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Quasi - Symmetric Line bundles on Abelian varieties

EYAL Z. GOREN

We study a line bundle L over an abelian variety X and an isogeny f: X — X satisfying
J*L =L " . We study the problem of ‘explicitly describing the action of f on global sections of
powers of L and we determine the relations imposed by f on the 'thetanulwerte’ coming
from such sections. In addition, the representation theory of finite and adelic Heisenberg

groups is discussed.

0. INTRODUCTION

Let X be an abelian variety over an algebraically closed field & of characteristic p 2 0.
Let L be an ample line bundle of separable type on X (i.e. deg(L) isprimeto p if p>0).
Assume that there exist an isogeny f: X -— X such that f*L = [" for some n and
(deg(N, p) =1 if p> 0. We say then that f is quasi symmetry of L andif f#1 that L is
quasi - symmetric. If n =1 we say that f is a symmetry of L This phenomenon is
interesting in the context of the general theory of abelian varieties. One can also motivate the
interest in such line bundles by the following observations:

(i) As explained in detail below, automorphisms of a curve C induce automorphisms of
Jac(C ) and the second power of a carefully chosen line bundle L (inducing the natural
polarization of Jac(C)) is stable under all these automorphisms.

(i) If f only satisfies f*@,=n ¢,, where ¢, : X — X" is the polarization induced
by L, thatis, if f is an isogeny of the polarized abelian variety (X, ¢, ) then, as explained
in detail below, if L is symmetric, we have f¥*L = (L ?)". This shows that the situation we
are dealing with is quite common, and in fact there exist whole families in appropriate
moduli spaces characterized by this property.

(ii1) Sections of ample line bundles are given over the complex numbers by Riemann's
theta functions with characteristics. There are various methods by which one can determine a
field containing the values of these functions at points corresponding, for example, to abelian
varieties with complex multiplication, of the moduli space of abelian varieties with principal
polarization. It is of interest to understand these values as closely as possible.

Before stating some of the results of this paper we recall briefly the definition and basic
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properties of finite and adelic Heisenberg groups. For a complete account see [Muml!],

[Mum3].

HEISENBERG GROUPS.

DEFINITION. A finite Heisenberg group G is a group for which there exists an exact
sequence '

| — k*— G o H — |
such that k™ is the center of G and H is a finite abelian group.

It follows from the definition that the commutator pairing from H x H- to k™ isa
non-degenerate bimultiplicative skew-symmetric pairing and this implies that if p > 0 then
(p, #H) = 1 and that the elementary divisors of H appear in pairs ( We denote the number of
elements of H by d?). In fact these are the only restrictions on H.

G always contains a finite group, denoted by G ¢, characterized as the set of elements
whose d*-th power is trivial. G ° sits in the exact sequence

l— pp— G — H — |

where f1, is the group of d’-throots of 1 in £*!

We say that a subgroup K of G is a level subgroup if m induces an isomorphism
between K and n(K), and we say then that K lies above m(K). If F is a subgroup of H
then F has a level group above it if and only if F is totally isotropic with respect to the
commutator pairing. In fact, any level subgroup of G is contained in G°, because any level
subgroup is of exponent 4. We can always find two maximal isotropic subgroups F, F ' of
H suchthat H=F © F ' - one says that F has an orthogonal complement - but it is not
true that every maximal isotropic subgroup has an orthogonal complement. This decomposition
enables one to prove that G is determined up to an isomorphism by H.

If H is a finite Heisenberg group then Mumford has proved in [Muml], in analogy with
the Stone Von-Neumann theorem, that there exists a unique irreducible representation of H
on which k™ acts through its natural character. A complete description of the basic representation
theory of finite and adelic Heisenberg groups appears in the appendix.

Finite Heisenberg groups arise as follows :

DEFINITION. Let X be an abelian variety over an algebraically closed field k& of
characteristic p 2 0. Let L be an ample line bundle on X. We say that L is a line bundle of
separable type if (deg(L),p)=1 if p>0(for p=0 every line bundle is of separable type).
Given a line bundle of separable type L we define the Heisenberg group G(L) associated
fo it by

GL)={¢:L —> LI ¢is an automorphism of L covering translation by x on the base}

That is G(L) is the group of automorphisms ¢ of L for which there exists some x such
that ¢ fits into a commutative diagram

et e be the exponent of H, then one may define such subgroups where d is replaced by e? 2e
(or even e itself if e is odd). The particular choice d? is both canonical and convenient. These remarks
follow from the formula (xy)"=x"y"- [y.x] ™ ",
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where we denote by T, the translation map 7.(y)=x+ y.
There is a short exact sequence

1| — k¥ — G(L) — H(L) — 0,

where H(L)=Ker ¢,, ¢, (x)=T* ® L'. G(L) is a finite Heisenberg group. We refer the
reader for a proof of this fact as well for a general discussion of these groups to [Mum1] and
[Mum3].

DEFINITION. Let A, denote the adele ring of @Q with the component corresponding to
p omitted if p > 0. An adelic Heisenberg group is a group G fitting into an exact
sequence
1— k*— G — A¥ — 0,

such that k™ is precisely the center of G or, equivalently, such that £* is contained in the
center of G and the commutator pairing
2% 2z x
Al x ASF — k
1s non degenerate.

The uniqueness of a skew - symmetric non degenerate pairing on Af" implies that
every adelic Heisenberg group is isomorphic to the group
k*x AF x AS
with the group law
(@, %, %) (B, yio y,) = (B e (2 (" x; Y= x5 y)), x4y, x4 y)
where
e: A/ 2 — k*),,
is a fixed isomorphism. We will usually denote this group by G and call it the standard
adelic Heisenberg group.

In contrast to finite Heisenberg groups the representation theory of adelic Heisenberg
groups is simple. We call a representation of G a representation of order n if k* acts
through the character a —— ¢/. In analogy with the theory of real Heisenberg groups,
there exists a unique continuous irreducible representation of order n for every n# 0 (see
appendix).

Adelic Heisenberg groups arise from abelian varieties by a ' limiting process ' :

DEFINITION. Let X be an abelian variety over an algebraically closed field k& of
characteristic p 2 0. Let L be an ample line bundle on X of separable type. Let T(X) be
the 'separable’ Tate module of X, that is,

TX) = lim X|[n]
(_
(n,p)=1

(if p=0 there is no condition in the limit). Let V(X)=TX)® Q.
Define the adelic Heisenberg group associated with L , G (L), as follows :

3
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G (L) = set of sequences of the form (x,, ¢, ), 5, Where :
(x,),. » 18 anelement of V(X), the maps ¢, are defined if and only if x e H(n*L ), and then
¢, G(n*L).If both ¢, and ¢, are defined and m = nd, then d*¢,= ¢, where the pull back
is with respect to d x, = x, ¥'. The group law is given by

(xn’ ¢n)ne N (yn’ "lln)m N =(xn+yn’ ¢n°|'”n)ne L

G (L) is an adelic Heisenberg group and there is an exact sequence
1l — k— G L T VX — 0.
(For these facts as well as others stated below see [Mum1], [Mum2], {Mum3]). There is a
canonical homomorphic section
o T(X) — G (L)
givenby (x,), — (x,, 9, ), where (x, @, ), is the unique element of G (L) such that &,
is the identity map. In general ¢ (T{X)) is not a maximal level subgroup. Actually there is a
natural isomorphism for every n
Normalizer ( 6" (n T(X)) )/ 6" (n T(X)) = G(n*L).
Suppose from now on that L 1s symmetric. Then there is a canonical section
VX)) — G (L)
constructed as follows : given xe V(X) choose some ye G (L) suchthat 2 ay) = x, and
put 7(x) =y & ,(»"" (for the definition of &_,, which is an automorphism of G (L),
inducing multiplication by - 1 on W(X) and the identity on k™, deduced from multiplication
by - 1, see section II). This definition does not depend on y and defines a section, though
not homomorphic, to 7.

REPRESENTATIONS AND BASES. There is a natural action of G(L) on IX, L):

Let ¢e G(L) cover translation by x and let se I'(X, L) be a global section of L. Then

U, (s)= gosoT
defines an action of G(L) where the center of G(L) acts naturally. In fact this representation
is trreducible. It follows from the discussion of the appendix that choosing a maximal level
subgroup K, a K invariant vector v, (which is unique up to a scalar) and a section X for
the commutator map y : G(L) — K* (K* = the characters of K ) we get a basis for
nX, L). Namely, { Uns (v,)! &e K* }. We shall always assume that 3(1) = 1. We have
also a decomposition of I'(X, L) into eigenspaces of K :
nX.0)= @ I'X.L)y
Ee K*

where each I(X, L), is one dimensional and spanned by Ug, (v)). When K has an
orthogonal complement K' we can do better. We can choose X as the unique isomorphism

™ In general if f: X— Y is an isogeny and L is a line bundle on ¥, then for every isomorphism
¢: L— L covering translation by y on the base and for every xe X such that fix) =y there is a unique
isomorphism f*¢: f*L — f*L covering translation by x on the base which is obtained from ¢. We call this
isomorphism - which depends on x - the pull back f*¢ with respectto fix)=y.

4
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with X' induced by the commutator pairing.

The theory of descent shows (loc. cit.) that there is one - one correspondence between
level subgroups K over a fixed subgroup F of H(L) and isomorphism classes of line
bundles M on X /F suchthat p*M =L, where p: X — X/ F is the natural projection.

Given such M one associates to it all the automorphisms of L that are of the form p*Hd.
with respect to all xe F. In that case one can show that ITX, L) is the direct sum

@ p*Ir'(X/F,M) andin fact fixing some level subgroup K, that corresponds to one
M. pM=L
of these M 's, this is exactly the decomposition to eigenspaces of K.

The analogue for adelic Heisenberg groups is as follows : define
[ (X, Ly= lim I'(X, n*L)
_)

where the limit runs over all n prime to p if p >0, and is taken with respect to the
injections
d* : I(X, n*L) —— X, d*n*L).
Given se [" (X, L) and (x, ¢,),eG (L) define
fo,,'m,.(s)z $,0s50 T.x_

where se X, m*L). This is a well defined group action of G (L) on [ (X, L) and the
fundamental fact is that it is irreducible. There is a one to one correspondence between
maximal level subgroups containing ¢’(m T(X)) for some m and line bundles of degree
one on abelian varieties rationally isogenous to X whose pull back to X is rationally
isomorphic to L (see [Mum3] p. 62 ff for the definition and properties of rational isogenies).
We call such level subgroups commensurable with 6*(T(X)). To any such commensurable
maximal level subgroup K and a section X to the commutator map y:G (L) — K*

(continuous characters) one can associate a basis { Uzza (v) | & K* }, where v e X L
is a fixed K invariant vector (which is unique up to a scalar). We have also a decomposition
to eigenspaces

Fxn= @ FxL)y

Ee K+

and each [ (X, L), is a one dimensional space spanned by Uy, (v;). One should notice that
for general level subgroups there is no such decomposition although there are certain families
of related bases that one can construct from some other level subgroups. We will develop this
idea in §3.
CONVENTION. Generally we will denote basis elements with respect to a general level
subgroup (it may or may not have an orthogonal complement) by the letters v or 8. We will
denote them by the letter s if the subgroup has an orthogonal complement.

MAIN RESULTS.

In general, the content of this paper is as follows:
§1 contains the general geometric background of quasi - symmetric line bundle and the
definition of the homomorphisms associated with them.

5
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§2 is devoted to the proof of

THE SYMMETRY THEOREM (PRELIMINARY FORM). Let X be an abelian variety over
an algebraically closed field k. Let L be an ample line bundle of separable type on X. Let
of (L)={ge Aut (X) | g*L = L}. Assume that there exists a maximal isotropic subgroup Z of
H(L) whichis (L) - invariant and choose some level subgroup Z above Z. Choose some

non zero vector v,e NX, L),= X, L) and choose a section

Gy « 2 — 2%, z()=1.

Given ge (L), there exists an automorphism 8, of G(L) lifting the action of g on
H(L) (see §1 below). Let ¢ : g*L — L be an isomorphism (determined up to a scalar). Let
T = ¢,g*e End(I'(X, L)).

Then :
(a) There exists a unique character Ye Z*, characterized by either :
(i) %) '8(z) e Z forall ze Z orby
(i) If M is the line bundle on X | Z corresponding to Z then g*M @ M '
corresponds to Y, under
2 = 7¥ = Ker (Pic%X/ 2) — Pic’(X)).
(D) There exists scalars b, e U, ( xe Z*), determined by the equation
be 2 UstperyV = Usuzy Uzgpn

T = b ,
(xezg- Ay "x) c(8) x;g- %8 xVrsx

where {v,=Ug, v, isabasisfor I'X, L) and c(g) is a scalar determined by the equality
Tv, = c(g) Yy - In particular the matrix describing T, which is given explicitly by the b_ s,
is monomial and unitary.

such that

REMARKS. 1) Note that the underlying permutation of 7 is y —— Y, 8% Note also
that b, ,= L.

2) For L very ample, T is actually writing the automorphism g by coordinates. Note
that the indeterminacy up to a scalar of 7 disappears in projective coordinates.

3) Given any finite automorphism g of X we can create an ample line bundle for which
g is a symmetry by taking the ' norm ' of any ample line bundle with respect to g. Since the
resulting line bundle is ample our method applies. In particular we see that for every
automorphism ge Aut(X) of finite order there exists a projective embedding such that the
action of g on X is given by a monomial unitary matrix.

4) Both in the case of k¥ = € and in the general case we can get from the symmetry
theorem identities between functions. Over C this could be done by trivializing the pull-back
of our line bundle to the universal covering space. In general we may trivialize the pull-back
of our line bundle to W(X) 4 la Mumford ([Mum3]).

§3 contains several topics. We discuss the functorial behavior of adelic Heisenberg groups,
projection operators on finite Heisenberg groups and the construction of 'compatible’ bases to
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ITX, n*L). Finally we prove a result analogous to the symmetry theorem for 1sogenies f: X
— X such that f*L = L" and such that (deg(f), p) =1 if p > 0. The precise formulation
requires too much preparatory work to be stated here. Along the way we state another elegant
version of the symmetry theorem and the section closes with explaining how, under mild
restrictions, we can extend our results to isogenies f : X — Y with appropriate line
bundles.

§4 contains some examples illustrating the theory.

§5 consists of three topics. The extension of the simultaneous construction of bases for
NX, n*L) to all ITX, L" ). The extension of our results to Q@ - isogenies.A concise
dictionary between the analytical and algebraic theory.

In the appendix we classify all the irreducible representation of finite Heisenberg groups
and determine the decomposition of tensor products of such representations, hence giving an
explicit description of the representation ring. The same results are obtained for continuous
representations of adelic Heisenberg groups. Although for finite Heisenberg groups there
might be many non isomorphic irreducible representations of order n, for adelic Heisenberg
groups there is a unique irreducible continuous representation of order n forany neZ -
{0}. This is in complete analogy to the well known case of real Heisenberg groups.

The results are explicit enough to easily determine for example the decomposition of
X, L") as a module of G(L) acting via the natural homomorphism ¢ : G(L) — G(L"),
or of Sym *(ITX, L)) yielding in this case a new interpretation of the notion of even and odd
theta functions and sheding more light, so we believe, on the multiplication map

nx,L® — nx, L)

ACKNOWLEDGMENTS. It is my pleasure to thank EHUD DE SHALIT for many valuable
comments. The final version of this paper was written while enjoying the warm hospitality of
the Max Planck Institue at Bonn.

1. QUASI - SYMMETRIC LINE BUNDLES ON ABELIAN V ARIETIES.

We retain the notation fixed in the introduction. Thus X is an abelian variety over an
algebraically closed field k of characteristic p 2 0. L is an ample line bundle of separable
type on X eftc.

