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§ 1. Introduction

By & well-known theorem of Linnik’s, [11], the integral points on a
two—dimensional sphere x? + xg + xg = n are asymptotically equidistributed as n
varies over the infinite sequence of positive rational integers satisfying two conditions:
n # 7,4 (mod 8) and [%] =1 for a fixed rational prime p . Unfortunately the second
condition [-——%] = 1, unnatural as it is, could not be removed unless one assumes a weak
but still unproved hypothesis about the zero—free region of a certain Dirichlet’s L—function;
another drawback of the method is a poor (logarithmic) error term in the asymptotic
formula for the number of integral points in the chosen region on the sphere. As it has been
pointed out by Yu. V. Linnik, [13, p. 56], one can expect to repair this situation only by
developing completely new methods that would, in particular, lead to better understanding
of the nature of Kloosterman’s sums (one should not fail to recall at this point that the
far—reaching Linnik’s conjecture, [12, p. 277], on possible cancellations in a sum of
Kloosterman’s sums remains 8o far unsettled). Recently D.R. Heath—Brown, [7, p.
137—-138], has put forward a conjecture to the extent that every sufficiently large integer
congruent to 7 modulo 8 can be represented in the form xf‘l) + xg + p3x§ , where p isa
fixed rational prime congruent to 5 modulo 8. The goal of this report is to describe new
developments in analytic number theory that, in particular, allow to solve each of these

problems. To be more precise, let f be an integral positive definite quadratic form of s

variables and let s 2 3 . We seek an asymptotic formula for the quantity



i) =card{u|u €% f(u)=1, —€N),
1{n;) = card{u|u u = )

where 2C {u|u €R®, f(u)=1},as n— o . Such a formula should, in particular, allow
to conclude that rf(n;ﬂ) — o as n varies over an infinite subsequence of positive rational
integers satisfying certain natural restrictions. For s 2 4 such an asymptotic formula was
already obtained thirty years ago, [15], [16], by Hardy—Littlewood’s circle method.
General as it is, this method, however, may not lead to the best error term in a specific
problem, and indeed the theory of quadratic forms is intimately related to the theory of
modular functions that seems to be a natural tool for investigation of the problem in
question. By a careful application of this theory O.M. Fomenko, [5], has recently given a
new proof of the asymptotic formula for ri(n;ﬂ) with a better error term than the one
known previously. On the other hand, H. Iwaniec, [8], has obtained a new estimate for the
Fourier coefficients of a holomorphic cusp—form of half—integral weight larger than 2,
allowing to deduce an asymptotic formula for rf(n;ﬂ) in the case 8 = 3. Such a formula
has been derived by O.M. Fomenko & E.P. Golubeva, [6]. In the case s 2 4 an estimate
from below of the main term in the asymptotic formula for rf(n;ﬂ) is a comparatively easy
matter, and one could prove, [15], [16], that r{n) >> nb/2-1—¢ for € > 0 as soon as
n satisfies the natural generic conditions (and, in the case s =4, is not divisible by a high
power of an "exceptional" prime). Here and in what follows r¢n) := card{u|u € ¢,

f(u) = n} is the representation number of n by f. To estimate rf(n) from below in the
case 8 = 3 is a classical unsolved problem, and the efforts of many authors (cf., for
instance, [13], [17], [28] and references therein) have been devoted to its solution,
starting from the pioneering work by C.L. Siegel, [23], [24], and Yu.V. Linnik, [10],
[13]. Recently W. Duke, [4], has obtained an estimate for the Fourier coefficients of a

cusp—form of weight 3/2 by an extension of H. Iwaniec’s method, [8]. When combined
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with a theorem of R. Schulze—Pillot’s, [26] (cf. also [27] and references therein), this
estimate leads to a solution of the long—standing problem of representation of integers by a

positive definite ternary form.
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§ 2. Statement of the main results

For the general background and terminology regarding integral quadratic forms we
refer to G.L. Watson’s tract, [29]. Let us start by explaining the notation to be used here.
The variables n and p range over the positive rational integers and over the rational
primes respectively; Z is the ring of rational integers, le is the ring of p—adic integers; Q,
R and € denote the fields of rational, real and complex numbers respectively. Let

f(x) = %x’ Ax be an integral positive definite s—ary quadratic form, so that A = (:3.i j) is
X
a symmetric matrix, a'ij €7 and 2|a,ii for 1<i, j<s8 x= [1

X
8

and x’ = (x;,....x;) is a row vector. We write D = det A and fix a decomposition

] is a column vector

A =2B’B with B € GL(s,R) , where B—— B’ denotes the operation of matrix
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transposition. Let S, = {xix € IR“'I, |x] =1} bethe £—dimensional unit sphere in
[RQ"*'1 ; departing slightly from the notation used in § 1 we let

r{n,w) = card{u|u € R®, 3% €Ew} for w(CS Bo that 1{n) =r{n,S_,) denotes
n

s—1"
the representation number of n by f; here |x| = (x’ x)ll 2 denotes the Euclidean norm
in R® for £ €7, £ 1. Let  be the Euclidean measure on S, normalised by the
condition u(S 2,) =1.Let K be a class of integral positive definite quadratic forms and
suppose that f € K. We write r(K,n) := 1¢{n) and #(K) := card{U|U € GL(s,Z),

