
Hopf algebras in dynamical systems theory
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Abstract

The theory of exact and of approximate solutions for non-autonomous linear differ-
ential equations forms a wide field with strong ties to physics and applied problems.
This paper is meant as a stepping stone for an exploration of this long-established
theme, through the tinted glasses of a (Hopf and Rota–Baxter) algebraic point of view.
By reviewing, reformulating and strengthening known results, we give evidence for the
claim that the use of Hopf algebra allows for a refined analysis of differential equations.
We revisit the renowned Campbell–Baker–Hausdorff–Dynkin formula by the modern
approach involving Lie idempotents. Approximate solutions to differential equations
involve, on the one hand, series of iterated integrals solving the corresponding integral
equations; on the other hand, exponential solutions. Equating those solutions yields
identities among products of iterated Riemann integrals. Now, the Riemann integral
satisfies the integration-by-parts rule with the Leibniz rule for derivations as its part-
ner; and skewderivations generalize derivations. Thus we seek an algebraic theory of
integration, with the Rota–Baxter relation replacing the classical rule. The methods to
deal with noncommutativity are especially highlighted. We find new identities, allow-
ing for an extensive embedding of Dyson–Chen series of time- or path-ordered products
(of generalized integration operators); of the corresponding Magnus expansion; and of
their relations, into the unified algebraic setting of Rota–Baxter maps and their inverse
skewderivations. This picture clarifies the approximate solutions to generalized integral
equations corresponding to non-autonomous linear (skew)differential equations.
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1 Aim, plan of the article and preliminaries

This paper studies non-autonomous differential equations of the general type

ġ(t)g−1(t) = ξ(t), g(t0) = 1G or (1.1)

g−1(t)ġ(t) = η(t), g(t0) = 1G, (1.2)

where the unknown g : Rt → G is a curve on a (maybe infinite-dimensional) local Lie
group G, with 1G the neutral element; and ξ(t), η(t) are given curves on the tangent Lie
algebra g of G. Before proceeding note that, if g(t) solves (1.1), then g−1(t) solves (1.2) for
η(t) = −ξ(t).

Such equations are pervasive in mathematics, physics and engineering. To begin with,
G can have a faithful finite-dimensional representation. For instance, consider (affine) linear
differential equations on Rn,

ẋ = A(t)x + b(t) with x(t0) = x0. (1.3)

They are exactly solved by

x(t) = G(t, t0)x0 +

∫ t

t0

G(t, t′)b(t′) dt′;

where the Green’s function G(t, t0) is the matrix satisfying

dG(t, t0)

dt
G−1(t, t0) = A(t), G(t0, t0) = 1n

of the kind (1.1). More generally, dynamical systems admitting a superposition principle can
be reduced to the form (1.1), with G a finite dimensional Lie group. This assertion is part
of the classical Lie–Scheffers theory [1], reviewed in Section 3 as part of and motivation for
the whole enterprise. Even more generally, any non-autonomous dynamical system, given in
local coordinates by

dxi

dt
= Y i(t; x(t)), x = (x1, . . . , xn) (1.4)

corresponds to a ‘time-dependent vector field’ Y with Y (t) belonging to X(M), the Lie alge-
bra of all vector fields on a manifold M . Then the solution of (1.4) is given by the solution
of an equation like (1.2); this remark will be formalized in Section 4. The crucial difference
is dimensionality of the (pseudo-)group. In practice, almost always we must content our-
selves with approximate solutions —Lie–Scheffers systems are not solvable by quadratures
in general— and actually those are our main concern.

We reformulate (1.1) within the framework of Hopf algebra and Rota–Baxter opera-
tor theory —the latter has become popular recently in relation with the Connes–Kreimer
paradigm for renormalization theory in perturbative quantum field theory. The convenience
of such algebraic approach stems already from that, unless G is a matrix group, ġ and g−1

cannot be multiplied, and then equations (1.1) and (1.2) have no meaning, strictu sensu.
Hopf algebras generalize both Lie groups and Lie algebras, so the problem does not present
itself in a Hopf algebra formalism. Another advantage is that Hopf algebra and Rota–
Baxter theory allow for efficient and meaningful comparisons among the different techniques
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for solving (1.1), proposed over the years. The main aim of this paper is to show these
and other benefits of our algebraic viewpoint. They have been patent for a while to people
working on control theory, but mostly ignored by the wider community of mathematicians
and mathematical physicists.

We presume the readers acquainted with standard tools of differential analysis, like for
instance in [2]: primarily the notion of tangent map and the exponential map exp : g→ G.
For the benefit of the readers, Lie group and Lie algebra actions are reviewed in Appendix A.
The basics of Hopf algebra are a prerequisite. Unless otherwise specified, we consider Hopf
algebras over the complex numbers. We briefly introduce our notations for them, which are
like in [3]; the pedagogical paper [4] is recommended as well. Given an associative algebra
with unit H 3 1H =: u(1C), then H ⊗H is associative with bilinear multiplication given by
(a ⊗ b)(c ⊗ d) = ac ⊗ bd on decomposable tensors, and unit 1H ⊗ 1H . Write just 1 for the
unit element of H henceforth. One says H is a bialgebra if algebra morphisms η : H → C

(augmentation) and ∆ : H → H ⊗H (coproduct) are defined, such that the maps (η⊗ id)∆
and (id⊗ η)∆ from H to H coincide with the identity map id and (∆⊗ id)∆ and (id⊗∆)∆
from H to H⊗H⊗H also coincide (we omit the sign ◦ for composition of linear maps). One
says H is a Hopf algebra if it furthermore possesses an antiautomorphism S, the antipode,
such that m(S ⊗ id)∆ = m(S ⊗ id)∆ = uη; where m : H ⊗ H → H denotes the algebra
map. Familiarity with enveloping algebras and the Poincaré–Birkhoff–Witt and Cartier–
Milnor–Moore theorems in particular will be helpful. Both results can be summarized in
the statement that a connected cocommutative Hopf algebra is the enveloping algebra of
a Lie algebra, as an algebra, and cofree, as a coalgebra. At any rate, we discuss a strong
version of the Poincaré–Birkhoff–Witt theorem in Section 4, and the Cartier–Milnor–Moore
theorem at the end of Section 5. The necessary notions of Rota–Baxter operator theory will
be introduced and explained in due course.