DEFINITION. Define
o(Ly=( ge Aur(X)| L= g*L },
oA (Ly={(g,¢)1 ¢: L = g*L anisomorphism }.
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Note that according to our terminology, L is quasi - symmetric if of (L) # {1}. As
customary L is called symmetric if - le of (L).

REMARKS. 1) &/ (L) is a finite group.

2) In the sequel we will often confuse divisors, line bundles and invertible sheaves. While
this might cause some confusion it has the advantage of making some arguments more
transparent. In this connection we remark that one can define & *(L) for L = divisor, line
bundle, invertible sheaf (in the obvious way) such that under the usual transition between the
different concepts the definitions of the various &f *(L) agree.

LEMMA 1. There is an exact sequence of groups

| — kK —> o (L) — A) — 1,
where we define

(& O)h, W) =(gh, h*po y).

This sequence always splits.

Proof. The assertion about the exact sequence is easy to check. To prove the second
assertion we note that it is enough to prove that there exists some divisor D on X, such that
L =0 (D) and such that g '(D)=D forall ge 9(L). Indeed, given such D, let

' o:Q0(D)y— L
be an isomorphism. Then for every ge ¢/ (L) we have
-1 *
o ) - g% ¢
L—— 0,D) =0 g'D) — g*Q (D) — g*L
which gives us a splitting homomorphism
ALy — o (L), g (g g*aoa").

To find such D start with any divisor F such that L = Q (F) and such that Oe supp(F).
The isomorphism g*L = L implies that for all ge ¢f (L) there exists a function S, such that
g¥F = F+(f,).

Since Oe supp(F) we also have Oe supp(g*F) and therefore Oe supp(f,) and we may
normalize the functions f, forall ge 9/ (L) by requiring that £ (0) =1 and that determines
each f, uniquely.

It is easy to check that

g — f
isa | -cocycle in Z' (&f (L)”, k(X)* ), where fg"(x) = f, (h(x)) defines the left action of
(LY on k(X). By Hilbert's 90 there exists Qe k(X)™ such that for all ge 9/ (L)
S = S22
We take D= F - (£2). Q.E.D.

COROLLARY 1 (of proof). For every line bundle L there exists an &f (L) - invariant
divisor D, suchthat L =0 (D).

REMARK. Assume that every simple component of X is of dimension at least 2. Define
Ky, =X /94 (L) andlet m: X —> K, be the natural quotient map. Then there exists a

8
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adivisor F on K, such thatm*F = D where D is a divisor defining L. Indeed, if we
define

RLy={xe X | stab,,,(x)# {1} }.
Since

RL) = U Ker(l—g)
lzge (L)

it follows that codim(X (L) ) = 2. Therefore, letting X/ =X- R (L), K'= X'/ o/ (L) we
have natural isomorphisms CI(X) = CI(X/), CI(K) = CI(K/) and we reduce to proving the
same assertion for D |,; and proving the existence of such F on K. But, now the map
n: X/ — K/

is étale and finite. For such maps, descent theory tells us that such a divisor F exists. Note,
however, that we can not conclude that there exists a line bundle M on Kg,(L) such that m*M =
L (the precise conditions for & (L) = {£1} were given in [Mum1]) . The essential reason for
that is that on a singular varieyt the concepts of Weil and Cartier divisors diverge. A concrete
example is given by any ample symmetric L(H, y) such that )Y is non-trivial. (see §5 for
terminology). Q.E.D.

THEOREM 3. Let L be an ample line bundle on X. Define
o (L) ={ ge Aut(X) | there exists y(g)e X s.t. g*L=T,,
Then : 1) o (L) is a finite group.
2) Let S be a subgroup of o (L) of order s. Then
g — y(g) (mod H(L)) for ge S,
isa ) - cocycle representing a class in H'(S, X/ H(L)) of order m | (s, 2).

FL ).

3) There exists xe X such that
g¥ T *L" = T*L" forall ge §,
that is
SC oA (TxL).
Further, x is unique up to an element of
M (1 —g)HL™).
ge (D

Proof. 1) Note that since L is ample &/ (L) is precisely the group of automorphisms
preserving the algebraic equivalence class of L. That is, precisely the group of automorphisms
preserving the polarization ¢, which is finite.

2) First note that y(g) is unique mod H(L) and that & (L) preserves H(L). Then

(gh)*L = h*g*L
WAT, L
Tt ® H¥L

In

= Ty onen L
This implies that
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¥Wgh) = h*y(g) + y(h),
where we put h* t = h™' (¢) (this is an action of &¢ _(L)” ). This shows that for ge § we get
a cocycle in
H'(S, X/ H(L)),

which is killed by s and therefore it is of order m | s. Moreover, we may assume, after
translating L which amounts to changing everything by a coboundary, that L is symmetric.
Therefore g*L is symmetric for every g which implies that 2y(g)e H(L). Explicating these
remarks we see that there exists some TQJ e X/ H(L) such that

myE) = (1 - g)*, forall ge §
(we denote elements of X/ H(L) by X, y etc.). Choose some xe X such that mK = Tq} . Then
there exists an element Hgje (X / H(L))[m]= H(L™)/ H(L), such that

@) = (1- g)*K,+ Ag).

We have :
() " = T@* L™ = Ty gucsqp*L” = Ty pu* L7
@) BT A" =T (Fg5L" = T g, ol = THL

That proves the first part of 3). To get the uniqueness assertion we note that if

gT *L" = T *L",
then the second and fourth expressions of (2) shows that

L™ = T o *L7,
hence,

(1-g)*x'=y(g) mod H(L").
Since « satisfies the same equality we see that
(I-gyxm(x-x")e H(L),
therefore,
x-x'e (M (1 —gym)7H(L)

geof (L}

which implies the uniqueness assertion. Q.E.D.

PROPOSITION 4. Let m: C —— B be a Galois covering of smooth complete curves
with Galois group B of elements. Fix some base point ce C, andlet @ = O, be the theta
divisor with respect to the embedding determined by the base point ¢,

C & Jac(C).
Choose some e Jac(C) suchthat T*O, is symmetricandlet L=0, ., (T*6, ). Then
Pc oL

Proof. We could have used Theorem 3 but it is better to argue directly using the same
rational. Let L be defined as above. Then for every ge ® we have

g*L=T, "L
for some unique y(g). Since L is symmetric so is g*L and therefore 2y(g)e H(L) = {0}.
That is y(g)e Jac( C )[2]. Thus,

gL = (T *L) = T XL?) = L. Q.E.D.

10
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REMARKS. 1) Proposition 4 shows that there are many examples of line bundles L such
that &f (L) 2{X1}. Other examples may be constructed using the theory of complex
multiplication.

2) Note that in Pic, ,( C ) the theta divisor is certainly invariant. The problem Proposition
4 deals with is essentially the problem of non - existence of a common fixed point for ®.
Example IT in §4 shows that the curve y?=x°%-1 has no point fixed by all its automorphisms.
(Indeed, by Lefschetz fixed point formula, the number of fixed points for the automorphism
m given there is 2 and these are the points {(0, i), (0, - i)}. On the other hand the fixed
points of the hypereliptic involution are {(0, {)1 {®=1} ). If there were a point p such that
the theta divisor with respect to p - denoted by ©, - is invariant under all these automorphisms
then ©,= 0, ,=T,,.,0, Since the theta divisor is of degree 1 we conclude that g(p) = p
for all g which is impossible. Therefore, Proposition 4 is the best we can hope for in
general.

DEFINITION. Let L be a symmetric ample line bundle. Define
E(L) ={fe End(X) | f*L = L" for some n, ( p, deg(f))=1if p>0},
E°WL)y={fcEndX) | YL =L 2forsome n, (pdeg(f))=1if p>0}.

REMARK. The condition f* L =L" is not too strong. Indeed, if f*L is only algebraically -
equivalent to L”, then the same considerations as in Proposition 4 show that f*L*= L*"

Consider now an isogeny f: Y — X andlet L be an ample line bundle on X. The
following lemma describes the basic functoriality of the adelic Heisenberg groups associated
with line bundles.

LLEMMA - DEFINITION 5. 1) There exists a canonical isomorphism
D6 (*) — G W)

fitting into the following commuting diagram

w

1 — k& — G (f*L) V(Y) — 0
JId Jf(ﬁ L) l v(H
| — & » G (L) Vi) — 0.
2) If fe (L) then the same holds for G(f*L) and G(L) with the obvious modifications.

Assume that fe £ (L), f*L = L", then :
3) There is a canonical surjective homomorphism

5:G (Ly— G ()

fitting into the following commuting diagram

L 4

| — k=G (L) — VX)) — 0

< T

| — k* —G (L) — VX) — 0.

11
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where o, : k™ — k* isgivenby o, ()=1".
4 If fe (L) then the same holds for G(L) with the needed modifications.

Proof. The definition and the stated properties of j(f, L) appear in [Mum3] Proposition
4.9. To prove 3) and 4) let
¢: f*L— I°

be an isdmorphism and

¢*:GUL") — G (f*L)
be the induced isomorphism (which is independent of the choice of ¢) and denote by the
same symbol ¢* the induced isomorphism

o :G (') —G (FHL).
The definition of &, is given in either the finite or adelic case by

6= jfL)o ¢*o g,

where € : E}(L) — G(L") is given by €, (¢)= ¢ and ¢ G (L)y— G (L") is the
induced homomorphism. The verification of the stated properties of this homomorphism is
immediate. Q.E.D.

REMARKS. 1) The homomorphisms &, &, satisfy
6)F ° 63 = 6!3 :
This follows easily from the definitions.
2) For f multiplication by n (n any integer ) one can check that our 8, is equal to the
homomorphism §, defined in [Muml] p. 308.

I1. THE SYMMETRY THEOREM.

From now until the end of this section fix a maximal isotropic subgroup Z of H(L) and

a maximal level subgroup Z above Z. Later we will put further conditions on these
subgroups.

Given ge /(L) we can define a new action U* of G(L) on IX, L) by

U, (s) = Uaxca (5).
Since the scalars still act naturally we have a unique, up to a scalar, intertwining linear
operator

T:NX L) — X, L),

satisfying

UoT=ToUs,, forall ge G(I), se I'X, L).
This follows from the fact, analogous to the Stone - Von - Neumann theorem for real
Heisenberg groups, that G(L) has a unique irreducible representation of order 1 (see [Mum1]
and appendix). T is determined, up to a scalar, by the fact that it takes a Z- invariant vector
toa &,.1(%) - invariant vector and by its equivariance property. -

12
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CENTRAL OBSERVATION. Let ¢: g*¥L — L be an isomorphism. Then
¢* g* : l-(Xl L) — I-(X: L)
is a linear isomorphism. I claim that this too is an intertwining operator, therefore is equal, up

toascalarto T :
Denote by 7 the map ¢, g*. We have to prove that

T(Us 4y5) = U(T(9))

Claim : For every re G(g*L), se X, L) wehave g*( U, ,y, s)= U (g*s).
Proof (of claim). Let r={(x, ¢), and j(g, LXr)=(gx, y). Then
(U yy$) = gWosoT, ")
=g*Yog*so T’
= U(g*s).

Then, using the claim, we get
TWUs,95) = TWUg 1x67124)%)
= 08" (U 1xs120)5)
¢ ' U, ¢(g*s)
U(T(s)). Q.E.D.

Our goal is to describe the map T as explicitly as possible. We start with the following
ad hoc but convenient definition :

DEFINITION. Given an algebraic subgroup A G X define Pic(X)" to be the image of
Pic(X / A) under the natural pull-back homomorphism
Pic(X /Ay —— Pic(X)
(Note that if A is finite then Pic(X)" is of finite index in Pic(X)).

Until the end of this section we assume that Z is a maximal isotropic subgroup of H(L)
which is $(L) - characteristic, &

EXAMPLE. If M isofdegree | and L=M "z, then X[n] C H(L) = X[n?] is always
maximal isotropic and an ©f(L) - characteristic subgroup.

Consider the exact sequence

T
ey 0—2Z »X— X/Z— 0
which yields the dual exact sequence "
T
) 0—Z — X/2)) — X — 0,

™ Actually everything we would prove works equally well for any subgroup of 9 (L), in particular for
cyclic subgroups. The assumption is made only for convenience of presentation,

13
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where Z" is by definition the kernel of m*. This sequence expands to an exact sequence
3 0 — Z'—> Pic(X/Z) — Pic(X)> — 0.
All these sequences are sequences of 9/ (L)” - modules. Taking group cohomology we get

@ (Pic(Xy)*" — H'(of (L), Z) — H'(H (L), (X! D).
In particular the sheaf L gives us a cocycle { g = N, }e H'( (L)*, Z"). By its
definition it is obtained as follows :
Choose some Me Pic(X/Z) such that 7*M =L. Then
N,=g*M @M~ L
Changing the choice of M amounts to changing the cocycle by a coboundary. Now, by the
general theory of descent there is a natural choice of M; Since we have already fixed a level

subgroup Z there is a unique M corresponding to it, namely, the one that #Z is the descent
data forit. Let M denote this particular sheaf.

Using the canonical isomorphism Z” = Hom(Z, k*) = Z*, we have a cocycle
{gr—7)e Z(AL) Z%,
obtained from { g— N, }.

On the other hand, for every ze Z there is a unique scalar B,(z) such that
B.(2) 6 () e 2
For a fixed g, Bx is a character of Z, and it is easy to check that
(g B,)e Z(H(L)", Z%).
PROPOSITION 6. 3, =

Proof. Let us first recal the description of the injection Z* —— Pic(X / Z). We use
[Ser] as a reference for this. Let ne Z* and consider the following diagram, where N, is
defined as the push out of the first square :

> Z
ln
:Gm

N,=G, X X/{(n(-2),2)1ze Z}. Themap #* is the pull back operation

» X =L X/ Z— 0
!

H

> N, ~F> X1z — 0.

0

0 —— G, 7D Es X —— 0
| | n
| l |

0 » 6 — D x172—— 0

7D = DX, ,, X ={(gx) | ge D, xe X,p(g)=m(x)}. In particular :
N, = { [(0 y), x] | (@ y)e G, X X/ {(N(-2), D},ez - xe X, Wx)=7(y) }.
We have an isomorphism

14
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¢,: m*N, — A' x X

given by

(e, y), x] — (a/n(x-y), x).
(The inverse is just [( ¢ x), x] «—— (& x)).

We have fixed M and Z. The connection between them is as follows : choose an
isomorphism «: %M — L, then
Z={(x,T*x o')lxe Z }.
Put ¢, =x® ¢,,
o, T MAN,)=mrM® r*N, — L.

We get an explicit description of the level subgroup belonging to M ® N, , which we denote
by Z:

Z ={(x,T*, 00, ' )lxZ}
There is a unique character 8, such that for all xe Z,

(x, B, (x) TXa,o 0" )=(x,T*ao a').
LEMMA. B, = 1.

Let us assume this lemma for a moment and show that it implies the proposition. If 77 is
such that N, = N_ (equivalently 7,=m), then
' M@N,=MQON, = g*M,
hence Z is the level subgroup corresponding to g*M in G(L). By functoriality, the
subgroup corresponding to g*M in G(g*L) is j(g, M) ' (#), and under the isomorphism
¢: G(L)— G(g*L)
it corresponds to (8,)"' () = 8,1 ().

Therefore, if y=gx and (y, T*ao a'')e Z we have
BoME(yTH*ao ' )=f, (g0)(x, T* 0! ) € 6,1 (B

However, since &, (#)= Z, we have also

B, ) (x, T*a, 0" ) e 6,1 ()
Therefore
ﬁq =gﬂg']
and using the Lemma we get
J{g = n = ﬁn =gﬁg"
whence

% =(gB)' =B,

(using the cocycle relation).

