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Quasi - Symmetrie Line bundles on Abelian varieties

EYAL Z. GOREN

We study a fine bundle Lover an abelian variety X and an isogen)' f: X~ X satisfying

f*L ::L " . We study the problem of e~plicitlydescribing the action of f on global sections 01

powers of L and we determine the relations imposed by f on the 'thetanulwerte' coming

from such sections. In addition, the representation theory of finite and adelic Heisenberg

groups is discussed.

O.INTRODucnON

Let X be an abelian variety.over an algebraica11y closed field k of characteristic p ~ O.
Let L be an ample line bundle of separable type on X (i.e. deg(L) is prime to p if p > 0).

Assume that there exist an isogeny f: X ~ X such that f*L == Ln for some 11 and

(degif), p) = 1 if p > O. We say then that f is quasi symmetry of Land if fif:. 1 that L is

quasi - symmetrie. If n = I we say that f is a symmetry of L This phenomenon is

interesting in the eontext of the general theory of abelian varieties. One ean also motivate the

interest in such line bundles by the following observations:

(i) As explained in detail below, automorphisms of a eurve C inducC? automorphisms of

Jae( C) and the seeond power of a carefuUy chosen line bundle L (inducing the natural

polarization of Jac( C » is stable under a11 these automorphisms.

(ü) If f only satisfies f *tPL = n tPu where tPL : X~ XV is the polarization induced

by L, that is, if f is an isogeny of the polarized abelian variety (X, <PL) then, as explained

in detail below, if L is symmetrie, we have r L 2 = (L 2 r. This shows that the situation we

are dealing with is quite eommon, and in fact there exist whole families in appropriate

moduli spaees eharaeterized by this property.

(iii) Sections of ample line bundles are given over the complex numbers by Riemann's

theta functions with characteristics. There are various methods by whieh one can determine a

field eontaining the values of these functions at points eorresponding, for example, to abelian

varieties with complex multiplieation, of the moduli spaee of abelian varieties with prineipal

polarization. It is of interest to understand these values as closely as possible.

Before stating some of the results of this paper we reeall briefly the definition and basic
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properties of finite and adelic Heisenberg groups. For a complete aceount see [Mum 1],

[Mum3].

HEISENBERG GROUPS.

DEFINITION. Afinite Heisenherg group G is a group for which there exists an exact

sequenee

I ---+ k X ---+ G ~ H ---+ I

such that k x is the center of G and H is a finite abelian group.

It follows from the definition that the commutator pairing from H x H· to k x is a

non-degenerate bimultiplicative skew-syrnmetric pairing and this implies that if p > 0 then

(p, #H) = land that the elementary divisors of H appear in pairs (We denote the number of

elements of H by d 2 ). In fact these are the only restrietions on H.

G always contains a finite group, denoted by G c, characterized as the set of elements

whose d 2-th power is trivial. G C sits in the exaet sequenee

I~ J1i ---+ GC
---+ H ---+ 1

where J1d1 is the group of d 2-th roots of 1 in k X
•
11I

We say that a subgroup K of G is a level subgroup if n induces an isomorphism

between K and n(K), and we say then that K lies above mK). If F is a subgroup of H
then F has a level group above it if and only if F is totally isotropie with respect to the

commutator pairing. In fact, any level subgroup of G is eontained in G c, because any level

subgroup is of exponent d. We can always find two maximal isotropie subgroups F, F I of

H such that H = F ffi F ' - one says that F has an orthogonal complement - but it is not

true that every maximal isotropie subgroup has an orthogonal complement. This decomposition

enables one to prove that G is determined up to an isomorphism by H.

If H is a finite Heisenberg group then Mumford has proved in [Muml], in analogy with

the Stone Von-Neumann theorem, that there exists a unique irreducible representation of H

on which kX aets through its natural character. A complete deseription of the basie representation

theory of finite and adelic Heisenberg groups appears in the appendix.

Finite Heisenberg groups arise as folIows:

DEFINmON. Let X be an abelian variety over an algebraically closed field k of

characteristic p ~ o. Let L be an ample line bundle on X. We say that L is a line bundle of

separable type if (deg(L), p) = I if p > 0 (for p = 0 every line bundle is of separable type).

Given a line bundle of separable type L we define the Heisenberg group G(L) associated

to it by

G(L) = { l/J: L ---+ L I 4> is an automorphism of L covering translation by x on the base}

That is G(L) is the group of automorphisms l/J of L for whieh there exists some x such

that l/J fits into a eommutative diagram

[lI Let e be the exponent of H, then one may defi ne such subgroups where d 2 is replaced by e 2, 2e
(ar even e itself if e is odd). The particular choice d 2 is bath canonical and convenient. These remarks
follow from the fonnula (.t)')" =x" y" . [y,x] II{" - 1Y2 •
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tP
L ) L

1 !
x Tx ) x,

where we denote by Tx the translation map T/y) = x + y.

There is a short exact sequence

I ~ k X
~ G(L)~ H(L)~ 0,

where H(L) = Ker tPu l/>L (x) = Tx *L ® L,I. G(L) is a finite Heisenberg group. We refer the

reader for a proof of this fact as weIl for a general discussion of these groups to [Muml] and

[Mum3].

DEFINITION. Let IA.j denote the adele ring of lQ with the component corresponding to

p omitted if p > O. An adelic Heisenberg group is a group G fitting into an exaet

sequence
l~kx~G~!A~~O

'f '

such that k x is precisely the center of Gor, equivalently, such that k x is contained in the

center of G and the commutator pairing
!A 2g x !A 2g ~ k x

I I
is non degenerate.

The uniqueness of a skew - symmetrie non degenerate pairing on !Ar2g implies that

every adelic Heisenberg group is isomorphie to the group

k x x !A/ X !Arg
with the group law

(a, XI' x2 ) eß, Yl' Y2) = eaß i;. ( Y2 (I XI' Y2 - r.\1' Yl»' XI + Yl' ~+ yz)
where

g: !A / ~ ~ (k x )klr

is a fixed isomorphism. We will usually denote this group by G and call it the standard
adelic Heisenberg group.

In contrast to finite Heisenberg groups the representation theory of adelic Heisenberg
groups is simple. We call a representation of G a representation 0/ order n if k X acts

through the character a~ ci'. In analogy with the theory of real Heisenberg groups,

there exists a unique continuous irreducible representation of order n for every n 'i= 0 (see
appendix).

Adelic Heisenberg groups arise from abelian varieties by a I limiting process I :

DEFINmON. Let X be an abelian variety over an algebraically closed field k of
characteristic p ~ O. Let L be an ample line bundle on X of separable type. Let T(X) be
the 'separable' Tate module of X, that is,

T(X) = tim X[n]
~

(n. p) =1

(if p = 0 there is no condition in the limit). Let V(X) = T(X) ® lQ.

Define the adelic Heisenberg group associated with L, G (L), as follows :
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G (L) =set of sequences of the form (xn, 4>n),.. N' where:

(xn)ne ~ is an element of V(X), the maps 4>n are defined if and only if XnE H(n*L ), and then

4>nE G(n*L). If both 4>n and 4>m are defined and m = nd, then d*4>rl = 4Jm where the pull back

is with respect to d xm = Xn [21• The group law is given by

(Xn• <P,,)ne ~ (yn' lj!n)rw! N =(Xn+ Yn, 4>rl°ljln)ne tj.

G (L) is an adelic Heisenberg group and there is an exact sequence

1 ----+ k X ----+ G (L) TC -+ V(X) ----+ O.

(For these facts as weil as others stated below see [Muml], [Mum2], [Mum3]). There is a

canonical homomorphic section

d : T(X) ----+ G (L)

given by (xn)n 1-----+ (xn, 4>n)n where (xn, 4>n)n is the unique element of G (L) such that tPl
is the identity map. In general er (n:X» is not a maximal level subgroup. Actually there is a

natural isomorphism for every n

Normalizer (d(n T(X» ) / den T(X» == G(n*L).

Suppose from now on that L is symmetric. Then there is a canonical section

f : V(X) ----+ G (L)

constructed as follows : given XE V(X) choose some yE G (L) such that 2 7l(y) = x, and

put rex) = y' 8 . 1(Y)' I (for the definition of 8. I ' which is an automorphism of G (L),

inducing multiplication by - 1 on V(X) and the identity on k X
, deduced from multiplication

by - I, see section 11). This definition does not depend on y and defines a section, though

not homomorphic, to TC.

REPRESENTATIONS AND BASES. There is a natural action of G(L) on nX, L) :

Let l/JE G(L) cover translation by x and let SE T(X, L) be aglobai section of L. Then

U, (s) = t/Jo s 0 T_ x

defines an action of G(L) where the center of G(L) acts naturally. In fact this representation

is irreducible. It follows from the discussion of the appendix that choosing a maximal level

subgroup K, a Kinvariant vector VI (which is unique up to a scalar) and a section L for

the commutator map X: G(L) ----+ K* (K* = the characters of K ) we get a basis for

nX, L). Namely, { Un:~ (VI) I c;E K* }. We shall always assume that 1:(1) = 1. We have

also a decomposition of T(X, L) into eigenspaces of K :

nX, L) = $> rex, L )g
ge K*

where each T(X, L)~ is one dimensional and spanned by Un:~) (VI)' When K has an

orthogonal complement Kr we can do better. We can choose L as the unique isomorphism

[2l In general if f: X~ Y is an isogeny and L is a line bundle on Y, then for every isomorphism

tfJ: L~ L covering translation by y on the base and for every XE X such that j{x) =y there is a unique

isomorphismrtfJ: f*L~ f*L covering translation by X on the base which is obtained from tfJ. We call this

isomorphism - which depends on x - the pull back f*tfJ with respect to fix) = y.
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with Kr induced by the commutator pairing.
The theory of descent shows (loc. ciL) that there is one - one correspondence between

level subgroups K over a fixed subgroup F of H(L) and isomorphisrn classes of line

bundles M on X / F such that p*M == L, where p : X ---+ X / F is the natural projection.

Given such M one associates to it all the automorphisms of L that are of the form p*ld.

with respect to all XE F. In that case one can show that nX, L) is the direct surn

EB p*rex /F, M) and in fact fixing some level subgroup K, that corresponds to one
M ;p*M=.L

of these M 's, this is exactly the decomposition to eigenspaces of K.

The analogue for adelic Heisenberg groups is as folIows: define

r (X, L) = lim r(X, n*L )
--?

where the limit runs over all n prime to p if p > 0, and is taken with respect to the

injections

d*: T(X, n*L) ~ nX, d*n*L).

Given SE r (X, L) and (XII' ifJfl)fl E G (L) define

U(xII' ~ )" (s) =ifJm 0 S 0 T. x".

where SE nX, m*L). This is a well defined group action of G (L) on r (X, L) and the

fundamental fact is that it is irreducible. There is a one to one correspondence between

maximal level subgroups containing a'-{m T(X) for some m and line bundles of degree

one on abelian varieties rationally isogenous to X whose pull back to X is rationally

isomorphie to L (see [Mum3] p. 62 ff for the definition and properties of rational isogenies).

We call such level subgroups commensurable with cr(T(X)). To any such commensurable

maximal level subgroup K and a section L to the commutator map X: G (L) --4 K*

(continuous characters) one can associate a basis { Ul),fJ (VI) I gE K* }, where VI E f' (X, L)

is a fixed Kinvariant vector (whieh is unique up to a scalar). We have also a decomposition

to eigenspaces

t (X, L) = (f) T(X, L)~
~E K*

and each t (X, L)~ is a one dimensional space spanned by UI(~ (VI)' One should notice that
for general level subgroups there is no such decomposition although there are certain farnilies

of related bases that one can construct from some other level subgroups. We will develop trus

idea in §3.

CONVENTION. Generally we will denote basis elements with respect to a general level

subgroup (it may or may not have an orthogonal complement) by the letters v or O. We will

denote them by the letter s if the subgroup has an orthogonal complement.

MAIN RESULTS.

In general, the content of this paper is as follows:
§ I contains the general geometrie background of quasi - symmetrie line bundle and the
definition of the homomorphisms associated with them.
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§2 is devoted to the proof of

1HE SYMMETRY THEOREM (PRELIMINARY FORM). Let X be an abelian variety over

an algebraieally closed field k. Let L be an ample fine bundle 0/ separable type on X. Let

s;( (L) = {gE Aut (X) I g*L == L}. Assume that there exists a maximal isotropie subgroup Z of

H(L) which is 9!I(L) - invariant and choose some level subgroup Z above Z Choose some

non zero vector v I E nX, L)I = nX. L)z and choose a seetion

G(L)C f- E - Z., E(l) = 1.

Given ge [;i{ (L), there exists an automorphism 01: of G(L) lifting the action of g on

H(L) (see § I below). Let q,: g*L ~ L be an isomorphism (determined up to a scalar). Let

T = lfJ* g* e End(r(X, L».

Then:

(a) There exists a unique character ~E Z1f., characterized by either:

(i) ~(z) - Jo/z) E Z for all ZE Z, or by

(ii) If M is the fine bundle on X / Z corresponding to Z then g*M ® M . I

corresponds to ~ under

Z* == Z* == Ker ( Pico(X / Z)~ Pieo(X) ).

(b) There exists scalars bg.XE /ld2 (XE ~). determined by the equation

bg,;( UE(y~.g;() VI = U8K~(E(z)r UE(YK) vI

such that

T ( ~,.axvx) = c(g) ~.• aXbg zVy,.gZ
x~ x:l' 11

where {vx= U».x) vI} is a basis for T(X, L) and e(g) is a sealar detennined by the equality

Tv 1 = e(g) v
Yx

• In partieu[ar the matrix describing T, whieh is given explieitly by the bg. x's,

is monomial and unitary.

REMARKS. I) Note that the underlying permutation of T is X~ ~. gX. Note also

that bs. I = 1.

2) For L very ample, T is actually writing the automorphism g by coordinates. Note

that the indeterrninacy up to a scalar of T disappears in projective coordinates.

3) Given any finite automorphism g of X we can create an ample line bundle for which

g is a symmetry by taking the ' norm' of any ample line bundle with respect to g. Since the

resulting line bundle is ample our method applies. In particular we see that for every

automorphism ge Aut(X) of finite order there exists a projective embedding such that the

action of g on X is given by a monornial unitary matrix.

4) Both in the case of k = [ and in the general case we can get from the symmetry

theorem identities between functions. Over [ this could be done by trivializing the puIl-back

of our line bundle to the universal covering space. In general we may trivialize the puIl-back

of our line bundle to V(X) ala Mumford ([Mum3]).

§3 contains several topics. We discuss the functorial behavior of adelic Heisenberg groups,

projection operators on finite Heisenberg groups and the construction of 'compatiblet bases to
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l{X, n*L). Finally we prove a result analogous to the symmetry theorem for isogenies j: X

---+ X such that f*L == L/t and such that (deg(f), p) = 1 if p > O. The precise formulation

requires too much preparatory work to be stated here. Along the way we state another elegant

version of the symmetry theorem and the section closes with explaining how, under mild

restrictions, we can extend our results to isogenies j: X ---+ Y with appropriate line

bundles.

§4 eontains some examples illustrating the theory.

§5 consists of three topics. The extension of the simultaneous construction of bases for

nX, n*L) to all nX, Ln). The extension of our results to lJ) - isogenies.A concise

dietionary between the analytical and algebraie theory.

In the appendix we classify all the irreducible representation of finite Heisenberg groups

and detennine the decomposition of tensor products of such representations, hence giving an

explicit description of the representation ring. The same results are obtained for eontinuous

representations of adelie Heisenberg groups. Although for finite Heisenberg groups there

might be many non isomorphie irreducible representations of order n, for adelic Heisenberg

groups there is a unique irreducible eontinuous representation of order n for any n E 7l 
{O}. This is in complete analogy to the weil known case of real Heisenberg groups.

The results are explicit enough to easily determine for example the decomposition of

T{X, Ln) as a module of G(L) aeting via the natural homomorphism En : G(L) ---+ G(L/t),

or of Sym 2(nX, L)) yielding in this ease a new interpretation of the notion of even and odd

theta functions and sheding more light, so we believe, on the multiplication map
nX, L)0/t ---+ nX, L/t).

ACKNOWLEDGMENTS. It is my pleasure to thank EHUD DE SHALIT for many valuable

eomments. The final version of this paper was written while enjoying the wann hospitality of

the Max Planck Institue at Bonn.

1. QUAS] - SYMMETRIe LINE BUNDLES ON ABELIAN V ARIEflES.

We retain the notation fixed in the introduetion. Thus X is an abelian variety over an

algebraically closed field k of characteristic p ~ O. L is an ample line bundle of separable

type on X etc.

DEFINITION. Define

91(L) = ( gE Aut(X) I L=. g*L L
91 + (L) = { (g, 4» I t/J: L --+ g*L an isomorphism }.
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Note that according to our terminology, L is quasi - symmetrie if 91 (L) -:t {I}. As

customary L is called symmetrie if - le 91 (L).

REMARKS. 1) 91 (L) is a finite group.

