1 4.6.1 of V of [I(n]. D

Using these results, we will HOW define concrete realizations of the two foul'
diInensional nondegenerate syullnetric bilinear spaces X (cl, E) of detennillant d anel
Hasse invariant E in {±1}. Suppose first d = 1. Let B be N1 2 (k:) x NI 2( h~) 01'

D x D. Define aGalais action on B by s(x, y) = (y, x). Thcn X(.s) is obviously
isorllorphic to 112 (k) 01' D. '""Te find that M2 (h~) anel D, regareleel as sYl11111etric
bilinear spaces with fonns corresponding to the reeluced norn1, have eletenninant
1 anel Hasse invariant €( cl) anel -€( cl)~ respectively. 'Ve let ){ (1, E( cl» = NI( k:) anc1
..Y (1, - E( d» = D. Sincc N[,: is surjcetive, the above exact sequcnce Silllplifies to

1 --? k x --? GI(2, k) x GI(2, k) ~ GSO(~Y (1, E( 1» --? 1

anel
1 --? k: x

--? D X x D X ~ GSO(~Y(l, -E(l» --? 1,

where p is now defined by p(g, g')1; = gxg/·, anel the inclusion of k: x senels a: to
(x, X-I).

Suppose next that d =1= 1. Let B = M2(!(). Then B = !( 0k NI2(k~) ancl
B = !( 0k D. Herc \ve regarel D as a subalgebra of B by letting

D= {( ~bl- l~): a, b E !(}
a

where 8 is a representative for the nont.ri vial coset. of k x I Nf (!( X). Let s anel $'

be the Galois act.ions on B corresponding to M2 (k) anel D, respectively, as in the
proof of Theoren1 2.1. Explicitly,

s' (ac b) (d
d = bl8

8c)a .

Then ..Y(s) anel ..Y(s') have eletenl1inant d anel Hasse invariants E(d) anel -E(d),
respectively. Vv~e let X(d, E(d» = ..\""(8) anel ..Y(d, -E(d» = ..Y(s'). There are exact
sequences

Explicitly,

X(d,€(d)) = {Cld bf!): a E K,b,c E k},

anel

(b -8a) ~){(d, -E(d») = {7i c : a E !\., b, cE k}.

For thc reluainc1er of this paper, € will be in {±1}, anel ..Y = ~Y(d, E). Because of
the relllarks in section 1 concerning the theta corresponelence for sin1ilitudes when
cl =I 1, we \vill elisregarcl the case cl =I 1 anel E = - E(d). Thus, if d =1= 1, then
..\"" = ..\ (d, E(d». "VVe will let w elenote thc extendeel Weil representation associatecl
to ..Y and the nonnegative integer n. If necessary, thc elependencc of w on 11. will be
inc1icat.eel by a subscript.
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3. Representations. In this section we nlake SOl1le definitions and elClllentary
observations concerning the relationship between representations of GO(.Y) anel
GSO(.X") and the quaternion algebras frolll the last section. VVe renlilld the reader
that the case d =I 1 allel E = - E( d) for our purposes can be and will be igno1'eel.
Vve also point out that by [HPS], Lel1uua 7.2, thc 1'est1'iction of 1'eprcsentations of
GO(){) to O(.Y) is nlultiplicit.y ffee.

Suppose first that d = 1. Let 11'1'f(Gl(2, k~) X Gl(2, k)) be the set of pairs of
rep1'esentations in 11'1'(Gl(2, k~)) with thc Sal11C central character. Define IrTf(D x X

D X) siluilarly. There are bijcctions

0.<

Ir1'(GSO(~\'"(l, E(l))) -=+ Irrf(Gl(2, k) X Gl(2, l.~))

allel
Irr(GSO(~\'"(l, -E(l))) ~ IrTf(D X x D X

)

that t akc rr to thc 1'epresentation that senels (g, g') to rr(p(g , g' )). If (T, r ') is in
IrTf(Gl(2, k) x Gl(2, k)) 01' l1'rf(D X X D X), thcn thc corresponding eleillent rr(r, T')
of 11'1'( GSO (~\'" (1, ±€( d) )) has RS space the space of r ®c r' anel i8 elefined by

1r(r, r')(p(g, g')) = T(g) (8) T' (g').

The central character of rr(r, r') is W T = W T " and thc cont.ragreelicnt of rr( r, r') is
rr(r,r')Y = rr(rY,r /Y ).

Suppose that d =j:. 1. Let IITf( Gl(2, ]()) bc thc set of eleillents of Irr( G1(2, ]())
with Galois invariant central character. Recal! that if a quasi-charact.er of ]( x i8
Galois invariant, then it faetors through N f'~' via exactly two quasi-charaeters of k x.

There is a two to Olle surjcctivc nlap

Irr(GSO(~\'"(d,E(d))) ~ hTj(Gl(2, !())

that take rr to the representation that has space the space of rr and i8 defined by
9 I-t rr(p( 1, 9 )). If T is in 11'1'( G1(2, ]() ), and X anel X' are thc two quasi-character~

r rof k x such that u..-'T = X 0 Nk\ anel W T = X' 0 Nk\ , thcn thc two eleluents 1r( r, X) anel
rr(r, X') of Irr(GSO(_Y(d, E(d))) lying over rare defined by

rr(T,x)(p(t,g)) = x(t)-lr(g)

Thc celltral character of 1r(r, X) i8 X, anel the contrag1'edient of rr( T, X) is 1r(T, X) Y =
iT(TV,X- I ).

Having describccl the representations of GSO(.Y), wc consicler their relationship
to represcntations of GO(_Y). Let rr be in Irr(GSO(X)). If the ineluccd rcpresen­
tation of 1r to GO(.Y) is irreclucible, we say that rr i8 regular, allel if the incluced
rcpresentation of rr t.o GO(X) is l'cducible wc say that. rr i5 invariant. Let. 11. 0 in
GO(~\) be such that h5 = 1 and 11. 0 is not in GSO(~Y). If V is t.he space of 1r, we
cau rcgarcl the induced rcpresentation of rr to GO(X) as thc reprcsentation with
space ~,r EB V and action

h· (v EB Vi) =rr(h)v EB rr(hohho)v',

11. 0 • (v EB v') =v' EB v,
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for h E GSO( ...Y). It follows that 7r is regular if anel only if 11. 0 . 7r ~ 7r, ancl 7r is
invariant if and only if ho . 7r '" 7f. If 7f is regular, we denote the ineluced repre­
sentation of 7r to GO(...Y) by 7r+. If 7r is invariant, then thc induced representation
of 7r to GO(.Y) is the elireet sunl of two irreducible rcpresentatiol1s that extend 7r;

these representations are twists of each other by the unitary charaeter sign. If 7r

is invariant anel T is a luap on the space of 7r intertwining 7r anel ho . 7f such that
T 2 is thc identity, then thc aetions of the two extensions 7f1 and 7f2 of 7f to GO(.Y)
on ho are given by 7f1(ho) = T anel 7f2(ho) = -T, respectively. Every elen1elü (J
of Irr(GO(...Y») is either inducecl fronl a regular representation of GSO( ...\"), 01' is an
extension of an invariant reprcsentation of GSO(.Y); 1110reOVcr, thc first possibility
occurs if and only if (J 0c sign ~ (J.

"Ve can describe regular anel invariant reprcsentations in tenns of thc abovc
charactcrizations. Für thc renulindcr of the paper we will let 11. 0 be the 111ap that
senels x ta x*.

Proposition 3.1. Let 7r be in Irr(GSO(~Y». If d = 1, tllen 7f is invariant if aJlel
ollly if7f = 7f(T,T) fol' SOJnc T in Irr(Gl(2,J..:» 01' Irr(B X

). Ifd #- 1, then 7f is
invariant if and only if 7r = 7f( T, X) for SOllle Galois invariant T in Irr(Gl(2, I(».

Proof. Suppose cl = 1 anel 7f = 7f(T, T'). Since hop(g, g' )11.0 = p(g', g) for 9 anel g'
in Gl(2, k) 01' D X

, we have 11. 0 . 7f = 7f( T, T'). Suppose that cl t= 1 anel 7f = 7r(T, X).
Since hop(t,g)ho = p(t,g) for (t,g) in k X x Gl(2,I(), we have h·7f = 7r(TO(J, X). D

4. Distinguished representations and the correspondence. In this scetion
we will define what it 111eanS for an invariant representation of GSO( ...\") to be
elistinguishecl, anel ,ve will consider what effect being distinguished has on what
extensions of the representatioll to GO(_Y) occur in the theta correspollclence. The
idea that cel'tain extensions of a distinguished representation cannot occur in thc
theta eorl'espondence is due to [HK]. This appears in Thearenl 4.3 below. \Ve go a
step further , allel show how an extension of a clistillguished representation can be
pl'oven t.o aceur in the theta eorresponelence. See Theoren1 4.4.