Whereas the Hopf algebraic description springs up naturally from the intrinsic geomet-
rical approach, we have found it expedient to smooth this transition with the help of Lie–
Rinehart algebras: these constitute the “noncommutative geometry” version of Lie algebroid
technology.

The plan of the work is as follows. In this section we explain our main aims and fix
some notations of frequent use. Next we recommend a look at Appendix A, indispensable
for everything that follows; most readers will just need to scan it for the notations. In
Section 2 we address for the first time Lie–Scheffers systems; they are intimately linked to
equations (1.1) and (1.2).

After this, two paths are possible: either reading Appendices C and D for motivation,
or not. Most of the stuff in them could be regarded as preceding Sections 3 and following;
but it gets in the way of our algebraic business, and this is why it has been confined to the
end. Section 3 plunges the reader at once into an application of Hopf algebra to differential
geometry. This is due to Rinehart and Huebschmann, and deserves to be better known, as it
clarifies several questions; one should compare the treatment of differential operators given
here with that of [5, Chapter 3]. Readers less familiar with Hopf algebra might wish to read
this in parallel with Section 4.

Sections 4 to 6 are largely expository. In Section 4 we leisurely construct the Hopf algebra
structure governing our approach to equations (1.1) and (1.2) from the geometric notions.
Section 5 recalls some structure results for Hopf algebras.

After that, our master plan is to transplant the usual paradigmatic strategies for dealing
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with (1.1) and (1.2) to the Hopf algebraic soil, which on the one hand will prove to be their
native one, and on the other naturally leads to far-reaching generalizations. At the outset, in
Section 6 we consider the Campbell–Baker–Hausdorff–Dynkin (CBHD) development, which
we proceed to derive in Hopf algebraic terms. In turn, that development is the natural father
of the Magnus expansion method [6]. We eventually derive the Magnus series with the help
of Rota–Baxter theory. For the purpose, the Riemann integral is treated in this paper as a
particular Rota–Baxter operator of weight zero.

We first show in Section 7 that skewderivations and Rota–Baxter operators (of the same
weight) are natural inverses. The ordinary Spitzer formula is revisited in Section 8, together
with a nonlinear CBHD recursion due to one of us. The latter is instrumental in obtaining
the noncommutative Spitzer formula. Also, inspired by the work of Lam, we give a non-
commutative generalization of the Bohnenblust–Spitzer formula. In the next two sections,
the Magnus expansion is arrived at as a limiting case of that formula. All along, we try to
distinguish carefully which statements are valid for general Rota–Baxter operators, which for
Rota–Baxter operators of vanishing weight, and which just for the Riemann integral. The
main alternative integration method, the Dyson–Chen ‘expansional’ [7–9], flows from the
Magnus series, and vice versa, by our Hopf algebraic means in Section 11. In turn, it reveals
itself useful to understand the quirks of the Magnus expansion, and to solve the weight-zero
CBHD recursion. Section 12 explores by means of pre-Lie algebras with Rota–Baxter maps
the solution of that nonlinear recursion in the general case. Section 13 is the conclusion,
whereupon perspectives for research are discussed.

As said, Appendix A reviews the basics of Lie group and Lie algebra actions on manifolds.
As also hinted at, Appendices B and C run a parallel, complementary strand to the main body
of the paper. They contain more advanced material on the topic of dynamical systems with
symmetry; their treatment here naturally calls for the Darboux derivative of Lie algebroid
theory. The main point is to show how one is led to the arena of Lie algebra and geometrical
integration, for the solution of differential equations we are concerned with. This provides
a rationale for our choice of the Magnus series, and its generalizations, as the primary
approximation method in the body of the paper —see the discussion at the beginning of
Section 10.

Appendix D gives the Hopf algebraic vision of a theorem of Lie and Engel.

Several notational conventions are fixed next. Let M be a (second countable, smooth,
without boundary) manifold of finite dimension n. The space F(M) of (real or) complex
smooth functions on M is endowed with the standard commutative and associative algebra
structure. Let τM : TM → M denote the tangent bundle to M . Vector fields on M can be
defined either as sections for τM , that is, maps X : M → TM such that τM ◦X = idM , or
as derivations of F(M). When we wish to distinguish between those roles, we denote by LX

the differential operator corresponding to the vector field X. Because the commutator of two
derivations is again a derivation, the space X(M) of vector fields has a Lie algebra structure;
we choose to define the bracket there as the opposite of the usual one: in local coordinates,

[X, Y ]i = Y j ∂jX
i −Xj ∂jY

i;

so X(M) ≡ diff(M), the Lie algebra of the infinite-dimensional Lie group Diff(M) [10]. Also
X(M) becomes a faithful F(M)-module when one defines hX(x) = h(x)X(x) for h ∈ F(M).
Together, F(M) and X(M) constitute a Lie–Rinehart algebra in the sense of [11].
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Given a smooth map f : N → M , the pull-back f ∗ : F(M) → F(N) is defined as
f ∗h = h◦f . A vector field X ∈ X(N) is said to be f -related with the vector field Y ∈ X(M)
if Tf ◦X = Y ◦ f ; we then say that the vector field X is f -projectable onto the vector field
Y , and write X ∼f Y . We have X ∼f Y iff the maps LX ◦ f

∗ and f ∗ ◦ LY from F(M)
to F(N) coincide. If X1, X2 ∈ X(N) are f -related with Y1, Y2 respectively, then X1 + X2

and [X1, X2] are also f -related, respectively with Y1 +Y2 and [Y1, Y2]. A given X ∈ X(N) will
not be f -projectable in general. However, if f is a diffeomorphism, then every vector field
X ∈ X(N) is projectable onto a unique vector field on M , to wit, Y = Tf ◦X ◦ f−1, and we
say X is the pull-back of Y . A vector field X ∈ X(M) is invariant under a diffeomorphism
f of M iff X ∼f X. On Rt (or on an open interval I ⊂ Rt) there is a canonical vector
field d/dt. A curve γ : Rt → M is said to be an integral curve for a vector field X ∈ X(M)
if d/dt and X are γ-related: γ̇ := Tγ ◦ d/dt = X ◦ γ. Well-known theorems assert that the
integral curves of a vector field define a local Rt-action or flow [12].