2) In the sequel we will often confuse divisors. line bundles and invertible sheaves. While

this might cause some confusion it has the advantage of making some arguments n10re

transparent. In this connection we remark that one can define 91 +(L) for L = divisor, line

bundle, invertible sheaf (in the obvious way) such that under the usual transition between the

different concepts the definitions of the various 91 +(L) agree.

LEMMA 1. There is an exact sequence 01 groups

I --4 k X
--4 91 + (L) --4 91 (L) --4 I,

where we define

(g, ljJ)(h, ljI) = (gh, h *</J 0 ljI).
This sequenee always splits.

Proof The assertion about the exact sequence is easy to check. To prove the second

assertion we note that it is enough to prove that there exists some divisor D on X, such that

L == Q X<D) and such that g - I (D) = D for a11 ge 91 (L). Indeed, given such D, let

a : Q X<D) --4 L

be an isomorphism. Then for every gE PI (L) we have

a - 1 g* ~
L ) Qx(D) = Q x(g-ID) - ....... g*Q X<D) g*L

which gives us a splitting homomorphism

91 (L) --4 91 + (L), g t-) (g, g*ao a- l
).

To find such D start with any divisor F such that L == QjF) and such that ~ supp(F).

The isomorphism g*L == L implies that for all ge 91 (L) there exists a function ~ such that

g*F = F + (1,),
Since Oe supp(F) we also have Oe supp(g*F) and therefore Oe sUPP~) and we may

normalize the functions IM for all gE 91 (L) by requiring that ~(O) = land that detennines

each ~ uniquely.

It is easy to check that

g t---+ f
g

is a I - cocycle in ZI (91 (Lrp
• k(X) x ), where i/ex) = ~ (h(x)) defines the left action of

9/(L)OP on k(X). By Hilbert's 90 there exists (JE k(X) x such that for a11 gE 91 (L)

~ = f}f / f2.

Wetake D=F-(Q). Q.E.D.

COROLLARY 1 (of proof). For every line bundle L there exists an 91 (L) - invariant

divisor D, such that L == Q x(D).

REMARK. Assume that every simple component of X is of dimension at least 2. Define

KsI(L) = X I 91 (L) and let 1r: X~ KsI(l) be the natural quotient map. Then there exists a
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a divisor F on KII(L) such that1r*F = D where D is a divisor defining L. Indeed, if we

define

J( (L) = { Xe X I stabIl (L) (x) '* {I} }.

Since

J( (L) = U Ker (l -g)
1 "t:- gE CL)

it follows that codim( J( (L) ) ~ 2. Therefore, letting X I =X - J( (L), K I =X I / 91 (L) we

have natural isomorphisms CI(X) = CI(X I), CI(K) = CI(K I) and we reduce to proving the

same assertion for D Ix! and proving the existence of such F on !C. But, now the map

TC: Xl ~ KI

is etale and finite. For such maps, descent theory teIls us that such a divisor F exists. Note,

however. that we can not conclude that there exists ahne bundle Mon KII(L) such that TC*M ==
L (the precise conditions for 91 (L) = {±l} were given in [Muml]) . The essential reason for

that is that on a singular varieyt the concepts of Weil and Cartier divisors diverge. A concrete

example is given by any ample symmetrie L(H, X) such that X is non-trivial. (see §5 for

terrninology). Q.E.D.

THEOREM 3. Let L be an ample fine bundle on X. Define

91 .(L) = { ge Aut(X) I there exists y(g)e X S.t. g*L == T)'(g)*L }.

Then: 1) 91 Ji1.(L) is a finite group.

2) Let S be a subgroup 01 91 .(LY'P 0/ order s. Then

g ~ y(g) (mod H(L)) for ge S,

is a I - cocycle representing a class in H1(S, X / H(L)) oforder m I (s, 2).

3) There exists 1(e X such that

for all ge S,

that is

Further, 1( is unique up to an element 01
n (l-g)~H(Lm).

gE .CL)

Proo! 1) Note that since L is ample W.(L) is precisely the group of automorphisms

preserving the algebraic equivalence dass of L. That iso precisely the group of autOITIorphisITIS

preserving the polarization <PL which is finite.

2) First note that y(g) is unique mod H(L) and that sI.(L) preserves H(L). Then

(gh)*L == h*g*L

== h *T.\,(g) *L

== Th - J (\,(g»)* h*L

== Th -1 (v(g») + -'{h)· L.
This implies that
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y(gh) = h*y(g) + y(h),

where we put h* t =h -1 (t) (this is an action of 91 .(LYP ). This shows that for gE S we get

a cocycle in

H1(S, X / H(L)),

which is killed by sand therefore it is of order m I s. Moreover, we may assume, after

translating L which amounts to changing everything by a coboundary, that L is symmetrie.

Therefore g*L is symmetrie for every _g which implies that 2y(g)E H(L). Explicating these

remarks we see that there exists some J(j) E X / H(L) such that
-

mY(gJ =(l - g)* kQ for alt gE S

(we denote elements of X / H(L) by X, Y etc.). Choose some 1('E X such that m1(= J(j) . Then

there exists an element WE (X / H(L))[m] =H(Lm) / H(L), such that

YW' = (l - g)*1(o+ 'RgJ.
We have:

(1)

(2)

g*Lm - T *Lm - "r *Lm - "r *Lm= )'(8) = 1 (I - 8)."+ 1(g) = 1 (I· 8)t-,. •

g*T *Lm - T *g*Lm - T *, m - T *, m
t: = 8 - I (I(') = R- I (I(') + (l _ /:-;. I(' 1.J = ,. 1.J •

That proves the first part of 3). To get the uniqueness assertion we note that if

g*T1('.*Lm == Tt:.*Lm
,

then the second and fourth expressions of (2) shows that

g*Lm == ~l- g).,..*L"\
hence,

(l - g)* 1(" =y(g) mod H(Lm).

Since 1(' satisfies the same equality we see that

(I - g)*m(1(- 1(') E H(L),

therefore,

1('- 1(' E n «1 -g)*m)~H (L)

gE si .(L)

which implies the uniqueness assertion. Q.E.D.

PRoposmON 4. Let Jr: C ~ 13 be a Galois eovering 0/ smooth eomplete curves

with Galois group 11 0/ elements. Fix some base point CE C, and let B =Be be the theta

divisor with respeet to the embedding detennined by the base point c,

C ~ Jac(C).

Choose some KE Jac( C) such that T,.*Be is symmetrie and let L =QJac(C)(T,.*Bc )' Then

11 c; 91 (L 2).

Proof We could have used Theorem 3 but it is better to argue directly using the same

rational. Let L be defined as above. Then for every gE 11 we have

g*L == T)VJ)* L
for same unique y(g). Since L is symmetrie so is g*L and therefore 2y(g)E H(L) ={O}.

That is y(g)E Jac( L )[2]. Thus,

g*L 2 == (T;ü)*L)2 == TY{Ji)*(L 2) == L 2. Q.E.D.
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REMARKS. 1) Proposition 4 shows that there are many examples of line bundles L such

that 91 (L) i' {+1 }. Other examples may be constructed using the theory of complex

multiplication.

2) Note that in PieR -I ( C) the theta divisor is eertainly invariant. The problem Proposition

4 deals with is essentially the problem of non - existenee of a eommon fixed point for P.
Example II in §4 shows that the eurve y 2 = x 6

- I has no point fixed by all its automorphisms.

(lndeed, by Lefschetz fixed point fOfffiula, the number of fixed points for the automorphism

1r given there is 2 and these are the points {(O, i), (0, - l)}. On the other hand the fixed

points of the hypereliptic involution are {(O, c;) I S6 = 1 } ). If there were a point p such that

the theta divisor with respeet to p - denoted by Bp - is invariant under all these automorphisms

then B p = Bg<p) = Tg(p). p~. Sinee the theta divisor is of degree 1 we conclude that g(p) = p

for all gwhich is impossible. Therefore, Proposition 4 is the best we can hope for in

general.

DEFINmON. Let L be a synunetrie ample line bundle. Define

t(L) = {jE End(X) I j*L == Ln jor some n, (PI deg(j)) = 1 if P >°},
t 0(L) = {jE End(X) I f*L == Ln 2 jorsome n, (P, deg(j)) = 1 if p >°}.

REMARK. The condition 1* L == Ln is not too strong. Indeed, if f*L is only algebraically

equivalent to Ln, then the same considerations as in Proposition 4 show that .rL 2 == L2n.

Consider now an isogeny f: Y --) X and let L be an ample line bundle on X. The

following lemma describes the basic functoriality of the adelic Heisenberg groups associated

with line bundles.

LEMMA - DEFINITION 5. I) There exists a canonical isomorphism

j(j, L): G (j*L)~ G (L)

fitting into the jo110wing commuting diagram

--) k X ----+ 6 (j*L) --) V(Y) --) 0

lId. Ij(f, L) 1V(f)

-----+ k X -----+ 6 (L) --) V(X) ----+ 0.

2) IJ JE 91(L) then the same haltisfor G(f*L) and G(L) with the obvious modifications.

Assume that JE e (L),j*L == L"', then:

3) There is a canonical surjective homomorphism

0j :6 (L) ----+ G (L)

fitting into the following commuting diagram

-----+ k X --)6 (L) --) V(X) ----+ 0

1~" 18J 1V(f)

-----+ k X
--)(; (L) --) V(X) --) 0.

11
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where a": k X
----4 k X is given by ~ (t) = t' .

4) If JE 91(L) then the same holdsfor G(L) with the needed modifications.

Proo! The definition and the stated properties of j(j, L) appear in [Mum3] Proposition

4.9. To prove 3) and 4) let

be an isomorphism and

l/J* : G (Ln) ----4 G (j*L)

be the induced isomorphism (which is independent of the choice of t/J) and denote by the

same symbol f/1* the induced isomorphism

4>* :G (L") ----4 G (j*L).

The definition of 0/ is given in either the finite or adelic case by

0/ = j(J. L) 0 t/J* 0 e" '

where e,,: G(L) ~ G(L") is given by eIl (4') = t/J&l and e,,:G (L) ----4 G (Ln) is the

induced homomorphism. The verification of the stated properties of this homomorphism is

immediate. Q.E.D.

REMARKS. 1) The homomorphisms 01' 8
8

satisfy

o0 Og = OjK'
This follows easily from the definitions.

2) For f multiplication by n (n any integer) one can check that our on is equal to the

homomorphism On defined in [Muml] p. 308.

n. THE SYMMETRY THEOREM.

From now until the end pf this seetion fix a maximal isotropie subgroup k...slLHfL) and

a maximal level subgroup Z above Z. Later we will put further eonditions on these

subgroups.

Given gE 91(L) we can define a new aetion UK of G(L) on nX, L) by

URt (s) = U0 (z,l (s).
x

Sinee the sealars still aet naturally we have a unique, up to a scalar, intertwining linear

operator

T: nX, L) ----4 nX, L),
satisfying

Ut 0 T = T 0 UOg(z,l' for a11 gE G(L), SE nX, L).
This follows from the fact, analogous to the Stone - Von - Neumann theorem for real

Heisenberg groups, that G(L) has a unique irreducible representation of order 1 (see [Muml]

and appendix). T is determined, up to a scalar, by the fact that it takes a Z - invariant vector

to a 0g-I(Z) - invariant vector and by its equivariance property.

12
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CENTRAL OBSERVATION. Let 4>: g*L ----+ L be an isomorphism. Then

4>* g*: nX, L) ----+ nX, L)

is a linear isomorphism. I claim that this too is an intertwining operator, therefore is equal, up

to a sealar to T :

Denote by fJ' the map 4>* g*. Wehave to prove that

fJ'CUo (z)s) = UzCfJ'(s)).
x

lliim : For every rE G(g*L), SE nX, L) we have g*( Uj<J:.LX,l s ) = U, (g*s).

Proof{ofclaim}. Let r = (x. 4», and j(g, LXr) = (gx, VI). Then

g*( U(gt, lfI) S ) = g*( VI 0 S 0 Tgr' 1 )

= g*Vlo g*s 0 T:/
= U,(g*s).

Then, using the claim, we get

fJ'( UOx (Z.)s) = fJ'( UjI,g, LX~-I z~ )s)

= 4> g*( Uj(g, LX~-l Z, )s)

= 4> (/f 1 Uz. 4(g*s)

= Uz(fJ'(s)). Q.E.D.

Our goal is to describe the map T as explicitly as possible, We start with the following

ad hoe but eonvenient definition:

DEFINITION. Given an algebraie subgroup A <; X define Pie(X)A to be the image of

Pic(X I A) under the natural pull-baek homomorphism

Pie(X / A) ) Pie(X)

(Note that if A is finite then Pie(Xt is of finite index in Pie(X)).

Until the end of this seetion we assume that Z is a maximal isotropie subgroup of H(L)

which is 91(L) - characteristic. W

ExAMPLE. If M is of degree 1 and L = M n
2

, then X[n] ~ H(L) = X[n 2] is always

maximal isotropie and an s:t(L) - eharacteristie subgroup.

Consider the exact sequence

(1)
n

o ----+ Z ----+ X ----+ X / Z ----+ 0

which yields the dual exact sequenee

(2) 0 ----+ ZV ----+
n*

(X I zf' ----+ XV ----+ 0,

01 Actually everything we would prove works equally weil for any subgroup of g( (L), in particular far
cyclic subgroups. The assumption is made only for convenience of presentation.

13
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where ZV is by definition the kernel of Jr*. This sequence expands to an exact sequence

(3) 0~ ZV~ Pic(X / Z)~ pic(Xl~ O.

All these sequences are sequences of 91(L)OP - modules. Taking group cohomology we get

(4) (Pic(X)Zy{(LfI'~ H ' (.91 (Lrp
, Z')~ H 1(91 (LYP, (X / Zf).

In particular the sheaf L gives us a cocycle {g t----+ N
R

} E H I (.91 (LtP, ZV). By its

definition it is obtained as 'follows :

Choose some ME Pic(X / Z) such that 1r*M :;L. Then

N
R

= g*M ® M -I .

Changing the choice of M amounts to changing the cocycle by a coboundary..Now, by the

general theol)' of descent there is a natural choice of M; Since we have already fixed a level

subgroup Z there is a unique M corresponding to it, name1y, the one that Z is the descent

data for it. Let M denote this particular sheaf.

Using the canonica1 isomorphism ZV :; Hom(Z, k X
) = Z*, we have a cocycle

{ g t----+ ~ } E ZI(91(L)OP, Z*),

obtained from {g t----+ N
R

}.

On the other hand, for every ZE Z there is a unique scalar ß/z) such that

ßR(z) Og(Z) E Z.
For a fixed g, ß

R
is a character of Z, and it is easy to check that

{ g t----+ ßg }E ZI(91(LYP, Z*).

PROPOSITION 6. ßg = yg-l
•

Proof Let us first recal the description of the injection Z*~ Pic(X / Z). We use

[Ser] as a reference for this. Let 1JE Z* and consider the following diagram. where N" is

defined as the push out of the first square:

o -----+) Z ) X tr) X / Z ----J) 0

117
1

o-~) [J ,.........~ N ....P-+ X / Z ----+) O.
m "

NT} = aJ m x X / { (17( - z), z) I ZE Z}. The map ~ is the pull back operation

Po -----+) lE ...........-+ n*D ....._, X ----J) 0
m

11 i n
11 1 1

o ----J) [] ----+) D -L X/ Z -----+) O.
m

n*D = Dxx1zX ={ (g,x) I gE D, XEX,p(g)=n(x)}. Inparticu1ar:

1r*NT} = { [(a,y),x] I (~Y)E (J]m x X/{(1J(-z),z)}z_z ,XE X, 7l(X)=7t'(y)}.

We have an isomorphism

14
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given by

[( a, y), xl ~ (a / 71(X - y), x).

(The inverse is just [( ~ x), xl +-- (~ x».
We have fixed M and Z. The connection between them is as follows : choose an

isomorphism a: Jr*M -----+ L, then

Z ={(x, T/'f.a 0 a' 1 ) I XE Z }.

a" : ;r*(M (g) NIJ) =7T!"M ® tr*NT/ -----+ L.

We get an explicit description of the level subgroup belonging to M ® NIJ , which we denote

by Z,,:
L" = {(x, T./alJo a"ol ) I XE Z}.

There is a unique character ßIJ such that for all XE Z,

(X, ßIJ(x)' Tx*alJ 0 ~.I ) =(X, Tx*a 0 a- l ).

LEMMA. ß" = 71·

Let us assume this lemma for a moment and show that it implies the proposition. If 71 is

such that NIJ =N", (equivalently Ii =71), then

M(g)NIJ= M®Ng=g*M,

hence LIJ is the level subgroup corresponding to g*M in G(L). By functoriality, the

subgroup corresponding to g*M in G(g*L) is j(g, M) -I (Z). and under the isomorphism

tP: G(L) -----+ G(g*L)

it corresponds to (Og r I (Z) = (\-1 (Z).

Therefore. if y =gx and (y. ~*a 0 a-I)E Z we have

ßg-l (y) Ög-I (y, T)'*ao a- l ) =ßg-l (gx) (x, Tx*alJ 0 an-I) E Og-I (L).

