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Abstract. Let K be a number field, Q, or the field of rational functions on

a smooth projective curve of genus 0 or 1 over a perfect field, and let V be a

subspace of KN , N ≥ 2. Let ZK be a union of varieties defined over K such
that V * ZK . We prove the existence of a point of small height in V \ ZK ,

providing an explicit upper bound on the height of such a point in terms of the

height of V and the degree of a hypersurface containing ZK , where dependence
on both is optimal. This generalizes and improves upon the results of [6] and

[7]. A key tool we develop to treat the function field case of the problem is a
version of Siegel’s lemma with inhomogeneous heights, which extends a result

of [20]. As a corollary of the method, we derive an explicit lower bound for

the number of algebraic integers of bounded height in a fixed number field.
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1. Introduction

In this paper we consider the problem of finding points of small height in a vector
space outside of a union of a finite collection of varieties, which can be viewed as an
extension of Siegel’s lemma. This generalizes previous results of the author [6], [7].

Siegel’s lemma is a fundamental principle in Diophantine approximations and
transcendental number theory, which is a statement about the existence of points
of small height in a vector space over a global field. This is an important instance of
a general problem of finding rational points on varieties. We use height functions,
which are essential in Diophantine geometry, as a measure of arithmetic complex-
ity; we denote homogeneous height on vectors by H, inhomogeneous height by h,
height of a vector space by H, and will define precisely our choice of heights below.

1991 Mathematics Subject Classification. Primary 11G50, 11D99; Secondary 11R04, 11R58.
Key words and phrases. heights, Siegel’s lemma, polynomials, lattices.

1



2 LENNY FUKSHANSKY

Throughout this paper, we will write K for either a number field, a function field
(i.e. a finite algebraic extension of the field of rational functions in one variable
over an arbitrary field), or the algebraic closure of one or the other. The following
general version of Siegel’s lemma was proved in [2] if K is a number field, in [20] if
K is a function field, and in [13] if K is the algebraic closure of one or the other
(see also [14] for an improved constant).

Theorem 1.1 ([2], [20], [13], [14]). Let K be a number field, a function field, or the
algebraic closure of one or the other. Let V ⊆ KN be an L-dimensional subspace,
1 ≤ L ≤ N . Then there exists a basis v1, ...,vL for V over K such that

(1)
L∏
i=1

H(vi) ≤ CK(L)H(V ),

where CK(L) is a field constant defined by equation (13) in section 2 below. In fact,
if K is a number field or Q, then even more is true: there exists such a basis with

(2)
L∏
i=1

H(vi) ≤
L∏
i=1

h(vi) ≤ CK(L)H(V ).

It is interesting to note that the transition from projective height H to inhomoge-
neous height h in Theorem 1.1 is quite straightforward over number fields (in other
words, (2) is a fairly direct corollary of (1) in the number field case and over Q).
In the function field case, however, such a transition is quite non-trivial. In fact, it
seems unlikely that a direct analogue of (2) would hold over an arbitrary function
field (see Remark 3.1 below). On the other hand, it is possible to produce such
a bound over function fields of genus 0 or 1. In section 3 we prove the following
result, which is one of the key tools we use to prove our main result, Theorem 1.4.

Theorem 1.2. Let K0 be any perfect field and let Y be a curve over K0 of genus
g = 0 or 1, i.e. Y is either a rational or an elliptic curve. Let K = K0(Y ) be
the field of rational functions on Y over K0, and let V ⊆ KN be an L-dimensional
subspace, 1 ≤ L ≤ N . Then there exists a basis u1, ...,uL for V over K such that

(3)
L∏
i=1

H(ui) ≤
L∏
i=1

h(ui) ≤ egLCK(L)H(V ).

where CK(L) is as in (13).

An immediate consequence of Theorem 1.1 is the existence of a nonzero point
v1 ∈ V such that

(4) H(v1) ≤ (CK(L)H(V ))1/L
.

The bounds of (1) and (4) are sharp in the sense that the exponents on H(V ) are
smallest possible. For many applications it is also important to have versions of
Siegel’s lemma with some additional algebraic conditions. One such example is the
so called Faltings’ version of Siegel’s lemma, which guarantees the existence of a
point of bounded norm in a vector space V ⊆ RN outside of a subspace in U ( V
(see [5], [10], and [4]). In [6] and [7] I considered a more general related problem.
Specifically, using the notation of Theorem 1.1 in the case when K is a number
field, let M ∈ Z>0 and let U1, ..., UM be subspaces of KN such that V *

⋃M
i=1 Ui.

Then we can prove the existence of a non-zero point of small height in V \
⋃M
i=1 Ui
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providing an explicit upper bound on the height of such a point. In particular, the
main result of [7] is the following.

Theorem 1.3 ([7]). Let K be a number field of degree d with discriminant DK .
Let N ≥ 2 be an integer, l =

[
N
2

]
, and let V be a subspace of KN of dimension L,

1 ≤ L ≤ N . Let 1 ≤ s < L be an integer, and let U1, ..., UM be nonzero subspaces
of KN with max1≤i≤M{dimK(Ui)} ≤ s. There exists a point x ∈ V \

⋃M
i=1 Ui such

that

(5) H(x) ≤ BK(N,L, s)H(V )d


(

M∑
i=1

1
H(Ui)d

) 1
(L−s)d

+M
1

(L−s)d+1

 ,

where

(6) BK(N,L, s) = 2L(d+3)|DK |
L
2

(
(Ld)L

(
Nd

ld

) 1
2d

) 1
L−s

.

If x1, . . . ,xL is any basis for V , then it is well known (see for instance Lemma 4.7
of [13]) that

(7)
L∏
i=1

H(xi) ≥ N−
L
2H(V ).

Let M = 1, and take U1 to be a subspace of V of dimension L − 1 generated by
the vectors corresponding to the first L − 1 successive minima of V with respect
to an adelic unit cube - these are precisely the vectors v1, . . . ,vL−1 in Theorem
1.1. Then the smallest vector in V \ U1 will be vL of Theorem 1.1. If we choose
V so that the first L − 1 successive minima of V are equal to 1, then (7) implies
that H(vL) ≥ N−L/2H(V ). This shows that the dependence on H(V ) in the upper
bound of Theorem 1.3 is sharp in the case K = Q, however it is natural to expect
the exponent on H(V ) to be equal to 1 over any number field.

