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MULTIPLE POINT SESHADRI CONSTANTS AND

THE DIMENSION OF ADJOINT LINEAR SERIES

OLIVER I<ÜCHLE

ABSTRACT. In this note multiple point Seshadri constants measuring the positivity of
ample line bundles on complex projective varieties at a finite number of points are defined.
A lower bound which is asymptotically optimal for a large number of points is proven for
the constant at very general points. As an application estimates on the number of sections
in adjoint linear systems are deduced.

1 Introduction.

Starting with and motivated in part by the famous Fujita eonjeetures, there has been a
lot of activity reeently coneerning effectivity statelnents for aI11ple 01' adjoint Ene bundles
on smooth eomplex projeetive varieties, most prominently Siu's effeetive version of the
big Matsusaka Theorem and various effeetive nUlnerical criteria for freeness 01' very
anlpleness of adjoint linear systems due to Demailly, Ein-Lazarsfeld, Kollar, Siu and
others (cf. [De] and the referenees therein).

Here, less ambitiously, the eoneept of multiple point Seshadri eonstants is used to
obtain "effective" Riemann-Roch type estimates on the number of seetions in adjoint
linear series. Namely, for a nef and big divisor L on an n-dimensional smooth projeetive
variety Y with canonieal divisor K y, by R.iemann-Roeh and vanishing the number of
sections hO(y, Gy (1(y +rL)) for r > 0 is a polynomial of degree n with leading coefficient
~~ in r. Dur "effective" version here (cf. Corollary 3.4) is, that for any r 2: n 2 2: 9, the
estimate

holds. This, together with some variants concerning spanned line bundles, surfaces and
minimal n-folds of general type, follows from universallower bounds for multiple point
Seshadri constants at very general points which are defined as follows.
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Let L be a big and nef line bundle on an n-dünensional (irreducible) complex
projective variety X, and m an integer. For pairwise distinct Xl, ... ,Xm E X define the
multiple point Seshadri constant at Xl, ... ,Xm by

where the infimum is taken over all integral curves C with C n {Xl,.'. ,Xm } 1= 0.

Another way of saying this is that E(L, Xl, • .• ,X m ) is the maximum of all real
numbers E such that

m

H = f*L - E LEi
i=l

considered as an IR-divisor is nef on the the blow up f : Bl{Xl ,... ,xm } (X)---+X of X
along Xl, ... , X m , where Ei denote the exceptional divisors. Since nef divisors have
non-negative self-intersection, this immediately gives the upper bound

It turns out that for 1'"11 >> 0 and very general points this bound is asymptotically sharp.

Here by tJery gen eral paints we mean that (x I , ... , X m) is outside the union of
countably many proper snbvarieties of X x ... x X, ancl by gen eral that (x I , ... , X m) is
outside a Zariski closed subset.

Write for short E(L, n, m) for the multiple point Seshadri constant of L at m very
general points. Note that, by the open nature of ampleness, the multiple point Seshadri
constants at general and very general points are related in the following way: for any
J > 0 Olle has

E(L, Xl, ... ,Xm ) 2:: E(L, n, nl-) - J

for general points Xl, •.• ,Xm (cf. [EI(L, Lemlna 1.4] for the precise argument).

It is convenient to state our result in terms of the 1-point constant E(L, n, 1) at a
very general point of X. The main result of [EI(L] was to establish the lower bound
E(L, n, 1) 2:: l/n for arbitrary X. It is conjectured that even E(L, n, 1) 2:: 1 might be true.
Here we prove with an elementary argument:

Theorem 1.1. Let L be a nef and big line bundle on an n-dimensional complex
projective variety X and m 2:: 2 an integer. Then

. { 0 VL1)n-I}.E(L, n, m) <:: ffim E(L, n, 1), -2-'
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2 Proof of Theorem 1.1.