However, since Ögol (Z) =ZIJ we have also

ßIJ(x)(x.Tx*anoa,,-I) E Og-I(Z).
Therefore

and using the Lemma we get

whence

(using the cocycle relation).

Proof (of the Lemma). The way to prove that ßT/ = 17 is to compute the action at the fiber

of L at zero, Ln' of the maps Tx*a 0 a- I and Tx*~ 0 aT/-I. Consider the following

diagrams :

15
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a
Lo ~(--- (Jl'*M)o

(T *n*M) ~ (T *n*N )
.l 0 .l 1J 0

(all the maps in this diagram are the specialization to the fiber at zero. This is omitted for

typographical reasons). We see that

ß1J (x) = t/11J (0) I (Tx* t/11J)(0).

This scalar is described by the following diagram

1 (J 11/A x X '1:-- n*N
1J

(5)

Recall that

1C*N1J = { [Ca, y), x] I (a, y)e IG m x X I {(17( - z), Z)}za Z ' Xe X, n(x) = n(y) },

and therefore

Tx*Jr*N1J = { (y. s) I ye X. se n*N'fJ' T/y) = pes) }.

The isomorphism n*N 1J~ Tx*n:+:N 1J is given by [4]

[( a, Zl ), Z2] l----+ (Z2' [( a, Zl)' Z2 + x]).
Similarily,

/A I X X = {( a, x) I ae k X
, xe X},

Tx*(/Al X X)= {[y,(a,z)] I ye X,(a.z)e /A' X X, Tx*(Y)=z}.

Tx*( /A 1 X X)O is naturally identified with (/A I X X)x by [0, (a, x)] ~ (a, x). Hence

diagram (5) at the fibers at zero looks like

(a,O) ( rp 11 [( a, 0), 0]

~~dt !
'x ?11 '

(a I TJ(x), x)~ [0, (al 17(x), x)] (--- (0, [Ca, 0), xD

Q.E.D.

Let us construct an example showing that {g l----+ ~ } e H I (U (LtP, Z') is not trivial.

Recall first (see (4) ), the exact sequence
(6) (Pic(X)Zy'(LfP

~ H' (U (LyP, Z')~ H' (U (LYP, (X I Z)v).

141 In general if j: Z---+ Y, g: Y---+ X, and p: N---+ X is a line bündle then

g*N ={0', i) I )'e Y, ie N, p(l) =g(y)} with morphism p': g*N ---+ Y,

f*g*N = {(z, s) Ize Z, se g*N, p'(s) = ßz)}, and

(;; of)*N = {(z, i) 1ze Z, iE N, p(l) = (g of.(z)}.

We have f*g*N == (g ofJ*N by (z, (y,i» ~ (z, l~

16
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LEMMA 7. Let S be afinite cyclic group oforder s, S = < 0">. Put

sX = {XE X I x + o:t + ...+ 0"' - 1 X = 0 }.
Then

H1(S, X) == sX / (sX' )0,

where (;< t is the connected component of sX. In particular, if ;< is connected then
HJ(S, X) = {O}.

Proof The kernel of the map

(l - 0") : ;X ---+ sX

is eontained in XIs] and in partieular is finite. That implies that (1 - oXX) whieh is

eonneeted is equal to the eonneeted eomponent sJeJ. Therefore, by the weIl known deseription

of H I for eyelie groups,

H\S,X)==sX/~,

and in particular is trivial if ;X is eonneeted. Q.E.D.

Let us eonsider now a generie prineipally polarized abelian variety X. Let M be an

ample symmetrie line bundle on X, and take L = M 4. Then st (L) = {±I}, H(L) = X[4],

and we take Z =X[2]. In that ease 91(Lf- =X is eonneeted, and thus

H 1(st (Ltl', (X / Z)v) = {O},

further

H J (st (LY'I', Z') = H 1 (f;( (L), X[2])

== Hom( 7/../27/.., (7/../27/..)28 )

== (7/.. /2 7/..) 28.

From this we eonc1ude that
(Pie(X)Z)91(LfP ---+ H ' (f;( (LtP, Z')

is surjeetive with a non trivial image, which shows that the eoeycles {g~ ~} appearing

above are generally non - trivial.

Baek to intertwining maps :

Let us review the situation. X is an abelian variety I L an ample line bundle on X of

degree d, Z ~ H(L) is a maximal isotropie subgroup which is 91 (L) - eharacteristic, and

Z is a maximal level subgroup over Z. We denote by X: G(L) ---+ Z* the eommutator

map, r(z) = [ ~ z], IG: G(L), ZE Z.
Deeompose ["(X, L) aeeording to eharaeters of Z:

["(X, L) = 63l [{X, L) Y"

V'e Z·
Sinee we are dealing with a representation of order 1 eaeh component is I dimensional (see

appendix). Define

'1'= ~ L U8K~(Z)·
ze Z

'I' is a projection operator on the one dimensional subspace of the 0
8

-I (..2) invariants.

17
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Claim: If VE T(X, L)a then U~y E nX, L)ZK. a , for all 1(e G(L).

Proo! Let ze Z. then

Ul.U"y = Ull. ~ Ut<Ul. V = .t'(z)· o(z),Ut<v,

Therefore, since both Z and 8 g - I (Z) are above Z, and the kernel of K' 1-----+ ;( is k X Z,
we conclude that for all 1(E O~'I (Z), VE T(X, L)a if and only if Ut<v E n..X, L)a . Thus, there

exists a unique r such that lJ'(nX, L)'C) ':t. {O}, and for that r for every VE rex. L)'C \ve

have 'f1:v) = v. that is

n..X, L)'C = n..X, L)Ö" -I (Z).

However, let K'E Ogol (Z), say 1( = 0R-1 (z), then, identifying Z'" with Z*,

v = Ut<v

= Uö -1(:) V
g

= U{ ßs --l (Z ) ) -I Ußg -I (z) Og --l (z) V

= ( ßg --l (z) ) -1 r (g ~ i ) v

= ( ßg --l -1. g -1 r) (z) v.

Thatimpliesthatforevery ze Z. (ßg-l-l·g-lr) (z)= 1. Therefore ßg-l-l.g-lr = 1, or,

r = gßR-1 = ßg -! = Ii .

Choose some section

G(LY +- ~ - ZJfo, 1= I'(l),

to the commutator map

G(L)~ Z Jfo, 1( 1-----+ Xt<.

Choose some non zero V/E nX, L)!. Then

{ vx = UI ():) v/I XE Z Jfo }

is a basis for T(X, L). We have

T(v] ) = c(g)·v1',,'

for same C(g)E kX
• Let eg, z E Il d2 Z be defined by the equatian

Cg. X 17 (Yg ' gX) = 8g --l (L' (X ». 17 (Yg »

There are scalars bg,xE 11 d2 such that

(1) bg, x UL (r~' gX v = U 8~ - I(L (x ».UL (r~ »)V

These scalars appear when computing T(vz) :

T(vz) = T(UÖ~(Ö~-I(I<x»)VI)

= Uö" .1(I(x» T(v 1 )

= c(g)·Uöx -I <I (x» v1',s:

= c(g)·bg,;( vyK.gz •

We have proved

18
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THE SYMMETRY THEOREM (PRELIMINARY FORM). Let X he an ahelian variety over

an algebraically closedfield k. Let L he an ample fine hundle ofseparable type on X. Let

91 (L) = {ge Aut (X) I g*L == L}. Assume that there exists a maximal isotropie suhgroup Z 0/
H(L) which is 9I(L) - invariant and choose some level suhgroup Z ahove Z Choose some

non zero vector VI e I1.X, L)I = I1.X, L)z and choose a seetion

G(LY t- L - Z·, 1:'0) = 1.

Given gE 9'1 (L) ,let l/J: g*L ---+ L be an isomorphism (determined up to a scalar). Let

T = l/J* g* E End(T(X, L».

Then :

(a) There exists a unique character ~E Z"', characterized by either:

(i) ~(z)· JOg(z) E Z for all ZE Z, or by

(ii) lf M is the fine hundle on X / Z corresponding to Z then g*M ® M -\

corresponds to ~ 'under

z* == Z* == Ker (Pico(X / Z)~ Pico(X».

(h) There exists scalars bK.XE Pd1 (XE Z*), detennined by the equation

hg, X Ur (Y'I' gXJv, = U8'1- I(r (X» . Ur (y/O:)V,
such that

T (xf;. ax v,,) = c(g) xf;. axbg• Xvr& /iX

where {vx= Ultll v I} is a basis for T(X, L) and c(g) is a scalar detennined by fhe equality

Tv 1= c(g) vr; . In parficular fhe matrix describing T, which is given explicitly by fhe b x's,
'I ~

is monomial and unitary.

COROLLARY 1. Assurne that L = QjD). Then tP. is multiplication by a function ~.

Suppose further that Oe; supp(D), then there exists a function n (independent of g) such

that ~ = QK / n and Oe; suppen). We get then that for i!lLa:

n (gx)
(9) n (x) v~Jgx) = c(g) bg, x vr; gix) ,

where c(g) is a non zero constant. In particular

(10)

REMARKS. I) As remarked in the introduction, for L very ample T is actually writing

fhe aUfomorphism g by coordinates.

2) Consider in Corollary I a special case where ~ = 1, which is a kind of I total

symmetry I with respect to g. Note that for every g we have b I = 1. Therefore, if vj(O) ;t
g,

o we conc1ude that c(g) = 1. Note now that for every X such that gX = X we get the
obvious conclusion

c(g) bg.x;t 1 => Vx (0) = O.
That is, we get a vanishing result for certain theta constants (see §5 for a classical interpretation).

Dur next task is to give an explicit expression to the coefficients bx,x appearing in the
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. .Symmetry Theorem. Although the method can be carried out in complete generality~

will assume that L = n*M for some ample line bundle M-of degree 1 and that

Z=X[n]. Z=K(n.M)

(by K(n, M) we mean the level subgroup associated to data n. L. M).

The particular choices made below are not the best from the algebraic point of view.

They are made so that over the complex numbers one gets I the most classical I sections and

actions. Other choices will be developed in the next section.

Choose a theta structure

L1: G(L)· ==- G(O),

where

with the group law

(a, x, lXß, y, m) = (aß g, ( t (tu) (tun)), x + y, 1+ m).

where for any ae 7L. ~ (a) = ,u for , a fixed n 2 - th root of 1. Define 'the half

commutator'

Define

s = {( x. l) I x. I e ( 7l. / n 7l. y: }, ,J = {( I ,x, I) I x, I E ( 7l. / n7l.)B }.
We can always choose L1 such that L1 (Z) = ,J.

Let us choose a section to the commutator map

G(0) ----+ ,J *
by prescribing a set of representatives to G(8) / kX,J *,

Rep={ (1. *(~)) I x=(xp .... xg),l=(l" ... ,lg), O~xi,li<n },

thereby getting a seetion

lfI ~ L (lfI) = (1, 0: (ljI)), 'V lf/E ,J *.

Via.1 , each automorphism ~ of G(L) induces an automorphism, still denoted Og' on G(O).

hence induces an action on H(O) given by a genuine symplectic matrix MgE Sp(2g, 7l./n2 7l.)
- the n 2 - adic representation of g. Therefore we may write, for (a, w) = (a, W I' W2 )E G(0),

Og( 0:, w) = (a· m/w), Mg w).

where mg satisfies the identity

mgCwl + w2)

mgCwl)' mg(w2)

Using {. } to denote fractional part. we get

L<x lfI) = Cl, {aCX) + a( ljI) }),

Dg'l (L(x)) = (mg-l (a(x)), Mf.:'l a(x)).

Since

X<l,MR~(a(x» (y) = [Y. Mg.l(a(x»] = [Mg y, a(x)] = g%( y),

we conclude that
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I (g X) = (l, {Mg>1 a(x)}).

Therefore

L(Y
R

' gX) = (1, {a(~) + Mg-l a(x)}),

Og>1 (L(x)). I'(~) = (mg-I (a(x))· F(Mg-l(c(x)), a(~)), Mg>,(a(x)) + a(r~)).

Whence ( using [.] to denote integral part).

(

mg -t(a (X )) . F ( M g~(a (X )), a (rg) ) )
c. = , [M ~(a (X )) + a (~ )]

R 1 F ( [Mg~ ( a (X )) + a (rg )]. {M g~ ( a (X »+ a (rg ) }) ) g g

Put

v/x) = Mg~(a(x)) + a(rg) ,

then, after some simple calculations we get

mg~(a (X)) F ( Vg(X) -a (Yg), a (Yg ) )

bg,x = F({vg(X)}, [Vg(X)])

THE SYMMETRY THEOREM (EXPLICIT FORM I). Under the hypothesis 0/ the Symmetry

theorem and the additional hypothesis made above we have

(11)

If ~ = 1, then

(12)

COROLLARY 1(EXPUCIT FORM 1).

(13)

where e(g) is a non zero eonstant. In partieular
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mg-l(a (x)) F (V/X) -a erg)' a (rg))
(14) VX'O) = c(g) F({vg(z)}, [vg(z)]) v'ft iX(O).

If ~ = I then, if v I (0) ':f. 0, these fonnulas reduce to

(15)

and

(16)

3. THE QUASI SYMMETRY THEOREM.

We start with a discussion of Göpel structures and the system of bases eonstrueted by

them. We keep the notation used so far. We assurne through out this section that L is a

symmetrie even ampJe line bundle of degree 1 (although some of the definitions and results

still hold if the degree is greater). We refer to [Mum3] pp. 60 -61 for the definition of ' even I.

DEFINITION. A Göpel structure on V(X) with respect to L is a pair of maximal

isotropie subgroups VI' V2 of V(X) such that :

(i) V(X) = VI EB V2 •

(ii) 7{X) = TI EB T2 where Ti =n.X) n VI .

(iii) a L = r L on each ~ . (See introduction for the definitions of ~,r).

Given a Göpel structure we ean define a system of bases for the vector spaces nX, n*L).

To do this we need the following

LEMMA 8. For every n there is a canonical isomorphism

Normalizer ( den 1(X))) / ( den T(X»)) _ G(n*L)

given by

Proo! An easy generalization of [Mum3] Proposition 4.13. Q.E.D.

DEFINITION. Let Zen) = n T(X), Zen) = a\n 7{X)) and N(n) = Nomwlizer(Z(n)). Let

K(n)l= rL(V1)nN(n), K(nh=r L(V2 )nN(n).

Let lP,,: N(n) ---+ G(n*L) be the homomorphism inducing the isomorphism of Lemma 8.
Let

L(n), = lP" (K(n) [ ), li.n)2 = C/J" (K(n)2 ).
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LEMMA 9. L(n)l and L(n)2 are maximal level subgroups of G(n*L) which are

orthogonal complements 0/each other.

Proof Clear. Q.E.D.

We stray from our main course to study projection operators on finite Heisenberg groups:

Let G be a finite Heisenberg group
1~ k X

~ G ------7 H ------7 0,

and let K be a maximal level subgroup of G, #K =d. Decompose the unique irreducible

representation of G where the center acts naturally, denoted by r, as

r= (f) r'l'
'I'€ K*

and fix some non zero 01 E rl' Let { 0Vl I lj1E. K* } be a basis for r with OtpE r V' Denote

by

x:G~ K*
the 'commutator' map

y ~ Xy
, X)' (z) =z y z - I Y-1 •

Given another maximal level subgroup S, let Ps be the projection operator on the one

dimensional space r of the S - invariants given by

Ps = ~ L Us '

S € S

Finally, let

LEMMA 10. 1) Let SE S. liIE K* then

US0tjl E TlJI.xs,
Define

Then

2) Assume that K has an orthogonal complement K I. There is an isomorphism

.3: K* ------7 K'
detennined by the commutator pairing. Let

olJl = UE,(Vf) 01'
then

'1'1 (s)
a(s, 11'1 ) = '1'2 (s) a(s I 1JI2)'

where. by definition, l/J1.s) =[s, S( lJI}] for any 1JIE K*.

3) Let

S=KerxnS
and let aE 5* be the unique character such that/or all SE 5

a(s) . S E K
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Then. regarding characters 0/ level subgroups B as characters 0/ their projection "B to H

we have

A K (S) ={ 1pE K* I ljIl ~ =a }.

Proof 1) for every kE K we have

Ui; Us 0ll = UJ Uk U[};,s] 0yt

= lji.,k)- XJ (k)· Us 0ll

= (1JI' XS )(k)· UJ Oyr

a(s I S2' lJI) OlJl· 1'S [S2 = UJI U,T 2 0lJl

= U,T[ a(s2' lJI) 01Jl· 1'S2

= a(sl' 1JI' X J2
). a(s2' lJI)OIJl. 1's [. 1'S2

2) Let us compute a(s, tp).

a(s, lJI) 0Y/x J = Us 0lJl

= Us U3,~ 81

= UZ(vtJ U.T U[ ,\ QvtJ] 81

= IjJ\s) UZ('1) Us 0]
= ~s) a(s, 1) U.Q~ O;(I

= IjJ\s) a(s, 1) DlJIxs •

From this follows the general formula.