The proof of Theorem 1.3 relies on a counting argument. Write OK for the ring
of integers of K, and view modules V ∩OK and Ui∩OK for all 1 ≤ i ≤M as lattices
in RNd under the canonical embedding of K into Rd. Then one can count points
of V ∩OK and

⋃M
i=1 Ui ∩OK in a cube of side-length 2R centered at the origin in

RNd, and make R sufficiently large so that there exists a point x ∈ V \
⋃M
i=1 Ui;

now it is not difficult to estimate the height of this point. However, this argument
does not extend to algebraically closed fields, since K does not embed into a finite-
dimensional Euclidean space.

The main goal of this paper is to produce a generalization of Theorem 1.3 with
optimal dependence onH(V ) which holds just as well over Q and over some function
fields. Let us say that K is an admissible field if it is a number field, Q, or the field
of rational functions on a curve of genus 0 or 1 over a perfect field. We can now
state our main result.

Theorem 1.4. Let K be an admissible field. Let N ≥ 2 be an integer, and let V
be an L-dimensional subspace of KN , 1 ≤ L ≤ N . Let J ≥ 1 be an integer. For
each 1 ≤ i ≤ J , let ki ≥ 1 be an integer and let

Pi1(X1, . . . , XN ), . . . , Piki
(X1, . . . , XN )
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be polynomials of respective degrees mi1, . . . ,miki ≥ 1, and define

(8) Mi = max
1≤j≤ki

mij ∀ 1 ≤ i ≤ J, M =
J∑
i=1

Mi.

Let
ZK(Pi1, . . . , Piki

) = {x ∈ KN : Pi1(x) = · · · = Piki
(x) = 0},

and define ZK =
⋃J
i=1 ZK(Pi1, . . . , Piki

). Suppose that V * ZK . Let

(9) δ =
{

1 if K is a number field or Q
0 otherwise.

Then there exists a point x ∈ V \ ZK such that

(10) H(x) ≤ h(x) ≤ Lδe(1−δ)gLAK(L,M)CK(L)H(V ),

where CK(L) is as in (13), AK(L,M) is as in (14), and g = 0 or 1 is genus of K
in the function field case.

In case K is the field of rational functions of a curve of genus 0 or 1 over a finite
field, the constant AK(L,M)CK(L) in the upper bound of (10) can be slightly
simplified: see Remark 2.1 in section 2 below. It should also be remarked that in
the function field case all the ingredients of our method (Lemma 2.1, Theorem 4.2,
and Lemma 6.2) except for one (Theorem 1.2) work over any function field or its
algebraic closure. Hence we state and prove our results in their most general form
whenever possible, although we end up applying them in only a special case.

An immediate corollary of Theorem 1.4 is the following extension of Theorem 1.3.

Corollary 1.5. Let K be an admissible field. Let N ≥ 2 be an integer, and let
V be an L-dimensional subspace of KN , 1 ≤ L ≤ N . Suppose that M ≥ 1 is an
integer and let U1, ..., UM be subspaces of KN such that V *

⋃M
i=1 Ui. Then there

exists a point x ∈ V \
⋃M
i=1 Ui satisfying (10) above. In particular, in case K is a

number field,

(11) H(x) ≤ h(x) ≤
√

2L|DK |
L+1
2d M

1
dH(V ).

Proof. Since V *
⋃M
i=1 Ui, there exist subspaces U1, . . . , UM of KN of dimension

N − 1 such that Ui ⊆ U i for each 1 ≤ i ≤M , and V *
⋃M
i=1 U i. Let

L1(X1, . . . , XN ), . . . ,LM (X1, . . . , XN ) ∈ K[X1, . . . , XN ]

be linear forms such that U i = {x ∈ KN : L(x) = 0} for each 1 ≤ i ≤ M , and
define

P (X1, . . . , XN ) =
M∏
i=1

Li(X1, . . . , XN ) ∈ K[X1, . . . , XN ].

Then P is a polynomial of degree M , and ZK(P ) =
⋃M
i=1 U i. Now the statement

of the corollary follows from Theorem 1.4. �

Notice that although the bound of Corollary 1.5 does not uniformly overrule Theo-
rem 1.3 (in particular, there is no dependence on the heights of Ui and the depen-
dence on M is not as good as in Theorem 1.3), it exhibits the optimal exponent on
H(V ), better dependence on N,L, d,DK , is easier to use (compare (5) with (11)),
and extends to Q and over function fields, which is a serious advantage.
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Our argument builds on the method of [6] and [7]. We use a variation of the Com-
binatorial Nullstellensatz of N. Alon [1] along with a counting mechanism. Loosely
speaking, Combinatorial Nullstellensatz is the general principle that a polynomial
of degree M in N variables cannot uniformly vanish on certain sets of points in
KN , which are built as rectangular grids of cardinality �MN . A similar principle
has been used in [6] and [7]. The main novelty in our approach is that we restrict
this principle to points in a fixed vector space, and then reduce the main counting
argument in the number field case to points of OK viewed as a full-rank lattice in
Rd. In the function field case, we use a construction of FML lattices as in [21], pp.
578–583, combined with a lemma from [6] to produce a counting mechanism; we
also discuss a possible alternative construction in Remark 7.2. This, along with an
application of Siegel’s lemma with inhomogeneous heights (Theorems 1.1 and 1.2),
allows to produce a sharper estimate. The fact that Combinatorial Nullstellensatz
applies over any field (or any sufficiently large subset of a field, for that matter) al-
lows us to extend our results over K. The dependence on M in the number field case
of Theorem 1.4 is optimal in the sense that if M1/d is replaced by a smaller power
of M then the corresponding rectangular grid in Combinatorial Nullstellensatz is
not sufficiently large, so that the polynomial in question may vanish identically on
it (see Remark 7.1 below for an actual example).

As a side product of the counting part of our method, we are also able to produce
a uniform lower bound on the number of algebraic integers of bounded height in
a number field K. The subject of counting algebraic numbers of bounded height
has been started by the famous asymptotic formula of Schanuel [15]. Some explicit
upper and lower bounds have also been produced later, for instance by Schmidt [16],
[17]. Recently a new sharp upper bound has been given by Loher and Masser [12].
Here we can produce the following estimate for the number of algebraic integers.

