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ABsTRACT. In this paper we consider the theta correspondence between [rr(GSp(2))
and Irr(GO(X)) when k is a nonarchimedean local field and dimy; X = 4. When
det{X) = 1, we determine all the elements of Ire(GO(X)) that occur in the corre-
spondence, and when det(X) # 1, we find all the infinite dimensional elements of
Irr(GO(X)) that occur in the correspondence. We apply this resull to prove a case
of a conjecture of $.8. Kudla concerning the first occurance of a representation in

the theta correspondence, and to construct series of supercuspidal representations of
GSp(2, k).

Suppose k is a nonarchimedean local field of characteristic zero and odd resid-
ual characteristic, X 1s an even dimensional nondegenerate symmetric bilinear
space over k and n is a nonnegative integer. Let w be the Weil representation
of Sp(n, k) x O(X) corresponding to a fixed choice of nontrivial additive character
of k, and let Rx(Sp(n, k)) be the set of elements of Irr(Sp(n, k)) that are nonzero
quotients of w; similarly define R,,(O(X)). By [W], the condition that 7 ®c o be a
nonzero quotient of w for 7 in Rx(Sp(n, k)) and o in R,(O(X)) defines a bijection
between Rx(Sp(n, k)) and R, (O(X)). By [R], the extension of w to the subgroup
R of GSp(n, k) x GO(X') consisting of pairs whose entries have the same similitude
factor also defines a well behaved correspondence between Irr(GSp(n,k)t) and
Ire(GO(X)). Here, GSp(n, k)t is the subgroup of elements of GSp(n, k) having
similitude factors equal to the similitude factor of some element of GO(X). More
precisely, let Rx(GSp(n, k)*) be the set of elements of Irr(GSp(n, k)*) whose re-
strictions to Sp(n, k) are multiplicity free and have a constituent in Rx(Sp(n, k));
similarly define R,,(GO(X')). Then the condition

Homp(w,m®@c o) #0

defines a bijection between Rx(GSp(n, k)T) and R, (GO(X)). In this paper we
consider R2(GO(X)) when dimy X' = 4. In this case, all elements of Irr(GO(X))
have multiplicity free restrictions to O(X), and by the theta dichotomy conjecture,
GSp(2, k)" can be replaced with GSp(2,k). If det(X) = 1 then we determine

During the period of this work the author was a Research Assoctate with the NSF 1992-
1994 special project Thete Funclions, Dual Pairs, and Automorphic Forms at the University
of Maryland, College Park, and was supported by a Stipendium at the Max-Planck-Institut fir
Mathematik,

Typeset by ApS-TgX



R2(GO(X)) completely, and if det(X') # 1, then we find all the infinite dimensional
clements of Ry(GO(X)). We also give two applications of this result. The first is
a proof of a case of a new conjecture of 5.5. Kudla concerning the first appearance
of a representation in the theta correspondence. The second is the construction of
series of supercuspidal representations of GSp(2, k). A summary of previous work
on this example appears near the end of this introduction.

To state the main theorem we need some more terminology. Assume dimy X' = 4.
Let 7 be contained in Irr(GSO(X)). If 7 induces irreducibly to GO(X') we say that
7 is regular; otherwise, we say that 7 is invariant. Suppose that 7 is invariant. If y
in X is anisotropic, then the stabilizer in SO(X) of y can be identified with SO(Y"),
where Y is the orthogonal complement to z. Suppose that 7 is invariant. We say
that 7 is distinguished if 7 is invariant and there is a y such that

Homgo(y)(w,1) #0,
and, if det(X') # 1, then Y is isotropic. Suppose that 7 is distinguished. Then
dim¢ Homgoyy(m, 1) = 1.

Since 7 is invariant, 7 extends to two different elements of Irr(GO(X'}). Each pro-
vides an action of the nontrivial element of O(Y)/SO(Y') on the above homomor-
phism space, and since the space is one dimensional, the actions are multiplication
by £1. We denote by n% the extension inducing multiplication by 1, and by =~
the extension inducing multiplication by —1. The definitions of 7t and 7~ do not
depend on the choice of y.

Theorem 6.3 (Main Theorem). Assume dimg X =4. Let o be in Irr(GO(X)).
In the case det(X) # 1, assume o is infinite dimensional. Then o is in Ro(GO(X))
if and only if ¢ is not of the form n~ for some distinguished n in Irr(GSO(X')).

This result is entirely analogous to the case dim; X = 2n = 2 considered by
Hecke, Weil, Jacquet, Langlands and others. In this case, the role of SO(Y) is
played by SO(X). For a description of this case, see section 7. Of course, we
expect the theorem to hold for all o in the case det(X) # 1.

To describe the proof and make the theorem concrete, we characterize of GSO(X)
in terms of units of quaternion algebras. If det(X) = 1, either there is an exact
sequence

1 — k™ = GI(2,k) x GI(2,k) = GSO(X) — 1
or an exact sequence
12k = DX x D = GSO(X) — 1,

depending on the Hasse invariant of X. In the first case X is isotropic; in the
second case, X is anisotropic. Here, D is the division quaternion algebra over k. If
det(X') # 1 then there is an exact sequence

1 - K% =k xGl2,K) > GSO(X) — 1.



Here, I = k({/det(X)). If det(X') = 1, the exact sequence gives a bijection between
Irr(GSO(X)) and the subset of 7 @c¢ 7' in Irr(G1(2, k) x GI(2,k)) or Ire(D* x D*)
such that w, = wpr. Ifdet(X) # 1, the exact sequence gives a two to one map from
Irr(GSO(X)) onto the subset of 7 in Irr(G1(2, K)) such that w, factors through N} ;
the two representations lying over 7 correspond to the characters through which w,
factors.

Using these identifications, regular, invariant and distinguished have the follow-
ing meanings for an element = of Irr(GSO(X')). Suppose det(X) = 1, and let 7@c 7'
correspond to 7. Then 7 is regular if and only if 7 2 7', and if 7 is invariant, then
7 1s distinguished. Suppose det(X) # 1, and let 7 correspond to 7 and the quasi-
character x of £*. In this case, 7 1s regular if and only if 7 is not Galois invariant. In
contrast to the case det(X') = 1, not all invariant representations are distinguished.
Indeed, if 7 is invariant, so that 7 is Galois invariant, then 7 is distinguished if and
only if

Homg(z,£)(7, x 0 det) # 0.

In the nontrivial case when 7 is infinite dimensional, nonvanishing is given by the
following theorem. We claim no originality for this result. The proof is a straight-
foward generalization of arguments from [H] and [F], along with some observations
from [HST] on [T]. In the global case, this theorem goes back to [HLR].

Theorem 5.3 (Hakim-Flicker). Let 7 in Irr(GY(2, ')) be infinite dimensional
and Galois invariant. Let w, = y o Nf. Then the following are equivalent:

(1) Homgy(z 1)(7, x 0 det) # 0;
(2) For every quasi-character ( of I'* extending y,

E(T ®c C—] ’ 1/211:1”\') = X(_l)a

(3) 7 is the base change of an element of Irr(Gl(2,k)) with central character
XWR k-

With these interpretations, we can explain the proof of the main theorem. We
need to show that under the hypotheses of the theorem that every element of the
form 7~ is not in R(GO(X)), and that every element of Irr(GO(X)) not of the
form 77 is in Ro(GO(X')). The first statement follows by an argument analogous
to one in [HI{]. This proof depends on a lemma that follows directly from a result
of D. Prasad [P]: every distribution on §(X?) invariant under SO(Y') is invariant
under O(Y), for any Y as above.

To prove the second statement, we use the local analogue of the global method
of computing a Fourier coefficient. Let o in Irr(GO(X')) not be of the form =~. Let
z be in X2, If det(z, 2} # 0, we will say that z is nondegenerate. As above, if z is
nondegenerate, then the components of z generate a nondegenerate subspace, and
the stabilizer in O(X') is isomorphic to O(Z), where Z is the orthogonal complement
of the subspace. By Frobenius reciprocity, to show that o is in R (GO(X)) it suffices
to show that

Homg(z(0V,1) # 0,
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for some nondegenerate z. See section 6. First consider the case when o is not
induced from a regular element of Irr{(GSO(X)) or is not of the form n*. Then
det(X) # 1, and o is the extension of an element of Irr(GSO(X')) corresponding to
a 7 in Irr(Gl(2, K)) and a quasi-character y of k* such that

Homg(2,x)(7, x 0 det) = 0.

With a proper choice of z and quasi-character { of I'* extending y, using the
Kirillov model of 7Y, we show

L(f)=2(¢7, £,1/2)

is the required linear functional. Here, Z({™!, f, s) is the zeta function associated to
fin 7Y and ¢. In particular, the invariance of L follows from the functional equation
for Z(¢™!, f,s). When ¢ is induced from a regular element 7 of Irr(GSO(X)) or is
of the form 7% there is a simplification. In this case, by Theorem 4.4, it suffices to
show that '

HOlnso(z)(TFV, 1) 75 0

for some nondegenerate z. When X is isotropic we accomplish this by some Kirillov
model constructions, in part analogous to those of the previous paragraph, and
when X is anisotropic, we use Tunnell’s work [T].

In combination with some other results, the main theorem can be used to prove a
case of a conjecture of S.5. Kudla. To state the conjecture, suppose for the moment
that dimy X is arbitrary. For o in Irr(GO(X)), let n(o) be the smallest integer n
such that o occurs in the theta correspondence with GSp(n, k)*.

Conjecture 7.1 (S8.S. Kudla). If o is in Irr(GO(X)) then

n(o) + n(o @¢ sign) = dimy X.

Actually, S.S. Kudla made his conjecture for the correspondence for isometries,
but this is equivalent to the conjecture stated here. This conjecture is known to
be true when dim; X = 0 or 2, but is open for all other cases. There is another
conjecture of S.5. Kudla for representations of GSp(n, k). See section 7. We prove
the following theorem. In the theorem, in the case det(X) # 1, Irrge iy (GO(X)) is
a certain large set of elements of Irr(GO(X)) that includes all the supercuspidals.
See section 7 for the definition.

Theorem 7.5. Let dim; X =4 and ¢ be in Irr(GO(X)). In the case det(X) # 1
assume o is infinite dimensional, ¢ is in Irrpc inf(GO(X)), and Conjecture 7.2 (S.S.
Kudla) for n = 1. Then

n(o) + n(o Q¢ sign) = 4.