3) Ps (0t;f) = ~ L Us OIJf
se S

= ~ L a (s, 1JI) Olp- x'.
SES

= ~ L ( L a (s, lJI) )Olp- Y .
yE X (S) SEX ---l (y )

Choose same representatives sr X-I ()?, then

= ~ L (a (sr VI) L a(s, 1)· VI(s) )0'11' Y
ya X (S) S ~ Ker X f"'I S

using part 1), 2). Notice that this expression is zero if and only if each sum

a (sr VI) L a (s, 1)· ",(s)
SE Ker X n S

is zero and that the vanishing of this surn does not depend on y; Notice also that a(s, 1) IS a
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character on ,5 and therefore this sum vanishes if and only if lJIl ~ 'i:- a(· , 1) - I I ~ . To fin ish

the proof we need only to check that a(· , 1) =a- I. Let SE 5, then a(s) s E K whence

a(s, 1) 8) = U,f 81

= a(s) - I Uc(s) .f 81
= a(S)-1 8] . Q.E.D.

Recall that L is an ample symmetrie line bundle of degree 1 on X. The maximal level

subgroup 2\1) induces maximal level subgroups M(n) on each G(n*L).

We would like to mention two reasons for introducing these groups: The first one is that

we can decompose reX, L) according to characters of 2'(1). This can not be done with

respect to 't L ( V] ).

The second reason is that, as we have already commented above, in the complex ease the

seetions giving the decomposition w ith respeet to .a: 1) are the classieal theta functions

e[:] for certain characteristics multiplied by a certain trivial exponent. We should remark

that the sections giving the decomposition with respect to the level subgroup I1..n)i are no

less noble. They are of the form e[~] for certain characterislics multiplied by a certain

trivial exponent (a classieal example whieh also demonstrates the relations between the bases
to be obtained below, turns out to be, after some algebro - analytic dictionary has been built,
Proposition 1.3 p.124 ,Mumford / Tata lectures on theta I).

Choose some non zero seetion ee T(X, L). It is unique up to a scalar. For every n n*B
is the unique up to a scalar invariant section of M(n). Choose a section

In : M(n)* -----+ G(n*L)

to the commutator map

X : G(n*L) -----+ M(n)*

and let

81 = B, 8,,=UI:'l(~ 8l"

Later on we will choose the Ln'S more earefully and then we will baptize these bases. The

notation a(x, lJI) appearing below is the one used in Lemma 10 1) for K =M(n), S =L(n)l

(so K has no orthogonal complement but S does). In the case K =L(n)1 ' S =M(n) (whieh
is dealt in Lemma 10 2), 3) )we will not need a notation for the scalars of Lemma 10.

LEMMA 11. Put s(n)1 = PL(n)! (n*B). Then s(n)1 'i:- O.

Proof In the proof of Lemma 10 the following expression was obtained

The derivation of it did not use any orthogonality assumption. Using part 1) of Lemma 10,

we get for S =L(n)i' K =M(n), lJI = 1, 8" =n*EJ, X: G(n*L) -----+ M(n)*,
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PL(fl)] (n*B) = n ~g L (a (Sr 1) L a(s, 1) )8y .
ye;«L(n)]) seKerxnL(n)1

In this case Ker X=k x M(n) = (]Jfl (k x Z( 1» and we see that since (jL = t L on TI we

actually have Ker X n L(n)1 c M(n). Therefore if SE Ker X n 4n)1 then

a(s, 1) 01= Us 81 =°1,

Thus

Q.E.D.

DEFINITION. For every n define a basis

53 (n) = { s(n)"" I \VE 4n), * }
of IT.X, n*L) as folIows: Let

let

E fl: li..n)l*~ 4n)2

be the isomorphism determined by the commutator pairing of G(n*L) and let

s(n)ljf= UE ,,(lP)s(n)l'

COROLLARY. Let L(n)1 [n] = { elements of order n in L(n)1 }, then

s(n)" = nlg L a(En(lf/)u, I)OXII'XEfl(~
u e L (n)] I L(n)][n]

(where X: G(n*L)~ M(n)*).

Proof Note that X induces an isomorphism L(n)j / L(n)l[n] == x(L(n)l)' Therefore, for

lJI = 1 the corollary follows from the proof of Lemma 11. The general case follows by

applying UE,,(t;') and using part I) of Lemma 10. Q.E.D.

Let us also record the following

LEMMA 12. n*B = L s(n)'P"
'Pe L(n);rn]

Proof Let us first check that this true up to a scalar. By Lemma 10 n*B = P MV!) (s(n)\ )

at least up to a scalar. But

PM(n)(s(n)\) = n~g L U~(n)l
me M(n)

= n1g L Umzs (n )1

m2 e M (n ) n L (n h
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L s (n)lp'
lpfi L(lI)an]

To check the constant apply P l.(")1 to this sumo By linearity and Lemma 10 used for K =S =
L(n)1 we get

Q.E.D.

LEMMA 13. Far every d the bases B (n) and B (dn) are related as follows: Let

a : dL(dn)2 / L(dnh[d]~ L(n)2 be the natural isomorphism. Denoting by a (he induced

isomarphism dL(dn)] */ L(dn)) *[d]~ 4n)1 *. We have

d*( sen)!;') = L. s (dn)'f
re dL(dn)1
a(r)= lp

Praa! The formula up to a scalar follows from the isogeny theorem of Mumford,

[Muml] p.302. The translation to the notation appearing there is as folIows:

Mumford I X, Y~ L I-i--
Us X ~ d*n*L nM(dn)

The level structures for every m are completely determined by choosing a free 7L basis

for T2 • This yields for 4dn)2 an isomorphism L(dnh == K(Odn) and L(n)2 == K(Ofl )

where 0 dn and 0 fl are the types (d2n2, d2n2, ... , d2n2) and (n2, n2
, ... , n2

) respectively. We

get then natural isomorphisms 4dn)] == K(Odn )*, L(n), == K(on)* and therefore uniquely

detennined theta structures Jdn' J11 •

Mumford

Us

Mumford

Us natural isom.

The conclusion is that up to a scalar is that A Ou = L Ov ttwhere 0, denotes the delta
v; er (v) =u

function at t, and A is as in [Muml] loc. eil.. We need only verify now that the functions

sen)!;, are the functions corresponding to the delta functions at points of K(o") with the right

nornalizations of the isomorphisms ßM appearing there. That is easily checked since the

delta functions are characterized by the way the Heisenberg group acts on them. This proves

our claim up to a scalar. The rest foUows by comparing this with the formula for n* Band

d*n*B given by Lemma 12. Q.E.D.
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Given an ample even symmetrie line bundle L on X and an isogeny fE t 0 (L), say

f*L =. L
n2

, l/J :f*L---+ L
n2

an isomorphism,

define a new action Ui of Ci (L) on t (X, L) by

Uiz (5) = UÖf(z) (5)

and an action of Ci (L) on r (X, L
1I2

) by

unl.(s) = Ucfl2(Z) (s).

Then, both t (X, L) and t (X, Ln
2

) are irreducible representations of Ci (L) of order n 2

and there exists therefore (see appendix) a unique intertwining map

T: t (X, L) ---+ r (X, L
n2

).

As in the case of automorphisms we have a

CENTRAL OBSERVATION. The linear isomorphism

l/J,J*: t (X, L) ---+ t (X, L" 2 )

is an intertwining operator for these two actions, therefore equal up to a scalar to T [51.

Proof
(1)

Let r= 4J,J*. Then

'7( UöffJ.) (5)) = 'I( ~(f. L) l~-l ~(z) ~ 1(5))

Claim. For every rE Ci (f*L), SE r (X, L) we have

f*( UN . LX') (5)) = U, (j*(s)).
Prooj(of claim). Let r =(rm, l/Jm)m then j(j, LXr) =(Ym' Vt,,)m where <Pm is the pull back

by j of Vtm with respect to f(rm ) = Ym'

j*[ U(Y"" yt",)",(s ) ] =}*[ Vtk o S ° Tj{,,)-l]

= l/JJ;0!"s ° T'l-I

= U(r"" 4J",)",(f *s)

Using the claim we get from (I) that

fJ( U!}<z) (5)) = tfJ. U, -I €Il(z) , (f*s)

= U€/l(l) (l/J"j*s)

= UC/l(z) 115).

for every k divisible enough

Q.E.D.

The next thing we have to find is some subgroup of (3 (L) whose image under each of

the maps Cn 2 and 0 is a maximal level subgroup. The operator T is then determined up to

a scalar by the condition that it must take invariant vector of the second level subgroup to an
invariant vector of the first.

1~1 There is a Schur lemma for adelic Heisenberg groups. The reason is that every intertwining
operator must take the invariants of a maximallevel subgroup to themselves and this is a one dimensional space
if the level subgroup is chosen right. Further, the operator is determined as usual by its action on a single non
zero vector.
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LEMMA 14. We have the following functorial properties :

1) E" (J'L(X) = (J'L"(X) ~ E" 'IL(x) = 'IL"(x) .

2) 11/1 (J'L"(X) = (J'L(nx) ; 11" r L"(x) = rL(ru) . (see [Mum 1] for the definition of 11/1)'
3) Jf 4> : L~ M is an isomorphism then

4>* ~(x) =(J'M(X) ~ tP* rL(x) =rM(x).

4) }ift L) (J'rL(x) = (J'L(V(f)X) ; }ift L) rrL(x) = 'IL(V(f)x) .

5) 0/ (J'L(X) = (J'L(V(f) x) ~ 0/ rL(x) = rL(V(f) x).

6) Writing every element of C (L) as A,' r L (x) we havelor j*L =L1I
,

0/( A: r L (x» = A" r L (Vif) x).

The proof is eompletely straightforward and therefore omitted.

DEFINITION. Assume that tP :f*L= L,,2, L ample even symmetrie of degree 1. Define

z= ( cf (x) I XE n:X)} c G(L),

.r<Z)=}if, Lrl(Z) cG(f*L)t

P(Z),= tP,J*CZ) c C(L n
2
),

Z(j) =Ei I (j*(Z)~ =Oj I(Z> c C(L).

Let e~ :!tr(X) / nX) be the quadratie form defined by

(J'L (2x) =e~ (x) r L(2x).

(see [Mum3] p.59 ff.).

LEMMA 15. We have
2

r(Z),= (e~ (xl2) r LR (V(j)-I(X» I XE T(X)},

and the pro}ection of I*(z)~ to G(n*L) is Kif, L) - the level subgroup corresponding to the
2

descent data L 11 =I*L.

Proof The first assertion follows imediately from Lemma 14 and the definitions. To get

the second, one considers the preimage of Kif, L) in C (L
II2

) under the homomorphism
L ,,2

Nonnalizer ( (J' (n:X»)~ G(n*L).

It is a level subgroup which must be maximal by index consideration. But it clearly has the

same invariant veetor as .f*(Z), does, namely, tP-J""B where B is a generator of the one

dimensional vector space reX, L). This implies equality (to ease the argument note that both

eover the same maximal isotropie subgroup). Q.E.D.

We keep the assumption lEe O(L), 1*L == L,,2. Let liJE AL(/I)I(K(j, L» where the fixed

level subgroup with orthogonal eomplement is L(n)1 t the maximal level subgroup of

G(n*L) constructed before. Then PKfj, L) (s(n)ro) is the unique, up to a sealar, j*(Z)9

invariant vector.

Decompose t (X, L) aceording to eigen spaees of Z,

Ax, L) = (f) tex, L) !p
!pE 2*

Choose a section L: Z~ Ci (L) and let BlJI = VL(IIJ(B). Then { BlJIl VßE. Z* } IS a
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basis for r (X, L), each BtJI spans t (X, L)tp and for every n,

cD (n) ={elf' I lj1E Z*[n] }

is a basis for [{X, n*L). Therefore if we had some nice choice of a section we could

explicitly write the vector s(n)w and thus solve the problem of writing the pull back f/J...r
explicitly. That is our next objective.

Before plunging into details, let us explain what we are about to da. We start by choosing

a good theta structure for the big group G (L) and a section for G (L) ----+ Z* (We will

assurne that the Göpel structure is obtained from this theta structure. There seems to be no

point in generalizing ). We work with some I indeterminate' in our seetion saving its

speeialization to the end. That makes the generalization of the ease treated below to the

general ease easier.

Sinee we have assumed that L is an ample even symmetrie line bundle of degree I on X
[61 , that means that there exists, by [Mum3] Proposition 4.20, a theta strueture

.1: G (L) ----+ G,

where G is the standard Heisenberg group as in the introduetion, having the following

properties :

If we define VI' V2 C; V(X) by

Ll(T-(V1 )) ={(1, z, 0) I ZE lA/i}, Ll(T-(V2 )) ={(I, 0, z) I ZE lA/I}.

Then,
'"

Ll (d(T I » ={(1, z, 0) I ZE 7l./}, Ll( cf(T2»={(l, 0, z) I ZE 7l./},
and e.L goes over to the function e. where:

e. (x /2, y / 2) = (---t ) IX· Y tt.
That implies that VI' V2 is a Göpel strueture and that

L\(Z) ={(e. (x /2, y /2), x, y) I x, Y E 7l.f
g

},

Li(r\V(X»)={ (l,x,y)IX,yE IA/}.

Let ~ =L\(Z). We have

L1(K(n)l) ={(1, Z, 0) I TlZE 7l./:}' L\(K(n)2) ={(l, 0, z) I nzE 7l.f
R },

whenee we get finite theta struetures

Ll
II

: G(n*L)----+ G(On2)

where

x (1 '" 8 '" 8) (1 '" 8 '" 8)
G(Oll) =k x n 7L ff / n 7L ff X n 7L ff / n 7L ff

or simply (under the canonical isomorphism)

G(on) =k X X(k 7l. g / n 7l.8) X(k 71.8/ n 71. 8)
with the usual group law,

(a, X, fXß, y, m) =(aß ;'(~). (nm) ,X + y, 1+ m)
n

(
'" g '" 8)

by demanding the natural homomorphism between Ll(K(n)) and k7l. ff / 71. ff (we have

to choose Sill so that the COffimutator pairings agree. Therefore we take S=g( 1 / n 2 )). That

is, denoting by
--=----=--------

161 This assumption is not essential but it does simplify the ealeulations below. We remark that every
symmetrie line bundle becomes even symmetrie after a translation by a torsion point of order 2. Sinee no new
idea is involved in treating the more general case we make this assumption.

30



QUASI - SYMMETRIe LINE BUNDLES

Pn: k X L1(K(n)i)L1(K(n)2) = L1(NC(L) (c:r(nT(X)))) ~ G(0n)

the natural projection, we have that Pn induce the natural projection on L1(K(n)} The

element (1, x, y) goes under this homomorphism to

PII( (1, x, y)) = Pli «~ (Y2 Iy . x), 0, y)(1, x, 0))

= (~(~ ty. x), x, y).

Therefore, the image of ~ under these theta structures is

P11(~ ) = { ( 1, x, y) I x, Y E 71. R / n 71. R }

which is precisely the same sort of theta structure used in the Symmetry Theorem.

Define
E(x, y) = ~(~ ty. x).

Choose as a set of representatives to the cosets G / kX L1(Z) defined by the commutator

homomorphism
G-) .<8*

the set

REP = { (l (x, y),x, y) I X, yE [F (") [0,1)}

where I : IAIR x IAIR~ k X is a function with the property

I(x, 0) = I (0, x) = 1 for all XE IA/K.

This gives us a section

.E:.<8 *~ G
which we write as

I( 1jI) = (/(a(1p»), a(1p»),

and sections

L
II

: (.<8 /n.-6 )*~ G(OIl)

which we can write, identifying (.<8 / n~ )* with .<8 *[n], as

III (1p) = (l (0.{ lJI))' E(a( 1p»), c( lJI))

These sections induce sections

.E:Z* -) G (L)

In : M(n)* -) G(n*L).

One advantage of such theta structures is the simple form which the homomorphisms O[
now have:

By lemma 14,6) we have
01(A.: TL (X) ) = A,1I

2
• TL (V(f) X),

denoting by MI the matrix representing V(f) on !A/2g and by Dj the induced homomorphism

on G we get

where (A, (;) ) = (A, x, y).

In the case where fE 91(L) we get

dj: G(On) ~ G(OIl)

where
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m«(X) )= E(Mf(~))
J Y E(~)

The advantage of this expression is that it is eompletely explicit onee the adic representation

of f is known. Beeause of the usefulness of this result we reeord it as

LEtvIMA 16.

Diflressioll - The Symmetry Theoremo

We want to reeonsider the Symmetry Theorem. As in the derivation of the explicit form

of the symmetry theorem we take the symmetrie line bundle to be n*L. Moreover, we

assume that L itself is even symmetrie. Recall that the intertwining operator

T: nX, n*L) -) nX, n*L)

was determined by

where now we take the basis

We have

In ( ljI) =( 1(o{.1jI»' E(a(1jI), oi.1jI) ).

