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§ 1. Introduction

By a well-known theorem of Linnik's, [11], the integral points on a

two-dimensional sphere x~ +~ + x~ = n are asymptotically equidistributed as n

varies over the infinite sequence of positive rational integers satisfying two conditions:

n:f: 7,4 (mod 8) and [-;] = 1 for a fixed rational prime p. Unfortunately the second

condition [-;] = 1 , unnatural as it is, could not be removed unless one assumes a weak

but still unproved hypothesis about the zero-free region of a certain Dirichlet's L-function;

another drawback of the method is a poor (logarithmic) error term in the asymptotic

formula for the number of integral points in the chosen region on the sphere. As it has been

pointed out by Yu. V. Linnik, [13, p. 56], one can expect to repair this situation only by

developing completely new methods that would, in particular, lead to better understanding

of the nature of Kloosterman's sums (one should not fail to recall at thiB point that the

far-reaching Linnik's conjecture, [12, p. 277] , on possible cancellations in a sum of

KlooBterman'B sums remains so far unsettled). Recently D.R. Heath-Brown, [7, p.

137-138], has put forward a conjecture to the extent that every sufficiently large integer

congruent to 7 modulo 8 can be represented in the form x~ +~ + p3x~ ,where p ia a

fixed rational prime congruent to 5 modulo 8. The goal of thiB report is to describe new

developments in analytic number theory t~at, in particuIar, allow to solve each of these

problems. To be more precise, let f be an integral positive definite quadratic form of s

variables and let s ~ 3 . We seek an asymptotic formula for the quantity
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r~n;O)=card{ulue7ftf(u)=n, ....!!....eO),
Vi

where O.c {u lu E IRB
, f(u) = 1} ,as n --+ m • Such a fonnula should, in particular, allow

to conclude that r~n;n) --i m as n varies over an infinite subsequence of positive rational

integers satisfying certain natural restrietions. For 8 ~ 4 such an asymptotic formula was

already obtained thirty years aga, [15], [16], by Hardy-Littlewood's circle method.

General as it is, tbis method, however, may not lead to the best error term in a specific

problem, and indeed the theory af quadratic fanns ia intimately related to the theory of

modular functions that seems to be a natural tool for investigation of the problem in

question. By a careful application of this theory O.M. Fomenko, [5], has recently given a

new proof of the asymptotic formula for r~n;n) with a better errat term than the one

known previously. On the other hand, H. Iwaniec, [8], has obtained a new estimate for the

Fourier coefficients of a holomorphic cusp-form of hal!-integral weight larger than 2,

allowing to deduce an asymptotic fonnula for r~n;n) in the case s = 3 . Such a fonnnla

has been derived by O.M. Fomenko & E.P. Golubeva, [6]. In the case s ~ 4 an estimate

from below of the main term in the asymptotic fonnula for r~njn) ia a comparatively easy

matter, and one could prove, [15], [16], that r~n»> ns/ 2- 1- f for f > 0 as soon as

n satisfies the natural generic conditions (and, in the case s = 4 , is not divisible by a high

power of an "exceptional" prime). Here and in what follows r~n):= card{u Iu E 7I.s,

f(u) = n} ia the representation number of n by f. To estimate r~n) hom below in the

case s = 3 ia a classical unsolved problem, and the efforts of many authors (cf., for

instance, [13], [17], [28] and references therein) have been devoted to its solution,

starting hom the pioneering work by C.L. Siegel, [23], [24], and Yu.V. Linnik, [10],

[13] . Recently W. Duke, [4], has obtained an estimate for the Fourier coefficients of a

cusp-fonn of weight 3/2 by an extension of H. Iwaniec's method, [8]. When combined
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with a theorem of R. Schulze-Pillot's, [26] (cf. also [27] and references therein), this

estimate leads to a solution of the long-standing problem of representation of integers by a

positive definite temary form.
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Grau who has been patiently typing my manuscripts during the last few years.

§ 2. Statement of the main results

For the general background and terminology regarding integral quadratic forms we

refer to G.L. Watson's tract, [29]. Let U8 start by explaining the notation to be used here.

The variables n and prange over the positive rational integera and over the rational

primes respectively; 7l is the ring of rational integers, 7lp ia the ring of p-adic integersj ~)

IR and 4: denote the fields cf rational, real and complex numbers respectively. Let

f(x) = lX' Ax be an integral positive definite s-ary quadratic form, 80 that A = (a..) ia
~ IJ

a symmetrie matrix, aij E 11 and 21 ~i for 1 ~ i, j ~ Si x = [.~q is a eolumn veetor
xe

and x' = (xl' ... ,xs) is a row vector. We write D = det A and fix adecomposition

A = 2B I B with B E GL(s,lR) ,where B t---t B' denotes the operation of matrix
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transposition. Let St = {xix E 1Rf.+1, lxi = 1} be the t-dimensional unH sphere in