U’AU = A} ; clearly, 1(K,n) and 1{K) are well-defined (being independent of the choice

of fin K). Let L= ﬁ K, be the union of g classes K, 1<i< g, of positive definite
i=1

quadratic forms' one deﬁnes Siegel’s average r(L,n) of rdn) over L by letting

-1
r(L,n) = 2 [ 2 1/ V(Ki)] . We write gen f for the genus of quadratic
1<i (g VIR 1€i<g
forms containing f and spin f for the spinor genus containing f . Finally let us recall that

f is said to represent n properly over a ring v containing Z if f(u) = n for some u in

o® satisfying the condition g.c.d. (ug-ug) =1 (as usual u;, 1 <i <8, denotes the jih

component of u ). The following theorem results as a consequence of the work of several

authors, [23], [24], [15], [16], [20] (cf. also the papers refered to in these articles).

8/2-1

Theorem 1. Let s> 3. Then r(genfn)=n a ()Afn) , wher am(f) denotes the

Lebesgue measure of the ellipsoid {u|u € R®, f(u) = 1} and where A{n) =TT a(p,n)
p
with

a(pn):= lim p 25D card{u|u € (2/p*T), f(v) = n(mod p*)} ;

8—o

moreover, A{n) ?< n€ for € >0 (here T | extends over all the primes p in I ).
) € P
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Furthermore, suppose that f represents n over Hp for each p and satisfies one of the
following conditions: (i) 8 2 5; (ii) (n,2D) =1 and 82 4; (iii) (n,2D) =1 and f

represents n properly over llp for each p. Then Af(n) >f-> n € for e>0.
, €

The next theorem in this report is a rather direct consequence of the estimates of
coefficients of modular forms, [3], [4], discussed in § 3.
Theorem 2. If 6 24 and 2|s then r¢n) = r(gen fn) + O(n5/4—1/2+€)
§>4, 2]s and (n,2D) =1 then r{n) = r(gen f,n) + 0(n3/4—2/7+6) for €e>0.

for € >0;if

Theorem 3 and Corollary 1 have been alluded to at the beginning of this memoir and

constitute one of its main results.

Theorem 3. Let f(x) be an integral positive definite ternary form. If (n,2D) =1 then
r{n) = r(gen f,n) + O(n1/2_1/28+e) for e>0.

Corollary 1. Let p be a rational prime congruent to 5 modulo 8 and let

f(x) = x% + xg + p?'x?3 - Then r{8n + 7) —— o ; in particular, every sufficiently large

n——mo

rational integer congruent to 7 modulo 8 is represented by f.
Finally, following [5], [6], we shall prove Theorem 4 about asymptotic

equidistribution of integral points on an ellipsoid.

Theorem 4. Let 823, w(S ¢ With £ =5-1, and suppose that the (topological)
boundary dw of the set w is a smooth submanifold of S ] of codimension one. If

(n,2D) =1 then r{n,w) = u(w)r{n) + O(nB/ 2_1_6(8)) for any 6(8) such that

8—3—-1/24

5(s) < 372 when 2|8 and &(s) < S

when 2 fs.

Remark 1. For the standard definition of a spinor genus (going back to [9]) see [18,
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p. 298] ; it seems to be different from the definition used in [29] (cf. [1, p. 85-86]).
Following [26] we use here the standard definition.

Remark 2. Corollary 1 confirms a conjecture of D.R. Heath—Brown’s, [7]; when combined
with a theorem of Gaufi’s asserting that a positive rational integer n is either a sum of
three squares or it i8 of the shape n = 49‘(7k+8) with £ € Z and k € Z, this corollary
implies that every sufficiently large positive integer is a sum of at most three square—full
numbers. According to [7, p. 137] this answers a question posed by P. Erdos and A. Ivic
(and first answered by D.R. Heath—Brown, [7, Theorem 1]).

Remark 3. Condition (n,2D) =1 in Theorem 4 is redundant (and may be omitted) when
1(x) = xf + x% + xg , a8 it can observed by analysing the proof of this theorem.

After collecting the necessary results from the theory of modular functions in the next
section we prove theorems 1-3 and corollary 1 in § 4. In the last section (§ 6) we make a

few final notes on the subject—matter of this report.

§ 3. On coefficients of holomorphic cusp—forms

Let To(N) = {7]7€5Ly(T), 7= [g g], c = 0(N)} be a congruence subgroup of

i,d=-1(4)

SLo(Z) , let € 4= [ be the sign of the Gaufl sum, and let

1,d =1(4)

i(72) = e&l [&] (cz+d)1/ 2 for 7= [g g] , where [ﬁ] is the generalised Legendre
symbol defined as in [25]. For » €R let S (N,x) denote the finite—dimensional Hilbert
space of T'\(N)—cusp—forms for which f(7z) = j(7,z)2yx( 7)(z) whenever 7€ I'((N) and
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z€C, (here € = {z|z€C, Imz>0} denotes the upper half—plane), the Petersson’s

inner product being defined by the equation: <f|g> = J f(z)E(E)yu_zdxdy for
r,(M\&+

f,g €S (N,x) . We write \ll] = <f|i'>1/2 for €5 (N,x) . We are interested here in

modular forms of integral or half—integral weight only, so that it is assumed in what

follows that 20 € Z and v 2 0.

