Complexity of Janet basis of a D-module

Alexander Chistov
Steklov Institute of Mathematics, Fontanka 27, St. Petersburg 191023, Russia
alch@pdmi.ras.ru
Dima Grigoriev
CNRS, IRMAR, Université de Rennes
Beaulieu, 35042, Rennes, France
dmitry.grigoryev@univ-rennes1.fr
http://perso.univ-rennes1.fr/dmitry.grigoryev

February 27, 2007

Abstract

We prove a double-exponential upper bound on the degree and on the complexity of constructing a Janet basis of a D-module. This generalizes a well known bound on the complexity of a Gröbner basis of a module over the algebra of polynomials.

Introduction

Let A be the Weyl algebra $F\left[X_{1}, \ldots, X_{n}, \frac{\partial}{\partial X_{1}}, \ldots, \frac{\partial}{\partial X_{n}}\right]$ (correspondingly, the algebra of differential operators $\left.F\left(X_{1}, \ldots, X_{n}\right)\left[\frac{\partial}{\partial X_{1}}, \ldots, \frac{\partial}{\partial X_{n}}\right]\right)$. Denote for brevity $D_{i}=\frac{\partial}{\partial X_{i}}, 1 \leq i \leq n$. Any A-module is called D-module. It is well known that an A-module which is a submodule of a free finitely generated A-module has a Janet basis. Historically, it was first introduced in [9]. In more recent times of developing computer algebra Janet bases were studied in [5], [14], [10]. Janet bases generalize Gröbner bases which were widely elaborated in the algebra of polynomials (see e. g.[3]). For Gröbner bases a double-exponential complexity bound was obtained in [12], [6] relying on [1] and which was made more precise (with a self-contained proof) in [4].

Surprisingly, no complexity bound on Janet bases was established so far; in the present paper we fill this gap and prove a double-exponential complexity bound. On the other hand, a double-exponential complexity lower bound on Gröbner bases [12], [15] provides by the same token a bound on Janet bases.

We are interested in the estimations for Janet bases of A-submodules of A^{l}. The Janet basis depends on the choice of the linear order on the monomials (we define them also for $l>1$). In this paper we consider the most general general linear orders on the monomials from A^{l}. They satisfy conditions (a) and (b) from Section 1 and are called admissible. We prove the following result.

THEOREM 1 For any admissible linear order on the monomials from A^{l} any A-submodule I of A^{l} generated by elements of degrees at most d (with respect
to the filtration in the corresponding algebra, see Section 1 and Section 9) has a Janet basis with the degrees and the number of its elements less than

$$
(d l)^{2^{O(n)}}
$$

We prove in detail this theorem for the case of the Weyl algebra A. The proof for the case of the algebra of differential operators is similar. It is sketched in Section 9. From Theorem 1 we get that the Hilbert function $H(I, m)$, see Section 1 , of the A-submodule from this theorem is stable for $m \geq(d l)^{2^{O(n)}}$ and the absolute values of all coefficients of the Hilbert polynomial of I are bounded from above by $(d l)^{2^{O(n)}}$, cf. e.g., [12]. This fact follows directly from (10), Lemma 12 from Appendix 1, Lemma 2 and Theorem 2. We mention that in [7] the similar bound was shown on the leading coefficient of the Hilbert polynomial.

Now we outline the plan for the proof of Theorem 1. The main tool in the proof is a homogenized Weyl algebra ${ }^{h} A$ (or correspondingly, a homogenized algebra of differential operators ${ }^{h} B$). It is introduced in Section 3 (correspondingly, Section 9$)$. The algebra ${ }^{h} A$ (respectively ${ }^{h} B$) is generated over the ground field F by $X_{0}, \ldots, X_{n}, D_{1}, \ldots, D_{n}$ (respectively over the field $F\left(X_{1}, \ldots, X_{n}\right)$ by $X_{0}, D_{1}, \ldots, D_{n}$). Here X_{0} is a new homogenizing variable. In the algebra ${ }^{h} A$ (respectively ${ }^{h} B$) relations (12) Section 3 (respectively (50) Section 9) hold for these generators in ${ }^{h} A$.

We define the homogenization ${ }^{h} I$ of the module I. It is a ${ }^{h} A$-submodule of ${ }^{h} A^{l}$. The main problem is to estimate the degrees of a system of generators of ${ }^{h} I$. These estimations are central in the paper. They are deduced from Theorem 2 Section 7. This theorem is devoted to the problem of solving systems of linear equations over the ring ${ }^{h} A$; we discuss it below in more detail.

The system of generators of ${ }^{h} I$ gives a system of generators of the graded $\operatorname{gr}(A)$-module $\operatorname{gr}(I)$ corresponding to I. But $\operatorname{gr}(A)$ is a polynomial ring. Hence using Lemma 12 Appendix 1 we get a double-exponential bound $(d l)^{2^{O(n)}}$ on the stabilization of the Hilbert function of $\operatorname{gr}(I)$ and the absolute values of the coefficients of the Hilbert polynomial of $\operatorname{gr}(I)$. Therefore, the similar bound holds for the stabilization of the Hilbert functions of I and the coefficients of the Hilbert polynomial of I, see Section 2.

But the Hilbert functions of the modules I and ${ }^{h} I$ coincide, see Section 3. Hence the last bound holds also for the stabilization of the Hilbert functions of ${ }^{h} I$ and the coefficients of the Hilbert polynomial of ${ }^{h} I$. In Section 5 we introduce the linear order on the monomials from ${ }^{h} A^{l}$ induced by the initial linear order on the monomials from A^{l} (the homogenizing variable X_{0} is the least possible in this ordering). Further, we define the Janet basis of ${ }^{h} I$ with respect to the induced linear order on the monomials. Such a basis can be obtained by the homogenization of the elements of a Janet basis of I with respect to the initial linear order, see Lemma 3.

The Hilbert functions of the module ${ }^{h} I$ and the monomial module (i.e., the module which has a system of generators consisting of monomials) $\operatorname{Hdt}\left({ }^{h} I\right)$ coincide, see Section 4. Let ${ }^{c} I$, see Section 4, be the module over the polynomial ring ${ }^{c} A=F\left[X_{0}, \ldots, X_{n}, D_{1}, \ldots, D_{n}\right]$ generated by all the monomials from $\operatorname{Hdt}\left({ }^{h} I\right)$ (they are considered now as elements of ${ }^{c} A$). Then obviously the Hilbert functions of the modules $\operatorname{Hdt}\left({ }^{h} I\right)$ and ${ }^{c} I$ coincide. Thus, we have the same as above
double-exponential estimation for the stabilization of the Hilbert functions of ${ }^{c} I$ and the coefficients of the Hilbert polynomial of ${ }^{c} I$. Now using Lemma 13 we get the estimation $(d l)^{2^{O(n)}}$ on the monomial system of generators of ${ }^{c} I$, hence also of $\operatorname{Hdt}\left({ }^{h} I\right)$. This gives the bound for the degrees of the elements of the Janet bases of ${ }^{h} I$ and hence also for the required Janet basis of I, and proves Theorem 1.

The problem of solving systems of linear equations over the homogenized algebra is central in this paper, see Theorem 2. It is studied in Sections 5-7. A similar problem over the Weyl algebra (without a homogenization) was considered in [7]. The principal idea is to try to extend the well known method due to G.Hermann [8] which was elaborated for the algebra of polynomials, to the homogenized Weyl algebra. There are two principal difficulties on this way. The first one is that in the method of G.Hermann the use of determinants is essential which one has to avoid dealing with non-commutative algebras. The second is that one needs a kind of the Noether normalization theorem in the considered situation. So it necessarily to choose the leading elements in the analog of the G.Hermann method with the least ord X_{0}, where X_{0} is a homogenizing variable, see Section 3.

The obtained bound on the degree of a Janet basis implies a similar bound on the complexity of its constructing. Indeed, by Corollary 1 (it is formulated for the case of Weyl algebra but the analogous corollary holds for the case of algebra of differential operators) one can compute the linear space of all the elements $z \in I$ of degrees bounded from above by $(d l)^{2^{O(n)}}$. Further, by Theorem 1 the module $\operatorname{Hdt}(I)$, see Section 1, is generated by all the elements $\operatorname{Hdt}(z)$ with $z \in I$ of degrees bounded from above by $(d l)^{2^{O(n)}}$. Hence one can compute a system of generators of $\operatorname{Hdt}(I)$ and a Janet basis of I solving linear systems over F of size bounded from above $(d l)^{2^{O(n)}}$ (just by the enumeration of all monomials of degrees at most $(d l)^{2^{O(n)}}$ which are possible generators of $\operatorname{Hdt}(I)$). If one needs to construct the reduced Janet basis it is sufficient to apply additionally Remark 1 Section 4.

For the sake of self-containedness in Appendix 1, see Lemma 12, we give a short proof of the double-exponential estimation for stabilization of the Hilbert function of a graded module over a homogeneous polynomial ring. A conversion of Lemma 12 also holds, see Appendix 1 Lemma 13. It is essential for us. The proof of Lemma 13 uses the classic description of the Hilbert function of a homogeneous ideal in $F\left[X_{0}, \ldots, X_{n}\right]$ via Macaulay constants b_{n+2}, \ldots, b_{1} and the constant b_{0} introduced in [4]. In Appendix 2 we give an independent and instructive proof of Proposition 1 which is similar to Lemma 13. In some sence Proposition 1 is even more strong than Lemma 13 since to apply it one does not need a bound for the stabilization of the Hilbert function. Of course, the reference to Proposition 1 can be used in place of Lemma 13 in our paper.

1 Definition of the Janet basis

Let $A=F\left[X_{1}, \ldots, X_{n}, D_{1}, \ldots, D_{n}\right], n \geq 1$, be a Weyl algebra over a field F of zero-characteristic. So A is defined by the following relations

$$
\begin{equation*}
X_{i} X_{j}=X_{j} X_{i}, D_{i} D_{j}=D_{j} D_{i}, D_{i} X_{i}-X_{i} D_{i}=1, X_{i} D_{j}=D_{j} X_{i}, \quad i \neq j \tag{1}
\end{equation*}
$$

By (1) any element $f \in A$ can be uniquely represented in the form

$$
\begin{equation*}
f=\sum_{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n} \geq 0} f_{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}} X_{1}^{i_{1}} \ldots X_{n}^{i_{n}} D_{1}^{j_{1}} \ldots D_{n}^{j_{n}} \tag{2}
\end{equation*}
$$

where all $f_{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}} \in F$ and only a finite number of $f_{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}}$ are nonzero. Denote for brevity $\mathbb{Z}_{+}=\{z \in \mathbb{Z}: z \geq 0\}$ to the set of all nonnegative integers and

$$
\begin{align*}
& i=\left(i_{1}, \ldots, i_{n}\right), \quad j=\left(j_{1}, \ldots, j_{n}\right), \quad f_{i, j}=f_{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}} \\
& X^{i}=X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}, \quad D^{j}=D_{1}^{j_{1}} \ldots D_{n}^{j_{n}}, \quad f=\sum_{i, j} f_{i, j} X^{i} D^{j} \tag{3}\\
& |i|=i_{1}+\ldots+i_{n}, \quad i+j=\left(i_{1}+j_{1}, \ldots, i_{n}+j_{n}\right) .
\end{align*}
$$

So $i, j \in \mathbb{Z}_{+}^{n}$ are multiindices. By definition the degree of f

$$
\operatorname{deg} f=\operatorname{deg}_{X_{1}, \ldots, X_{n}, D_{1}, \ldots, D_{n}} f=\max \left\{|i|+|j|: f_{i, j} \neq 0\right\}
$$

Let M be a left A-module given by its generators $m_{1}, \ldots, m_{l}, l \geq 0$, and relations

$$
\begin{equation*}
\sum_{1 \leq j \leq l} a_{i, j} m_{j}, \quad 1 \leq i \leq k \tag{4}
\end{equation*}
$$

where $k \geq 0$ and all $a_{i, j} \in A$. We assume that $\operatorname{deg} a_{i, j} \leq d$ for all i, j. By (4) we have the exact sequence

$$
\begin{equation*}
A^{k} \xrightarrow{i} A^{l} \xrightarrow{\pi} M \rightarrow 0 \tag{5}
\end{equation*}
$$

of left A-modules. Denote $I=i\left(A^{k}\right) \subset A^{l}$. If $l=1$ then I is a left ideal of A and $M=A / I$. In the general case I is generated by the elements

$$
\left(a_{i, 1}, \ldots, a_{i, l}\right) \in A^{l}, \quad 1 \leq i \leq k
$$

For an integer $m \geq 0$ put

$$
\begin{equation*}
A_{m}=\{a: \operatorname{deg} a \leq m\}, \quad M_{m}=\pi\left(A_{m}^{l}\right), \quad I_{m}=I \cap A_{m}^{l} \tag{6}
\end{equation*}
$$

So now A, M, I are filtered modules with filtrations $A_{m}, M_{m}, I_{m}, m \geq 0$, respectively and the sequence of homomorphisms of vector spaces

$$
0 \rightarrow I_{m} \rightarrow A_{m}^{l} \rightarrow M_{m} \rightarrow 0
$$

induced by (5) is exact for every $m \geq 0$. The Hilbert function $H(M, m)$ of the module M is defined by the equality

$$
H(M, m)=\operatorname{dim}_{F} M_{m}, \quad m \geq 0
$$

Each element of A^{l} can be uniquely represented as an F-linear combination of elements $e_{v, i, j}=\left(0, \ldots, 0, X^{i} D^{j}, 0, \ldots, 0\right)$, herewith $i, j \in \mathbb{Z}_{+}^{n}$ are multiindices, see (3), and the nonzero monomial $X^{i} D^{j}$ is at the position $v, 1 \leq v \leq l$. So every element $f \in A^{l}$ can be represented in the form

$$
\begin{equation*}
f=\sum_{v, i, j} f_{v, i, j} e_{v, i, j}, \quad f_{v, i, j} \in F \tag{7}
\end{equation*}
$$

The elements $e_{v, i, j}$ will be called monomials.
Consider a linear order $<$ on the set of all the monomials $e_{v, i, j}$ or which is the same on the set of triples $(v, i, j), 1 \leq v \leq l, i, j \in \mathbb{Z}_{+}^{n}$. If $f \neq 0$ put

$$
\begin{equation*}
o(f)=\max \left\{(v, i, j): f_{v, i, j} \neq 0\right\} \tag{8}
\end{equation*}
$$

see (7). Set

$$
o(0)=-\infty<o(f)
$$

for every $0 \neq f \in A$. Let us define the leading monomial of the element $0 \neq f \in A^{l}$ by the formula

$$
\operatorname{Hdt}(f)=f_{v, i, j} e_{v, i, j}
$$

where $o(f)=(v, i, j)$. Put $\operatorname{Hdt}(0)=0$. Hence $o(f-\operatorname{Hdt}(f))<o(f)$ if $f \neq 0$. For $f_{1}, f_{2} \in A^{l}$ if $o\left(f_{1}\right)<o\left(f_{2}\right)$ we shall write $f_{1}<f_{2}$. We shall require additionally that
(a) for all multiindices $i, j, i^{\prime}, j^{\prime}$ for all $1 \leq v \leq l$ if $i_{1} \leq i_{1}^{\prime}, \ldots, i_{n} \leq i_{n}^{\prime}$ and $j_{1} \leq j_{1}^{\prime}, \ldots, j_{n} \leq j_{n}^{\prime}$ then $(v, i, j) \leq\left(v, i^{\prime}, j^{\prime}\right)$.
(b) for all multiindices $i, j, i^{\prime}, j^{\prime}, i^{\prime \prime}, j^{\prime \prime}$ for all $1 \leq v, v^{\prime} \leq l$ if $(v, i, j)<\left(v^{\prime}, i^{\prime}, j^{\prime}\right)$ then $\left(v, i+i^{\prime \prime}, j+j^{\prime \prime}\right)<\left(v^{\prime}, i^{\prime}+i^{\prime \prime}, j^{\prime}+j^{\prime \prime}\right)$.