Corollary 1.6. Let K be a number field of degree d over Q with discriminant DK
and r1 real embeddings. Let OK be its ring of integers. For all R ≥ (2r1 |DK |)1/2,

(12) (2r1 |DK |)−1/2
Rd < |{x ∈ OK : h(x) ≤ R}| .

The paper is structured as follows: in section 2 we set notation, define heights,
and recall Lemma 2.1, which is a useful property of heights for our purposes; in
section 3 we prove a function field version of Siegel’s lemma with inhomogeneous
heights; in section 4 we prove Theorem 4.2, a version of Combinatorial Nullstellen-
satz on a vector space required for our argument; in section 5 we prove Lemma 5.2,
which is our main counting lemma in the number field case, and derive Corollary
1.6 from it; in section 6 we prove Lemma 6.2, the counting lemma over a function
field; in section 7 we prove Theorem 1.4; in section 8 we discuss how our results
can be extended to inequalities involving twisted height.

2. Notation and heights

We start with some notation. Throughout this paper, K will either be a number
field (finite extension of Q), a function field, or algebraic closure of one or the
other; in fact, for the rest of this section, unless explicitly specified otherwise, we
will assume that K is either a number field or a function field, and will write K
for its algebraic closure. By a function field we will always mean a finite algebraic
extension of the field K = K0(t) of rational functions in one variable over a field K0,
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where K0 can be any field. When K is a number field, clearly K ⊂ K = Q; when
K is a function field, K ⊂ K = K, the algebraic closure of K. In the number field
case, we write d = [K : Q] for the global degree of K over Q; in the function field
case, the global degree is d = [K : K], and we also define the effective degree of K
over K to be

m(K,K) =
[K : K]

[K0 : K0]
,

where K0 is the algebraic closure of K0 in K. If K is a number field, we let
DK be its discriminant, ωK the number of roots of unity in K, r1 its number of
real embeddings, and r2 its number of conjugate pairs of complex embeddings, so
d = r1 + 2r2. If K is a function field, we will also write g(K) for the genus of K,
as defined by the Riemann-Roch theorem (see [20] for details). We will distinguish
two cases: if K is a function field, we say that it is of finite type q if its subfield of
constants is a finite field Fq for some prime power q, and we say that it is of infinite
type if its subfield of constants is infinite. If K is a function field of finite type q,
then there exists a unique smooth projective curve Y over Fq such that K = Fq(Y )
is the field of rational functions on Y . In this case, we will write n(K) = |Y (Fq)|
for the number of points of Y over Fq, and hK for the number of divisor classes of
degree zero (which is precisely the cardinality of the Jacobian of Y over Fq). We
can now define the field constant CK(L), which appears in Theorems 1.1 and 1.4:

(13) CK(L) =



((
2
π

)r2 |DK |) L
2d if K is a number field

exp
(
g(K)−1+m(K,K)

m(K,K)

)
if K is a function field

e
L(L−1)

4 + ε if K = Q; here we can take any ε > 0
1 + ε if K = K; here we can take any ε > 0,

and the constant AK(L,M), which appears in the statement of Theorem 1.4:
(14)

AK(L,M) =


(
M
√

2r1 |DK |
) 1

d

if K is a number field with ωK ≤M
eRK(M) if K is a function field of finite type q ≤M
1 otherwise,

for all integers L,M ≥ 1, where for a function field K of finite type q ≤ M we
define

(15) RK(M) =
n(K)− 1

2

(
(M − q + 2)hK

√
n(K)

) 1
n(K)−1

+hK(n(K)−1)
√
n(K).

Remark 2.1. Let Y be a smooth projective curve of genus g over Fq. Then Hasse-
Weil-Serre bound (see for instance Theorem 2.3.16 on p. 178 of [21]) gives

(16) n(K) ≤ q + 1 + g [2
√
q] ,

where [ ] stands for the integer part function. In case g = 0 we also have hK = 1,
and if g = 1 we have hK ≤ n(K) ≤ q + 1 +

[
2
√
q
]

(see (37) below, which gives a
bound on hK in terms of n(K) and the genus). These observations may help to
simplify the formula (15) for RK(M).

Next we discuss absolute values on K. Let M(K) be the set of places of K. For
each place v ∈ M(K) we write Kv for the completion of K at v and let dv be the
local degree of K at v, which is [Kv : Qv] in the number field case, and [Kv : Kv]
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in the function field case. In any case, for each place u of the ground field, be it Q
or K, we have

(17)
∑

v∈M(K),v|u

dv = d.

If K is a number field, then for each place v ∈ M(K) we define the absolute
value | |v to be the unique absolute value on Kv that extends either the usual
absolute value on R or C if v|∞, or the usual p-adic absolute value on Qp if v|p,
where p is a prime. For each finite place v ∈ M(K), v - ∞, we define the local
ring of v-adic integers Ov = {x ∈ K : |x|v ≤ 1}, whose unique maximal ideal is
Mv = {x ∈ K : |x|v < 1}. Then OK =

⋂
v-∞Ov.

If K is a function field, then all absolute values on K are non-archimedean. For
each v ∈M(K), let Ov be the valuation ring of v in Kv and Mv the unique maximal
ideal in Ov. We choose the unique corresponding absolute value | |v such that:

(i) if 1/t ∈Mv, then |t|v = e,
(ii) if an irreducible polynomial p(t) ∈Mv, then |p(t)|v = e− deg(p).

In both cases, for each non-zero a ∈ K the product formula reads

(18)
∏

v∈M(K)

|a|dv
v = 1.

We extend absolute values to vectors by defining the local heights. For each
v ∈M(K) define a local height Hv on KN

v by

Hv(x) = max
1≤i≤N

|xi|dv
v ,

for each x ∈ KN
v . Also, for each v|∞ we define another local height

Hv(x) =

(
N∑
i=1

|xi|2v

)dv/2

.

Then we can define two slightly different global height functions on KN :

(19) H(x) =

 ∏
v∈M(K)

Hv(x)

1/d

, H(x) =

∏
v-∞

Hv(x)×
∏
v|∞

Hv(x)

1/d

,

for each x ∈ KN . These height functions are homogeneous, in the sense that they
are defined on projective space thanks to the product formula (18): H(ax) = H(x)
and H(ax) = H(x) for any x ∈ KN and 0 6= a ∈ K. It is easy to see that

H(x) ≤ H(x) ≤
√
NH(x).