1R.l+1 j departing slightly from the notation used in § 1 we let

r~n,w) = card{u lu E !Rs
,~ E w} for w CSs-l • so that r~n) = r~n,SS-l) denotes

the representation number of n by f j here Ix I = (x' x)1/2 denotes the Euclidean norm

in IR t for i. E"8., i. ~ 1 . Let jJ be the Euclidean measure on Si. normalised by the

condition jJ(St) = 1 . Let K be a class of integral positive definite quadratic forms and

suppose that fE K . We write r(K,n) := r~n) and v(K):= card{U IU E GL(s,"8.),

U' AU = A} j clearly, r(K,n) and v(K) are well-defined (being independent of the choice

of f in K). Let L = ~ K. be the union of g classes K., 1 ~ i ~ g , of positive definite
. 1 1 1
1=

quadratic formsj one defines Siegel'8 average r(L,n) of r~n) over L by letting

r(K. ,n) [ ]-1
r(L,n) = l v( K.) l l/v(Ki) . We write gen f for the genus of quadratic

1~ i ~g 1 1~ i ~g

forms containing f and spin f for the spinor genus containing f. Finally let UB recall that

f is said to represent n properly over a ring 0 containing "8. if f( u) = n for same u in

OS satisfying the condition g.c.d. (ul'".,us) = 1 (as usual up 1:5 i :5 s , denotes the ith

component of u ). The following theorem results as a consequence of the work of several

authors, [23], [24], [15], [16], [20] (cf. also the papers refered to in these articles).

Theorem 1. Let s ~ 3 . Then r(gen f,n) = n8/2-1aaJ(f)A~n) ,wher (lm(f) denotes the

Lebesgue measure of the ellipsoid {u Iu E IRs, f(u) = 1} and where A~n) = TI a(p,n)
p

with

a(p,n):= tim p-a(S-l) card{u Iu E (y'/pa"8.)s, {(u) = n(mod pa)}
a--+m

moreover, A~n)« n E for f > 0 (here TI extends over a1l the primes p in "D.).
f,E P
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Furthermore, suppose that f represents n over 11. for each p and satisfies one of the
p -

following conditions: (i) s ~ 5; (ii) (n,2D) =1 and s ~ 4; (iii) (n,2D) =1 and f

represents n properly over 11. for each p. Then A~n) >> n-E' for f > 0 .
P f E',

The next theorem in tbis report ia a rather direct consequence of the estimates of

coefficients of modular forms, [3], [4], diSCUBsed in § 3.

Theorem 2. H s ~ 4 and 21 s then r~n) = r(gen f,n) + O(nS/4-1/2+f) for E' > 0 ; if

S > 4, 2 ~ s and (n,2D) = 1 then r~n) =r(gen f,n) + O(nS/4-2/7+E') for f > 0 .

Theorem 3 and Corollary 1 have been alluded to at the beginning of ibis memoir and

constitute one of its main results.

Theorem 3. Let f(x) be an integral positive definite ternary form. H (n,2D) = 1 then

r~n) = r(gen f,n) + O(nl/2-1/28+f) for f > 0 .

Corollary 1. Let p be a rational prime congruent to 5 module 8 and let

f(x) = x~ + ~ + p3~ . Then r~8n + 7) t CD ; in particular, every sufficiently large
n ------t CD

rational integer congruent to 7 module 8 is represented by f.

Finally, following [5], [6], we shall prove Theorem 4 about asymptotic

equidistribution of integral points on an ellipsoid.

Theorem 4. Let s ~ 3, w.c. St with f. = s-1 , and suppose that the (topological)

boundary 8w of the set w is a smooth submanifold of Sf. of codimension one. H

(n,2D) = 1 then r~n,w) = Jl(w)r~n) + O(ns/ 2- 1- 6(s)) for any 6(s) such that

6(s) < 3;~2 when 21 s and 6(s) < st;{)4 when 2 fs .

Remark 1. For the standard definition of a spinor genus (going back to [9]) see [19,
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p. 298] ; it seems to be different !rom the definition used in [29] (cf. [1, p. 85-86] ).

Following [26] we use heIe the standard definition.

Remark 2. Corollary 1 confirms a conjecture of D.R. Heath-Brown's, [7]; when combined

with a theorem of Gauß's asserting that a positive rational integer n is either a sum of

three squares or it is of the shape n = 4f.(7k+8) with f. E 71 and k E 71 , this corollary

implies that every sufficiently large positive integer is a sum of at most three square-full

numbers. According to [7, p. 137] this answers a question posed by P. Erdös and A. lvic

(and first answered by D.R. Heath-Brown, [7, Theorem 1]).

Remark 3. Condition (n,2D) = 1 in Theorem 4 ia redundant (and may be omitted) when

f(x) = x~ + ~ + x~ , as it can observed by analysing the proof of this theorem.

After collecting the necessary results from the theory of modular functions in the next

section we prove theorems 1-3 and corollary 1 in § 4. In the last section (§ 6) we make a

few final nates on the subject-matter of this report.