We want to determine T( B,,). The intertwining property implies that

T( BljI) = T( UIn(vtJ BI)

=U8ß~( ( 1(e( '1'» E(c( ljI). e(lI') ) ) U( 1(a(y,,», E(o(y,,», a(y,» BI'

By Lemma 16

0K- 1 ( I (oi.lJf»' E( of.1J/)), e(ljI) ) =( I (a( lJI}). E(Mg" 1 o{.lji), Mg -I c(1J/) )

Therefore, using [. ] I { • } I to denote integral and fraetional parts, we get

8g -1 ( I (a(IJIJ)· E(e(lJIJ), a(lJIJ) (I (a(~). E(a(~», a(~) )

= (I (e(lJI»' E(Mfl o{.1jI», Mg-l a(lJI}) (I (o{.~). E(o{.~», a(~»)

= (I (c(V1» l(o{.~»· E(Mgol a(lJI}) E(a(~» F( Mgol a(lJI}, o{.~», Mg-I a(1jI) + ~~»)

= (l(a(lJIJ) l(a(/i») E(MK-I a(lJI}) E(c(~» F( Mg-I a(lJI}, a(~»)

F( {Mg-I a(1JIJ + o(~)}, [Mg-l a(lJI} + a(~)] )0 1
, {Mg-I a(lJIJ + o(~)})

x (1, [Mg-I a(lJIJ + (1)~)])

Using the faet that Pn(.-J ) c G(L) corresponds under the theta strueture 4 to M(n) =
K(n, L), we eonclude that

U8ß~( (1 (0('1'» E(a(lI'», c(1p)) U( l(c(y,» , E(a(~». a(Yg» BI =bg, lJI BYg' glJl'

where

32



QUASI - SYMMETRIC LINE BUNDLES

bg.1f/ = l(of..lp» l(a(/i)) I ({M,!:" a(1J!) + a(~)})-J

X E(Mg-1 of..lp» E(a(%)) E({Mg'l o.(lp) + a(~)})'1

X F( Mg -l a( 1jI), a(~)) F( {Mg -l a( lp) + a(~)}, [ Mg ~ I 0.( ljI) + a(~)] ), I

Clearly a good choice of 1 is lex, y) =E(x, y) -I. Making this choice we get

bs,V' = E(a(lp))"J E(Ms+' a(1fI)) F( Mg' I a(IjI), a(~))

X F( {Mg-l a(1jJ) + a(~)}, [Mg" a(1jI) + a(~)])·1

Put as before

Vg (1jI) = Mg+, a(ljI) + a(~)

then we get the familiar expression

bg,IY = mg+l (a(IjI)) F(v/1jI) - a(~), a(~)) F({ of..~)}, [ of..~)D -1.

Finally, note that

That is

Yg ( (; )) = E ( Mg (;, ) ) / E ( (; )) .

THE SYMMETRY THEOREM (EXPLICIT FORM 0). Let L be an ample even symmetrie

Une bundle 0/ degree one on X. Let Z =X[n] and let Z be the maximal level subgroup of

G(n *L) lying above Z and corrseponding to the descent data n, L ( Z =M(n) in our new

tenninology). Choose some non zero section BI E rex, n*L)J and choose a section L to

(he commutator map as described above
I

G(n*L)" -- ZJi..

Given gE 91 (n*L) let t/J: g*n*L ---7 n *L be an isomorphism. Let T = 4>. g*. Then

(here exists a constant e(g) such that

T ( La" B lI' ) = c(g) Lall' bg, lI' e~ .8 lI'
'II E L 'PE z" ~

where {BtjI= UX(If) B, } is a basisfor nX. n*L). We have

Yg ( (;. )) = E ( Mg (; ) ) / E ( (; )) .

Further, the scalars bg• VI are given by

bg.ljI = mg-! (0.(1/1)) F(v/1J!) - a(~), o.(~)) F({ v/1J!)}, [v/1p)])"',

where

and

mg.! (a(IjI))=E(M,f l a(1p)) E(a(1p))" , ,

E(x, y) =g (~ Iy . x) .

COROLLARY 1. Assume that n*L =Qj,D), then 4>. is multiplication by a function ~.

Suppose further that Oe; supp(D), then there exists a function n such that I g =QR / n and
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OE suppen). We get then that for illLJ:

n(gx)
n (x) ev/gx) = c(g) bg, 'I' e~. gv/x)

where c(g) is a non zero constant which is independent of JJ!. In particular,

evf..O) = c(g) bg, 'I' e~. g~O)

Assume that ~ = I then, if 8 1 (0) '#. 0 and therefore c(g) = 1, we get

n (gx) ei ) = E(M,,--1 (a(/P») e . f )
n (x ) 'l"gx E (a(lp)) gljl'X

e fO) - E(M,,--1 (a('0)) e fO)
ljI' - E (ä( 11') g 'I"

ExAMPLE. To illustrate this theorem take the simplest case g = -1. Then by our

assumption :

'XI = 1, a('Y-1 )=0, rn_I == I, (-I)1jf= 1jf-] forevery 1jf.

It follows that bg, lJI =1 for every 1jf. Therefore, there exists a constant c(- 1), independent

of 1jf, such that

T (e) = 8lf-1
for every lJI. This implies that we may normalize l/J such that

l/J.(- 1)*( elf) = c( - I) elJl-1

for every lJI where c(- 1) = {±I}.

If the conditions of Corollary 1 hold, then c (- 1) = I.

Using this one can get, up to ±1, [Muml] 1 Inverse Formula' p.331, [Murn3] Cor. 6.21

p.114, or [Kern] Theorem 4 p.?!. We can get the exact constant which is I under the

conditions of Corollary I.

One should now proceed to the detailed study of sorne classical examples, e.g. the

examples obtained from Prym varieties, factors of the Fermat's curve, modular curves etc.

This is a subject for another paper but few simple examples are given in the next section.

Back to the general discussion !

Define a basis for t (X, L) by

{ elf= UI(If) e I ljfE Z* }.

Where now L is the particular section we have specified. As before, this basis has the

property that

)] (n) = { elf I lJIE Z*[n] }

is a basis for rex, n*L) for every n.

Recall that we had the seetions

Er! : L(n)l*~ L(nh

and the bases B (n) to rex, n *L) were defined using Er!:

13 (n) ={s(n)" =US"(y/) sen)! I lJIE L(n)] * }.
Write

34



QUASI - SYMMETRIC LINE BUNDLES

LEMMA 17. 1) s(n)/ = L. 8'1' '
'I'E M(nh

where M(n)j = M(n) n L(n)j . (Note that this is an equality in t (X, L».

2) Given pE li..n)\ * define pt E M(n)* as

p I M(n)1 E M(n)] *~ M(n)* = M(n)l * EB M(nh*.

Putfor 1jIE M(n)*, pE L(n)1 * and I as above

(/)(l, 1/1, p) = E( a(ljI») . I (a(ljI») . E( { a{1p) + (ß(~)) }) -I I ( { a{ 1/1) + (ßC~)) }). 1

. F({a{I/I)+(ßC~)) }, [a(ljI) + (ß(~)) ])"1

where [. ], {. } denote integral andfractional parts respectively. Then

s(n)p = nlg L. (/) (1, lj!, p) 8'1" P
'I'E M(nh

3) Choose I (x, y) = E(x, yr 1 then, putting (/)( 1/1, p) = eJ>(l, 1/1, p), we have

eJ>( 1/1, p) = F( {a(ljI) + (ß(~)) }, [o{l/I) + (ßCoP)) ] ).1

and

s(n)p = ,/g L. (/) (1jf, p) 8'1" P
'I'e M(n}z

Proo! We defined sen») =Pu.n). (B). Since under the theta structure ~ we have

~ (L(n») = { (1, x, 0) I XE (k 7L / n Z)g },
we may take as representatives to L1n (li..n)l) / L1n (M(n)l) elements of RE? which are of

course the image under I of L1n (M(n)J*. Therefore (recall that 8= n*8 in reX, L»

P (e) = _1 ; U e
L(n)l ,z 2g ) Z

zell I

- _1 L L Ur(JlIIUz e
- ,z2/< • ~ Y')

I (lJi) ; IjIG M(nh z e M(II)J

= ~ L 8 .
II M()" 'I'ljI€ n2

2) By definition s(n)p = U(I,Q,fJ<p) s(n)]. Thus

= U(l. Q. {J{p) n1g L . UI (lJi) 8
I(IJ'); ljIE M(nh

= n', E ('1');~ M(n); U(1, 0, /Xp)) ( ((a(lp)' E(a(lp)), a(lp) e
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To get the fonnula we want, we calculate ( using that F ((2). (:))=1 )

(I. 0, /l.p) ( l(a(tp)) E(a(tp)). c(1jI)

=(E(a(tp) I (c(IjI), a(1p) + (ß(~)) )
=(E(a(tp)I(c(IjI)F({c(IjI)+(ß(~)) }, [c(IjI)+(ß{~)) ]) -I. { a(lp)+ (ß~)) })

x (1. [ a( Ip) + (ß~)) ] )
=(lP(l, '1', p) I ({ a(lfI) + (ß(~») }) E({ a(lfI) + (;p») }), {a.'I') + (ß(~») })

x (1, [a( lfI) + (ß(~») ]).
Whence

s(n)p = ,,\ L. (/J (1. 1jI, p) eil'" P
II'E M(nh

Q.E.D.

REMARK. A classical case of the transformation formulas we have just proved is (for the

right choice of l) the change of basis inverse to the change of basis given in Mumford /

Tata lectures on theta I p. 124

THE QUASI SYMMETRY THEOREM. Let X be an abelian variety over an algebraically

elosed field k of eharacteristie p ~ O. Let L be an ample even symmetrie fine bundle of
• 2

degree 1 on X. Let f: X ~ X be a quasI symmetry of L, t/J: j*L~ Ln an

isomorphism. Fix a theta structure as above and let the groups L(n)j' anti the bases B(n),

be defined as above. Let Li, Lin be the system of theta structures obtained and L: cr(T(X))*

~ Ci (L) be the seetion eonstrueted by the set of representatives REP.
2

Let Kif, L) be the maximal level subgroup associated with the descent data j*L == Ln l

and let A(Kif, L)) be dejined wirh respect to L(n)!. Then the map

t/JJ*: r (X, L)~ t (X, n*L)

is an intertwining operator wirh respect to the 0/ and Cn 2 action and therefore equal up to a

scalar to the intertwining map detennined by the equality in f' (X, L)

l/J.J'* B= PK(f, Q s(n)tlJ

where (OE A(K(j, L)) is arbitrary. We have

s(n)p = nlg L. tP (V'. p) B'II' P
'II E M(nh

(jor l (x, y) = E(x, yr I ). where

(/J( 1jI, p) =F( {a(1p) + (ß(~)) }, [c(IjI) +(~)) ] )-1 .

REMARKS. 1) We regard here Kif, L) as an · atom '. We do not decompose this data

further and explicate PKif, L) s(n)w' The same attitude is manifested with regard to writing the

general formula for l/JJ*. Both of these details clearly could be supllied by some tedious
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computations. However, over the complex numbers, using the Appell - Humbert fonnalism

we shall give in §5 an explicit description of K(f. L) just to illustrate the technique.

2) The natural idea would be to give a criterion stating when PKif• L) elJl is non zero and

save the detour of going through the groups U,n)j' However, this does not seem to exists. The

reason is that Z is very far from having an orthogonal complement, whieh enables us to

decompose r (X, L) with respect to it but a nice Lemma as Lemma 10 does not exist. When

we take a maximal level subgroup with an orthogonal complement as r L (VI ), we have

Lemma 10 but we can not decompose t (X, L) with respect to it. However, we can do it

on finite levels with the groups U,n)j' The resulting bases are weIl enough connected to the

base with respect to Z and nicely related ( by the isogeny theorem) to make sense, and to be
practical for an explicit computation. Some interesting examples, where these eomputations

may be of interest are given by Prym varieties and Fermat curves (for automorphisms) and

by Humbert surfaces and elliptie curves with C.M. (for isogenies). A detailed study of such

examples is a topie for another paper.

It is very important to deal also with a more general situation than considered above.

Consider the following situation:

X , Y are abelian varieties over k, and

f: X ---+ Y
an isogeny of degree prime to p. Suppose that there exists an ample even symmetrie line

bundle L on Y of degree 1, and an ample even symmetrie line bundle M on X of degree

1, such that

rL == M"
(n is determined, of course, by f). In this situation the question is how to write the sections

,rs, s E T(Y, L) as seetions of M relative to the bases that we have constructed. The

situation we have dealt with above is when X =Y, L =M and is therefore a special ease of

this more general setting. It is amusing to note that the more general case is, under mild

restrictions on f, a special ease of the special case. Indeed, consider the line bundle N =

PI *M f6) p2*L on X x Y, and let

~: XxY---+ XxY
be the composition

Id~)( .J. f xf v IJ. x ~ M- t per.
XxY n~XxPieO(Y) ) YxPico(X) r )'YxX )XxY

where per. (y, x) = (x, y).

LEMMA. Assune that either deg f is odd or that for same g, f =g 02, then ~*N == ~.

Prao! ~ (x, y) = «tPM- I of'" 0 f/>LXy), fex)). Therefore

g*N == p,*f*L f6) P2*(f/>M· 1 of" 0 tPL)*M

==p/M ®P2*(tPM· I of" of/>L)*M.

Hence, it is sufficient to prove that

( f/>M- I 0 f'" 0 f/>L )* M == Ln.
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First of all

f*('1JM- 1 0f v o'1JL)*M == ('1JM- 'O f'"' o'1JLof)*M

== n*M
== Mn~.

- ~We have also j*Ln == Mn . It follows that Ln and MI = (t/JM- 1 of" o'1JL)*M are algebraieally

equivalent. Therefore

tf" =tfll

and since both are symmetrie it is enough to prove ([Mum3] Lemma 4.25) that er = e~l.

Now the funetorial properties of the seetions 0", T stated in Lemma 14 show that universally

e~"D(x) =e!J(V(g)x)

(where g is an isogeny between abelian varieties, D an ample symmetrie Hne bundle ete.).

Whence,

e~l 0') =e~ ( V('1JM- 1 of" 0 '1JL) (y».

If f =g 02 then n satisfies nR=deg fand therefore is even. Hence er == 1. We also have that

f v=gV 02 and therefore V('1JM· 1
0 f" 0 l/lL) klUs T(y)[2] whenee e~l == 1.

If, on the other hand deg f is odd then the map Vif): 1{X)[2] ----+ T(Y)[2] is surjeetive.

Take some XE T(X)[2] satisfying V(j)(x) =y. Then,

e~l 0') = e~ ( V(t/JM-] of" 0 ~L) (V(jXx»)

= e~ ( V( l/lM' 1 0 f v 0 l/lL 0 f) (x) )

= e~ (nx)
= e;tM (x)

,,2= er (x)

= eV tL)"(x)

= (eV tL)(x)t

= (e,f(V(f )x)t

= er 0'). Q.E.D.

REMARK. The conditions of the Lemma are neeessary. For a typical example let E be an

eUiptie eurve, (OE E[2] a non zero point and let Y = E / <Q) ). Denote by f the natural

projeetion E----+ Y. Let a, ß be generators of E[4] sueh that 2 a = Q).

Let L be the Hne bundle of degree 1 on Y defined by tbe 2 torsion point f( a). Then f'"L

is defined by the divisor {a, a + Q)} and we ean take as asymmetrie line bundle M sueh

that f*L== M2 the Hne bundle defined by the point Oe E. Both M and L are symmetrie. If

we identify E and Y with their duals in tba eanonieal way we find that the dual mapf v : Y

----+ E is the eomposition

E / <Q) ---+ E / E[2] ---+ E

where the last arrow is the isomorphism induced from multiplication by 2 on E. f v *M is

defined by the divisor {O, °+ t }, t is the non zero point of E[2] / <Q). f v*M is not

isomorphie to L2 and ones see (foUowing the proof of tbe Lemma) that the Lemma does not
bold in this case.

Now eonsider the diagram
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x~ XxY-~) Xx Y,

where i(x) = (x, 0). Then, of course,

i*g*N== Ar,

but note that this requires a choice of a trivial ization of i*P2*LI!, which is determined up to a

scalar and whose effect on global sections is evaluation at zero.

(i) By Kunneth formula nXx Y, Pl*M ~ P2*L) = nX, M) (8) nr. L).

(ii) The map

~*: nX x Y, PI*M t&! P2*L) --+ nXx Y, Pl*M' t&! p2*Ln) = T(X, Ar) t&! T(Y, Ln),

is weIl understood by the Quasi Symmetry Theorem (More on that below).

(iii) The map i* is just evaluating t in s ® t at zero.

(iv) The composition i*g* =(O,f(x)) is 1 the map we seek '.

Note that the map g* which evantually gives us the map .r uses the descent data of

both fand f v. In general the whole structure needed for the study of ~ is obtained as the

product of the structures for Land M. Or, to use another sloppy formulation theory of theta

functions is multiplicative. That means, e.g., that

G( P ~M t&! P iL) == G(M ) x G(L) / {(a, r) I ae k x }

and therefore that Göpel structures for Land M induce a Göpel structure for p,*M® P2*L.

Moreover the two systems of level subgroups KL(n)j' LL(n)j' KM(n)j' LM(n\ can be

. multiplied to get such system for Pl*Mt&! P2*L etc.