To prove the theorem, we characterize R;(GO(X')) and R3(GO(X)). That is,
under the same assumptions as in the theorem, we specify n(s). To do so, we make



use of the main theorem and [S] and [Co]. For a presentation of the information,
see the tables in section 7.

The main theorem also can be used to construct series of supercuspidal repre-
sentations of GSp(2, k) parametrized by series of representations of GI(2,k), D*
and G1(2, ). In the following theorem, if o is in Ry(GO(X)), then let (o) be the
corresponding element of Irt(GSp(2, k)).

Theorem 8.2. Assume X is as above and det(X) = 1.

(1) (regular series 1,) Suppose X is isotropic. If r,7' in Irr(GI(2,k)) are su-
percuspidal, distinct and have the same central character, and if = is the
element of Irr(GSO(X')) lying over 7 @¢ 7', then

GO(XN)
H(IndGSO(X) )
in Irr{(GSp(2, k)) is supercuspidal.

(2) (regular series 1) Suppose X is anisotropic. If ,7' in Irr(D*) are distinct
and have the same central character, and if 7 is the elemnent of Irr(GSO( X))
lying over 7 @¢ 7', then

GO(X)
O(Indggoxy ™)

in Irr(GSp(2, k)) is supercuspidal.

If det(X') # 1 then we also construct two series of supercuspidal representations
of GSp(2, k). However, in contrast to the det(X) = 1 case, the two series do not
correspond to the two four dimensional symmetric bilinear spaces with the same
determinant different from 1. In fact, conjecturally, these two symmetric bilinear
spaces together give one correspondence. See section 1; in the statement of the
following theorem we assume this discussion. '

Theorem 8.3. Assume X is as above and d = det(X) # 1. Assume further that
Conjecture 1.3 (theta dichotomy) with dimy X = 4 and n = 2, and Conjecture 7.2
with n = 1 hold.

(1) (regular series d) If v in Irr(Gl(2, IV')) is supercuspidal, not Galois invariant,
but has Galois invariant central character, and if # and =’ in Irr(GSO(X))
lie over 7, then

GO(X GO(X
9(111(105(()(1\),) ), G(IndGS(()(;z.) ')
in Irr(GSp(2, k)) are supercuspidal.

(2) (Invariant series d) Let 7 in Irr(Gl(2, K')) be supercuspidal and Galois in-
variant. Exactly one 7 in Irr(GSO(X)) lying over t is not distinguished,
and if oy and oy are the two extensions of 7 to GO(X'), then 6(o,) and
8(o7) in Irr(GSp(2, k)) are supercuspidal. '

In this paper we do not consider applications to functorality and the theory of L-
packets. For some discussion of these topics see [V] and [HST]. In the appendix, we
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give tables showing the passage and bifurcation of the appropriate representations
of DX x D*, GI(2, k) x GI(2, k) and Gl(2, ') from these groups to GSO(X'), GO(X)
and finally GSp(2,%). The tables may be useful to the reader interested in these
topics.

We will now make some remarks about previous work on the Weil representation
and theta correspondence for similitudes when dimg X = 4 and n = 2. In [PSS]
and {Sol}, in the case det(X) = 1 and X isotropic, the induced Weil representation
[R] is used to lift elements of Irr(GSO(X)) to representations of GSp(2,%). This
construction is an analogue of the global definition of theta lifts, and uses elements
of Whittaker models in place of automorphic forms. The problem of whether these
representations of GSp(2, k) are irreducible is not resolved in [PSS] or [Sol]. The
work [HPS] in part investigates the case det(X) = 1 and X anisotropic. In this
case, as a consequence of Theorem 9.1 of [HPS], every element of Irr(GSO(X')) is an
SO(X) quotient of w. Using this result, one could prove the main theorem in this
case using Theorems 4.3 and 4.4. Using the induced Weil representation, results
from the previously mentioned papers, and the strong multiplicity one theorem
for GSp(2) of [So2], a global argument in [V] lifts elements of Irr(GSO(X)) that
are the local components of cuspidal, not invariant, automorphic representations
of GSO(X) to Irr(GSp(2, k). Included in these representations arc the supercusp-
idal representations. Since it uses Whittaker models, in the case det(X) # 1, this
method fails to construct the representations that correspond to one of the exten-
sions to GO(X') of the invariant but not distinguished elements of Irr(GSO(X')).
Finally, [HST] makes many remarks and observations about the cases when X is
isotropic, though it is mainly concerned with a certain global theta lifting, and its
application to another problem. In particular, after the computation of the Fourier
coefficient of the global theta lift it makes a conjecture essentially equivalent to
the main theorem in the case X is isotropic; see the guess on page 399. However,
instead of using the concept of distinguished representations, the guess is phrased
in terms of e factors. Even so, we rely heavily on the understanding of these e
factors from Lemma 14 of [HST].

In the first section we recall the theory of the theta correspondence for simili-
tudes from [R]. In the second section we characterize GO(X) in terms of the units
of quaternion algebras. Using this account, in the third section we parameterize
Irr(GO(X)). In the fourth section we define the concept of being distinguished, and
relate it to the theta correspondence. Distinguished representations for det(X) # 1
are investigated in the fifth section. The main theorem is proven in the sixth section.
In the remaining two sections we make the applications to S.S. Kudla’s conjecture
and the construction of supercuspidals.

T would like to thank S.S. Kudla for many useful comments, and especially for
telling me about his conjectures. Thanks are also due to J. Hakim for some helpful
conversations concerning his theorem.

We use the following notation. Let J be a group of td-type, as in [C]. Then Irr(.J)
is the set of equivalence classes of smooth admissible irreducible representations of
J. If wisin Irr(J) then 7Y in Irr(J) is the contragredient representation of m, and wx
is the central character of 7. A quasi-character of .J is a continuous homomorphism
from J to €%, and a unitary character of J i1s a continuous homomorphism from J
to the group of complex numbers of absolute value 1. The trivial representation of
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J on C will be denoted by 1. We will also use the notation of [GK] for restriction
theory. Throughout the paper k is a nonarchimedean local field of characteristic
zero and odd residual characteristic. Let D be the division quaternion algebra over
k, with canonical involution * and reduced norm N defined by N(z) = zz* = 2*z.
The canonical involution of the quaternion algebra My (k) will also be denoted by *;
in this case the reduced norm is det. Let (, )i denote the Hilbert symbol of k. If K’
is a quadratic extension of k, then wy/ is the nontrivial character of £/ N f(Kx ).

For d € kX /k*? we let €(d) = (=1, —=d)y.

1. The theta correspondence for similitudes. In this section we recall some
results and definitions from [R]. Suppose that (X, (, )) is a nondegenerate symmet-
ric bilinear space over k of even dimension m, and let n be a nonnegative integer.
Let GO(X) be the set of & linear automorphisms i of X such that there exists A in
k* such that (h(z), h(y)) = A(z,y) for z and y in X. If A is in GO(X), then such
a A is unique, and will be denoted by A(R). Let O(X') be the subgroup of all & in
GO(X) such that A(h) = 1. Let sign : GO(X') — {£1} be the unitary character
defined by sign(h) = det(h)/A(h)™/2. We let GSO(X) = ker(sign). We will often
describe GO(X) in terms of GSO(X') and an extra element of GO(X). Let kg in
GO(X) be such that k2 = 1 and hg is not in GSO(X). There is an action of the
group {1, ho} on GSO(X) given by hg - h = hohhy, and an isomorphism

GSO(X) % {1,ho} = GO(X)

that takes (h,6) to hd. Next, let GSp(n, k) be the group of all g in Gl(2n, k) such
that for some A in &%,

t 0 1n _ 0 1n
g(-ln O)g_l\(_ln O)

Again, if g is in GSp(2n, k), then such a A is unique and will be denoted by A(g). Let
Sp(n, k) be the subgroup of all g in GSp(n, k) such that A(¢) = 1. Let GSp(n, k)t
be the subgroup of all g in GSp(n, k) such that there exists h in GO(X') such that
AMg) = A(h). The group GSp(n, k)T is a proper subgroup of GSp(n, k) if and only
if det(X') # 1. If det(X') # 1, then [GSp(n, k) : GSp(n, k)] = 2. Fix a nontrivial
additive character 1 of k.

To 3, X and n, there is associated the Weil representation w of Sp(n, k) x
O(X') on §(X™). In this paper we only will need to know the action of w(1, k) for
h in O(X'), which is given by left translation:

w(1,h) - () = L(h)p(z) = p(h~"a).
There exists of an extension of w to a representation of the larger group
R ={(g,h) € GSp(n, k) x GO(X) : A(g) = A(h)}.
This extension, called the extended Welil representation , will also be denoted
by w, and is very simply defined by
R RGN

The Weil representation defines a correspondence between Irr(Sp(n,k)) and
Irr(O(X)). Let Rx(Sp(n,k)) be the set of all elements of Irr(Sp(n, k)) that are
nonzero quotients of w, and similarly define R,,(O(X)) . As a consequence of a
more general theorem of [W], we have

w(g, ) = wl (; N



Theorem 1.1 (Howe-Waldspurger). The set

{(m,0) € Rx(Sp(n, k) x R,y (O(X)) : Homgy(s xyxo(x)(w, T ®@c o) # 0}
is the graph of a bijection between Rx(Sp(n,k)) and R,(O(X)).

A correspondence for similitudes is defined by the extended Weil representation.
Let Rx(GSp(n, k)T) be the set of o in Irr(GSp(n, k)T) such that oy, k) is mul-
tiplicity free and has a constituent in Rx(Sp(n, k)). Similarly define R,(GO(X)).
From [R], section 4, we have:

Theorem 1.2. The set
{(m,0) € Rx(GSp(n, k)*) x R,(GO(X)) : Homp(w, 7 @c o) # 0}
is the graph of a bijection between Rx(GSp(n,k)*) and R,(GO(X)).

If is in Rx(GSp(n, &)™) or o is in R,,(GO(X)), then we denote the correspond-
ing elements of R,,(GO(X)) and Rx(GSp(n, k)*) by 6(r) and 6(c), respectively.