By a vector field along f we understand a map Y : N → TM such that τM ◦ Y = f :

TM

τM

��
N

f
//

Y
<<

z
z

z
z

z
z

z
z

M

It is clear that the concept is just a particular case of a more general one: section along the
map f over a general bundle π : E → M . Vector fields along f can also be regarded as
f -derivations, in an obvious sense. The right hand side of the non-autonomous dynamical
system (1.4) is just the vector field along the map π2 : Rt × M → M expressed in local
coordinates by

Y = Y i(t; x(t)) ∂i ◦ π2.

Also, clearly any curve γ : Rt → M defines a vector field γ̇ along γ. We envisage here the
concept of integral curves of vector fields Y along maps f . These are curves γ : Rt → N such
that the image under Tf ◦Tγ of the vector field d/dt coincides with the vector field along f ◦γ
given by Y ◦ γ —depending on f , there might be vector fields along it without integral
curves. Under this definition t 7→ (t, γ(t)) is always the integral curve of (t, γ(t)) 7→ γ̇(t)
along π2 : Rt ×M →M .

2 The Lie–Scheffers theorem

Definition 1. The system (1.4) of differential equations admits a superposition principle —
or possesses a set of fundamental solutions— if a superposition function Ψ : Rn(m+1) → Rn

exists, written
x = Ψ(x(1), . . . , x(m); k1, . . . , kn), (2.1)

such that the general solution of (1.4) can be expressed (at least for small t) as the functional

x(t) = Ψ(x(1)(t), . . . , x(m)(t); k1, . . . , kn), (2.2)

where { x(a) : a = 1, . . . , m } is a set of particular solutions and k1, . . . , kn denote n arbitrary
parameters. The latter must be essential in the sense that they can be solved from the
solution functional:

k = Ξ
(
x(1)(t), . . . , x(m)(t); x(t)

)
, with k := (k1, . . . , kn). (2.3)
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The Lie–Scheffers theorem [1] asserts:

Theorem 2.1. For (1.4) to admit a superposition principle it is necessary and sufficient
that the time-dependent vector field Y be of the form

Y (t; x) = Z1(t)X1(x) + · · ·+ Zr(t)Xr(x), (2.4)

where, as indicated in the notation, the r scalar functions Za depend only of t and the r vector
fields Xa depend only on the variables x; and these fields close to a real Lie algebra g. That
is, the Xa are linearly independent and there exist suitable structure constants f c

ab such that

[Xa, Xb] =
r∑

c=1

f c
ab Xc.

Moreover, the dimension r of g is not greater than nm. Systems fulfilling the conditions of
the theorem are called here Lie–Scheffers systems associated to g.

Modern reviews of this subject include [13–17]. We ponder a few pertinent examples of
Lie–Scheffers systems next.

Linear systems (1.3) are Lie–Scheffers systems. If n+1 particular solutions x(1), . . . , x(n+1)

of (1.3) are known, such that x(2)(t) − x(1)(t), . . . , x(n+1)(t) − x(1)(t) are independent, and
H(t) is the regular matrix with these vectors as columns, then the vector of parameters (2.3)
is given by

k = H−1(t)
(
x(t)− x(1)(t)

)
.

This follows from the fact that the transformation

x′(t) = H−1
(
x(t)− x(1)(t)

)

reduces the system to dx′/dt = 0.
A famous example for n = 1 is provided by the Riccati equation:

ẋ = a0(t) + a1(t)x + a2(t)x
2. (2.5)

One can understand by Hopf algebraic methods why, up to diffeomorphisms, Riccati’s is the
only nonlinear Lie–Scheffers differential equation on the real line; this was indicated in [18]
and it is spelled in Appendix D. Also (2.5) is the simplest Lie–Scheffers system not solvable
by quadratures; and other Lie–Scheffers equations on the line are reductions of it, in an
appropriate sense —see Appendix B. The superposition principle for the Riccati equation is
given by

k =
(x− x(2))(x(1) − x(3))

(x− x(1))(x(2) − x(3))
.

The one-dimensional example
ẋ = b(t)χ(x) (2.6)

is instructive. We assume χ does not change sign in the interval of interest. Let

φ(x) :=

∫ x dx′

χ(x′)
.
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Then

x(t) = φ−1
(
k′ +

∫
b(t) dt

)

is the general solution. We have therefore a superposition rule of the form

x(t) = φ−1
(
φ(x(1)(t)) + k

)
,

with m = n = r = 1: only one particular solution is required. Notice that the local
diffeomorphism φ projects the vector field corresponding to the right hand side in (2.6) to
the vector field b(t)∂x: in the language of Lie, the flow associated to this problem is locally
similar to a translation.

Now we can tackle at last the question of giving intrinsic geometrical meaning to (1.1).
It turns out to correspond to a Lie–Scheffers system on a Lie group. For an arbitrary curve
t 7→ g(t) on the r-dimensional Lie group G, we have the vector field along the curve given
by ġ(·) as discussed at the end of Section 1. Then we define the left hand side of (1.1) as

ġ(t) g−1(t) := Tg(t)Rg−1(t)ġ(t). (2.7)

By construction, for each value of the parameter t, this vector lies in T1G ≡ g, the tangent
Lie algebra of G. We obtain in this way a curve on g. Note that, if g(t) = exp(tη), then
simply ġ(t) g−1(t) = η. Now, if γa is a basis for g, then

ġ(t) g−1(t) =
r∑

a=1

Za(t)γ
a =: ξ(t) ∈ g, (2.8)

for some functions Za(t). We realize that g(t) is an integral curve of the right invariant
vector field along Rt ×G→ G:

ξG(t, g) :=

r∑

a=1

Za(t)γ
a
G(g) =

r∑

a=1

Za(t)X
R
γa(g), with γa

G(1G) = γa.