These results Inay gcneralize. Thc definition of being distinguished generalizes
to reprcsentations of GSO(){) if ~Y is an arbitrary nonclegcneratc even dilllensional
synlilletric bilinear spaec, anel the proofs of Theorenl 4.3 anel Theoren1 4.4 are
general. The kcy question, which I elo not the answer tO, is whethel' Lenllua 4.2
gcneralizcs. Für r110re reluarks about generalizations, see the end of this seetion. .

Let 7f bein Irr( GSO(X) ). To define what it 111C':1.11S for 7r to be dist.inguished,
suppose y in ~Y is anisotropie. Then the stahilizer in SO(){) of y ean be identified
with SO(Y), where )/~ is the orthogonal eOluplClncnt. t.o y, and we will write SO(J!~)

for this stabilizer. \~Te say that 7f is distinguished if 7f is invariant, anel there is
an anisotropie y in )( such that

and, if det(.Y) # 1, then Y- is isotropie.
In fact, a represcntation is clistinguishecl if and only if i t is clistinguishecl with

respeet to a certain anisotropie Yo in ...\. Dcfine Uo in the following way. If cl = 1,
let Yo = 1. If d i= 1, also let Yo = 1. Using the \Vi t t eancellation theorenl anel the
V\Titt extension theorenl, one ean show that if y is as in the last paragraph then
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there exists h in GSO(..'\) such that h(y) = Yo. It follovls that a representation is
elistinguisheel if anel only if it is elistinguisheel with respect to Yo.

If a representation is elistinguisheel, then its extensions to GO(..'\) can be ielenti­
fied. Suppose that Jr in 11'1'( GS0 (~Y")) is invariant and clistinguisheel. Each extension
of 7f to GO(.Y) provides an action the nontrivial elelnent of 0(1'-)/ SO()'P) ~ {±1}
on HOlnSO(y)CiT,l). Thc actions will be nlultiplication by ±1, respectively. V\TC

denote by Jr+ the extension inducing n1ultiplication by 1, and by 7f- thc extension
inclucing multiplica.t.ion by -1. Frolll the last paragraph, thc definitions of 7f+ allc1
Jr- do not depencl on the choice of y. For the rell1ainc1er of this paper, we let yP be
the orthogonal cOll1pleluent to Yo.

The group SO(1'P) can be concretely describcd. If d = 1, then SO()'P) is thc
iluage uudel' p of the subgroup {(g, g*-l) : g E Gl(2, k)} or {(g, g*-l) : fJ E D X

}. If
d =1= 1, then by Hilbert's TheorClll 90: SO(1'~) is the ilnage under p of the subgroup
{( elet(g), g) : 9 E Gl( 2, 1.:)}. 'Ve also note that 11. 0 fixes Yo, anel thllS is contained in
O(y~). Together, SO(Y) anel 11. 0 geuerate O(y~).

In the case d = 1, the next proposi tion COIllpletely ielentifies all the distinguished
representations. V'ie will consider the case cl =1= 1 in greater detail in the next section.

Proposition 4.1. Let 7r E Irr(GSO(.Y)). Assulne tlH:lt 7f is inva.riant. Thell

dinlC HOll1so( Y) (7r, 1) :S 1.

Jf d = 1, thcn 1T is dis tinguishccl. JE d =j:. 1 8.n cl 1T = 7f ( T, X), th eIl 7f is dis tillguislleel
if allel Oll]}' iE

HOll1Gl(2 ,k) (T, X 0 dct) =j:. 0.

Proof. Suppose tha.t. d = 1. Since 1T is invariant, it follows that 1T = 1T(T, T) for sonle
T in Irr(Gl(2, A~)) 01' T in Irr(B X

). Now T
V ~ w;l 0c T. It follows that therc is ~n

isonl0rphis1l1

01' an isoIllorphisnl

Here Gl(2, k) 01' D x is clnbeddcd on the diagonal. It is well known that the second
hOlllo1l10rphislll space has dilllension one.

Suppose that d =j:. 1. Then there is an iSOl110rphisnl

By an argull1ellt as in [H], this space has dill1ellSion 1css than 01' cqual to 1. 0

The followillg lenlll1a will be essential in detennining which extensions of a dis­
tinguished representation occur in thc theta correspondence. In a different forn1;
the followillg lelllnla is due to D. Prasad [P].
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Lenuua 4.2 (Prasacl). Let n = 1 01' 2. TlJen an)' distribution on X ll invariant
under SO(Y~) is invariallt tun/er O(Y~).

Proof. vVe first claitn that it suffices to show that auy distribution on M 2(k)" 01'
DU invariant under conjugation by GI(2, k) 01' D X

, respectively, is invariant uncler
*. To this end, we clefine a lnap L froln ~\n to M2 (k)n 01' DTI in thc following way.
If cl = 1, wc let L be thc identity. Suppose cl =I=- 1 and E= E( d). For x in ~Y", define
l(x) in M2 (A;) by

1( ') _ x+s(x) x-s(x)
J, - + r1

2 2vd

Define L by L(x) = l(x) if 11. = 1 anel L(x EB y) = l(x) EB l(y) if 11. = 2. Clcarly, L is
an isoll1orphisll1 of A~ vector spaces, and L( 11. 0 x) = L(x) * for x in ..Y ". Nloreove1',

L(hx) = gL(x)g-l

if hin SO(Z) anel h = p(g,g*-l) in the case d = 1, anel h = p(det(g),g) in the ease
cl # 1. Dur clainl follows.

Now we show that any distribution on M2 (h~)71 or Dn invariant under GI(2, k) or
D X is invariant under *. First consider D. Let f bc a distribution on DU invariant
under conjugation by D x. Since D x / J..: x is cOlupact, there is a Haar measurc on
D x / k~ x such that f( <p) = f( <p') for <p in S(DTI), \vhere <p' is defined by

<p'(:c) = ] <p(gxg- I
) dg.

DX /k x

Let <p be in S(D") anel :r be in DU. By thc proof of Proposition 3.3 of [P] there
exists go in G X such that 90:cg;;1 = x*. So

(<p*)'(x) =] <p(g.1:*g-l)dg
DX /k x

=] <p(ggox(ggo)-l)dg
DX /k X

=<p'(x).

It follows that f( <p*) = f( <p).
Now consicler the case of ~'I2(A:). '~Te a1'gue as in the proof of Proposition 4.5 of

[P]. If 11. = 1, \ve usc thc 111ap fronl IvI 2 (k) to J..~2 that sends x to (tr(x), dct (x)). If
11. = 2, we lllap fronl NI2(J..~)2 to k5 that scnds (:r, y) to

(tr(x), tr(y), det( x), det(y), tr( xy)).

It can be verified that the proof of Proposition 4.5 of [P] goes through in this last
case. 0

The next theorell1 sho\vs that onc of the extensions of a distinguished rcprescn­
tatiol1 cannot occu1' in thc theta correspondence when n is 1 01' 2. As we pointed
out above the idea is due to {HK]. In {HK] the case 11. = 1 was consiclered.
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Theorenl 4.3. Let 1r E 11'1'( GSO(..\"")). H 1r is distinguished then 1r- is not 11]

~n(GO(..\)) for n = 1 and 2.

Proof. VVe begin with two eOl1unents coneerningrr. First., 1rlso(x) is 111ult.iplieity
free. For let

?Tlso(x) =.,.11.·?TI EB··· EB rn· 7rM,

whe1'e t.he ?Ti E Irr(SO( ..Y)) are rl1ut.ually il1cquivalent, and1H anel lvI are positive
integers. Then

/0.-1

L rn· di111C H0111SQ(Y)(7rj, 1) = 1,
i=l

whieh ilnplies that 117. = 1, and that dirne H0111S0P') (?T i, 1) = 1 for exactly one 'I:, say
i = 1, and dilne H0I11S0(Y)(Jri, 1) = 0 for·i > 1. Second, suppose that Vi is the space
of rr; we assert that iT+(ho)'~ = Vj for a11 i. Let us prove this first when i. = 1. Let
iT+ (ho) \/1 = Vi. Let f in H0111S0(Y) (?Tl, 1) be non%c1'O. Define a linear functional f'
on Vi by j'(v) = f(?T+(ho)v). Then f' is in HOll1S0(Y)(?Ti, 1). Sinee f' #- 0, i = 1.
Let i bc a1'bit1'ary. The1'e exists 11. in GSO( ..Y) such that 7T( h)Vl = Vi, V\fe have
7r+(ho)Vi = iT+(hoh)VI = iT+(hohho)VI = ?T(h)7r(h- 1hohho)V, = ?T(h)VI = Vi,
since h- I hohho is in 80(..\"").