Proof (of the Lemma). The way to prove that 8, =7 is to compute the action at the fiber

of L atzero, L,, of the maps T *axo ' and T *a, o a,' Consider the following
diagrams :

15
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L, —2%— (71'*|M)0 Ly 20 1@ N, ), = (M), ® (TN, ),
o0, DE wrmr, (0, ETPU (g @ (1N,

(all the maps in this diagram are the specialization to the fiber at zero. This is omitted for
typographical reasons). We see that

B, (x) = ¢,(0)/ (T* ¢,0).

This scalar is described by the following diagram

A' x X ~¢n—n*N,1

®)

THA' x X) < w TX*N,

Recall that

N, ={ [(&, y), x] | (&6 y)e G, X X/{(N(-2), D}, 7 - ¥ X, Alx)=7(y) },
and therefore

TXTN, = { (v, 5) | ye X, se T*N,, T,() = P(s) ).
The isomorphism 7*N, — T *7*N, is given by
(e, z), 2,] ¥ (2, [(6 2)), 2, + x]).
Similarily,
A x X={(a,x) | e k¥, xe X},
THA' x X)={[y.(a 2] | ye X,(&t,2)e A' x X, TXy)=z}.
THA' x X), is naturally identified with (A' x X)_by [0, (&, x)] < (o, x). Hence

diagram (5) at the fibers at zero looks like

#

(@,0) «—"— [(a,0),0]
7‘4 .
(o) N), x) «— [0, (a/ 1), x)] <—"¢—” ©, [(e, 0), x])
Q.E.D.

Let us construct an example showing that {g — 7, }e H'(sf (L)*, Z) is not trivial.
Recall first (see (4) ), the exact sequence

©) (Pic(X)* ™" — H'(of (L), Z") — H'(A (L)",(X/ 2)").

¥ In general if f: Z— Y, g:Y— X, and p: N— X is a line bundle then
g*N={(y, Dl ye Y, le N, p()= g(v)} with morphism p':g*N— Y,
F*e*N=1{(z,5) 1 ze Z, se g*N, p'(s)=fz)}, and
(goM*N={(z,1)1ze Z,le N, p() = (g o A D}.
Wehave f*¢*N =(gof)*N by (z.(»D)r— (2

16
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LEMMA 7. Let S be a finite cyclic group of order s, S =< ¢>. Put
X={xeXlx+ox+.+0'x=0}.
Then
H'(S, X) = X /(X ),
where (X )° is the connected component of (X . In particular, if X is connected then
H'(S, X) = {0}.

Proof. The kernel of the map
(l-0: X—™ X
is contained in X[s] and in particular is finite. That implies that (1 - oXX) which is
connected is equal to the connected component (X°. Therefore, by the well known description
of H' for cyclic groups,

H'(S, X) = X/ X,

and in particular is trivial if X is connected. Q.E.D.

Let us consider now a generic principally polarized abelian variety X. Let M be an
ample symmetric line bundle on X, and take L =M * Then o (L)= {*l}, H(L) = X[4],
and we take Z= X[2]. In that case X =X is connected, and thus

H'( (L)",(X/2)") = {0},
further
H'(of (LY, Z") = H' (o (D), X[2))
=Hom(Z/2Z,(Z/2Z)*)
=(Z/2Z)*.
From this we conclude that
(Pic(X)* ™" — H'(A (L)*, Z')
is surjective with a non trivial image, which shows that the cocycles {g > ¥, } appearing
above are generally non - trivial.

Back to intertwining maps :

Let us review the situation. X is an abelian variety, L an ample line bundle on X of
degree d, Z C H(L) is a maximal isotropic subgroup which is $f (L) - characteristic, and
Z is a maximal level subgroup over Z. We denote by y: G(L) — Z* the commutator
map, ¥ (2)=[xz2], & G(L), ze Z

Decompose ITX, L) according to characters of Z:

nx,Ly= @ nx,L,.
ye Z*
Since we are dealing with a representation of order 1 each component is | dimensional (see
appendix). Define
v=1'3 U
T d @
ze F

¥ is a projection operator on the one dimensional subspace of the §,-((#) invariants.

17
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Claim: If ve I'(X, L), then Uye X, L), ,, forall xe G(L).

Proof. Let ze Z, then
Uzva = Ulz. t‘]UxUz V= Zx(z) O'(Z)‘UKV.

Therefore, since both Z and 53-1 (Z) are above Z, and the kernel of x — x* is k™ Z,
we conclude that for all ke 8,1 (£), ve I'(X, L), if and only if Uy e IX, L), . Thus, there
exists a unique 7 such that ‘Y(ITX, L), # {0}, and for that 7 forevery ve I'(X, L), we
have WHv)=v, thatis
nX, L), = X, L)’ @,
However, let ke 53" (B, say x = 53-1 (2), then, identifying Z* with Z*,
v= ULy

= Us v

=V Upaws-@?

=(Bem (@) T(e72) v

= (/38.4_'- g_lt) @v.
That implies that for every ze £ (B,~- g7} (2) = I. Therefore f,-—-g~'7 =1, or,

T=gB =B "=7,.

Choose some section 5
Gy « = — Z¥ 1=X1),
to the commutator map
G(L)y —/™ Z*, x+—> x~.
Choose some non zero v,e I'X, L),. Then
{v,=Ugp v | 26 Z%}
is a basis for I'(X, L). We have
T) = c(g)v,y,
for some c(g)e k*. Let c, , € f1,2 Z be defined by the equation
Cox T (Ve 8X) = (2 (X)) Z (%))
There are scalars b, e i 2 such that
@ b dVsoparv = Vs Usaw
These scalars appear when computing T(v, ) :
T(vy) = TWs (5, caon™)
= Us 150 TO))
(@ Us -1y Vs,

C(g)'bg.z Vyest:

We have proved
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THE SYMMETRY THEOREM (PRELIMINARY FORM). Let X be an abelian variety over
an algebraically closed field k. Let L be an ample line bundle of separable type on X. Let
(L) ={ge Aut (X)| g*L = L}. Assume that there exists a maximal isotropic subgroup Z of
H(L) whichis 9 (L)- invariant and choose some level subgroup £ above Z. Choose some

non zero vector v, e I(X, L),= IX, L)? and choose a section

G(L)Y « - Z* T(H=1.

Given ge (L), let ¢ :g*L — L be an isomorphism (determined up to a scalar). Let
T = ¢,8*e End(J(X, L)).
Then :
(a) There exists a unique character ye Z*, characterized by either :
(i) %) '6,2) e Z forall ze Z orby
(i) If M is the line bundle on X | Z corresponding to Z then g*M @ M !
corresponds to Y, ‘under
& = 7% = Ker ( Pic%X/ 2) — Pic"(X)).
(b) There exists scalars b, & [, (xe Z*), determined by the equation
b xUs gy = Usxxy Uz,

T(xezi, al"ﬂ] = c(g) xgi' albs-xvrj gx ,

where [v1= Ugp Vi } is a basis for I'(X, L) and c(g) is a scalar determined by the equality
Tv,=c(g) v, - In particular the matrix describing T, which is given explicitly by the b, s,
is monomial and unitary.

such that

COROLLARY L. Assume that L =0 (D). Then ¢, is multiplication by a function f,.
Suppose further that Oe supp(D), then there exists a function €2 (independent of g) such
that f, = Qf/ Q and Oe supp (). We get then that for all x

Q (gx)
&) va(gx) = ¢(g) bsvxvr}gl’(x) ,

where c(g) is a non zero constant. In particular

(10) V(01 = c(@) by, vy 0) -

REMARKS. ) As remarked in the introduction, for L very ample T is actually writing
the automorphism g by coordinates.

2) Consider in Corollary 1 a special case where 7, = 1, which is a kind of ' total
symmetry ' with respect to g. Note that for every g we have b, , = 1. Therefore, if v,(0) #
0 we conclude that c(g) = 1. Note now that for every y such that gy = ¥ we get the
obvious conclusion

@b, ,#1 = v, (0)=0.
That is, we get a vanishing result for certain theta constants (see §5 for a classical interpretation).

Our next task is to give an explicit expression to the coefficients b, . appearing in the

X
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. Symmetry Theorem. Although the method can be carried out in complete generality we
will assume that L =n*M _for some ample line bundle M of degree 1 and that
Z=X|n), #= K(n,M)
(by K(n, M) we mean the level subgroup associated to data n, L, M).
The particular choices made below are not the best from the algebraic point of view.

They are made so that over the complex numbers one gets ' the most classical ' sections and
actions. Other choices will be developed in the next section.

Choose a theta structure

4: GL)y = G(9),

where

g g
G(d)=k™* X (@%Z/n Z) X (@%Z/n Z)
i=1 i=1
with the group law
(&, x, IXB, y,m)=(afe( ' (nx) (nm)), x+y, 1 +m),
where for any ae Z, e (a)={* for { afixed n *- th root of 1. Define ‘the half
commutator*

(7). (2 )= e (noy o))

Define
S={(xDVxle (Z/nZ)y}, 3={(L,x) | xle (Z/nlp}
We can always choose A such that A(Z)= 3.
Let us choose a section to the commutator map

Gl — S *
by prescribing a set of representatives to G(8) / k*.8 *,
Rep=1{(1, 1 (f )) | x=(xp o X)) L= (L), o L), 0S %, 1< ),
thereby getting a section
y — ()=, a(y), Vye d*
Via 4, each automorphism ¢, of G(L) induces an automorphism, still denoted &, on G(),
hence induces an action on H(8) given by a genuine symplectic matrix M,e Sp(2g, Z/n* Z)
- the n? - adic representation of g. Therefore we may write, for (&, w) = (¢, w,, wy)e G(9),
S,(a, w)=(amfw), M, w),
where m, satisfies the identity
mg(wy + wy) _ F(Mgw(, Mwy)
my(wy)- mg(wy) — F (wy, wp)

Using {- } to denote fractional part, we get

Iy =, {a)+ oy,

8 (X)) = (m (X)), Mo (X))
Since

K1 M0 (y) =[5, M- ()] = [M, 5, ()] = gx(P),
we conclude that
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E(g0 = (L{Ma).
Therefore

Ay, 80 = (L{ay) + M a(n)),

8.1 () Xy,) = (mer(aR)) FIM,-(a)), (%)) » M, ((x)) + ex(y,)).
Whence (using {- ] to denote integral part),
. me-(0(x)) - F(Mg(a(x)), a(y,))
FENAF (M=o () + ()] M a(a () +a(r)}) )
Put

[Mg (e (%)) + o (7,)]

ve() = Mp—(a () +a(y,),

then, after some simple calculations we get

by - my—i(e (1)) F (ve(X) = (¥,), @ (¥,) )
X F ({v,GOO), v()D)

THE SYMMETRY THEOREM (EXPLICIT FORM I). Under the hypothesis of the Symmetry
theorem and the additional hypothesis made above we have

(0
mg- (e (2)) F (vg(2) = & (3, ), & (%))
T = 4 8 £ g
(Z.017) =@ X e F (o) 20D Vi gx
If v,=1, then
mg“(“(%))

T =
12 7B ) =@ X F i@, (7, @ 6

COROLLARY 1(EXPLICIT FORM I).

Q (gx)

 mg@ () F ) —e(3,), (%))
mvxfgx) = c(g)

F({vQ)), IvgQ)D Ve gr*) s

(13)

where c(g) is a non zero constant. In particular
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me(@ (1)) F (vx) —a (1), @(%,)

14 w0 = g - F O vy 20
If v,=1 then, if v ,(0) #0, these formulas reduce to
Qgx) B mg(0r (7))
(1) T 1) = F (), My @) o)
and
(16) v0) = " XD V(0.

FGMAWQDHMA(WM)”

3. THE QUASI SYMMETRY THEOREM.

We start with a discussion of Gopel structures and the system of bases constructed by

them. We keep the notation used so far. We assume through out this section that L is a

symmetric even ample line bundle of degree 1 (although some of the definitions and results
still hold if the degree is greater). We refer to [Mum3] pp. 60 -61 for the definition of ' even .

DEFINITION. A Gopel structure on V(X) with respect to L 1is a pair of maximal
isotropic subgroups V,, V, of V(X) such that:
i ViX) = V@ V,.
(i) TX)=T,@®7T, where T,=T{X)NV,.
(iii) o* = t* oneach T,. (See introduction for the definitions of &, 7).

Given a Gopel structure we can define a system of bases for the vector spaces ITX, n*L).
To do this we need the following

LEMMA 8. For every n there is a canonical isomorphism
Normalizer ( 6" (n TIX)))/ (6" (nT(X))) = G(n*L)
given by
(L O T (X, 0,).

Proof. An easy generalization of [Mum3] Proposition 4.13. Q.E.D.

DEFINITION. Let Z(n)=n T(X), Z(n)= ¢"n NMX)) and N(n) = Normalizer (Z(n)). Let
K(n),= 1%(V,)n"Nn), K(n),=1"(V,)nN(®n).
Let @, : N(n) — G(n*L) be the homomorphism inducing the isomorphism of Lemma 8.
Let '
L(n),= @,(K(n),), Lin),= @,(K(n),).
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LEMMA 9. L(n), and L(n), are maximal level subgroups of G(n*L) which are
orthogonal complements of each other.

Proof. Clear. Q.ED.

We stray from our main course to study projection operators on finite Heisenberg groups:
Let G be a finite Heisenberg group
1 » kK > G > H > 0,
and let K be a maximal level subgroup of G, #K = d. Decompose the unique irreducible
representation of G where the center acts naturally, denoted by I, as
r- @r,
ve K*

and fix some non zero 6, € I',. Let { &, [ ye K* } be abasis for I with §, I, Denote
by

¥:G — K*

the ' commutator ' map
y —m X @=zyz'y".
Given another maximal level subgroup S, let P; be the projection operator on the one
dimensional space I'® of the § - invariants given by
!
Py = 5 X U,
se S

Finally, let

AS) ={ ye K*I Py(8)#0).

LEMMA 10. 1) Let se S, ye K* then
U, 5,,, € Fw-x’ )
Define
Usd,=als y) 6, .
Then
a(s, s,, y)=a(s, y- x'*) a(s, Y.
2) Assume that K has an orthogonal complement K '. There is an isomorphism
E: K*— K'

determined by the commutator pairing. Let

6, =Usgy, d,.

then
¥ )
G(S, WI ) - WZ (.S‘) a(s, W2)’
where, by definition, W(s)=[s, Z(y)] for any ye K*.
3) Let

S=KerynsS

and let oe S* be the unique character such that for all se S
ofs)-se K
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Then, regarding characters of level subgroups B as characters of their projection B to H
we have

A ={ye K*| yl= 0}

Proof. 1) forevery ke K we have
UU, 6, =UUU,,SJ,

wk)- ' (k- U, 8,
= (y- ')k U3,

a(s, S, Y) Sy 455, = U, U, 6,

U, a(sy W) Oy ys,
als;, W-x ') a(sy, Wby ys1. s -

2) Let us compute a(s, y).

a(s, y) 6, = U, 9,
U, Uz, 6
Uz U, U, 41 6
W) Uz, U, §
) a(s, 1) Ug,, 6,
y(s) a(s, 1) 0, .
From this follows the general formula.