Here γa
G is the fundamental vector field or infinitesimal generator of the left group translations

generated by γa, which is a right invariant vector field —see Appendix A for the notations.
In the language of (1.4), the differential system is

ġ(t) =
r∑

a=1

Za(t) γ
a
G(g(t)). (2.9)

The theorem says that for every choice of the functions Za(t) we have a (right invariant)
Lie–Scheffers system on the Lie group G, and any such system is of this form. The reader
should be aware, nevertheless, that for a system of the type (2.9) there might be more than
one superposition rule [17]. The reason one needs only one particular solution is precisely
the right invariance of the last equation: if g(t) is the solution such that g(t0) = 1, then
consider ḡ(t) := g(t) g0 for each g0 ∈ G. We have

˙̄g(t) = Tg(t)Rg0(ġ(t)) = Tg(t)Rg0

[
T1Rg(t)

(
r∑

a=1

Za(t)γ
a

)]
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= T1Rg(t)g0

(
r∑

a=1

Za(t)γ
a

)
=

r∑

a=1

Za(t)γ
a
G(ḡ(t)).

Equation XR(g) = T1RgX
R(1G) has been used. Therefore ḡ(t) is the solution of the same

equation (2.9) with ḡ(t0) = g0: the solution curves of the system are obtained from just
one of them by right-translations. In other words, the superposition functional (2.2) can be
symbolically expressed by Ψ(g(1), k) = g(1)k, with k ∈ G; for which always m = 1.

Lie–Scheffers systems live on manifolds which are not groups in general; however, they are
always associated with the action of a finite-dimensional Lie group on the manifold on which
Y (t; x) is defined; and this symmetry of the differential equation can be powerfully exploited
through the action of the group of curves on the group manifold on a set of systems of the
same type. This variant of Lie’s reduction method is of wide applicability; it is explained in
Appendix B.

Let us finally note than in control theory, say on M ≡ Rn, business is often with equations
of a form not unrelated to (2.9):

ẋ(t) = X1(x(t)) +
r∑

a=2

Za(t)Xa(x(t));

the functions Z2, . . . , Zr being the controls. In the most important cases the X1, . . . , Xr vec-
tor fields close to a finite-dimensional Lie algebra, or X2, . . . , Xr close to a finite-dimensional
Lie algebra.

3 Differential operators on Lie–Rinehart algebras

Let R be a commutative, unital ring and A a commutative algebra over R be given. A
derivation δ of A is a R-linear map from A to itself, such that δ(ab) = δa b+a δb. Since A is
commutative, the linear space Der(A) of such maps becomes an A-module when we define
(aδ)b = a δb. Moreover, with the usual bracket given by the commutator Der(A) is a Lie
algebra. In this paper R = C nearly always.

A left (right) action of a Lie algebra g on A is a Lie algebra homomorphism (antihomo-
morphism) α : g→ Der(A).

Definition 2. Assume that we are given a commutative algebra A and a Lie algebra g

which is also a faithful A-module. The pair (A, g) is a Lie–Rinehart algebra if there exists
an A-module morphism α : g → Der(A), called the anchor, satisfying the compatibility
condition

a[X, Y ] = [X, a Y ]− α(X)a Y, (3.1)

for a ∈ A, X, Y ∈ g. If we write ma for the multiplication operator ma(X) = aX and adX ,
as usual, for the adjoint operator adX(Y ) = [X, Y ], the compatibility condition is rewritten
as

[adX , ma] = mα(X)a.

Often, in the definition of Lie–Rinehart algebra, the apparently stronger condition that the
anchor be also a left action of g on A is required. But, as it turns out, these two definitions
are equivalent.
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The concept essentially coincides with Kastler and Stora’s Lie–Cartan pairs [19]. As
already indicated

(
F(M),X(M), id

)
is a Lie–Rinehart algebra. A more general example of

Lie–Rinehart algebra may be
(
F(M),Γ(M,E), α

)
, where Γ(M,E) is the F(M)-module of

sections of a vector bundle E over M , on which a Lie bracket and an anchor α (hence a
vector bundle map E → TM , denoted in the same way) are supposed given. If the fibres
have dimension bigger than one, then a linear map satisfying (3.1) is not only automatically a
Lie algebra morphism, but also a F(M)-module morphism. These geometrical examples are
called Lie algebroids. A Lie algebroid is called transitive when it is onto fibrewise; totally
intransitive when α = 0. For examples of this, consider a principal bundle P (M,G, π)
over M ; if V P is the vertical bundle over P , we have the exact sequences of vector bundles

0→ V P ↪→ TP → TM → 0 and 0→ V P/G ↪→ TP/G→ TM → 0;

the second being essentially the Atiyah sequence; and then (C∞(M),Γ(M,TP/G), Tπ/G)
is a transitive Lie algebroid; while

(
C∞(M),Γ(M,V P/G)

)
is totally intransitive.

Whenever we have a Lie–Rinehart algebra, we can algebraically define a differential
calculus. For instance a n-form is a skewsymmetric n-linear map from g to A. If we define d
on 1-forms by

dβ(X, Y ) = α(X)β(Y )− α(Y )β(X)− β
(
[X, Y ]

)
,

then certainly d can be extended so d2 = 0. Also, let V be an A-module. A V -connection
in the sense of [19, 20] is a linear assignment to each element X ∈ g of a linear map ρ(X) :
V → V such that, for v ∈ V ,

(
aρ(X)

)
v = a

(
ρ(X)

)
v; ρ(X)(av) = a ρ(X)v + α(X)a v.

If V is moreover a g-module, the connection is flat (as the curvature defined in the obvious
way vanishes).

A morphism (A, g) → (A′, g′) of Lie–Rinehart algebras is a pair (φ, ψ) of an algebra
morphism φ : A → A′ and an A-module morphism ψ : g → g′, where the action of A on g′

is given by aX ′ := φ(a)X ′, intertwining the anchors:

φ
(
α(X) a

)
= α′

(
ψ(X)

)
φ(a).