Conditions (a) and (b) imply that for all $f_{1}, f_{2} \in A^{l}$ for every nonzero $a \in A$ if $f_{1}<f_{2}$ then $a f_{1}<a f_{2}$, i.e., the considered linear order is compatible with the products. Any linear order on monomials $e_{v, i, j}$ satisfying (a) and (b) will be called admissible.

Set

$$
\operatorname{Hdt}(I)=\sum_{f \in I} A \operatorname{Hdt}(f)
$$

So $\operatorname{Hdt}(I)$ is an ideal of A. By definition the family f_{1}, \ldots, f_{m} of elements of I is a Janet basis of the module I if and only if

1) $\operatorname{Hdt}(I)=A \operatorname{Hdt}\left(f_{1}\right)+\ldots+A \operatorname{Hdt}\left(f_{m}\right)$, i.e., the submodule of A^{l} generated by $\operatorname{Hdt}\left(f_{1}\right), \ldots, \operatorname{Hdt}\left(f_{m}\right)$ coincides with $\operatorname{Hdt}(I)$.

Further, the Janet basis f_{1}, \ldots, f_{m} of I is reduced if and only if the following conditions hold.
2) f_{1}, \ldots, f_{m} does not contain a smaller Janet basis of I,
3) $\operatorname{Hdt}\left(f_{1}\right)>\ldots>\operatorname{Hdt}\left(f_{m}\right)$.
4) the coefficient from F of every monomial $\operatorname{Hdt}\left(f_{v}\right), 1 \leq v \leq l$, is 1 .
5) Let $f_{\alpha}=\sum_{v, i, j} f_{\alpha, v, i, j} e_{v, i, j}$ be representation (2) for $f_{\alpha}, 1 \leq \alpha \leq m$. Then for all $1 \leq \alpha<\beta \leq m$ for all $1 \leq v \leq l$ and multiindices i, j the monomial $f_{\alpha, v, i, j} e_{v, i, j} \notin \operatorname{Hdt}\left(A f_{\beta} \backslash\{0\}\right)$.

Since the ring A is Noetherian for every considered I there exists a Janet basis. Further the reduced Janet basis of I is uniquely defined.

2 The graded module corresponding to a D-module

Put $A_{v}=I_{v}=M_{v}=0$ for $v<0$ and

$$
\operatorname{gr}(A)=\oplus_{m \geq 0} A_{m} / A_{m-1}, \operatorname{gr}(I)=\oplus_{m \geq 0} I_{m} / I_{m-1}, \operatorname{gr}(M)=\oplus_{m \geq 0} M_{m} / M_{m-1}
$$

The structure of the algebra on A induces the structure of a graded algebra on $\operatorname{gr}(A)$. So we have $\operatorname{gr}(A)=F\left[X_{1}, \ldots, X_{n}, D_{1}, \ldots, D_{n}\right]$ is an algebra of polynomials with respect to the variables $X_{1}, \ldots, X_{n}, D_{1}, \ldots, D_{n}$. Further, $\operatorname{gr}(I)$ and $\operatorname{gr}(M)$ are graded $\operatorname{gr}(A)$-modules. From (6) we get the exact sequences

$$
\begin{equation*}
0 \rightarrow I_{m} / I_{m-1} \rightarrow\left(A_{m} / A_{m-1}\right)^{l} \rightarrow M_{m} / M_{m-1} \rightarrow 0, \quad m \geq 0 \tag{9}
\end{equation*}
$$

The Hilbert function of the module $\operatorname{gr}(M)$ is defined as follows

$$
H(\operatorname{gr}(M), m)=\operatorname{dim}_{F} M_{m} / M_{m-1}, \quad m \geq 0
$$

Obviously

$$
\begin{equation*}
H(M, m)=\sum_{0 \leq v \leq m} H(\operatorname{gr}(M), v), \quad H(\operatorname{gr}(M), m)=H(M, m)-H(M, m-1) \tag{10}
\end{equation*}
$$

for every $m \geq 0$.
Denote for an arbitrary $a \in M$ by $\operatorname{gr}(a) \in \operatorname{gr}(M)$ the image of a in $\operatorname{gr}(M)$.
LEMMA 1 Assume that b_{1}, \ldots, b_{s} is a system of generators of I. Let $\nu_{i}=$ $\operatorname{deg} b_{i}, 1 \leq i \leq s$. Suppose that for every $m \geq 0$

$$
\begin{equation*}
I_{m}=\left\{\sum_{1 \leq i \leq \mu} c_{i} b_{i}: c_{i} \in A, \quad \operatorname{deg} c_{i} \leq m-\nu_{i}, \quad 1 \leq i \leq s\right\} \tag{11}
\end{equation*}
$$

Then $\operatorname{gr}\left(b_{1}\right), \ldots, \operatorname{gr}\left(b_{s}\right)$ is a system of generators of the $\operatorname{gr}(A)$-module $\operatorname{gr}(I)$.
PROOF This is straightforward.
So it is sufficient to construct a system of generators b_{1}, \ldots, b_{s} of I satisfying (11).

3 Homogenization of the Weyl algebra

Let X_{0} be a new variable. Consider the algebra ${ }^{h} A=F\left[X_{0}, X_{1}, \ldots, X_{n}, D_{1}\right.$, $\left.\ldots, D_{n}\right]$ given by the relations

$$
\begin{align*}
& X_{i} X_{j}=X_{j} X_{i}, D_{i} D_{j}=D_{j} D_{i}, \quad \text { for all } i, j, \\
& D_{i} X_{i}-X_{i} D_{i}=X_{0}^{2}, 1 \leq i \leq n, \quad X_{i} D_{j}=D_{j} X_{i} \quad \text { for all } \quad i \neq j . \tag{12}
\end{align*}
$$

The algebra ${ }^{h} A$ is Noetherian similarly to the Weyl algebra A. By (12) an element $f \in{ }^{h} A$ can be uniquely represented in the form

$$
\begin{equation*}
f=\sum_{i_{0}, i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n} \geq 0} f_{i_{0}, \ldots, i_{n}, j_{1}, \ldots, j_{n}} X_{0}^{i_{0}} \ldots X_{n}^{i_{n}} D_{1}^{j_{1}} \ldots D_{n}^{j_{n}} \tag{13}
\end{equation*}
$$

where all $f_{i_{0}, \ldots, i_{n}, j_{1}, \ldots, j_{n}} \in F$ and only a finite number of $f_{i_{0}, \ldots, i_{n}, j_{1}, \ldots, j_{n}}$ are nonzero. Let i, j be multiindices, see (3). Denote for brevity

$$
\begin{align*}
& i=\left(i_{1}, \ldots, i_{n}\right), \quad j=\left(j_{1}, \ldots, j_{n}\right), \quad f_{i_{0}, i, j}=f_{i_{0}, \ldots, i_{n}, j_{1}, \ldots, j_{n}} \\
& f=\sum_{i_{0}, i, j} f_{i_{0}, i, j} X_{0}^{i_{0}} X^{i} D^{j} . \tag{14}
\end{align*}
$$

By definition the degrees of f

$$
\begin{aligned}
& \operatorname{deg} f=\operatorname{deg}_{X_{0}, \ldots, X_{n}, D_{1}, \ldots, D_{n}} f=\max \left\{i_{0}+|i|+|j|: f_{i_{0}, i, j} \neq 0\right\}, \\
& \operatorname{deg}_{D_{1}, \ldots, D_{n}} f=\max \left\{|j|: f_{i_{0}, i, j} \neq 0\right\}, \\
& \operatorname{deg}_{D_{\alpha}} f=\max \left\{j_{\alpha}: f_{i_{0}, i, j} \neq 0\right\}, \quad 1 \leq \alpha \leq n \\
& \operatorname{deg}_{X_{\alpha}} f=\max \left\{i_{\alpha}: f_{i_{0}, i, j} \neq 0\right\}, \quad 1 \leq \alpha \leq n
\end{aligned}
$$

Set ord $0=\operatorname{ord}_{X_{0}} 0=+\infty$. If $0 \neq f \in{ }^{h} A$ then put

$$
\begin{equation*}
\operatorname{ord} f=\operatorname{ord}_{X_{0}} f=\mu \quad \text { if and only if } \quad f \in X_{0}^{\mu}\left({ }^{h} A\right) \backslash X_{0}^{\mu+1}\left({ }^{h} A\right), \quad \mu \geq 0 . \tag{15}
\end{equation*}
$$

For every $z=\left(z_{1}, \ldots, z_{l}\right) \in{ }^{h} A^{l}$ put

$$
\operatorname{ord} z=\min _{1 \leq i \leq l}\left\{\operatorname{ord} z_{i}\right\}, \quad \operatorname{deg} z=\max _{1 \leq i \leq l}\left\{\operatorname{deg} z_{i}\right\} .
$$

Similarly one defines ord b and $\operatorname{deg} b$ for an arbitrary $(k \times l)$-matrix b with coefficients from ${ }^{h} A$. More precisely, one consider here b as a vector with $k l$ entries.

The element $f \in{ }^{h} A$ is homogeneous if and only if $f_{i_{0}, i, j} \neq 0$ implies $i_{0}+|i|+$ $|j|=\operatorname{deg} f$, i.e., if and only if f is a sum of monomials of the same degree $\operatorname{deg} f$. The homogeneous degree of a nonzero homogeneous element f is its degree. The homogeneous degree of 0 is not defined (0 belongs to all the homogeneous components of ${ }^{h} A$, see below).

The m-th homogeneous component of ${ }^{h} A$ is the F-linear space

$$
\left({ }^{h} A\right)_{m}=\left\{z \in{ }^{h} A: z \text { is homogeneous } \& \operatorname{deg} z=m \text { or } z=0\right\}
$$

for every integer m. Now ${ }^{h} A$ is a graded ring with respect to the homogeneous degree. By definition the ring ${ }^{h} A$ is a homogenization of the Weyl algebra A.

We shall consider the category of finitely generated graded modules G over the ring ${ }^{h} A$. Such a module $G=\oplus_{m \geq m_{0}} G_{m}$ is a direct sum of its homogeneous components G_{m}, where m, m_{0}. are integers. Every G_{m} is a finite dimensional F-linear space and $\left({ }^{h} A\right)_{p} G_{m} \subset G_{p+m}$ for all integers p, m. If G and G^{\prime} are two finitely generated graded ${ }^{h} A$-modules then $\varphi: G \rightarrow G^{\prime}$ is a morphism (of degree 0) of the graded modules if and only if φ is a morphism of ${ }^{h} A$-modules and $\varphi\left(G_{m}\right) \subset G_{m}^{\prime}$ for every integer m.

The element $z \in{ }^{h} A$ (respectively $z \in A$) is called to be the term if and only if $z=\lambda z_{1} \cdot \ldots \cdot z_{\nu}$ for some $0 \neq \lambda \in F$, integer $\nu \geq 0$ and $z_{w} \in$ $\left\{X_{0}, \ldots, X_{n}, D_{1}, \ldots, D_{n}\right\}$ (respectively $z_{w} \in\left\{X_{1}, \ldots, X_{n}, D_{1}, \ldots, D_{n}\right\}$), $1 \leq$ $w \leq \nu$.

Let $z=\sum_{j} z_{j} \in A$ be an arbitrary element of the Weyl algebra A represented as a sum of terms z_{j} and $\operatorname{deg} z=\max _{j} \operatorname{deg} z_{j}$. One can take here, for example, representation (3) for z. Then we define the homogenization ${ }^{h} z \in{ }^{h} A$ by the formula

$$
{ }^{h_{z}}=\sum_{j} z_{j} X_{0}^{\operatorname{deg} z-\operatorname{deg} z_{j}} .
$$

By (1), (12) the right part of the last equality does not depend on the chosen representation of z as a sum of terms. Hence ${ }^{h} z$ is defined correctly. If $z \in{ }^{h} A$ then ${ }^{a} z \in A$ is obtained by substituting $X_{0}=1$ in z. Hence for every $z \in A$ we have ${ }^{a h} z=z$, and for every $z \in{ }^{h} A$ the element $z={ }^{h a_{z}} X_{0}^{\mu}$, where $\mu=\operatorname{ord} z$.

For an element $z=\left(z_{1}, \ldots, z_{l}\right) \in A^{l}$ put $\operatorname{deg} z=\max _{1 \leq i \leq l}\left\{\operatorname{deg} z_{i}\right\}$ and

$$
h_{z}=\left({ }^{h_{1}} X_{0}^{\operatorname{deg} z-\operatorname{deg} z_{1}}, \ldots,{ }^{h_{z}} X_{0}^{\operatorname{deg} z-\operatorname{deg} z_{l}}\right) \in{ }^{h} A^{l} .
$$

Similarly one defines $\operatorname{deg} a$ and the homogenization ${ }^{h} a=\left(a_{i, j}\right)_{1 \leq i \leq k, 1 \leq j \leq l}$ for an arbitrary $k \times l-$ matrix a with coefficients from A. More precisely, one consider here a as a vector with $k l$ entries. Hence if $b=\left(b_{i, j}\right)_{1 \leq i \leq k, 1 \leq j \leq l}={ }^{h} a$ then $b_{i, j}={ }^{h} a_{i, j} X_{0}^{\operatorname{deg} a-\operatorname{deg} a_{i, j}}$ for all i, j.

The m-th homogeneous component of ${ }^{h} A^{l}$ is

$$
\left({ }^{h} A^{l}\right)_{m}=\left\{{ }^{h} z: z \in A^{l} \& \operatorname{deg} z=m \text { or } z=0\right\}
$$

For an F-linear subspace $X \subset A^{l}$ put ${ }^{h} X$ to be the least linear subspace of ${ }^{h} A^{l}$ containing the set $\left\{{ }^{h} z: z \in X\right\}$. If X is a (finitely generated) A-submodule of A^{l} then ${ }^{h} X$ is a (finitely generated) graded submodule of ${ }^{h} A^{l}$. The graduation on ${ }^{h} X$ is induced by the one of ${ }^{h} A^{l}$.

For an element $z=\left(z_{1}, \ldots, z_{l}\right) \in{ }^{h} A^{l}$ put ${ }^{a} z=\left({ }^{a} z_{1}, \ldots,{ }^{a} z_{l}\right) \in A^{l}$. For a subset $X \subset{ }^{h} A^{l}$ put ${ }^{a} X=\left\{{ }^{a} z: z \in X\right\} \subset A^{l}$. If X is a F-linear space then ${ }^{a} X$ is also a F-linear space. If X is a finitely generated graded submodule of ${ }^{h} A^{l}$ then ${ }^{a} X$ is finitely generated submodule of A^{l}.