§ 3. On coefficients of holomorohic cusP-forms

Let r O(N) = h I'Y E SL2(1l), 'Y = [~~J. c = O(N)} be a congruence Bubgroup of

{

i,d=-1(4)
8L2(71) ,let f d = . be the sign of the Gauß sum, and let

1, d = 1(4)

j( r,z) = f d1 [a] (cz+d)1/2 for r = [~~] ,where [a] is the generalised Legendre

symbol defined as in [25]. For ", E IR let S",(N,X) denote the finite-dimensional Hilbert

space of rO(N)--eusp-{orms for which f( 7Z) = j(1,z)2'"X( 7)f(z) whenever 1 E rO(N) and
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z E (+ (here (+ = {z Iz E (, Im z > O} denotes the upper half-plane), the Petersson's

inner oroaue bung aenned by the equation: dl g> = J f(z)g(z)yv-2dxay for

rO(N)\(+

f,g E Sv(N,X) . We write II~I = <fl f>1/2 for f E ~v(N,X) . We are interested here in

modular forms of integral or half-integral weight only, 80 that it is assumed in what

follows that 2v E 11 and v ~ 0 .

umma. ut y E r. y> 0 an let <p{z) E Sy(N,X) with X( 7) = [~] for Borne D in

CD

'B, 7 = [~~], 7 Er O(N) . On writing <p{z) = l a(n)e
2rinz

we have

n=l
a(n) < < n(v-1) /2+ f for f > 0 j to be more precise, if f{J is a common eigenfunetion of

cp,f

an the Hecke operators Tp with p ~ N normalised by the condition a(1) = 1 then

a(n) ~< n(v-1)/2+E for f > 0 .

Proof. It ia the famous Ramanujan-Peters80n's conjecture proved by P. Deligne [3,

Theoreme (8.2)].

Proposition 1. Suppo ehat y> 2, y E 'B ana let <p{z) ESy(N,x) with X( 7) = [~]
Q)

für some D in 'B, 7 = [~~J Er O(N) . On writing <p{z) = l a(n)e
2rinz

we have

n=l

( ) Ir /v- U y ~ + 1:
11

11an<< 172 n f{J for f > 0 and (n,N) = 1 .
N , f r(v-1)

Proof. We fix an orthogonal basis {cpj 11 ~ j ~ g}, g = dim Sv(N,X) , consisting of

common eigenfunctions for the set of Hecke operators Tp with P ~ N and nonnalise f{Jjl

1 ~ j ~ g , so that the first non-zero Fourier coefficient of f{Jj is equal to 1. Let
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(JJ

'P}Z) = L aj(n)e2rinz and suppose, without loss of generality, that ap) = 1 for

n=l

1 ~ j ~ ~ and aj(l) = 0 für j > go . Then (see, für instance, [22, p. 319]) &j(n) = 0 if
g g

(n,N) = 1 and j > go . Write cp = l PiPj' 80 that a(n) = l Pjaj(n) and therefore
j=1 j=1

go go

1a(n) 1
2 ~ L I ßj 1

2 L 1a}n) 1
2

for (n,N) = 1. Since go ~ g « 11 (cl., for instance,

j=1 j=1

Theorem 4.2.1 in [22, p. 102]) it follows from lemma 1 that

go

1a(n) 1
2 « nll-1+ f 'V l 1Pj 1

2 for (n,N) = 1 . On the other hand,
j=1

g go

11'P11
2

= L 1ßi 11 'P)I 2 ~ L Ißill'P)l2 and
j=l j=l

(JJ 1

lI'Pjll2 = f I 'P}z) 12yv-2dxdy ~ f dy f dx 1'P}z) 1
2yv-2 =

rO(N)\(+ 1 0

Q) (JJ

= fyv-2dy L 1aj(n) 1
2e-4rn

y
so thatif 1 ~ j ~ go then

1 n=l

th ehr 14 )12
«v-H v1'P( HJ; ,as claimed.
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To obtain a non-trivial (uniform in the weight) estimate for the coefficients of a

cusp-form of half-integral weight one follows a different path. We start with a general

lemma.

...
Lemma 2. Let v E IR, 1/ >"2 . Denoting by SI/(N,v) the Hilbert space of

r O(N}-o1sp-forms tp which transform a.ccording to the equation

cp( rz) = v( r)(cz+d) /Icp(z) for r Er O(N), z U:+' r = [~~] ,we choose an orthonormal

CD
... 2 .

basis {CPjll~j~g} of Sv(N,v) andwrite CPj(Z) = 1: aj(n)e nnz for l~j~g.The

n=l

following identity holds:

j la/n)1 2 ={f.d[1+V- I Rv(:cJV-1[4~JJ,
j=l c= 0 (N)

c>O

wh < )= I v{ r) q( : ( + -\ , r = [: ~J ,ia a R100 sum
d mod c
(d,c)=l

and where J 11-1 denotes a Hesse! function. Here it ia tacitly assumed that Iv( 7) I = 1 .

Proof. We follow [22]. One de:6nes a Poincare series

where r m = { [~ ~J In E ll} , and provea (see Theorem 5.1.2 in [22, p. 136]) that
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(D

Gv(z,m) eSv(N,v) for m > 0 and that G",(z,m) = l Am(n)e
2rinz

with

n=1

A ( ) = 6 + 2 -ivr/2 [~J 11-1 ~ W(n,mjc) J [Y he e
m n ron;re m l c 11-1 c ,w r

c=O (N)
c>O

(n c) = > yf 1} cl(xi d Ln J, 1 = Ujs:e (5,J.S2)n [22, p.S ).