I do not go further into this presently to keep this exposition at a reasonable length, but I

intend to deal with some interesting examples in the future.

4. EXAMPLES

In this section we give three examples. All of them concern Riemann surfaces. The first

one is the case of a cyclic unramified covering of aRiemann surface. The second is the
curves y 2 = X

2
g+ 2 - land the third is y 2 = X p - 1. We work over the complex numbers and

use topological arguments and pictures. However, there should be no difficulty writing

everything in arbitrary characteristic. We start by determining the representation on the first

homology group.

I. A CVCLIC COVERING.

Let 13 be aRiemann surface of genus g;;::: 1. Let 0" ... , Og' 111' ... , 11g be a symplectic

basis for H I (13, ?l). Let C. be the cyclic covering of order n of 13 obtained by I

unwinding 11g n times 1.
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GLUE

With respect to the symplectic basis for H I( C, ?l) given by

the generator of the cover automorphism group, Jr:, which is 'raising one level' is given by

E

E

" E

E

40
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In every hyperelliptie eurve C: y 2 = j(x), the automorphism l

y t---t - y, X t---t X

induces multiplication by - 1 on H) (C, 7L). Therefore we examine only the automorphism Ir

detennined by

,= exp( 2m /(2g + 2) ).
We eonsider this eurve, whieh is of genus g, as a two - sheet eovering of IP 1( [: ) ,

obtained by branch cuts. The foIlowing diagram demonstrates this as weIl as giving a basis
for H1 (C, 7L) - dotted lines denote curves on the lower sheet while whole lines denote

eurves on the upper sheet. For simplicity we demonstrate only the ease g =4, the other eases
being similar.

r !

I r

~ I,
I f ,, I

J I ,
I ,
I .

-~.
I

, .,
."'\..

..... f .~
.......

-------

___ f~ __
-...... \

~e..- ,\
, I

~ ~ I

~
1 ~3
--;;>. --

\
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The second picture describes the images of the basis elements after applying the

automorphism n. That is, for example, the label Al in the lower picture denotes the image

of Al under n. The matrix representing n with respect to the basis Ai' .,1,2' Ji l , J.1? is

o
1 000

---1100
o 1 1 0

---I ---I ---I ---I
0---1---1---1
o 0 ---I ---I
000---1

o

In general, choosing the bases similarily, we get that the matrix representing 1! is given by

(2 ~)
where

---I ---I ---I ---I 0 ....... 0 0

B=
0 ---I ---I ---I c= ---I ....... 0 0,
0 6 ...... ---I ---I 0 ....... -1 0

This curve is of genus (p - 1)/2 and for p prime its Jacobian is a simple abelian variety

with complex multiplication by Z[']. Using similar description of the curve and picking a

similar basis for H J( C, Z) one gets that the automorphism 1r determined by

y t----4 y, X ~ ~,

where ,= exp(2Jri / p) is given for p =3 by

(?i)
and for p > 3 by

where

A=

o

o

o

o

o

o

....... 0 ---I

....... 0 ---I

....... 0 ---I

In each one of these examples we take as the even symmetrie line bundle on the appropriate

Jaeobian the line bundle determined 'by the period matrix of these homology bases with
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respect to the standard map by some ' dual basis' of r (C, Dei). By this we mean that the

image is of the form (T, I), T E ~ - the appropriate Siegel upper space. This gives also a

decomposition of the period lattice (T, I )l2K to T lK EI1 lK and thus a very specific line

bundle, the one obtained from the trivial line bundle on a::: g by dividing by the factor of

automorphy

a (A, v) =;W(A) exp(n H(v, A) + -f H(A, A))

where

H =(Im Tri,

Xo(A) =exp(m ImH(AI' A..;)),

using the decomposition A=AI +~ obtained from [g = [R l8) Tl K EB [R l8) 19 (see [LB)).

In order to derive the explicit fonn of the Symmetry theorem in these examples, let us

compute the expressions appearing in it. We will compute the formulas for 1t -I. Recall that

m 1r ( (~) ) =E (M1t(~) ) / E ( (~) ),

where

L The matrix M1t is of the form

and therefore m1f= I. This implies that Y1!" = I, because Y1I" = m 1r Iz · Thus V1!"-1 (lJI) = Mp(lJI),
which has no integral part. Therefore

for all lJI.
This implies that up to a scalar <P.g* : rex, L)~ Itx, L) is given by

a simple permutation matrix. Note that, by the corollary to the Symmetry Theorem, in many

cases we can get that this scalar is I.

ll. The matrix MIr is of the form

and B =-tC' I. In this case that
(2 ~ )

E(M1r(~) )= E«(~) r l
,

and

m1!" ( (~) ) = E «~) r 2.

However, note that for (~) in Z we get

mJf«(~) )=~(_'Y·X)=l.

That implies that Y1r = 1.
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The constants bJt.1jI are given by

which are completely explicit roots of unity.

III. The matrix M11: is of the fonn

(~ ~ )
where A, B, C are as defined above. In this case

= ~ (Y2 (tx·rC(Ax+By)))

= ~ (- ~Cx· y + x/ )).
Thus

m,r«~) )= ~ (- ~(' x·y+x/))

which is not trivial on Z. In fact

Y,r< (~) ) = ~(~ x/).

One can write now the symmetry fonnula explicitly.

5.CONCLUDING REMARKS.

This section is devoted to three topics. The first is the construction of compatible theta

structures allowing one the simultaneous construction of bases for rex, L') for all n. This

construction furnishes the necessary background for extending our results to isogenies f
such that j*L == Ln where n needs not be a square. The second tüpic is the extension of our

results to a)-isogenies. That is to elements of ID®End(X). The third topic is a short

dictionary between the algebraic and analytic languages in case the ground field is the

complex numbers.

I.S IMULTANEOUS BASES .

One of the main points of our approach to the problem' of writing quasi symmetries by

explicit fonnulae is the possibility of a simultaneous construction of bases für all the spaces

nX. n*L). Conceptually, their nice behavior is a result of a certain compatability of the theta

structures defining them. Our purpose now is to define and explain this compatibility and

extend it in a way that allows us to extend our simultaneüus construction to all the spaces
nX, Ln).
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DEFINITION. Let L be an ample symmetrie line bundle of separable type on an abelian

abelian variety X. A symmetrie theta strueture for L is an isomorphism

L1: G(L) ~ G(O)

sueh that

L10 8. , =D_ , 0 L1

where D. , is the automorphism of G(O) defined by

D _I(a, x, l) =(a, - x, - l)

(See [Mum1] pp.316-7). A symmetrie theta structure tor (L, L') (or a compatible pair of

theta struetures ) is a pair of symmetrie theta struetures

L1/1 : G(L') ~ G(nO)

L1J : G(L) ~ G(O)

sueh that

L1 0 f =E 0 L1[
/I /I /I •

L110 1]/1 = H/I
0 ~.

For adefinition of f". 1]", En• H" see loc. eil. pp. 309-310, 316.

In general the existenee of sueh a eompatible pair is not a trivial matter ( I do not know

when it exists). The ease n =2 is diseussed thoroughly by Mumford, loe. eil. §2. However,

in the ease we are eonsidering it is ea~y to prove the existenee.

Let L be an ample even symmetrie line bundle on X. Define three homomorphisms for

the standard adelic Heisenberg group G:

!lJ. p E", 'H1I

!lJ.1(a. x, l) =(a, - x, -/)~

t n (a, x, I) =(ctt, nx, /);

Hn (a, x, I) =(ctt, x. n/).

Define a theta strueture
/\

L1n :G(L')~ G

by

~ (x) = t n(L1 I(z»
where .11 is a symmetrie theta strueture whose existence is guaranteed by our assumptions

on Land z is an element sueh that fiz) =x. Sinee Ker En= J1n =Ker ( f n : G<L) ~
A

G(Ln» this is weIl defined. It is easy to check that we have indeed defined a symmetrie theta

strueture.
/\ A

Consider the pair (L\, L1nm ) of symmetrie theta struetures for (G(Ln) , G(LnM ) ). It is

obviously eompatible for f rn , En • Sinee it is enough to verify the 1]m' 1lm eompatibility for

elements of the fonn -(fex) M =Ln, LmI
, and sinee L1n(-t'(x» =L1n(fn rex»~ = E/L1 I ( rex»~)

(for M =Ln, and similarily if M =LMl
) employing the identity l1n(tp~x»=-f-(nx) (whieh

is part of the eontent of Lemma 14) one ean easily establish the desired eompatiblity .

Further, for any n we have ~ indueed isomorphism

G(Ln
) == Na(lJt)(er(T(X») I (er (n:X»)

== Ne( ti 2J »I (tn(~ »
== G(nS)
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(j was defined in §3 p. 30), where J = (1,1, ... ,1). The last isomorphism is
the following:

~ 1 A

No(cn(.j)) = {(O',x,l)lx E (Z//)9, 1E (-Zf/)9}
n

and the isomorphism is established by sending the maximal level subgroups

A 1 ~

{(l,x,O)lx E (Z//)9}, {(l,O,I)ll E (-Z//)9}
n

to their obvious images in G(nJ) (the group law on G(nJ) is defined using the
n-th root ofunity ~(l/n) - compare p. 30). Further, the maps between the various
G(nJ) induced from the maps D_ 1 , [n, 1in, are precisely the maps D_1 , En, Hn and
therefore we have succeeded in constructing compatible pairs of theta structures
for (Ln, Lnm ) for all n, m. At last, one can also verify that under the isomorphism
G(Ln

2
) I"V G(n* L) the theta structure just constructed for G(Ln

2
) agrees with the

one constructed previously for G(n *L).

11. VIRTUAL SYMMETRIES.

Suppose that f E Q®End( X). Then usually for x E X f (x) does not make sense.
Thus it is not clear what, if all, f* 3,3 E A(X, L), should mean. However, when X is
a complex abelian variety, say X = CU / Athen we may identify A(X, L) with certain
holomoprhic functions on CU and then we may define f* s by f* 3 ( x) = 3 (f (x))
(using the same notation for the complex representation of f).
On the other hand f is not far from being an isogeny. In fact there exists a natural
number n such that nf E End(X). For such an n, nf is an isogeny, for every
x E X n f (x) is rneaningful and (n f) * s is defined with the usual meaning. Now, it
is not difficult to convince oneself that the natural embedding

f(x, n* L) y r(X, L)

is the right way to define the action of~. This will be further justified when we
discuss theta fUllctions below.

DEFINITION. Let f E (Q ® End(X))x. Let n be such that nf E End(X) and
assurne that (nI)· L ~ n*L (such an f will be henceforth called a virtual 3ymmetry
of L). Define the map

f* : t(X, L) -+ f(X, L)

as the composition of the maps (nl)* : t(X, L) -+ t(X, n* L) and the natural
embedding I: t(X,n* L) -+ t(X,L).

Recalling the definition of t(X, L) it is easy to see that this is weil defined and
generalizes the usual natural definition for symmetries f E End(X)X of L. Note
that any automorphism f preserving the polarization determined by L is a virtual
symrnetry for L (in virtue of the symmetry of L). Therefore we also obtain some
what more flexibility in the treatment of automorphisms as weIl. We remark that
it is easy to generalize this definition for certain other I E Q 0 End(X) (obtaining

Typeset by AMS-TEX
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thereby also the same kind of flexibility) or to the relative situation discussed in
the end of § 3. We leave that to the reader.

The map (nl)* is an intertwining operator for the action of G(L) via Cn2 and Onf as
we have already seen. Recall (Lemma 14) that dnfrL(x) = rL((nf)(x)). Therefore
we make the following

DEFINITION. For a virtual symmetry I define

Of : G(L) ---+ G(L)

by

Of(A . r(x)) = A' r(f(x)).

Let us verify that this is an automorphism. Since r(x)r(y) = eL(x, y/2)r(x + y),
we need only to check that eL(x,y/2) = eL(f(x),/(y)/2). Changing variables to
nx, ny and using that (nl)* L ~ n* L we get

eL(f(nx), f(ny)/2) = eL((nl)(x)' (nf){y)/2)

= e(nff L(x, y/2)

= en
•

L (x,y/2)

= eL(nx, ny/2).

For any virtual symmetry f we may twist the action of 6(L) by 0f : U! = U6f (z) .

LEMMA. f* is an intertwining operator:

1* 0 Uf = U 0 f* .
o

PROOF. For scalars A E k X the assertion is dear. Therefore it is enough to check
it for elements of the form rL(nx), x ,E V(X).

f* 0 U!L(nx) = f* 0 UTL(nfx)

= Io (nl)* 0 U;!(x)

= I 0 U~n2(TL (x» 0 (nf)*

= 10 Urn.L(x) 0 (nf)*.

Therefore we need only to check that

This is essentially Lemma 14,4). Q.E.D.
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t

\

In characteristic p -:j:. 0 we do not have a universal covering space for X. However,
Mumford had shown that to a large extent V(X) is the right substitute. For any
s E f(X, L) he den.ned a function 8" on V(X). Therefore we should check that

Having verified this we may safely claim that our definitions are right. Let us recall
the definition of 8" (a full discussion appears in [Mum3]):

Fix an isomorphism

€ : L(O) -t k,

thereby fixing for any isogeny h (and in particular for h equal multiplication by n)
an isomorphism

c : h*L(O) ::: L(O) -t k.
can.

Given x E V(X), let TL(X) = (x n,4>n)n and s E f(X,L) define

More precisely, choose n divisible enough such that both s is represented by some
Sn E r(X, n* L) and 4>n E G(n*L). Then 8 s (x) = e(4);;1 sn(xn)), It is easily verified
that this is weIl defined.

An important interpretation of this definition is as follows: for every n "evalua
tion at zero" defines a linear functional

Ro : r(X, n* L) -t n*L(O) rv L(O) -t k.

They induce a linear functional

i o : t(X, L) -t k.

One can prove (loe. eit.) that

Given an isogeny h : X -t X we have an induced

Ra : r(X, h*L) -t k,

and it is clear that

eo(h* s) = Ro(s).

Thereforewe see that 8 h,,,(x) = eO(Urh'L(_x)h*s) = eO(h*UrL(-h(x))S) = RO(UrL(-h(x))S) =
8 s (h(x)). In partieular

8(nf)'s(x) = 8 s((nf)(x)).

I claim that the embedding I : f(X, n* L) -t t(X, L) has the effect
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6I(~)(nx) = 6~(x).

(This justifies further our previous remark that ! : [(X, n *L) -r [(X, L) shouls be
eonsidered as the effeet of ~.) From the definitions it follows that 6 I (~) (0) = 6 ~ (0) .
Let us use the identity

6 U>"T(lJ)(3)(X) = A . e(y, x/2) . 6 3(x - y)

(loe. cit. Lenuna 5.7) to eonclude that

6~(x) = 6 u *L (8)(0)
T n (-;r:)

= 6I(UTn.L<_1Il/S»(O)

= 6 UTL <_n;r:)(I(S»(O)

= 6 I (3)(nx).

Finally, we get

We surnmarize all this by

Theorem. Let f be a virtual symmetry. The map f* : [(X, L) --+ f(X, L)
denned as the composition of the maps (nf)* : r(X, L) -+ [(X, n* L) and tbe
natural embedding ! : t(X, n* L) -+ f(X, L) is an intertwining map for the usual
action and the oj-twisted action of (;(L) where Oj is the automorphism of 6(L)
denned by Of(A' rL(x)) = A' rL(f(x)).

We have an identity of theta functiolls

(*)

Remarks. 1) Over the eomplex numbers, for the line bundle L(H, X), f is a virtual
symrnetry if and only if f* H = H. This is because we are dealing with symmetrie
line bundles only. In the case where X is an ahelian variety with C. M. by a C.
M. field !( and f is a unit of !(, the condition f* H = H is equivalent to the
eondition NK/ K+ (f) = 1. This new abundanee of virtual syrnrnetries is one of the
motivations for the introduetion of this concept.

2) The relation (*) would not be true for a general twist coming frorn the general
symplectic group. For example, given M E Sp(2g, Af f ) we can define an automor
phism

by
JM(a, x) = (a, Mx).

This would yield as usual an equivariant map taking 6 to some 6 /. In general we
would not have 6 /(x) = 6(Mx).
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111. OVER C

This seetion follows in terminology and notation the book [LB]. Since our general
description of the theory over C is weIl knowl1 and most of our new contributions
are easily proved we will not offer any proofs to the assertions below.
Let A be a lattice (i.e. discrete maximal rank subgroup) in 0'. Let (H ,X) be an
Apple-Humbert data. Reeall that this means that H is a non-degenerate Hennitian
form on C9, and that X is a semi-character on A. That is

where E = ImH.
Given such a data define a factor of automorphy a = a(H,x) on A x C9 by

(1)
tr

a(A ,V) = X(A)exp(trH(v , A) + -H(A, A)).
2

The lattice A acts on the trivial bundle C9 x Cover C9 by

A*(v, t) = (v + A, a(A, v) . t),

defining an ampIe line bundle L = L (H, X) of degree v'det E on X = C9 / A. The
global sections of this bundle, r(X, L), are identified with holomorphie funetions 8
on C9 satisfying

8(V +A) = a(A, v)8(v).