The problem of whether the extended Weil representation defines a well behaved
correspondence between Irr(GSp(n, k)) and GO(X') when GSp(n, k)t is a proper
subgroup of GSp(n, k) is also dealt with in [R]. To describe the results, suppose
that GSp(n, k)" is a proper subgroup of GSp(n, k), i.c., that det(X) # 1. Then
the multiplicity free assumption is unnecessary since [GSp(n, k)T : k% - Sp(n, k)] =
[GO(X) : kX - O(X)] = 2. See, for example, [GK]. One would like to know if the
condition

Homp(w, 7 @c o) # 0
defines a bijection between Rx(GSp(n,k)), the set of all 7 in Irr(GSp(n, k)) such
that some constituent of m|g,(n £y lies in Rx (Sp(n, k)), and R((GO(X))). In [R] it
is shown that this condition defines such a bijection if and only if a certain criterion
is satisfied.

To state this criterion, we need to introduce the other nondegenerate symmetric
bilinear space X' of dimension m and determinant det(X). From the Witt decom-
position theorem we sec that X’ can be taken to have the same vector space as X,
but with symmetric bilinear form multiplied by an element of £*. Assume that X'
has this form. Then GO(X) = GO(X'), and the restrictions of the Weil representa-
tions w and w’ associated to X and X', respectively, to O(X) = O(X') are identical.
It follows that R,,(O(X)) = R,,(O(X")) and R,,(GO(X)) = R,(GO(X")). However,
the correspondences defined by w and w' may differ. In [R] it is proven that the
above condition defines a bijection if and only if the correspondences defined by w
and w' are disjoint, i.e., Rx(Sp(n, k)) N Rx(Sp(n,k)) = 0.

Suppose Rx (Sp(n, k) NRx(Sp(n, k)) = . From [R] we have the following. Let
g be a representative for the nontrivial coset of GSp(n,k)/ GSp(n,k)t. Let o be
in R,(GO(X)) = R(GO(X")), and let 7 and 7' in Irr(GSp(n, k)™) correspond to
o with respect to w and w’, respectively. Then ¢ 7 = 7', and '

G20, o
in Rx(GSp(n, k)) corresponds to o.

When the criterion is expected to hold depends on m and n. If the underlying
bilinear spaces lie in the stable range, i.e., if m > 4n + 2, then the criterion does
not hold. From [HKS], we have have the following conjecture.
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Conjecture 1.3 (Theta dichotomy). If m < 2n, then

Rx(Sp(n, k)) N Ry (Sp(n, k)) = 0.

For progress on the conjecture, see [KR] and [HKS]. The theta dichotomy conjec-
ture follows from another strong and precise conjecture of S.S. Kudla. See section

7.

2. Four Dimensional Symmetric Bilinear Spaces. In this section we recall
the characterization of the group of similitudes of a four dimensional symmetric
bilinear space in terms of the units of a quaternion algebra. For the remainder of
this paper, d will will be an element of kX/k*%. If d = 1 then let K = k x k; if
d #1 then let I = k(Vd). Let Gal(I/k) = {1,-}.

Four dimensional symmetric bilinear spaces can be constructed from quaternion
algebras over K. Let B be a quaternion algebra defined over I, with canonical
mvolution *. We say that a £ linear ring automorphism s of B is a Galois action
on B if s* = 1 and s(az) = @s(z) for ¢ in K and z in B. Let s be a Galois
action on B. Define X(s) to be the set of all z in B such that s(z) = z*. Then
X (s) is a four dimensional vector space over k, and equipped with the restriction
of the symmetric bilinear form corresponding to the reduced norm of B, X(s) is
a nondegenerate symmetric bilinear space. The determinant and Hasse invariant
of X(s) are d and e(d)e(s), respectively. Here, to define €(s), let B(s) be the fixed
points of s. Then B(s) is a quaternion algebra over k, and e(s) =1 if B(s) is split
and €(s) = —1 if B(s) is ramified.

The elements of A* x B* give elements GSO(X). Define a left action p of
k* x B* on X(s) by

Pt g)e =t~ gas(g)”

Then p(t,¢) is in GSO(X(s)) for (¢,¢) in £* x B*. There is an inclusion of K™ in
kX x B* that sends a to (N (a), a).

Theorem 2.1. For every four dimensional nondegenerate symmetric bilinear space
X of determinant d over k there exists a quaterion algebra B over K and a Ga-
lois action s on B such that X = X(s) as symmetric bilinear spaces. For every
quaternion algebra B over I and Galois action s on B the sequence

1o K% 5 X x BX 4 GSO(X(s) - 1

15 exact.

Proof. Let B be the even Clifford algebra of X. To see that that B is a quaternion
algebra over I, and construct s, let z1, 22, 23, T4 be an orthogonal basis for X. Let
Z be the center of B. Then Z = k + kx 222324, and (21222324)% = d. Hence, Z
15 1somorphic to A" as a k algebra, and B is an algebra over K. Let 1 = z22; and
j = z32;. Clearly, i? and j? are in %, and ij = —ji. Let k = ij. Then 1,1,j,k are
linearly independent over k, and By = k+ ki + kj + kk is a quaternion algebra over
k. The map from K ®; By to B that sends a ® x to az is an isomorphism of K
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algebras, and so B is a quaternion algebra over K. Define s by s(a®@z) =a @ z.
Then s is a Galois action on B.

To prove the first statement, we note that X represents 1 [O], and so we may
assume that (zs,z4) = 1. Define a map T from X to X(s) by T(z) = vz4. Then T
1s a well defined isometry. The second statement follows from 4.6.1 of V of [Kn]. O

Using these results, we will now define concrete realizations of the two four
dimensional nondegenerate symmetric bilinear spaces X (d, €) of determinant d and
Hasse invariant € in {#1}. Suppose first d = 1. Let B be My(k) x Mz(k) or
D x D. Define a Galois action on B by s(z,y) = (y,2). Then X(s) is obviously
isomorphic to Ma(k) or D. We find that My(k) and D, regarded as symmetric
bilinear spaces with forms corresponding to the reduced norm, have determinant
1 and Hasse invariant e(d) and —e(d), respectively. We let X(1,¢(d)) = M(k) and
X(1,—¢€(d)) = D. Since N{.‘. is surjective, the above exact sequence simplifies to

1 kX = GI(2,k) x Gl(2,k) 5 GSO(X(1,€(1)) = 1

and
1 = kX = D* x D* 5 GSO(X(1,—¢(1)) — 1,
where p is now defined by p(¢, ¢ )z = gzg'*, and the inclusion of £* sends 2 to
(z,z71). '
Suppose next that d # 1. Let B = My('). Then B = K @i My(k) and
B = K @i D. Here we regard D as a subalgebra of B by letting

a bb .
D:{(B E) ra,be K}

where & is a representative for the nontrivial coset of £X/NE(K*). Let s and o
be the Galois actions on B corresponding to Ma(k) and D, respectively, as in the
proof of Theorem 2.1. Explicitly,

qa.b_EE ,ab__aéi
Ne d) " \e d)0 “\e¢ d)T\¥ys a)
Then X(s) and X(s') have determinant d and Hasse invariants e(d) and —e(d),
respectively. We let X(d,e(d)) = X(s) and X(d, —e(d)) = X(s'). There are exact
sequences
1= K% = kX x GY2,K) & GSO(X(d, £e(d)) — 1.
Explicitly,

X(d, e(d)) = {(C\“/(-l bﬁ) ca€K,bcek),

[42

and
X(d, —e(d)) = {@ —;5a> ca€ K,bce€ k).

For the remainder of this paper, € will be in {£1}, and X = X (d, ¢). Because of
the remarks in section 1 concerning the theta correspondence for similitudes when
d # 1, we will disregard the case d # 1 and € = —¢(d). Thus, if d # 1, then
X = X(d,e(d)). We will let w denote the extended Weil representation associated
to X and the nonnegative integer n. If necessary, the dependence of w on n will be
indicated by a subscript.
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3. Representations. In this section we make some definitions and elementary
observations concerning the relationship between representations of GO(X) and
GSO(X) and the quaternion algebras from the last section. We remind the reader
that the case d # 1 and € = —¢(d) for our purposes can be and will be ignored.
We also point out that by [HPS], Lemma 7.2, the restriction of representations of
GO(X) to O(X) is multiplicity free.

Suppose first that d = 1. Let Irrp(Gl(2, k) x GI(2, %)) be the set of pairs of
representations in Irr(Gl(2, k)) with the same central character. Define Irr (D> x
D*) similarly. There are bijections '

Ire(GSO(X (1, ¢(1))) = Irrp(GI(2, k) x GI(2, k)

and

Irr(GSO(X (1, —€(1))) = Irr (D x D*)

that take 7 to the representation that sends (g,¢') to 7(p(g,¢')). If (r,7') is in
Irr p(G1(2, k) x GI(2, k)) or Irry (D> x D*), then the corresponding element 7(7, 7')
of Irr{GSO(X (1, 2e(d))) has as space the space of 7 ®¢ 7' and is defined by

w1, 7" ) p(g,9")) = T(g) @ T'(¢').

The central character of 7(7,7') is w, = w., and the contragredient of =(7,7'}) is
m(r, )Y ==a(rY, 7).

Suppose that d # 1. Let Irr;(Gl(2, K')) be the set of elements of Irr(GI(2, ')
with Galois invariant central character. Recall that if a quasi-character of K% is
Galois invariant, then it factors through N {." via exactly two quasi-characters of k™.
There is a two to one surjective map

Lir(GSO(X(d, e(d))) — Irrf(Gl(2, K))

that take 7 to the representation that has space the space of = and is defined by
g = m(p(l,g)). If risin Irr(Gl(2, N)), and x and X' are the two quasi-characters

of k* such that w, = y o N} and w, = ¥’ o NI, then the two elements =(7, x) and

m(r, x") of Irr(GSO(X (d, e(d))) lying over 7 are defined by

(X )t 9)) = x() 7' (g)  w(mx Mt 9)) = X' )7 7 (9).

The central character of #(7, x) 1s y, and the contragredient of 7(r, x) is #(r,x)" =
(Y, x7 ).