(2.1). The first part of the proof is along the lines of [EI(L]. To begin with we remark
that there is no lass of generality in supposing that X is in fact Sillooth. To see this
choose aresolution

f: Y-rX

of singularities and consider the pullback L' = f* L instead of L. Finally note that
E(L, f(Yl), .. . ,f(Ym)) = E(L', Yl, . .. ,Ym) for any Yl,· .. ,Ym such that f is an isomor
phism near the Yi.

(2.2). Suppose the Theoreln is not true. Let X m denote the ln-fald cartesian product
of X minus the diagonals. Then, as in [EI(L, (3.3), (3.4)], the fact that, for any real
number ß > 0, the set of pairs

m

{(C,x) I Ce X an integral curve, x = (Xl, ... ,Xm) E X m, ß· LmultXiC > (C.L)}
i=l

is parametrized by countably many irreducible qllasi-projective varieties implies that
there exist a 0 > 0 and a Zariski open U C )C m such that for all x = (Xl,' .. ,X m ) E U
there is an m-exceptional curve C x based at X] , ..• ,Xm , i.e. an integral curve satisfying

711 {12m}
(1 - 0) '"' Illllltx·Cx > max (L )' nrT;;' (L.Cx )'7:t I E , n, 1 VLn \fLn(m - l)n-1

Fix such a 0 > O. It then follows that there is an irreducible variety S and an irreducible
family C c X X S of integral curves tagether with a dominant quasi-finite morphism
9 = (91,···,9711) : S-rXm such that the fibre Cs c X of Cover sES is an m
exceptional Cllrve based at 9] (s), ... ,9711 (s).

Such a faIllily C will be called m-exceptional.

(2.3). Next we claim that there exists an integer m', 2 :::; rn' :::; m, and an m'-exceptional
family C' C X x S' of curves whose members C; pass through each of the 9i (3), 1 :::; i :::;
m', for every sES'.

Ta prove this start with the m-exceptional family C fram (2.2). First we can aSSllme
that, for sufficiently general sES, the curve Cs passes at least through two ofthe 9i(S),
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since otherwise we would obtain a contradiction to the main result of [EKL] which
bounds the 1-point constant.

Observe that C and the graphs r i of the gi are closed in X x S and therefore also
prS(ri n C), where PIS denotes the projection X x S-rS. Renumbering we then can
assume that p1'S(rj n C) = S for j = 1, ... , 1n' , in other words gj(s) E Cs for all sES
and such j 1 where 2 ~ m' ~ m by the above. Choosing an appropriate dense open
subset S" c S we can arrange gk(S) rt Cs for k = m ' + 1, ... ,m and all sES".

Now pick a subvariety S' C S" such that g' = (91, ... ,9m') : S' -rXm ' is quasi
finite. It remains to show that all curves of the resulting family C' = Clxxs1 are indeed
m'-exceptional. Eut this follows from the elementary observation that

(m'_1)n-I . {1 (m_1)n-l}
~-----';,.,....--> mln -

( ,)n - ')n' nm ... 111

for all postitive integers n and all 2 ::; m ' ::; m. The latter can be shown by minimizing

the real function f(a) = (a-~ln-l in the real intervall [2, m].

(2.4). We proceed by proving that m-exceptional families C with the property of (2.3)
do not exist. The idea is to find an m-exceptional curve of our faInily which intersects a
given divisor in X having high multiplicity at 1n -1 points of the curve properly, and use
the fact that in this case the products of the multiplicities at the points of intersection
give a lower bound for the local intersection numbers.

To this end consider for i = 1, ... ,m the functions

S l-+ multg;(s)C".

We claim that these have constant values ri on open dense subsets of S. This can be
proven e.g. by using the relative Samuel stratification (cf. [LeTe, Theorem (4.15)]) of
the morphism C-tS, which gives a finite partition of C into locally closed subsets on
which the relative Hilbert-Samuel functions are constant. Restricting this stratification
to the graphs ri C C then gives a partition of r i into locally closed subsets on which
the Hilbert-Samuel functions of the local rings OC

S1
g;(s) are constant, and this implies

that the multiplicities are also constant (cf. [Fu, §4.3]). The arguments in [LeTe, §4] in
fact show that S l-+ multg;(8)CS are Zariski upper-semicontinuous in S.