Lemmal. Let v €%, v>0 andlet ofz) €5 (N,x) with x(7) = [%-] for some D in
@
I, v= [i’ g], 7 € T((N) . On writing ¢(z) = z a(n)32mnz we have
n=1

(1)

a(n) << n [2+e€ for € > 0; to be more precise, if ¢ is a common eigenfunction of

v, €
all the Hecke operators Tp with p | N normalised by the condition a(1) =1 then

a(n) $< o124 g >0.

Proof. It is the famous Ramanujan—Petersson’s conjecture proved by P. Deligne {3,
Théoréme (8.2)].

Proposition 1. Suppose that » > 2, v € I and let ¢{z) €S (N,x) with x(7) = [.13]
1]
forsome D in &, 7= [§ 3] € I‘O(N) . On writing ¢(z) = z a;(n)ez’rlllz we have
n=1
w1)/2.1/2 Yl 4 e
an) << (4 (1202 =

for €e >0 and (n,N)=1.
N e r(u—1)1/2 "‘P" (n,N)

Proof. We fix an orthogonal basis {(pjl 1£j<g}, g=dimS (N,x), consisting of

common eigenfunctions for the set of Hecke operators Tp with p /N and normalise it

1< j<g,so that the first non—zero Fourier coefficient of ?; is equal to 1. Let
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@
goj(z) = 2 a.j(n)e2’mlz and suppose, without loss of generality, that a.j(l) =1 for
n=]
1€j< gy and aj(l) =0 for j> g, . Then (see, for instance, [22, p. 319]) aj(n) =0 if
g 8 ‘
(mN)=1 and j>g,. Write p = 2 ﬂjqu,sothat a(n) = E ﬁjaj(n) and therefore
j=1 =1
80 &0
la@®< Y |;3j|2 y |aj(n)|2 for (n,N) = 1. Since gy < g << v (cf, for instance,
j=1 j=1

Theorem 4.2.1 in [22, p. 102} ) it follows from lemma 1 that

&0
|a(n)|2<< ¥ 1ty 2 2 for (n,N) = 1. On the other hand,
j=1
2 & e
lell= 3 161 ell*2 3 18,1 %lleyll* and
=1 =1
o 1
lofi? = [ le@1%* Paxdy 2 [ oy [ axle@ B2 =
1 0

r,(N\&+

4]
Jyu_zdy z |a(n)|2e_4my so thatif 1< j< g, then
1

n_

1] go
liofi? 2 [ 72747 ay >> Skt ol >> B 117
1 " o=

v~
u—1+eV"¢"2 4;_

therefore |a(n)| 2 <<n , as claimed.



To obtain a non—trivial (uniform in the weight) estimate for the coefficients of a
cusp—form of half—integral weight one follows a different path. We start with a general

lemma.

Lemma2. Let »€R, »>2. Denoting by S (N,v) the Hilbert space of
I'o(N)—cusp—forms ¢ which transform according to the equation

o(72) = v(7)(cz+d)”p(z) for 7€ Iy(N), z€C o 7= [2 g] , we choose an orthonormal
(1]
basis {(pjl 1<j<g} of S (N,v) and write goj(z) = 2 aj(n)ez’mlz for 1<j<g. The
n=1
following identity holds:

) =gl e 3 B0, )]

=1 c=0(N)
c>0
where K (n,c) = 2 v(7) exp(%ﬂ(d+d—1)), v = [z‘ g] , is a Kloosterman sum
d mod ¢ :
(d,c)=1

and where J , , denotes a Bessel function. Here it ig tacitly assumed that [v(7)| =1.

Proof. We follow [22]. One defines a Poincaré series

G em)= ) expCrimm)ca+d w1 1= [3]]
7EI‘m\P0(N)

where T = {[5 111] |n € Z} , and proves (see Theorem 5.1.2 in [22, p. 136] ) that
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@
G (2,m) € S (N,v) for m >0 and that G (zm)= ) A_(n)e™* with
n=1

2 ; 4
Ap(n)=6__+ 2re 7/ [ ] 2 mgéﬂﬁ)- I, [—"c@] , where

c=0(N)
c>0
Wamd= J ¥ exp[ Ea_tl‘ﬂ] = [g 3] (see (5.3.32) in [22, p. 136]).
7EI‘0(N)
o
q _ 27inz .
Furthermore, let ¢(z) € S (N,v) andlet ¢z) = 2 a(n)e . By Theorem 5.1.2 in
n=1

[22, p. 136] (note that due to a different normalization of the inner product < « | » >,
which is defined here by the same equation as in S V(N, x) , one has to omit the factor u

in this theorem), <¢| G(+,m)> = a(m) (l("_)'lll_)j. , 50 that
4rm

G (-m)= 2 <<p]G( m)>w—ﬂy—l)—12 ( )tp and, in particular,

=1
T g :
Ap(n) = (T(V_)-xll—)'l' z ajlm) a.j(n) . On letting m = n one obtains the required identity.
am .
=1

Corollary 2. Let {‘Pj| 1<j<g} beanorthonormal basis of S (N,x) and let

m
gpj(z) = 2 a.j(n)e2 MLZ Then the following identity holds:
n=1
n
-1
Y lam)I?= (4am)” [1 roriv § K@O; [4'“]] , where
j=1 (1) ¢=0(N)

c>0
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- 2v
Proof. By definition S (N,x) =5 V(N,vx) with v_(7) = x(7) 65211 [&] , therefore

!
Corollary 2 is a direct consequence of lemma 2.