1ErO(N)
(D

Furthennare, let rp{z) ESv(N,v) and let rp{z) = 2 a(n)e2nnz . By Theorem 5.1.2 in

n=1
[22, p. 136] (note that due to a different normalization of the inner product < · I · > ,

which is defined here by the same equation as in Sv(N,X) , one has to omit the factor jJ

in this theorem), <'PI G(· ,m» = a(m) r( V-I)! ' so that
(4nn)lI-

g g

G ( ) ~:;-;;;-, r( v-I) ,~ d . t' u1
'" • ,ID = l <'Pj I G( • ,m»'Pj = (4nn)lI-!.L &j\ID) 'Pj an ,ln par IC ar,

j=1 J=I.

g
A (n) =- r( ",-1)1 \ a.(m) a.(n) . On letting m = none obtains the required identity.

m (4nn)v-.l J J
J=1

Corollary 2. Let {cpj 11 ~ j ~ g} be an orthonormal basis of Sv(N,X) and let

(D

cp.(z) = ~ a.(n)e2rinz . Then the following identity holds:
J L J

n=l

n v-l> IaV) 2 4 m ) [: v-v i Kf~ C J J, where
j=1 r( v-l) c=O (N)

c>O
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K ) = y X( 7) [%] 2v-;V exp(2lri n(d~d-l) .

d mod e
(d,e)=l

Proof. Ey dcfiIDtUn Sjh, ) =; (N vX) with vxC,) =X(1)fid2V [a] 2v , therefore

Corollary 2 is a direet consequenee of lemma 2.

L ruma 3. If W le a chur er of (DI0)* and X( 1) = tl(d) for 1 = [~~] . then

, IK(n,c) I ~ r(e) (n,c)l/2 el / 2 with r(c):= l l.

ale

Proof. It is a well-known theorem of A. Weil's, [30].

Definition 1. We let ..#' = {pN IP < P ~ 2P, P t2n} ,where p ranges aver all the

rational primes, n E 71, n > 0, P > 0 .

The following lemma, due to H. Iwaniee, takes aecount of ca.ncellations in a sum of

Kloosterman sums on average. Before stating it we define three sums.

De nition 2 Let Kr ) = y Ed2V[a]exp[2lrin~d+d-l)] and let

d mod e
(d,e)=!

K )= Y <v[a] [~J exp [2lrin~d+d-l)] . Finally let

d mod c
(d,e)=!
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where r(n) = 1: 1.

aln

Lemma 4. Suppose that v = ~ + t., t. ~ 2, t. E 7J. • H n is square-free and N = 0(8)

Proof. It is the theorem 3 in [8, p. 399].

1Lemma 5. Suppose that II = 2" + t., t. E 71, t ~ 2 . If n is square-free, 81 N, 2D IN,

and (n,N) = 1 then 2: I 2: c-1!2K(n,c) I«A(n,x,P).

QE JY c=O (Q) N
15c~x

Pr» Sin e cj = [-U we may write

n(d+d-1)

K )= 2: c}vU [D) ri C .If 2Dlc wehave

d mod c
(d,c)=l

K( c) - 1 \ -2(1I+1) [-2DJ exp [21ri(2Dn)(d+d-
1

)] so that
n, -m L f d --a- 2Dc '

d mod (2Dc)
(d ,2Dc)=1

K(n,c) = b KO(2Dn,2Dc) . Without IOS8 of generality it may be a.ssumed that 2D is

square-free; conditions (n,N) = 1 and 2D IN imply then that 2Dn is square-free. Thus
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lemma 5 may be deduced from lemma 4.

Lemma 5 is our main tool in estimating the coefficients of a cusp-form of

half-integral weight larger than 2.

Defini cn 3 we Jet x(d = [/j and fix an crthcncrmal basis {cpjll ~ j ~ g} cf
m

SlI(N,X) ; let CPj(z) = l aj (n)e
2rinz

for 1 ~ j ~ g . We write, for brevity,

n=l

Lemma 6. For P > (4 log 2n)2 we have

:E!QQf. Let Q = pN and let b(p) = [rO(Q) : r O(N)] . For f,g E Sv(N,X) one has

<fl g>Sv(Q,X) =<fl g> b(p) . In particular, let {;j 11 ~ j ~ g(p)} be an orthonormal

basis cf Sv(Q,X) such ihai ~j = b(P)-1/2cpj fcr 1 5j 5g and let

m

~/z) = L a/n)e2rinz . Then a/n) =b(p)-l/\(n) fcr 1 5j 5g , and clearly

n=l
g g(p)

g ~ g(p) . Since b(p) ~ p+l it follows that l I aj(n) 1
2 ~ (p+l) l 1aj(n) 1

2
.

j=l j=l
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iuce i r\ > + Md i 1« 10: p ,on summing the above
P<p~2P P<p~2P

inequality over f we complete the proof.