Having described the representations of GSO(.X'), we consider their relationship
to representations of GO(X). Let 7 be in Irr{GSO(X)). If the induced represen-
tation of 7 to GO(X) is irreducible, we say that = is regular, and if the induced
representation of 7 to GO(X) is reducible we say that = is invariant. Let g in
GO(X') be such that 2 = 1 and &g is not in GSO(X). If V is the space of 7, we
can regard the induced representation of 7 to GO(X) as the representation with
space V @ V and action

h-(v@v')=n(h) @ r(hohho)v',
ho - (v@v') =v' @ o,

1



for h € GSO(X). It follows that 7 is regular if and only if hg -7 2 7, and 7 is
invariant if and only if by - # =2 7. If 7 is regular, we denote the induced repre-
sentation of 7 to GO(X) by n*+. If 7 is invariant, then the induced representation
of m to GO(X) is the direct sum of two irreducible representations that extend 7;
these representations are twists of each other by the unitary character sign. If =
is invariant and 7' is a map on the space of 7 intertwining = and h¢ - 7 such that
T? is the identity, then the actions of the two extensions 7, and 7 of 7 to GO(X)
on hy are given by m1(hg) = T and np(hy) = =T, respectively. Every element o
of Irr(GO(X)) is either induced from a regular representation of GSO(X'), or is an
extension of an invariant representation of GSO(X'); moreover, the first possibility
occurs if and only if o @¢ sign = o.

We can describe regular and invariant representations in terms of the above
characterizations. For the remainder of the paper we will let hg be the map that
sends z to z”.

Proposition 3.1. Let = be in Irt(GSO(X)). If d = 1, then 7 is invariant if and
only if m = w(r,7) for some 7 in Ire(GL(2,&)) or Irx(B*). If d # 1, then 7 is
invariant if and only if # = n(r, y) for some Galois invariant 7 in Irr(Gl(2, K)).

Proof. Suppose d = 1 and m = n{r,7'). Since hop(g,¢' Yho = p(y',g) for ¢ and ¢
in GI(2,k) or D*, we have hg - 7 = n(r,7"). Suppose that d # 1 and = = #(7,x).
Since hop(t, g)ho = p(t,g) for (t,g) in k* x Gl(2, K'), we have h- 7 = w(r0o0,x). U

4. Distinguished representations and the correspondence. In this section
we will define what it means for an invariant representation of GSO(X) to be
distinguished, and we will consider what effect being distinguished has on what
extensions of the representation to GO(X) occur in the theta correspondence. The
idea that certain extensions of a distinguished representation cannot occur in the
theta correspondence is due to [HK]. This appears in Theorem 4.3 below. We go a
step further, and show how an extension of a distinguished representation can be
proven to occur in the theta correspondence. See Theorem 4.4.

These results may generalize. The definition of being distinguished generalizes
to representations of GSO(X) if X is an arbitrary nondegenerate even dimensional
symmetric bilinear space, and the proofs of Theorem 4.3 and Theorem 4.4 are
general. The key question, which I do not the answer to, is whether Lemma 4.2
generalizes. For more remarks about generalizations, see the end of this section.

Let 7w be in Irr(GSO(X)). To define what it means for © to be distinguished,
suppose ¥ in X is anisotropic. Then the stabilizer in SO(X') of y can be identified
with SO(Y"), where Y is the orthogonal complement to ¥, and we will write SO(Y")
for this stabilizer. We say that n is distinguished if # is invariant, and there is
an anisotropic y in X such that

Homgo(vy(m, 1) # 0,

and, if det(X') # 1, then Y is isotropic.

In fact, a representation is distinguished if and only if it is distinguished with
respect to a certain anisotropic yo 1 X. Define yo in the following way. If d = 1,
let yo = 1. If d # 1, also let yg = 1. Using the Witt cancellation theorem and the
Witt extension theorem, one can show that if y is as in the last paragraph then
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there exists & in GSO(X) such that h(y) = yo. It follows that a representation is
distinguished if and only if it 1s distinguished with respect to .

If a representation is distinguished, then its extensions to GO(X') can be identi-
fied. Suppose that 7 in Irr(GSO(X)) is invariant and distinguished. Each extension
of 7 to GO(X') provides an action the nontrivial element of O(Y)/SO(Y") = {+1}
on Homgo(yy(m,1). The actions will be multiplication by %1, respectively. We
denote by 7% the extension inducing multiplication by 1, and by 7=~ the extension
inducing multiplication by —1. From the last paragraph, the definitions of 7% and
7~ do not depend on the choice of y. For the remainder of this paper, we let Y be
the orthogonal complement to yq. .

The group SO(Y") can be concretely described. If d = 1, then SO(Y") is the
image under p of the subgroup {(g,¢* ') : 9 € Gl(2,k)} or {(¢,9*" ") : g€ D*}. If
d # 1, then by Hilbert’s Theorem 90, SO(Y") is the image under p of the subgroup
{(det(g),9) : ¢ € GI(2,k)}. We also note that hy fixes yo, and thus is contained in
O(Y'). Together, SO(Y') and ho generate O(Y").

In the case d = 1, the next proposition completely identifies all the distinguished
representations. We will consider the case d # 1 in greater detail in the next section.

Proposition 4.1. Let 7 € Irr(GSO(X)). Assume that 7 is invariant. Then
dimg Homgoyy(7,1) < 1.

Ifd =1, then 7 is distinguished. If d # 1 and m = (7, x), then 7 is distinguished
if and only if

Homg(z,k)(7, x 0 det) # 0.

Proof. Suppose that d = 1. Since 7 is invariant, it follows that 7 = 7(7, 7) for some
7 in Irr(Gl(2, %)) or 7 in Irr(B*). Now 7¥ 2 w ! ®c 7. It follows that there is an
isomorphism

Homgoyy (7, 1) = Homgyz,)(7 @c TV, 1),

or an 1somorphism
Homgo(yy(m, 1) = Hompx(t @c 77, 1).
Here GI(2,%) or D* is embedded on the diagonal. It is well known that the second

homomorphism space has dimension one.
Suppose that d # 1. Then there is an isomorphism

Homgoyy(m, 1) = Homgz,1)(7, x o det).

By an argument as in [H], this space has dimension less than or equal to 1. O

The following lemima will be essential in determining which extensions of a dis-
tinguished representation occur in the theta correspondence. In a different form,
the following lemma is due to D. Prasad [P].
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Lemma 4.2 (Prasad). Let n = 1 or 2. Then any distribution on X" invariant
under SO(Y") is invariant under O(Y").

Proof. We first claim that it suffices to show that any distribution on M3(k)" or
D" invariant under conjugation by Gl(2, k) or D*, respectively, is invariant under
#. To this end, we define a map L from X" to Ma(k)" or D" in the following way.
If d =1, we let L be the identity. Suppose d # 1 and € = €(d). For z in X, define
I(z) in My(k) by

T+ s{z T — s

I(z) = (=) | (2)

2 2Vd
Define L by L(z) = l(z) if n =1 and L{z ® y) = l(z) & {(y) if n = 2. Clearly, L is

an isomorphism of k vector spaces, and L(hoz) = L(z)* for  in X". Moreover,

L(ha) = gL(z)g™"

if 2 in SO(Z) and h = p(g,¢*~!) in the case d = 1, and h = p(det(g), g) in the case
d # 1. Our claim follows.

Now we show that any distribution on M, (k)" or D" invariant under G1(2, k) or
D* is invariant under *. First consider D. Let f be a distribution on D" invariant
under conjugation by D*. Since D* /&> is compact, there is a Haar measure on

DX /> such that f(@) = f(¢') for ¢ in §(D"), where ¢’ is defined by
¢'(x) = / w(grg™") dg.
DX kX

Let ¢ be in §(D") and @ be in D". By the proof of Proposition 3.3 of [P] there
exists go in G* such that goxgy ' = 2*. So

@yer= [ eleeds

=/ ¢(gg0t(990)~" ) dg
DX kX
=¢'(x).

It follows that f(¢*) = f(@).

Now consider the case of Ma(k). We argue as in the proof of Proposition 4.5 of
[P]. If n = 1, we use the map from M3(k) to &% that sends z to (tr(z),det(z)). If
n = 2, we map from My(k)? to £® that sends (z,y) to

(tr(z), tr(y), det(z), det(y), tr(zy)).

It can be verified that the proof of Proposition 4.5 of [P] goes through in this last
case. U

The next theorem shows that one of the extensions of a distinguished represen-
tation cannot occur in the theta correspondence when n is 1 or 2. As we pointed
out above the idea is due to [HK]. In [HK] the case n = 1 was considered.
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Theorem 4.3. Let 7 € Irr(GSO(X)). If = is distinguished then ©~ is not in
R (GO(X)) for n =1 and 2.

Proof. We begin with two comments concerning . First, T|go(x) is multiplicity
free. For let

Tlsoxy=m -m @ - Om -7y,

where the 7; € Irr(SO(X)) are mutually inequivalent, and m and M are positive

integers. Then
M

Z m - dimg Homggoqyy(7i,1) =1,

=1

which implies that m = 1, and that dimg¢ Homgg(y)(7:, 1) = 1 for exactly one 7, say
i = 1, and dim¢ Homgo(yy(mi,1) = O for ¢ > 1. Second, suppose that V; is the space
of m; we assert that 7+ (hg)V; = V; for all i. Let us prove this first when ¢ = 1. Let
7t (ho)Vy = Vi. Let f in Homgo(y)(mi, 1) be nonzero. Define a linear functional f’
on V; by f'(v) = f(zt(he)v). Then f' is in Homgo(y)(7i,1). Since f' #0, i =1.
Let z be arbitrary. There exists h in GSO(X) such that n(h)V; = Vi;. We have
7t (ho)Vi = 7t (hoh)Vi = 7t (hohho)Vi = n(h)r(h™ ' hohho)VI = 7(W)Vi = V;,
since A~ hohlp is in SO(X).

Suppose that 77 is in R,(GO(X)) for n = 1 or 2. Then there exists a nonzero
O(Y) map T from w, to 7~. Let V be the space of #. We may assume that
the composition 77 of T with the projection of V onto V| is nonzero. Let f &
Homgo(y)(7,1) be nonzero. Consider the composition f o Ty. This is a nonzero
SO(Y") invariant distribution on X". By Lemma 4.2, f o T is invariant under hg.
But since T; is an O(X) map and by the definition of 7=, the composition of kg
with foTy1s —f o T). Since f o T} # 0, this is a contradiction. O

Then next theorem gives a sufficient condition for one of the extensions of a
distinguished representation to occur in the theta correspondence.

Theorem 4.4. Let m € Ire(GSO(X')). Suppose 7 is regular or distinguished, and
n=1or 2. Then

Homso(x\r)(wn,w) -',lé 0 = HOI’HO(J\’)(W", 7T+) f,é 0.