Notice that in case K is a function field, M(K) contains no archimedean places,
and so H(x) = H(x) for all x ∈ KN . We also define the inhomogeneous height

h(x) = H(1,x),

which generalizes Weil height on algebraic numbers: for each α ∈ K, define

h(α) =
∏

v∈M(K)

max{1, |α|v}dv/d.

Clearly, h(x) ≥ H(x) for each x ∈ KN . All our inequalities will use heights H
and h for vectors, however we use H to define the conventional Schmidt height on
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subspaces in the manner described below. This choice of heights coincides with [2]
and [7].

We extend both heights H and H to polynomials by viewing them as height
functions of the coefficient vector of a given polynomial. We also define a height
function on subspaces of KN . Let V ⊆ KN be a subspace of dimension L, 1 ≤ L ≤
N . Choose a basis x1, ...,xL for V , and write X = (x1 ... xL) for the corresponding
N × L basis matrix. Then

V = {Xt : t ∈ KL}.
On the other hand, there exists an (N − L) ×N matrix A with entries in K such
that

V = {x ∈ KN : Ax = 0}.
Let I be the collection of all subsets I of {1, ..., N} of cardinality L. For each I ∈ I
let I ′ be its complement, i.e. I ′ = {1, ..., N} \ I, and let I ′ = {I ′ : I ∈ I}. Then

|I| =
(
N

L

)
=
(

N

N − L

)
= |I ′|.

For each I ∈ I, write XI for the L×L submatrix of X consisting of all those rows
of X which are indexed by I, and I′A for the (N − L) × (N − L) submatrix of
A consisting of all those columns of A which are indexed by I ′. By the duality
principle of Brill-Gordan [8] (also see Theorem 1 on p. 294 of [9]), there exists a
non-zero constant γ ∈ K such that

(20) det(XI) = (−1)ε(I
′)γ det(I′A),

where ε(I ′) =
∑
i∈I′ i. Define the vectors of Grassmann coordinates of X and A

respectively to be

Gr(X) = (det(XI))I∈I ∈ K |I|, Gr(A) = (det(I′A))I′∈I′ ∈ K |I
′|,

and so by (20) and (18)
H(Gr(X)) = H(Gr(A)).

Define the height of V denoted by H(V ) to be this common value. This definition is
legitimate, since it does not depend on the choice of the basis for V . In particular,
notice that if

L(X1, ..., XN ) =
N∑
i=1

qiXi ∈ K[X1, ..., XN ]

is a linear form with a non-zero coefficient vector q ∈ KN , and V = {x ∈ KN :
L(x) = 0} is an (N − 1)-dimensional subspace of KN , then

(21) H(V ) = H(L) = H(q).

An important observation is that due to the normalizing exponent 1/d in (19) all
our heights are absolute, meaning that they do not depend on the number field or
function field of definition, hence are well defined over K.

We will also need the following basic property of heights.

Lemma 2.1. For ξ1, ..., ξL ∈ K and x1, ...,xL ∈ K
N

,

H

(
L∑
i=1

ξixi

)
≤ h

(
L∑
i=1

ξixi

)
≤ LδH(ξ)

L∏
i=1

h(xi),

where ξ = (ξ1, ..., ξL) ∈ KL
, and δ is as in (9) above.
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We are now ready to proceed.

3. Siegel’s lemma over a function field

In this section we produce a version of Siegel’s lemma with inhomogeneous
heights over fields of rational functions of rational and elliptic curves, which is
a function field analogue of (2). Let all notation be as in section 2 above. We now
prove Theorem 1.2.

Proof of Theorem 1.2. In fact, the first part of our argument works for curves of
any genus, so let us first assume that Y is a smooth projective curve over a perfect
field K0 and K = K0(Y ). Then g(K) is precisely the genus of Y . Let x1, . . . ,xL
be a basis for V over K satisfying (1) of Theorem 1.1. For each 1 ≤ i ≤ L and
v ∈M(K),

H1/dv
v (xi) = max

1≤j≤N
|xij |v = max

1≤j≤N
e− ordv(xij) = exp

(
− min

1≤j≤N
ordv(xij)

)
,

where ordv(xij) is order of xij at the place v; clearly, for each 1 ≤ i ≤ L, 1 ≤ j ≤ N ,
ordv(xij) 6= 0 at only finitely many places v ∈M(K).

Fix 1 ≤ i ≤ L, and let v1, . . . , vs be the places of K at which ordv(xij) 6= 0 for
some 1 ≤ j ≤ N . As in section 2, for each 1 ≤ m ≤ s

Ovm = {x ∈ K : ordvm(x) ≤ 0}

is the valuation ring at vm with the unique maximal ideal

Mvm
= {x ∈ K : ordvm

(x) < 0},

and let us write K0(vm) for the residue field Ovm
/Mvm

. Clearly K∗0 ⊆ Ovm
\Mvm

,
so K0(vm) is a field extension of K0. By Exercise 2.3.1 on p. 171 of [21], δm :=
[K0(vm) : K0] is finite. Following the construction on p.171 of [21], we say that each
vm determines a point P (vm) of Y of degree δm (we will also denote this degree by
degK0

(vm)), and write Y for the closure of the curve Y over K0. Then the Galois
orbit of P (vm) over K0(vm) consists of δm points P1(vm), . . . , Pδm

(vm) on Y , i.e.{
σ(P (vm)) : σ ∈ Gal(K0/K0)

}
= {P1(vm), . . . , Pδm

(vm)}.

We will say that the points P1(vm), . . . , Pδm
(vm) lie over vm. Since K0 is perfect,

K0 is separable over K0, and so Pk(vm1) = Pl(vm2) if and only if m1 = m2 and
k = l. Define the divisor of xi over K0 by the formal sum

div(xi) =
s∑

m=1

(
− min

1≤j≤N
ordvm

(xij)
)

(P1(vm) + · · ·+ Pδm
(vm)),

then as usual

deg(div(xi)) = −
s∑

m=1

δm min
1≤j≤N

ordvm
(xij).