An important example by Grabowski is as follows [21]. A linear operator D : g → g is
called a quasi-derivation for A, and we write D ∈ QderA(g), if for each a ∈ A there exists

D̂(a) ∈ A —necessarily unique— such that [D,ma] = m bD(a), where the bracket is the usual

commutator. It is easily seen that D̂ ∈ Der(A). Then (idA, ad) : (A, g) →
(
A,QderA(g)

)
,

where ad : X 7→ adX , is a morphism of Lie–Rinehart algebras.
Our first example of Hopf algebra comes now across: the (universal) enveloping alge-

bra U(g) of the Lie algebra g. The enveloping algebra is Hopf because there is the diagonal
algebra homomorphism

∆ : U(g)→ U(g⊕ g) ' U(g)⊗ U(g) by X 7→ X ⊕X 7→ X ⊗ 1 + 1⊗X, ∆1 = 1⊗ 1,

for every X ∈ g.
When g = X(M), the enveloping algebra should not be confused with the algebra (with

the usual composition product) of differential operators D(M). It is true that the first-order
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elements of both are the vector fields, thus coincide. However, we are going to show that if
first order differential operators are to be considered primitive elements, then D(M) cannot
be given a natural Hopf algebra structure; we thank P. Aschieri for making us aware of
the following argument, since published [22]. Consider the linear map L : U(X(M)) →
D(M) obtained by extending the Lie derivative. This map is not onto because zeroth order
differential operators are functions, whereas the zeroth order elements of U(X(M)) are just
scalars. Actually, D(M) is aF(M)-module, while U(X(M)) is not. For this very reason D(M)
cannot be a Hopf algebra. Consider two commuting linearly independent vector fields X, Y
nonvanishing on a common domain (e.g. locally let X be the partial derivative ∂i and Y a
different one ∂j), and the vector fields aX, aY , where a is an arbitrary function, nonvanishing
on the same domain. The composition aLXLY = aLYLX is an element in D(M). Suppose
arguendo that there exist on D(M) a coproduct δ compatible with composition of operators,
and such that vector fields are primitives. We would have

δ(aLXLY ) = aLXLY ⊗ 1 + aLX ⊗ LY + LY ⊗ aLX + 1⊗ aLXLY and

δ(aLYLX) = aLYLX ⊗ 1 + aLY ⊗ LX + LX ⊗ aLY + 1⊗ aLYLX .

Now, the right hand sides are not equal. As a corollary we have that the map L is not
injective: the fact that in U(X(M)) one has a good coproduct implies that aX · Y is there
different ¿from aY ·X, with · the product in the enveloping algebra. Thus the kernel of L
contains aX · Y − aY ·X. Notice that the argument fails if M is one-dimensional. Notice
as well that δ makes D(M) into a good coalgebra over F(M). However, the product is then
not F(M)-linear.

In spite of the above, Hopf algebra renders us a first great service in helping to manufac-
ture D(M) out of U(X(M)). This involves a purely algebraic construction [11,23] suggested
by the previous discussion and better presented in the context of Lie–Rinehart algebras.

Assume for simplicity that A is unital. The universal object of (A, g) is by definition a
triple (U(A, g), ıA, ıg), where U(A, g) is an associative algebra, therefore a Lie algebra with
the usual commutator, together with morphisms ıA : A → U(A, g) and ıg : g → U(A, g),
respectively of algebras and Lie algebras, such that

ıA(a)ıg(X) = ıg(aX); [ıg(X), ıA(a)] = ıA(α(X)a);

and (U(A, g), ıA, ıg) is universal among these triples; that is, for a similar triple (B, φA, φg),
there is a unique algebra morphism ΦB : U(A, g)→ B such that ΦBıA = φA and ΦBıg = φg.

To construct U(A, g) we employ U(g) in the following way. The condition that the anchor
maps into derivations means precisely that A is a Hopf U(g)-module [3]. One may keep using
the same notation α for the new action, as for the generators; α(1) = 1. Consider now the
smash product or crossed product algebra AoU(g). This is the vector space A⊗U(g) with
the product defined on simple tensors by

(a⊗ u)(b⊗ v) := aα(u(1))b⊗ u(2)v,

where we use the standard Sweedler notation ∆u = u(1)⊗u(2). There are obvious morphisms
ı′A : A → AoU(g) and ı′

g
: g→ AoU(g). Now, let J be the right ideal generated in AoU(g)
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by the elements ab⊗X − a⊗ bX. One has

(c⊗X)(ab⊗ Y − a⊗ bY ) = cab⊗XY + cα(X)(ab)⊗ Y − ca⊗XbY − cα(X)a⊗ bY

= cab⊗XY + cα(X)a b⊗ Y + caα(X)b⊗ Y

− ca⊗ bXY − ca⊗ α(X)b Y − cα(X)a⊗ bY

= cab⊗XY − ca⊗ bXY + cα(X)a b⊗ Y − cα(X)a⊗ bY

+ caα(X)b⊗ Y − ca⊗ α(X)b Y,

where in the last equality we just reordered terms; hence J is two-sided. By construction
it is clear that the quotient U(A, g) := A o U(g)/J together with the obvious quotient
morphisms ıA and ıg possesses the universal property. Note that ıA is injective. A morphism
(φ, ψ) : (A, g)→ (A′, g′) induces a morphism of algebras U(φ, ψ) : U(A, g)→ U(A′, g′), and
vice versa; this is an equivalence of categories.

One obtains by this construction the ordinary algebra of differential operators D(M) =
U(F(M),X(M)). It is also clear that U(C, g) = U(g) with trivial action of g. Just like the
enveloping algebra, the universal algebra U(A, g) is filtered, with an associated graded object
gr U(A, g), which is a commutative graded A-algebra. There is also a Poincaré–Birkhoff–
Witt theorem for U(A, g) when g is projective over A—which is the case in the geometrical
examples. It claims that if SA[g] is the symmetric A-algebra on g, then the natural surjection

SA[g]→ gr U(A, g), (3.2)

is an isomorphism of A-algebras, rather like the S[g] ' gr U(g) effected, say, through the
‘symmetrization’ map σ : S[g]→ U(g). In that case ıg is of course injective.

4 Coming by Hopf algebra

We begin here a journey from the geometrical to the Hopf world. Let us start by some well-
known observations [24]. A smooth manifold M is determined by the linear space F(M), in
the sense that points of M are in one-to-one correspondence with a particular class of linear
functionals on F(M), to wit, multiplicative ones. One writes 〈x, h〉 := h(x) to express this
correspondence. As a consequence M ↪→ F ′(M), where F ′(M) is the space of compactly
supported distributions on M . We denote by CM the subspace of F ′(M) generated by the
points of M . It will sometimes be convenient to write Th = 〈T, h〉 for the value of the
distribution T ∈ F ′(M) at h ∈ F(M); accordingly we abbreviate to xh = h(x). Many other
geometrical objects can be expressed as functionals in this way; for instance, if vx ∈ TxM ,
then 〈vx, h〉 ≡ vxh is the derivative of h in the direction of the tangent vector vx at x.
Therefore TM ↪→ F ′(M), too. If X is a smooth vector field and Xh := X(h), then xX is
defined naturally by

(xX)h = x(Xh).