Therefore we can pick a general s' E S such that ri = multg;(",)C", ::; multgj (8)CS

for all i and sES. Assmne that Tl ::; '2 ::; . . . ::; Tm'

(2.5) . Recall that it is L;- +o(pn) conditioTIS to impose multiplicity at leat p at a giyen
n.

point, and that different points impose independent conditions; hence the Theorem
of Riemann-Roch shows that, for k >> 0, there exists a divisor D' E IkLI having
multiplicity at least

(1- 8) kW
y'm -1
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at 92(8'), ... ,9m(S').

(2.6). Finally put T:= 9-1(X,92(S'), ... ,gm{S')). Since gis quasi-finite and the 9i are
dominant, T is of dimension dim(91 (T)) = diln(X). Therefore the subfamily (CdtET
constists of m-exceptional curves having at least multiplicity ri at 9i(t) = 9i(8') for
i = 2, ... ,m, and their first base points 91 (t), t E T are dense in X. In particular, we
can find a t E T such that Ct ~ D'. But this gives a contradiction because of

, kW m {7n-l)kW m
k(L.Cd = D .Ct 2:: (I - 8) n L Ti 2:: (I - J) n L multgj(t)Ct

y'm - 1 i=2 m \Im - 1 i=l

which proves the Theorem.

3 Applications.

We start with a supplementary result concerning surfaces. In case X is a smooth pro
jective surface Ein and Lazarsfeld proved that E(A, x) 2:: 1 for an ample line bundle A
off a countable subset of X (cf. [ELD. From this one obtains easily:

Lemma 3.1. E(L, 2, m) 2:: 1 if and only iE L2 2: 7n.

Proof. (Ein-Lazarsfeld) Since we are only interested in very general points the arguments
given in [EL] in fact show that E(L, 2, 1) ~ 1 holds for any nef and big line bundle L
on a projective (possibly singular) surface. Therefore, after blowing up X along a very
general point via the map f x : X I --+X with exceptional divisor Ex the line bundle
Lx = j; L - Ex is again nef with L; = L 2 - 1. Iterating this procedure gives the desired
result. 0

Oue application of the concept of multiple point Seshadri constants is to provide a
fairly good estimate on the number of sections of adjoint linear series.

Proposition 3.2. Let L be a neE and big line bundle on a slnooth projective variety X
of dimension n ~ 2 and 7n 2:: 2 an integer. Then

hO(X, Ox(Kx + rL)) 2:: 7n

wbenever

{
12m }r > n . max , --, .

- E(L, n, 1) W y'Ln(m - l)n-l

Proof. Let f : Y~X be the blowing up of ..:\ along nl very general points Xl,' .. ,X m

with exceptional divisors EI, . .. ,Em . Since
m

H = j* L - €(L,n,m) LEi
i=1
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is nef and big if €(L, n, m)n < r:nn , the same halds far

( r - (L n ) ) rL + (L n ) (r L - t(L, n, m) f Ei)
€ ,n,7n € ,n,rn .

t=l

if r 2:: dL'~lm)' Then I(awamata-Viehweg vanishing gives

m

H 1 (X, Ox(Kx + rL) 0 I Xi (9 ... (!) I xm ) = H 1 (Y, Oy(l(y + 7'/* L - n L Ed) = 0
i=l

Ln
if r > f:(L,~,m)' ar r = dLl'~,m) and €(L, n, m)n < -;;;-. In ather words the linear series
IKx + rLI separates the points Xl, •• • ,X m undcr these conditions which are implied by
Theorem 1.1 and our assumption. In particular one obtains hO(X, Ox(l(x + rL)) 2::
m. D