In the same manner, each element f ∈ K0(Y ) defines a principal divisor

(f) =
∑

v∈M(K0(Y ))

(ordv(f)) (P1(v) + · · ·+ PdegK0
(v)(v)),
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so that deg(f) =
∑
v∈M(K0(Y )) degK0

(v) ordv(f) = 0. In particular notice that

(22) 0 = −
s∑

m=1

δm ordvm(xi1) ≤ −
s∑

m=1

δm min
1≤j≤N

ordvm(xij) = deg(div(xi)).

Let us first assume that deg(div(xi)) > g(K)− 1. An immediate implication of the
Riemann-Roch theorem (see for instance Theorem 2.2.17 on p. 150 of [21]) is that
there exists fi ∈ K0(Y ) such that the divisor div(xi) + (fi) is effective. Then, by
Exercise 2.3.6 on p. 174 of [21], there in fact exists such fi ∈ K, so

deg(v)
(
− min

1≤j≤N
ordv(xij) + ordv(fi)

)
≥ 0

for all v ∈ M(K). Since deg(v) ≥ 1, this means that −min1≤j≤N ordv(xij) +
ordv(fi) ≥ 0 for all v ∈M(K). Then define ui = 1

fi
xi, and notice that

H1/dv
v (ui) = exp

(
− min

1≤j≤N
ordv(xij) + ordv(fi)

)
≥ 1,

for all v ∈M(K). Therefore

(23) h(ui) = H(ui) =

 ∏
v∈M(K)

∣∣∣∣ 1
fi

∣∣∣∣dv

v

Hv(xi)

1/d

= H(xi),

by the product formula. If Y is a rational curve, then g(K) − 1 = −1, and so
by (22) the condition deg(div(xi)) > g(K) − 1 always holds. Then (3) follows by
combining (23) with (1).

Next assume that 0 ≤ deg(div(xi)) ≤ g(K)− 1. Here we need to assume that Y
is an elliptic curve, so g(K) = 1 and deg(div(xi)) = 0. Since div(xi) is defined over
K0, then by Proposition 2.4.1 on p. 192 of [21] (also see Proposition 3.4 on p. 66
of [18]), there exist points Q,T on Y and a rational function fi in some algebraic
extension of K such that

(24) div(xi) = (fi) +Q− T.

Once again, Exercise 2.3.6 on p. 174 of [21] implies that in fact there exists such fi
in K. Then Q and T must lie over some places of K, in fact since the coefficients
in front of Q and T in (24) are different (1 and -1 respectively), they must lie over
different places of K, call them v1 and v2 respectively. Let ui = 1

fi
xi, then

H
1/dv1
v1 (ui) = e, H

1/dv2
v2 (ui) =

1
e
, H1/dv

v (ui) = 1 ∀ v 6= v1, v2.

Therefore

(25) h(ui) ≤ eH(xi),

since H(ui) = H(xi) = 1. Then combining (23) and (25) with (1), we see that
there exists a basis u1, ...,uL for V over K such that

L∏
i=1

H(ui) ≤
L∏
i=1

h(ui) ≤ eL
L∏
i=1

H(xi) ≤ eLCK(L)H(V ).

This completes the proof. �
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Remark 3.1. Notice that the first part of the proof of Theorem 1.2 works for curves
of any genus; in other words, as long as deg(div(xi)) > g(K) − 1 Riemann-Roch
implies that div(xi) is linearly equivalent to an effective divisor, and one easily
constructs a vector over K with inhomogeneous height equal to H(xi). In case
deg(div(xi)) ≤ g(K)− 1 we need to be able to bound the coefficients of the divisor
div(xi), and the principle that allows us to do it for curves of genus 1 (Proposition
3.4 on p. 66 of [18]) is precisely the reason for the existence of group structure on
elliptic curves. This consideration suggests that it is unlikely that one could extend
Theorem 1.2 to curves of higher genus.

4. Combinatorial Nullstellensatz

In [1] the following lemma is proved (compare with Lemma 2.1 of [6], which is
an immediate corollary of Lemma 1 on p. 261 of [3]).

Lemma 4.1 ([1]). Let P (X1, . . . , XN ) be a polynomial in N variables with coeffi-
cients in an arbitrary field F. Suppose that degXi

P ≤ ti for 1 ≤ i ≤ N , and let
Si ⊂ F be a set of at least ti+ 1 distinct elements of F. If P (ξ) = 0 for all N -tuples

ξ = (ξ1, . . . , ξN ) ∈ S1 × · · · × SN ,
then P ≡ 0.

We will refer to this lemma as Combinatorial Nullstellensatz (Alon uses this name
for a slightly different related result, which is derived from this lemma). We use
this lemma to derive a somewhat more specialized version of such a result with
restriction to a vector space.

Theorem 4.2. Let P (X1, . . . , XN ) be a polynomial in N variables with coefficients
in an arbitrary field F. Suppose that degXi

P ≤ ti for 1 ≤ i ≤ N , and let Si ⊂ F
be a set of at least ti + 1 distinct elements of F. Let v1, . . . ,vL be vectors in
FN , 1 ≤ L ≤ N , and let V = spanF{v1, . . . ,vL} be a subspace of FN . Write
S = S1× · · ·×SL, and for each L-tuple ξ = (ξ1, . . . , ξL) ∈ S, let v(ξ) =

∑L
i=1 ξivi.

If P (v(ξ)) = 0 for all ξ ∈ S, then P is identically 0 on V .

Proof. Assume that P is not identically zero on V , so there exists x ∈ V such that
P (x) 6= 0. We will show that there must exist ξ ∈ S such that P (v(ξ)) 6= 0. Let

A = (v1 . . .vL 0 . . .0)

be the N ×N matrix the first L columns of which are the vectors v1, . . . ,vL, and
the remaining N − L columns are zero vectors. Write X = (X1, . . . , XN ) for the
variable vector, and define the restriction of P to V with respect to the spanning
set {v1, . . . ,vL} by

PV (X1, . . . , XL) = P (AXt).

Notice that if v(ξ) =
∑L
i=1 ξivi for some ξ = (ξ1, . . . , ξL) ∈ FL, then P (v(ξ)) =

PV (ξ). Since P is not identically zero on V , there must exist ξ ∈ FL such that
PV (ξ) 6= 0. Moreover, for each 1 ≤ i ≤ L, degXi

PV ≤ degXi
P ≤ ti. Therefore by

Lemma 4.1, there exists ξ ∈ S such that

PV (ξ) = P (v(ξ)) 6= 0.