That is, xX = X(x); and we may omit the parentheses in xXh. An advantage of thinking
in this way is that operations in principle not meaningful on M make sense in F ′(M). For
instance, given a curve γ : Rt →M with γ(0) = x0, the definition

γ̇(0) = lim
ε↓0

γ(ε)− x0

ε
,
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which looks unacceptable on M , in F ′(M) just means that for all h ∈ F(M):

γ̇(0)h :=
〈
lim
ε↓0

γ(ε)− x0

ε
, h
〉

:= lim
ε↓0

h(γ(ε))− h(x0)

ε
.

Let now f : N → M be smooth. If S ∈ F ′(N), a corresponding element Sf is defined
in F ′(M) by

Sfh := S(f ∗h).

Clearly, xf = xf = f(x), and so S → Sf extends f to a map from F ′(N) to F ′(M).
Somewhat rashly, one denotes the extension by the same letter; with this notation, if vx is
a tangent vector at x ∈ N , the tangent vector Txf(vx) at f(x) ∈M would become vxf .

We may freely use the notation etX for the flow generated by a vector field X: if γX(t, x0)
is the integral curve of X going through x0 at t = 0 and xetX := γX(t, x), then the identity
d
dt

(
γX(t, x)

)
= X

(
γX(t, x)

)
acquires the linear look d

dt

(
xetX

)
= xetXX. We have indeed

linearized the dynamical system associated to X. In more detail: if xetXh := h
(
γX(t, x)

)
,

then

d

dt

(
xetX

)
h =

n∑

i=1

dxi

dt

∂h

∂xi

(
γX(t, x)

)
=

n∑

i=1

X i
(
γX(t, x)

) ∂h
∂xi

(
γX(t, x)

)

= Xh
(
γX(t, x)

)
=: xetXXh.

Linearization works as well for non-autonomous dynamical systems. Recall (1.4) under the
form:

ẋ = Y (t; x(t)); x(t0) = x0. (4.1)

For t given, the vector Y (t; x(t)) lives in the fibre over x(t). Denote

L(t, t0)h(x) = h(x(t)), for h ∈ F(M); then
dL(t, t0)

dt
= L(t, t0)Y (t);

with Y interpreted as the corresponding time-dependent vector field. This, as announced in
Section 1, is in the guise of (1.2). The Cauchy problem

ẋ = xL(t, t0); x(t0) = x0

has that of (4.1) as unique solution [25]. The difference with the finite-dimensional case is
of course substantial; at the analytical level this is discussed at the end of Section 11.

Linearization is precisely what Hopf algebra is about. Things become really interesting
when there is a symmetry group G of the manifold M . As pointed out in [26], linearization is
then a particularly good idea; for instance, often the action Φ is indecomposable (think of the
case M = G and lateral action) and so contains little information; whereas the linear actions
of G on F(M) and F ′(M) are generally decomposable (for instance when G = M = S1).
This is the point of harmonic analysis. For a fully algebraic description of these phenomena,
we try to regard F ′(G) and F(G), eventually restricting appropriately the functors F ′,F ,
as Hopf algebras.

There is no trouble in recognizing an algebra structure for the whole of F ′(G): this
is given just by convolution, which is a map F ′(G) ⊗ F ′(G) ↪→ F ′(G × G) → F ′(G).
If S1, S2 ∈ F

′(G), then S1 ∗ S2 is defined as the image µ(S1, S2), of the extended group
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multiplication µ : G×G → G. This is an associative operation [27]. We have in particular
g1 ∗ g2 = g1g2, for g1, g2 ∈ G. The unit element in F ′(G) is 1G. An augmentation on F ′(G)
is given by evaluation on the function 1 ∈ F(G):

η(S) = S1.

In particular η(g) = 1 for all g ∈ G. Clearly η(S1 ∗ S2) = η(S1)η(S2). A candidate antipode
is the extension of the inversion diffeomorphism ı : g 7→ g−1; certainly it is an algebra
antiautomorphism:

ı(S1 ∗ S2) = ı(S2) ∗ ı(S1).

In the sequel, the integral notation for convolution

(S1 ∗ S2)h
′ =

∫
dS1(g

′) dS2(g) h
′(g′g),

will be handy. A locally summable function h defines a distribution by h′ 7→
∫
h(g)h′(g) dg,

with dg a (left) invariant measure on G. For instance 1 ∈ F ′(G) if G is compact. Now S ∗ h
is defined by: ∫

dS(g′) h(g)h′(g′g) dg =

∫
dS(g′) h(g′

−1
g)h′(g) dg;

so we identify it with the function

g 7→

∫
dS(g′) h(g′

−1
g) =

∫
dS(gg′) h(g). (4.2)

Similarly, for h ∗ S:

∫
dS(g) h(g′)h′(g′g) dg′ =

∫
dS(g) h(g′g−1)h′(g′) δ(g−1) dg′;

where δ is the modular function, so we identify h ∗ S with g′ 7→
∫
dS(g) h(g′g−1) δ(g−1). In

particular,

h1 ∗ h2(g) =

∫

G

h1(g
′)h2(g

′−1
g) dg′ =

∫

G

h1(gg
′)h2(g

′−1
) dg′ =

∫
h1(gg

′−1
)h2(g

′) δ−1(g′) dg′.

To give F ′(G) a coalgebra structure, one might try the following strategy. The diagonal
homomorphism d : G→ G×G, given by g 7→ (g, g), extends to d : F ′(G)→ F ′(G×G), by
the repeatedly used procedure. However, F ′(G×G) is vastly bigger than F ′(G)⊗F ′(G). So
we look for convolution subalgebras O(G) of F ′(G) for which O(G×G) ' O(G)⊗O(G). For
a start, CG will do; and naturally the elements of G, when regarded as elements of F ′(G),
are grouplike in the sense of Hopf algebra theory: for h1, h2 ∈ F(G):

〈∆g, h1 ⊗ h2〉 = 〈g, µ(h1 ◦ d⊗ h2 ◦ d)〉 = 〈g ⊗ g, h1 ⊗ h2〉.