8uppose that 7T- is in ~n(GO(X)) for n = 1 01' 2. Thell there exist5 a nonzero
o(}r) Inap T froln W'l to ?T-. Let 1/ be the 8pace of 7r. \\Te l11ay assltlne that
thc C0111position Tl of T with the projection of V onto VI i8 nonzero. Let..f E
HOn1so( Y) (?T, 1) be nonzero. COl1sider the C0111position f 0 Tl. This is a nOl1zero
SOCV) invariant distribution on ~)(11. By Lelnlua 4.2, f 0 TI is invariant Hudel' 11. 0 .

But since Tl i5 an O( ..Y) nlap aud by the definition of T-, the conlpositioll of ho·
\vith f 0 Tl is - f 0 Tl. Since f 0 Tl #- 0, this is a contradiction. 0

Then next theorenl gives a sufficient eondition for one of the extensions of a
distinguished representation to oceur in the theta co1'rcspondenee.

Theorenl 4.4. Let?T E 11'1'( GSO( ..Y)). Suppose?T is regular 01' distillguisheel, allel
n = 1 01' 2. Then

Proof. Suppose first that rr i5 regular. Let V be thc space of ?T. V/e usc thc
1110del for 7r+ froI11 the last section. Let. L in HonlS0( X) (w n l Jr) be nonzero. Defille
L' : W n ~ 7r+ by L'(<p) = L(<p) EB L(wn(ho)'P). Thcn L' i5 in HOlnO(X)(wn , 7T+) anel
L' is nonzero. .

Suppose that 7r is invariant i8 distinguished. We will use the notation of the
proof of Theorel11 4.3. Let L in HOl11S0(Y) (w 11 , 7r) be l1onzero. \\TCmay assun1e that
the cOluposition of L with thc projcction of 1/ onto VI is nonzero. To cOluplete
the proof it suftices to show that LI 0 W 11 (ho) =iT+ (ho) 0 LI. V\Te first show that
wn ( 11.0 ) ker(Lt} = ker(Lt}. Suppose not, i.e., suppose that L] (w 1l (ho) ker(LI )) =1= O.
Then by the i1'reducibility Of?TI , LI (WH (hu) ker(LI)) = VI. Let f in HOlllS00') (?Tl, 1)
be nonzero. Consider f 0 LI. This distribution is nonzero anel SO(Y~) invariant. By

15



LClnnla 4.2, f 0 LI is invariant under hOl so that f(VI ) = feLl (W n (ho) ker(L I )) =
LI (ker(LI)) = 0, contraelicting f =I O. Now since ker( L I) is invariant under WH (ho),
it follo\vs that s( ..yn)/ kcr(L 1) is an O( ..Y) space. Via. the SO(){) isornorphism given
by LI between S(){fl)/ ker(L j ) and VI we can define an action of 11. 0 on VI so that
LI is an O( ..Y) Inap. By TheofCl11 4.3, this extcnsion n1ust be 1T+. 0

A sin1ilar arg1unent proves thc following statClnent. Let 1T be in Irr( GS0 (X)) anel
II be in 11'1'(GSp(n, k; )+), for 'Tl = 1 01' 2. ASSl1111e that 7f is regular 01' di stinguished.
Then

HOI11R 1 (w 71 , II 0c 7f) =I 0 ===} HonlR(wn , TI 0c 7f+) i= O.

Here R' is the subset of Cle111cnts of R, whose first entries are in GSO( ..Y).
This result has sonle interesting consequences. It inlplies that if a regular 01' dis­

tinguished clenlcllt of Irr(GSO(~\.'")) corresponcls to an elenlcnt of Irr(GSp(n, k)+),
in the übviüus sensc, thcn thc correspüncling elcl11ent of Irr( GSp(11., k~)+) is unique.
In particular, since all elel11ents of Irr( GS0 (~Y)) are ei ther regular or disti nguished
when det(~Y) = 1, it follovls that. in this case if TI is as above, then TI is always
uniquely detenl1ined. \Vhen clet(~\.'") = 1 a11d n = 1 this helps one tü understand
the Jacquet-Langlands correspondence fronl the point of view of the thcta corre­
spondence. See section 7 and [S]. vVhc11 det(.Y) = 1 and 11 = 2, using thc relation
to the alternate approach to Sil11ilitudes using the induced \~Teil representation [R.),
this gives a different. arglunent. für part. üf the proüf of the strong l11Ultiplicity onc
theorenl für regular representatiüns üf GSp(2) as in [S02]. It would be int.erest.ing
to sec if a completc proof could be obtained along these Hncs. This would requirc
that the results of this section be extenclccl tü the casc whc11 X is the split six di­
11lCl1sional space. To do so, it will probably be l1ecessary to use a subgroup of O(.\"")
defined differently fronl SO()'~). This is the case for dil11k)( = 2, whcre SO(){)
plays the role of SO(1/-). For nl0re rel11arks about this case, see section 7.

5. Distinguished Gl(2, J{) representations. In the last scction we reclucecl
thc problell1 of cletcnnining the clistinguishecl reprcsentations of GSO(_Y) in the
case d =I 1 to a problem conccrning thc corresponcling represel1tatiol1s of GI(2, !().
The problenl of deternlil1ing distinguished Gl(2, I() representations has essentially
been solvecl by sevcral authors. Sec [H] ancl [F]. Ultil11ately, the consideration
of distinguisheel GI(2, !() represcntations goes back to aglobai result of [HLR].
Howevcr, since a conlplcte account cloes not appeal' in the literature wc necd to
givc an exposition.

\~Te begin by defining 50111e nota.tion and recallil1g S0111e facts. Essentially, \Vc will
follow [G). In this section wc aSSU111C that cl =I 1 so that !( is a quaelratic extension
of k. Let 7f /\' be a unifornlizcr for !(, and let 1/J!{ be a nontrivial Galois invariant
additive character üf !e If T in 11'1'(Gl(2, !()) is infinite diluensional, let 1(( T, 'l/J !\" )

bc thc Kirillov nloclcl of T with rcspect to 'ljJ /\'. Lct T in Irr( Gl(2, !()) be infinite
dil11ensional. For 9 in Gl(2, !(), ( a quasi-character of !(x, f in !((T, 'lj;](), and s in
C, let

Z(g,(,f,8) = r T(g)f(x)((x)lxjS-l/2 cl:t.
l!,," x

This integral converges ahsolutely if ~(s) is sufficiently largc. ~.'loreover, the func­
tion definecl by the integral für sufficiently largc ~(s) has an analytic conti11uation
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to a Iueron10rphic function on C with at n10st two poles. If ( is a quasi-character
of ]( x then therc exists a luero1110rphic function ,(T 0c (,5, 1/J}{) on thc ccnuplex
plane such that

for 9 in Gl(2, ]() anel f in ]((T, 'ljJ /\'), For ( a quasi-character of ]( x let

Here the L factors are as in [GJ. Thc function €(T 0c (, 5, 1/J [{) is entire, anel has
110 zeros. The notation for irreelucible principal series and special representations
of Gl(2, ]() will be as in [GL]. Let 7r(I"I, P2) bc a principal series representation
of Gl(2, ](), Then 7f(pl, P2) is Galois invariant if anel only if ~ll 0 - = P'l and
J-lz 0 - = ~lZ, 01' Pt 0 - = J--lz. Let a Üll , 1[.2) be a special represcntation. Then
a(p.l , P'2) is Galois invariant if anel only if PI 0 - = J--ll anel ~l2 0 - = f-12.

Lenulla 5.1. Let T in Irr(Gl(2, ]()) bc infinite elünel1siol1fll allel Galois illvariall(

Let w, = X 0 N[\" allel let ( be a quasi-c11aractcr of ]( x whosc restrictioll to k: x

is x. If T is not fl. principeJ series rcpresentation 7[(/11 , ~[.2) witll /11 anel P2 Galois
invarian t, tllen tlle in tegl'al Z (g, (- 1, f, 1/2) is absolu tel}' COll vergell t for a11 9 in
Gl(2, ]() anel f in ]((T,1j; /\),

Prnnf. The clailn follows if T is supcrcuspidal. Asslune that T is a principal series
representation. Then T = 7f(P'J, /12) with PI 0 - = /12. It suffices to show that for
f E S(]() thc integral

is absolutely convergent. An estilnatc shows that this integral cOllverges absolutely
if

lfl.1(7rJ()((7rJ()-11< 17r/\'1-1
/ 2 .