2 U,

sa 8

3) Ps(5,)

of—

= 3 Zaly)d,,
se s

9]

i E( z a(s,w))aw.

re XS\ se xy)

Choose some representatives s.e ¥ ™' (), then

Py(8,) =

o —

Ye xS\ seKery n' S

Z( X a(syv,l/f))c?w

af—

re x(9) seKery S

z(a(w) > a(s,l)-w(s))aw

using part 1), 2). Notice that this expression is zero if and only if each sum

aspy) X a1y
seKery ' §

is zero and that the vanishing of this sum does not depend on 7. Notice also that a(s, 1) isa
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character on .§ and therefore this sum vanishes if and only if w13 #a(-, 1)"' |13. To finish
the proof we need only to check that a(-, 1)= a''. Let se §, then a(s)s e K whence

a(s,1) 6, = U, 9§,
= ofs)"! Uyy <0
=ofs)"' 6, . Q.E.D.

Recall that L is an ample symmetric line bundle of degree 1 on X. The maximal level
subgroup Z1) induces maximal level subgroups M(n) oneach G(n*L).

We would like to mention two reasons for introducing these groups: The first one is that
we can decompose &, L according to characters of Z(1). This can not be done with
respect to T“(V,).

The second reason is that, as we have already commented above, in the complex case the
sections giving the decomposition with respect to Z1) are the classical theta functions

L]
BH for certain characteristics multiplied by a certain trivial exponent. We should remark
that the sections giving the decomposition with respect to the level subgroup L(n), are no
*
less noble. They are of the form 9[0] for certain characteristics multiplied by a certain

trivial exponent (a classical example which also demonstrates the relations between the bases
to be obtained below, turns out to be, after some algebro - analytic dictionary has been built,
Proposition 1.3 p.124 , Mumford / Tata lectures on theta I ).

Choose some non zero section Ge I'(X, L). It is unique up to a scalar. For every n n*®
is the unique up to a scalar invariant section of M(n). Choose a section
2 1 Mn)* — G(n*l)
to the commutator map
x: G(n*L) —> M(n)*
and let
0,=0, §,= Us 0,
Later on we will choose the X 's more carefully and then we will baptize these bases. The
notation a(x, ) appearing below is the one used in Lemma 10 1) for K= M(n), S = L(n),
(so K has no orthogonal complement but S does). Inthe case K= L(n),, S=M(n) (which
is dealt in Lemma 10 2), 3) )we will not need a notation for the scalars of Lemma 10.

LEMMA 11. Put s(n), = Py, (n*0). Then s(n), # 0.

Proof. In the proof of Lemma 10 the following expression was obtained

Ps8)=— Z [ I atpwls,,.

ve xS\ seKery n §

The derivation of it did not use any orthogonality assumption. Using part 1) of Lemma 10,
we get for §=L(n),, K=M(n), y=1,6,=n*6, x: Gn*L) — M(n)*,
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Pun *@)= == X (a(s,,l) )Y a(s,l))5y.

ye X (L)) seKery n L(n),

In this case Ker y=k*M(n)= &, (k™ Z(1)) and we see that since 6“=1" on T, we
actually have Ker y m L(n), € M(n). Therefore if se Ker y m L(n), then
a(s, 1) 6,=U,6,=6,
Thus
P, (n*0) # 0. Q.E.D.

DEFINITION. Forevery n define a basis
B () ={ sn),| ye Ln),* )
of X, n*L) as follows: Let
s(n), = Py (n*0),
let
=, Ln)* — Ln),
be the isomorphism determined by the commutator pairing of G(n*L) and let
S(n)w= Us,,w) s(n), .

COROLLARY. Let L(n), [n] = { elements of order n in L(n), }, then

sy, = -L > a(E, (Wu, 1) 6yu. 2w,
Y e Loy Linyinl nt rx

( where y:G(n*L)y — M(n)*).

Proof. Note that x induces an isomorphism L(n), / L(n),[n] = y(L(n),). Therefore, for
y =1 the corollary follows from the proof of Lemma 11. The general case follows by
applying U. ., and using part 1) of Lemma 10. Q.E.D.

Let vs also record the following

LEMMA 12. n*@ = X s(n)y,.
we Ln);[n]

Proof. Let us first check that this true up to a scalar. By Lemma 10 n*@ =P, (s(n), )
at least up to a scalar. But

Puw(s) = == T Ups(n),
me Mn)

w 1
= 4 by > U, Up,s (1),
meM@n)nLn), meM@)nLn)

= ﬁ Z Um,zs(n)l
myeM@n)nL{n),
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= — py s(n)y,.

n& ,
we Lin)[n]

To check the constant apply P, to this sum. By linearity and Lemma 10 used for K= 5=

L(n), we get

Punl—5 X s(n)y,)=P,_(n)l(n—]§s(n)|)=ﬁs(n)l. QED.

we L(n)jln]

LEMMA 13. Forevery d the bases B (n) and B (dn) are related as follows : Let
o : dL(dn),/ L(dn),[d] — L(n), be the natural isomorphism. Denoting by o the induced
isomorphism dL{dn)* / L(dn),*(d} — L(n),*. We have

d{(snm),) = X  s(dn), .
T € dL{dn),
alt)=y

Proof. The formula up to a scalar follows from the isogeny theorem of Mumford,
[Mum1] p.302. The translation to the notation appearing there is as follows :

Mumford| X, Y [z |M | L | K
Us | x | In*r La*n L [nMan)

The level structures for every m are completely determined by choosing a free i basis
for T,. This yields for L(dn), an isomorphism L(dn), = K(6, ) and L(n), = K(6,)
where §,, and &, are the types (d°n%, d°n%, ..., d*n*) and (n%, n? ..., n?) respectively. We

get then natural isomorphisms L(dn), = K(J,)*, L(n),= K(8,)* and therefore uniquely
determined theta structures j,, j, .

Mumford 0., Oy Judu_| K, | K
Us dn?, ..., dn?), (% . 0 . ), (TR TR ()| (ZdPn Ty d]
Mumford] KXK' | K,* o: KK — K(,)
Us (D1 n* Ty | d( TP T )** natural isom.
The conclusion is that up to a scalar is that A §, = (Z,) 6, ttwhere &, denotes the delta
vioWw}l=u

function at ¢, and A is as in [Muml] loc. cit.. We need only verify now that the functions
s(n),, are the functions corresponding to the delta functions at points of K(&, ) with the right
nornalizations of the isomorphisms f,, appearing there. That is easily checked since the
delta functions are characterized by the way the Heisenberg group acts on them. This proves
our claim up to a scalar. The rest follows by comparing this with the formula for n*®@ and
d*n*@ given by Lemma 12. QED.
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Given an ample even symmetric line bundle L on X and anisogeny fe £ °(L), say
L= L"z, ¢ ffL— L an isomorphism,
define a new action U’ of G (L) on [ (X, L) by
U, (s) = Ua,fz)(s)
and an action of G (L) on I (X, L"z) by
Ur(s)=U £,2(2) (.

Then, both f* (X, L) and [ (X, L’ ) are irreducible representations of G (L) of order n?
and there exists therefore (see appendix) a unique intertwining map

T: F(x,L) — [, L).
As in the case of automorphisms we have a

CENTRAL OBSERVATION. The linear isomorphism
ouf*: (X, — Fx,r)

is an intertwining operator for these two actions, therefore equal up to a scalarto T ",

Proof. Let 7= ¢,f*. Then
(D NUs,0 (SN = TWyg15(41 er01 (5D

Claim. Forevery re G (f*L), se [ (X, L) wehave

f*( Uj(f_ LX) (S)) = Ur (f*(S))
Proof (of claim). Let r=(r,, ¢,),, then j(f, LXr)=(y,, ¥,),, where ¢_ is the pull back
by f of y, withrespectto f(r,)=y,.

MUy yy ) 1=fy0 s o Ty ' for every k divisible enough

Using the claim we get from (1) that
7 U§(z) ()= ¢* U¢'le“(z)¢ (f*s)
= Uy 1y ($4%5)
U, 71s). Q.E.D.

The next thing we have to find is some subgroup of G(L) whose image under each of
the maps &, and &, is a maximal level subgroup. The operator T is then determined up to

a scalar by the condition that it must take invariant vector of the second level subgroup to an
invariant vector of the first.

B There is a Schur lemma for adelic Heisenberg groups. The reason is that every intertwining
operator must take the invariants of a maximal level subgroup to themselves and this is a one dimensional space
if the level subgroup is chosen right. Further, the operator is determined as usual by its action on a single non
zero vector.
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LEMMA 14. We have the following functorial properties :
1) g ox) = o) ; g, THx) = V() .
2) 1, 6X(x) = o*(mx) ; 1, TV (x) = TH(nx) . (see [Muml] for the definition of 1,).
3) If :L— M is an isomorphism then
b ()= 0Y(x) ; @ THx) = TY(x).
&) jif. L) ™) = 6" (VPx) ; j(f, D) 77 = THV(Rx) |
5) & ol(x)= o" V(P x) ; ot Xy = V(P x).
6) Writing every element of G (L) as A T"(x) we have for f*L =L"
6, (A ()= A" th (V) x).

The proof is completely straightforward and therefore omitted.

DEFINITION. Assume that ¢: f¥L= L"z, L ample even symmetric of degree 1. Define
Z={ o lxe TX)} cG(L),
MBD=j. 1) (2) cG(U*D),
FU(B)y= S F) cGUL™),
A =e7' (D)= &2 cGL).
Let ek : %‘I‘T(X) / TUX) be the quadratic form defined by
o' 2x)= ek (x) THRx).
(see [Mum3] p.59 ff.).

LEMMA 15. We have
n2
f(By=lex (2) " (V' (%) | xe T },
and the projection of fX2), to G(n*L) is K(f, L) - the level subgroup corresponding to the
descent data L™ = f*L.

Proof. The first assertion follows imediately from Lemma 14 and the definitions. To get
the second, one considers the preimage of K(f L} in G (L"2 ) under the homomorphism
Normalizer ( 4" (T(X))) —> G(n*L).
It is a level subgroup which must be maximal by index consideration. But it clearly has the
same invariant vector as f¥ ), does, namely, ¢.f*@ where © is a generator of the one
dimensional vector space I{X, L). This implies equality (to ease the argument note that both
cover the same maximal isotropic subgroup). Q.E.D.

We keep the assumption fe £°L), fFL=L". Let wec A Lo, (K(f, L)) where the fixed
level subgroup with orthogonal complement is L(n ), , the maximal level subgroup of
G(n*L) constructed before. Then P, (s(n), ) is the unique, up to a scalar, X2,
invariant vector.

Decompose * (X, L) according to eigen spaces of Z
fx,p= @ fx.n,
e B*

Choose a section £: Z—— G (L) andlet ©,= Uy ,(0). Then { O,| ye #*} isa
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basis for [~ (X, L), each (9w spans I3 (X, L)w and forevery n,
D (m={ 06, ye #n}

is a basis for I{X, n*L). Therefore if we had some nice choice of a section we could
explicitly write the vector s(n), and thus solve the problem of writing the pull back ¢,f*
explicitly. That is our next objective.

Before plunging into details, let us explain what we are about to do. We start by choosing
a good theta structure for the big group G (L) and a section for G (L) — #* (We will
assume that the Gopel structure is obtained from this theta structure. There seems to be no
point in generalizing ). We work with some ' indeterminate ' in our section saving its
specialization to the end. That makes the generalization of the case treated below to the
general case easier.

Since we have assumed that L is an ample even symmetric line bundle of degree 1 on X

6l | that means that there exists, by {Mum3] Proposition 4.20, a theta structure
a: G (L) — G,

where G is the standard Heisenberg group as in the introduction, having the following
properties :

If we define V,, V, ¢ V(X) by

ATV D=1, z0)1ze Af}, A(TV,)={(1,0,2)1z6 AS}.
Then,

A(GHT, )= ((1,2,0)1ze Z} ), AT, =1{(1,0,91z Z}},
and el goes over to the function e« where :

ex(x/2,y12)=(-)*r1t.

That implies that V|, V, is a Gopel structure and that

AZ)={(ex(x/2,y/2), x, ) x, y€ ifg 1
ATV =((Lxy)lxye Af)
Let &= A(%). We have
AK(m)=1{(,z,0nze Z/}, AKm),)={(,0,2)Inze Z,},
whence we get finite theta structures
A, : G(n*L)—> G(6,2)
where
6=k x (12, /nz," ) x (2, /2, )
or simply (under the canonical isomorphism)
G(8)=k* x (L 28/ n 2%} x (L 2%/ n Z5)
with the usual group law,
(e, x, IXB, y. m)= (B {0 x4y, 1t m)

. . > 8,2
by demanding the natural homomorphism between A(K(n),) and (% Y /z ﬁ-g ) (we have
to choose & so that the commutator pairings agree. Therefore we take {=¢(1/ n?)). That
is, denoting by

" This assumption is not essential but it does simplify the calculations below. We remark that every
symmetric line bundle becomes even symmeltric after a translation by a torsion point of order 2. Since no new
idea is involved in treating the more general case we make this assumption.
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Pn kK AK(n) DAKK(n),) = AlNgyy (6" (nT(X)))) — G(8,)
the natural projection, we have that p, induce the natural projection on A(K(n),). The
element (I, x, y) goes under this homomorphism to
p.((Lx,y) = p,((e(*'y x),0, )1, x,0))
= (e 'y x), x, ).
Therefore, the image of .8 under these theta structures is
p,8)y={ (L, x,y)Ixye Z¢/ nZ%}
which is precisely the same sort of theta structure used in the Symmetry Theorem.

Define
Ex, y)=e(2 'y x).
Choose as a set of representatives to the cosets G/ k™ A(#) defined by the commutator
homomorphism
G— J*
the set
REP={({l(x y),x,»)Ix,ye Q*n[0, 1)}
where [: A x A — k™ is a function with the property
I{(x,0)=1(0,x)=1 forall xe ASf.
This gives us a section
. 8*— G
which we write as

Z(y) = (l{o(y), (),

and sections
Z: (8 Ind y— G(,)
which we can write, identifying (.8 / n.d )* with .8 *[n], as
Z, (p) ={(ay)) E(ady)), oy))
These sections induce sections
z: & — G (L)
Z Mny* — G(n*L).

One advantage of such theta structures is the simple form which the homomorphisms &,
now have :
By lemma 14, 6) we have
8 (A T(x)) = A" T (VP ),
denoting by M, the matrix representing V(f) on [l\,z* and by D, the induced homomorphism
on G we get

DA (}) )= (A7) )
where ( A, (;) Y=(4 x, y).

In the case where fe (L) we get
d;: G(8,) — G(4,)

GA) = 5] mf5)
where
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- X
ey BB )
my( (Y ) )= E(*
G
The advantage of this expression is that it is completely explicit once the adic representation
of f is known. Because of the usefulness of this result we record it as

LEMMA 16. D(A(3) ) = (A Mf5) )

genfz)r=a SEBL

£(3)

Digression - The Symmetry Theorem.