Lemma 3. If ¢ is a character of (Z/ cl)* and x(7) = ¢(d) for y= [2 3] , then

1K@,0)| € 7(e) (0,0) /2 M2 with r(c):i= § 1.
alc

Proof. It is a well-known theorem of A. Weil’s, [30].

Definition 1. Welet # = {pN|P <p<2P, p}2n}, where p ranges over all the
rational primes, n€Z, n>0, P> 0.
The following lemma, due to H. Iwaniec, takes account of cancellations in a sum of

Kloosterman sums on average. Before stating it we define three sums.

. -1
Definition 2. Let K(n,c) = 2 65211[_&] exp [2—"“%@—)-] and let

d mod ¢
(d,c)=1

ko= Y e[S 2] o[22 pinaly e

d mod ¢
(d, c)=1

A(n,x;P) = (xP_I/2 +x M2 (x+n)5/'$(x1/4P3/8 + n1/8x1/8P1/4)) - 7(n)(log n x)2
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where 7(n) = 2 1

aln

Lemma 4. Suppose that v = % +2, £22 L€I.I n issquare—free and N = 0(8)

then 2 | 2 _1/2K0(n,c) << A(nx;P) .
Qe c—OsQ)

Proof. It is the theorem 3 in [8, p. 399].
Lemma 5. Suppose that v = %+ £, L€X, L22.1If n is square—free, 8| N, 2D|N,

d (mN)=1 then Y | Y M) | << A(n,x,P) .
Q€SN c= OQQ) N

. 2 -1 .
Proof. Since € i= [?] we may write

n(d+d7h
K(n,c) = 2 552”[3] [:?lg] 2mc .If 2D|c we have
d mod ¢
(d,c)=1
. -1
K(n,c) = %‘D‘ 2 652(“'1) [_%2] exp [27”(2?32((“(1 )] , 80 that
d mod (2Dc)
(d,2Dc)=1

K(n,c) = %-ﬁ K,(2Dn,2Dc) . Without loss of generality it may be assumed that 2D is

square—free; conditions (n,N)=1 and 2D|N imply then that 2Dn is square—free. Thus
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lemma 5 may be deduced from lemma 4.
Lemma 5 is our main tool in estimating the coefficients of a cusp—form of

half—integral weight larger than 2.

Definition 3. Welet x(d) = [—?12] and fix an orthonormal basis {(pj| 1<{j<g} of
o
S (N,x) ; let goj(z) = 2 aj(n)e2mnz for 1< j<g. We write, for brevity,
n=1

-1 47n
% (n,¢) i= ¢ K(n,el, [—C—] .

Lemma 6. For P > (4log 211)2 we have

(T(T)TE |a(n 2 << P + (log P) z | 2 x,,(n,c)|-

Q€4 c=0(Q)

c>

Proof Let Q =pN andlet b(p) = [I((Q):Ty(N)] . For fg €S (N,x) one has
<i‘|g>S Qx) = <f|g> b(p) . In particular, let {¢j| 1<j<g(p)} beanorthonormal
)7, H

basis of SV(Q,x) such that ¢j= b(p)_llzgoj for 1< j<g and let

®
gﬁj(z) = E ?{j(n)eznnz . Then Zj(n) = b(p)“llzaj(n) for 1<j<g, and clearly
n=1
&(p)
g < g(p) . Since b(p) < p+1 it follows that z |a n)[2 <(p+1) 2 |2 3 (n)| 2
=1 =1

Therefore corollary 2 gives: L. I(el) 2 |a(n)| {1+ 27r| 2 xv(n,c)l .

p+1
(472)"" .11 c=0(Q)
c>0
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. 1 1 P ;
Since 2 P >> Tog P and 2 1<< Gg P on summing the above

P<p<2P P<p<2P
inequality over # we complete the proof.

Lemma 7. In the conditions of lemma 5 the following estimate holds:

(T(_))T 2 Ia n)| << P22 48%e o 50,

Proof. Consider two sums:

si= 3 | ¥ mmo|ads,= Y | Y x@al.
Qe s c—O(N) QeSS ¢=0(Q)
c>n 7 0<c<111
~ o1/8 =1 0/
Let P=n and choose 7—Zg,sothatn < P < n. Bylemma 6,

(——(—))-1- z ]a (n)l << P + (log P)(S; + 5,) . To estimate S; we use the following
4

identity:
Y a(eHe) = -AqWG) - jf’(x)AQ(x)dx NG
c=0(Q)
c>y

where AQ(x) = z a(c) and it is assumed that f(y)A Q(y) —_: 0. Let

0<clx y—o

¢=0{Q)
a(c) = Y 2K(n,c) and let f(x) = 125 1 [4Tm] , 80 that x_(n,c) = a(c)f(c) and it
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follows from (1) that |S,] < |(y)] 2 IAQ(y)l +J [ £/ (x)] 2 IAQ(x)Idx with -
QeS y Qe S

y= 227 . In view of the relation I?aaé ICI?I/ 2(x)| = (m+2){m+1 , [14, p. 225], one
—=1<x£1

obtains from the integral representation of the Bessel functions, [14, p. 80] a relation