Since 1/11 ( 7f ]\' )(( 7f /\' ) - 1 1
2 = 1, our clain1 follows. Suppose that T is a special rep­

rescntation. Then T = a(lll l P'2) with P'I 0 - = P'I, flz 0 - = P·2 anel 11I = ~Lzl I.
Again, it suffices to show that the above integral is absolutely convergent. vVe have
1~1(7f}\')((7fI\,)-11= 17f/\'P/z < 17fl\"I-I/z. 0

Leullna 5.2. Let T, X anel ( be as in tlle last lenl111a. Tl1en ,(T 0c (-1, 8, 'IjJ}\') is
elefinec1 at 1/2 anel

Pronf. By definition,

( ·-1 ~f,) ( -I ) L(T 0c (-t,5)
€ T 0c ~ , 5, 'fJ /\' =, T 0c ( , 5, 'ljJ ]\" _ I .

L (T 0c w, (, 1 - $)

17



Since c(T 0c (-1 , .5, 'Ij;1\") is aJl enti re function, and since the L func t ions are definecl
at 1/2 by Lemnla 5.1, it suffices to show that

L(T 0c (-1,1/2)
1 = 1.

L(T 0c w; (, 1/2)

If 7 is supercuspidal this is clear. Suppose that 7 is a principal series represent.ation
7r(p'l : 1"2) with 1"1 0 - = 1"2. Then

L(7 0c (-I, 1/2)

L(7 0c w;'(: 1/2)

L(I"1 (-1, 1/2)L(p'2 (-I, 1/2)

L(p1' (, 1/2)L(Jl:;I(, 1/2) .

Itwill 8uffice to show that p., (7r J\" ) 2 = (( 7r /\" )
2 if p., (-1 is unri:tlllifiecl ancl P2 ( 7r J\" ) 2 =

(( 7r l\" ) 2 if P2 (-1 is unI'amified. By synl1netry, i t is enough to prove one of these
statenlents" Suppose PI (-1 is unnunified. If 1\.)k is unrall1ifiecl, then this follows
since we CRn take 7f/\" in k X

, andp'lp'2 = (( 0 - anel P'I 0 - = J12. Suppose that
!(/ k is ralnifiecl. Since thc residual charactcristic of /i.: is adel, we can assunle that

7f b.: = -7f /\" and 1r1" i8 a unifornlizer of k:. Then P'1 (7f],:? = PI (-1 )p'l (71'" J\" )'''2 (71'" J\") =
l"I(-l)((7r]()((7r[() = Pl(-1)((-1)((71'"[()2 = ((71'"[()2, since ((-1) = 1"1(-1) be­
cause JLl (-I is unranlified. The case when 7 is a special representatian is analogons;
for details, see the 8ilnilar case treatecl in thc relnark belaw. 0

The last lel11lna cloes not hold for a11 irrecluciblc principal series representatiol1s
rr(pl, IL2) with P'1 and J12 Galois invariant. Ineleed, we clai111 that if 7 = 71'"(Pl' IL2) is
an irrcducible principal series representation with PI anel 1"2 Galois invariant, tohen

except if 1"1 (-1 i8 unnunifieel anel II 1 ( 71'" 1\" )( ( ?T I( ) -1 = 17f1\"1-1 / 2, 01' Jl2 (-1 IS unraln­
ified anel 1"2 ( ?Tl\" )( ( 7fJ\" ) -1 = 171'" g 1- 1

/
2; in these last eases,

To prove these claillls \ve proeeecl as in the proof of Lenl111a 5.2. \Ve need to eOl1lpute

vVe firs t. show that. 1"1 ( -, is unranüfiecl ifand only if lI2 (- 1 is. Suppose that 1"1 (-1 i8
ul1ralnified. Then ((1l) = 1"1 (u) for a1171 E D~". Since f.l1 (ker(N [(» = 1 and ker(N f()
i8 containeel in D~", ((ker(N[\"» = 1. So, ( 0 - = (. Now PtJ12 = (( 0 _ = (2.

Hellce, p'I(-1 = (112(-1 )-1, and 1"2(-1 i5 unral11ified. The converse follow5 by 5yn1­
luetry_ Note that we also have shown that if PI (-' anel 112 (-1 are unranlifiecl thell
II.I(Jr/\")f.l'2(?TJ';) = ((rrI\-?, i.e., l"I(Jr/\")((rr/\")-l = It2(JrI\")-1((7fl\-). If now p,,(-l.
and P,2(-1 are ranlifieel 01' P,1(-1 anel fl.2(-1 are unramified anel P,l(7fg)((1Tg)-l =I=­

IrrK 1-1
/

2 and P2 (Jr /\" )((?T /\" )-1 "# 17fJ( 1- 1/ 2 , then the liluit i5 1. Suppose PI (-1

ancl 112 (-1 are unrarnified anel P 1(7f h: )(( 1T /\-) -1 = 17r/\" 1-1/ 2 01' /12 (7T' /'l.' )(( 71'" /'l.' )-1 =
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11r K 1-1 / 2 . Then cxactly one of PI (1r J( )((1rJ,," )-1 and 1',2 (1rK )((1r J,," )-] is In K 1- 1
/

2 .

\Vithout 10ss of generality, we l11ay aSSl1111e that PI (nK )(( n}\.) -1 = In J( 1-1/2. Then

1
· L(Pl(-],.s)L(/-l2(-1,8) l' L(PI(-1,8) l' L(P2(-1,8) ,
1111 1 I = 1111 Inl

8-1/2 L(J-1'~ (,1- s)L(p:; C1- s) 8-1/2 L(/-ll(-l, 1- s) 8-1/2 L(/-l2(-I, 1- s)

=(-1).1=-1.

The next theorenl follows essentially frolll [H] and frolll [T], as interpreted in
[HST]. The previous discussion shows that in thc following theorcI11 it is essential
to use f. instcad of r faetors. Note also that 1f; }\- differs from the additive character
in [H]. There it is asslU11ed that '1/) }\" is trivial on k:.

Theorenl 5.3 (Hakiln-Flicker). Let T in 11'1'(Gl(2, J()) be infinite diJncnsional
anel Galois invariant. Let W r = X 0 Ni'-. T]len t]le following are cquivalellt:

(1) HOIllGl(2,I.-)(T:X 0 dct) #- 0;
(2) For every quasi-c11aractcr ( oE l(X w]lose restrictioll to I..~ x is X,

(3) T 1S ti]e base change of aJ] c1e111ent of 11'1'(Gl(2, 1..:)) witi] celltrai character

XW 1\)k'

Proof. ASSlU11e first that T #- 7f(Pl , P2) wi th /-1-1 and P2 Galois invariant.
(1) {::::::} (2): The equivalence follo\vs fronl Lenlmas 5.1 and 5.2, and an argu­

11lent essentially as in [H].
(2) {::::::} (3): Since T i8 Galoi8 invariant T and T #- 7f(/l.j, !lz) \vith /-"1 anel J-L2

Galois invaJ:iant, T is the base change of a cliscrete series representatioll of Gl(2, 1..:)
that has central charactcr X 01' XWK/k' Thc equivalence of (2) anel (3) is 4 of Lenllua
140f [HST].

Now suppose that T = 7rC!ll "l2) \Vi th PI and /-l2 Galois invariant. V\Te will sho\v
that (1), (2) and (3) all hold. The statenlcllt (2) follows froln Leuuna 14 of [HST].
To see (3), note that /-ll allel J-L2 faetor through Nr via, say, Il'] anel {l~, respectivcly.
By replacing p~ by W 1\) k P,'I' if necessary, Wc Illay aSSllllle that l"'1 P; = X. Since

PI p:;l #- I I~·I it follows that 1"'1 p~ -1 #- I Itl . It follows 1r(p.;, p~) is defined, and
the base change of n(Jl-~ : p,;) is T. To show (1), \vC procced as in Proposition 9 of
[FJ. Let

and

(
-Jd

90 = 1
Id)
1 '

Then goT'gü 1 = T anel
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Define L : 7f(pl' {l2) --t C by

L(f) = ( f(golg)x(det(g))-l dg.
lT\ Cl(2,k)

A cOluputation shows that the integrand is well defineel. Moreover, one can show
that T\ Gl(2, k) has finite Ineasure anel that thc integrand is bouncled, so that thc
integral converges. Finally, L is nonzero and contained in HOlllC1(2,k) (T, X 0 det). 0

6. The luain theoreill. We will now prove thc 111ain thcorenl. The 111cthod of thc
proof is entirely analogons to the global techniqne of COlllputing a Fourier coefficicnt
of a global theta lift. See, for exall1ple, [HST].