Proof. Suppose first that 7 is regular. Let V' bhe the space of 7. We use the
model for 7% from the last section. Let L in Homgo(y)(wn, ) be nonzero. Define
L' :wp, = 7 by L'(p) = L(p) ® L(wa(ho)e). Then L' is in Homo(vy(wn, 7T) and
L' is nonzero.

Suppose that 7 is invariant is distinguished. We will use the notation of the
proof of Theorem 4.3. Let L in Homgo(y)(wn, 7) be nonzero. We may assume that
the composition of L with the projection of V onto V; is nonzero. To complete
the proof it suffices to show that Ly o w,(hy) = 71 (hg) o L;. We first show that
wn(ho)ker(L,) = ker(L,). Suppose not, i.e., suppose that Ly(w,(ho)ker(Ly)) # 0.
Then by the irreducibility of w1, Ly (w,(ho) ker(L;)) = V. Let f in Homgg(y)(71,1)
be nonzero. Consider f o L;. This distribution is nonzero and SO(Y") invariant. By
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Lemma 4.2, f o L; is invariant under hg, so that f(V1) = f(Li(wn(hg)ker(L;)) =
Ly(ker(L;)) = 0, contradicting f # 0. Now since ker(L, ) is invariant under w,,(hq),
it follows that S(X ™)/ ker(L;) is an O(X) space. Via the SO(X) isomorphism given
by L, between S(X")/ker(L,) and V| we can define an action of hy on Vi so that
Ly is an O(X) map. By Theorem 4.3, this extension must be #*. O

A similar argument proves the following statement. Let 7 be in Irr(GSO(X)) and
II be in Irr(GSp(n, k)1), for n = 1 or 2. Assume that 7 is regular or distinguished.
Then
Homp (w,, I ®¢c 7) #0 => Homp(w,, 1 @c ) # 0.

Here R’ is the subset of elements of R whose first entries are in GSO(X).

This result has some interesting consequences. It implies that if a regular or dis-
tinguished clement of Irr(GSO(X)) corresponds to an element of Irr(GSp(n, k)*1),
in the obvious sense, then the corresponding element of Irr(GSp(n, k)T) is unique.
In particular, since all elements of Irr(GSO(X')) are either regular or distinguished
when det(X) = 1, it follows that in this case if II is as above, then II is always
uniquely determined. When det(X) = 1 and n = 1 this helps one to understand
the Jacquet-Langlands correspondence from the point of view of the theta corre-
spondence. See section 7 and [S]. When det(X) = 1 and n = 2, using the relation
to the alternate approach to similitudes using the induced Weil representation [R],
this gives a different argument for part of the proof of the strong multiplicity one
theorem for regular representations of GSp(2) as in [So2]. It would be interesting
to see if a complete proof could be obtained along these lines. This would require
that the results of this section be extended to the case when X is the split six di-
mensional space. To do so, it will probably be necessary to use a subgroup of O(X)
defined differently from SO(Y"). This is the case for dimg X = 2, where SO(X)
plays the role of SO(Y). For more remarks about this case, see section 7.

5. Distinguished GI{2,{') representations. In the last section we reduced
the problem of determining the distinguished representations of GSO(X') in the
case d # 1 to a problem concerning the corresponding representations of G1(2, I{).
The problem of determining distinguished G1(2, ') representations has essentially
been solved by several authors. See [H] and [F|. Ultimately, the consideration
of distinguished GI(2, I{') representations goes back to a global result of [HLR].
However, since a complete account does not appear in the literature we need to
give an exposition.

We begin by defining some notation and recalling some facts. Essentially, we will
follow [G]. In this section we assume that d # 1 so that K is a quadratic extension
of k. Let 7y be a uniformizer for I, and let 1 be a nontrivial Galois invariant
additive character of K. If 7 in Irr(GI(2, K')) is infinite dimensional, let (7,4 x)
be the Kirillov model of 7 with respect to ¥y, Let 7 in Irr(G1(2, X)) be infinite
dimensional. For g in GI(2, ), ( a quasi-character of ', f in K(7,¢), and s in
C, let

29.0.f05) = [ rof@i@)el ™ i
A
This integral converges absolutely if R(s) is sufficiently large. Moreover, the func-
tion defined by the integral for sufficiently large R(s) has an analytic continuation
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to a meromorphic function on C with at most two poles. If { is a quasi-character
of K'* then there exists a meromorphic function v(7 ®¢ (, s, ) on the complex
plane such that

. . 0 1 .
r @ Cos, b2 6 L) =2(( O g )oer -9

for ¢ in GI(2, ') and f in K(7,vx ). For  a quasi-character of K'* let

L(r ®c ¢, s)
(1 @cwr'¢,1—s)

(:'(T ®C Casa Ir[”\') = 7(7- ®C Ca's?Tw[)f\')L

Here the L factors are as in [G]. The function (7 ®c (, s, ) is entire, and has
no zeros. The notation for irreducible principal series and special representations
of GI(2, ) will be as in [GL]. Let w(t1,p9) be a principal series representation

of GI(2, k). Then n(p,p2) is Galois invariant if and only if jy 0 — = gy and
H2 © — = pg, or juy © — = pg. Let o(u),t2) be a special representation. Then
o(p1, pe) is Galois invariant if and only if ¢y 0 — = gy and pg 0 — = pgo.

Lemma 5.1. Let 7 in Irr(G1(2, ') be infinite dimensional and Galois invariant.
Let w, = x o NY and let ¢ be a quasi-character of ' whose restriction to k*
is x. If T iIs not a principal series representation w{py, pe) with py and jp Galois
invariant, then the integral Z(g,(™!, f,1/2) is absolutely convergent for all ¢ in
Gl(2, V) and f in K(7,%n ).

Proof. The claim follows if 7 1s supercuspidal. Assume that 7 is a principal series
representation. Then 7 = w(p, pg) with py 0 — = po. It suffices to show that for
f € 8(&) the integral

f 2/ (2)f(2)((2) ™" e

is absolutely convergent. An estimate shows that this integral converges absolutely
if

i (i ) () < e |72,
Since |p1(mn)C(mr)~* = 1, our claim follows. Suppose that 7 is a special rep-
resentation. Then 7 = o(juy, p2) with gy 0o — = g, o0 — = pp and uy = pal |.
Again, it suffices to show that the above integral is absolutely convergent. We have
lpa(mp Y (m)™H = |‘n','\'|1/2 < |”I\'|_I/2' u

Lemma 5.2. Let 7, y and ¢ be as in the last lemma. Then y(t Q¢ (71, s5,% ) is
defined at 1/2 and

7(7- ®C C_lu 1/2: ¢1\') = E(T ®C C_la 1/2:¢1\—)'

Proof. By definition,

L(T ¢ C_las)
(T ®er_1C71 - 5)'

E(T & Chlasa 11[’1\') = Y(T Q¢ C_la S:"/)I‘-)L
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Since &7 ®c (™!, s, ) 1s an entire function, and since the L functions are defined
at 1/2 by Lemma 5.1, it suffices to show that

L(T QC C_la 1/2) _
L(r ® wr'¢,1/2)

If 7 is supercuspidal this is clear. Suppose that 7 is a principal series representation
(g1, p2) with g1 0 — = po. Then

L(r®c¢™',1/2) _ L(m¢™h /)L™, 1/2)
L(r@cwr'(,1/2)  L(py'¢1/2) Lz '¢,1/2)

It will suffice to show that (7 )% = ((mx)? if ¢, ¢! is unramified and pp (7 )% =
C(mr)? if pa¢™! is unramified. By symmetry, it is enough to prove one of these
statements. Suppose 1 ¢”! is unramified. If K/k is unramified, then this follows

since we can take m; in k%, and pype = (o — and gy 0 — = pg. Suppose that
K/k is ramified. Since the residual characteristic of k is odd, we can assume that
Tr = —nx and 75 is a uniformizer of k. Then gy (75 )% = py (= Dy (mp ) pa (7)) =

(=1 (r)C(TR) = 1 (=1)¢(=1)(7r)? = ((mi)?, since ((=1) = p1(=1) be-
cause j¢; ¢! is unramified. The case when 7 is a special representation is analogous;
for details, see the similar case treated in the remark below. [

The last lemma does not hold for all irreducible principal series representations
m(p1, p2) with gy and pp Galois invariant. Indeed, we claim that if 7 = 7y, o) is
an irreducible principal series representation with yq and po Galois invariant, then

7(T ®C C—la 1/21 171)1\') = E(T ®C C—la 1/27 7/)1\')

except if 417! is unramified and g1 (7 )¢(mr) 7! = |me| 72, or p2¢ 7! is unram-

ified and po(7r )C(7r )1 = |7r|~1/?; in these last cases,

T(T ®C C—l 3 1/271#1\') = —E(T ®C C_la 1/27 ¢1\')-
To prove these claims we proceed as in the proof of Lemma 5.2. We need to compute

~—1 ] .
lim L(T®C(‘ , $) - Lim L(P"IQ :-S)L(i’-zﬁ, ,S)

=12 Lt @cwr ' (,1—5) =172 L(py ' (1 = 8)L(pg ', 1 — )

We first show that p1¢ ™! is unramified if and only if 1, ™" is. Suppose that ¢! is
unramified. Then ¢(u) = s (x) for all w € O%. Since py (ker(N£)) = 1 and ker(NF)
is contained in OF, C(ker(N{,")) = 1. So, (o — = (. Now pypg = ({o— = (.
Hence, p1¢™" = (32¢™1)71, and po¢~! is unramified. The converse follows by sym-
metry. Note that we also have shown that if j;( ™" and u3¢ ™! are unramified then
i (mra(mic) = Clnc )2, b (T )(mie) ™ = o) CCmic). 1 mow ¢
and yi2¢ 7! are ramified or ;¢! and po¢ 7" are unramified and p (7 ) (7R )T #
|| ™% and po(mp)C(mr )" # |mic|T'2, then the limit is 1. Suppose pi(™!
and p2¢~" are unramified and py (7 )((rr)7! = |7n|~"/% or po(mr ) (rr)™! =
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|7re |71/, Then exactly one of u; (7 )((nx )™t and po(m)(mpe )™t is |mpe| =42

Without loss of generality, we may assume that (7 )((mn)~! = ]ﬂ'l\-‘l_]’/ 2. Then

(mC‘l g)L(MC'l s) L{pi ¢!, 8) L{pa(™',5)
3}-1111}/2 L(/_f1 C 1-— a)L(p ]_ — s) —3—1-1»111/2 L(P"IC -1 1 - S) 31—1»1}/2 L(;LQC -1 1 — .b)
=(—1) 1 =-1.