Lemma 7. In the conditions of lemma 5 the following estim~te holds:
g

(0); i a u: 2 1}/2nl/2-1/48+~ for ~ > 0 .
(4 rn) j=1 N ) €

Proof. Consider two sums:

51 = i I i xv(n,c) I and 52 = i I i xv(n,c) I·
QE f c=O(N) QE.h' c =0 (Q)

c>n1- 7 0< c~n 1-7

Let P = n1/ 8 and choose 7 =h'so that n7 < P < n . By lemma 6,

g

(0) j la n) i2 « P + (log P)(SI + 52) . To estimate 51 we use the following
(4Jm) j=l

identity:

m

j a(c)f(c) = -AQ(y)f(y)-Jf'(x)AQ(x)dx, (1)
c=O (Q) y

c>y

where AQ(x):= 1: a(c) and it is assumed that f(y)AQ(y) -----. 0 . Let
O<c<x y ----+ lJ)

c=oIQ)

a(c) = c-1/2K(n,c) and let f(x) = x-1/2J0-1 [4;U] ,80 that xv(n,c) = a(c)f(c) and it
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(I)

follows from (1) that I S1 1 ~ I f(y) I 1: I AQ(y) 1 + JIf' (x) 1 1: I AQ(x) I dx with

QE.A' y QE .A'

y = n1-; . In view of the relation max IC 3 /2(x) I = (m+2)~m+1) , [14, p. 225] , one
-1~x~1 m

obtains from the integral representation of the Hesse! functions, [14, p. 80] a relation

1:

J1L-1(z) = (27:)-1/2z3/2 Jeiz costb (cost)dt with max Ib (t) I ~ l
.,- m -1<t<1 m ~

0--

(here C~ denotes a Gegenbauer polynomial), provided v-1 = ~ + m, m EU., and

m ~ 0 . 1t follows therefore that If(y) I «n-1/2+2; and

If' (x) I «n3/ 2(1 + nx-1)x-3 . Combining these estimates with the estimate

1: IAQ(x) I «A(n,x,P) given in lemma 5 one obtains: S1 ~< n1/2-1/48+E for

QE .Jf
€ > o. To estimate 52 one notes (cf. [6, p. 61]) that Jv-l(z) « l/3/2z-1/2 for z ~ 1,

l/ = ~ + t, t E 71., t ~ 0 and therefore, in view of lemma 3,

xlI(n,c) « T(c)(n,c)1/2113/2 . This results in the estimate S2 ~~N n1/ 2- r+ f and

completes the proof of lemma 7.

1Proposition 2. Let <P E 5l/(N,X), l/ = 2" +~, ~ E 11, ~ ~ 2 and suppose that 81 N,
(I)

2D IN and (n,N) = 1 ; let <p{z) = 1: a(n)e2rinz for z E (+ . Then

n=1

Proof. Let {<pj 11 5 j ~ g} be an orthonormal basis of Sl/(N,X) consisting of common

eigenfunctions for the set of Hecke operators {T(p2) Ip ~ N} and let ti, 1 ~ j ~ g , be
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the Shimura's lift of cp., [25] (here, as usual, p ranges aver an the rational primes). On
J

(I)

writing t~(z) = l A~(n)e2rinz one obtains apn2) = l J'(d)Xt(d)dA-1AHiI] ) since

n=l d 1 n
(I) m

by construction l A~(n)n--s = L(s-Hl,Xt) l apn2)n--s with

n=l n=l

um = [}] [ ) Ax(m) ) w e L(sf)= ; H ~) and where

m=l

(I)

'Pj(z) = l aj(n)e2rinz . By [2, Theorem 4.3], we have t~ E S2A(N,i) j moreover, by

j=l .

[2, Proposition 5.1] J tt is a common eigen-function for the set of Hecke operators

{Tp 1p tN} . Therefore it follows from lemma 1 that

g g g

E > 0 . Let 'P = l ßtj' so that 1I'P11
2

= l Ißj 1
2

and a(n) = l ßlj(n) , and in
j=l j=l j=l

g g g

particular 1a(n) 1
2

5 1: I ßj 1
2 1: 1ain) 1

2
= 11 <pli 2 1: 1ain) 1

2
. Let n = tm

2
with a

j=l j=l j=l

g g

square-free t • then l I a}n) 1
2 «(m2)V-l+E l Iap) 1

2 . Combining these

j=l j=l

estimates with lemma 7 we conclude the proof.
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To derive an estimate far coefficients of a cusp-form of weight 3/2 one argues as

fallows, [4]. (*

m

Lemma 8. Let '" E S3/2(N,X) ,let 11",11 = 1 ud suppose that cp(z) = I a(n)e
2

w:inz .

n=1
We have a(n)« nl/2-1/2B+f far a square-free n assuming, aB always, that

N, f

(n,N) = 1 and 2DIN, BIN, f > o.

EmQf. On choosing in the Kuznetsov's sum fonnula [4, p. BO]
3

1: e-1K (N ,e)u [4~J = 1: V t (n) ,
c>o t=l

c=o (N)

where VI (n) = 4n l IPj(n) 12ü(tj)(Chrlj)-1, tj := YAj -1/4 ,
'\.>0

J

h m Icp. (1/2+it) 12ü(t)
V (n) = l J Jn dt
2=1 .J (ehrt) !

m gj
and V (n) = 4 \: r( 3/2+2 j ~U(3~2+2j} \: I a..(n) 1

2(-1)jexp(3n/4)
3 L (4 )3/2+ J 1 2+2J L IJ ''11(' n 'IJ= 1=

the test function u(x) = x-3/2J13/2(x)e-3w:i/4 one observes that V2(n) ~ 0 ud that all

(* The argument BUggested in [4] requires a modification. We are indebted to Professor