In defining elistinguished representations wc useel aJlisotropic vcctors in ..\ and
their stabilizcrs in 0(..\); we now \vill consider vectors in .y2 anel their stabilizers
in O(X). Let I be a positive integer. \i\Te will say that a; E );1 is nondegenerate
if the conlponents of x generate a nonclegenerate subspace of ..\, 01', equivalently, if
det( .'ri, x j) #- o. If z in ~y2 is nondegeneratc, thcn the stabilizcr of z in O( ..Y) can be
identified with O( Z), \\ihere Z is the orthogonal cOlllplenlel1t to thc space generateel
by the conlponents of z. Also, it is easy to show that if z in .y2 is nondegeneratc,
then SO(.Y) . z = O(..Y) . z, anel SO(..Y) . z = O(_\."") . z is closecl.

Lenuua 6.1. Let 7f E Irr(GSO(.Y)). In tl1e ease d #- 1 asstll1JC tl1at 7f is infinite
diIncnsional. Then tl1ere exists Cl. nondegenerate z in X 2 such tllat

HOlllS0( Z) (7r, 1) i- o.

Proof. Suppose first cl = 1 anel E= E( 1). Let 7r = 7r( T, T'). Suppose that T anel T'
are infinite dilnensional. Let

Then z is nondegenerate, aJlel

SO(Z) = {p( (~ 0) (0.- 1

1 ' 0

'Ve will use the Kirillov l1lodels ]\.P( T, 'Ij;) anel ]((T',"I/;) of T anel T' with respect to
our additive character '1jJ, rcspectively. Let 11 be so large that

{ f(x)]xl n (he
lk x

converges absolutcly für 1 in ]((T, 'IjJ) anel f in ]((T', '1/;). Define L : 7f --t 1 by

L(f 0 I') = { l(x)l x l7l dx· { J'(x)lxl n dx.
lk x lk x
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Then L is a weH elefineel nonzero C linear nutp, anel L is SO(Z) invariant.
Suppose next that exactly Olle of T anel T', say T, is infinite dinlensional. Since

T' is finite elünensiona.l, T' is one elilnensional, anel there exists a quasi-character ß'
of k x such that T' = ß' 0 det. By hypothesis, ß,2 = WT, = W T . Suppose that T is a
supercuspidal 01' special representation. 'Ve clainl that

[ ß'(a: ) -1 f (x) da:
}"x

converges ahsolutcly for f in ]((T, 'lp). This is clear if T is supcrcuspielal. If T is the
special representation cr('l1 , Il2) with PI = p21 I then this follows frolll the estilnate
l7rkI1/2Iß'(7r,,))-1Ipt(7rk)1 = l7rkl < 1. Now deHne L : 7r --+ 1 by

L(f0z)=z [ ß'(x)-J/(x)dx.
}k X

Then L is a nonzero elell1ent of HOll1S0(Z)(iT, 1). Suppose that T is a. principal
series representation. In this case, we require another nondegencrate elCll1ent of
)[2. Every quadratic extension E of 1.: is cOl1tail1eel in 1v1 2(1.:) as a k algebra, and
for every quaclratic ex tension E of k cont ainecl in ...\ = NI2 ( k), Gal(E / k) = {I, *},.
and there exists a nondegenerate z in ..:\2 such that

Fix a quadratic extension E of /..: in )[ and such a. z in ..y2. Let 0' be the quasi­
character of EX clefined by n(x) = ß'(elet(x)). Then 0' extends w T • By [Tl, we haNe
HomEX (T, 0') =f 0 if anel only if E(BC E/"( T) 0c 0'-],1/2, 'lP E) = wT ( -1). By Lenulla
140f [HST], E(BC Elk( T)0cO'- 1, 1/2, 'ljJ E) = w T ( -1), so that HOll1EX (T, ß' oclet) =I- 0'­
Let f E HOll1Ex (T, ß' 0 det) be nonzero. Define L : 7r --+ 1 by L(v 0 z) = z f(v).
Then L is a nonzero elell1ent of HOll1S0 (Z) ( 7r, 1).

Suppose that T anel T' are both finite dill1ensional, i.e., one dill1Cl1sional. Let ß
anel ß' be quasi-characters of k x such that T = ß 0 det anel T' = ß' 0 det. Since
W T = WT', we have ß2 = ß,2. This inlplies that ß = ß' 01' ß = W E/ kß' for sonle
quadratic extension E of k, since the residual characteristic of /..~ is odd. Let E be
containecl in ..Y anel let z in ..y2 be as above. Since elet(x) = Nf (x) for x in EX: it
follows that Honls0 (Z) ( 7r, 1) =I- O.

Now suppose d = 1 anel E = -E(l). Since SO()[) is conlpact, it will suffice
to show that there exists nonzero v in 7r anel nonelegeneratc z in ..~2 such that
7r( h)v = v for h E SO( Z). Since for evcry quaclrat.ic extension E of k a stateIl1ent
as above holels, to provc the existence of the rcquireel v anel z itwill sufficc to show
that there exists a quac1ratic extension E of /..: containccl in D, a quasi-character
4> of EX, anclnonzero vectors w in T anel w' in T' such that T(X)W = 4>(x)w and
T'(X)W' = if>(x*)w' for:c in EX.

If T and T' are one diInensional then an arglllllcnt as in the case € = E(l) \vorks.
Suppose elÜll T > 1 and dinl T' > 1. VVe will usc ternlinology anel results fronl

(Tl. ,:\.Te first assert that we can assllllle that T anel T' are nüniIllal. Ta sec this, let
0' = W T = WT'. Consider O'll+lTkÜIc' For sonle large 71., we can regarcl 0' as a character
of 1 + Jr"D " /1 + iT:'~ D k. This is a fini te graup of adel order. It follows that sqllaring
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is an auto1norphisnl of the group of eharacters of this group. Hencc, there cxists
a quasi-charaete1' 1] of k x such that '1]2 = 0' on 1 + 1fkD k. Consider T ®C 1]-1 anci
T' ®c 1]-1. Thc eon11non centraJ. eharaeter of these representations has concluctor
1ess than 01' equa1 to 1. Sinee any ele1nent of Irr(D X) of di1nension larger than 1
with central charactcr of conelucto1' lcss than 01' equal to 1 is 1nini1na1, T 0c 1/-]

and T' ®c 1] -1 are 1nini1na1. Since our clai1n holds for T ®C 1] -1 and T' ®C 1] -1 if and
on1y if it holds for T anel T', wc 1uay aSSU1nc that T anel T' are 1ninilnal.

Let olL( T) and JL( T') bc the reprcsentations corresponding to T and T' unde1' the
olaequet-Langlancls corresponclcnee, rcspeetively. Since cliln T > 1 anel dirn T' > 1,
these representatians are supercuspielal. Let 0.( JL(T)) anel a( .JL(T')) be the con­
cluetors of .lL(T) anel olL(T'), respeetively. "\i\Tithout 10ss of generality , we Inay
aSSlllne that dinl(T) ~ dinl( T'). Using the fonnulas for eliln T anel diln T' in tenns
of a( .lL(T)) anel a(olL(T')), respeetively, one ean show that a( .JL(T)) .2:: a( olL(T')).
Note that the fonnula in (T] for dirn T whcn o.(.JL(T)) is add appea1's incorreetly:
it should be (q + 1)q(c-3)/2 instead of (q + 1)(c-3)/2. Let E be a quadratie exten­
sion of k whose ra1nifieation index e has the sa1ne parity as a(JL(T)). Let S be
the set of all quasi-cha1'acte1's of EX whose coneluetors are 1ess than or equal to
e(a(olL(T)) - 1)/2 and which extenel 0', anel1et S' be the set of all quasi-eharacters
of EX \vhose coneluctors are 1ess than 01' equal to [e(a(.JL(T')) -1}/2 + 1/2] and
whieh extend 0'. Since a(.lL(T)) .2:: o.(JL(T' )) we have S' C S. By thc proof of
Lenulla 3.2 of [Tl, T IEX is the direet sunl of the ele1nents of S. By the proof of
Lel111na 3.1 of [T] evcry quasi-eharaeter of EX that oecurs in T'IEX is containeel in
S'. It follows that there exists a quasi-eharacter cP of EX that oecurs in T IEX anel
T'IEX, Sinee the conduetor of cP 0 * is thc salne as the eoneluctor of cP, it follows
that cP 0 * also oeeurs in TI EX, w hieh provcs our clai1n.