The Hopf algebra CG is too small for our purposes. Nonetheless, recall that the tangent
algebra g of G also sits inside F ′(G). The discussion around (A.6) in Appendix A allows
us to regard the elements of g as right invariant differential operators on G. So let us focus
on the subalgebra DR(G) ( D(G) of right invariant differential operators on F(G). There is
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great advantage in regarding any D ∈ D(G) as extended to distributions by (DS)h = D(Sh).
Now, DR(G) can be realized as the algebra of distributions on G with support at 1G. In
effect, look first at the fundamental vector fields ξG ≡ XR

ξ . From (4.2), we see that in general

ξG(S ∗ h) = ξG(S) ∗ h; as 1G ∗ h = h, we conclude ξG(h) = ξG(1G) ∗ h.

For any element D of DR(G) analogously D(h) = D(1G)∗h. Note thatD(1G) is a distribution
concentrated at 1G. Moreover,

DD′h = D(1G) ∗D′(1G) ∗ h,

so the map D 7→ D(1G) is a homomorphism. It is in fact an isomorphism, as any distribution
vanishing outside a point is a finite sum of derivatives of a Dirac function; thus conversely
D can be written as a polynomial in the right invariant vector fields.

Therefore we have a new subalgebra of F ′(G). Let us just write ξ for ξG(1G). Further-
more, by the Leibniz rule we are able to define the shuffle coproduct:

∆ξ = ξ ⊗ 1 + 1⊗ ξ. (4.3)

This extends to DR(G)(1G) as an algebra homomorphism. Naturally (4.3) says that the
elements of g, when regarded as elements of F ′(G), are primitive in the sense of Hopf algebra
theory. A little more work shows that in fact DR(G) ' U(XR(G)) ≡ U(g), the algebra of
right invariant differential operators coincides with the enveloping algebra of the Lie algebra
of fundamental vector fields for the left action of G on itself. Also we remark here that the
equivalence of the Lie algebra structures considered on T1G in Appendix A can be seen from

ξ ∗ η − η ∗ ξ = [ξ, η];

see [28].
Our O(G) will be the convolution algebra generated by U(g) ≡ DR(G)(1G) and CG; this

is a Hopf crossed product [3], as g ∗ ξ ∗ g−1 = Adg ξ, and similarly for more general elements
of U(g); it can be also regarded as a completion of the latter. Note ∆ ◦ i = (i ⊗ i)∆ as
well; we invite the reader to check the rest of the expected Hopf algebra properties. By
the way, extending Ad to S(g) as well, it is found that the symmetrization map mentioned
after (3.2) intertwines both actions ofG. The centre Z(g) of left and right (Casimir) invariant
differential operators is clearly a commutative algebra, isomorphic to the algebra of the
G-invariant elements in S(g) —this states a strong form of the Gelfand–Harish–Chandra
theorem.

One begins to feel the power of the Hopf algebra approach: equations (1.1) and (1.2)
make sense in O(G) without further ado; we are allowed to write for them

ġ(t) ∗ g−1(t) = ξ(t), g(t0) = 1G or ġ(t) = ξ(t) ∗ g(t), g(t0) = 1G; (4.4)

similarly for (1.2):

g−1(t) ∗ ġ(t) = η(t), g(t0) = 1G or ġ(t) = g(t) ∗ η(t), g(t0) = 1G;

The rigorous but roundabout arguments at the end of Section 3 are simplified thereby.
Moreover the possibility of considering interpolated equations, of the form

g−a(t) ∗ ġ(t) ∗ g−b(t) = κ(t), with a + b = 1,
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opens distinctly [29]. This is uninvestigated.
Before leaving F ′(G), let us note that we refrained from pondering distributions with

point supports other than the elements of G. This would have allowed us in particular to
consider TG ↪→ F ′(G); and then g ∗ vg′ = gvg′, vg′ ∗ g = vg′g —see (A.4) in Appendix A.
However, one should not believe vg ∗ vg′ = vgvg′ ; that is, O(TG) does not embed into F ′(G).

It is well known that the subalgebra R(G) of ‘representative functions’ in F(G), with
its ordinary commutative multiplication, is also a Hopf algebra. The space R(G) is made
of those functions whose translates x 7→ h(xt), for all t ∈ G, generate a finite-dimensional
subalgebra of F(G). Then also R(G) is endowed with a coproduct in which

∆h ∈ R(G)⊗R(G) is given by ∆h(x, y) :=
(
h(1) ⊗ h(2)

)
(x, y) := h(xy); (4.5)

which is not cocommutative, unless G is abelian. One has:

η(h) = h(1); Sh(g) = h(g−1).

Both previous constructions of O(G) and R(G) are mutually dual. Questions of duality are
delicate in Hopf algebra theory; fortunately we need not deal with them in particular detail.
The main point there is the following. Given any Hopf algebra H and an algebra A, one
can define [3] the algebraic convolution of two C-linear maps f, h ∈ Hom(H,A) as the map
f ∗ h ∈ Hom(H,A) given by the composition

H
∆
−→ H ⊗H

f⊗h
−−→ A⊗ A

mA−−→ A.

Here mA denotes the product map from A ⊗ A to A. Because of coassociativity of ∆, the
triple

(
Hom(H,A), ∗, uAηH =: ηA

)
is an associative algebra with unit. Now, for A = C,

the Hopf algebraic definition of convolution on O(G) as a dual of R(G) coincides with the
analytical one.

Algebra morphisms respect convolution, in the following way

`(f ∗ h) = `f ∗ `h; similarly (f ∗ h)` = f` ∗ h`,

if ` is a coalgebra morphism. Clearly the antipode S is the inverse of the identity map id
for the convolution product of endomorphisms of H [3]. If f ∈ Hom(H,A) is an algebra
morphism, using the convolution product of End(H) one finds that its composition fS with
the antipode is a convolution inverse for f :

f ∗ fS = f(id ∗ S) = fuHηH = ηA = f(S ∗ id) = fS ∗ f.