The next theorem follows essentially from [H] and from [T], as interpreted in
[HST]. The previous discussion shows that in the following theorem it is essential
to use € instead of v factors. Note also that ¢ differs from the additive character
in [H]. There it is assumed that 1 is trivial on .

Theorem 5.3 (Hakim-Flicker). Let 7 in Irr(Gl(2, X)) be infinite dimensional
and Galois invariant. Let w, = y o NI Then the following are equivalent:

(1) Homgi(g,1)(7; x o det) # 0;
(2) For every quasi-character ( of K'* whose restriction to k* is x,

e(r ®c (7', 1/2, %K) = x(~1);

(3) 7 is the base change of an element of Irr(Gl(2, k)) with central character
XWH k-

Proof. Assume first that 7 # 7(q, o) with ¢y and po Galois invariant.

(1) < (2): The equivalence follows from Lemmas 5.1 and 5.2, and an argu-
ment essentially as in [H].

(2) <= (3): Since 7 is Galois invariant 7 and 7 # 7(p11, o) with p; and po
Galois invariant, 7 is the base change of a discrete series representation of GI(2, k)
that has central character y or xw/x. The equivalence of (2) and (3) is 4 of Lemma
14 of [HST].

Now suppose that 7 = w(py, p12) with p; and pp Galois invariant. We will show
that (1), (2) and (3) all hold. The statement (2 ) follows from Lemma 14 of [HST].
To see (3), note that y and po factor through Nk via, say, i} and [.L2, respectively.
By replacing p) by wp gy, if necessary, we may assume that jp; = x. Since
pipy "t # | :IE’I it follows that pfph, =1 # | |it1 It follows 7(yey, u5) 1s defined, and
the base change of 7(yu,ut5) is 7. To show (1), we proceed as in Proposition 9 of

[F). Let
ne (V)

1

and
_ a b(l . R 2 2 ,_ Z 0 . X
T—{(b a).a,bel..,a.—db # 0}, T_{(O E).zel'\ }.

Then goT"g; ' = T and

o o~

g5t G(2, A)J0={(% );a.a—bﬁgéo}.
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Define L : w(j1,p2) — C by

L(f) = / Flos a)x(det())™" do.
T\ GI(2,k)

A computation shows that the integrand is well defined. Moreover, one can show
that T\ GI(2, k) has finite measure and that the integrand is bounded, so that the
integral converges. Finally, L is nonzero and contained in Homgy, (7, xodet). O

6. The main theorem. We will now prove the main theorem. The method of the
proof is entirely analogous to the global technique of computing a Fourier coefficient
of a global theta lift. See, for example, [HST].

In defining distinguished representations we used anisotropic vectors in X' and
their stabilizers in O(X); we now will consider vectors in X? and their stabilizers
in O(X). Let I be a positive integer. We will say that 2 € X! is nondegenerate
if the components of = generate a nondegenerate subspace of X, or, equivalently, if
det(xi,x;) # 0. If z in X? is nondegenerate, then the stabilizer of z in O(X) can be
identified with O(Z), where Z is the orthogonal complement to the space generated

by the components of z. Also, it is easy to show that if z in X? is nondegenerate,
then SO(X) -2 = 0O(X) -z, and SO(X) -z = O(X) - = is closed.

Lemma 6.1. Let 7 € Irr(GSO(X)). In the case d # 1 assume that © is infinite
dimensional. Then there exists a nondegenerate z in X* such that

Homgg(z)(m, 1) #0.

Proof. Suppose first d =1 and € = ¢(1). Let = = =(7,7'). Suppose that 7 and 7'
are infinite dimensional. Let

()= h)

Then z is nondegenerate, and

soz) =g 1) (% TPractn

We will use the Kirillov models I'(7,4) and K(7',4) of 7 and 7' with respect to
our additive character ¥, respectively. Let n be so large that

flz)|z|" de

EX

converges absolutely for f in K(7,v¢) and f in K(+',¢). Define L: 7 — 1 by

Hief)= [ sl ds- [ f@lld.
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Then L is a well defined nonzero C linear map, and L 1s SO(Z) invariant.

Suppose next that exactly one of 7 and 7', say 7, is infinite dimensional. Since
' is finite dimensional, 7’ is one dimensional, and there exists a quasi-character '
of k* such that v’ = #' o det. By hypothesis, 8> = w, = w,. Suppose that 7 is a
supercuspidal or special representation. We claim that

. B'(2)7 f(z) da

converges absolutely for f in I{(7,4). This is clear if 7 is supercuspidal. If 7 is the
special representation o(p1, pp) with gy = p2| | then this follows from the estimate
| 2218 (7e)| 7 pa (i )| = |mk| < 1. Now define L: 7 — 1 by

Lif@z)y== " B (2)7! f(z) da.

Then L is a nonzero element of Homgo(z)(7,1). Suppose that 7 is a principal
series representation. In this case, we require another nondegenerate element of
X?. Every quadratic extension E of k is contained in My(k) as a & algebra, and
for every quadratic extension E of &k contained in X = My(k), Gal(E/k) = {1,x*},
and there exists a nondegenerate z in X? such that

S0(Z) = {p(w,a""") : = € X},

Fix a quadratic extension E of & in X and such a z in X?%. Let o be the quasi-
character of E* defined by a(z) = f'(det(z)). Then « extends w,. By [T], we have
Hompgx (7,a) # 0 if and only if (BC g/ (7)®@ca™",1/2,4g) = w,(—1). By Lemma
14 of [HST], e(BCp/x(7)@ca™,1/2,4E) = wr(—1), so that Hom gx (7, #'odet) # 0.
Let f € Homgx (7,8’ o det) be nonzero. Define L : 7 — 1 by L(v @ z) = zf(v).
Then L is a nonzero element of Homgg(zy(m,1).

Suppose that 7 and 7' are both finite dimensional, i.e., one dimensional. Let £
and ' be quasi-characters of k™ such that 7 = fodet and 7' = #' o det. Since
wr = wyr, we have A% = B'?2, This implies that 8 = ' or § = wpiB' for some
quadratic extension E of k, since the residual characteristic of k is odd. Let E be
contained in X and let z in X? be as above. Since det(z) = NZ(2) for z in EX, it
follows that Homgo(z)(7,1) # 0.

Now suppose d = 1 and € = —e(1). Since SO(X) is compact, it will suffice
to show that there exists nonzero v in 7 and nondegenerate z in X? such that
n(h)v = v for h € SO(Z). Since for every quadratic extension E of k a statement
as above holds, to prove the existence of the required v and z it will suffice to show
that there exists a quadratic extension E of & contained in D, a quasi-character
¢ of EX, and nonzero vectors w in 7 and w' in 7' such that 7(z)w = ¢(z)w and
'(z)w' = ¢(z*)w' for @ in EX,

If 7 and 7' are one dimensional then an argument as in the case ¢ = (1) works.

Suppose dim7 > 1 and dim7' > 1. We will use terminology and results from
[T]. We first assert that we can assume that 7 and 7’ are minimal. To sec this, let
« = wr = wyr. Consider «|;4x,0,. For some large n, we can regard « as a character
of 1 + 7O, /14 7Ok This is a finite group of odd order. It follows that squaring
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1s an automorphism of the group of characters of this group. Hence, there exists
a quasi-character 1 of k> such that 2 = a on 1 4+ m,0j. Consider 7 ®¢ 7!
7' ®@c 77!, The common central character of these representations has conductor
less than or equal to 1. Since any element of Irr(D*) of dimension larger than 1
with central character of conductor less than or equal to 1 is minimal, 7 ®¢ 1~*
and 7' @¢cn ! Vand 7' ®cn~! if and
only if it holds for 7 and 7/, we may assume that 7 and 7' are minimal.

Let JL(7) and JL(7') be the representations corresponding to 7 and 7' under the
Jacquet-Langlands correspondence, respectively. Since dimr > 1 and dim7' > 1,
these representations are supercuspidal. Let «(JL(7)) and «(JL{7')) be the con-
ductors of JL(7) and JL{7'), respectively. Without loss of generality , we may
assume that dim(r) > dim(r'). Using the formulas for dim7 and dim ' in terms

and

are minimal. Since our claim holds for 7 @cn~

of a(JL(7)) and a(JL(7')), respectively, one can show that a(JL(7)) > a(JL(7")).
Note that the formula in [T] for dim 7 when «(JL(7)) is odd appears incorrectly:
it should be (¢ - 1)¢*=*/? instead of (¢ + 1)(¢=3)/2, Let E be a quadratic exten-
sion of & whose ramification index e has the same parity as «(JL(7)). Let S be
the set of all quasi-characters of E* whose conductors are less than or equal to
e(a(JL(r)) — 1)/2 and which extend «, and let S’ be the set of all quasi-characters
of E* whose conductors are less than or equal to [e(a(JL(7')) — 1)/2 + 1/2] and
which extend «. Since a(JL(7)) > a(JL(7")) we have S’ C S. By the proof of
Lemma 3.2 of [T}, 7|gx is the direct sum of the elements of S. By the proof of
Lemma 3.1 of [T] every quasi-character of E* that occurs in 7']gpx is contained in
S'. Tt follows that there exists a quasi-character ¢ of E* that occurs in 7|gx and
7'|gx. Since the conductor of ¢ o * is the same as the conductor of ¢, it follows
that ¢ o * also occurs in 7|gx, which proves our claim.

The case when, say, dim(7) > 1 and dim(r') = 1 remains. Let 7/ = ' o N,
Then $'? = o. It follows that the common central character of 7 @¢ #'~! and
' ®c /7" =1 is trivial. Thus, we may assume that 7 is minimal and 7' = 1. Let
S be as in the last paragraph. Since « is trivial, it follows that the trivial character
of EX lies in §, and so we can take ¢ to be the trivial character of E*.