Now ${ }^{h} I$ is a graded submodule of ${ }^{h} A^{l}$. Further, ${ }^{a h} I=I$. Let $\left({ }^{h} I\right)_{m}$ be the m-th homogeneous component of ${ }^{h} I$. Then

$$
\begin{align*}
& { }^{h}\left(I_{m}\right)=\oplus_{0 \leq j \leq m}\left({ }^{h} I\right)_{j}, \quad m \geq 0, \tag{16}\\
& { }^{a}\left(\left({ }^{h} I\right)_{m}\right)=I_{m}, \quad m \geq 0 . \tag{17}
\end{align*}
$$

and (17) induces the isomorphism $\iota:\left({ }^{h} I\right)_{m} \rightarrow I_{m}$. Set ${ }^{h} M={ }^{h} A^{l} /{ }^{h} I$. Hence ${ }^{h} M$ is a graded ${ }^{h} A$-module and we have the exact sequence

$$
\begin{equation*}
0 \rightarrow{ }^{h} I \rightarrow{ }^{h} A^{l} \rightarrow{ }^{h} M \rightarrow 0 \tag{18}
\end{equation*}
$$

The m-th homogeneous component $\left({ }^{h} M\right)_{m}$ of ${ }^{h} M$

$$
\begin{equation*}
\left({ }^{h} M\right)_{m}=\left({ }^{h} A^{l}\right)_{m} /\left({ }^{h} I\right)_{m} \simeq A_{m}^{l} / I_{m} \tag{19}
\end{equation*}
$$

by the isomorphism ι. We have the exact sequences

$$
\begin{equation*}
0 \rightarrow\left({ }^{h} I\right)_{m} \rightarrow\left({ }^{h} A^{l}\right)_{m} \rightarrow\left({ }^{h} M\right)_{m} \rightarrow 0, \quad m \geq 0 \tag{20}
\end{equation*}
$$

By definition the Hilbert function of the module ${ }^{h} M$ is

$$
H\left({ }^{h} M, m\right)=\operatorname{dim}_{F}\left({ }^{h} M\right)_{m}, \quad m \geq 0
$$

By (19) we have $H(M, m)=H\left({ }^{h} M, m\right)$ for every $m \geq 0$, i.e., the Hilbert functions of M and ${ }^{h} M$ coincide.

LEMMA 2 Let b_{1}, \ldots, b_{s} be a system of homogeneous generators of the ${ }^{h} A$ module ${ }^{h} I$. Then

$$
\operatorname{gr}\left({ }^{a} b_{1}\right), \ldots, \operatorname{gr}\left({ }^{a} b_{s}\right) \in \operatorname{gr}(A)^{l}
$$

is a system of generators of $\operatorname{gr}(A)$-module $\operatorname{gr}(I)$.
PROOF By (17) ${ }^{a}\left(\left({ }^{h} I\right)_{m}\right)=I_{m}$. Now the required assertion follows from Lemma 1. The lemma is proved.

4 The Janet bases of a module and of its homogenization

Each element of ${ }^{h} A^{l}$ can be uniquely represented as an F-linear combination of elements $e_{v, i_{0}, i, j}=\left(0, \ldots, 0, X_{0}^{i_{0}} X^{i} D^{j}, 0, \ldots, 0\right)$, herewith $0 \leq i_{0} \in \mathbb{Z}, i, j \in \mathbb{Z}_{+}^{n}$ are multiindices, see (3), and the nonzero monomial $X_{0}^{i_{0}} X^{i} D^{j}$ is at the position $v, 1 \leq v \leq l$. So every element $f \in{ }^{h} A^{l}$ can be represented in the form

$$
\begin{equation*}
f=\sum_{v, i_{0}, i, j} f_{v, i_{0}, i, j} e_{v, i_{0}, i, j}, \quad f_{v, i_{0}, i, j} \in F \tag{21}
\end{equation*}
$$

and only a finite number of $f_{v, i_{0}, i, j}$ are nonzero. The elements $e_{v, i_{0}, i, j}$ will be called monomials.

Let us replace everywhere in Section 1 after the definition of the Hilbert function the ring A, the monomials $e_{v, i, j}$, the multiindices $i, i^{\prime}, i^{\prime \prime}$, triples $(v, i, j),\left(v, i^{\prime}, j^{\prime}\right)$, the module I and so on by the ring ${ }^{h} A$, monomials $e_{v, i_{0}, i, j}$, the pairs $\left(i_{0}, i\right),\left(i_{0}^{\prime}, i^{\prime}\right),\left(i_{0}^{\prime \prime}, i^{\prime \prime}\right)$ (they are used without parentheses), quadruples $\left(v, i_{0}, i, j\right),\left(v, i_{0}^{\prime}, i^{\prime}, j^{\prime}\right)$, the homogenization ${ }^{h} I$ and so on respectively. Thus, we get the definitions of $o(f), \operatorname{Hdt}(f)$ for $f \in{ }^{h} A^{l}$, new conditions (a) and (b) which define admissible linear order on the monomials of ${ }^{h} A^{l}$, new conditions 1)-5), the definitions of the Janet basis and reduced Janet basis of ${ }^{h} I$. For example, the new conditions (a) and (b) are
(a) for all indices i_{0}, i_{0}^{\prime}, all multiindices $i, j, i^{\prime}, j^{\prime}$ for all $1 \leq v \leq l$ if $i_{0} \leq i_{0}^{\prime}$, $i_{1} \leq i_{1}^{\prime}, \ldots, i_{n} \leq i_{n}^{\prime}$ and $j_{1} \leq j_{1}^{\prime}, \ldots, j_{n} \leq j_{n}^{\prime}$ then $\left(v, i_{0}, i, j\right) \leq\left(v, i_{0}^{\prime}, i^{\prime}, j^{\prime}\right)$.
(b) for all indices $i_{0}, i_{0}^{\prime}, i_{0}^{\prime \prime}$, all multiindices $i, j, i^{\prime}, j^{\prime}, i^{\prime \prime}, j^{\prime \prime}$ for all $1 \leq v, v^{\prime} \leq l$ if $\left(v, i_{0}, i, j\right)<\left(v^{\prime}, i_{0}^{\prime}, i^{\prime}, j^{\prime}\right)$ then $\left(v, i_{0}+i_{0}^{\prime \prime}, i+i^{\prime \prime}, j+j^{\prime \prime}\right)<\left(v^{\prime}, i_{0}^{\prime}+i_{0}^{\prime \prime}, i^{\prime}+\right.$ $\left.i^{\prime \prime}, j^{\prime}+j^{\prime \prime}\right)$.

The Janet basis of ${ }^{h} I$ is homogeneous if and only if it consists of homogeneous elements from ${ }^{h} A^{l}$.

Let $<$ be an admissible linear order on the monomials from A^{l}, or which is the same, on the triples (v, i, j), see Section 1 . So $<$ satisfies conditions (a) and (b). Let us define the linear order on the monomials $e_{v, i_{0}, i, j}$ or, which is the same, on the quadruples $\left(v, i_{0}, i, j\right)$. This linear order is induced by $<$ on the triples (v, i, j) and will be denoted again by $<$. Namely, for two quadruples $\left(v, i_{0}, i, j\right)$ and $\left(v^{\prime}, i_{0}^{\prime}, i^{\prime}, j^{\prime}\right)$ put $\left(v, i_{0}, i, j\right)<\left(v^{\prime}, i_{0}^{\prime}, i^{\prime}, j^{\prime}\right)$ if and only if $(v, i, j)<\left(v^{\prime}, i^{\prime}, j^{\prime}\right)$, or $(v, i, j)=\left(v^{\prime}, i^{\prime}, j^{\prime}\right)$ but $i_{0}<i_{0}^{\prime}$. Notice that this induced linear order satisfies conditions (a) and (b) (in the new sense).

REMARK 1 If f_{1}, \ldots, f_{m} is a Janet basis of I (respectively homogeneous Janet basis of ${ }^{h}$ I) satisfying 1)-4) then there are the unique $c_{\alpha, \beta} \in A$ (respectively $\left.c_{\alpha, \beta} \in{ }^{h} A\right), 1 \leq \alpha<\beta \leq m$, such that

$$
f_{\alpha}+\sum_{\alpha<\beta \leq m} c_{\alpha, \beta} f_{\beta}, \quad 1 \leq \alpha \leq m
$$

is a reduced Janet basis of I (respectively reduced homogeneous Janet basis of $\left.{ }^{h} I\right), c f$. [3].

LEMMA 3 Let f_{1}, \ldots, f_{m} be a (reduced) Janet basis of I with respect to the linear order $<$. Then ${ }^{h} f_{1}, \ldots,{ }^{h} f_{m}$ is a (reduced) homogeneous Janet basis of the module ${ }^{h} I$ with respect to the induced linear order $<$. Conversely, let g_{1}, \ldots, g_{m} be a (reduced) homogeneous Janet basis of the module ${ }^{h} I$ with respect to the induced linear order $<$. Then ${ }^{a} g_{1}, \ldots,{ }^{a} g_{m}$ is a (reduced) Janet basis of I with respect to the linear order $<$.

PROOF This follows immediately from the definitions.
Let $f \in{ }^{h} A^{l}$ and the module ${ }^{h} I$ be as above. Then there is the unique element $g \in{ }^{h} A^{l}$ such that

$$
g=\sum_{v, i_{0}, i, j} g_{v, i_{0}, i, j} e_{v, i_{0}, i, j}, \quad g_{v, i_{0}, i, j} \in F
$$

$f-g \in{ }^{h} I$ and if $g_{v, i_{0}, i, j} \neq 0$ then $e_{v, i_{0}, i, j} \notin \operatorname{Hdt}\left({ }^{h} I\right)$. The element g is called the normal form of f with respect to the module ${ }^{h} I$. We shall denote $g=\operatorname{nf}\left({ }^{h} I, f\right)$. Obviously $\operatorname{nf}\left({ }^{h} I,\left({ }^{h} A^{l}\right)_{m}\right) \subset\left({ }^{h} A^{l}\right)_{m}$ is a linear subspace and

$$
\operatorname{nf}\left({ }^{h} I,\left({ }^{h} A^{l}\right)_{m}\right)=\operatorname{nf}\left(\operatorname{Hdt}\left({ }^{h} I\right),\left({ }^{h} A^{l}\right)_{m}\right)
$$

for every $m \geq 0$. Hence the Hilbert functions

$$
H\left({ }^{h} A^{l} /{ }^{h} I, m\right)=H\left({ }^{h} A^{l} / \operatorname{Hdt}\left({ }^{h} I\right), m\right), \quad m \geq 0
$$

coincide (the definition of these Hilbert functions, see in Section 3). Therefore, see Section 3, also the Hilbert functions

$$
H(I, m)=H\left({ }^{h} I, m\right)=H\left(\operatorname{Hdt}\left({ }^{h} I\right), m\right), \quad m \geq 0
$$

are equal. But $\operatorname{Hdt}\left({ }^{h} I\right)$ is a monomial ideal, i.e., it is generated by the monomials $\operatorname{Hdt}(f), f \in{ }^{h} I$. Let ${ }^{c} A=F\left[X_{0}, \ldots, X_{n}, D_{1}, \ldots, D_{n}\right]$ be the polynomial ring in the variables $X_{0}, \ldots, X_{n}, D_{1}, \ldots, D_{n}$. Each monomial $e_{v, i_{0}, i, j}$ can be considered also as an element of ${ }^{c} A^{l}$. Denote by ${ }^{c} I \subset^{c} A^{l}$ the graded submodule of ${ }^{c} A^{l}$ generated by all the monomials $e_{v, i_{0}, i, j}$ such that there is $0 \neq f \in{ }^{h} I$ with $o(f)=\left(v, i_{0}, i, j\right)$. The Hilbert function

$$
H\left({ }^{c} I, m\right)=\operatorname{dim}_{F}\left\{\left(z_{1}, \ldots, z_{l}\right) \in{ }^{c} I: \forall i\left(\operatorname{deg} z_{i}=m \quad \text { or } \quad z_{i}=0\right)\right\}
$$

Since the ideals ${ }^{c} I$ and $\operatorname{Hdt}\left({ }^{h} I\right)$ are generated by the same monomials their Hilbert functions

$$
H\left(\operatorname{Hdt}\left({ }^{h} I\right), m\right)=H\left({ }^{c} I, m\right), \quad m \geq 0
$$

coincide. Thus, we have

$$
\begin{equation*}
H(I, m)=H\left({ }^{c} I, m\right), \quad m \geq 0 \tag{22}
\end{equation*}
$$

5 Bound on the kernel of a matrix over the homogenized Weyl algebra

LEMMA 4 Let $k=l-1$ and $l \geq 1$ be integers. Let $b=\left(b_{i, j}\right)_{1 \leq i \leq k, 1 \leq j \leq l}$ be a matrix where $b_{i, j} \in{ }^{h} A$ are homogeneous elements for all i, j. Let $\operatorname{deg} b_{i, j}<d$,
$d \geq 1$, for all i, j. Assume that there are integers $d_{j} \geq 0,1 \leq i \leq k$, and $d_{i}^{\prime} \geq 0$, $1 \leq j \leq l$, such that

$$
\begin{equation*}
\operatorname{deg} b_{i, j}=d_{i}-d_{j}^{\prime} \tag{23}
\end{equation*}
$$

for all nonzero $b_{i, j}$, and additionally $\min _{1 \leq j \leq l}\left\{d_{j}^{\prime}\right\}=0$ (hence $d_{i}<d$, $d_{j}^{\prime}<d$ for all $i, j), d \geq 1$. Then there are homogeneous elements $z_{1}, \ldots, z_{l} \in{ }^{h} A$ such that $\left(z_{1}, \ldots, z_{l}\right) \neq(0, \ldots, 0)$,

$$
\begin{equation*}
\sum_{1 \leq j \leq l} b_{i, j} z_{j}=0, \quad 1 \leq i \leq l-1 \tag{24}
\end{equation*}
$$

all nonzero $b_{i, j} z_{j}$ have the same degree depending only on i and

$$
\begin{equation*}
\operatorname{deg} z_{j} \leq(2 n+3) l d, \quad 1 \leq j \leq l \tag{25}
\end{equation*}
$$

Besides that, if all $b_{i, j}$ do not depend on X_{n} (i.e., they can be represented as sums of monomials which do not contain X_{n}) then one can choose also z_{1}, \ldots, z_{l} satisfying additionally the same property. Finally, dividing by an appropriate power of X_{0} one can assume without loss of generality that $\min \left\{\operatorname{ord} z_{i}: 1 \leq\right.$ $i \leq l\}=0$.