Thc case whcll, say, diln(T) > land dirneT') = 1 renlains. Let. T' = ß' 0 N.
Then ß/2 = a. It follows that the conlnlon central eharaeter of T ®c ß'-l and
T' 0c ß'-l = 1 is trivial. Thus, wc l11ay assun1e that. T is nünirna1 and T' = 1. Let
S be as in the last paragraph. Since 0' is trivial, it follows t.hat the trivial character
of E x lies in S, and so wc ean take cP to bc the trivial character of EX.

Supposc now cl #- 1. Let 7r = 7r( T, X). By assU111ption, T is infinite ditnensionaL
Let

z = (00 Jd) EB (0 0)o Jd 0 .

A eOlnputation sho\vs that

(

11
SO(Z) = {p(l, 0 0) !\-I ): u E ker(N k )}

Sinee SO(Z) is cOlllpact it will sllffiee to show that there exists a nonzero veetor v
in T such that

T(~ nv=v
for 11, in ker( N k\- ). \Ve will use the I<.irillov Inodel ]((T 1 1/JK) of T. Let f be the ehar­
acteristie funetion of D~.. Then.f is in 1\.. (T, 1/J ]\'), anel since kcr(Nk\') is containcel
in D~'l we have f(ux) = fex) for x in ](X and 'U in ker(Nf:). Thus, f is the desired
veetor. D
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LenUlla 6.2. Suppose tl1at d =I- 1. Let 7r be in Irr(GSO(.~)). A.ssume t11a.t 7r is
infinite dilnensional, invariant, but not c1istinguished. Let 7rI and 7r2 be tbe two
extensions of 7r to GO(.~). Then t11ere exists a nondegenerate z in .~2 SUell t11at

Proof. Let 7r = rr( T, X). Then T is infinite elilnensional. Let the notation be as in
section 5. Let

Then

SO(Z)={p(a,(~ n):aEP},

anel O( Z) is generateel by SO(Z) and

p(l, (~l ~)) 0 /io.

Since 7f is invariant, by Proposition 3.1, T is Galois invariant. Froln the explicit
fonn of ]{(T, 1./J!{) it follows that ]((T, ·t~g) is invariantunder conlposition by -,
anel a C0111putation shows that (T(g )f) 0 - = T(9)(f 0 -). By the rClnarks in
section 3 anel the proof of Proposition 3.1, we lllay asslune that ?T I (ho) is given
by ?Tl (ho)f = f 0 - anel 7r2(ho) is given by ?T2(ho)f = - f 0 -. Since?T is not
distinguished, by Proposition 4.1 we have that HOIllG1(2,k)( T, X 0 dct) = O. By
Theorenl 5.3, it follows that T is not thc base change of an elenlent of Irr(Gl(2, k))
with central character XW!\"jk. In particular, T is not 7r(flo l: P'2) for sonle Galois
invariant quasi-characters /-LI anel Jl2 of ]{ x. Let ( be a quasi-chnracter of ]( x that
extenels X. By Le111111a 5.1:

Z(g,(-I,f,l/2) = f T(g)f(x)((x)-l dx
}gx

converges absolutely far all 9 in G1(2, ]() anel f in ]{(T, 7jJ l\·). Define L( : ?T ~ 1 b);

Then L( is nonzero, and a cOlnputation shows that L( 18 In HOlllSQ(X):r(1r,l).

Moreover,

anel
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for f in 7L By the local functional equation for T anel Lenlllla 5.2, we t.hus have

anel

for f in ]((T, X). Since T is not the base change of an elelnent of Irr(GI(2, k)) with
central charactcr XW h"/ kl by Leuuna 14 of [HST], there exis t s quasi-charactcrs (
and (f of ]( x extending X such that

I

\

This cOlupletes the proof. 0

Theorenl 6.3. Let 0" be in Irr(GO(..-Y)). In tllC ease det(..-Y) #- 1, aSSUlne a is
infinite dilnensional. Then a is in ~2(GO(.Y)) if fl,nd only if a iE; not of tbc fonn
rr - for sonlC dis tinguisl1ed rr in 11'1'( GSO(..-Y) ).

Proof. By Theorenl 4.3, if a is in ~2(GO(~Y)), then a is not of the fonn rr- for
sonle di stinguisheel rr. Let rr in 11'1'( GSO(~Y) ), anel if d #- 1, then aSSUlne that rr is
infinite elilllensional. 'Ve lleecl to show that if 1r is regular then 7r+ is in ~2(GOey))~

if rr is invariant and distinguished then rr+ is in ~2 (GO(.Y)), and if 1r is invariant
hut not distinguished, then both extensions of rr to GO(.\"") lie in ~2(GO(.Y)).

Su ppase cl = 1. By Theorelll 4.4, itwill saffice to show that HOlllS0 (X) (w, rr) #- O.
By Leluma 6.1 , there exists a nondegenerate z in _\""2 such that HOlllSO(Z) (rrV, 1) #­
O. There is an SO(.Y) isoIllorphisnl of S(SO(.Y) . z) with

. SO(X)
c-InelsO(Z) 1.

By 1.8 of [BZ], it follows that there is a surjective SO(Z) luap frolll w to this
ineluced representation. By Frohenius reciprocity as in Proposition 2.29 of [BZ],

H0111S0(X)(c~lnd~~~~/ 1, rr) ~ HOlnso(z)(l, (1rV)I~o(z))

~ HcnnSO(Z) (rrv, 1).

Since thc last space is nonzero, it follows that HOlllSO(X) (w, rr) is nonzero.
Suppose now cl #- 1. If 7r is regular 01' invariant anel distinguishecl, then an argu­

luent as in thc last paragraph suffices. If rr is invariant hut not distillguishecl, thell
using LC111111a 6.2 and the technique of the last paragraph with SO(X) replacecl by
O(..-Y), one can construct llOllzero clelnents of HOlnO(X)(w,1T'j) and HOlllo(x)(W, rr2),
where rrl allel rr2 are thc extensions of rr to GO(~\""). 0
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7. A case of a conjecture of K udla. S.S. Kudla has nutele sorne ilnportant eon­
jectures about the first appearanee of a. rcprescntation in the theta. correspondence.
In this seetion wc esscntially prove a, case of one these conjcctures. In the ease d '# 1
our result is not as eonlplete because our understancling of the theta eorrespondcnce
between Gl(2,k)+ and Irr(GO(~Y)) is not strong as in the case cl = l.

To describe the conjectures, supposc for the 1110lnent that .Y is an al'bitrary
nondegencrate even dilnensional sYlllluetric bilinear spacc over k. By the existence
of the stable range, for every (J in Irr(O( ..Y) there cxists a nonnegative integer 11.

such that CI lies in ~n(O(.Y»). For CI in Irr(O(){) let n(CI) be t.he slnallest integer
such integer.

Conjecture 7.1 (5.5. Kudla). If CI is in Irr(O(.Y») tllen

'11.( (J) + 11.(a 0c sign) = diu1k ..Y.

There is also a conjeeture for eleulCnts of Irr(Sp(11., k). Ta state this conjecture
we need son1e n10re notation. Fix cl in k x / I..~ X2. Then thcre arc, up to equivalence,
exactly two anisotropie even clinlensional synllnetrie bilinear spaccs X+ ancl .Y_
of detenninant cl. Fron1 ..Y+ and ..:\_ we ean el'eate two series of evcn diluensional
synl111etric bilincar spaces by adding hypcrbolic planes to )[+ and ~X_. For 7r in
Irr( Sp(n, k)), lct '111+ ( iT) be the snlallest nonnegative even integer .,.11. such that 7r

oceurs in the theta correspondence with the rn clilnensional space wit.h anisotropie
COll1ponent. ..Y+; clefine .,.11. _ ( 7r) si11lilaI'ly.

Conjecture 7.2 (5.5. Kudla). If 7r is in Irr(Sp(n, k») t]len

m+(7r) + 1"1l_(iT) = 4n + 4.

One can lnake cornpletcly analogous definitions anel conjcetures for the theta
eorrespondenee for Sill1ilitudes. It is easy to sec that Conjectures 7.1 anel 7.2 hold
for thc corrcsponclencc for iS0111etries if anel only if thcy holel for the eorrespondcnee
for siluilitueles.