Suppose now d # 1. Let # = n(7, x). By assumption, 7 is infinite dimensional:

Let
=(5 W)e (v o)

A computation shows that

T

SO(Z) = {p(1, ((; 2)) :u € ker(NI)}

Since SO(Z) is compact it will suffice to show that there exists a nonzero vector v

in 7 such that
T w 0 3y ema=
O 1 U=

for u in ker(NL ). We will use the Kirillov model K(7,4x) of 7. Let f be the char-
acteristic function of O%. Then f is in K (7, ), and since ker(Np) is contained
in D%, we have f(uaz) = f(z) for z in K'* and « in ker(NY). Thus, f is the desired
vector. 0O
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Lemma 6.2. Suppose that d # 1. Let 7 be in Irr(GSO(X)). Assume that 7 is
infinite dimensional, invariant, but not distinguished. Let m; and my be the two
extensions of  to GO(X). Then there exists a nondegenerate z in X? such that

Homo(z)(m y 1) # 0, Honlo(z)(ﬂ'g, 1) # 0.

Proof. Let m = w(7,x). Then 7 is infinite dimensional. Let the notation be as in

section 5. Let
= (1 Ng vd 0\
“T\0 1 0 —vd)/’

50(2) = {o(as (§ 3)):aer),

and O(Z) is generated by SO(Z) and

0 1
[)(1,(_1 0))Dho.

Since 7 is invariant, by Proposition 3.1, 7 is Galois invariant. From the explicit
form of K(7,x) it follows that K (7,4 ) s invariant under composition by —,
and a computation shows that (7(g)f) o — = 7(g)(f o —). By the remarks in
section 3 and the proof of Proposition 3.1, we may assume that = (hq) is given
by mi(ho)f = f o — and ma(hg) is given by mo(ho)f = —f o —. Since 7 is not
distinguished, by Proposition 4.1 we have that Homgyz ¢)(7,x 0 det) = 0. By
Theorem 5.3, it follows that 7 is not the base change of an element of Irr(G1(2, k))
with central character ywp,. In particular, 7 is not 7(pq, pe) for some Galois

Then

invariant quasi-characters p; and i of K%, Let ¢ be a quasi-character of K'* that
extends y. By Lemma 5.1,

Z(9,¢71, £,1/2) = f r(9)f(z)((z)"" de

KX

converges absolutely for all ¢ in GI(2, ) and f in K(7,%y). Define L¢ : 7 — 1 by

Le(f)=2(1,¢7", £,1/2).

Then L is nonzero, and a computation shows that L¢ is in Homgo(x), (7, 1).
Moreover,

Lemo(t, (& Pomn=2(( 0 §)ocert s,

and

Latralo ( 0y Penan =-2(( %y ) certi s,
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for f in . By the local functional equation for 7 and Lemma 5.2, we thus have

Litmtolt () § ool = droe ¢ 12 0)E)

and

Lo, (2§ ))eholf) = =elr 8 ¢ 1/2 ()

for f in (7, x). Since 7 is not the base change of an element of Irr(GI(2, £)) with
central character ywy i, by Lemma 14 of [HST], there exists quasi-characters ¢
and (' of '* extending y such that

fr®c ¢ 1/2,9) =x(-1),  (T®c('T,1/2,) = —x(-1).

This completes the proof. O

Theorem 6.3. Let o be in Irr{GO(X)). In the case det(X) # 1, assume o Iis
infinite dimensional. Then o is in Ry(GO(X)) if and only if ¢ is not of the form
7~ for some distinguished = in Irr(GSO(X')).

Proof. By Theorem 4.3, if ¢ is in R2(GO(X)), then o is not of the form n~ for
some distinguished 7. Let 7 in rr(GSO(X)), and if d # 1, then assume that = 1s
infinite dimensional. We need to show that if 7 is regular then 7t is in Ro(GO(X)),
if 7 is invariant and distinguished then 7% is in Ry(GO(X)), and if 7 is invariant
but not distinguished, then both extensions of 7 to GO(X) lie in Ry (GO(X)).
Suppose d = 1. By Theorem 4.4, it will suffice to show that Homgox)(w, 7) # 0.

By Lemma 6.1, there exists a nondegenerate z in X% such that Homgo(z) (7Y, 1) #
0. There is an SO(X) isomorphism of §(SO(X') - z) with

1 1SO(X)
("IndSO(Z) 1.

By 1.8 of [BZ], it follows that there is a surjective SO(Z) map from w to this
induced representation. By Frobenius reciprocity as in Proposition 2.29 of [BZ],

SO(X ~
Homso(,\')(c~IndSOtZ)) 1, m) = Homgo(£)(1, (ﬂ'v)|§’o(z))

& H()lllso(z)(‘irv, 1)

Since the last space is nonzero, it follows that Homgo(v)(w, 7) is nonzero.

Suppose now d # 1. If 7 is regular or invariant and distinguished, then an argu-
ment as in the last paragraph suffices. If 7 is invariant but not distinguished, then
using Lemma 6.2 and the technique of the last paragraph with SO(X') replaced by
O(X), one can construct nonzero elements of Home( xy(w, 71) and Home(x)(w, m2),
where 7 and w2 are the extensions of 7 to GO(X). O



————

7. A case of a conjecture of Kudla. S.S. Kudla has made some important con-
jectures about the first appearance of a representation in the theta correspondence.
Inn this section we essentially prove a case of one these conjectures. In the case d # 1
our result is not as complete because our understanding of the theta correspondence
between Gl(2, k)T and Irr(GO(X)) is not strong as in the case d = 1.

To describe the conjectures, suppose for the moment that X is an arbitrary
nondegenerate even dimensional symmetric bilinear space over k. By the existence
of the stable range, for every o in Irr(O(X)) there exists a nonnegative integer n
such that o lies in R, (O(X)). For ¢ in Irr(O(X')) let n(o) be the smallest integer
such integer.

Conjecture 7.1 (S.S. Kudla). If g is in Irt(O(X)) then

n{o) + n(o @c sign) = dimy X.

There is also a conjecture for elements of Irr(Sp(n, k)). To state this conjecture
we need some more notation. Fix d in £%/k*?. Then there are, up to equivalence,
exactly two anisotropic even dimensional symmetric bilinear spaces X4 and X_
of determinant d. From X and X_ we can create two series of even dimensional
symmetric bilinear spaces by adding hyperbolic planes to X; and X_. For 7 in
Irr(Sp(n, k)), let my(n) be the smallest nonnegative even integer m such that 7
occurs in the theta correspondence with the m dimensional space with anisotropic
component X ; define m_(r) similarly.

Conjecture 7.2 (8.S. Kudla). If 7 is in Irr(Sp(n, k)) then

my(n) +m_(x) =4n + 4.

Omne can make completely analogous definitions and conjectures for the theta
correspondence for similitudes. It is easy to see that Conjectures 7.1 and 7.2 hold
for the correspondence for isometries if and only if they hold for the correspondence
for similitudes.

Suppose X is again as in defined in Section 2. To prove Conjecture 7.1 in
this case, we need to understand R,(GO(X)) and R3(GO(X)). To characterize
R1(GO(X)) we need to recall some facts about the theta correspondence when the
dimension of the underlying bilinear spaces is two, and about the theta correspon-
dence between Irr(GO(X)) and Irr(Gl(2, k)7) in the case d # 1.

Let V be a nondegenerate two dimensional symmetric bilinear space of deter-
minant d. Then GSO(V') is abelian, and all the elements of rr(GSO(V)) are one
dimensional. We define regular and invariant representations exactly as in section
3. If « in Irr(GSO(V)) is regular, ot will again denote the induced representation
of o to GO(X). Moreover, we say that o in Irr(GSO(V)) is distinguished if and
only if '

Homgo(vy(aov,1) # 0.

Thus, SO(V') plays the role that SO(Y") did in section 4, and if & is in Irr(GSO(V))
is distinguished then we define ot and o~ just as in section 4. A result entirely
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analogous to the main theorem holds: If #is in Irr(GO(X')), then S isin R, (GO(V))
if and only if 7 is not of the form o~ for some distinguished o in Irr(GSO(V')).
Moreover, by Theorem 1.9 of [Ca], Conjecture 1.3 (theta dichotomy) holds for
X = V and 2n = 2, and the remarks preceeding Conjecture 1.3 apply. If one
makes the identification of V' with K then elements of GSO(X) can be identified
with quasi-characters of '*. The map that takes a quasi-character o of I'* to
B(at)Y is just the usual map of that associates to a quasi-character an element of
Irr(GH(2, k).

The case when V is anisotropic contains information about the restriction of
representations of GI(2, %) that we use in the proof of the next theorem. Let m be
in Irr(Gl(2, k)). It is well known that the restriction of 7 to SI(2, k) is multiplicty
free, and that m[g)(2x) is reducible if and only if 7 is a theta lift an element of
Irr(GO(V)) for some anisotropic V. Let 7 be a theta lift of ¢ in Irr(GO(V')). Then
from Lemma 4.2 of [R] and the remarks in section 1 it follows that the restriction
of 7 to SI(2, k) has two irreducible components if and only if ¢ 2 o™ with « such
that a|so(vy # 1, and 0"%0(\/) = 1. Let v in Irr(GSO(X)) be such that also(vy # 1
and Q"%O(V) =1, and assume 7 = §(at). Then again from Lemma 4.2 of [R] the
restriction of = to SI(2, k) has four components. Finally, from Theorem 1.9 (d) of
[Ca] it follows that every such , that is, every 7 in Trr(Gl(2, k)) whose restriction
to S1(2, k) has four components, is a theta lift from every anisotropic V.

We also need to make some remarks about the theta correspondence between
Irr(GO(X)) and Irr(G1(2, k)1) in the case d # 1. This was considered in [Co} using
the extended Weil representation Q of GI(2, k) x GO(X); see [R] for the definition.
By an argument as in the proof of Proposition 3.5 of [R], as representations of
Gl(2,k) x GSO(X),

Q =~ c-Indg}(?'k) XGSOLY) w,

where R' is as in the remark after Theorem 4.4. Using Frobenius reciprocity, the
main result of [Co| now states that for every infinite dimensional IT in Irr(G1(2, k),
if BC(IT) is the base change of IIY to GI(2,K), and 7 = n(BC(IIY),w/swnv)
then

Homp (w,[I @¢ 7) # 0.

If BC(ITY) is infinite dimensional then by Proposition 4.1 and Theorem 5.3, « is
distinguished. By the remark following Theorem 4.4, it follows that if BC(IIY) is
infinite dimensional then

Hom g(w, [T &c ) #£ 0.