PROOF We shall assume without loss of generality that $l \geq 2$. At first suppose that that $\operatorname{deg} b_{i, j}=\operatorname{deg} b$ for all nonzero $b_{i, j}$. Consider the linear mapping

$$
\begin{align*}
& \left({ }^{h} A\right)_{m-\operatorname{deg} b}^{l} \longrightarrow\left({ }^{h} A\right)_{m}^{l-1} \\
& \left(z_{1}, \ldots, z_{l}\right) \mapsto\left(\sum_{1 \leq j \leq l} b_{i, j} z_{j}\right)_{1 \leq i \leq l-1} \tag{26}
\end{align*}
$$

If

$$
\begin{equation*}
l\binom{m-\operatorname{deg} b+2 n}{2 n}>(l-1)\binom{m+2 n}{2 n} \tag{27}
\end{equation*}
$$

then the kernel of (26) is nonzero. But (27) holds if

$$
\begin{equation*}
\left(1+\frac{\operatorname{deg} b}{m+2 n-\operatorname{deg} b}\right)\left(1+\frac{\operatorname{deg} b}{m+2 n-1-\operatorname{deg} b}\right) \ldots\left(1+\frac{\operatorname{deg} b}{m-\operatorname{deg} b}\right)<\frac{l}{l-1} \tag{28}
\end{equation*}
$$

Further, (28) is true if $(1+\operatorname{deg} b /(m-\operatorname{deg} b))^{2 n}<l /(l-1)$. The last inequality follows from $m \geq(2 n+1) \operatorname{deg} b / \log (l /(l-1))$. Hence also from $m \geq(2 n+$ $1) l \operatorname{deg} b$. Notice that $(2 n+2) l d \geq 1+(2 n+1) l \operatorname{deg} b$. Thus, the existence of z_{1}, \ldots, z_{l} is proved, and even more all nonzero $b_{i, j} z_{j}$ have the same degree which does not depend on i, j. Notice that in the considered case we prove a more strong inequality $\operatorname{deg} z_{j} \leq(2 n+2) l d$ for all $1 \leq j \leq l$.

Suppose that a_{1}, \ldots, a_{l} do not depend on X_{n}. We represent $z_{i}=\sum_{j} z_{i, j} X_{n}^{j}$, $1 \leq i \leq l$, where all $z_{i, j}$ do not on X_{n}. Let $\alpha=\max _{i}\left\{\operatorname{deg}_{X_{n}} z_{i}\right\}$. Obviously in this case one can replace $\left(z_{1}, \ldots, z_{l}\right)$ by $\left(z_{1, \alpha}, \ldots, z_{l, \alpha}\right)$.

Let us return to general case of arbitrary $\operatorname{deg} b_{i, j}$. We shall reduce it to the considered one. Namely, multiplying the i-th equation of system (24) to $X_{0}^{\max _{i}\left\{d_{i}\right\}-d_{i}}$ we shall suppose without loss of generality that all d_{i} are equal. Let us substitute $z_{j} X_{0}^{d_{j}^{\prime}}$ for z_{j} in (24). Now the degrees of all the nonzero coefficients of the obtained system coincide. Thus, we get the required reduction and estimation (25). The lemma is proved.

REMARK 2 Lemma 4 remains true if one replaces in its statement condition (24) by

$$
\begin{equation*}
\sum_{1 \leq j \leq l} z_{j} b_{i, j}=0, \quad 1 \leq i \leq l-1 \tag{29}
\end{equation*}
$$

The proof is similar.
REMARK 3 Let the elements $b_{i, j}$ be from Lemma 4. Notice that there are integers $\delta_{i}^{\prime} \geq 0,1 \leq i \leq k$, and $\delta_{j} \geq 0,1 \leq j \leq l$, such that

$$
\operatorname{deg} b_{i, j}=\delta_{j}-\delta_{i}^{\prime}
$$

for all nonzero $b_{i, j}$, and $\min _{1 \leq i \leq k}\left\{\delta_{i}^{\prime}\right\}=0$. Namely, $\delta_{i}^{\prime}=-d_{i}+\max _{1 \leq i \leq k}\left\{d_{i}\right\}$, $\delta_{j}=-d_{j}^{\prime}+\max _{1 \leq i \leq k}\left\{d_{i}\right\}$.

6 Transforming a matrix with coefficients from ${ }^{h} A$ to the trapezoidal form

Let b be the matrix from Lemma 4 but now k, l are arbitrary. Hence (23) holds. Let $b=\left(b_{1}, \ldots, b_{l}\right)$ where $b_{1}, \ldots, b_{l} \in{ }^{h} A^{k}$ be the columns of the matrix b (notice that in Lemma 1 and Lemma $2 b_{i}$ are rows of size l; so now we change the notation). By definition b_{1}, \ldots, b_{l} are linearly independent over ${ }^{h} A$ from the right (or just linearly independent if it will not lead to an ambiguity) if and only if for all $z_{1}, \ldots, z_{l} \in{ }^{h} A$ the equality $b_{1} z_{1}+\ldots+b_{l} z_{l}=0$ implies $z_{1}=\ldots=z_{l}=0$. By (23) in this definition one can consider only homogeneous z_{1}, \ldots, z_{l}. For an arbitrary family b_{1}, \ldots, b_{l} from Lemma 4 (with arbitrary k, l) one can choose a maximal linearly independent from the right subfamily $b_{i_{1}}, \ldots, b_{i_{r}}$ of b_{1}, \ldots, b_{l}. It turns out that r does not depend on the choice of a subfamily. More precisely, we have the following lemma.

LEMMA 5 Let $c_{j}=\sum_{1 \leq i \leq l} b_{i} z_{i, j}, 1 \leq j \leq r_{1}$, where $z_{i, j} \in{ }^{h} A$ are homogeneous elements. Suppose that there are integers $d_{j}^{\prime \prime}, 1 \leq j \leq r_{1}$, such that for all i, j the degree $\operatorname{deg} z_{i, j}=d_{i}^{\prime}-d_{j}^{\prime \prime}$. Assume that $c_{j}, 1 \leq j \leq r_{1}$, are linearly independent over ${ }^{h} A$ from the right. Then $r_{1} \leq r$, and if $r_{1}<r$ there are $c_{r_{1}+1}, \ldots, c_{r} \in\left\{b_{i_{1}}, \ldots, b_{i_{r}}\right\}$ such that $c_{j}, 1 \leq j \leq r$, are linearly independent over ${ }^{h} A$ from the right.

PROOF The proof is similar to the case of vector spaces over a field and we leave it to the reader. The lemma is proved.

We denote $r=\operatorname{rankr}\left\{b_{1}, \ldots, b_{l}\right\}$ and call it the rank from the right of b_{1}, \ldots, b_{l}. In the similar way one can define rank from the left of b_{1}, \ldots, b_{l}. Denote it by rankl $\left\{b_{1}, \ldots, b_{l}\right\}$. It is not difficult to construct examples when $\operatorname{rankr}\left\{b_{1}, \ldots, b_{l}\right\}$ $\neq \operatorname{rankl}\left\{b_{1}, \ldots, b_{l}\right\}$. The aim of this section is to prove the following result.

LEMMA 6 Let b be the matrix with homogeneous coefficient from ${ }^{h} A$ satisfying (23), see above. Suppose that $\operatorname{deg} b_{i, j}<d$ for all i, j. Assume that $k \geq l \geq 1$. Let $l_{1}=\operatorname{rankr}\left\{b_{1}, \ldots, b_{l}\right\}$ and $b_{1}, \ldots, b_{l_{1}}$ be linearly independent. Hence $0 \leq l_{1} \leq l$. Then there is a matrix $\left(z_{j, r}\right)_{1 \leq j, r \leq l_{1}}$ with homogeneous entries $z_{j, r} \in{ }^{h} A$ and a square permutation matrix σ of size k satisfying the following properties.
(i) All the nonzero elements $b_{i, j} z_{j, r}$ for $1 \leq j \leq l$ have the same degree depending only on i, r and

$$
\begin{equation*}
\operatorname{deg} z_{j, r} \leq(2 n+3) l d \tag{30}
\end{equation*}
$$

(ii) Set the matrix $e=\left(e_{i, j}\right)_{1 \leq i \leq k, 1 \leq j \leq l_{1}}=\sigma b z$. Then the matrix

$$
e=\binom{e^{\prime}}{e^{\prime \prime}}
$$

where $e^{\prime}=\operatorname{diag}\left(e_{1,1}^{\prime}, \ldots, e_{l_{1}, l_{1}}^{\prime}\right)$ is a diagonal matrix with l_{1} columns and each $e_{j, j}^{\prime}, 1 \leq j \leq l_{1}$, is nonzero.
(iii) ord $e_{i, j} \geq$ ord $e_{j, j}^{\prime}$ for all $1 \leq i \leq k, 1 \leq j \leq l_{1}$.

Besides that, if all $a_{i, j}$ (and hence all $b_{i, j}$) do not depend on X_{n} (i.e., they can be represented as sums of monomials which do not contain X_{n}) then one can choose also $z_{j, r}$ satisfying additionally the same property. Finally, dividing by an appropriate power of X_{0} one can assume without loss of generality that $\min \left\{\operatorname{ord} z_{j, r}: 1 \leq j \leq l_{1}\right\}=0$ for every $1 \leq r \leq l_{1}$.

PROOF At first we shall show how to construct z and e such that (ii) and (iii) hold. We shall use a kind of Gauss elimination and Lemma 4. Namely, we transform the matrix e. At the beginning we put

$$
e=\left(e_{1}, \ldots, e_{l_{1}}\right)=\left(b_{1}, \ldots, b_{l_{1}}\right)
$$

We shall perform some ${ }^{h} A$-linear transformations of columns and permutations of rows of the matrix e and replace each time e by the obtained matrix. These transformation do not change the rank from the right of the family of columns of e. At the end we get a matrix e satisfying the required properties (ii), (iii).

We have $\operatorname{rankr}(e)=l_{1}$. If $l_{1}=0$, i.e, e is an empty matrix, then this is the end of the construction: z^{\prime} is an empty matrix. Suppose that $l_{1}>0$. Let us choose indices $1 \leq i_{0} \leq k, 1 \leq j_{0} \leq l_{1}$ such that ord $e_{i_{0}, j_{0}}=\min _{1 \leq j \leq l_{1}}\left\{\right.$ ord $\left.e_{j}\right\}$. Permuting rows and columns of e we shall assume without loss of generality that $\left(i_{0}, j_{0}\right)=(1,1)$.

By Lemma 4 we get elements $w_{i, 1}, w_{i, i} \in{ }^{h} A$ of degrees at most $(2 n+3) 2 d$ such that $e_{1,1} w_{1, i}=e_{1, i} w_{i, i}, 1 \leq i \leq l_{1}$, and ord $w_{i, i}=0$ for every $1 \leq i \leq l_{1}$. Set $w^{\prime}=\left(-w_{1,2}, \ldots,-w_{1, l_{1}}\right)$, and $w^{\prime \prime}=\operatorname{diag}\left(w_{2,2}, \ldots, w_{l_{1}, l_{1}}\right)$ to be the diagonal matrix. Put

$$
w=\left(\begin{array}{ll}
1, & w^{\prime} \\
0, & w^{\prime \prime}
\end{array}\right)
$$

to be the square matrix with l_{1} rows. We replace e by $e w$. Now

$$
e=\left(\begin{array}{ll}
e_{1,1}, & 0 \\
E_{2,1}, & E_{2,2}
\end{array}\right)
$$

where $E_{2,2}$ has $l_{1}-1$ columns and

$$
\begin{equation*}
\min _{1 \leq j \leq l_{1}}\left\{\operatorname{ord} b_{j}\right\}=\operatorname{ord} e_{1,1}=\min _{1 \leq j \leq l_{1}}\left\{\operatorname{ord} e_{j}\right\} \tag{31}
\end{equation*}
$$

(for the new matrix e).

Let us apply recursively the described construction to the matrix $E_{2,2}$ in place of e. So using only linear transformations of columns with indices $2, \ldots, l_{1}$ and permutation of rows with indices $2, \ldots, k$ we transform e to the form

$$
\sigma e \tau=\left(\begin{array}{ll}
e_{1,1}, & 0 \\
E_{2,1}^{\prime}, & E_{2,2}^{\prime} \\
E_{2,1}^{\prime \prime} & E_{2,2}^{\prime \prime}
\end{array}\right), \quad \tau=\left(\begin{array}{ll}
1, & 0 \\
0, & \tau^{\prime}
\end{array}\right)
$$

where σ is a permutation matrix and τ^{\prime} is a square matrix with $l_{1}-1$ rows (it transforms $\left.E_{2,2}\right)$, the matrix $E_{2,2}^{\prime}=\operatorname{diag}\left(e_{2,2}, \ldots, e_{l_{1}, l_{1}}\right)$ is a diagonal matrix with $l_{1}-1 \geq 0$ columns, and all the elements $e_{2,2}, \ldots, e_{l_{1}, l_{1}} \in{ }^{h} A$ are nonzero. We shall assume without loss of generality that $\sigma=1$ is the identity matrix. We replace e by $e \tau$. Conditions (ii) and (iii) hold for the obtained e and, more than that, by (iii) applied recursively for $\left(E_{2,2}, E_{2,2}^{\prime}, E_{2,2}^{\prime \prime}\right)$ (in place of $\left(e, e^{\prime}, e^{\prime \prime}\right)$), and (31) the same equalities are satisfied for the new obtained matrix e.

Let $E_{2,1}^{\prime}=\left(e_{2,1}, \ldots, e_{l_{1}, 1}\right)^{t}$ where t denotes transposition. By Lemma 4 there are nonzero elements $v_{1,1}, \ldots, v_{l_{1}, 1} \in{ }^{h} A$ of degrees at most

$$
\begin{equation*}
(2 n+3)\left(\max \left\{\operatorname{deg} e_{i, i}: 1 \leq i \leq l_{1}\right\}+1\right) l_{1} \tag{32}
\end{equation*}
$$

such that $e_{i, 1} v_{1,1}=e_{i, i} v_{i, 1}$ and $\min \left\{\right.$ ord $v_{1,1}$, ord $\left.v_{1, i}\right\}=0$ for all $1 \leq i \leq l_{1}-1$. Let $v^{\prime}=\left(-v_{2,1}, \ldots,-v_{l_{1}, 1}\right)^{t}$ and $v^{\prime \prime}$ be the identity matrix of size $l_{1}-1$. Put

$$
v=\left(\begin{array}{cc}
v_{1,1}, & 0 \\
v^{\prime}, & v^{\prime \prime}
\end{array}\right)
$$

Let us replace e by $e v$. Put $z=w \tau v$, where the matrix z has l_{1} columns. Recall that without loss of generality $\sigma=1$ is the identity permutation. We have $e=\left(b_{1}, \ldots, b_{l_{1}}\right) z$. These Gauss elimination transformations of e do not change the rank from the right of the family of columns of e. It can be easily proved using the recursion on l, cf. Lemma 8 below. Now the matrix e satisfies required conditions (ii), (iii) and $\sigma=1$.