This completes the proof. �
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5. A counting mechanism: number field case

Here we produce a certain refinement of Theorem 0 on p. 102 of [11] with
explicit constants (also compare with Lemma 4.1 of [7]), which will serve as our
main counting mechanism in the number field case. We start by recalling Lemma
2.1 of [7].

Lemma 5.1 ([7]). For a real number R ≥ 1, let

(26) CnR = {x ∈ Rn : max
1≤i≤n

|xi| ≤ R}

be a cube in Rn, n ≥ 1, centered at the origin with sidelength 2R. Let Λ be a lattice
of full rank in Rn of determinant ∆ such that there exists a positive constant c and
an uppertriangular basis matrix A = (aij)1≤i,j≤n of Λ with diagonal entries aii ≥ c
for all 1 ≤ i ≤ n. Assume that 2R ≥ max

{
∆

cn−1 , c
}

. Then for each point z in Rn
we have(

2Rcn−1

∆
− 1
)(

2R
c
− 1
)n−1

≤ |Λ ∩ (CnR + z)|

≤
(

2Rcn−1

∆
+ 1
)(

2R
c

+ 1
)n−1

.(27)

For our number field K, define the set

(28) SR(K) = {x ∈ OK : |x|v ≤ R ∀ v|∞} ,
where R ≥ 1 is a real number (compare with the set SM (K) in the proof of Lemma
4.1 in [7]). We use Lemma 5.1 to prove the following estimate, which will be
essential in the proof of Theorem 1.4.

Lemma 5.2. For all R ≥ (2r1 |DK |)1/2,

(29) (2r1 |DK |)−1/2
Rd < |SR(K)| < 22d+1/2 (2r1 |DK |)−1/2

Rd.

Proof. As in [7], let
σ1, ..., σr1 , τ1, ..., τr2 , τr2+1, ..., τ2r2

be the embeddings ofK into C with σ1, ..., σr1 being real embeddings and τj , τr2+j =
τ̄j for each 1 ≤ j ≤ r2 being the pairs of complex conjugate embeddings. For each
x ∈ K and each complex embedding τj , write τj1(x) = <(τj(x)) and τj2(x) =
=(τj(x)), where < and = stand respectively for real and imaginary parts of a com-
plex number. We will view τj(x) as a pair (τj1(x), τj2(x)) ∈ R2. Then d = r1 + 2r2,
and we define an embedding

σ = (σ1, ..., σr1 , τ1, ..., τr2) : K −→ K∞,

where
K∞ =

∏
v|∞

Kv =
∏
v|∞

Rdv = Rd,

since
∑
v|∞ dv = d. Then Λ := σ(OK) is a lattice of full rank in Rd. Let us write

M∞(K) for the set of archimedean places of K, then

M∞(K) = {v1, . . . , vr1 , w1, . . . , wr2},
where for each x ∈ K, 1 ≤ i ≤ r1, 1 ≤ j ≤ r2,

|x|vi
= |σi(x)|∞, |x|wj

= |τj(x)|∞,
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where | |∞ stands for the usual absolute value on C. Therefore for each x ∈ OK ,

σ(x) = (σ1(x), . . . , σr1(x), τ11(x), τ12(x), . . . , τr21(x), τr22(x)) ∈ Λ,

and if x ∈ SR(K), then for each 1 ≤ i ≤ r1, |σi(x)|∞ ≤ R, and for each 1 ≤ j ≤ r2,√
τj1(x)2 + τj2(x)2 ≤ R, thus

(30) Λ ∩ Cd
R/
√

2
⊆ σ(SR(K)) ⊆ Λ ∩ CdR,

and since σ is injective,

(31) |Λ ∩ Cd
R/
√

2
| ≤ |SR(K)| ≤ |Λ ∩ CdR|.

Now if x ∈ OK , then |x|v ≤ 1 for all v -∞, and so |x|v ≥ 1 for at least one v|∞,
call this place v∗. If v∗ is real, say v∗ = vi for some 1 ≤ i ≤ r1, then |σj(x)|∞ ≥ 1.
If v∗ is complex, say v∗ = wj for some 1 ≤ j ≤ r2, then

√
τj1(x)2 + τj2(x)2 ≥ 1,

hence max{|τj1(x)|∞, |τj2(x)|∞} ≥ 1√
2
. Therefore,

(32) max{|σ1(x)|, ..., |σr1(x)|, |τ11(x)|, |τ12(x)|, ..., |τr21(x)|, |τr22(x)|} ≥ 1√
2
,

in other words the maximum of the Euclidean absolute values of all conjugates of
an algebraic integer is at least 1√

2
.

Finally, recall that

(33) ∆ := |det(Λ)| = |DK |
1/2

2r2
,

which follows immediately from Lemma 2 on p. 115 of [11]. We are now ready
to apply Lemma 5.1. By Corollary 1 on p. 13 of [3], we can select a basis for Λ
so that the basis matrix is upper triangular, all of its nonzero entries are positive,
and the maximum entry of each row occurs on the diagonal. By (32) each of these
maximum values is at least 1√

2
, so the lattice Λ satisfies the conditions of Lemma

5.1 with c = 1√
2
, n = d, and ∆ as in (33). Therefore, if we take R ≥ (2r1 |DK |)1/2,

then by (31) combined with Lemma 5.1

|SR(K)| ≥ |Λ ∩ Cd
R/
√

2
| ≥

(
R

2
r1−2

2 |DK |1/2
− 1

)
(2R− 1)d−1

> (2r1 |DK |)−1/2
Rd,(34)

which proves the lower bound of (29). Also

|SR(K)| ≤ |Λ ∩ CdR| ≤

(
R

2
r1−3

2 |DK |1/2
+ 1

)(
2
√

2R+ 1
)d−1

< 22d+1/2 (2r1 |DK |)−1/2
Rd,(35)

which proves the upper bound of (29). �

We can now easily derive Corollary 1.6.

Proof of Corollary 1.6. Notice that R ≥ (2r1 |DK |)1/2
> 1, so if x ∈ SR(K), then

h(x) =
∏

v∈M(K)

max{1, |x|v}dv/d ≤
∏

v∈M(K)

Rdv/d = R,
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hence SR(K) ⊆ {x ∈ OK : h(x) ≤ R}. The statement of the corollary now follows
from Lemma 5.2. �

6. A counting mechanism: function field case

Here we produce a counting estimate analogous to Lemma 5.2 over a function
field with a finite field of constants. First we recall a lemma (Theorems 4.2 and 4.3
of [6]) which we will need here.