This restricted understanding compels us to make the following definition. We
let Irrge inf(GO(X)) be the set of o in Irr(GO(X)) such that if o is contained in
Ri(GO(X)) then for any element II of Irr(Gl(2, k)) that has 6(o) as an irreducible
constituent, BC(ITV) is infinite dimensional. The elements of Irr{GO(X')) not con-
tained in Irrge jor(GO(X)) ave limited. For example, Irrpe iui(GO(X)) contains
all the supercuspidal representations, as we show in the next section. Using [K]
and the knowledge of the elements of Irr(GI(2, k)) whose base changes to GI(2, I\)
are finite dimensional, one could compute all the possible elements of Irr(GO(X'))
which are not in Irrge i, (GO(X)).
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Lemma 7.3. Let o be in Irr(GO(X)). In the case d # 1 assume that ¢ is infinite
dimensional, o is in Irrgc 1w (GO(X)), and Conjecture 7.2 for n = 1. Then o is in
R (GO(X)) if and ouly if o is of the form nt for some distinguished .

Proof. If o in Irr(GO(X)) is of the form 7t for some distinguished 7 then o is in
R (GO(X)) by an argument as in the proof of Theorem 6.3, with SO(Y') playing
the role of SO(Z).

Suppose that ¢ 1s in R (GO(X)). Suppose d = 1 and € = ¢(1). By [S],

8({r* : 7 € Irr(GSO(X)) is distinguished}) = Irr(G1(2, k)).

From Theorem 1.2, it follows that ¢ is of the form 7% for some distinguished 7.

Suppose d = 1 and € = —¢(1). Suppose that o is not of the form % for some
distinguished 7. By Theorem 4.3, o is of the form =t for some regular 7. It follows
that 1 does not occur in 7|g(y), and by Lemma 8.1, (o) is supercuspidal. Now by
[S] and the discussion following Theorem 4.4,

O({n* : 7 € Irr(GSO(X)) is distinguished})

contains the set of supercuspidal representations of Gl(2,%). By Theorem 1.2 it
follows & is of the form 7* for some distinguished =, a contradiction.

Suppose now that d # 1 and € = e(d). Suppose first 6(o) extends to a repre-
sentation II of GI(2, k). Then if the notation is as in the discussion preceeding the
lemma, we find that o = 8(Il|gy2,1)+) = = .

Suppose that §(c ) induces irreducibly to G1(2, k), and assume that o is n
form 7% for some distinguished 7. Let II be the induction of §(a) to G1(2, k). Again,
there is a nonzero R’ map from w to Il @¢ 7. Let g in GI(2,%) be a representative
for the nontrivial coset of G1(2, k)/ GI(2,k)T. It follows that at least one of

Homp/(w, 8(c) @c 7), Hom p/(w, 98(0) @c 7).

1s nonzero. If the first space is nonzero then we find as in the last paragraph that
o = 7*, a contradiction. It follows that the first space is zero and the second is
nonzero. This implies that

Homgy(2,1)(w', 8()) # 0,

where w' is the extended Weil representation corresponding to the other four dimen-
sional symmetric bilinear space of determinant d. Hence, m(6(c)),m_(8(c)) < 4.
By Conjecture 7.2 for n = 1, this implies that m4(8(c)) = m-(6(0)) = 4. It
follows that II is not a lift from a two dimensional symmetric bilinear space with
determinant d. However, the restriction of IT to GI(2, k)t is reducible, and so II is
a lift from an anisotropic two dimensional symmetric bilinear space of determinant
different from d. This, along with the fact that II has a reducible restriction to
Gl(2, k)T, implies that the restriction to SI(2, k) of II has four distinct irreducible
components. By our above remarks, II is a lift from a two dimensional symmetric
bilinear space of the same determinant as X. This is a contradiction. 0O
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Lemma 7.4. Let o be in Irr(GO(X)). Assume that o|o(x) # sign, and in the case
d # 1, assume that o is infinite dimensional. Then o is in R3(GO(X)).

Proof. By Theorem 6.3 and the principle of persistence [V], p. 67, it suffices to
show that if 7 is in Irr(GSO(X)) is distinguished and w|so(x) # 1, then 77 is
in R3(GO(X)). Let z in X be such that the components of = form a basis for
the orthogonal complement to Y from section 4. Then the stabilizer of 2 in O(X)
is {1, 11}, where hy = —hg. By an argument as in the proof of Theorem 6.3, it
suffices to show that there exists a nonzero vector v in the space of = such that
7~ (hy)v = v; to prove this, it suffices to show that 7#=(h;) # —1. To this end,
suppose that 77(hy) = —1. Then for /i in GSO(X) we have w(h) = w(h k"),

Suppose now d = 1. Let 7 = #(7,7). Then 7(g9) ® 7(¢') = 7(¢') ® 7(g) for
g € GI(2,k) or D*. But by the assumption that 7|so(xy # 1 it follows that the
dimension of ¢ 1s larger than one. This i1s a contradiction.

Similarly, if d # 1, there is a contradiction. O

Theorem 7.5. Let o be in Irr(GO(X)). In the case d # 1 assume that ¢ is infinite
dimensional, o is in Irrpc inf(GO(X)), and Conjecture 7.2 for n = 1. Then

n(o) + n(o ®¢ sign) = 4.

Proof. Let 7 in Irr(GSO(X)) be a constituent of the restriction of o to GSO(X).
Suppose first 7 is regular so that ¢ = 7+, By Lemma 7.3, we have n(o) = n(o Q¢
sign) > 2. By Theorem 6.3, it follows that n(7*) = n(7+ Q¢ sign) = 2.

Suppose next that 7 is distinguished. Without loss of generality, we may assume
that ¢ = 7. Suppose 7|so(x) # 1. Then by Lemma 7.3, n(c) = 1 and by Theorem
4.3 and Lemma 7.4, n(o Q¢ sign) = n(r~) = 3. Suppose that 7|so(y)y = 1. Then
olo(x) = 1, and by the appendix of [Ra] n{c) = 0 and n(o ¢ sign) = n(x~) = 4.

Finally, suppose that d # 1 and = is invariant but not distinguished. Then if the

notation is as in Lemma 6.2, by Lemma 7.3 and Theorem 6.3, n(¢) = n(c@csign) =
2. 0O

The following table summarizes the results when d = 1.

d=1, o €Ir(GO(X))
o n(eo) n{o @ sign)
U|o(,\’) =1 0 4
olox) # 1, 0 = 7%, m invariant 1 3
o =7t 7 regular 2 2
clo(x) # sign, ¢ = 77, 7 invariant 3 1
olo(x) = sign 4 0

The next table summarizes the information when d # 1. We remind the reader
that in this case we need to assume Conjecture 7.2 with n = 1.
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d#1,0 € Irrgc inf(GO(X)) infinite dimensional

o n(o) n(o @¢ sign)
o =nT, 7 distinguished 1 3
olaso(x) invariant, not distinguished 2 2
o =77, m regular 2 2
o =n", 7 distinguished 3 1

8. Supercuspidal representations of GSp(2,4). Using the theta correspon-
dence we have been considering, we will now construct series of supercuspidal rep-
resentations of GSp(2, k). Since the statements of the theorems are lengthy we will
not restate here.

The proof of Theorems 8.2 and 8.3 depend on the following result from [K]. In
the statement we use some notation from the previous section. The reader should
note that this statement also holds for other dual pairs. See [V].

Lemma 8.1 (Kudla). Suppose that X is an even dimensional nondegenecrate
symmetric bilinear space. Let o be in Irr(O(X)). If o is supercusidal, then 6(c) in
Irr(Sp(n{o), k)) is supercuspidal.

Using Lemma 8.1, and the tables from the last section, it is easy now to prove
Theorems 8.2 and 8.3. We make two remarks. First, in the case d # 1, every super-
cuspidal representation in Irr(GO(X)) is in Irrpe inr(GO(X)). To see this, suppose
that o in Irr(GO(X)) is supercuspidal and o is in R (GO(X)). By Lemma 8.1
8(o) in Irr(GI(2, k)™T) is supercuspidal. Since the base change of any supercuspidal
element of Irr(Gl(2, k)) is infinite dimensional, o is in Irrge 1 (GO(X')). Second,
we note that in the proof of Theorem 8.3 part (2) to verify that there exactly one
7 lying over 1 is not distinguished one uses Theorem 5.3 and part (¢) of Theorem

1 from [GL).
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Appendix. In the following tables we illustrate the main theorem by showing the
passage of a representations of D* x D*,| GlU2,k) x Gl(2, ) and GI(2, ') from
these groups to GSO(X), GO(X) and finally GSp(2,k)T. In the case d # 1, we
assume that 7 is infinite dimensional. Also, passage to GSp(2, k) in the case d # 1
requires Conjecture 1.3 (Theta dichotomy); see section 1.

d=1
(ry7") - w(r,7) = w(r, Y = 8(=(r,7"))
Gl(2, k) x G1(2,k) GSO(X) GO(X) GSp(2, %)

or D* x D*
1. (r,7") € Irrp(GI(2, k) x GI(2, K)) or Lerp(D* x D*), 7 2 7.

w(r,7)t — O(m(r,7)F)
/
(r,7) —  n(r,7)
N
m(7,7)” does not lift
Gl(2, k) x G1(2,k) GSO(X) GO(X) GSp(2, k)
or D* x D*

2. 7 € Irr(GI(2, k)) or Ire(D*).
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d#1

m(r,x) = w(n)T = 8(x(r,x)F)

/
.
N\
m(r,x") = w(rx)T = b, x)T)
Gl(2, K) GSO(X) GO(X) GSp(2, k)t
1. 7 € Irry(GI(2, K')) not Galois invariant.
(7, x)* - O(n(r, X))
/
(7, x)
/ N
n(r,x)” does not lift
-
(7, x')* — o(m(7,x")")
N /
(7, x")
N
m(r,x')” does not lift
Gl(2, I\') GSO(X) GO(X) GSp(2, k)T

2. 7 € Irrp(Gl(2, I)) Galois invariant, y and ' distinguished.

(r,x)* — o(n(7,x)")
/
(7, X)
/" N\
n(r,x)” does not lift
.
(T, X' )1 — 6(m(r,x')1)
N\ /
(T, X")
N
W(Tr ,\”)2 — G(W(Ta X,)'Z)
GI(2, i) GSO(X) GO(X) GSp(2, k)t

3. 7 € Irrp(GI(2, IV')) Galois invariant, x distinguished, not x' distinguished.
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