Supposc ~X is again as in clefinecl in Section 2. To provc Conjeeture 7.1 in
this ease, we Hceel to understand 1<] (GO(.\'"» and 1<3 (GO( X»). To eharaeterize
1<] (GO(.Y» we need to reeall SOUle facts about the theta correspondenee when the
dirnension of the underlying bilinear spaces i5 two, anel about the theta eorrespon­
dencc between Irr(GO(.\'") anel Irr(Gl(2, 1..:)+) in the case cl =1= l.

Let V bc a nondegenerate two din1ensional synl111etric bilincar space of detcr­
lninant d. Then GSO(ll) is abclian, anel a11 thc eleluents of Irr(GSO(ll» are one
dinlensional. vVe elefine regular anel invariant rcpresentations cxactly as in seetion
3. If 0' in Irr(GSO(ll» is regular, 0'+ will again denote thc inclueecl representation
of Cl" to GO(~X). rvIoreover, we say that 0' in Irr(GSO(V») is distinguishccl if anel
only if .

Ho]nso( V) (0', 1) =1= O.

Thus, SO(F) plays the role that. SO(1'~) did in scction 4, anel if Cl" is in Irr(GSO(V)
is elistinguishecl then we clefine 0'+ and 0'- just. as in section 4. A result entirely
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analogous to the Inain theoreln holels: If ß is in Irr(GO(~Y)), t.hen (j is in:R 1(GO(V))
if anel only if ß is not. of the fonn 0'- for SOlue elistingltished 0' in Irr(G80(V)).
NIoreover, by Theorenl 1.9 of [Ca], Conjecture 1.3 (theta eliehot.onlY) holels for
..\ = V anel 2n = 2, anel the reluarks prcceeeling Conjeeture 1.3 apply. If onc
lnakes the identification of lf with !( then elelncnts of GSO(X) can bc idcntifiecl
with quasi-eharaeters of ]( x. The Iuap that takes a quasi-eharaeter 0' of !( x to
O( 0'+)v is just thc usual 11lap of that associates to a quasi-eha.raeter an elelnent of
Irr(Gl(2, k)).

The ease when lf is anisotropie contains infonnat.ion about the rcstrietion of
representations of Gl(2, k) that we use in tbe proof of tbe next tbeorenl. Let 7r bc
in 11'1'( Gl(2, k)). It is weIl known that the restrietion of 7r to 81(2, k) is 111ultiplicty
free, anel that rrlsl(2,k) is reclueible if anel only if 7r is a theta lift an eleluent of
11'1'(GO(lf)) for SOlne anisotropie V. Let. 7r be a theta lift of a in Irr( G0 ( lf) ). Thcll
frolu Lenllua 4.2 of [R,] anel the reluarks in seetion 1 it follows that the restrietion
of 7r to 81(2, k) hFts two irreelucible conlponents if anel only if a ~ 0'+ with 0' such
that O'lso( \I) =I- 1: anel O'I§o( \I) = 1. Let (1' in 11'1'(G80( ..\)) be such that O'lso( \I) =I- 1

and 0' I§o( \/) = 1, anel assunle 7r = 0(0'+). Then again froln Lenulla 4.2 of [R] the

restrietion of 7r to 81(2, k) has foul' eonlponents. Finally, froln Theorenl 1.9 (el) of
[Ca] it foIlows that evcry such 7r, that is, evcry 7r in 11'1'( Gl(2, k )) whose restrietion
to 81(2, k) has foul' eonlponents, is a theta lift fronl evcry anisotropie V.

\\Te also neeel to 111akc sOUle rCl11arks about thc theta correspondence between
Irr( G0 (~\"")) anel Irr(G1(2, k)+) in the ease cl =I- 1. This was eonsielcreel in [CoJ using
the exteneleel \\Teil representation n of Gl(2, J.:) x GO(.Y); see [R] for thc definition.
By an argtunent as in the proof of Proposition 3.5 of [R], as representations of
Gl(2, J.:) x GSO(~\""),

n '""" I dG1 (2,k) xGSO(X)
~" = c- 11 R.' W,

where R' is as in the relnark after Theorel11 4.4. Using Frobenius reeiproeity, the
lnain result of [Co] now statcs that for cvery infini te elilnensional TI in Irr( GI(2, J.:)),
if BC(TIV) is the base change of TI v to Gl(2, !(), and 7r = 7r(BC(TIV),W/\'jkW[lv)
then

HonlR' (w, rr 0c 7r) =I- O.

If BC(TIV) is infinite ditnensional then by Proposition 4.1 and Theorenl 5.3, rr is
distinguished. By the renlark foIlo\ving Theoreln 4.4, it follows that if BC(rrV) is
infinite dinlensional then

This restrieted understanding eOlnpcls us to Inakc thc following definition. vVe
let IrrBc inf (GO(~~)) be the set of a in 11'1'( GO( ..\)) such that if a is eontained in
:R.(GO(X)) then for any elelnent TI of Irr(Gl(2, k)) that has B(a) as an irreducible
eonsti tuent, BC(TI V) is infini te di lnensional. The elelnents of Irr( G0 (..\)) not con­
tained in Irrsc illr(GO(.~)) are lilnited. For exalnple, IrrBc inf(GO(..\)) contains
all the supereuspidal represent ations, as we sho\v in the next section. Using [r-q
anel thc knowledge of the elClnents of Irr(Gl(2, k)) whose base ehanges to Gl(2, ]{)
are fini te ditnensional, one eoulcl e0111pUte all thc possible elenlents of 11'1'(GO(.~))
\vhieh are not in IrrBc inf (GO( ~\"")).
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LenUlla 7.3. Let a bc in Irr(GO(~Y)). In the case d :I 1 aS$Ulne tllat a is infinite
dünensional, a is in Irrßc inf(GO(..Y)), B,nd Conjecture 7.2 for 17. = 1. Tllen a is in
~l (GO(~~)) if Hnd only if a i8 of t11C fonn 71"+ for SOllle distinguisllcd 1T.

Proof. If a in Irr(GO(.Y)) is of thc fonn 71"+ for S0111C elistinguisheel 71" then a is in
~l (GO(.Y)) by an arglullent as in the proof of Theorcill 6.3, with SO(Y") playi11g
the role of SO(Z).

Suppose that a is in 9{](GO(X)). Suppose d = 1 anel E= E(l). By [8],

8( {7f+ : 71" E 11'1'( GSO( ..Y)) is clistinguisheel}) = Irr( G1(2, I-~)).

Froill Theoreln 1.2, it follows that a is of the fonn 71"+ for SOllle clistinguisheel 7f.
Suppose cl = 1 anel E= -E(l). Supposc that a is not of the fonn 71"+ for SOine

elistinguisheel iT. By Theorcnl 4.3, a is of thc fonn rr+ for S0111C regular 71". H follows
that 1 cloes not oeeur in iTIO(Xb anel by Lenllna 8.1, 8(a) is supe1'cuspidal. Now by
[5] and the discussioll following Theoreln 4.4,

8( {7f+ : 7f E Irr(GSO(.Y)) is distinguishecl})

contains the set of supereuspidal representations of GI(2, k:). By Theorcln 1.2 it
follovls a is of the fornl rr+ for S0111e distinguished iT, a contradietion.

5uppose now that d :I 1 and E= E(cl). Suppose first B( er) extcnds to a 1'eprc­
sentation II of GI(2, k). Thcn if thc notation is as in thc discussion preceecling the
lenllna, wc finel that ()" = B(IIIGl(2,k)+) = 7f+.

5uppose that 8(a ) inchlces irreclucibly to GI(2 , k), anel aSSUInc that a is 11

fonn 71"+ for sonle distinguished 71". Let II be the induetion of 8(a) to Gl(2, 1-:). Again,
thcre is a nonzcro R' Inap froln w to II 0c 7r. Let 9 in Gl(2, k) be a representative
for the nontrivial coset of GI(2, k)/ GI(2, 1-: )+. It follows that at leas t onc of

HOlllRI (w, g8(er) 0c rr).

is nonzero. If the first space is nonzero thcn wc find as in the last paragraph that
a = 71"+, a contradietion. It follows that the first space is zero anel the second is
nOl1ze1'O. This ilnplies t.hat

HOlnSl(2,k) (w', 8(a)) :I 0,

where w' is thc extenclccl 'iVeil representation cOl'respol1cling to the other foul' diIl1cn­
sional synll11etric bilinear spaee of cletenninant d. He11cc, n1+ (8(er)), rn._ (8( a)) ::; 4.
By COl1jccture 7.2 for 11. = 1, this iInplies that n1+(8(a)) = 1?l_(8(er)) = 4. It
follows that II is not a. lift froln a two clilnensiona1 synllnetrie bilinear space with
cletenninal1t d. Ho\vevcr, the restrietiol1 of II to Gl(2, k)+ is rcdueible, anel so II is
a lift froln an anisotropie two cliIllcnsional sYIl1Inctrie bilil1eal' spacc of dctcnninant
different fronl d. This, along with the fact that TI has a redueible restrietion to
GI(2, J..~)+, implies that the l'cstrict.ion to 51(2, J..~) of II has foul' distinct irreducible
cOlllponents. By our above relna1'ks, II is a lift froln a two dirnensiona1 synl111etrie
bilil1ear spaee of the salne detennil1ant as ~Y. This is a eontracliction. 0

27



.' .