The Apple-Humbert data satisfies

• L(H1 ,Xl) <9 L(H2,X2) ~ L(H1 + H2,XIX2)

• f* L(H, X) = L(f* H, f* X)

• L(H, X) is symmetrie Hf Im X ~ {±1}.

One ean extend the definition verbatim to degenerate matrices H and in partieular
get PicO(X) = {L(O, x)lx E A*}.
Define a group structure on CX x C9 by

[a, w][ß, x] = [aß exp(trH(x, W)), x + w].

We eall this group 6(L)c and denote by 6(L)Q its subgroup consisting of all ele
ments [a, w] where w E Q 0 A.

Define also

G(L)+ = {[a,w]la E CX,w E AJ.},

T(L) = {[a(w,O),w]lw E A}

(A 1. is with respect to E).
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Note that G(L)c acts on Cu x C by

[a, w][v, t] = [v +w, aexp(rrH(v, w))tJ.

51 .

Now, one easily proves that G(L)+ /T(L) is eononieally isomorphie to G(L) and
that the formula

A* [v, t] = [a(A, 0), A][V, t]

holds. We also remark that the eommutator pairing eL of G(L) is given by

eL([o, w], [ß, xl) = exp( -2rriE(w, x)).

If L = L(H, X) is symmetrie oue verifies that we have e~(x) = X(2x) for x E !A.
The action of G(L) at the global seetions of L is

([0, wJG)(x) = oexp(rrH(x - w, w))G(x - w).

Given a totally isotropie deeompositiou A = Al ffiA2 with respect to E, we define
a semi-eharaeter XO on A by

where the deeomposition v = VI + v2 is dedueed from CU s:; (IR 0 Al) EB (lR 0 A2 ).

Then L = L(H, XO) is asymmetrie line bundle. Given any other semi-eharaeter X
for H, we eau find same c E (;9 such that

(2) x(V) = xO(V)exp(2rriE(c, v)).

We note that c is not unique, hut onee it is chosen we ean extend the definition of
the faetor of automorphy a(H, X) given by (1) to elements of A.L by using (2) as the
definition of the extended semieharaeter. We define the theta function G = GL(H,x)

on C9 by

G(v) =exp ( -rrH(v, c) - ~H(c, c) + iB(v + c, V + c))

x L exp (rr(H - B)(v + c, A) - i(H - B)(A, A))
>"EA 1

where B is the C linear extendion of H1R0A:;z. The decomposition of A induces a
decomposition A.L = At EB At.

Define
K i = {[a(w.O),w]lw E Af} ,i = 1,2.

(Note the " hidden " defendence on the choice of c).
One ean verify the following statements:

- e E r(c,u /A, L(H, X)).
- ](i are mutually orthogonal maximal level subgroups of G(L).
- G is K 2 invariant.
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- Define for U E At/Al,
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8 u = [a( -u, 0), -u]8,

then {Gulu E At/Al} is a basis for r(cg /A,L(H,x)) and for [a,w] E G(L)

A special important case is as follows:
Given T E f)g, we define:

- a lattice AT = (T I)Z29 ,

- an abelian variety X T = Cg / AT,
- a prineipal polarization HT = (ImT ) -1 ,

- a deeomposition ATI = rZ 9 , AT2 = 1Zg ,

- a symmetrie form BT- the C-linear extension of HTIIR@A r2 , BT(v, w) = t v(lmT )-lW,
- a semicharaeter X~(v) = exp(1riET(VI, V2)), E T = I mHT,
- a basis for AT eonsisting of the columns of (T I)
- a line bundle LT = L(HT, XT) on X T.

We define the functions 8 n ,W,T for w E T (~Z)g by

Then {8 n ,W , Tlw E T( ~Z/Z)g} is a basis for r(XT,n* LT).
We have

0 n ,w,r(Z) = exp (1l";2 Br(z, z)) 0 [n(n2 z, n2T)

where w = TW l , w l E (~Z)g and for every €, EI E Rg we have Riemann's theta
function

o [;,] (z, T) = N~ exp { 21l"i Gt(N + e)T(N + e) + '(N + e)(z + e')) }

Coming back to the more general situation, let L be asymmetrie line bundle L =
L(H, X) on X = C9 / A. Then given an authomorphism gof X, the Appell-Humbert
theorem implies that 9 is a symmetry of L(H, X) if and only if g* H = H, 9*X = X.
Assuming this is the case we can show that

Jg[a, w] = [a, gw].

Also €n[a, W]C(L) = [an, W]C(Ltl), 7Jn[a, W]C(Ltl) = [an, nwlc(L), and if w E ~A
then n* [0', w]C(m- L) = [0', W /n]O(n-m- L)' Picking a sympleetie basis (WIW2) of A
and letting WI, ... ,W2g be the columns of (WIW2), Wi = (~) nENt' then W 1 , • •• , W2g

is a basis of T(X) over Zand a basis for V(X) over AI' For every x E Q® A,x· =
(~) nEN+ is in V(X) and



QUASI-SYMMETRIe LINE BUNDLES

. We have a natural embedding

i : 6(L)Q -+ 6(L)

given by

53

X
[a, x] -+ ([a, - ]O(n. L»)nEN+'

n

The €n, 1]n, On formulas are immediately deduced from their finite counterparts. For
a concrete example of the system of maximal level subgroups consider again the
line bundle L r on X r'

(
1 )29

G(n*Lr ) ={[a,w]laECX,wE (rI) n2Z }

with the group law

[al, w1][a2, W2] = [a1 a2exp(1Tn2H(W2,W1)),W1 +W2].

The subgroups of G(n *L r )

1
L(nh = {[a(w, O)w]lw E r2"Z9 EB IZ9}

n
1

L(nh = {[a(w, O)w]lw E rll9 EB 12"Z9}
n

1 1
M(n) = {[a(w, O)w]lw E T-Z 9 EB I -Z9.) ,

n n

(a = a(n.H,n.x~») are maximal level subgroups. L(nh,L(nh are mutually orthog
onal and M(n) is the level subgroup defining L from n* L.

The subspace lI1 = rQ9, V2 = IQ? induce a natural Göpel structure on 6(L)Q
which gives a Göpel structure on 6(L) via i and extension of scalars. This Göpel
structure is inducing the systeIll {L(n)i}n. We have already described how the
bases of r(Xr, n *Lr ) wi th respect to L(n)1, L(n)2 look like. The basis wi th respect
to M(n) and the section used in thc symmetry theorem (for the obvious theta
structure) is

{exp (1T:
2

BT(Z,zl) e [:' ~~] (nz,Tlk,E' E zg, 0 ~ E,E' < (n, ... ,nl}

Finally, consider the following situation: we have two lattices Al 2 A, yielding an
exact sequence

o--+ A1 /A --+ C9 IA ~ C9 lAI ~ 0

Let LI = L(H, X) be some line bundle on C9 IAl. Let L = i*LI. Let I( be the
corresponding level subgroup of G(L). Then
( i) L = L(H, XIA)'
( ii) !{ = {[a(H,x)(.\'O), A]I.\ E A1 /A}
( iii) Let L = L(H,X) be a line bundle on C9 1A, and let I{ = {[a(.\]IA} be a

maximal level subgroup of G(L). Let L1 be the line bundle on C9 IAl defined
by K (in particular i*LI '"V L). Then L 1 = L(H, X*) where x*IA = X and
x*(.\) = a(A)lexp (IH(.\,A)).
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ApPENDIX - REPRESENTATIONS OF FINITE AND ADELIC HEISENBERG GROUPS

A I. THE FIRST CLASSIFICATION

This section gives a 'primaryl classification of the irreducible representations of finite

Heisenberg groups. We fix the following notation:
k - an algebraically closed field.
e - a finite Heisenberg group sitting in the o:>v"ct sequence

I~JC~G~H~

where the order of H is d 2
•

K - a maximal level subgroup of G.
an - the homomorphism kX--:' k X given by t~ t

n
•

B* - the character group of a group B.

B[n], Ir - the subgroup of elements of order n and the subgroup of n-th powers,
respectively, of an abelian group B.

DEFINITION. Let U: G~ GL(V) be a representation of G on a k - vector space V.

We say that (V, U) is oforder n if k X acts through ~'

Let (V, U) be a fixed irreducible representation of order n of G. Decompose V

according to eigenspaces of K

and choose some Xo such that VXü t:- {O}.

LEMMA AI. I. EB V1M t is a non -zero G- invariant subspace of V J hence equa I to V.

xe K*"

Proof We have a group isomorphism

G/kxK~ K*, y~ X y

where
x){z) =[z, y ] ,

and [z. y] =zyz -ly.l. It is easy to check that

V/V'I') =V~ (X")" . Q.E.D.

Choose a set theoretic section er: K*~ G to the map y~ XY• We shall always

assume that the image of er is contained in Cl. This is possible since kXG =G.

LEMMA A 1.2. 1) VXü is an irreducible representation of k xKo(K*[nD henceforth

denoted by p.
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2) (V, U) == Inef(xKa(K*[n])(P) .

Proo! First of all. kXKa(K*[n]) or Jld2Ka(K*[n]) do act on each V
XoX

and we denote

this action by Pxox Thus Pxo =p. Second, we note that the representation theory of G is

govemed by that of Ge and the representation theory of kXKO"(K*[n]) by that of Jld2Ka(K*[nJ).

This means for example that we ean identify Intf(xKa(K*[n])(P) with Incfd:zKci..K'I'[nn(p) and the

first is irreducible with respect to G if und only if the second is irreducible with respeet to

Ge. Conveniently, we may work with eharaeters of finite groups. Assuming that 2) is true we

get by Frobenius duality:

=

(Al.I)

= < Wu, Wu>

= < Wu• l/JlruI{P >

= < l/JUJ • Wp >

L < WPl~' l/Jp >
xe K*"

= < «Pp' cPp > + L < «Pp ,«Pp> .xe j(*n XII!

x;t;l

where A = ,ud1Ka(K*[n]), and ep denotes the eharaeter of the appropriate representation.

This proves I) and the obvious fact that the different p~ x are all non-isomorphie (although

they induce the same representation).

To prove 2) we use the weIl known interpretation of V' = IndfxKci..K*[f1])(p) as

V' = ffi gjVXo

where {gi} are representatives of G /k xK0"(K* [n]). An element gE G acts on a vector g IV by

g' giv = gip~(r)v) if ggj = gj r. Define a G - linear transformation
VI~V

by

glv 1----+ Ug IV, ( VE Vxo )'

Since {Vxa }XE f('11 are permuted by G transitively, dime\!) = [G : kXKa(K*[n])] = dim(V').

Henee to show our map is an isomorphism we need only prove it is surjective. That follows if

we observe that Ugj is an isomorphism from VXo to VXn~f and every component VXox of

V is of this form for a suitable gj' Q.E.D.

LEMMA A l.3. Let (W, p) be an irreducible representation 0/ kXKo(K*[n]) 0/ order n

such (hat p IkxK =~X· Idw Jor some XE K*, thell (V, U) = IndfxKa(K*[lI))(p) is an irreducible

representation 0/ G 0/order n.

Proo! Set

V=ffigjW

where {gj} are representatives of G / kXKO"(K*[n]). An element bE K acts on gjW by

55



L < C/Jp ' C/Jp >
{gi} ~I

g; f. PKa(K*(n])
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p(gj' I bg) = anx(gi - Ibg)

= ~x(X81 (b)· b)

= Xg/, (b)· x(b).

That means that if we decompose V to eigenspaces of K then gjW = V,t:fZ . Each g;W is a

representation of kXKO'(K*[nD ,henceforth denoted Px/ ,which clearly can not contain a

representation isomorphie to p as can be seen by observing the way K acts. Using the same

computation as in (2.1) we get

<C/Ju' C/Ju> = < C/Jp ' tPp > +

= I.

We summarize all we have proved by

Q.E.D.

\
~

THEOREM A1.4. Let G be afinite Heisenberg group, K a maximal level subgroup of

G and 0': K* -) G C a set theoretic section to the map y~ Xy
•

(1) Let P be an irreducible representation 01 k xKa(K*[n]), then pik xK is isotypical,

equal to a,x with some multiplicity and

(V, U) = Inc/fxKa(J<+[nn(P)

is an irreducible representation olorder n 0/ G. Further. every irreducible repre.\'entation

0/ G is obtained in this fashion.

(2) IJ P and p' are two irreducible representations oforder n oJ k xKa(K*[n]) then

IndrXKa(K*[f1])(P) == In(tj'''Ka(K'''(f1))(P)

ifand only if p and p' belong to the same orbit under the G - action given by

(g. p)~ gp; gp(b) =p(g" lbg).

(3) Given an irreducible representation U oJ G on a k -vector space V one obtains

the Juli orbit 0/ the representations p associated to it by (2) by letting k xKa(K*[n]) aet

through U on the various K - eigenspaces 0/ V.

(4) Every irreducible representation oJ Ge is oJ order n Jor some n. Hence these

representationsfor 1 ~n ~ d 2 are generatorsfor the representation ring of Ge.

Proo! We have already proved everything except for the last assertion. To see it is true,

decompose an irreducible representation of a according to characters of /l; and note that

since /.1.; is central each one of them is Ge invariant. Hence, there exist a unique eigenspace

of J.1; on which the action is given by some a;l' Q.E.D.

We conclude this section by a lemma that follows immediately from Frobenius duality.

LEMMA A 1.5. Let P be an irreducible representation of kXKa(K*[n]) such that P!kxK

= ~X·ldw for same Xe K* ,then pappears dim(p) times in Ind:=:a(K*[n])(a,x).
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A2. CLASSIFICATION WITH RESPECT TO A MAXIMAL LEVEL SUBGROUP

WITH AN ORTHOGONAL COMPLEMENT

We keep the notation of §A 1. We shall assurne through out this section that K has an

orthogonal complement. Thus, we may choose a as a homomorphism ioto G C and

henceforth we assurne this has been done. In this seetion we use the results of §2 to get an

explicit classification of the irreducible representations of order n of G.

LEMMA A2.1 Every irreducible representation p of order n of k xKa(K*[nD, such

that pi VK = arl for some XE K*, is J-dimensional emd is of the!onn

p(ma(tp)) = a"x(X)T,(tp) aE kX,XE K, 1JIE K*[n],

for a suitable rE (K*[n])*.

Conversely, given any 11, XE K*, rE (K*[n])* we have an irreducible i-dimensional

representation p of order n of kXKa(K*[n]) defined as above.

Proo! Let (V, p) be an irreducible representation of order n of k xKa(K*[nD. We

consider it as a representation of K*[n] via a and decompose it acco.rding to characters

V= E9 arVr ,
rE K*ln]*

where a, are the multiplicities. It is easy to see that each Vr is kXKa(K*[n]) invariant.

That proves the first part of the lemlna.

To prove the second part we need only check that p as defined is a homomorphism:

p(maC IjI)~XI a( 11'1)) = Aaal [x1- I, a( 11') ]xxIa( 1jI)a(11'1)])

= (aalrx(xx\)'l(lJIVIi)·

where we used [XI-I, o(ljI)r = [XI-I, 0{11")] = I . Q.E.D.

We may now rephrase and explicate THEOREM A 1.4.

THEOREM A2.2. Let K be a maximal level subgroup with an orthogonal complement.

The irreducible representations of order n of G (Cf ) are in one to one correspondence

with tripIes (n, X, r) (i Sn Sd 2 respectiveIy) where XE K*/K:#!, TE (K*[n])*.

The representation corresponding to (n, X, r) is IndfxK~K*[n])(a,):r). It is ofdimension

r(n) = #K*1l and is denoted by (W(Il'x.,), P(/I,X••))' lts character. denoted by (/>(Il,x,.) is given by

(A2.1)

for aE k X, XE K, lJIE K*[n].

Fix n, m. Put d(n) = #K*[n], s = (n, m), a
ll

m = d· d(s) 2/d(n)d(m)d(n+m). Let ep be

the character of W(Il, Xl, '1)®W(m. X2' '2) and choose some ßE K*[n + m]* whose restriction to

K*[s] is rjr2IK.js]. then
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(A2.2)

Proof While translating Theorem A 1.4 one should note that the G action on (n, 1'0, r)

changes only M to some xaX' and leaves r intact. To see this is the case, use the

decomposition appearing in Lemma ALl of W(n, 10. n as EB VXoX . Suppose that K*[n]

xe K*"

acts on V;(O by T,

UlJ(1JyV= r(71)V VVE VXa' V71E K*[n].
Taking any yE G we need to verify that the same holds for U),V. Indeed,

Uo(n)UyV = UyUy--lo(n)YV

=UyUxY(o(n))- o(n)v

= UyCXY(cr(ll))n't(T\)v)

=t(ll)Uyv .