Let us change the notation. Denote the obtained matrix z by z^{\prime}. Let $z^{\prime}=$ $\left(z_{1}^{\prime}, \ldots, z_{l_{1}}^{\prime}\right)$ where z_{j}^{\prime} is the j-th column of z^{\prime}. Our aim now is to prove the existence of the matrix z satisfying (i)-(iii). By Lemma 4 for every $1 \leq r \leq l_{1}$ there are homogeneous elements $z_{j, r} \in{ }^{h} A, 1 \leq j \leq l$, such that $\left(z_{1, r}, \ldots, z_{l, r}\right) \neq$ $(0, \ldots, 0)$,

$$
\begin{equation*}
\sum_{1 \leq j \leq l_{1}} b_{i, j} z_{j, r}=0 \quad \text { for every } \quad 1 \leq i \leq l_{1}, i \neq r \tag{33}
\end{equation*}
$$

and estimations for degrees (30) hold. Put the matrix $z=\left(z_{j, r}\right)_{1 \leq j, r \leq l_{1}}$. Let $z=\left(z_{1}, \ldots, z_{l_{1}}\right)$ where z_{j} is the j-th column of z. Hence $z_{j}=\left(z_{1, r}, \ldots, z_{l, r}\right)^{t}$.

LEMMA 7 For every $1 \leq r \leq l_{1}$ we have

$$
\begin{equation*}
\sum_{1 \leq j \leq l_{1}} b_{r, j} z_{j, r} \neq 0 \tag{34}
\end{equation*}
$$

Further, for every $1 \leq r \leq l_{1}$ there are nonzero homogeneous elements $g_{r}^{\prime}, g_{r} \in$ ${ }^{h} A$ such that $z_{r}^{\prime} g_{r}^{\prime}=z_{r} g_{r}$.

PROOF Consider the matrix $\left(z^{\prime}, z_{r}\right)$ with l_{1} rows and $l_{1}+1$ columns. By Lemma 4 there are homogeneous elements $h_{1}, \ldots, h_{l_{1}+1} \in{ }^{h} A$ (they depend on r) such that $\left(h_{1}, \ldots, h_{l_{1}+1}\right) \neq(0, \ldots, 0)$ and the following property holds. Denote $h=\left(h_{1}, \ldots, h_{l_{1}+1}\right)^{t}, h^{\prime}=\left(h_{1}, \ldots, h_{l_{1}}\right)^{t}$. Then

$$
\begin{equation*}
z^{\prime} h^{\prime}+z_{r} h_{l_{1}+1}=0 \tag{35}
\end{equation*}
$$

(we don't need at present any estimation on degrees from Lemma 4; only the existence of h). Denote by $b^{\prime \prime}$ the submatrix consisting of the first l_{1} rows of the matrix $\left(b_{1}, \ldots, b_{l_{1}}\right)$. Multiplying (35) to $b^{\prime \prime}$ from the left we get

$$
\begin{equation*}
b^{\prime \prime} z^{\prime} h^{\prime}+b^{\prime \prime} z_{r} h_{l_{1}+1}=0 \tag{36}
\end{equation*}
$$

But $b^{\prime \prime} z^{\prime}$ is a diagonal matrix with nonzero elements on the diagonal, see (ii) (for z^{\prime} in place of z). Hence by (33) and (36) $h_{j}=0$ for every $j \neq r$. Now $h \neq(0, \ldots, 0)^{t}$ implies $h_{r} \neq 0$ and $h_{l_{1}+1} \neq 0$. Therefore, (34) holds. Put $g_{r}^{\prime}=h_{r}$ and $g_{r}=h_{l_{1}+1}$. We have $z_{r}^{\prime} g_{r}^{\prime}=z_{r} g_{r}$ by (36). The lemma is proved.

Let us return to the proof of Lemma 6. Now (i)-(iii) are satisfied by Lemma 7. The last assertions of Lemma 6 are proved similarly to the ones of Lemma 4. Lemma 6 is proved.

7 An algorithm for solving linear systems with coefficients from ${ }^{h} A$.

Let $u=\left(u_{1}, \ldots, u_{l}\right)^{t} \in{ }^{h} A^{l}$. Let all nonzero u_{j} be homogeneous elements of the degree $-d_{j}^{\prime}+\rho$ for an integer ρ. Suppose that $-d_{j}^{\prime}+\rho<d^{\prime}$ for an integer $d^{\prime}>1$. Let $b=\left(b_{i, j}\right)_{1 \leq i \leq k, 1 \leq j \leq l}$ be the matrix with k rows and l columns from the statement of Lemma 6 (but now k and l are arbitrary). So $\operatorname{deg} b_{i, j}=d_{i}-d_{j}^{\prime}<d$ for all i, j. Let $Z=\left(Z_{1}, \ldots, Z_{k}\right)$ be unknowns. Consider the linear system

$$
\begin{equation*}
\sum_{1 \leq i \leq k} Z_{i} b_{i, j}=u_{j}, \quad 1 \leq j \leq l \tag{37}
\end{equation*}
$$

or, which is the same,

$$
Z b=u .
$$

Denote

$$
\begin{equation*}
\operatorname{ord} u=\min _{1 \leq i \leq k}\left\{\operatorname{ord} u_{i}\right\} \tag{38}
\end{equation*}
$$

The similar notations will be used for other vectors and matrices. In this section we shall describe an algorithm for solving linear systems over ${ }^{h} A$ and prove the following theorem.

THEOREM 2 Suppose that system (37) has a solution over ${ }^{h} A$. One can represent the set of all solutions of (37) over ${ }^{h} A$ in the form

$$
J+z^{*},
$$

where $J \subset{ }^{h} A^{l}$ is a ${ }^{h} A$-submodule of all the solutions of the homogeneous system corresponding to (37) (i.e., system (37) with all $u_{j}=0$) and z^{*} is a particular solution of (37). Further the following assertions hold.
(A) One can choose z^{*} such that ord $z^{*} \geq$ ord $u-\nu$, where $\nu \geq 0$ is an integer bounded from above by $(d l)^{2^{O(n)}}$ (and depends only on d and l). The degree $\operatorname{deg} z^{*}$ is bounded from above by $d^{\prime}(d l)^{2^{O(n)}}$.
(B) There exists a system of generators of J of degrees bounded from above by $(d l)^{2^{O(n)}}$. The number of elements of this system of generators is bounded from above by $k(d l)^{2^{O(n)}}$.

Besides that, if all $b_{i, j}$ and u_{j} do not depend on X_{n} (i.e., they can be represented as sums of monomials which do not contain X_{n}) then z^{*} and all the generators of the module J also satisfy this property.

PROOF Let $l_{1}=\operatorname{rankr}\left(b_{1}, \ldots, b_{l}\right)$. Permuting equations of (37) we shall assume without loss of generality that $\left(b_{1}, \ldots, b_{l_{1}}\right)$ are linearly independent from the right over ${ }^{h} A$. Let $\sigma, z, e, e^{\prime}, e^{\prime \prime}$ be the matrices from Lemma 6 . Similarly to the proof of Lemma 6 we shall assume without loss of generality that $\sigma=1$. Denote by b^{\prime} the submatrix of b consisting of the first l_{1} columns of b, i.e., $b^{\prime}=\left(b_{1}, \ldots, b_{l_{1}}\right)$. By Lemma 4 there are nonzero elements $q_{1,1}, \ldots, q_{l_{1}, l_{1}}$ of degrees at most (32) such that $e_{1,1} q_{1,1}=e_{i, i} q_{i, i}$ and $\min \left\{\operatorname{ord} q_{1,1}\right.$, ord $\left.q_{i, i}\right\}=0$ for all $2 \leq i \leq l_{1}$. Set $q=\operatorname{diag}\left(q_{1,1}, \ldots, q_{l_{1}, l_{1}}\right)$ to be the diagonal matrix. Let $\nu_{0}=\operatorname{ord} e_{1,1} q_{1,1}$. Then by Lemma 6 (iii) $\operatorname{ord}\left(b^{\prime} z q\right) \geq \nu_{0}$. Let $X_{0}^{\nu_{0}} \delta=b^{\prime} z q$. Then δ is a matrix with coefficients from ${ }^{h} A$ and

$$
\delta=\binom{\delta^{\prime}}{\delta^{\prime \prime}}
$$

where $\delta^{\prime}=\operatorname{diag}\left(\delta_{1,1}, \ldots, \delta_{l_{1}, l_{1}}\right)$ is a diagonal matrix with homogeneous coefficients from ${ }^{h} A$ and all the elements on the diagonal are nonzero and equal, i.e., $\delta_{j, j}=\delta_{1,1}$ for every $1 \leq j \leq l_{1}$. Besides that, ord $\delta_{1,1}=0$. Further, $\delta^{\prime \prime}=\left(\delta_{i, j}\right)_{l_{1}+1 \leq i \leq k, 1 \leq j \leq l_{1}}$. We have ord $(u z q) \geq \nu_{0}$, since, otherwise, system (37) does not have a solution. Obviously ord $u \leq \operatorname{ord}(u z q)$. Denote $u^{\prime}=\left(u_{0}^{\prime}, \ldots, u_{l}^{\prime}\right)^{t}=X_{0}^{-\nu_{0}} u z q \in{ }^{h} A^{l}$. Hence ord $u^{\prime} \geq \operatorname{ord}(u)-\nu_{0}$. Consider the linear system

$$
\begin{equation*}
Z \delta=u^{\prime} \tag{39}
\end{equation*}
$$

LEMMA 8 Suppose that system (37) has a solution over ${ }^{h} A$. Then linear system (39) is equivalent to (37), i.e., the sets of solutions of systems (39) and (37) over ${ }^{h} A$ coincide.

PROOF The system $Z b^{\prime} z=u z$ is equivalent to (37) by Lemma 5. System (39) is equivalent to $Z b^{\prime} z=u z$ since the ring ${ }^{h} A$ does not have zero-divisors. The lemma is proved.

REMARK 4 Since $\operatorname{rankr}\left(b_{1}, \ldots, b_{l}\right)=l_{1}$ and by Lemma 6 for every $l_{1}+1 \leq$ $j \leq l$ there are homogeneous $z_{j, j}, z_{1, j}, \ldots, z_{l_{1}, j} \in{ }^{h} A$ such that $z_{j, j} \neq 0$ and $b_{j} z_{j, j}+\sum_{1 \leq r \leq l_{1}} b_{r} z_{r, j}=0$ and all $\operatorname{deg} z_{j, j}, \operatorname{deg} z_{r, j}$ are bounded from above by $(2 n+3)\left(l_{1}+1\right)$ d. Put $u_{j}^{\prime}=u_{j} z_{j, j}+\sum_{1 \leq r \leq l_{1}} u_{r} z_{r, j}, l_{1}+1 \leq j \leq l$. Then system (37) has a solution if and only if system (39) has a solution and $u_{j}^{\prime}=0$ for all $l_{1}+1 \leq j \leq l$. This follows from Lemma 8 and Lemma 5. But in what follows for our aims it is sufficient to use only Lemma 8.

REMARK 5 Assume that $\operatorname{deg}_{X_{n}} b_{i, j} \leq 0$ for all i, j, i.e., the elements of the matrix b do not depend on X_{n}. Then by Lemma 4 and the described construction all the elements of the matrices $b, z, q, \delta, \delta^{\prime}, \delta^{\prime \prime}$ also do not depend on X_{n}.

By Lemma 4 and Remark 2 for every $l_{1}+1 \leq j \leq k$ there are homogeneous elements $g_{j, j}, g_{j, i} \in{ }^{h} A, 1 \leq i \leq l_{1}$, such that

$$
g_{j, j} \delta_{j, i}=g_{j, i} \delta_{1,1}, \quad 1 \leq i \leq l_{1}
$$

all the degrees $\operatorname{deg} g_{j, j}, \operatorname{deg} g_{j, i}, 1 \leq i \leq l_{1}$, are bounded from above by

$$
(2 n+3)\left(l_{1}+1\right)\left(\max \left\{\operatorname{deg} \delta_{j, i}: 1 \leq i \leq k\right\}+1\right)
$$

and $\min _{1 \leq i \leq l_{1}}\left\{\operatorname{ord} g_{j, j}, \operatorname{ord} g_{j, i}\right\}=0$. Hence ord $g_{j, j}=0$ for every $l_{1}+1 \leq j \leq k$ since ord $\delta_{1,1}=0$.

Denote $h=\delta_{1,1} g_{l_{1}+1, l_{1}+1} g_{l_{1}+2, l_{1}+2} \ldots g_{k, k}$. So $h \in{ }^{h} A$ is a nonzero homogeneous element and ord $h=0$. Set $\varepsilon=\operatorname{deg} h$. We need an analog of the Noether normalization theorem from commutative algebra, cf. also Lemma 3.1 [7].

LEMMA 9 There is a linear automorphism of the algebra ${ }^{h} A$

$$
\begin{aligned}
& \alpha:{ }^{h} A \rightarrow{ }^{h} A, \quad \alpha\left(X_{i}\right)=\sum_{1 \leq j \leq n}\left(\alpha_{1, i, j} X_{j}+\alpha_{2, i, j} D_{j}\right), \\
& \alpha\left(D_{i}\right)=\sum_{1 \leq j \leq n}\left(\alpha_{3, i, j} X_{j}+\alpha_{4, i, j} D_{j}\right), \quad \alpha\left(X_{0}\right)=X_{0}, \quad 1 \leq i \leq n
\end{aligned}
$$

such that all $\alpha_{s, i, j} \in F, \operatorname{deg}_{D_{n}} \alpha(h)=\varepsilon$. If $\operatorname{deg}_{X_{n}} h=0$ then one can choose additionally $\alpha\left(X_{n}\right)=X_{n}$, all $\alpha_{1, n, j}=0$ for $1 \leq j \leq n-1$ and $\alpha_{3, n, j}=0$ for $1 \leq j \leq n$.