We want to reconsider the Symmetry Theorem. As in the derivation of the explicit form
of the symmetry theorem we take the symmetric line bundle to be n*L. Moreover, we
assume that L itself is even symmetric. Recall that the intertwining operator

T: X, n*L) — ITX, n*L)

was determined by
T(®) = @7‘ .
where now we take the basis
@wz Ufn(w) 6, ©=0,
We have

%, (Y) = (1{ay)- E(c(y)), oA(y)).
We want to determine 7(@, ). The intertwining property implies that

7(0,)= T(Us ,, ©)

= Us, (1 atwn Eawn. aw))) Yl iamy- By, o)) ©F
By Lemma 16

8.1 (1(a(w)- Ea)), o)) = (L (a(y)- EM,: ofy), M, o))

Therefore, using [+ ], { - }, to denote integral and fractional parts, we get
6,1 (1(a(y)- E(ay), ay) ) (L(any,)- E(a(y)) o))

= ([ (oY) EM,1 o(w), My a(y) ) (L(edy,)- E(a(y,), &A,))

= (L(aoAy) I(oy,): EM, o(y) E(ody)) F(M - (), A, )y M oy + o1,))

= (L) ) EM, ay) E(a(y) F(M,. a(w), ofy,))

F({Mg oy + a(y)h (Mg o) + oy )1) ', (M o) + Ot(};)})
x (1, (Mg a(w)+ o))

Using the fact that p (8 ) c G(L) corresponds under the theta structure 4, to M(n)=
K(n, L), we conclude that

Us, (1 (o) Eotw), ety))) Ylitatyy By, atp) 6, =b, @x,-gw’
where
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bey = L(a(y) La(p) 1M1 a(y)+ a(y)))
x EMe1 o)) E@(3) E(M,1 o(y)+ a(y)})"
x F( M1 a(y), a(y)) F((M1 ofy)+ (R (M, ofy) + a(3)])"

Clearly a good choice of / is I(x, y)= E(x, y)'. Making this choice we get
b, = E(c(y) ' EM 1 o(y)) F( M. oy), ()
X F({Mq oa(y)+ ofy)), [M,- () + o))"

Put as before

v (W= Mooy) + ofy,)

then we get the familiar expression

b, = me1 (W) Fv (W) - a(y,), ofy,) F({ o)}, [ oAy)] "
Finally, note that

?fg:ﬁg_] ; ﬁg=(mg| Py

{(5)) = E(M(5)) E(()

That is

THE SYMMETRY THEOREM (EXPLICIT FORM II). Let L be an ample even symmetric
line bundle of degree one on X. Let Z = X|n] and let Z be the maximal level subgroup of
G(n*L) lying above Z and corrseponding to the descent data n, L ( Z= M(n) in our new
terminology). Choose some non zero section ©, e I'(X, n*L), and choose a section X to
the commutator map as described above

G(n*L) - Z*,

Given ge of (n*L) let ¢ : g*n*L — n*L be an isomorphism. Let T = ¢, g* Then

there exists a constant c¢(g) such that
T ( q'VEZ‘,E_cllﬁ,@,}, ) = ¢(g) WEEz_awbg‘W@n.W ,

where {©,=Uy, O, } isabasis for ITX, n*L). We have

() = E(M () E(G)

Further, the scalars b, , are given by

bey = my1 () Flv,(w) - aty), oy)) Flv (W), v, (D ™,

where

v (W= Mo o(y)+ of;)

and
m 1 (oY) =EM - a(y) E(a(y) "',
Ex,y)=e(% 'y-x).

COROLLARY 1. Assume that n*L = O (D), then ¢, is multiplication by a function f,.
Suppose further that Oe supp(D), then there exists a function €2 such that f, = Qf/Q and

33



EYAL Z. GOREN

Oe supp(£2). We get then that for all x

Q(gx)
GGy Oer) = o) by y Oy yfx)

where c(g) 1s a non zero constant which is independent of . In particular,
OY0) = c(8) by, Oy, 54f0)

Assume that y,=1 then, if ©,(0) #0 and therefore c(g) =1, we get
Q(gx) E (M — (o(y)))

Q@) Oulgx) = E (a(y)) Ogylx)
040 = i Opl0)

EXAMPLE. To illustrate this theorem take the simplest case g =-1. Then by our

assumption :
v,=1, oy,)=0, m =1, -Dy=y"' forevery y.
It follows that b, =1 forevery y. Therefore, there exists a constant c(- 1), independent
of y, such that
T(0)= 0,
forevery . This implies that we may normalize @ such that
Bo(- V*(O,)= c(- 1) O,

forevery y where c(- 1) = {£1}.

If the conditions of Corollary 1 hold, then ¢ (- 1) =1.

Using this one can get, up to £1, {Muml] "' Inverse Formula' p.331, [Mum3] Cor. 6.21
p.114, or [Kem] Theorem 4 p.71. We can get the exact constant which is 1 under the
conditions of Corollary 1.

One should now proceed to the detailed study of some classical examples, e.g. the
examples obtained from Prym varieties, factors of the Fermat's curve, modular curves etc.
This is a subject for another paper but few simple examples are given in the next section.

Back to the general discussion !

Define a basis for [~ (X, L) by
{O,=Ugy,, O ye Z*}.
Where now X is the particular section we have specified. As before, this basis has the
property that
Dy ={6,| y Zn]}
is a basis for I'(X, n*L) for every n.
Recall that we had the sections
= Un)* — Ln),
and the bases B (n) to I'(X, n*L) were defined using = :

B (n)={ s(n), = Uz, s(n),| ye L(n)* }.
Write

E.(w=(1,0, B(y).
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LEMMA 17. 1) s, = X .0, ,
ye M(n),

where M(n). = M(n) N L(n), . (Note that this is an equality in "X, D).

2) Given pe L(n)* define p'e M(n)* as

Pl sy € M(m),* > M(n)* = M(n),* ®© M(n),*.
Put for ye M(n)*, pe L(n),* and | as above
= . . 0 -1 0 -1
oLy, p)= Ela) 1 @) - o+ () D7 1aw+(g0 ) 1)

Fllaty)+{g0)) 1 law+ (0] 1)

where [- ], { - } denote integral and fractional parts respectively. Then

s, =77 X DULy.p)O,
()P ’]RWEM(H); Lvip) ¥ p

3) Choose I(x, y)= E(x, y)' then, putting ®(y,p)= @, W, p), we have
= 0 0 -1
Sy, p)=Flaw +( g0} ). Law)+( 40 ) 1)

and

=L X o e
sin p .
(n), =73 e (V. p) Oy p

Proof. We defined s(n),= P, (©). Since under the theta structure 4, we have
A4,Lm)={(,x0lxFz/n27)* }
we may take as representatives to A (L(n),) / 4, (M(n),) elements of REP which are of
course the image under X of A (M(n),)*. Therefore (recall that @= n*@ in Fx L)

- _1
PL(")I(O) - TI-Z_RZE%n)I Uz ©

4 > Y U, U 0
BE s veMmy zeminy, P F

L
nt

Uson ©
Ewyiye My © Y

A X0,

" ye M@y,

2) By definition s(n),= U, 4 gy $(n),. Thus
S(n)p = U(I,O,ﬂ(p)) s(n),
= U 1 X Us o ©
(1.0. Bp) n?® F(y): ye M), 107]

=L Y, U e
. “(1,0, i - E ,
nt S(w); e MO, (1,0, Bp)) (H{cy) E(o{y)), o{y))
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To get the formula we want, we calculate ( using that F ( (9)(:]) =1 )

(1,0, B(p)) ( Ko(y) E(a(y)), ody))

= (E(a(w) L (o)), ox(y) + ( ﬁ(‘;)) )

= (Eay) (o) F{atw) +( g0 ) Lo+ (g0 ) D7 Lawr+ (0] )

x (Llaw+ () 1)
=@ yp) i aw+ (0 ) DEQaw+ (0] D Law)+ (0} )

x (1, [a(u/)+(ﬁ(°p)) ).
Whence

s(m), = L WE%@_ O w.p)O,, . QE.D.

REMARK. A classical case of the transformation formulas we have just proved is (for the
right choice of ) the change of basis inverse to the change of basis given in Mumford /
Tata lectures on theta I p. 124

THE QUASI SYMMETRY THEOREM. Let X be an abelian variety over an algebraically
closed field k of characteristic p 2 0.Let L be an ample even symmetric line bundle of
degree | on X. Let f: X — X be a quasi symmetry of L, ¢ : f*L— L an
isomorphism. Fix a theta structure as above and let the groups L(n), , and the bases B(n),
be defined as above. Let A, A, be the system of theta structures obtained and X : o*(T(X))*
— G (L) be the section constructed by the set of representatives REP.

Let K(f, L} be the maximal level subgroup associated with the descent data f*L = an,
and let AK(f, L)) be defined with respect to L(n),. Then the map

o f*: [ (X, L) — I (X, n*L)
is an intertwining operator with respect to the 8, and &€,2 action and therefore equal up to a
scalar to the intertwining map determined by the equa{ity in (X, L)
b * O= Py, 5(n),
where we A(K(f, L)) is arbitrary. We have

1
== Dy, p)0O,
s(n), = 4z WE%( .Pw.p) Oy,

n),
(for 1(x, y)=E(x, y)"), where
¢(u4p)=F({a(uf)+(ﬁ8))) 3 [om+(ﬁgg)) 1)

REMARKS. 1) We regard here K(f, L) as an ' atom '. We do not decompose this data
further and explicate Py, ,, s(n),. The same attitude is manifested with regard to writing the
general formula for ¢ f *. Both of these details clearly could be supllied by some tedious
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computations. However, over the complex numbers, using the Appell - Humbert formalism
we shall give in §5 an explicit description of K(f, L) just to illustrate the technique.

2) The natural idea would be to give a criterion stating when Py, ,, ©, is non zero and
save the detour of going through the groups L(n),. However, this does not seem to exists. The

reason is that Z is very far from having an orthogonal complement, which enables us to

decompose [~ (X, L) with respect to it but a nice Lemma as Lemma 10 does not exist. When
we take a maximal level subgroup with an orthogonal complement as 7° (V,), we have

Lemma 10 but we can not decompose 2 (X, L) with respect to it. However, we can do it
on finite levels with the groups L(n). The resulting bases are well enough connected to the
base with respect to Z and nicely related ( by the isogeny theorem ) to make sense, and to be
practical for an explicit computation. Some interesting examples, where these computations
may be of interest are given by Prym varieties and Fermat curves (for automorphisms) and
by Humbert surfaces and elliptic curves with C.M. (for isogenies). A detailed study of such
examples is a topic for another paper.

It is very important to deal also with a more general sitvation than considered above.
Consider the following situation :

X, Y are abelian varieties over k, and

[ X—7Y
an isogeny of degree prime to p. Suppose that there exists an ample even symmetric line
bundle L on Y of degree 1, and an ample even symmetric line bundle M on X of degree
1, such that
L = M
(n is determined, of course, by f ). In this situation the question is how to write the sections
f¥s, se I(Y, L) as sections of M relative to the bases that we have constructed. The
situation we have dealt with above is when X =Y, L=M and is therefore a special case of
this more general setting. It is amusing to note that the more general case is, under mild
restrictions on f, a special case of the special case. Indeed, consider the line bundle N =
p¥M® p*L on XX Y, and let
E: XXY— XxVY

be the composition

ldx & £ xfY 2 xpM'l per.

XXY — XxPic(Y) — YxPic’X) —— ¥YxX — XxY

where per.(y, x)=(x, y).

LEMMA. Assune that either deg f is odd or that for some g, f=g o2, then E*N = N".

Proof. E(x, y)=((9y ' of 0@ Xy), f(x)). Therefore
EN = prPL®p, (9, of 0 9 M
= p M @ p(8,; of " 09, M.
Hence, it is sufficient to prove that
(9 'of "o FM=L".
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First of all
[ 'of 0 *M = (¢, 'of "o of M
= n*M
=M".

We t;ave also f*L' = M. 1t follows that " and M, = (¢,  of ~ o@, )*M are algebraically
equivalent. Therefore
e = M
and since both are symmetric it is enough to prove ((Mum3] Lemma 4.25) that ef" = eif.
Now the functorial properties of the sections ¢, T stated in Lemma 14 show that universally
e§"0(x) = eP(V(g)x)
(where g is an isogeny between abelian varieties, D an ample symmetric line bundle etc.).
Whence,
eX1(y) = e (V(g, ' of “0¢,)(»)).
If f=g 2 then n satisfies n*=deg f and therefore is even. Hence e = 1. We also have that
f“=g~2 and therefore V(¢, 'of~ o@,) kills T(Y)[2] whence e¥i=1.
If, on the other hand deg f is odd then the map V(f) : T(X)[2] — T(Y)[2] is surjective.
Take some xe T(X)[2] satisfying V(f)}(x)=y. Then,

e (y) = e¥ (V¢ ' of " 0¢) (V(FXx))
= e (V@ 'of  o¢,of Y(x))
= e¥f (nx)
= ed™(x)
e (x)
= e¥ "(x)
= (e¥ "(x))
(ex(V(Sf )"
e (y). QED.

REMARK. The conditions of the Lemma are necessary. For a typical example let £ be an
elliptic curve, we E[2] a non zero point and let Y = E/ «w». Denote by f the natural
projection E— Y. Let & B be generators of E[4] suchthat 2 o= w.

Let L be the line bundle of degree 1 on Y defined by the 2 torsion point f(a). Then f*L
is defined by the divisor {a, & + @} and we can take as a symmetric line bundle M such
that f*L= M* the line bundle defined by the point 0c E. Both M and L are symmetric. If
we identify E and Y with their duals in tha canonical way we find that the dual map f~ : Y
— E is the composition

El<«w> — E/E2] —™ E
where the last arrow is the isomorphism induced from multiplication by 2 on E. f “*M is
defined by the divisor {0, O + ¢ }, ¢ is the non zero point of E[2]/<«w>. f “*M is not

isomorphic to L? and ones see (following the proof of the Lemma) that the Lemma does not
hold in this case.

Now consider the diagram
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X XxY—> XxY,

where i(x) =(x, 0). Then, of course,
*EXN = M,
but note that this requires a choice of a trivialization of *p,*L", which is determined up to a
scalar and whose effect on global sections is evaluation at zero.
(i) By Kunneth formula ITXx Y, p,*M @ p,*L)= X, M) ® 1Y, L).

(i1) The map

E¥:NMX XY, p*M@p*L) — RXXY, p*M" Qp* L") =X, M")® I'(Y,L"),
is well understood by the Quasi Symmetry Theorem (More on that below).

(1i1) The map i* is just evaluating ¢ in s®¢ at zero.

(iv) The composition i*&* = (0, f(x)) is ' the map we seek ',

Note that the map &* which evantually gives us the map f* uses the descent data of
both f and f ~. In general the whole structure needed for the study of £ is obtained as the
product of the structures for L and M. Or, to use another sloppy formulation theory of theta
functions is multiplicative. That means, e.g., that

G(pM®p, Ly=GWM)xGWUL)/ {(a, )1 e k™)
and therefore that Gopel structures for L and M induce a Gopel structure for p *M® p,*L.
Moreover the two systems of level subgroups K, (n),, L,(n),, K,(n), L,(n), can be
- multiplied to get such system for p *M® p,*L etc.

I do not go further into this presently to keep this exposition at a reasonable length, but 1

intend to deal with some interesting examples in the future.

4, EXAMPLES

In this section we give three examples. All of them concern Riemann surfaces. The first
one is the case of a cyclic unramified covering of a Riemann surface. The second is the
curves y >= x*#*2 _ | and the third is y*= x? - 1. We work over the complex numbers and
use topological arguments and pictures. However, there should be no difficulty writing
everything in arbitrary characteristic. We start by determining the representation on the first
homology group.

I. A CYCLIC COVERING.

Let B be a Riemann surface of genus g 2 1. Let §,, .., 6, ,, ..., 11, be a symplectic

basis for H, (B, Z). Let € be the cyclic covering of order n of B obtained by '
unwinding 7, n times .
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UM

GLUE

With respect to the symplectic basis for H,(C, Z) given by

[ 8, 8.8% 08" 887 .08 s 8., 83,8 "

g-1> Yg1 v Yo

Mo IO M5 e I T T I s M S M 1

the generator of the cover automorphism group, #, which is ' raising one level ' is given by

1

E
K 18 . 0
E 01 0
1 E=
~ E ’
. 00
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28+2 _ 1

IL y’=x

In every hyperelliptic curve € : y?= fx), the automorphism t
yr— -y, xr—> x
induces muitiplication by -1 on H, (€, Z). Therefore we examine only the automorphism 7
determined by
yr— oy x—
E=exp(2mi 12g+2)).