It remains to prove the assertions conceming the characters. It is easy to see, using the

decomposition of Wen, 1, r) with respect to K* that dirn( Wrn,x. r)) =ren) and that

aE k X acts as cf Irin) ,

xe K acts as x(x)· diag[XI (x), ... , Xrin/X)] where (XI' ... , Xrin) } =K*n,

lfIE K* \ K*[n] acts as a permutation matrix of apermutation with no fixed points,

lfIe K*[n] acts by 1'(lJIJ-lrin )'

Hence, if <1>(n,x, r /axa(lJi)) is non-zero we must have lJIE K*[n] and then

<1>rn,1. r / axa(1p)) = cfX(x)r(lJI)- ( L A(X)).
kK*"

Since K*n is dual to K[n] we get (A2.1).

To compute t1> we first note that only characters corresponding to representations of

order n + m can appear in the decomposition of 4J. We have thus to compute < cl>, C/J(h, x. r;>
only for h =n + m, Xe K*, 1'E K*[n + m]*. Secondly, we note that

iP(axa( lJI)) =an + mr(!l)r(m ) [xl X2(x)][ 1'1 12(lJI)l 1KlJ](x), 1K.I,/ lJI)

by the general formula for tensor products and the equality K[n] n K[m] =K[s], K*[n] n

K*[m] =K*[s]. Therefore
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= r(n)r(m~~n + m) L. {[x, vir--fn+ml LtIX2(x)]x(x-J)[ 'l"112( 1JI}]1( r)-l K[sj(x)-l K"[sj( IJI} }
x, 'I'

The last expression is zero unless QQ1h XIXut' IIK1s1 = I iill..d TI T2T' IIXls! = I . If hmh happen

then this expression is equal to d· d(si / d(n)d(m)d(n + m). Any such X is of the form XIX2f,

fE K*s. Any such T is of the form ß1J where 1J is in the dual of K*[s] in K*[n + m]*

which is just K*[n + m]*ol and ßE K*[n + m]* is a character whose restrietion to K*[s] is

TI 'i IK-j,f]' Thus we get

(A2,3)

which proves (A2.2).

c[J = L an, mettn + m, XJX2X. ßT) ,xe 1(*'< I K*n+m

TE K*[n + m]*s

Q,E.D.

A3. REPRESENTATIONS OF ADELIC HEISENBERG GROUPS

NOTATION.

k - an algebraically closed field of characteristic p ~ O.

IA - the adele ring of (Q.

IAJJ - the subring of IA of finite adeles without the p - component if p > O.

e - an isomorphism IAffllLff ----+ k X

tur•

G - the set k x x IAff
2

8 with the multiplication rule. turning G into a group. given by

(A, Xl' xJ· Cfl YI' Y2) = (All" e(J.-2 ('x l' Y2 - t~. Yl))' XI + YI' X2 + yJ.
(j - the group homomorphism ILffzK ----+ G given by

o(x I' x2) = ((- 1)'xr X2, Xi' ~).

DEFINITION. Let (V, p) be a representation of G. We say that (V, p ) is a contilluous

representatioll 0/ G if for every VE V there exists an m, depending on v, such that for

every xe m 0( ILffZg) we have {X,x) v = v.

Define now Ge = kX/rJr X IAff
1
K with the same group law. We say that a representation

(V, p) of Ge is of order n, nE 71.. - {O} if k~or acts through the character an' anU) = f. We

remark that given an ample symmetrie line bundle Land a theta structure

L\: G (L) ----+ G

we have L\(k x lOr X !AJJ
z,,) = k xtllr X !AJK and we may define (; (Lt in the obvious way.

Therefore one may talk of representations of adelic order of G (Lt.
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THEOREM A3.1. (1) There is a unique irreducible continuous representation of ce 0/
order n, for every nE 7L - {O}. This representalioll is henceforlh denoled by Vn.

(2) For n = 0 Illere is one 10 one correspondence belween irreducible conlinuous

representalions of order 0 0/ G and continuous characters 0/ !A r/
K
• The representation

corresponding to 1I'E HOn1c(IA/K, k X
) is denoled by V(O, lI')' We denote by Vo Ihe

representation ffi \1(0. IJI} •

IpE HorncCA,2x, P)

(3) i) Vw.lp)0 V(O, x) = V(O, ty,V'

ii) V(O, lp)0 Vn = Vn•

iii) Vn ® V, = ffiVn +,' an infinite counlable sum ir n + r :t: 0, and Vn 0V, = Va'

ir n + r = O.

Proo! The existence and uniqueness for n = 1 are proved in [Muml] Proposition 5.2.

To get the clain for a general n define for every nE 7L - {O} a matrix M(n) E GSp(2g, lAff)

by M(n) = (~ n~) .Define a surjective homomorphism

8(n) : Ge --) a:. 8(n) (a. x) = (d'. M(n)x).

Since the multiplier of M(n), U1...M(n)) = n. this is indeed a homomorphism. Now given a

representation (V, p) of order n define a new representation pi of G C by thc formula

pI (x) = A 8(n)" I (x) ).

One easily verifies that this is a continuous representation of order I of GC
• That is 8(n)

gives a bijection between representations of order I and order n. That proves I).

Since 2) is clear we have to prove only 3). Part i) is clear and ii) follows from 1 by

tensoring with V(O, lf/- I) • In part iii) the only question is with what multiplicity does Vn + r

appear in Vn ® V,. It is not difficult to check that in an irreducible representation of order n

the dimension of the invariants under a maximal level subgroup is precisely Inl K. Choose the

maximal level subgroup Z = 0'( il.1f2K) and decompose both Vn and V, with respect to a(

lLff
2K

) :

Therefore

Q.E.D.

REMARKS. 1) Theorem A3.1 ha.~ an exact analog in the theory of real Heisenberg

groups. See [CR] §2.2.

2) The analog theorem for G and representations of order nE 7L hold of course.

A4. APPLICATIONS TO THE 1'HEORY OF THETA FUNCTIONS.

This section gives same applications of the theory developed so far. The applications
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given are mainly deeompositions of eertain global seetions of line bundles on abelian varieties

as modules of finite and adelie Heisenberg groups.

I) We have a homomorphism
Cn : G(L) ---+ G(L@")

given by l/J t-----7 l/J@ n. E" restricts to ~ on k x and induees by passing to quotients the

natural embedding of H(L) into H(L@n). Via En we have a sequenee of G(L) modules

rrX, L)@11 ---+ Sym" (nX, L)) ---+ nX, L@n ).

2) Assurne that L is symmetrie. One ean define a homomorphism

11
11

: G(L@n) ---+ G(L)

(see [MumiD which induees the homomorphisms ~ on k x and multiplieation by n on

H(L@n ). It turns Tex, L) into a representation of order n of G(L@n).

3) For L symmetrie we have for every integer n a map On: G(L) ---+ G(L) whieh is

equal to an 2 on k X and induees multiplieation by n on H(L). That gives a representation

of order n2 of G(L).

The maps described above satisfy the identities

i) on = 11no cn for on : G(L) ---+ G(L), 11'1: G(L@") ---+ G(L), En : G(L) ---+ G(L@").

ii) On = CnD 11'1 for On: G(L@") ---+ G(L@n), 11'1 : G(L@ n) ---+ G(L), cn : G(L) ---+ G(L0'1).

There are analogous maps th, 17'1' On for adelie Heisenberg groups. These maps are

obtained from the previous ones in a standard fashion and have similar properties.

We get representations of G(L) (G (L)) of orders n and n2 via c" and On'

respeetively. There are also representations of order n of G(L) ( ci (L)) on T(X, L0'1) and

Symn(T(X, L)). We now study them.

I. nX, L)@n as a G(L) module of order n.

Choose a maximal level subgroup K(L) of G(L) whieh has an orthogonal cornplement.

We know that there is a unique irreducible representation of order 1 of G(L) - WO, I, I) in our

notation. It is of dimension d, where d2 = #H(L). Since d = deg(L) = dim(nX, L)), we

eonclude Muolford's observation that nX, L) is the aforementiooed representation. Therefore,

if cI> is the eharaeter of the G(L) action on T(X, L)0n then cI> = cI>(l, I, l)n. Using (3.1) we

get

c1J( axa( ljI)) = T( 1)"· (il. 1K[l](X) . 1K*(I J( ljI),

where, as before, ren) = #K*n , den) = #K*[n].

Otherwise said :
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(A4.1) c[J(axa(1f)) = {
o

if x =0 and 1f = 1.

otherwise.

Now, we simply compute the ' inner products I :

Therefore,

=
dn~

d(n) .

ffi d n - l

l\X, L)0n = CD d(lI) . "'(n. X." .
Xli K(L)+/K(L)+n

r e K(L)+[lI]+

II. r(X, L0") as a G(L) module of order n, via fn'

Choosing a set theoretic splitting we may write G(L) = lC x H(L) and the group law is

given by

(al' h] )(~, h2 ) =(al~' FL(h p h2 ), h] + h2 ).

FL is a normalized 2 - cocycle :

(a) FL(h l , h2 )FL(h]+ h2 ' h) ) =FL(h p h2+ h3 )FL(h2 ' h) ).

(b) FL(O, 0) = 1.

The homomorphism en : G(L) ~ G(L0n
) can be written as

(a, h) t-) (cf· .i.h), h),

where s : G(L) ~ k: satisfies

s(h l' h2) Fu(h l' h2)
---=----
s(h l)s(h 2) FL(h l' hZ)'l

Note that s (0) = 1. Now, the character of the natural action of G(L0rJ) on T(X, LOn) is just

cP(l. I, I)' Thus, we have

[t·D

o

if X=O and lJI= 1.

otherwise.

where D 2 =#H(Li&I) =n4:· #H(L) =n2X
• d2

, that is D =d· nK•

Therefore, if cP is the character of the f n action of G(L) on rex, LOn), then :
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(A4.2) C/>(a, h ) : {
o otherwise.

We can compute now the multiplicity of each 4>(/l,x. r) in W.

1 ~ ---l
< (/J, ~n. X, r) > = d 4 ~ l/J(a, h)· 4'(11. X, f)((a, h) )

(a, h)e G(LY

= d 4 L l/J(a)- ~n.x, ri~)
ae tld2

We conclude that

(A4.3) IrX, L 011 ) = <f> ;~). lt(n, X, ~
xe K(L)*/K(L)*"

T 6 K(L)*[nl*

III. Sym2(1(X, L» a.~ a representation of order 2 of G(L).

Recall the basic decomposition :

IrX, L) = EB k· VX '
xe K*

where VI is arbitrary, V x = U~)VI and (j is taken to be a homomorphism into G(LY.

Sym2(r(X, L» has a basis {VXV1" I X, Te K*} and is d(d + 1)/2 dimensional. The action of
G(Lt is given by :

aE k X acts by erl, where I is the identity d(d + 1)/2 matrix.

xe K acts by Xr(x) on vxV 1" •

lJIE K* acts by vxv 1" ~ VXlfvnp'

Denoting by f/J the character of Sym2(IrX, L» we see that

l/J(axa( lJI» = a2. L x'l(x) .
{X, T} ; {X, T} = {Xw. Tlp}

If the order of lJI is not 1 or 2 then there are no such couples {X, 't}. Distuinguishing

cases a short computation gives

(A4.4) cP(axa(lJI» = J--2 erd- l K[2](x), lK*12[(IjI)' l/A..x)· (lK*[2](lJI) + d· lAlI[(x».
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Let us compute the multiplicity of which an irreducible representation of order 2, W(n, x. 1)

appear in Sym2(nX, L)) :

< tP, l1tz.x, ,,> = ~. L 4\ata( lp))l1tz. x, 'D(r [x, a(lJf)]-1x-l a( lp)-1 )
J.l E JldZ

XE K{Z]

lJIE KfZ)*

tP· d(d; I). r(2) I
= +-.cf cf

J.l E JldZ

(x, lp) E KfZ) x KfZ]* \{ (l, 1)}

~. IIXx )· r(2)· z(x)-1 'l( lp)-1

(A4.5) d+ I I(~ )= 2d(2) + 2d(2) -l + ~ IJI{x)' rex} r(lp)
(x, ljI) E KfZ] x KJ.Z]*

= 2d~2)(d + L r(VJ)( L ~(x)))
'IIE K"'[Z] x E KfZ]

= 2d~2)(d + L r('I')( L x(~ IKfZ])))
'IIE K*[Z] XE KfZ]**

= 2d~2)(d + d(2)· L r (VJ)) .
lJIE K*[Zl s.L

'P'I KJ21;; xl Kj21

Consider the last expression of (A4.5). Let us denote by K*[2]lr the subgroup of all

characters ljIE K*[2] whose restriction to K[2] is trivial. Then if #K*[2]tr > 1 then this

aforementioned expression is equal to ~. r(2) no matter what X iso Let us denote by

K*[2L~ the subgroup of K[2]* obtained by restricting the elements of K*[2] to K[2]. That

is we have an exact sequence

res.
1~ K*[2]tr~ K*[2] ~ K*[2]rJ~ I.

If K*[2],r = { l} then since #K*[2] = #K[2] = #K[2]* we have K*[2ts = K[2]*. That

implies that in this case the last expression of (A4.5) is equal, for any X:

2d~2)' (d + d(2} !(x IKIZ]))

which equal to Y2 (r(2) + 'I(x IKI21))' To sum up:

The representation Wen,x. 1") appear with thefollowing multiplicity in Sym2(nX, L)) :
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.if K*[2],r;t 1,

if K*[2]tr = {I}.

(A4.6)

EXAMPLE. Consider the special case where L = M 2 where M is a symmetric ample fine

bundle of degree 1.

In this case we have H(L) = X[2] and a maximal level group K is an elementary

abelian 2-group of order 2K
• Clearly r(2) = I. Consequently, any representation W(2, x. 1)

(which is #K*2 = 1 di mensional) appears with multipIieity ~ (1 + rex )) whieh is either

zero or 1.

Let us call a representation W(2. x. 1) even or odd if r(x IK) is equal to I or - 1

respectively. The dimension of F\X, L2
) is 22g and according to (6.2) it is the surn of a11

W(n. x. 1) each appearing with multiplicity 1, and each is I-dimensional. Now, it is classieal

fact (See Mumford I HTata Lectures on Theta 1". Proposition 1.3. p.124 and [Mum2] Proposition

3.2 pAD) that over the complex numbers the global sections of (the pull-back to the universal

coyering space of) M 2 are giyen by e[z] (2z, 2T) ,ae J 718 / 7L', and the global sections of

M' are giyen both by e[ ~1(4z, 41j ,ae ~ 7L' /7L' and by e[~;;] (2z, 1j where a, be 7L'.

It is reasonable to guess that each of the e [~;;] (2z, 1j spans a unique wo. x. " and that the

new notion of evenJodd corresponds to the classical notion of evenJodd characteristics. This

is indeed the case.

IV. T(X, L) as a representation of order n of G(L0n
), via 11'1'

It is obvious that this is an irreducible representation. The determination of which (n, X, r)

belong to this representation is a I combinatorial problem I which is of no importance in this

paper.

V. F\X, L) as a representation of order n2 of G(L), via on'
Choosing a splitting of G(L) as in 11 we can write the homomorphism on as

2
(a, h) ~ (cl· s(h), nh)

where s is a character of H(L).

The character 4> of the aforementioned representation is given by

{

d· ~2. s(h) if nh = O.

4J(~ x, I)

o otherwise.

We can easily compute now the product
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I
< f/J, f/J(n.2 X. n> = d4 · L d· seX + o(l))- r(n 2

) r(x)r(l)
J.l e Pd2

xe Kin]
I e K*[n]

L [s· (zx'lj-1](X + 0(/)) .
XE K[1I]
I e K*[n]

n.X, L) =(A4.7)

The last expression is zero unless s = X X T on K[n] x K*[n]. If this happens then this

expression is equal to r(n2
). den? / d = d(n)2/ d(n2). Fix some X, r such that s = X x r then

nx. L) as a representation of order n2 of G(L) decomposes as folIows:

':t:' d(n)2 W:
C

2 ) •
\J7 d(n2) n, X' Xl' T· Tl

XIE K*n I K*,,1-

TIE K*[n 2J*n

With regard to adelic Heisenberg groups we have the following assetions :

Ci) r (L&t) is the unique irreducible representation of order 11 ofG (L) acting via cn ~

(ii) r (L) is the unique irreducible representation of order n ofG (L@n) acting via TJn ;

(iii) F (L) is the unique irreducible representation of order n2 ofG (L) acting via On ~

(iv) t (L)0n is the unique irreducible representation of order n ofG (L) with infinite

countable multiplicity. The same is true for Symn (f (L)).

The irreducibility of these representations follows immediately from the fact that the homo 

morphisms through which they are obtained are all surjective and from the fundamental result

([Mum2] Proposition 5.3) stating that for every ample invertible sheaf M, t (M) is the unique

irreducible continuous representation of order 1 ofG (M). Their uniQuness follows from Theorem

A3.1.
As an immediate consequence of (i) we get the following corollary (compare[Mum2]

Theorem 7.1 ) : Choose an non-zero section SE f (L)! ' where the decomposition is with

respect to a maximal level subgroup Z ofG (L). Then, denoting by U the action ofG (L) on

f' (L), we have that { (UzsY I ZE Z} span f' (L&t). Indeed, these generators are permuted - up

to scalar factars - by the e
rl

action ofG (L).
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