PROOF Recall that ord $h=0$. Hence at first it is not difficult to construct a linear automorphism β such that $\beta\left(X_{0}\right)=X_{0}$,

$$
\begin{equation*}
\beta\left(X_{i}\right)=\beta_{1, i} X_{i}+\beta_{2, i} D_{i}, \quad \beta\left(D_{i}\right)=\beta_{3, i} X_{i}+\beta_{4, i} D_{i}, \quad 1 \leq i \leq n \tag{40}
\end{equation*}
$$

and $\beta(h)$ contains a monomial $a_{i_{1}, \ldots, i_{n}} D_{1}^{i_{1}}, \ldots, D_{n}^{i_{n}}$ with $a_{i_{1}, \ldots, i_{n}} \neq 0$ and $i_{1}+$ $\ldots+i_{n}=\varepsilon$, i.e., $\varepsilon=\operatorname{deg}_{D_{1}, \ldots, D_{n}} \beta(h)$. After that one can find an automorphism γ such that $\gamma\left(X_{0}\right)=X_{0}$,

$$
\begin{equation*}
\gamma\left(X_{i}\right)=\sum_{1 \leq j \leq n} \gamma_{1, i, j} X_{j}, \quad \gamma\left(D_{i}\right)=\sum_{1 \leq j \leq n} \gamma_{4, i, j} D_{j}, \quad 1 \leq i \leq n \tag{41}
\end{equation*}
$$

and $(\gamma \circ \beta)(h)$ contains a monomial $a D_{n}^{\varepsilon}$ with a coefficient $0 \neq a \in F$. Put $\alpha=\gamma \circ \beta$. We leave to prove the last assertion to the reader. The lemma is proved.
We apply the automorphism α. In what follows to simplify the notation we shall suppose without loss of generality that $\alpha=1$. So h contains a monomial $a D_{n}^{\varepsilon}$ with a coefficient $0 \neq a \in F$, where $\varepsilon=\operatorname{deg} h$. It follows from here that

$$
\begin{equation*}
\operatorname{deg}_{D_{n}} \delta_{1,1}=\operatorname{deg} \delta_{1,1}, \quad \operatorname{deg}_{D_{n}} g_{j, j}=\operatorname{deg} g_{j, j}, l_{1}+1 \leq j \leq k \tag{42}
\end{equation*}
$$

Let $z=\left(z_{1}, \ldots, z_{k}\right) \in{ }^{h} A^{k}$ be a solution of (39). Then (42) implies that one can uniquely represent

$$
\begin{equation*}
z_{j}=z_{j}^{\prime} g_{j, j}+\sum_{0 \leq s<\operatorname{deg} g} z_{j, j} z_{j, s}^{s}, \quad l_{1}+1 \leq j \leq k, \tag{43}
\end{equation*}
$$

where $z_{j}^{\prime}, z_{j, s} \in{ }^{h} A$, the degrees $\operatorname{deg}_{D_{n}} z_{j, s} \leq 0$ for all $l_{1}+1 \leq j \leq k, 0 \leq s<$ $\operatorname{deg}_{D_{1}} g_{j, j}$. Again by (42) one can uniquely represent

$$
u_{i}^{\prime}=u_{i}^{\prime \prime} \delta_{1,1}+\sum_{0 \leq s<\operatorname{deg} \delta_{1,1}} u_{i, s}^{\prime} D_{n}^{s}, \quad 1 \leq i \leq l,
$$

where $u_{i}^{\prime \prime}, u_{i, s}^{\prime} \in{ }^{h} A$, the degrees $\operatorname{deg}_{D_{n}} u_{i, s}^{\prime} \leq 0$ for all $1 \leq i \leq l, 0 \leq s<$ $\operatorname{deg}_{D_{1}} g_{j, j}$. Finally, by (42) for all $l_{1}+1 \leq j \leq k, 1 \leq i \leq l_{1}, 0 \leq r<\operatorname{deg}_{D_{1}} g_{j, j}$, one can uniquely represent

$$
D_{n}^{r} \delta_{j, i}=\delta_{j, r, i} \delta_{1,1}+\sum_{0 \leq r<\operatorname{deg} \delta_{1,1}} \delta_{j, r, i, s} D_{n}^{s},
$$

where $\delta_{j, r, i}, \delta_{j, r, i, s} \in{ }^{h} A$, the degrees $\operatorname{deg}_{D_{n}} \delta_{j, r, i, s} \leq 0$ for all considered j, r, i, s. Put

$$
\begin{aligned}
& \mathcal{I}=\left\{(j, r): l_{1}+1 \leq j \leq k \& 0 \leq r<\operatorname{deg} g_{j, j}\right\}, \\
& \mathcal{J}=\left\{(i, s): 1 \leq i \leq l_{1} \& 1 \leq s<\operatorname{deg} \delta_{1,1}\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& z_{i}=-\sum_{l_{1}+1 \leq j \leq k} z_{j}^{\prime} g_{j, i}-\sum_{(j, r) \in \mathcal{I}} z_{j, r} \delta_{j, r, i}+u_{i}^{\prime \prime}, \quad 1 \leq i \leq l_{1}, \tag{44}\\
& \sum_{(j, r) \in \mathcal{I}} z_{j, r} \delta_{j, r, i, s}=u_{i, s}^{\prime}, \quad(i, s) \in \mathcal{J} . \tag{45}
\end{align*}
$$

Let us introduce new unknowns $Z_{j, r},(j, r) \in \mathcal{I}$. By (43)-(45) system (37) is reduced to the linear system

$$
\begin{equation*}
\sum_{(j, r) \in \mathcal{I}} Z_{j, r} \delta_{j, r, i, s}=u_{i, s}^{\prime}, \quad(i, s) \in \mathcal{J} . \tag{46}
\end{equation*}
$$

More precisely, any solution of system (37) is given by (43), (44) where $z_{j}^{\prime} \in{ }^{h} A$ are arbitrary and $z_{j, r}$ is a solution of system (45) over ${ }^{h} A$ (we underline that here this solution $z_{j, r}$ may depend on D_{n} although one can restrict oneself by solutions $z_{j, r}$ which do not depend on D_{n}). Note that all $\delta_{j, r, i, s}$ and $u_{i, s}^{\prime}$ are homogeneous elements of ${ }^{h} A$ and there are integers $d_{j, r},(j, r) \in \mathcal{I}, d_{i, s}^{\prime}$, $(i, s) \in \mathcal{J}, \widetilde{\rho}$ such that $\operatorname{deg} \delta_{j, r, i, s}=d_{j, r}-d_{i, s}^{\prime}$ and $\operatorname{deg} u_{i, s}^{\prime}=-d_{i, s}^{\prime}+\widetilde{\rho}$ for all $(j, r) \in \mathcal{I},(i, s) \in \mathcal{J}$. This follows immediately from the described construction.

Now all the coefficients of system (46) do not depend on D_{n}. As we have proved if the coefficients of (37) do not depend on X_{n} then the coefficients of (46) also do not depend on X_{n}, and hence in the last case they do not depend on X_{n}, D_{n}.

If the coefficients of (46) depend on X_{n} we perform an automorphism $X_{n} \mapsto$ $D_{n} D_{n} \mapsto-X_{n}, X_{i} \mapsto X_{i}, D_{i} \mapsto D_{i}, 1 \leq i \leq n-1$. Now the coefficients of
system (46) do not depend on X_{n} (but depend on D_{n}). After that we apply our construction recursively to system (46).

The final step of the recursion is $n=0$ (although in the statement of theorem $n \geq 1$, see Section 1 ; we are interested only in Weyl algebras). In this case $\mathcal{I}=\mathcal{J}=\emptyset$. Hence using (44) for $n=0$ we get the required z^{*} and J for $n=0$.

Thus, by the recursive assumption we get a particular solution $Z_{j, r}=z_{j, r}^{*}$, $(j, r) \in \mathcal{I}$, of system (46), an integer ν_{1} (in place of ν from assertion (A)) such that

$$
\begin{equation*}
\min _{(j, r) \in \mathcal{I}}\left\{\operatorname{ord} z_{j, r}^{*}\right\} \geq \min _{(i, s) \in \mathcal{J}}\left\{\operatorname{ord} u_{i, s}^{\prime}\right\}-\nu_{1} \tag{47}
\end{equation*}
$$

and a system of generators

$$
\begin{equation*}
\left(z_{\alpha, j, r}\right)_{(j, r) \in \mathcal{I}}, \quad 1 \leq \alpha \leq \beta \tag{48}
\end{equation*}
$$

of the module J^{\prime} of solutions of the homogeneous system corresponding to (46). Notice that if the coefficients of (37) do not depend on X_{n} then J^{\prime} is a module over the homogenization $F\left[X_{0}, X_{1}, \ldots, X_{n-1}, D_{1}, \ldots, D_{n-1}\right]$ of the Weyl algebra of $X_{1}, \ldots, X_{n-1}, D_{1}, \ldots, D_{n-1}$. But obviously in the last case (48) gives also a system of generators of the ${ }^{h} A$-module $J^{\prime \prime}={ }^{h} A J^{\prime}$ of solutions of the homogeneous system corresponding to (46). Put

$$
\begin{aligned}
z_{i}^{*} & =-\sum_{(j, r) \in \mathcal{I}} z_{j, r}^{*} \delta_{j, r, i}+u_{i}^{\prime \prime}, \quad 1 \leq i \leq l_{1} \\
z_{j}^{*} & =\sum_{0 \leq s<\operatorname{deg} g_{j, j}} z_{j, s}^{*} D_{n}^{s}, \quad l_{1}+1 \leq j \leq k \\
z^{*} & =\left(z_{1}^{*}, \ldots, z_{k}^{*}\right)
\end{aligned}
$$

Then z^{*} is a particular solution of (37). Put

$$
\begin{aligned}
& z_{\alpha, i}=-\sum_{(j, r) \in \mathcal{I}} z_{\alpha, j, r} \delta_{j, r, i}, \quad 1 \leq i \leq l_{1}, \quad 1 \leq \alpha \leq \beta \\
& z_{\alpha, j}=\sum_{0 \leq s<\operatorname{deg} g_{j, j}} z_{\alpha, j, s} D_{n}^{s}, \quad l_{1}+1 \leq j \leq k, 1 \leq \alpha \leq \beta \\
& z_{\beta-l_{1}+j, i}=0, \quad l_{1}+1 \leq i, j \leq k, i \neq j \\
& z_{\beta-l_{1}+j, j}=g_{j, j}, \quad l_{1}+1 \leq j \leq k, \\
& z_{\beta-l_{1}+j, i}=-g_{j, i}, \quad 1 \leq i \leq l_{1}, l_{1}+1 \leq j \leq k
\end{aligned}
$$

Then $J=\sum_{1 \leq \alpha \leq \beta+k-l_{1}}{ }^{h} A\left(z_{\alpha, 1}, \ldots, z_{\alpha, k}\right)$. Hence $\left(z_{\alpha, 1}, \ldots, z_{\alpha, k}\right), 1 \leq \alpha \leq$ $\beta+k-l_{1}$, is a system of generators of the module J. By (47) and the definitions of $u^{\prime}, u_{i}^{\prime \prime}$ and $u_{i, s}^{\prime}$ we have ord $z^{*} \geq$ ord $u-\nu_{0}-\nu_{1}$. Put $\nu=\nu_{0}+\nu_{1}$.

LEMMA 10 All the degrees $\operatorname{deg} \delta_{j, i}, \operatorname{deg} g_{j, i}, \operatorname{deg} \delta_{j, r, i}, \operatorname{deg} \delta_{j, r, i, s}$ and ν, see above, are bounded from above by $(n l d)^{O(1)}$, the degrees $\operatorname{deg} u_{i}^{\prime}$ are bounded from above $d^{\prime}+(n l d)^{O(1)}$, the degrees $\operatorname{deg} u_{i}^{\prime \prime}, \operatorname{deg} u_{i, s}^{\prime}$ are bounded from above by $d^{\prime}(n l d)^{O(1)}$. Further, all ord $u_{i}^{\prime \prime}$, ord $u_{i, s}^{\prime}$ are bounded from below by ord $u-\nu$. Finally, in system (46) the number of equations $\# \mathcal{J}$ is bounded from above by $(n l d)^{O(1)}$ and the number of unknowns $\# \mathcal{I}$ is bounded from above by $k(n l d)^{O(1)}$.

PROOF This follows immediately from the described construction.

Let us return to the proof of Theorem 2. Applying Lemma 10 and recursively assertions (A) and (B) for the formulas giving z^{*} and J we get (A) and (B) from the theorem. The last assertion (related to the case when all $b_{i, j}$ and u_{j} do not depend on D_{n}) has been already proved. The theorem is proved.

8 Proof of Theorem 1 for Weyl algebra

Let a be the matrix from Section 1 . We shall suppose without loss of generality that the vectors $\left(a_{i, 1}, \ldots, a_{i, l}\right), 1 \leq i \leq k$, are linearly independent over the field F. We have $\operatorname{deg} a_{i, j}<d$. This implies $k \leq l\binom{d+2 n}{2 n}$.

Put the matrix $b={ }^{h} a$. Let us define the graded submodules of ${ }^{h} I$

$$
\begin{aligned}
& J_{0}={ }^{h} A\left(b_{1,1}, \ldots, b_{1, l}\right)+\ldots+{ }^{h} A\left(b_{k, 1}, \ldots, b_{k, l}\right), \\
& J_{\nu}=J_{0}:\left(X_{0}^{\nu}\right)=\left\{z \in{ }^{h} A^{l}: z X_{0}^{\nu} \in J_{0}\right\}, \quad \nu \geq 1 .
\end{aligned}
$$

We have the exact sequence of graded ${ }^{h} A$-modules

$$
{ }^{h} A^{k} \rightarrow J_{0} \rightarrow 0 .
$$

Further, $J_{\nu} \subset J_{\nu+1} \subset{ }^{h} I$ for every $\nu \geq 0$ and ${ }^{h} I=\bigcup_{\nu \geq 0} J_{\nu}$. Since ${ }^{h} A$ is Noetherian there is $N \geq 0$ such that ${ }^{h} I=J_{N}$. So to construct a system of generators of ${ }^{h} I$ it is sufficient to compute the least N such that ${ }^{h} I=J_{N}$ and to find a system of generators of J_{N}.

LEMMA $11{ }^{h} I=J_{N}$ for some N bounded from above by $(d l)^{2^{O(n)}}$. There is a system of generators b_{1}, \ldots, b_{s} of the module J_{N} such that s and all the degrees $\operatorname{deg} b_{v}, 1 \leq v \leq s$, are bounded from above by $(d l)^{2^{O(n)}}$.

PROOF Let us show that the module $J_{N+1} \subset J_{N}$ for $N \geq \nu$. Let $u \in J_{N+1}$. Consider system (37). By assertion (A) of Theorem 2 there is a particular solution z^{*} of (37) such that ord $z^{*} \geq 1$. Hence $u \in X_{0} J_{N} \subset J_{N}$. The required assertion is proved. Hence ${ }^{h} I=J_{\nu}$.

Let us replace in (37) $\left(u_{1}, \ldots, u_{l}\right)$ by $\left(U_{1} X_{0}^{\nu}, \ldots, U_{l} X_{0}^{\nu}\right)$, where U_{1}, \ldots, U_{l} are new unknowns. Then applying (B) from Theorem 2 to this new homogeneous linear system with respect to all unknowns $U_{1}, \ldots, U_{l}, Z_{1}, \ldots, Z_{k}$ we get the required estimations for the number of generators of J_{ν} and the degrees of these generators. The lemma is proved.

COROLLARY $1 \operatorname{Let}\left(a_{i, 1}, \ldots, a_{i, l}\right), 1 \leq i \leq l$, be from the beginning of the section and the integer N be from Lemma 3. Then for every integer $m \geq 0$ the F-linear space

$$
\begin{equation*}
A_{m+N}\left(a_{1,1}, \ldots, a_{1, l}\right)+\ldots+A_{m+N}\left(a_{k, 1}, \ldots, a_{k, l}\right) \supset I_{m} \tag{49}
\end{equation*}
$$

PROOF By Lemma 3 we have $\left(J_{0}\right)_{m+N} \supset X_{0}^{N}\left(J_{N}\right)_{m}=X_{0}^{N}\left({ }^{h} I\right)_{m}$. Taking the affine parts we get (49). The corollary is proved.

Now everything is ready for the proof of Theorem 1. By Lemma 11 and Lemma 1 there is a system of generators of the module $\operatorname{gr}(I)$ with degrees bounded from above by $(d l)^{2^{O(n)}}$. By Lemma 12 from Appendix 1 the Hilbert
function $H(\operatorname{gr}(I), m)$ is stable for $m \geq(d l)^{2^{O(n)}}$. By (10) Section 2 the Hilbert function $H(I, m)$ is stable for all $m \geq(d l)^{2^{O(n)}}$.