W. Duke far indicating how it ca.n be best done.
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the terms in the sum V1(n) are positive, moreover, all the terms in the suro V3(n) with

j ~ 4 are positive as well. By definition (see [4, p. 78-79]), a(n) = (4rn)3/4Pj(n) for

Aj = 3/16 j therefore it follows that

n-1/ 2 Ia(n)1 2 « I l c-1K(n,c)J13/2[4~J [4~J-3/21 +
c>O

c= 0(N)

I 1 in( I i a j nW Uere { d 5 i <z) is u om as
15j53 (4rn) 15 i5g

j
CD

for S3/2+2iN,X) ud CPij(z) = l aij(n)e2rinz. Applying corollary 2 ud summing over

n=l
.A" one obtains

n-
1/ 2

1a(n) 1
2 1: 1 «1:) I c-1K(n,c)J I3/ 2[4~J [4~r3/21
QE .A"[rO(N): r o(Q)] QE c>0

c=O (Q)

+ I l [1 + I l x3/ 2+2i n,c) I] .To apply the argument used in [8, § 8]
1~ j ~3 QEf c= 0 (Q)

c>O
one requires lemma 5 for the sums

l I l C-1/2K(n,c)exp [h·~ /IllJ I, 11 E {-1,0,1} ,

QE A' c=O (Q)
c>O

ud the estimate (x J 13/ 2[4~J / n-3/2 « nx-5/2 for n < x . Both are

straightforward and require no further comments. This completes the proof.

Proposition 3. Let cp E S3/2(N ,X) and suppose that 81 N and 2D IN; let

(2)
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Q)

cp(z) = 1: a(n)e2rinz . Then a(n)« n1/2-1/28+E for (n,N) = 1, E > 0 .
n=l ~,E

Q)

Proof. Since ~t(z) = l At(n)e2rinz ES2(N,x2) for t ~ N (see [2, Corollary 4.8]),

n=l
Q) m

where 1: At(n)n-s = L(s,Xt) 1: a(tn2)n-s with Xt(m) = [~J [~J x(m) , we have
n=1 n=1

2 [n] [n] [n] 1/2+ Ea(tn ) = l Jl(d)Xt(d)At 0 . By lemma 1, IAt er I ~ IAt(1) I 0 ; on the other

dln

hand, IA
t
(l) I = Ia(t) I «t1/2-1/28+f by lemma 8 (since t ia assumed to be

square-free). Thus Ia(tn2) I « t1/2-1/28+En1/2+E « (tn2)1/2-1/28+f , as

required.

§ 4. 00 representatioo of iotegers by positive definite guadratic forms

We prove here theorems 1-3 and corollary 1. Let us remark first that the identity

r(gen f,n) = ns/ 2- 1am(f)A~n) in theorem 1 is due to C.L. Siegel, [23]; the estimate

A'n)« n € for € > 0 is elementary (cf. also [23]); the estimate A'n»> n-€ for
f , € f , €

€ > 0 can be faund in [15], [16] for s ~ 4 and in [20, Satz (3.1)] far s = 3 (under the

conditions atated in theorem 1). This completes the proof of theorem 1. The estimates

given in theorem 2 cau be deduced aB follows. One remarks first that on defining

m

a(n) = r~n) - r(gen f,n) and r,o(z) = l a(n)e2rinz we get cp{z) E Sv(2N,X) , where

0=1

v = 8/2, s ~ 4 , and where N denotes the level of f (cf. [26, p. 283] and [24, p. 376] ).
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If 21 s theorem 2 follows now from lemma 1. H 2 ~ s we need a variant of proposition 2

asserting that a(n)« nll/2-2/7+E for f > 0 aB soon aB the conditions of this
f , E

proposition are satisfiedj such a statement can be proved along the lines of [8, § 8] as soon

as one has an analogue of lemma 5 for the sums (2) alluded to in § 3 (at the end of the

proof of lemma 8). This completes the proof of theorem 2. Finally we note that theorem 3

follows from proposition 3 in view of [26, Korollar 2 and Korollar 3].

Proposition 4. Let f(x) = x~ + ~ + p3x~ and suppose that p = 5(mod 8) . Then

r~n) ~> nl / 2- f for f > 0 as soon as n = 7(8) .

Proof. Let n = ptnl, p ~ nl and suppose that n =7(8) . H t ~ 3 the integer

~ = p-3n is congruent to 3 modulo 8 and therefore

#{y IyE -u3, n2 = yi + Y~ + y~} »n~/2-f for E > 0 . H t < 3 it follows from

theorem 1 and theorem 2 that rg(n1»> n~/2-f für f > 0,

() 2 2 3-t S' 5(8) . 2 2. I bl' 712g1 x = xl + ~ + P x3 · Inee p = equatlon p = z1 + z2 IS so va e In .

The required estimate follows from these observations when one writes

2 2 3 2 2 2 t 3-t 2
xl +~ = p (n2 - Y3) when t ~ 3 and xl +~ = p (nI - p Y3) when t < 3

thereby noting that to each solution of the equations ~ = y~ + Y~ + Y~, p3 = zi' + z~
2 2 3-t 2 t 2 2

when t ~ 3 and n t = Y1 + Y2 + P Y3' P = Zt + z2 when t < 3 corresponds a

unique solution of the equation n = f(x) (assuming x E -0.3, YE 713, z E 712 ).