Lenuna 7.4. Let a bc in Irr(GO(..-Y)). AssLulle that alo(x) =I siga, and in tbc ease

d =I 1, aSSUlne that a is infinite dhnensional. Tllen a is in ~3(GO(.Y)).

Proof. By Theoren1 6.3 and thc principle of persistence [V], p. 67, it suffices to
show that if IT is in Irr( GSO(~Y)) is distinguisheel anel IT Iso(x) =I 1, then 7r- is
in ~3(GO(..-Y)). Let x in ..-y 3 be such that thc cornponents of x fonn a basis for
the orthogonal corl1pleluent to y~ frorll section 4. Then the stahilizer of x in O(.\")
is {I, h1 }, whcre h1 = -ho. By an argurnent. as in thc proof of Thcorcrn 6.3, it
suffices to show that there exists a nonzero vcctor v in the space of 7r such that
Jr-(ll'l)V = Vi to provc this, it suffices to show that 7r-(hI) =I -1. Ta this end,
suppose that IT- (h 1 ) = -1. Thcn for 11. in GSO(~Y) we have IT( h) = IT( 11. 1hh11

).

Suppose now d = 1. Let 7r = Jr( r 1 r). Then r(g) 0 T(9 1
) = T(g') 0 r(g) for

9 E Gl(2, k) 01' D X
• But by thc asstunption that 7rlso(x) =I 1 it follows that the

dirncnsion of a is largel' than one. This is a contraelictian.
Silnilarly, if cl =I 1, there is a contradiction. 0

Theoren17.5. Let a bc in Irr(GO(..-Y)). In tllc eaBe d =I 1 asSll111C that a is infinitc
dimensional, a is in In'Be inf(GO(~Y)), and Conjeeture 7.2 for 11. = 1. Then

n(O') + 11.(0' 0c sign) = 4.

Proof. Let 7r in Irr(GSO(_Y)) be a constituent of the restrietion of a to GSO(){).
Suppose first 7r is regular so that a = 7f+. By Lell1n1a 7.3, we have n(a) = 11.(a 0c
sign) 2: 2. By Theorenl 6.3, it follows that 11.( 7r+) = 11.(?T+ 0c sign) = 2.

Suppose ncxt that ?T is distinguishcel. \Vithout loss of generality, we l11ay aSSlllne
that a = ?T+. Supposc iTlso(x) =1= 1. Then by Lcnuna 7.3, n,(a) = 1 anel by Theoreni
4.3 anel Lel111ua 7.4, n(O'0csign) = n(7[-) = 3. Suppose that 7T'lso(..y) = 1. Thcn
alo(x) = 1, anel by thc appendix of [R,a), n(a) = 0 anel n(a 0c sign) = n(IT-) = 4.

Finally, suppose that cl =I 1 and 7r is invariant but not elistinguished. Then if the
notation is as in Lenuna 6.2, by LenlllUl. 7.3 and TheorCln 6.3, 11.(a) = n(a0csign) =
2. 0

Thc following table sumnlarizes the results when cl = 1.

cl = 1, a E Irr(GO(~X))

a 11.(a) 11.(a 0c sign)

alop:) = 1 0 4

alo(x) =I 1, a = ?T+, IT invariant 1 3

a = 7r+, iT regular 2 2

alo(x) =1= sign, a = 7r-, 7r invariant 3 1

alo(.y) = sign 4 0

The next table sunl111arizes the inforlnatioll when d =1= 1. v\Tc rerninel the reaeler
that in this case \ve necel to asslllne Conjecture 7.2 with n = 1.
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cl f= 1, a E IrrB C in f ( GO (~Y)) infini te dirnensional

a n(a) n(a 0c sign)

a = 71'"+, 1r distinguishcd 1 3

a!cso(x) invariant, not distinguishecl 2 2

a = 71'"+, 1r regular 2 2

a = 71'"- , 7r elistinguisheel 3 1

8. Supercuspidal representations of GSp(2, k). Using the theta correspon­
dence \ve have been considering, we will now construct series of supercuspidal rep­
resentations of GSp(2, k). Since the statcrnents of the theorenls are lengthy wc will
not restate here.

The proof of Theorenls 8.2 anel 8.3 depend on the following result fronl (I(j. In
the statenlent we use SOlne notation froln the previous section. The reader should
note that this statenlcllt. also holels for other dual pairs. See [V].

Lenll11a 8.1 (Kudia). Suppose tllat )[ 1S an evcn diInens10na1 II Oll degencrate
SYlll1lletrichilinear space. Letabe 111 Irr( 0 (X) ). Hais supercus1cla,1, th ell B(a) 1n
Irr(Sp(11.(a), k)) 1S supercuspida1.

Using Lenuna 8.1, anel the tables frolll the last section, it is easy now to prove
Theorellls 8.2 anel 8.3. 'Ve lnakc two renlarks. First, in the case cl f= 1, every super":
cuspidal representation in Irr(GO(){)) is in IrrBc inf(GO(..Y)). To see this, suppose
that er in Irr(GO( ..Y)) is supcrcuspielal anel a is in ~l(GO(....Y)). By Lemma 8.1
8(a) in Irr(GI(2, k)+) is supercuspidal. Since thc base change of any supercuspielal
elelnent of Irr( GI(2, k)) is infini te dilnensional, a is in IrrEein f ( GO(..Y) ). Seconcl,
wc note that in the proof of Theoreln 8.3 part (2) to verify that therc exactly one
rr lying over T is not elistinguished Olle uses Theorenl 5.3 anel part (c) of Theoreln
1 from [CL].
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Appendix. In the following tables we illustrate the lnain theoren1 by showing tbe
passage of a represcnt.ations of D X x D X

, Gl(2, 1.:) x Gl(2,1.:) anel Gl(2, ]() fron1
these groups to GSO(..-Y), GO(_Y) anel finally GSp(2, k:)+. In the case d =I=- 1, we
aSSlune that T is infinite elilnensional. Also, passage to GSp(2, k:) in the case cl =f 1
requires Conjecture 1.3 (Theta dichotolny); see section 1.

d=l

(T, T')

GI(2, J.~) x GI(2, 1.;)
or D X x D X

GSp(2, k)

1. (T,T') E IITf(Gl(2,1.:) x Gl(2,I()) 01' IITf(D X x D X), T ~ T'.

(T,T) --t rr(r,r)

71'"( T, T)- does not lift

GI(2, k:) x GI(2, 1.:)
01' D X x D X

GSO(.Y) GO(..-Y) GSp(2, J.~)

2. r E Irr(Gl(2, k)) 01' Irr(D X
).
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d#l

rr(r, X) --* 7f(T,X)+ --* B(7f( T, X)+)
/

T
~

7f(T, X') --* 7f( T, X' )+ --* B( 7f(T, X' )+)

Gl(2, ]() GO(.-Y) GSp(2, k)+

1. r E Irrf(Gl(2, J()) not Galois invariant.

rr(r,x)+ --* B(7r(r,x)+)
/

7I"(T,X)
/ ~

7r(T,X)- cloes not lift
T

7r( T, X' )+ --* B( 7r(T, X' )+)
~ /

71"( T, X')
~

7r( T, x ' )- cloes not lift

Gl(2, J{) GSO(.Y) GO( ..Y) GSp(2, k)+

2. r E IITf( Gl(2, J{)) Galois invariant, X anel X' elistinguisheel.

7r(r,x)+ --* B( 7r( T, X)+)
/

7r(T,X)
/ ~

7r(r,x)- elocs not lift
T

7r(r,X')1 --* B(7r(T,X')I)
~ /

7f(r, x')

~
7r(r:x' h --* B(7r(T,X'h)

Gl(2, ]() GSO( ..Y) GO(.Y) GSp(2, k)+

3. T E In"J( Gl(2, ]()) Galois invariant, X clistinguishecl, not X' elistinguishecl.
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