Consider the linear order $<$ on the monomials from ${ }^{h} A^{l}$ which is induced by the linear order $<$ on the monomials from A^{l}, see Section 4. Then the monomial submodule ${ }^{c} I \subset{ }^{c} A^{l}$ is defined, see Section 4 , where ${ }^{c} A=F\left[X_{0}, \ldots, X_{n}, D_{1}, \ldots\right.$, $\left.D_{n}\right]$ is the polynomial ring. By (22) Section 4 the Hilbert function $H\left({ }^{c} I, m\right)$ is stable for all $m \geq(d l)^{2^{O(n)}}$. Hence all the coefficients of the Hilbert polynomial of ${ }^{c} I$ are bounded from above $(d l)^{2^{O(n)}}$. Therefore, according to (31) the module ${ }^{c} I$ has a system of generators with degrees $(d l)^{2^{O(n)}}$. This means, see Section 4, that the module $\operatorname{Hdt}\left({ }^{h} I\right)$ has a system of generators with degrees $(d l)^{2^{O(n)}}$. Therefore, the degrees of all the elements of the Janet basis of ${ }^{h} I$ with respect to the induced linear order $<$ are bounded from above by $(d l)^{2^{O(n)}}$. Hence by Lemma 3 Section 4 the same is true for the Janet basis of the module I with respect to the linear order $<$ on the monomials from A^{l}. Theorem 1 is proved for Weyl algebra.

9 The case of algebra of differential operators

Denote by $B=F\left(X_{1}, \ldots, X_{n}\right)\left[D_{1}, \ldots, D_{n}\right]$ the algebra of differential operators. Recall that $A \subset B$ and hence relations (1) are satisfied. Further, each element $f \in B$ can be uniquely represented in the form

$$
f=\sum_{j_{1}, \ldots, j_{n} \geq 0} f_{j_{1}, \ldots, j_{n}} D_{1}^{j_{1}} \ldots D_{n}^{j_{n}}=\sum_{j \in \mathbb{Z}_{+}^{n}} f_{j} D^{j}
$$

where all $f_{j_{1}, \ldots, j_{n}}=f_{j} \in F\left(X_{1}, \ldots, X_{n}\right)$ and $F\left(X_{1}, \ldots, X_{n}\right)$ is a field of rational functions over F. Let us replace everywhere in Section 1 and Section $2 A$, $X^{i} D^{j}, \operatorname{deg} f=\operatorname{deg}_{X_{1}, \ldots, X_{n}, D_{1}, \ldots, D_{n}} f, \operatorname{dim}_{F} M, e_{v, i, j}, f_{v, i, j} \in F,(v, i, j),(i, j)$, $\left(i^{\prime}, j^{\prime}\right),\left(i^{\prime \prime}, j^{\prime \prime}\right)$ by $B, D^{j}, \operatorname{deg} f=\operatorname{deg}_{D_{1}, \ldots, D_{n}} f, \operatorname{dim}_{F\left(X_{1}, \ldots, X_{n}\right)} M, e_{v, j}, f_{v, j} \in$ $F\left(X_{1}, \ldots, X_{n}\right),(v, j), j, j^{\prime}, j^{\prime \prime}$ respectively. Thus, we get the definition of the Janet basis and all other objects from Section 1 for the case of the algebra of differential operators.

We define the homogenization ${ }^{h} B$ of B similarly to ${ }^{h} A$, see Section 3. Namely, ${ }^{h} B=F\left(X_{1}, \ldots, X_{n}\right)\left[X_{0}, D_{1}, \ldots, D_{n}\right]$ given by the relations

$$
\begin{align*}
& X_{i} X_{j}=X_{j} X_{i}, D_{i} D_{j}=D_{j} D_{i}, \quad \text { for all } i, j, \\
& D_{i} X_{i}-X_{i} D_{i}=X_{0}, 1 \leq i \leq n, \quad X_{i} D_{j}=D_{j} X_{i} \quad \text { for all } \quad i \neq j \tag{50}
\end{align*}
$$

Further, the considerations are similar to the case of the Weyl algebra A with minor changes. We leave them to the reader. For example, Theorem 2 for the case of the algebra of differential operators is the same. One need only to replace everywhere in its statement $A,{ }^{h} A$ and X_{n} by $B,{ }^{h} B$ and D_{n} respectively. Thus, one can prove Theorem 1 for the case when A is an algebra of differential operators (but now it is B). Theorem 1 is proved completely.

One can consider more general algebra of differential operators. Let \mathcal{F} be a field with n derivatives D_{1}, \ldots, D_{n}. Then $K_{n}=\mathcal{F}\left[D_{1}, \ldots, D_{n}\right]$ is the algebra of differential operators and similarly one can define its homogenization ${ }^{h} K_{n}$ by means of adding the variable X_{0} satisfying the relations

$$
D_{i} D_{j}=D_{j} D_{i}, \quad X_{0} D_{i}=D_{i} X_{0}, \quad D_{i} f-f D_{i}=f_{D_{i}} X_{0}
$$

for all i, j and any element $f \in \mathcal{F}$ where $f_{D_{i}} \in \mathcal{F}$ denotes the result of the application of D_{i} to f. Following the proof of Theorem 1 one can deduce the following statement.

REMARK 6 A similar bound to Theorem 1 holds for K_{n}.

Appendix 1: Degrees of generators of a graded module over a polynomial ring and its Hilbert function.

We give a short proof of the following result, cf. [1], [12], [6], [4].
LEMMA 12 Let $I \subset \mathcal{A}^{l}$ be a graded submodule over the graded polynomial $\operatorname{ring} \mathcal{A}=F\left[X_{0}, \ldots, X_{n}\right]$, and I is given by a system of generators f_{1}, \ldots, f_{m} of degrees less than d. Then the Hilbert function $H\left(\mathcal{A}^{l} / I, m\right)=\operatorname{dim}_{F}\left(\mathcal{A}^{l} / I\right)_{m}$ is stable for $m \geq(d l)^{2^{O(n+1)}}$. Further, all the coefficients of the Hilbert polynomial of \mathcal{A}^{l} / I are bounded from above by $(d l)^{2^{O(n+1)}}$.

PROOF Denote $M=\mathcal{A}^{l} / I$. Let $L \in F\left[X_{0}, \ldots, X_{n}\right]$ be a linear form in general position. Denote by K the kernel of the morphism $M \rightarrow M$ of multiplication to L. We have $K=\left\{z \in \mathcal{A}^{l}: L z=\sum_{1 \leq i \leq m} f_{i} z_{i}, \& z_{i} \in \mathcal{A}\right\}$. Hence solving a linear system over \mathcal{A}, we get that K has a system of generators g_{1}, \ldots, g_{μ} with degrees bounded from above by $(d l)^{2^{O(n+1)}}$. Let \mathfrak{P} be an arbitrary associated prime ideal of the module M such that $\mathfrak{P} \neq\left(X_{0}, \ldots, X_{n}\right)$. Since L is in general position we have $L \notin \mathfrak{P}$. Hence \mathfrak{P} is not an associated prime ideal of K. Therefore, $K_{N}=0$ for all sufficiently big N. So $X_{i}^{N} g_{j} \in I$ for sufficiently $\operatorname{big} N$ and all i, j. Hence $g_{j}=\sum_{1 \leq i \leq m} y_{j, i} f_{i}$ where $y_{j, i} \in F\left(X_{i}\right)\left[X_{0}, \ldots, X_{n}\right]$. Solving a linear system over the ring $F\left(X_{i}\right)\left[X_{0}, \ldots, X_{n}\right]$ we get an estimation for denominators from $F\left[X_{i}\right]$ of all $y_{j, i}$. Since all g_{j} and f_{i} are homogeneous we can suppose without loss of generality that all the denominators are X_{i}^{N}. Thus, we get an upper bound for N. Namely, N is bounded from above by $(d l)^{2^{O(n+1)}}$.

Therefore, the sequence

$$
\begin{equation*}
0 \rightarrow M_{m} \rightarrow M_{m+1} \rightarrow(M / L M)_{m+1} \rightarrow 0 \tag{51}
\end{equation*}
$$

is exact for $m \geq(d l)^{2^{O(n+1)}}$. But $M / L M=\mathcal{A}^{l} /\left(I+L \mathcal{A}^{l}\right)$ is a module over a polynomial ring of $F\left[X_{0}, \ldots, X_{n}\right] /(L) \simeq F\left[X_{0}, \ldots, X_{n-1}\right]$. Hence by the inductive assumption the Hilbert function $H\left(\mathcal{A}^{l} /\left(I+L \mathcal{A}^{l}\right), m\right)$ is stable for $m \geq(d l)^{2^{O(n)}}$. Therefore, (51) implies that the Hilbert function $H\left(\mathcal{A}^{l} / I, m\right)$ is stable for $m \geq(d l)^{2^{O(n+1)}}$.

Obviously for $m<(d l)^{2^{O(n+1)}}$ the values $H\left(\mathcal{A}^{l} / I, m\right)$ are bounded from above by $(d l)^{2^{O(n+1)}}$. Hence by the Newton interpolation all the coefficients of the Hilbert polynomial of \mathcal{A}^{l} / I are bounded from above by $(d l)^{2^{O(n+1)}}$. The lemma is proved.

We need also a conversion of Lemma 12.
LEMMA 13 Let $I \subset \mathcal{A}^{l}$ be a graded submodule over the graded polynomial $\operatorname{ring} \mathcal{A}=F\left[X_{0}, \ldots, X_{n}\right]$. Assume that the Hilbert function $H\left(\mathcal{A}^{l} / I, m\right)=$
$\operatorname{dim}_{F}\left(\mathcal{A}^{l} / I\right)_{m}$ is stable for $m \geq D$ and all absolute values of the coefficients of the Hilbert polynomial of the module \mathcal{A}^{l} / I are bounded from above by D for some integer $D>1$. Then I has a system of generators f_{1}, \ldots, f_{m} with degrees $D^{2^{O(n+1)}}$.

PROOF Let us choose f_{1}, \ldots, f_{m} to be the reduced Gröbner basis of I with respect to an admissible linear order $<$ on the monomials from \mathcal{A}^{l}, cf. the definitions from Section 1 and Section 4. The degree of a monomial from \mathcal{A}^{l} is defined similarly to Section 1 and Section 4 . We shall suppose additionally that the considered linear order is degree compatible, i.e., for any two monomials z_{1}, z_{2} if $\operatorname{deg} z_{1}<\operatorname{deg} z_{2}$ then $z_{1}<z_{2}$. For every $z \in \mathcal{A}$ the greatest monomial $\operatorname{Hdt}(z)$ is defined. Further the monomial ideal $\operatorname{Hdt}(I)$ is generated by all $\operatorname{Hdt}(z)$, $z \in I$. Now $\operatorname{Hdt}\left(f_{1}\right), \ldots, \operatorname{Hdt}\left(f_{m}\right)$ is a minimal system of generators of $\operatorname{Hdt}(I)$ and $\operatorname{deg} f_{i}=\operatorname{deg} \operatorname{Hdt}\left(f_{i}\right)$ for every $1 \leq i \leq m$. The values of Hilbert functions $H\left(\mathcal{A}^{l} / \operatorname{Hdt}(I), m\right)=H\left(\mathcal{A}^{l} / I, m\right)$ coincide for all $m \geq 0$. Thus, replacing I by $\operatorname{Hdt}(I)$ we shall assume in what follows in the proof that I is a monomial module.

For every $1 \leq i \leq l$ denote by $\mathcal{A}_{i} \subset \mathcal{A}^{l}$ the i-th direct summand of \mathcal{A}^{l}. Put $I_{i}=I \cap \mathcal{A}_{i}, 1 \leq i \leq l$. Then $I \simeq \oplus_{1 \leq i \leq l} I_{i}$ since I is a monomial module. Further, for every $1 \leq \alpha \leq m$ there is $1 \leq i \leq l$ such that $f_{\alpha} \in I_{i}$. Let us identify $\mathcal{A}_{i}=\mathcal{A}$. Then $I_{i} \subset \mathcal{A}$ is a homogeneous monomial ideal. The case $I_{i}=\mathcal{A}$ is not excluded for some i. For the Hilbert functions we have

$$
\begin{equation*}
H\left(\mathcal{A}^{l} / I, m\right)=\sum_{1 \leq i \leq l} H\left(\mathcal{A} / I_{i}, m\right), \quad m \geq 0 \tag{52}
\end{equation*}
$$

If $\left(\mathcal{A} / I_{i}\right)_{D}=0$ for some i then $\left(\mathcal{A} / I_{i}\right)_{m}=0$ for every $m \geq D$. In this case the ideal I_{i} is generated by $\left(I_{i}\right)_{D}$. Hence in (52) for the values $m \geq D$ one can omit this index i in the sum from the right part. Therefore, in this case the proof is reduced to a smaller l. So we shall assume without loss of generality that $\left(\mathcal{A} / I_{i}\right)_{D} \neq 0,1 \leq i \leq l$.

Further, we use the exact description of the Hilbert function of a homogeneous ideal, see [4] Section 7. Namely there are the unique integers $b_{i, 0} \geq b_{i, 1} \geq$ $\ldots \geq b_{i, n+2}=0$ such that

$$
\begin{equation*}
H\left(\mathcal{A} / I_{i}, m\right)=\binom{m+n+1}{n+1}-1-\sum_{1 \leq j \leq n+1}\binom{m-b_{i, j}+j-1}{j} \tag{53}
\end{equation*}
$$

for all sufficiently big m and

$$
\begin{equation*}
b_{i, 0}=\min \left\{d: d \geq b_{i, 1} \& \forall m>d \quad \text { (53) holds }\right\} \tag{54}
\end{equation*}
$$

This description (without constants $b_{i, 0}$) is originated from the classical paper [11]. The integers $b_{i, 0}, \ldots, b_{i, n+2}$ are called the Macaulay constants of the ideal I_{i}. Besides that,

$$
\begin{equation*}
h(i, m)=H\left(\mathcal{A} / I_{i}, m\right)-\binom{m+n+1}{n+1}+1+\sum_{1 \leq j \leq n+1}\binom{m-b_{i, j}+j-1}{j} \geq 0 \tag{55}
\end{equation*}
$$

for every $m \geq b_{i, 1}$, see [4] Section 7. By Lemma 7.2 [4] for all $1 \leq \alpha \leq m$ if $f_{\alpha} \in I_{i}$ then $\operatorname{deg} f_{\alpha} \leq b_{i, 0}$. Hence it is sufficient to prove that all $b_{i, 0}, 1 \leq i \leq l$, are bounded from above by $D^{2^{O(n+1)}}$.

By (52) and (53) the coefficient at $m^{n-j}, 0 \leq j \leq n$, of the Hilbert polynomial of \mathcal{A}^{l} / I is

$$
\begin{equation*}
\frac{\mu_{j}}{(n+1-j)!} \sum_{1 \leq i \leq l} b_{i, n+1-j}+\sum_{0 \leq v \leq j-1} \sum_{1 \leq i \leq l} \frac{1}{(n+1-v)!} \mu_{j, v}\left(b_{i, n+1-v}\right), \tag{56}
\end{equation*}
$$

where $0 \neq \mu_{j}$ is an integer and $\mu_{j, v} \in \mathbb{Z}[Z], 0 \leq v \leq j-1$, is a polynomial with integer coefficients with $\operatorname{deg} \mu_{j, v}=j-v+1$. Moreover, $\left|\mu_{j}\right|$ and absolute values of all the coefficients of all the polynomials $\mu_{j, v}$ are bounded from above by, say, $2^{O\left(n^{2}\right)}$. Denote $b_{j}=\sum_{1 \leq i \leq l} b_{i, j}, 0 \leq j \leq n+2$. By the condition of the lemma all the coefficients of the Hilbert polynomial of \mathcal{A}^{l} / I are bounded from above by D. Hence from (56) one can recursively estimate $b_{n+1}, b_{n}, \ldots, b_{1}$. Namely, $b_{n+1-j}=\left(2^{n^{2}} l D\right)^{2^{O(j+1)}}, 0 \leq j \leq n$. Hence $b_{1}=(l D)^{2^{O(n+1)}}$. Notice that $b_{i, 1} \leq \max _{1 \leq i \leq l} b_{i, 1} \leq b_{1}$ for every $1 \leq i \leq m$.