We consider this curve, which is of genus g, as a two - sheet covering of PYC),
obtained by branch cuts. The following diagram demonstrates this as well as giving a basis
for H, (€, Z) - dotted lines denote curves on the lower sheet while whole lines denote
curves on the upper sheet. For simplicity we demonstrate only the case g = 4, the other cases
being similar.
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The second picture describes the images of the basis elements after applying the
automorphism . That is, for example, the label A, in the lower picture denotes the image
of A, under m. The matrix representing 7 with respect to the basis A, A, i, i, is

a4
0 0 — ——
0 0 ——
0 0 0—
L8
0 11 0 0

In general, choosing the bases similarily, we get that the matrix representing 7 is given by

2%
C 0 ’
where
— L — 1 0 ... 0 .0
B= 0 4 ... —1 = — | 0 0
0 0 ... S o ... —1 1 0
ML y*=x"-1.

This curve is of genus (p - 1)/2 and for p prime its Jacobian is a simple abelian variety
with complex multiplication by Z[{}. Using similar description of the curve and picking a
similar basis for H,(C, Z) one gets that the automorphism 7 determined by

y =y, x> Lx,

where {=exp(2m /p) is givenfor p=3 by

(9 7)
|
and for p>3 by
&%)
cC 0 ’
where
0 0 ... 0 -
A = 0 0 ....... 0 4
0 o ... ¢ —

In each one of these examples we take as the even symmetric line bundle on the appropriate
Jacobian the line bundle determined by the period matrix of these homology bases with
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respect to the standard map by some ' dual basis ' of ' (€, £2.'). By this we mean that the
image is of the form (7,71), Te % - the appropriate Siegel upper space. This gives also a
decomposition of the period lattice (7, /)Z* to 7 Z* @ Z* and thus a very specific line
bundle, the one obtained from the trivial line bundle on C*f by dividing by the factor of
automorphy
a(A, v)= x4 exp(m Hv, )+ % H(A, A)
where
H=(Im71"',
Xo(A) = exp(7i ImH(A,, A,)),
using the decomposition A=A, + A, obtained from C:!=R ® 7Z* & R & Z* (see [LB]).

In order to derive the explicit form of the Symmetry theorem in these examples, let us
compute the expressions appearing in it. We will compute the formulas for ', Recall that

mz((j) )=E(M,(§J )/E((’;) ),
where
E(())=e(% "xy)

L The matrix M_ is of the form

K 0
(O'K—‘)

and therefore m_=1. This implies that ¥, =1, because y,=m_|;. Thus v - (y)= M a(y),
which has no integral part. Therefore

b 1

x~ D ur=

forall .
This implies that up to a scalar ¢,g*: I'(X, L) — ITX, L) is given by

T B0 )= B v O

a simple permutation matrix. Note that, by the corollary to the Symmetry Theorem, in many
cases we can get that this scalaris 1.

II. The matrix M, is of the form

(6%)
cC 0
and B =-'C"'. In this case that
£n(;) )= B((;) 7"
and
m(3))= B )0

However, note that for (;] in Z we get

me () )=e(-'y-x)=1

That implies that y,=1.
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The constants b, , are given by

-
by= B ) F ({258 Yo} [ & B Yatw)] )
which are completely explicit roots of unity.
HI. The matrix M, is of the form

(&%)

where A, B, C are as defined above. In this case

eonf;) )= £((2 5 )5 ))

(7))

e (72 ("x-'ClAx+ By)))

e (-2(Cxy+xl))
Thus
m((3) )= e (-2 xy+x'))
which is not trivial on Z. In fact
wW(3) ) =eCex?h.

One can write now the symmetry formula explicitly.

5.CONCLUDING REMARKS.

This section is devoted to three topics. The first is the construction of compatible theta
structures allowing one the simultaneous construction of bases for I'(X, L") for all n. This
construction furnishes the necessary background for extending our results to isogenies f
such that 4L = L' where n needs not be a square. The second topic is the extension of our
results to Q-isogenies. That is to elements of Q®End(X). The third topic is a short
dictionary between the algebraic and analytic languages in case the ground field is the
complex numbers.

L.SIMULTANEOUS BASES.

One of the main points of our approach to the problem of writing quasi symmetries by
explicit formulae is the possibility of a simultaneous construction of bases for all the spaces
ITX, n*L). Conceptually, their nice behavior is a result of a certain compatability of the theta
structures defining them. Our purpose now is to define and explain this compatibility and
extend it in a way that allows us to extend our simultaneous construction to all the spaces

nx, ).
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DEFINITION. Let L be an ample symmetric line bundle of separable type on an abelian
abelian variety X. A symmetric theta structure for L is an isomorphism
A: G(L)y — G(6)
such that
A§, =D oA
where D_, is the automorphism of G(8) defined by
D (o,x D)=(a,-x -1
(See [Muml] pp.316-7). A symmetric theta structure for (L, L") (or a compatible pair of
theta structures ) is a pair of symmetric theta structures
A G — G(nod)
4, G(L)y /™ G(0)
such that
A, cg=FEo 4
Aem,=Hpe A,
For a definition of €, n,, E,, H, see loc. cit. pp. 309-310, 316.

In general the existence of such a compatible pair is not a trivial matter ( I do not know
when it exists). The case n =2 is discussed thoroughly by Mumford, loc. cit. §2. However,
in the case we are considering it is easy to prove the existence.

Let L be an ample even symmetric line bundle on X. Define three homomorphisms for
the standard adelic Heisenberg group G

D, E, ¥,
Do x h=(a -x-1)
E (o, x 1)=(a" nx, I);
# (a, x I)=(a" x nl).
Define a theta structure a
4.:GLY— G

by

A ()= ELA(2)
where 4, is a symmetric theta structure whose existence is guaranteed by our assumptions
on L and z is an element such that €(z) = x. Since Ker E'n = u, = Ker ( sn:a(L) —_—

a(L”) ) this is well defined. It is easy to check that we have indeed defined a symmetric theta
structure.

Consider the pair (4, 4, ) of symmetric theta structures for (a(L") ) 6(1,'"") ). It is
obviously compatible for €, £ . Since it is enough to verify the 77,, #_ compatibility for
elements of the form 7(x) M= L, L™, and since A (T"(x))=A (g, T(0) = & (4A(T(X))
(for M = L', and similarily if M = L™ ) employing the identity nn(zlﬁ '(x)) = TL“(nx) (which
is part of the content of Lemma 14 ) one can easily establish the desired compatiblity.

Further, for any n we have an induced isomorphism

G(L") = Ny (6 (T(XD) / (0" (TIX)))

= N(ELS NT(E(S))
= G(nd)
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(d' was defined in §3 p. 30), where § = (1,1,...,1). The last isomorphism is
the following:

No(Eal9) = ez, Dl € By, 1 € (2215)7)

and the isomorphism is established by sending the maximal level subgroups

1(1,2,0)0e € (2774, {(1,0,lf € (~F5)7)

to their obvious images in G(nd) (the group law on G(né) is defined using the
n—th root of unity e(1/n) - compare p. 30). Further, the maps between the various
G(nd) induced from the maps D_,, &, Hn, are precisely the maps D_,, E,, H, and
therefore we have succeeded in constructing compatible pairs of theta structures
for (L™, L™™) for all n,m. At last, one can also verify that under the isomorphism
G(L"z) = G(n*L) the theta structure just constructed for G(L"z) agrees with the
one constructed previously for G(n*L).

II. VIRTUAL SYMMETRIES.

Suppose that f € Q® End(X). Then usually for z € X f(x) does not make sense.

Thus it is not clear what, if all, f*s,s € A(X, L), should mean. However, when X is
a complex abelian variety, say X = C? /A then we may identify A(X, L) with certain
holomoprhic functions on € and then we may define f*s by f*s(z) = s(f(z))
(using the same notation for the complex representation of f).
On the other hand f is not far from being an isogeny. In fact there exists a natural
number n such that nf € End(X). For such an n, nf is an isogeny, for every
z € X nf(z) is meaningful and (nf)*s is defined with the usual meaning. Now, it
is not difficult to convince oneself that the natural embedding

['(X,n*L) — (X, L)

is the right way to define the action of . This will be further justified when we
discuss theta functions below.

DEFINITION. Let f € (Q ® End(X))*. Let n be such that nf € End(X) and
assume that (nf)*L = n*L (such an f will be henceforth called a virtual symmeiry
of L). Define the map

X, L) - (X, L)

as the composition of the maps (nf)* : ['(X,L) — I(X,n*L) and the natural
embedding I : T'(X,n*L) = I'(X, L).

Recalling the definition of I'(X, L) it is easy to see that this is well defined and
generalizes the usual natural definition for symmetries f € End(X)® of L. Note
that any automorphism f preserving the polarization determined by L is a virtual
symmetry for L (in virtue of the symmetry of L). Therefore we also obtain some-
what more flexibility in the treatment of automorphisms as well. We remark that
it is easy to generalize this definition for certain other f € Q ® End(X) (obtaining

Typeset by AA4S-TEX
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thereby also the same kind of flexibility) or to the relative situation discussed in
the end of § 3. We leave that to the reader.

The map (nf)* is an intertwining operator for the action of (L) via €,2 and 0 as
we have already seen. Recall (Lemma 14) that §,77%(z) = 7X((nf)()). Therefore
we make the following

DEFINITION. For a virtual symmetry f define

§p: G(L) » G(L)
by

r(A-7(z)) = A-7(f(2)).

Let us verify that this is an a.utomorphlsm Since 7(z)r(y) = eX(z,y/2)7(z + y),

(z)7
we need only to check that e*(z,y/2) = el(f(z), f(y)/2). Changing variables to
nz, ny and using that (nf)*L & n*L we get

¢! (f(nz), f(ny)/2) = " ((nf)(z), (nf)(y)/2)
= DLz yf2)
=" ¥(z,y/2)
= el(nz,ny/2).

For any virtual symmetry f we may twist the action of é( L)y by é;:U{ = Us, (2)-
LEMMA. f* is an intertwining operator:

froUf =Uo f.
o

PROOF. For scalars A € k* the assertion is clear. Therefore it is enough to check
it for elements of the form 71(nz), z € V(X).

f ° UrL(nJ:) - f* 0 U"'L(ﬂfl’)
=lo(nf)*o rL(a:)

=ToU, o¢rL(zp 0 (nf)*
=ToUner(go(nf)”.

Therefore we need only to check that
Io U.rn‘L(I) = U.,-L(nx) ol.

This is essentially Lemma 14,4). Q.E.D.
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In characteristic p 3% 0 we do not have a universal covering space for X. However,
Mumford had shown that to a large extent V(X) is the right substitute. For any
s € (X, L) he defined a function ©, on V(X). Therefore we should check that

O+ s(2) = ©4(f(2)).

Having verified this we may safely claim that our definitions are right. Let us recall
the definition of O, (a full discussion appears in [Mum3)):
Fix an isomorphism

e : L(0) = k,

thereby fixing for any isogeny h (and in particular for A equal multiplication by n)
an isomorphism

e:h*L(0) = L(0) > k.

ca

)

Given z € V(X), let 75(z) = (2, ¢n)n and s € (X, L) define

©,(z) = e(d" s(2)).

More precisely, choose n divisible enough such that both s is represented by some
sp €(X,n*L) and ¢n € G(n*L). Then O,(z) = (¢ sa(24)). It is easily verified
that this is well defined.

An important interpretation of this definition is as follows: for every n “evalua-
tion at zero” defines a linear functional

by : T(X,n*L) = n*L(0) = L(0) — %.
They induce a linear functional

~

b :T(X,L) > k.
One can prove (loc. cit.) that
@,(:E) = Eo(U,.(_x)S).

Given an isogeny h : X = X we have an induced

A

bo : T'(X,h*L) = k,
and it is clear that

bo(h*s) = £o(s).

Therefore we see that Opeo(z) = Lo(Upnen(_nyh*s) = Lo(h*Urr(_n(2))8) = o(Urt (—a(a))s) =
O©,(h(z)). In particular

Onsyes(z) = O5((nf)(<)).
I claim that the embedding I : I'(X,n*L) — D(X, L) has the effect
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O1(s)(nz) = O4(z).

(This justifies further our previous remark that I : ['(X,n*L) — I'(X, L) shouls be
considered as the effect of 1.) From the definitions it follows that ©(,)(0) = ©,(0).
Let us use the identity

Ou,.,((2) = A-e(y,2/2) - O,(z — y)

(loc. cit. Lemma 5.7) to conclude that

e,(ﬂ'}) = ®U,.n'L(_:)(3)(O)
= 01U, e r ,(0(0)

=0y, . _,.,0»(0)
= Oy(9)(nz).

Finally, we get

Of+o(z) = Op((nf)en)(2) = O(ngyes (lm) = 0,(f(z)).

n

We summarize all this by

Theorem. Let f be a virtual symmetry. The map f* : ['(X,L) — (X, L)
defined as the composition of the maps (nf)* : I(X,L) — I'(X,n*L) and the
natural embedding I : T(X,n*L) — ['(X, L) is an intertwining map for the usual
action and the §-twisted action of G(L) where & is the automorphism of G(L)
defined by §;(\ - 7L(z)) = X - L (f(2)).

We have an identity of theta functions

(*) O+ (s)(z) = Ou(f(2)).

Remarks. 1) Over the complex numbers, for the line bundle L(H, x), f is a virtual
symmetry if and only if f*H = H. This is because we are dealing with symmetric
line bundles only. In the case where X is an abelian variety with C. M. by a C.
M. field K and f is a unit of K, the condition f*H = H is equivalent to the
condition Ng/g+(f) = 1. This new abundance of virtual symmetries is one of the
motivations for the introduction of this concept.

2) The relation (*) would not be true for a general twist coming from the general
symplectic group. For example, given M € Sp(2¢g,Ass) we can define an automor-
phism

é M G— G

by
dmla,z) = (o, Mz).

This would yield as usual an equivariant map taking © to some ©’. In general we
would not have @'(z) = ©(Mz).
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III. OVER C

This section follows in terminology and notation the book [LB]. Since our general
description of the theory over C is well known and most of our new contributions
are easily proved we will not offer any proofs to the assertions below.

Let A be a lattice (i.e. discrete maximal rank subgroup) in C¢. Let (H,x) be an
Apple-Humbert data. Recall that this means that H is a non-degenerate Hermitian
form on €, and that y is a semi-character on A. That is

x: A= G, x(M + A2) = x(M)x(Az2)ezp(miE(Ar1, Ag))

where E=ImH.
Given such a data define a factor of automorphy a = a(y ,) on A x €7 by

(1) a(M\, V) = x(Nexp(rH(v,\) + -gH(,\, A).
The lattice A acts on the trivial bundle €7 x C over C? by

A(v,t) = (v+ A a(Av) 1),

defining an ample line bundle L = L(H, x) of degree Vdet E on X = C?/A. The
global sections of this bundle, I'(X, L), are identified with holomorphic functions ©
on Cf satisfying

O(V 4+ A) = a(A,v)O(v).
The Apple-Humbert data satisfies

o L(Hi,x1)® L(Ha,x2) = L(Hy + Hz, x1X2)
o f*L(H,x)=L(f"H, f*X)
e L(H,x) issymmetriciff Imy C {£1}.

One can extend the definition verbatim to degenerate matrices H and in particular
get Pic®(X) = {L(0,x)|x € A*}.
Define a group structure on C* x C¢ by

[y w][8, 3] = [af exp(nH(z,0)), &+ u].