T
-1/2 3/2 [ i .
J,_1(z) = (27) 123/ Jelz cos‘tbm(cost.)dt with 11??:(:1|bm(t)| S%
O A2

here CA denotes a Gegenbauer polynomial), provided »~1 = 3 +m, m€Z,and
m 2

m 2 0 . It follows therefore that |f(y)| << n—1/2+27

3/2

and

1+ nx_l)x—3 . Combining these estimates with the estimate
1/2-1/48+¢€ 5

|[{'(x)] <<n

z |AQ(x)| << A(n,x,P) given in lemma 5 one obtains: §; ¢<n

€SN
N 3/2,-1/2

€ > 0. To estimate S, one notes (cf. [6, p. 61]) that J _,(z) << ¥ for z2 1,

V= % + £, LEZL €20 and therefore, in view of lemma 3,

1/2,3/2 1/2—7+e€

x (n,c) << 7(c)(n,c) - This results in the estimate S, $<ND and

completes the proof of lemma 7.

Proposition 2. Let ¢ € SV(N,x), v= % + A, A€Z, A22 and suppose that 8|N,
®
2D|N and (p,N)=1;let ¢(z) = 2 a.(n)e2"'lrlz for z € C . Then
n=1

a(n) <y (41)(11—1)/21,(”_1)—1/2 ) V3/4ny/2—1/4_1/96+6”<p” _

Proof. Let {(pjl 1< j<g} beanorthonormal basis of S u(N’ x) consisting of common
eigenfunctions for the set of Hecke operators {T(p2) |p | N} and let G{, 1{j<g,be
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the Shimura’s lift of @ [25] (here, as usual, p ranges over all the rational primes). On

®
- j i 2xi . -1, .
wiiting 8(z) = § AJ(n)e*™™ one obtains a(tn’) = § w(d)x,(@)a* LA [g] , since
n=1 d|n
4] . 1]
by construction 2 Ai(n)n_s = L(s—z\+1,xt) 2 a.j(tn2)n—s with
n=1 n=1

m

Xt(m) = [%] [i] A x(m) , where L(s,¢) := El ﬂmLT)- and where

m=

[11]
wz) = a.(n)e?™0Z By [2, Theorem 4.3], we have 8 €s, (N, x2 ; moreover, by
j j t V22
=1 _
[2, Proposition 5.1], ﬁg is a common eigen—function for the set of Hecke operators

{Tp |p | N} . Therefore it follows from lemma 1 that
A 1
- j j A-1 n 2 j vr—1+€
aad) < Y AAl[F1 <A 3 ATefF] Cs< Al
d|n d|n

. 9 o (»-1)[2+€
for € > 0. But A-t](l) = aj(t) , therefore we have: aj(tn ) ¢< |aj(t) | (n®)

for

g 8 8
€>0.Let p= 2 Byp; » 5o that llel|? = 2 |;6j|2 and a(n) = Xﬂjaj(n),andin

8 g g
particular |a(n)[% < Y mj|2 y |a.j(n)|2= llel® ¥ |a.j(n)|2.Let 1 =tm® witha
=1 =1 j=1

1
]

g 8
square—free t , then 2 Iaj(n) | 2 << (m2)”_1+6 2 |aj(t) | 2 Combining these
=1 j=1
estimates with lemma 7 we conclude the proof.
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To derive an estimate for coefficients of a cusp—form of weight 3/2 one argues as
*
follows, [4] {

m®
Lemma 8. Let ¢ € S3,5(N,x) , let llell = 1 and suppose that o(z) = Y a(n)e?™02
n=1

We have a(n) << nl/2-1/28+€ for a square—free n assuming, as always, that
y €

(,N) =1 and 2D|N, 8|N, ¢>0.

Proof. On choosing in the Kuznetsov’s sum formula [4, p. 80]
3

2 K K(N c)u[4m] = 2 Vy(n),

c>0 £=1
c=0(N)

where Vy(n) =4n ) |p(n)|%a(t)(chrt) ™, t;:= yX,=17A,
Aj>0

o, (1/2+it) | %0 )
Vy(n) = 2[ i

2 2 (chmt) )T (5/4+it)|?