Corollary t is an immediate cODsequence of proposition 4.

§ 5. On eauidistributioD of integral points on an ellipsoid

In tbis section we prove theorem 4. Let UB recall the spectral decomposition theorem
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for the Laplace operator fJ. on Sl' l ~ 2 (cf., for instance, [18]). One may write
CD

L2(St) = L EIl.Nm , where &I.N = m(mH-l)I, hm = 2m~t-l [m~:12J and
m=O m

where I denotes the identical operator, hm := dim H m for m ~ 1, dim J{(0 = 1 . On

choosing an orthonormal basis {q~ 11 ~ j ~ hml of H m one obtains the Gegenbauer

polynomials, or ultraspherical harmonics C~ given as follows:

l q~(Y1)q~(Y2) = C~l-1)/2(YIY2) 2f:i-1 , where Yi E St' i = 1,2 . Here are a

l~j~m

few basic properties of the polynomials C~(t) (cf. [14. § 5.3]): C~(t) is a polynomial of

Lemma. 9. Let t ~ 2 and w (. St . Suppose that w satisfies conditions of theorem 4.

Given a sufficiently small positive 0 in IR there is a function Xo:St ----t [0,1]

{

1 for Y Ew
satisfying the following conditions: X~y) = when Iy-lJw I > Oj

o for yi w

( t-3) /2
Xo= lHmwithHmERm,sup IHm(x)I« m 2Q-lfora~1,aEll..

m=O xESt er , W (mo)

Proof. Choose a function tp0 : IR --i IR such that tp6 E CCD(IR), cptf.t) ~ 0 and CP6(t) ~ 0

für t E IR, 'Ptf.t) = 0 für t> 0, and I 'Ptf.lx-yl)d~(y) = 1. Assuming 0< 0 < ~ let

t

J {O' xi w
X~y) = x(x)cp~ Ix-y I)dJl(x) for y E St ' where x(x) = is the

S 1, x Ew
l
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chara.cteristic function of w . Clearly, 0 ~ XO<y) ~ 1 for y EStand XO<y) = X(y)
h

CD m

when Iy-Ow I > 0 . Write X6 = l -Hm with Hm = l a(j,m)u~, where a(j,m) is
m=O j=l

given by the equation a(j,m) = Jxtf.y) u~(y) dJ'(Y) ,or

St

a(j,m) = 1 aJXtf.Y) (~au~) (y)dJL(y) for a ~ 1, a E 11 . Since ~ is
[m(m+t-l)] St

self-adjoint in L2(St) , it follows that

H (y) = 2m+t-l J(6 QXo)(yl)C ( t-l)/2(y! yl)dJ.'{Yl) . By construction
J

m (m(m+t-l))Q(f.-l) S m
t

since C~t-l)/2 « o<t-l)/2m(t-3)/2 . Denoting by J.'l the measure on lJw induced

by JJ we obtain for a sufficiently small positive 0:

J o<t-l)/2dJ'(Yl) « 6J o<t-l)/2dJ'I(Yl)« 6 ,since lJw is a smooth

IYl-8w1~6 lJw

submanifold of St of dimension t-l and t ~ 2 . This gives the required estimate for

Bm and concludes the proof.

Definition 4. Given a sufficiently small positive 6 let 0o<A) = {y Iy E St' Iy-A I < c}

for A CSf. ' and let w!. = w U (J 0< 1Jw),
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w~ = w\ (J tf.. 8w) . We denote temporarily by Um( 6)w) := Hm the functions appearing in

lD

:i:'" 6 . z \ z
lemma 1 and let Hm = Hm(o,w:i:) j we wnte X6 = l Hm .

m=O

Lemma 10. We have r~n,w) = J'(w)r~n) + 0W,f(or~n)) + 0(1) ) where

I = max I l He [EX JI f > 0, assuming l ~ 2 and w satisfies
eE{-,+} l(m<c1-f m {D: ,

- - sf(x) = n, x E Tl

conditions of theorem 4 (here l = 8-1 ).

Proof. Clearly,

:I:: I :I:: \ - [EX J z :I::and HO = Xc dJ' = J'(w) + 0(6) . Hy lemma 9, l X6 - = I< + I> ,where
t f(x)=n {D:

xETl s

I~ = 1: C: and I~ = 1: C:, C::= 1: H: [EX J.In particular,
O~m~ol-f m~ol-f f(x)=n {D:

xEll s

:I::
I< = J'(w)r~n) + 0(6r~n» + 0(1) . It follows from lemma 9 that

I~« r~n) l m(t-3)/2(m6)1-2a , and therefore
a, w m~ol-f
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I~« r~n)62Qf-{t-1)(l+f)/2« 6r~n) for sufficiently large Q since f > 0 . This
Q,W E,W

completes the proof.

Definition 5. We let c:(n) = nm/ 2 1: H: [BX ]
f(x)=n rn
xEll s

for z E (+ i write, for brevity, k = s/2, t = s-l .

m

and o:(z) = l c:(n)e
2Irinz

n=l

L maa 1 Let X) = [4] [1 S C 7 = [: j. 7 E SLill) an euppov that m ~ 1 .