Lemma 6.1 ([6]). Suppose that Λ ⊆ Zn is a lattice of rank n−l, where 1 ≤ l ≤ n−1.
Let ∆ be the maximum of absolute values of Grassmann coordinates of Λ. Then for
every R that is a positive integer multiple of (n− l)∆, we have

(36)
(2R)n−l

(n− l)n−l∆
≤ |Λ ∩ CnR| ≤

(
2R
∆

+ 1
)

(2R+ 1)n−l−1,

where CnR is as in (26). The upper bound of (36) holds for R that is not an integer
multiple of (n− l)∆ as well.

The following is a construction of function field lattices (FML) as on pages 578–583
of [21]. Let K be a function field over a finite field Fq for a prime power q, then
there exists a curve Y over Fq such that K = Fq(Y ) is the field of rational functions
on Y . Let the set of points of Y over Fq be

Y (Fq) = {P1, . . . , Pn(K)},

where n(K) = |Y (Fq)|, and let MY = {v1, . . . , vn(K)} ⊂ M(K) be a subset of
places of K corresponding to these points. In other words, for every f ∈ K and for
each 1 ≤ i ≤ n(K), we have |f |vi = e− ordvi

(f), where

ordvi
(f) =

 k if f has a zero of multiplicity k at Pi
−k if f has a pole of multiplicity k at Pi
0 otherwise.

Let
OK(Y ) = {f ∈ K∗ : ordv(f) = 0 ∀ v ∈M(K) \MY }

be the ring of rational functions from K with zeros and poles only at the places in
MY . Then for each f ∈ OK(Y ) ∑

v∈MY

ordv(f) = 0,

since f defines a principal divisor. Define

Hn(K) =

x ∈ Rn(K) :
n(K)∑
i=1

xi = 0

 ,

so Hn(K) is an (n(K)− 1)-dimensional subspace of Rn(K). We now have a natural
embedding ϕY : OK(Y )→ Zn(K) ∩Hn(K) given by

ϕY (f) = (ordv1(f), . . . , ordvn(K)(f)).
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Then ker(ϕY ) = F∗q ; also, by Theorem 5.4.9 on p. 579 of [21], ΛY := ϕ(OK(Y )) is
a lattice of full rank in Hn(K), hence a sublattice of Zn(K) of rank n(K)− 1, and
(37)√

n(K) ≤ det ΛY ≤
√
n(K) hK ≤

√
n(K)

(
(g(K)− 1)(q + 1) + n(K)

g(K)

)g(K)

,

where hK is the class number of K, and g(K) is the genus of Y , and hence of K. If
g(K) = 0, the upper bound of (37) becomes simply

√
n(K), thus enforcing equality

throughout (h(K) = 1 in this case). For a positive real number R define

(38) SR(K) = {f ∈ OK(Y ) : ordv(f) ≤ R ∀ v ∈MY } ,
then

(39) |SR(K)| = |ΛY ∩ Cn(K)
R |+ | ker(ϕY )| = |ΛY ∩ Cn(K)

R |+ q − 1,

and we have the following estimate.

Lemma 6.2. For every real number R ≥ (n(K)− 1)
√
n(K) hK ,

2n(K)−1√
n(K) hK

(
R

n(K)− 1
−
√
n(K) hK

)n(K)−1

+ q − 1

≤ |SR(K)| ≤ (2R+ 1)n(K)−1 + q − 1.(40)

Proof. By (39), we need to estimate |ΛY ∩ Cn(K)
R |. Let ∆Y be the maximum of

absolute values of Grassmann coordinates of ΛY . By Cauchy-Binet formula

(41) ∆Y ≤ det ΛY ≤
√
n(K)∆Y .

Let R1 =
[

R
(n(K)−1)∆Y

]
(n(K)− 1)∆Y , where [ ] denotes the integer part function,

then by combining Lemma 6.1 with (41), we have

|ΛY ∩ Cn(K)
R | ≥ |ΛY ∩ Cn(K)

R1
| ≥ (2R1)n(K)−1

(n(K)− 1)n(K)−1∆Y

= 2n(K)−1∆n(K)−2
Y

[
R

(n(K)− 1)∆Y

]n(K)−1

≥ 2n(K)−1

∆Y

(
R

n(K)− 1
−∆Y

)n(K)−1

≥ 2n(K)−1

det ΛY

(
R

n(K)− 1
− det ΛY

)n(K)−1

.(42)

The lower bound of (40) follows by combining (42) with (37) and (39). The upper
bound also follows readily by combining Lemma 6.1 with (39), (41) and (37). �

7. Proof of Theorem 1.4

In this section we prove our main result. All the notation is as in section 2 and
in the statement of Theorem 1.4. Let K be an admissible field, let V ⊆ KN be
an L-dimensional vector space, and let v1, . . . ,vL be the basis for V guaranteed
by Theorems 1.1 and 1.2 (inequalities (2) and (3)). We will start by proving the
theorem for the case of just one polynomial P (X1, . . . , XN ) of degree M , in other
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words first suppose ZK = ZK(P ). Assume that P is not identically zero on V , so
V * ZK(P ). We will prove the existence of a point x ∈ V \ZK(P ) satisfying (10).

Let S1 be a finite subset of K such that |S1| > M , and let S = SL1 . Then, by
Theorem 4.2, there exists ξ ∈ S such that P (v(ξ)) 6= 0, where

(43) v(ξ) =
L∑
i=1

ξivi ∈ V.

By Lemma 2.1 combined with Theorems 1.1 and 1.2

(44) H(v(ξ)) ≤ h(v(ξ)) ≤ LδH(ξ)
L∏
i=1

h(vi) ≤ Lδe(1−δ)g(K)LCK(L)H(ξ)H(V ).

We now want to select the set S1 in a way that would minimize H(ξ); this choice
will depend on the nature of the field K. We will show that the upper bound on
H(ξ) is precisely the constant AK(L,M) as in (14). Then we can take x in the
statement of Theorem 1.4 to be v(ξ).