@ ~ )
. . .
and Vy(n) =4 § SO Sl T ey ) exe(3ai/e)

the test function u(x) = x / 2 i3 /2(x)e_3ﬂ/ 4 one observes that Vo(n) 2 0 and that all

(' The argument suggested in [4] requires a modification. We are indebted to Professor

W. Duke for indicating how it can be best done.
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the terms in the sum V,(n) are positive, moreover, all the terms in the sum Va(n) with
j 2 4 are positive as well. By definition (see [4, p. 78-79]), a(n) = (4rn)3/ 4pj(n) for
A i= 3/16 ; therefore it follows that

]—3/2| N

oY 2|a(n)|2 << | 2 c_lK(n,c)J13 /2 [éﬂ] [éf-'i

c c
c>0
¢=0(N)

2 I'(1/24+2j

2 . . .
la..(n)|“.Here {¢.:.|1<i<g.} is an orthonormal basis
1<jea (4m) 1 5HE 2 ) .

i<g.
1_1_gJ
o
for S (N,x) and ¢..(z) = 2 a .(11)e2’rlnz Applying corollary 2 and summing over
3/2+2;\ ij ij : & y 8
n=1
A one obtaing

_ _ 32
n llzla(n)lzqg/[ro(mfro(ce)] “ad L e T
e=0(Q)

+ 2 2 [1 + I 2 X3/9+2 j(n,c) |] . To apply the argument used in [8, § 8]
IGQES  e=0(Q)
c>

one requires lemma 5 for the sums

Y| Y VReoes[R]|, ve {100}, (2
Q€L ¢=0(Q)
c>0

4
and the estimate (x J;, /2 [4Tarn] no/2 << ax /2 for n < x. Both are

straightforward and require no further comments. This completes the proof.

Proposition 3. Let ¢ € S, /2(N,x) and suppose that 8| N and 2D|N; let
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®
oz) = 2 a.(n)e2mlz . Then a(n) << nl/23-1/28+€ o (a,N)=1, €>0.
n=1 p.e

(4]
Proof. Since &,(z) = ) At(n)e2nnz € Sz(N,xz) for t | N (see [2, Corollary 4.8]),
n=1

where 2 At(n)n_s = L(s,xt) 2 a(tnz)n_6 with xt(m) = [%] [%] x(m) , we have
n=1 n=1

a(tnz) = 2 p(d)x,(d)A, [%] .Bylemmal, [A, [%] | < | A (1) [ﬁ] W2te ; on the other
djn

hand, [A,(1)] = |a(t)| << {1/2-1/28+e€ by lemma 8 (since t is assumed to be

square—free). Thus |a(tn?)| << t1/271/28+€ 1/2+e€ 2)1/2-1/28+¢

<< (tn as
required.
§ 4. On representation of integers by positive definite quadratic formg

We prove here theorems 1-3 and corollary 1. Let us remark first that the identity

8/2—1

r(gen f,n) = n a (f)A{n) in theorem 1 is due to C.L. Siegel, [23]; the estimate

Agn) ?< n€ for € > 0 is elementary (cf. also [23]); the estimate A{n) ?> n € for
y € y €

€ > 0 can be found in [15], [16] for 8 2 4 and in [20, Satz (3.1)] for 8 = 3 (under the
conditions stated in theorem 1). This completes the proof of theorem 1. The estimates

given in theorem 2 can be deduced as follows. One remarks first that on defining
(s 1
a(n) = r{n) —r(gen f,n) and o(z) = z a(n)e21rmz we get o(z) €S (2N,x) , where
n=1
v=28/2, 824,and where N denotes the level of f (cf. [26, p. 283] and [24, p. 376]).
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If 2|s theorem 2 follows now from lemma 1. If 2 /8 we need a variant of proposition 2

asserting that a(n) << n¥/272[T+€ g5 ¢ 50 as soon as the conditions of this
f,e

proposition are satisfied; such a statement can be proved along the lines of [8, § 8] as soon
as one has an analogue of lemma 5 for the sums (2) alluded to in § 3 (at the end of the
proof of lemma 8). This completes the proof of theorem 2. Finally we note that theorem 3
follows from proposition 3 in view of [26, Korollar 2 and Korollar 3].

3

Proposition 4. Let f(x) = x + x2 +p x2 and suppose that p = 5(mod 8) . Then

rdn) >> 2/27€ for € >0 assoonas n = 7(8) .

Proof. Let n = pf'nl, p {nl and suppose that n = 7(8) . If £ > 3 the integer

n, = p_3n is congruent to 3 modulo 8 and therefore

#1y yEﬂs, n =y2+y2+y2 >>n1/2"f for e>0.If £ <3 it follows from
2 1 2 3 2

theorem 1 and theorem 2 that rg(nl) >> ni/2—e for € > 0,

39.

gl(x) = x + x2 +p" "xq.Since p= 5(8) equation p = z% + zg is solvablein Z°.

The required estimate follows from these observations when one writes

2 2 3 2 2 2 3-L
x; + x5 =Dp"(ny —y3) when £23 and x1+x2=pp'(n1 p 2) when € <3
thereby noting that to each solution of the equations n, = y% + y2 + yg, p3 = z:1a + zg

when £ 2 3 and n, = yi + y2 + p3_9'y§, pf‘ = zv.‘l'2 + zg when £ < 3 corresponds a

unique solution of the equation n = f(x) (assuming x € lla, y € ”3, z € I? ).

Corollary 1 is an immediate consequence of proposition 4.