:i: 11 :i: 112 r(k+m-1 ) m
k

+ f ~ m
k
-

2
]Then 0m E Sk+m(N,X) and (}m« k+m-l 20-1 for

fJN , W J f (4 IT ) m 6)
f > 0 , as Boon as 2D IN.

Proot. Bv definition H>v = 2m-l-1 f ci1- \v VI fVdmv .Oni

t.
2m+l-1 C ( t-1)/2(t) = , a.tj one remarks that
i-I m L J

O~j~m

definition 5, o:(z) = l Pm(x)e2rif(x)z ,where Pm(x) is a homogeneouB polynomial in
xElls

4: [x] of degree m. ThuB 0: E Sk+m(N,X) for m ~ 1 J [21] (ar Proposition 2.1 in [25,

p. 456]). Now it follows that 11 °:112 = f ,O:(z) ,2l+m-2ixdv . We cover a

rO(N)\(+
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r O(N)-fundamental domain by U Vb ,where b varies over a complete set of
b

ro(N)-inequivalent cusps of rO(N) and where Vb denotes a neighbourhood of b that .

can be transformed to a subset of {z Iz = x+iy, 0 ~ x ~ 1, Y ~ 1/2} byan

SL2(1l)-transformation sending b to im. Since under SL2(1l)-transformation the series

(J± ia turned to a linear combination of "partial 9--ßeries" of the shape
m

m
± ) l ± ( ) 2 rinz(J a(Z = c a n t , whereID, m,

n=l

follows that

m m

1: I ym+k-2 1: IC:,a(n)12e-4rnYdy.Bylemma9,

a mod N 1/2 n=l

a E 71 8

/
k-2

c: a « r~n)nm 2 m 2 l' On the other hand, r~n)« nk- 1+ f for € > 0 and
, w, Q (m 0) Q- f J €

00 00

I m+k-2e-4rnYd = 1 J m+k-2e- Yd . Thus
Y y ( )m+k-l Y Y

1/2 4rn 2m

11
±112 1 [mk

-
2 J2 ~ k-1+€

(Jm« m+k-l 20'-1 Sm' where Sm = L n In and
(4m) (mo) n=l

fl)

In := Jym+k-2e- Ydy. Since In ~ r(m+k-l) it follows that

2m
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Sm = l nk- 1+ EIn + S~ «mk+ Er(m+k-1) because

1~n5m+k-2

S~ = l nk- 1+ EIn is easily seen to be small enough. Thereby we obtain the

n>m+k-2

required estimate.

Lemma 12. Suppose that 2D IN, 81 N and (n,N) = 1 and let s ~ 3 . Then

%() m3 / 2(k-1)+f (m+k-1)/2+Eß ( ) r >1 h
Cm n « 20-1 n s m,n lor m _ , w ere

(mo)

{

I when 21 s

ßs(m,n) = ml/4n23/96 when 2 ~ 8 f > 0 .

Proof. If 2 ~ s the required estimate is an immediate consequence of lemma 11 and

proposition 2. Suppose that 21s, then we can apply proposition 1 and lemma 11 thereby

completing the proof.

Proof of theorem 4. 1t follows !rom lemma 10 and definition 5 that

r~n,w) = ~(w)r~n) + O( c5r~n)) + 0(1) ,where 1= max I l c~(n)n-m/21
eE{-,+} l~m501-f

for f > 0 . By lemma 12 with a = 1 , we have

(k-1)2+lIs+ € 1 1: 3k/2-5/2+J1sI << n 0 m , where 11 = J1 = 0 when 21 s andS s
l~m~ol-f

(k-1)/2+II
S
+ f 3k/2+1/2-J1s+ f

Vs = 1/4-1/96, I-'s = 1/4 when 2 ~ S • Thus I« n 6 .

. -;(s) . ;() s-2 I ,J ) t {j4On chooslng 0 = n Wlth s = 3"8'+'2' when 2 S andl\s = s+ when
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2 ~ s and recalling that k = s/2, r~n) "i< nk- 1+f for f > 0 , one obtains the required

estimate for r~n,w).

§ 6. Concluding remarks

The results described here lead to a few questions for further investigation:

(i) how can one weaken (or get rid of) the condition (n,2D) = 1 in the theorems

2-4 ?

(ii) to what extent can the error terms be improved?

(iii) can one treat a more general problem of estimating the number

r~nia,m,w) = {xix E 11s, Bx E w, x = a(mod m)} ,where a E 11s, m E 11,
{D.

m> 1, WeSt?

(iv) can the corresponding problems for an indefinite quadratic form be studied by

similar methods?

We abstain !rom any further comments on these problems and refer the reader to the

literature cited in this report. 1t should be noted here, however, that the estimates for the

Fourier coefficients of Maass forms obtained in [4] contribute to the solution of the

problem (iv) (cf. especially [4, § 4, § 6]), while the work on the exceptional integers of

ternary quadratic forms (cf. [26-28] and references therein) is pertinent to the question

(i).

Mter this report had been written we came across a very interesting article: W.

Duke, Lattice points on ellipsoids, Seminaire de Theorie des Nombres de Bordeaux le 20

Mai 1988, Annee 1987-88, Expose n037 (7 pages). It throws further light on our topic.
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