We call this group G(L)c and denote by G(L)g its subgroup consisting of all ele-
ments {a,w] where w € Q ® A.
Define also

GL)T = {[e,w]|e € C°,w € AL},
T(L) = {[a(w,0), w]lw € A}

(A+ is with respect to E).
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Note that G(L)¢ acts on € x C by
[, wl[v, 8] = [v + w, acexp(rH (v, w))1].

Now, one easily proves that G(L)*/T(L) is cononically isomorphic to G(L) and
that the formula
A% [v,1] = [a(A,0), N[, 1]

holds. We also remark that the commutator pairing eX of G(L) is given by
eL([a': w]a [)63 :L']) = e:sp(—21riE(w, m))

If L = L(H, x) is symmetric one verifies that we have ef'(z) = x(2z) for z € 1A.

The action of G(L) at the global sections of L is
([e, w]O)(z) = aexp(rH(z — w,w))O(z — w).

Given a totally isotropic decomposition A = A B A, with respect to E, we define
a semi-character ¥° on A by

X°(V) = exp(miB(v1, v2)),

where the decomposition v = v; + vz is deduced from €' Z (R Q@ A;) ® (R ® Az).
Then L = L(H, x°) is a symmetric line bundle. Given any other semi-character y
for H, we can find some ¢ € CY such that

(2) X(v) = x°(V)ezp(2mi E(c, v)).

We note that ¢ is not unique, but once it is chosen we can extend the definition of
the factor of automorphy a(H, x) given by (1) to elements of AL by using (2) as the
definition of the extended semicharacter. We define the theta function © = O%L . ¥
on C9 by

O(v) =exp (—Tl‘H(‘U,C) - gH(c,c) + %B(v +c,v + c))

X Z exp (7r(H — B)(v + ¢, A)
A€A;

m

5 (H = B)(\, )

where B is the C linear extendion of H|gga,. The decomposition of A induces a
decomposition A+ = A @ Ay
Define
K; = {{a(w.0),w]jw € A]} ,i=1,2,

(Note the ” hidden “ defendence on the choice of c).
One can verify the following statements:
- © e T(C?/A, L(H, x))-
- K; are mutually orthogonal maximal level subgroups of G(L).
- 0 is K5 invariant.
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Define for U € A{/Ay,
0. = [a(-u,0), —u]O,

then {©|u € Af-/A,} is a basis for [(C? /A, L(H, x)) and for [a,w] € G(L)
[o, w]O, = - eL(u — wi,wz) - a(w,0) T Oy _y,.

A special important case is as follows:

Given 7 € §,, we define:

a lattice A, = (71)Z%

an abelian variety X, = C9 /A,

a principal polarization H, = (Imr)™},

a decomposition Ay =729, Ao = [Z9,

a symmetric form B.- the C-linear extension of Hr|gga ,,, Br(v,w) = fv(Imr) 1w,
a semicharacter x2(v) = exp(miE,(v1,v3)), E- = ImH,,
a basis for A, consisting of the columns of (1)

a line bundle L, = L(H,,x,) on X,.

We define the functions Oy, ,  for w € 7 (#Z)g by

On,w.r = [a(n' H,,n‘x‘,’)(_w:o)’ —w]G(n' Lf)@(ﬂ' Hyn*x?)

Then {Op,u,r|w € 7(22Z/Z)%} is a basis for ['(X,,n*L,).
We have

On,w,-(2) = exp (giBr(z,z)) 0 [:] (n?z,n?7)

where w = Tw!,w! € (;ng)g and for every €,¢! € R? we have Riemann’s theta
function

© [:,] (z,7)= ) exp {27ri (% ‘(N+er(N+e)+ (N+e)z+ e’))}

NeZs

Coming back to the more general situation, let L be a symmetric line bundle L =
L(H,x) on X = C?/A. Then given an authomorphism g of X, the Appell-Humbert
theorem implies that g is a symmetry of L(H,x) if and only if g*H = H,¢*x = x.
Assuming this is the case we can show that

§gle, w] = [a, gw].
Also en[a, wlg(ry = (@™, wlg(Ln), Mo, wlg(n) = (@ nw]gr), and if w € 1A
then n*[o, w|g(m-1) = [@,w/n]G(n+m+1). Picking a symplectic basis (wjwz) of A
and letting w1, ... , we4 be the columns of (wyw), W; = (v_:")neN-F’ then Wy,... Wy,

is a basis of T(X) over Z and a basis for V(X) over As. For every z € Q® A,z°* =
(I)neN+ is in V(X)) and

mh(z*) = ([e“’p (g‘H(“”x)) ’%] G(ﬂ'L))neN"'



QUASI-SYMMETRIC LINE BUNDLES 53

. We have a natural embedding

~

i:G(L)g = G(L)
given by
z
[C!, :I?] — ([O!, ;;]G(n' L))nGN+ .

The €y, 7n, 65 formulas are immediately deduced from their finite counterparts. For
a concrete example of the system of maximal level subgroups consider again the

line bundle L, on X,.

2g
G(n*Lr) = {[o,w]la € C*,w € (r1) (niz) J
with the group law

[, w1][az, we] = [arazexp(mn® H(ws, w1)), w1 + wo].

The subgroups of G(n*L,)
L(n)s = {la(w, 0)ullw € 72 & I27)
1
L(n)y = {[a(w,0)w]|w € 727 & In—QZg}
M(n) = {[a(w,0)w]|w € T%Z-" 23 I%Z”},

(@ = @(n+,n+x0)) are maximal level subgroups. L(n);, L(n); are mutually orthog-
onal and M(n) is the level subgroup defining L from n*L.

The subspace Vi = 7Q9,V, = IQY induce a natural Goépel structure on é’(L)Q
which gives a Gopel structure on G(L) via i and extension of scalars. This Gopel
structure is inducing the system {L(n);},. We have already described how the
bases of I'(X,,n*L,) with respect to L(n);, L(n); look like. The basis with respect
to M(n) and the section used in the symmetry theorem (for the obvious theta
structure) is

mn? e /n '
_ g !
{ezp( ~ B,.(z,z)) G [e’ /n] (nz,7)le,e € 29,0 < ¢,€ < (n,... ,n)}
Finally, consider the following situation: we have two lattices A; D A, yielding an
exact sequence

0— Ay/JA— C/A -5 C? /A — 0

Let Ly = L(H,x) be some line bundle on €9 /A;. Let L = :*L;. Let K be the

corresponding level subgroup of G(L). Then

(1) L= L(H,x|a)

(i) K = {lagrng(00), A € Ar/A}

( i) Let L = L(H,x) be a line bundle on C?/A, and let K = {[a(A]|A} be a
maximal level subgroup of G(L). Let L; be the line bundle on €9 /A; defined
by K (in particular :*Ly = L). Then L, = L(H,x*) where x*|a = x and
X*(A) = a(\)/ezp (FH(A, V).
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APPENDIX - REPRESENTATIONS OF FINITE AND ADELIC HEISENBERG GROUPS

Al. THE FIRST CLASSIFICATION

This section gives a 'primary' classification of the irreducible representations of finite
Heisenberg groups. We fix the following notation :
k - an algebraically closed field.
G - afinite Heisenberg group sitting in the =v~ct sequence
l— &K— 6 B H — |
where the order of H is d*
K - a maximal level subgroup of G.
a, - the homomorphism k*— k* given by r+— ¢".
B* - the character group of a group B.
B[n], B" - the subgroup of elements of order n and the subgroup of n-th powers,
respectively, of an abelian group B.

DEFINITION. Let U: G — GL(V) be a representation of G on a k - vector space V.
We say that (V, U) is of order n if k™ acts through «,.

Let (V, U) be a fixed irreducible representation of order n of G. Decompose V
according to eigenspaces of K

V=0V,
e K*
and choose some ¥, such that Vz0 # {0}.

LEMMA Al.l. @ VMr is a non-zero G-invariant subspace of V , hence equal to V.
J= K*7

Proof. We have a group isomorphism

GIkK—=> K*, yr— 7

where
Y@=z, yl
and [z, y]=zyz 'y"'. ltis easy to check that

Choose a set theoretic section ¢: K*— G to the map y — y°*. We shall always
assume that the image of ¢ is contained in G°. This is possible since kG’ = G.

LEMMA Al.2. 1) on is an irreducible representation of k*Ko(K*[n]) henceforth
denoted by p.
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2) (V,U) = Indoqon(P)

Proof. Firstof all, k*Ko(K*[n]) or p.Ko(K*[n]) do actoneach V,, and we denote

XX
this action by p, . Thus p, = p. Second, we note that the representation theory of G is
governed by that of G° and the representation theory of k*Ko(K*[n]) by that of p Ko(K*[n]).

This means for example that we can identify Indkaom.[n])(p) with Indgixo(_,{,,.[n])(p) and the
first is irreducible with respect to G if and only if the second is irreducible with respect to
G*. Conveniently, we may work with characters of finite groups. Assuming that 2) is true we

get by Frobenius duality:

I =<@, (DU>

= <&y, cD,ndgfp >

(ALD
= <dy, ch>

Y < (me’ ®,>
xe K*
<P, B> +ZE%H < ¢sz’ ®,> .
x#1

where A = u.Ko(K*[n]), and @ denotes the character of the appropriate representation.
This proves 1) and the obvious fact that the different p, , are all non-isomorphic (although
they induce the same representation).

To prove 2) we use the well known interpretation of V'= Indfxm( K,,[n])(p) as

V=@ 8iVy,
where {g;} are representatives of G /k*Ko(K*[n]). An element ge G acts on a vector gy by
g 8v=g(p,{rv) if gg;=g;r. Definea G - linear transformation

Vi—V

by

gvr—U,» (ve V).
Since {Vm}ﬁ x» are permuted by G transitively, dim(V) =[G : k*Ko(K*[n])] = dim(V").
Hence to show our map is an isomorphism we need only prove it is surjective. That follows if
we observe that U, is an isomorphism from Vy, 10 Vo andevery component V, . of
V is of this form for a suitable g;. Q.E.D.

LEMMA Al.3. Let (W, p) be an irreducible representation of k*Ko(K*[n]) of order n
such that pl,~x, = a x-Id,, for some ye K*, then (V,U) = Indfoo(K,[”D(p) is an irreducible

representation of G of order n.

Proof. Set
V=0 gW
where {g;} are representatives of G /k*Ko(K*[n]). An element be K acts on gW by
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p(gi‘!bgi) = o, 28" Ibgi)
o, x( X8 (b) b)

28" (b) x(b).
That means that if we decompose V to eigenspaces of K then gW= Vier, - BEach gW isa

representation of k*Ko(K*([n]) , henceforth denoted Py, which clearly can not contain a

representation isomorphic to p as can be seen by observing the way K acts. Using the same
computation as in (2.1) we get

<y, By> = <O, B> + [);,} <@, >
g€ K*Ko(K*[n)

= 1. Q.E.D.

We summarize all we have proved by

THEOREM Al.4. Let G be a finite Heisenberg group, K a maximal level subgroup of
G and ©:K¥— G a set theoretic section to the map y — .

(1) Let p be an irreducible representation of k *Ko(K*[n]), then p|, x is isotypical,
equal to oy with some multiplicity and

V. U) = Indeoqens(P)

is an irreducible representation of order n of G. Further, every irreducible representation
of G is obtained in this fashion.

(2) If p and p' are two irreducible representations of order n of k*Ko(K*[n]) then

G —
Ind o) = Indlg‘Ko(K*[n])(-p')
ifand only if p and p' belong to the same orbit under the G - action given by
(8 p)— gp; gp(b) = plg'bg).

(3) Given an irreducible representation U of G on a k -vector space V one obtains
the full orbit of the representations p associated to it by (2) by letting k “Ko(K*[n]) act
through U on the various K - eigenspaces of V.

(4) Every irreducible representation of G° is of order n for some n. Hence these
representations for 1 <n <d’ are generators for the representation ring of G-.

Proof. We have already proved everything except for the last assertion. To see it is true,
decompose an irreducible representation of G according to characters of pp and note that
since 1, is central each one of them is G° invariant. Hence, there exist a unique eigenspace
of pz on which the action is given by some «; . Q.E.D.

We conclude this section by a lemma that follows immediately from Frobenius duality.

LEMMA AL.5. Let p be an irreducible representation of k*Ko(K*[n]) such that p|,«,
=, xld, forsome ye K* then p appears dim(p) times in Indf:f"(p["])(anx).
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A2. CLASSIFICATION WITH RESPECT TO A MAXIMAL LEVEL SUBGROUP
WITH AN ORTHOGONAL COMPLEMENT

We keep the notation of §A1. We shall assume through out this section that K has an

orthogonal complement. Thus, we may choose as a homomorphism int
henceforth we assume this has been done. In this section we use the results of §2 to get an

explicit classification of the irreducible representations of order n of G.

LEMMA A2.1  Every irreducible representation p of order n of k’Ko(K*[n]), such
that p| =0 X for some xe K*, is I-dimensional and is of the form
plaxo(y) = o Y(x)T(y) ae k™, xe K, ye K*[n),
for a suitable Te (K*[n])*.
Conversely, given any n, ye K* te (K*¥[n])* we have an irreducible 1-dimensional
representation p of order n of k*Ko(K*[n]) defined as above.

Proof. Let (V, p) be an irreducible representation of order n of k*Ko(K*[n]). We
consider it as a representation of K*[n] via ¢ and decompose it according to characters

v= @ aV,,
Te K*|n]*

where a, are the multiplicities. It is easy to see that each V. is k*Ko(K*[n]) invariant.

That proves the first part of the lemma.
To prove the second part we need only check that p as defined is a homomorphism :

plaxo(ye,x, o(y) = plaey [x,', o(w)lxx, o(y)a(y,)])
= (o) ylxx YT(wy,).
where we used [x,; ', o(W)]" =[x, n AyH]=1. Q.E.D.

We may now rephrase and explicate THEOREM Al .4.

THEOREM A2.2. Let K be a maximal level subgroup with an orthogonal complement.
The irreducible representations of order n of G ( G° ) are in one to one correspondence
with triples (n, x, T) (1 Sn<d’ respectively) where ye K¥/K*', te (K*[n])*.

The representation corresponding to (n, x, T) is ["deXKo(K*[n])(anzf) At is of dimension

r(n) = #K*" and is denoted by (W, . ., P, . »,)- Its character, denoted by &
(A2.1) D, . o foxo(W) = r(n) ' 1qx)q W) 1 (%) 1gu(W)

for ae k™, xe K, ye K*[n).

Fix n, m. Put d(n) = #K*[n], s =(n,m), a,,=d dfs) Yd(n)d(m)d(n+m). Let @ be
the character of W,, 2 W®W{m X272
K*(s] is T,T,l. then

nyr) LS 8iven by

and choose some Pe K*[n+ m]* whose restriction to
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(A2.2) Won, 2 0®Won. 1, o) = @ A, mWon+m. g 202, Br) -
xE K*.\/K*n'f'ﬂ
Te K¥[n+ m]™

Proof. While translating Theorem Al.4 one should note that the G actionon (n, ¥,, 7)
changes only %, to some x,¥" and leaves 7 intact. To see this is the case, use the
decomposition appearing in Lemma Al.1 of We 100 88 @ Var - Suppose that K*[n]
xe K*
actson V, by,
U gy = AV Ve Vo Vne K*[n].
Taking any ye G° we need to verify that the same holds for U v. Indeed,

UsmUy¥ = UyUy=1omyyV
= UyUpsotn) o)V
= Uy(x(s(m)™t(m)v)
=mU,v .

It remains to prove the assertions concerning the characters. It is easy to see, using the

decomposition of W, with respect to K* that dim(W =r(n) and that

nxT) (n. % 1'))

ae k™ acts as o'l

xe K acts as x(x)- diag[x, (x), ..., X, (0] where {%, ... X0} = K¥,
ye K*\ K*[n] acts as a permutation matrix of a permutation with no fixed points,
We K*[n] actsby T(y)-1,,.