§ 5. On equidistribution of integral points on an ellipsoid

In this section we prove theorem 4. Let us recall the spectral decomposition theorem



-21 —

for the Laplace operator A on Sg, £ 2 2 (cf., for instance, [18] ). One may write
®

2 2 -1 -
1s,)= Y ®%_, where 8 g =m(mte-IL by, -?%E—[m;flz] and

m=0
where I denotes the identical operator, h _ := dim Jo’ for m 2 1, dim H#y=1.0n

choosing an orthonormal basis {o Ii] 1£j<h_} of J  oneobtains the Gegenbauer
polynomials, or ultraspherical harmonics C A given as follows:
j - 2 -1
2 aﬁll(yl)axi]l(y2) = Crg' 1)/2(yiy2) —IEifl'—— , where y, € S;, i=12. Hereare a

1{j<m
few basic properties of the polynomials C ( ) (cf. [14.§5.3]): C (t) is a polynomial of

degree m and CA(~t) = (-1)PCA (1), CA() €RL];

mas IcA)] = [m“"‘l] ,and C(cos 6) << m* ! for 0< 6¢ 3.
-1<t&1

Lemma 9. Let £22 and w(S ¢ - Suppose that w satisfies conditions of theorem 4.
Given a sufficiently small positive & in R thereis a function y 5 S g — [0,1]

1 for yEw
satisfying the following conditions: x 5(y) = when |y-dw| > 6
0 for y¢w
o m (£-3)/2
ZH with H € &, iup |H ()| §< (—ﬁ for a21, a€L.
m=0 ?. ' W

Proof. Choose a function pz:R— R such that ¢ € C*(R), pgt) 20 and pjt) <0
for t€R, pgt)=0 for t> &, and S[ ¢ s{1x—y[)du(y) = 1. Assuming 0 < & < & let
L
0,x¢w

xg0) = | x(xholIx-y )autx) for y €5, where x(x) = {1 " e
S ,XEwW
3
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characteristic function of w . Clearly, 0 x(y) <1 for y €5, and x4(y) = x(y)

h
o _ m )
when |y—dw| > &.Write xs= ) H_ with H = ) a(jm)s) , where a(jm) is
m=0 j=1
given by the equation a(jm) = J X 6(y) o fxll (y) du(y) , or
S
L

1
[m(m+€-1)]

a(jm) = J x 5(v) (Aaaﬁ'l) (y)dp(y) for a2 1, a €. Since A is
S

self—adjoint in L2(S£) , it follows that

_ 2m+£-1
H_ (y)=

(m(m+2—1))%(e-1) J{; (8% 6)(-'" 1)C§1£-1)/2(y 'Yl)dﬂ(yl) . By construction,
L

sup |(Aaxé-)(y)| << §72% and (Aaxé-)(y)=0 for |y—dw| > 8, a2 1. Therefore
y€S, a,w

0_(9’_1)/2dp(y1) , where y'yl = cos 6, |8] € x/2,

since Clge‘—l)/ 2 cc g (N2, (89)/2 Denoting by 4, the measure on dw induced
by u# we obtain for a sufficiently small positive §:

J g(t-1)/ 2du(y1) << § J g {1/ 2d#1(y1) << §,since dw is a smooth
|y1-t9w |<6 ow

submanifold of S L of dimension £—1 and £ 2 2. This gives the required estimate for

H m and concludes the proof.

Definition 4. Given a sufficiently small positive & let 0 g(A) = {y|y €Sy, [y-A| < &}

for ACSa,andlet wf:wU 06(8w),
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wf =w\? 6-(49w) . We denote temporarily by ﬁm( o,w) := H the functions appearing in

o
+ - . * *
lemma 1 and let Hm = Hm(6,w£) s we write ¥ o= 2 H_.
m=0

Lemma 10. We have r{n,w) = p(w)r{n) + Ow, ((61(n)) + O(I) , where

I= max | 2 ng [BL] l, € > 0,assuming £ 2 2 and w satisfies
EE{—,+} 1<m<6-—1—€ ﬁ
f(x)=n, x € I°
conditions of theorem 4 (here £ =s8-1).

Proof. Clearly,

f(x§=nx_5 [%] < tfn,w) € f(,[?:nx"g [1-3—’-‘_-;] ,

x€n 8 x€x®

+ £ —(B + %
and HO=£ Xgdp = p(w) + O(6) . By lemma 9, 2 xb-[-i] =I_+1J , where

. f(x)=n V©
x€1 8
% * % * .k + [Bx .
I< = 2 - Cm a.nd I> = 2 - Cm, Cm = z Hm ﬁ] .In partlcular,
0<m&é ¢ m<& € f(x)=n
x€x 8

IZ = u(w)rdn) + O(6rdn)) + O(1) . It follows from lemma 9 that

I: << 1¢n) 2 m(&-3)/ 2(m&)l_za,and therefore
a,w m< 6—1—6
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I¥ << ri(n)62a€_(£_l)(1+e)/ 2 < ér{(n) for sufficiently large a since € > 0. This
> a,w €,W

completes the proof.

m
f(X)=n o n=1

x€x®
for z € C+ ; write, for brevity, k = 8/2, £ =35-1.

‘s + 2 (B + 3 2m
Definition 5. We let cm(n) =/ z H [—L] and Hm(z)= 2 cm(n)e niz

8
Lemma 11. Let x(9) = [%—] [%] for y= [g g], 7€ SLz(H) and suppose that m > 1.

k+¢ k-2
* 112 I'(k+m-1 )m m
Then 8_€S (N,x) and (|8 << ] for
m - “k+m " m" N, w,e (41)k+m—1 m6)2a—1

€ >0,assoon as 2D|N.