Remark 3.3. Suppose L is a big line bundle on X which is spanned. Since L is
spanned, the complete linear series ILI induces a morphism <p : X ---+z C pN which is
generically finite because L is big. Therefore any curve through a sufficiently general
point is mapped by <p outo a curve in Z. Fixing such a pair x E G, we can choose a
hyperplane section H C Z through <p(x) meeting <p(G) properly, and this gives rise to
X E D = <p* H E ILI meeting G properly. Therefore L.G 2:: multxD . multxC 2:: multxC,
and this shows €( L, n, 1) 2:: 1 for spanned and big L.

Corollary 3.4. Let X be a smootb complex projective variety oE dimension n 2:: 2.

(1) Suppose L is nef, n 2:: 3 and r 2:: n 2
• Tllen

7 rnLn
hO(X Ox(Kx +rL)) > --- - 1., - 8 nn

(2) Suppose L is spanned and Ln 2:: (n2;1) n. Then

hO(X, Ox(Kx + (n + 1)L)) 2:: Ln + 1.

(3) Suppose L is nef and X is a surface. Then

Proof. (1) This follows directly from Proposition 3.2 and the bouud

y7;1
€(L, n, 1) ~ 1/n ~ -2-
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plus some elementary estimates. One has nn 2: (8n)n(8n-l)1-n for n 2: 3, and therefore
a first estimate hO(X, Ox(I(x + n 2L)) 2: 8n. Then one proves

if m 2: cn with a c 2: 8 by expanding (m~l )n-l. Now given r 2: n2 we can determine

the wanted m satisfying r:~n 2: (m_~)n-i as follows. VVe already know that m 2: 8n, so
we can choose m to be the largest integer satisfying

7 rnLn
--- > 1n.8 nn -

(2) This follows from Proposition 3.2 and Remark 3.3.

(3) This follows in the same spirit from Lenlma 3.1. 0

Remark 3.5. Let L be big and nef and X be smooth. According to Corollary 3.4 the
multiple point approach improves the estimate

r (n + s)hO(X, Ox(Kx +n(n + s)L)) :2: n

for the number of sections in adjoint linear series which was obtained in [EKL] using the
generation of s-jets at one very general point. However, for Ln and r in a certain range
it is possible to obtain better lower bounds for hO(.y, Ox(Kx + rL)) by interpolating
between the two methods. For example, if

{
12m }r > n + k . max --

- ( ) <::(L, n, 1)' yflJl' VLn(m - l)n-l '

then as above one proves that II{x + rLI generates k-jets at m very general points, in
particular

° r (n + k)h (X, Ox(Kx + rL)) 2: m" n

for such r.

Finally we state a variant of Corollary 3.4 which gives estimates of the dimension
of same linear series on varieties with mild singularities.

Proposition 3.6. Let X be an-dimensional normal projective variety with at most
log-terminal singulcu'ities, and r a positive integer such that r!(x is a nefand big Cartier
divisor (wbicb is the case e.g. iE X is a minimal n-fold of general type and index r).
Then, for a11 q > n 2

,
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Scetch 0/ prooj. (cf. also [EKL, (4.6)]) Let

f: Y-tX

be aresolution of singularities of X such that

K y + .ö == f* I(x + P

with a fractional divisor .ö supported on a divisor with normal crosslngs and P an
integral effective f-exceptional divisor.

Now I{y +.6. + (qr - l)f* I(x is numerically equivalent to an integral divisor, and
Slnce

E((qr - 1)/* I(x,n,m) = qr - 1E(f*(rI<x),n,m),
1~

a variant of Proposition 3.2 using vanishing for Q-divisors implies that

whenever

q1' - 1 ~ rn . max { ( I 1 )'. 2 '. m } .
Er \.x,n,l \f(r](x)n \f(rl(x)n(m _l)n-l

Then the claim follows as in the proof of Corollary 3.4. D
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