Now let $m \geq \max _{1 \leq i \leq l} b_{i, 1}$. By (55) if $h(i, m) \neq 0$ for some $1 \leq i \leq l$ then $m<D$, i.e., m is less than the bound D for the stabilization of the Hilbert function of \mathcal{A}^{l} / I. Thus, $b_{i, 0} \leq \max \left\{b_{i, 1}, D\right\}$ by (54). Hence $b_{i, 0}$ is bounded from above by $(l D)^{2^{O(n+1)}}$.

We have $\left(\mathcal{A} / I_{i}\right)_{D} \neq 0$ for every $1 \leq i \leq l$. This implies $H\left(\mathcal{A}^{l} / I, D\right) \geq l$. Denote by c_{j} the j-th coefficient of the Hilbert polynomial of the module $\mathcal{A}^{\bar{l}} / I$. Now $\left|c_{j}\right| D^{j} \geq l /(n+1)$ for at least one j. Hence $D^{n+1}(n+1) \geq l$ by the condition of the lemma. This implies that $l^{2^{O(n+1)}}$ is bounded from above by $D^{2^{O(n+1)}}$. Therefore, $b_{i, 0}$ is bounded from above by $D^{2^{O(n+1)}}$. The lemma is proved.

Appendix 2: Bound on the Gröbner basis of a monomial module via the coefficients of its Hilbert polynomial

Denote by $C_{l}=\mathbb{Z}_{+}^{n} \cup \cdots \cup \mathbb{Z}_{+}^{n}$ the disjoint union of l copies of the semigrid $\mathbb{Z}_{+}^{n}=\left\{\left(i_{1}, \ldots, i_{n}\right): i_{j} \geq 0,1 \leq j \leq n\right\}$. A subset of C_{l} which intersects each disjoint copy of \mathbb{Z}_{+}^{n} by a semigroup closed with respect to addition of elements from \mathbb{Z}_{+}^{n} is called an ideal of C_{l}. Any ideal I in C_{l} has a unique finite Gröbner basis $V=V_{I}$, denote $T=C_{l} \backslash I$. Clearly, I corresponds to a monomial submodule in the free module $\left(F\left[X_{1}, \ldots, X_{n}\right]\right)^{l}$. The degree of an element $u=\left(k ; i_{1}, \ldots, i_{n}\right) \in C_{l}, 1 \leq k \leq l$ is defined as $|u|=i_{1}+\cdots+i_{n}$. The degree of a subset in C_{l} is defined as the maximum of the degrees of its elements. The Hilbert function $H_{T}(z)$ equals to the number of vectors $u \in T$ such that $|u| \leq z$. Then $H_{T}(z)=\sum_{0 \leq s \leq m} c_{s} z^{s}, \quad z \geq z_{0}$ for suitable z_{0}, integers c_{0}, \ldots, c_{m} where the degree $m \leq \bar{n}$. Denote $c=\max _{0 \leq s \leq m}\left|c_{s}\right| s!+1$.

PROPOSITION 1 (cf. [6], [12], [4]). The degree of V does not exceed $(c n)^{2^{O(m)}}$.

PROOF An s-cone we call a subset of a k-th copy of \mathbb{Z}_{+}^{n} in C_{l} for a certain $1 \leq k \leq l$ of the form

$$
\begin{equation*}
P=\left\{X_{j_{1}}=i_{1}, \ldots, X_{j_{n-s}}=i_{n-s}\right\} \tag{57}
\end{equation*}
$$

for suitable $1 \leq j_{1}, \ldots, j_{n-s} \leq n$. The degree of (57) we define as $|P|=$ $i_{1}+\cdots+i_{n-s}$ (note that this definition is different from the one in [4]). By a predessesor of (57) we mean each s-cone in the same k-th copy of \mathbb{Z}_{+}^{n} of the type

$$
\begin{equation*}
\left\{X_{j_{1}}=i_{1}, \ldots, X_{j_{p-1}}=i_{p-1}, X_{j_{p}}=i_{p}-1, X_{j_{p+1}}=i_{p+1}, \ldots, X_{j_{n-s}}=i_{n-s}\right\} \tag{58}
\end{equation*}
$$

for some $1 \leq p \leq n-s$, provided that $i_{p} \geq 1$. Fix an arbitrary linear order on s-cones compatible with the relation of predessesors.

By inverse recursion on s we fill gradually T (as a union) by s-cones. For the base we start with $s=m$. Assume that a current union $T_{0} \subset T$ of m-cones is already constructed (at the very beginning we put $T_{0}=\emptyset$) and an m-cone of the form (57) with $s=m$ is the least one (with respect to the fixed linear order on m-cones) which is contained in T not being a subset of T_{0}. Observe that each predessesor of this m-cone was added to T_{0} at earlier steps of its construction. Since the total number of m-cones added to T_{0} does not exceed $c_{m} m!<c$ we deduce that the degree of every such m-cone is less than $c_{m} m$! (taking into account that the very first m-cone added to T_{0} has the degree 0).

For the recursive step assume that the current T_{0} is a union of all possible m-cones, $(m-1)$-cones,..., $(s+1)$-cones and perhaps, some s-cones. This can be expressed as $\operatorname{deg}\left(H_{T}-H_{T_{0}}\right) \leq s$. Again as in the base take the least s-cone of the form (57) which is contained in T not being a subset of T_{0}. Observe that each predessesor of the type (58) of this s-cone is contained in an appropriate r-cone $Q, r \geq s$, such that Q was added to T_{0} at earlier steps of its constructing and $Q \subset\left\{X_{j_{p}}=i_{p}-1\right\}$. Hence

$$
\begin{equation*}
|Q| \geq i_{p}-1 \tag{59}
\end{equation*}
$$

The described construction terminates when $T_{0}=T$. Denote by t_{s} the number of s-cones added to T_{0} and by k_{s} the maximum of their degrees. We have seen already that $t_{m}, k_{m}<c$.

Now by inverse induction on s we prove that $t_{s}, k_{s} \leq(c n)^{2^{O(m-s)}}$. To this end we introduce a relevant semilattice on cones. Let $\mathcal{C}=\left\{C_{\alpha, \beta}\right\}_{\alpha, \beta}, \quad 0 \leq \beta \leq \gamma_{\alpha}$ be a family of cones of the form (57) where $\operatorname{dim} C_{\alpha, \beta}=\alpha$. By an α-piece we call an α-cone being the intersection of a few cones from \mathcal{C}. All the pieces constitute a semilattice \mathcal{L} with respect to the intersection and with maximal elements from \mathcal{C}. We treat \mathcal{L} also as a partially ordered set with respect to the inclusion relation. Clearly, the depth of \mathcal{L} is less than n. Our nearest purpose is to bound from above the size of \mathcal{L}. For the sake of simplifying the bound we assume (and this will suffice for our goal in the sequel) that $\gamma_{\alpha} \leq(c n)^{2^{O(m-\alpha)}}$ for $s \leq \alpha \leq m$ and $\gamma_{\alpha}=0$ when $\alpha<s$, although one could write a bound in general in the same way. Besides that we assume that the constant in $O(\ldots)$ is sufficiently big. In what follows all the constants in $O(\ldots)$ coincide.

LEMMA 14 Under the assumption on the numbers $\gamma_{\alpha} \leq(c n)^{2^{O(m-\alpha)}}, \quad s \leq$ $\alpha \leq m$ of maximal elements of all dimensions from \mathcal{C}, the number of α-pieces in \mathcal{L} does not exceed $(c n)^{2^{O(m-\alpha)}+1}$ for $s \leq \alpha \leq m$ or $(c n)^{2^{O(m-s)}(s-\alpha+1)+1}$ when $\alpha<s$.

PROOF For each α-piece choose its arbitrary irredundant representation as the intersection of the cones from \mathcal{C}. Let δ be the minimal dimension among these cones. Then this intersection contains at most $\delta-\alpha+1$ cones. Therefore, the number of possible α-pieces does not exceed

$$
\sum_{\max \{\alpha, s\} \leq \delta \leq m}(c n)^{2^{O(m-\delta)}(\delta-\alpha+1)}
$$

that proves the lemma.
Now we come back to estimating t_{s}, k_{s} by inverse induction on s. Let in the described above construction the current T_{0} is the union of all added m cones, $(m-1)$-cones, \ldots, s-cones. Denote this family of cones by \mathcal{C} and consider the corresponding semilattice \mathcal{L} (see above). Our next purpose is to represent T_{0} as a \mathbb{Z}-linear combination of the pieces from \mathcal{L} by means of a kind of the inclusion-exclusion formula. We assign the coefficients of this combination by recursion in \mathcal{L}. As a base we assign 1 to each maximal piece, so to the elements of \mathcal{C}. As a recursive step, if for a certain piece $P \in \mathcal{L}$ the coefficients are already assigned to all the pieces greater than P, we assign to P the coefficient ϵ_{P} in such a way that the sum of the assigned coefficients to P and to all the greater pieces equals to 1 . Therefore, we get

$$
T_{0}=\sum_{P \in \mathcal{L}} \epsilon_{P} P
$$

where the sum is understood in the sense of multisets. Hence

$$
\begin{equation*}
H_{T_{0}}(z)=\sum_{P \in \mathcal{L}} \epsilon_{P}\binom{z-|P|+\operatorname{dim} P}{\operatorname{dim} P} \tag{60}
\end{equation*}
$$

for large enough z. We recall that $\operatorname{deg}\left(H_{T}-H_{T_{0}}\right) \leq s-1$.
Now we majorate the coefficients $\left|\epsilon_{P}\right|$ by induction in the semilattice \mathcal{L}. The inductive hypothesis on $t_{\alpha} \leq(c n)^{2^{O(m-\alpha)}}, s \leq \alpha \leq m$ and Lemma 14 imply that

$$
\sum_{\operatorname{dim} P=\lambda}\left|\epsilon_{P}\right| \leq(c n)^{2^{O(m-\lambda)}}, \quad s-1 \leq \lambda \leq m
$$

by inverse induction on λ following the assigning ϵ_{P}. In fact, one could majorate in a similar way also $\sum_{\operatorname{dim} P=\lambda}\left|\epsilon_{P}\right|$ when $\lambda<s-1$, but we don't need it. The inductive hypothesis on $k_{\alpha} \leq(c n)^{2^{O(m-\alpha)}}, \quad s \leq \alpha \leq m$ and (60) entail that the coefficient of $H_{T_{0}}(z)$ at the power z^{α} does not exceed $(c n)^{2^{O(m-\alpha)}}, \quad s-1 \leq$ $\alpha \leq m$ (actually, due to the inequality $\operatorname{deg}\left(H_{T}-H_{T_{0}}\right) \leq s-1$ the coefficients at the powers z^{α} for $s \leq \alpha \leq m$ are less than c). In particular, the coefficient at the power z^{s-1} does not exceed $(c n)^{2^{O(m-s+1)}}$. Denote $H_{T}-H_{T_{0}}=\eta z^{s-1}+\cdots$. By constructing T_{0} we add to it $t_{s-1}=\eta(s-1)$! of $(s-1)$-cones, which justifies the inductive step for $t_{s-1} \leq(c n)^{2^{O(m-s+1)}}$.

To conduct the inductive step for $k_{s-1} \leq(c n)^{2^{O(m-s+1)}}$ we observe that for each $(s-1)$-cone P added to T_{0} either every its predessesor is contained in a cone of dimension at least s, or some its predessesor is an $(s-1)$-cone as well. In the former case $|P| \leq\left(\max _{s \leq \alpha \leq m} k_{\alpha}+1\right)(n-s+1)$ (due to (59)), while in the latter case $|P|$ is greater by 1 than the degree of this predessesor, hence
$k_{s-1} \leq\left(\max _{s \leq \alpha \leq m} k_{\alpha}+1\right)(n-s+1)+t_{s-1}$. Finally, exploit the inductive hypothesis for $\bar{k}_{m}, \ldots, k_{s}$, and the just obtained inequality on t_{s-1}.

To complete the proof of the proposition it suffices to notice that for any vector from the basis V treated as an 0-cone, each its predessesor of the type (58) for $s=0$ is contained in an appropriate r-cone, whence the degree of V does not exceed $\left(\max _{0 \leq \alpha \leq m} k_{\alpha}+1\right) n$ again due to (59) (cf. above).

Acknowledgement. The authors are grateful to the Max-Planck Institut für Mathematik, Bonn for its hospitality during the stay where the paper was written.

References

[1] D.A. Bayer, The division algorithm and the Hilbert scheme, Ph.D. Thesis, Harvard, 1982.
[2] A. Chistov, D. Grigoriev, Complexity of quantifier elimination in the theory of algebraically closed fields, Lect. Notes Comput. Sci., 176 (1984), 17-31.
[3] D. Cox, J. Little, D. O'Shea, Using Algebraic Geometry, Springer, 1998.
[4] T. Dubé, The structure of polynomial ideals and Gröbner bases, SIAM J. Comput., 19 (1990), 750-775.
[5] A. Galligo, Some algorithmical questions on ideals of differential operators, Lect.Notes Comput.Sci., 204 (1985), 413-421.
[6] M. Giusti, Some effective problems in polynomial ideal theory, Lect. Notes Comput. Sci, 174 (1984), 159-171.
[7] D. Grigoriev, Weak Bézout inequality for D-modules, J.Complexity, 21, (2005), 532-542.
[8] G. Hermann Die Frage der endlich vielen Schritte in der Theorie der Polinomideale, Math. Ann. 95, (1926), 736-788.
[9] M. Janet, Les modules de formes algébriques et la théorie générale des systèmes différentiels, Annals Sci. Ecole Normale Supér., 41 (1924), 27-65.
[10] H. Li, Noncommutative Gröbner bases and filtered-graded transfer, Lect. Notes Math., 1795, 2002.
[11] F.S. Macaulay Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
[12] M. Möller, T. Mora, Upper and lower bounds for the degree of Groebner bases, Lect. Notes Comput. Sci., 174 (1984), 172-183.
[13] G. Ritter and V Weispfenning On the Number of Term Orders, Applicable Algebra in Engineering, Communication and Computing, 2 (1991), 55-79.
[14] F. Schwarz, Janet bases for symmetry groups, Groebner bases and applications, in London Math. Society, Lecture Note Ser. 251, 221-234, Cambridge University Press, Cambridge, 1998.
[15] C. Yap, A new lower bound construction for commutative Thue systems, with applications, J. Symb. Comput., 12 (1991), 1-27.