Proof. By definition, H:l(y) = _m_2mi£—l £ Clgf‘_l)/ 2(y'y1) x:;-(yl)d,u(yl) . On writing
L
2—%}1—9’-1-0:&1[—1)/ 2(t) = 2 a.jt-' one remarks that
0<i<m

H:l [Bi] nm/ 2_ 2 ajJ xj-(yl)(yin)j | Bx| m_jdp(yl) . Therefore, by
v 0<ism 8,
j=m{2)

definition 5, 0:1(z) = 2 Pm(x)e21rif(x)z , where P_(x) is a homogeneous polynomial in
x€r®
C[x] of degree m . Thus 0:1 €5, +m(N,x) for m 2 1, [21] (or Proposition 2.1 in [25,

p. 456] ). Now it follows that || 0:1"2 = J [ 9:1(2) | 23,']"|'m_2d.:u:dy . We cover a
T \E,
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I'y(N)—fundamental domain by g V, » where b varies over a complete set of

I'(N)—inequivalent cusps of I'y(N) and where V| denotes a neighbourhood of b that -
can be transformed to a subset of {z|z =x+iy, 0{x<1, y21/2} byan
SLo(Z)—transformation sending b to iw . Since under SLo(Z)—transformation the series

0:1 is turned to a linear combination of "partial f—series" of the shape

®
+ * 27i + 2 + (B :
O a(2) = 2 Cm a(0)2 MIDZ | where cm,a=nm/ 2 H [JL_]’ a €1°, [21], it
n=1 f(x)=n I
x=a(N)
follows that
1 o .
27i(n,z—n,z)
*)2 k-2 x x 17 72
loglP<< Y [ax [y Ry § e (u)en e
amod N O 1/2 lgnl,n2<m
§
a €1
® @
= z ym+k_2 2 |c:::=1 () 2e_‘i’mydy . By lemma 9,
amod N 1/2 n=1
a € I°
+ m/2 m<2 k—1+e€
Cp g << Ifn)n . On the other hand, 1{n) << n for € >0 and
“w,a (mé) f,e
© @
ym+]{—2e—41rny dy = ﬁj J ym+k—2e—y dy . Thus
172 (4mm) 9
k-2 42 2
%12 1 m k-14-€
|67 << [ ] S, ,where § = n I_ and
o
I = J y™ 2 Vay . Since I_ < T(m+k-1) it follows that

27n
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S,= ) T 48> <o m e (m+k-1) because
1<{n{m+k-2

S; = z nk—1+ I is easily seen to be small enough. Thereby we obtain the
n>m-+k-2

required estimate.

Lemma 12. Suppose that 2D|N, 8|N and (n,N)=1 andlet 82 3. Then

3/2(k-1)+e
c:l(n) << ! (2 a-—i p(m+k-1)/ 2""E,Bﬁ(m,n) for m 2 1, where
(m8)
8 (mn) 1 when 2|8
m,n) = , €>0.
s mi/4323/9  Ghen 2 {8

Proof. If 2 }s the required estimate is an immediate consequence of lemma 11 and
proposition 2. Suppose that 2|s, then we can apply proposition 1 and lemma 11 thereby

completing the proof.

Proof of theorem 4. It follows from lemma 10 and definition 5 that

r{n,w) = u(w)rdn) + O(érdn)) + O(I) , where I= max l z c;';(n)n_m/ 2
e€ {-,+} 1Sm$6-1-£
for ¢ > 0. Bylemma 12 with a =1, we have
k—1)2+v_+¢ 3k/2-5/2+p4
I<<n( ) 57 g1 m / 8 where vo =t =0 when 2|s and
1<m< 1€

!

(k-1)/2+v_+€ 3k/2+1/2—p +e
v, =1/4-1/96, p, =1/4 when 2 }|s.Thus I<<n ) 5

-3-1/24

T when

On choosing & = 2~ 78) with 7(s) = % when 2|s and 7(s) =2
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2 |'s and recalling that k =s8/2, ri(n) $< pk-1te for € > 0, one obtains the required

estimate for r{n,w) .

§ 6. Concluding remarks

The results described here lead to a few questions for further investigation:

(i) how can one weaken (or get rid of) the condition (n,2D) =1 in the theorems
247

(ii) to what extent can the error terms be improved?

(iii) can one treat a more general problem of estimating the number

ri(n;a,m,w) = {x|x € s, Bx_ € w, x = a(mod m)} , where a € I, mez,
n

m>1, w(S ] ?
(iv) can the corresponding problems for an indefinite quadratic form be studied by
gimilar methods?

We abstain from any further comments on these problems and refer the reader to the
literature cited in this report. It should be noted here, however, that the estimates for the
Fourier coefficients of Maass forms obtained in [4] contribute to the solution of the
problem (iv) (cf. especially [4, § 4, § 6] ), while the work on the exceptional integers of
ternary quadratic forms (cf. [26—28] and references therein) is pertinent to the question
(i).

After this report had been written we came across a very interesting article: W.
Duke, Lattice points on ellipsoids, Seminaire de Théorie des Nombres de Bordeaux le 20
mai 1988, Année 1987—88, Exposé n°37 (7 pages). It throws further light on our topic.
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