Hence, if @, (axo(y)} is non-zero we must have we K*[n] and then

B, e (OXO(Y) = CHOTY) ( X A(0).

Ag Kok
Since K*" is dual to K[n] we get (A2.1).

To compute & we first note that only characters corresponding to representations of
order n+m can appear in the decomposition of @. We have thus to compute < @, @, - >
only for h=n+m, ye K* 7e K*[n + m}*. Secondly, we note that

Doxo(y)) = o "rimyr(m) 2 LT HW] 1 () ey (W)
by the general formula for tensor products and the equality K[n] n K[m] = K[s], K*[n] n
K*|[m] = K*[s]. Therefore

1
<9, ¢(n+m.;{,r)> = ?{ E d(g)'d)(,wm'x,r)(g_l)

ga G°

i
=3 X W axo(W)) By gy o0 x Yy )
o, x,
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_ riyrmyr(n +m)
- v

2 {lx Y @O B )1 @) 1 (W) )

oy

d
) d(")d(m)d(n+m)k z mf ) Wé%m Tlaﬂ(vo)

The last expression is zero unless both 7% "'l =1 and 7,7,7 "Iy, =1 . If both happen
then this expression is equal to d- d(s)>/ d(n)d(m)d(n + m). Any such  is of the form X5,
&e K*. Any such 7 is of the form fn where 7 is in the dual of K*[s] in K*[n + m]*
which is just K*[n +m]** and fe K*[n +m]* is a character whose restriction to K*[s] is

T, T |k, Thus we get

(A2.3) @ = ” K*-‘;K*"*"‘ an, m(D(n-o-m,,‘(,,‘(z;(, pry’
Te K*[n +m]*
which proves (A2.2). Q.E.D.

A3. REPRESENTATIONS OF ADELIC HEISENBERG GROUPS

NOTATION.
k an algebraically closed field of characteristic p 2 0.
the adele ring of Q.
the subring of A of finite adeles without the p - component if p > 0.
an tsomorphism Aﬂlzﬁ — k¥ .
the set k™*x A, with the multiplication rule, turning G into a group, given by
(A x, 20) (f ¥y, 3) = (Ap @2 (o -0 9)), X, + 30, % + 1)
o - the group homomorphism Zﬁz“ — G given by
olx), %) = (- 2, x, x)).

A
Py
e
G

DEFINITION. Let (V, p) be a representation of G. We say that (V, p) is a continuous
representation of G if for every ve Vthere exists an m, depending on v, such that for
every x€ m of Zﬂ"") we have p(x) v=v.

Define now G°= k%, x A/ with the same group law. We say that a representation
(V,p) of G isof order n, neZ - {0} if k%, actsthrough the character a,, a,(f) = r". We
remark that given an ample symmetric line bundle L and a theta structure

A:G (L)—G
we have AKk*,, x A = k%, x A} and we may define G (L) in the obvious way.

Therefore one may talk of representations of adelic order of G (L)°.
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THEOREM A3.1. (1) There is a unique irreducible continuous representation of G° of
order n, for every nel - {0}. This representation is henceforth denoted by V..

(2) For n =0 there is one to one correspondence between irreducible continuous
representations of order 0 of G and continuous characters of A*. The representation
corresponding to we Hom (A, k™) is denoted by Vo,yy Wedenote by V, the

representation @ V(o. v -
we Homc(A\X, k)

(€)) D Vi o®Von = Vo v
i) Vo ,®V, =V,

) v, ®vV. = @V, , aninfinite countable sum if n+r# 0, and V, ®V =V,
if n+r=20.

Proof. The existence and uniqueness for n =1 are proved in [Mum1] Proposition 5.2.
To get the clain for a general n define for every ne Z - {0} a matrix M(n) € GSp(2g, Ag)

by M(n) = (6 ,,?) . Define a surjective homomorphism

&n): G — &, &n) (a, x) =(ad', M(n)x).
Since the multiplier of M(n), @M(n)) = n, this is indeed a homomorphism. Now given a
representation (V, p) of order n define a new representation p' of G° by the formula

p(x)=p( 8ny' ().

One easily verifies that this is a continuous representation of order 1 of G°. Thatis &n)
gives a bijection between representations of order 1 and order n. That proves 1).
Since 2) is clear we have to prove only 3). Part i) is clear and ii) follows from 1 by

tensoring with V 1, . In part iii) the only question is with what multiplicity does V,

© v
appear in V, ®V_. It is not difficult to check that in an irreducible representation of order n

+r

the dimension of the invariants under a maximal level subgroup is precisely nlf, Choose the
maximal level subgroup Z = o( Zﬂz”) and decompose both V. and V, with respect to of
2, .
Y @ @
V = v, , V. = v,
= 8.y V= @ (),
Therefore

V8V, = @ (@ (V)y®(V,):) QED.

pe Z¥\Te B*

REMARKS. 1) Theorem A3.1 has an exact analog in the theory of real Heisenberg
groups. See [CR] §2.2.
2) The analog theorem for G and representations of order ne Z hold of course.

A4. APPLICATIONS TO THE THEORY OF THETA FUNCTIONS.

This section gives some applications of the theory developed so far. The applications
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given are mainly decompositions of certain global sections of line bundles on abelian varieties
as modules of finite and adelic Heisenberg groups.

1) We have a homomorphism
g : G(L) — G(L®")
given by ¢ — ¢®" g restricts to o, on k* and induces by passing to quotients the
natural embedding of H(L) into H(L®"). Via g we have a sequence of G(L) modules

nx, L)® — Sym"(NX, L) — X, L®").

2) Assume that L is symmetric. One can define a homomorphism
n,:GIL®") — G(L)
(see [Muml]) which induces the homomorphisms ¢, on k™ and multiplication by n on
H(L®"). Itturns I'(X, L) into a representation of order n of G(L®").

3) For L symmetric we have for every integer n amap 6,: G(L) — G(L) which is
equal to ¢,z on k™ and induces multiplication by n on H(L). That gives a representation
of order n* of G(L).

The maps described above satisfy the identities
i) 8, =neeg, for §:G(L)— G(L), n,: GIL®") — G(L), ¢ : G(L) — G(L®").
i) §,=¢g0m, for §: GIL®") — G(L®"), 1, : G(L®") —> G(L), €, : G(L) —> G(L®").

There are analogous maps &, 1, 6, for adelic Heisenberg groups. These maps are
obtained from the previous ones in a standard fashion and have similar properties.
We get representations of G(L) (G(L)) of orders n and n* via g, and 9,

respectively. There are also representations of order n of G(L) (G (L)) on I'(X, L*") and
Sym"(I'(X, L)). We now study them.

I. X, L)® as a G(L) module of order n.

Choose a maximal level subgroup K(L) of G(L) which has an orthogonal complement.
We know that there is a unique irreducible representation of order 1 of G(L) - W, , ,, in our
notation. It is of dimension d, where d* = #H(L). Since d = deg(L) = dim(ITX, L)), we
conclude Mumford's observation that I1X, L) is the aforementioned representation. Therefore,
if @ is the character of the G(L) action on I(X, L)®" then @ = D, 1, Using (3.1) we
get

qj(axo(ll/)) = r(l)n' o 1K|||(x) : lK‘[]](W)o
where, as before, r(n) = #K*" , d(n) = #K*[n].

Otherwise said :
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& o if x=0 and y=1.
(A4.1) W oxo(y)) =

0 otherwise.
Now, we simply compute the ' inner products ' :

1
<9, ¢)(n. 7 > = E E ‘I’(axo'(w)) ®(n,x‘ 1)((mc(y/))_l)
(exa(y))e G(L)*

1
= E E (p(a) (p(n'z, 1')(a_l)
ae 2
dn—l

dn) -

Therefore,

®n _ dn—l
X, L™ = ® 7 Yoz
xa K@LKL»"
T e K(L)*[n]*

II. I'(X, L®") as a G(L) module of order n, via £,
Choosing a set theoretic splitting we may write G(L) =¥ x H(L) and the group law is
given by
(o, h))(on, hy) = (a0, Fi(h, hy), b+ h,).
F, is a normalized 2 - cocycle :
(a) F (h, hy )E,(h+ h,, hy)=F,(h, hy+ h,)F (h, , h,).
(b) F,(0,0)=1.

The homomorphism ¢,: G(L) — G(L®") can be written as
(a, h)y — (- s(h), h),
where s : G(L) — k* satisfies
sthy, ) Falhy, hy)

sthisthy) ~ Fy(hy, b
Note that s (0) = 1. Now, the character of the natural action of G(L®") on ITX, L®") is just

CD(,' 1.1y Thus, we have
oD if x=0 and y=1.
Doxo(y)) =

0 otherwise.

where D?=#H(L®) = n®*- #H(L) = n**- 4, thatis D=d- n®
Therefore, if @ is the character of the g, action of G(L) on I'(X, L®"), then :
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a™D if h=0.
(A4.2) da, h)= {

0 otherwise.

We can compute now the multiplicity of each @, , ., in .

|
<O uyun>=5 L Hah @ (@hT)
(& h)e GIL)*

|
— X W) D, , o)

d e 2

né
T dn)
We conclude that
1.4
(A4.3) L= @  F=Wuyy
x e K(L*/IK(Lyxn
T & K(LY*[n|*

III. Sym*(T(X, L)) as a representation of order 2 of G(L).

Recall the basic decomposition :
IX,Ly= @ & vy
xeK*
where v, is arbitrary, v, =U,,v, and o is taken to be a homomorphism into G(L)".

Sym*(I'(X, L)) has a basis {vyel X% Te K*} andis d(d + 1)/2 dimensional. The action of
G(L)* is given by :

ae k™ actsby off, where I isthe identity d(d + 1)/2 matrix.
xe K actsby yox) on vy, .

#
We K* acts by vy, /> v, v .

Denoting by @ the character of Sym*(ITX, L)) we see that
Haxo(y)) = o ) 27 -
ot =1y vl
If the order of y isnot 1 or 2 then there are no such couples {¥, T}. Distuinguishing
cases a short computation gives

(Ad.4) P oxo(y)) = “atd 1K[2](x)' 1x*[2|(l/f)' Y(x)- (IK-m(W) +d l/qu(x))-
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Let us compute the multiplicity of which an irreducible representation of order 2, W, ,
appear in Sym*(IX, L)) :

@G 07 =g T Hmoty)B el oIl
re K[2]
ve Ki21*

= w + L Y 4 W(x)- 12) 2y )~
d d 2
He g
(x, W) e KI2)x KI2]*\ {(1, 1)}
d+1 |
(A4.5) = St W(——l + z W) () r“(w))
{(x. ) € K[2) x K[2]*

=%(d+ > r—'(u/)(. ) wx—‘(x)))

we K*[2] x € K[2)

we K*[2] € K[2]**

=ﬁ(d+ )y T‘*(!l/)()r 2 x(WZ_*Im])))

ve K*2] st
Vi =Xy

ﬁ(da&d@)' ) r—‘(w).

Consider the last expression of (A4.5). Let us denote by K*[2], the subgroup of all
characters ye K*[2] whose restriction to K[2] is trivial. Then if #K*[2],_ > 1 then this
aforementioned expression is equal to *2- r(2) no matter what ¥ is. Let us denote by
K*[2],, the subgroup of K[2]* obtained by restricting the elements of K*[2] to K[2]. That
is we have an exact sequence

res.
| — K*[2], — K*[2] — K*[2), — 1.

If K*[2],= {1} thensince #K*[2] = #K[2] = #K[2]* we have K*[2] = K[2]*. That
implies that in this case the last expression of (A4.5) is equal, for any y :

sy @+ 4] ga)

which equal to ¥2(r(2) + 0¥ | x))- To sum up:
The representation W, , ., appear with the following multiplicity in S ym* (X, L)) :

64



QUASI - SYMMETRIC LINE BUNDLES

i) ¥2-r(2) if K¥[2], # 1,
i) (M2 + (X)) i K*2],={1}.

EXAMPLE. Consider the special case where L =M where M is a symmetric ample line
bundle of degree 1.

In this case we have H(L) = X[2] and a maximal level group K is an elementary
abelian 2-group of order 2¢. Clearly r(2) = 1. Consequently, any representation W, . .
(which is #K*? =1 dimensional) appears with multiplicity *2(1 + () )) which is either
zeroor 1.

Let us call a representation W, , , even or odd if 7oy ) isequalto 1 or -1
respectively. The dimension of ITX, L?) is 2% and according to (6.2) it is the sum of all
W, . » each appearing with multiplicity 1, and each is 1-dimensional. Now, it is classical
fact (See Mumford / "Tata Lectures on Theta 1", Proposition 1.3, p.124 and {Mum?2] Proposition
3.2 p.40) that over the complex numbers the global sections of (the pull-back to the universal

covering space of) M* are given by @ g] (2z,27) , ae % Z%/7*, and the global sections of

all

M* are given both by @Ig](4z, 41, ae 1 Z*%/Z* and by @[b,z

](22, ) where a, be Z°.

It is reasonable to guess that each of the @[alz] (2z, 7) spans a unique W,

bi2 @z
new notion of even/odd corresponds to the classical notion of even/odd characteristics. This
is indeed the case.

9 and that the

IV. I(X, L) as a representation of order n of G(L®"), via n,.
It is obvious that this is an irreducible representation. The determination of which (n, ¥, 7)
belong to this representation is a ' combinatorial problem ' which is of no importance in this

paper.

V. X, L) as a representation of order n* of G(L), via §,.
Choosing a splitting of G(L) as in II we can write the homomorphism §, as
(0 by > (& (h), nh)
where s is a character of H(L).
The character @ of the aforementioned representation is given by

d o’ sh) if nh=0.
(A4.6) & x, 1)
0 otherwise.

We can easily compute now the product
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1
<, ‘D(n.zz, §>= o #iz d- s(x + o)) r(n®) ()T
xe Kin]
le K*¥[n]

2
n
=T e ok o)

xe K[n]

le K*[n)
The last expression is zero unless s = ¥ X 7 on K[n] X K*[n]. If this happens then this
expression is equal to r(n*)- d(n)*/ d = d(n)*/ d(n*). Fix some ¥, T such that s=y X 7 then
X, L) as a representation of order n* of G(L) decomposes as follows :

_ dn?
(A4.7) = @ TEWe e
20€ K 1 k¥
T, K*[n?]*"

With regard to adelic Heisenberg groups we have the following assetions :
() [ (L*®) is the unique irreducible representation of order n ofG (L) acting via €,;
(ii) Ia (L) 1s the unique irreducible representation of order n of G (L®") acting via n,;
Gii) 7 (L) isthe unique irreducible representation of order n* of G (L) acting via 9§, ;
(iv) " (L)® is the unique irreducible representation of order n ofG (L) with infinite
countable multiplicity. The same is true for Sym" (I (L)).

The irreducibility of these representations follows immediately from the fact that the homo -
morphisms through which they are obtained are all surjective and from the fundamental result

([Mum2] Proposition 5.3) stating that for every ample invertible sheaf M, I (M) is the unique

irreducible continuous representation of order 1 of G (M). Their uniquness follows from Theorem
A3l
As an immediate consequence of (i) we get the following corollary (compare[Mum2]

Theorem 7.1 ) : Choose an non-zero section se [ (L), , where the decomposition is with
respect to a maximal level subgroup Z of G (L). Then, denoting by U the action ofG (L) on
I’ (L), we have that { (U.s)"lze Z '} span I (L*). Indeed, these generators are permuted - up
to scalar factors - by the £, action ofG (L).
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