First assume that K is a number field with ωK ≤M . Then take

R = (2r1 |DK |)1/2d
M1/d,

and let S1 = SR(K), where SR(K) is as in (28). By Lemma 5.2

|SR(K)| > (2r1 |DK |)−1/2
Rd = M,

therefore |SR(K)| ≥M + 1. We now can estimate H(ξ). Since ξ ∈ S = SR(K)L,

Hv(ξ) ≤ 1 ∀ v -∞, Hv(ξ) ≤ Rdv ∀ v|∞,

therefore

(45) H(ξ) ≤ R = (2r1 |DK |)1/2d
M1/d.

Combining (44) with (45) produces (10).

Remark 7.1. Notice that in our choice of R = (2r1 |DK |)1/2d
M1/d in the argument

above it is essential to take M1/d: if we take a smaller power of M , then |SR(K)|
can be smaller than M + 1, in which case a polynomial PV could vanish identically
on SR(K)L. Indeed, as is discussed in [6], if S1 = {α1, ..., αM} ⊂ K and

P (X1, ..., XN ) =
N∑
i=1

M∏
j=1

(Xi − αj),

then for each x ∈ SN1 we have P (x) = 0.

Next suppose that K is an admissible function field of finite type q ≤ M . Let
Y be the smooth projective curve so that K = Fq(Y ), as in section 6. Then take
R = RK(M) as in (15), and let S1 = SR(K), where SR(K) is as in (38). By Lemma
6.2

|SR(K)| ≥ 2n(K)−1√
n(K) hK

(
R

n(K)− 1
−
√
n(K) hK

)n(K)−1

+ q − 1 = M + 1.

We now can estimate H(ξ). Since ξ ∈ S = SR(K)L,

Hv(ξ) = 1 ∀ v /∈MY , Hv(ξ) ≤ eRdv ∀ v ∈MY ,
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therefore

(46) H(ξ) ≤ eRK(M).

Combining (44) with (46) produces (10).

Remark 7.2. Another way of selecting the set S1 in case of a function field K of
finite type q ≤ M is by employing bounds on the number of elements of K of
bounded height as in [19]. Specifically, Corollary 1 of [19] with n = 2 and m = R
implies that there exists a constant T (K) such that the number of elements f ∈ K
with height h(f) ≤ eR is > T (K)q2R. If we pick

(47) R =
1

2 log q
log
(

M

T (K)

)
,

then the set

S1 = {f ∈ K : h(f) ≤ eR}

will have cardinality |S1| ≥ M + 1. Taking S = SL1 , and letting ξ ∈ S guarantees
that

H(ξ) ≤
L∏
i=1

h(ξi) ≤ eLR,

and so we can take AK(L,M) = eLR with R as in (47). It should be remarked
however that Thunder’s estimate in Corollary 1 of [19] is asymptotic, and so an
explicit value for the constant T (K) is not specified.

Now suppose that K is any other admissible field except for those discussed
above (i.e. K is either a number field with ωK > M , an admissible function field
of finite type q > M or of infinite type, or K = Q). Then K contains a set S1 of
cardinality at least M +1 such that for every ξ ∈ S1 and every v ∈M(K), |ξ|v = 1.
Let S = SL1 , and notice that for each ξ ∈ S, H(ξ) = 1. Combining this observation
with (44) produces (10).

We have so far proved Theorem 1.4 for the case when ZK is just a hypersurface
defined over K. We can now extend our argument to any finite union of varieties
ZK as in the statement of Theorem 1.4. Since V * ZK , V * ZK(Pi1, . . . , Piki

) for
all 1 ≤ i ≤ J , and so for each i at least one of the polynomials Pi1, . . . , Piki is not
identically zero on V , say it is Piji for some 1 ≤ ji ≤ ki. Clearly for each 1 ≤ i ≤ J ,
ZK(Pi1, . . . , Piki

) ⊆ ZK(Piji), and deg(Piji) = miji ≤Mi. Define

P (X1, . . . , XN ) =
J∏
i=1

Piji(X1, . . . , XN ),

so that V * ZK(P ) while ZK ⊆ ZK(P ). Then it is sufficient to construct a point
of bounded height x ∈ V \ZK(P ). Now notice that deg(P ) =

∑J
i=1miji ≤M and

apply our argument above for the case of just one polynomial. This completes the
proof of the theorem.
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8. Twisted height

In this section we remark that all the results of this paper extend to bounds on
twisted height of the point in question. Let us write KA for the ring of adeles of K,
and view K as a subfield of KA under the diagonal embedding (see [22] for details).
Let A ∈ GLN (KA) with local components Av ∈ GLN (Kv). The corresponding
twisted height on KN (as introduced by J. L. Thunder) is defined by

(48) HA(x) =

 ∏
v∈M(K)

Hv(Avx)

1/d

,

for all x ∈ KN . Given any finite extension E/K, KA can be viewed as a subring of
EA, and let us also write A for the element of GLN (EA) which coincides with A on
KN

A . The corresponding twisted height on EN extends the one on KN , hence HA

is a height on K. Notice also that the usual height H as defined above is simply
HI , where I is the identity element of GLN (KA) all of whose local components are
given by N ×N identity matrices.

For each element A ∈ GLN (KA), the height HA is comparable to the canonical
height H by means of certain dilation constants that, roughly speaking, indicate
by how much does a given automorphism A of KN

A ”distort” the corresponding
twisted height HA as compared to H. We will only need one of these constants.
Let Av = (avij)1≤i,j≤N ∈ GLN (Kv) be local components of A for each v ∈ M(K).
Then for all but finitely many places v ∈ M(K) the corresponding map Av is an
isometry; in fact, let MA(K) ⊂ M(K) be the finite (possibly empty) subset of
places v at which Av is not an isometry. For each v /∈ MA(K), define Cv(A) = 1,
and for each v ∈MA(K), let

(49) Cv(A) =
N∑
i=1

N∑
j=1

|avij |v,

and define

(50) C(A) =
∏

v∈M(K)

Cdv/d
v ,

which is a product of only a finite number of non-trivial terms. Clearly, in the case
when A = I is the identity element of GLN (KA), C(A) = 1. Then Proposition 4.1
of [13] states that

(51) HA(x) ≤ C(A)H(x),

for all x ∈ QN
. Now one can use (51) to restate Theorem 1.4 replacing H(x) by

HA(x) - the only change is the appearance of the dilation constant C(A) in the
upper bound.
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