Denote by Homalg(H,A) the convolution monoid —with unit element the map ηA— of multi-
plicative morphisms of H on the algebra A. In general fS does not belong to Homalg(H,A);
but it does when the algebra A is commutative. Moreover, if A is commutative, the convo-
lution product of two multiplicative maps is again multiplicative, so Homalg(H,A) becomes
a group, that we may call GH(A). In particular, this happens for the set GH(C) of scalar
characters, and for GH(H) if H is commutative. Thus we have a (representable by defini-
tion) functor GH going from commutative Hopf algebras to groups. We may call GH an
‘affine group scheme’. If we suppose H to be graded, connected (meaning that the scalars
are the only elements in degree zero) and of finite type, then GH(C) is a projective limit of
triangular matrix groups. An important example is studied in Appendix D.
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In general there will be only an embedding —that can be made continuous— of G into
the group GR(G)(R) of characters of R(G); under favourable circumstances (for instance,
for G compact, thanks to the Peter–Weyl theorem) both groups coincide. Also if A is
commutative then Hom(H,A) is an A-algebra. Then a Lie algebra gH(A) can be obtained
as well by considering the elements L (‘infinitesimal characters’) of Hom(H,A) satisfying the
Leibniz rule

L(cd) = ηA(c)Ld+ ηA(d)Lc,

for all c, d ∈ H. The bracket [L1, L2] := L1 ∗ L2 − L2 ∗ L1 of two infinitesimal characters is
an infinitesimal character, and so we have a functor gH from commutative algebras to Lie
algebras. Needless to say, under favourable circumstances gR(G)(R) is just g.

To summarize, the situation is here quite different of that examined in Section 2, whereby
we showed D(G) � U(X(G)), whereas DR(G) ∼ U(XR(G)). Notice that DR(G) can be
expressed directly in Hopf theoretic terms, as follows: a derivation of the commutative
algebra R(G) belongs to DR(G) iff it is of the form L ∗ id, with L an infinitesimal character
of R(G). Here the convolution of an endomorphism of R(G) and an element of O(G) is
clearly well defined; and indeed

L ∗ id(h1h2) = D(h1)h2 + h1D(h2),

after a short calculation. Right invariance of L∗id is clear. Reciprocally ηD is an infinitesimal
character. All this is in [30].

The books [28, 31, 32] and the review article [33] are good references for most of this
section.

5 Some structure results for Hopf algebras

Familiarity with the tensor T (V ) and cotensor (or shuffle) T ∗(V ) Hopf algebras is very
convenient; we survey them here. Consider a countable basis B = { v1, . . . , vp, . . . } of the
vector space V , and think of it as an alphabet, a word of this alphabet being a finite sequence
of v’s. We let T ∗(V ) be the vector space generated by the set of words and 1 (corresponding
to the empty word). The length of a word w = vi1 · · ·vin is denoted by |w| = n; naturally
|1| = 0. Introduce a noncocommutative (deconcatenation) coproduct on T ∗(V ) by the
formulae ∆1 = 1⊗ 1 and

∆w =

n∑

p=0

vi1 · · · vip ⊗ vip+1 · · · vin,

with the agreement that when all the terms are on the one side of the tensor sign there is
a 1 on the other side. Notice that

(∆⊗ id)∆(vi1 · · · vin) =
∑

0≤p≤q≤n

vi1 · · · vip ⊗ vip+1 · · ·viq ⊗ viq+1 · · · vin = (id⊗∆)∆(vi1 · · · vin),

understanding that when p = q the middle term of the summand is 1. Hence
(
T ∗(V ),∆, η

)
,

where η : T ∗(V )→ R is defined by η(1) = 1 and η(w) = 0 if |w| > 0, is indeed a coalgebra;
by the way, any commutative Q-algebra at the place of the real numbers would do here. The
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dual vector space consists of all infinite series of the form
∑
λIv

′
I , where I = { i1, . . . , in }

and v′I denotes the dual of vI := vi1 · · · vin . It becomes an algebra with product

〈v′Jv
′
K, vI〉 := 〈v′J ⊗ v

′
K,∆vI〉.

Since the right hand side vanishes unless J∪K = I as ordered sets, and in that case equals 1,
this product is simply concatenation:

v′Jv
′
K = v′j1 · · ·v

′
jm
v′k1
· · · v′kl

.

In other words, this dual is the algebra R[[B ′]] of noncommutative formal power series in the
variables vi, which is the (Krull topology) completion of the algebra R[B ′] of noncommutative
polynomials in the same variables —that is the tensor algebra T (V ), as tensor product is
given by concatenation.

It is clear that T (V ) is a free associative algebra on B ′ [34]. Moreover, if L(B ′) is the
free Lie algebra on B ′, from the universal properties of L(B ′) and of U

(
L(B′)

)
it follows

that also U
(
L(B′)

)
is a free associative algebra on B ′; therefore T (V ) = U

(
L(B′)

)
. In

particular, we have a Hopf algebra structure on T (V ), which is inherited by its completion.
Their cocommutative coproduct is given on monomials by the formula

∆(v′i1 · · · v
′
in) =

n∑

p=0

∑

σ∈Sn,p

v′σ(i1) · · ·v
′
σ(ip) ⊗ v

′
σ(ip+1) · · · v

′
σ(in).

Here we deal with (p, n − p)-shuffles, that is, permutations σ of [n] = { 1, . . . , n } such that
σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(n); we write σ ∈ Sn,p. From this coproduct we
obtain a product t on T ∗(V ) by dualization:

〈v′I , vJ t vK〉 := 〈∆v′I , vJ ⊗ vK〉. (5.1)

Explicitly, the commutative shuffle product t is given by

vi1 · · · vip t vip+1 · · · vin =
∑

σ∈Sn,p

viσ(1)
· · ·viσ(n)

.

For instance vivj t vk = vivjvk + vivkvj + vkvivj and

vivj t vkvl = vivjvkvl + vivkvjvl + vivkvlvj + vkvivjvl + vkvivlvj + vkvlvivj.

It is also easy to check the following formula, which can be employed as a recursive definition
of the shuffle product:

vi1 · · · vip t vip+1 · · · vin = (vi1 · · · vip t vip+1 · · ·vin−1)vin + (vip+1 · · ·vin t vi1 · · ·vip−1)vip .

The coproduct on T ∗(V ) and t are compatible since they are respectively obtained by dual-
ization of the product and coproduct of the Hopf algebra R[[B ′]]. The resulting commutative,
connected, graded Hopf algebra Sh(V ) ≡ T ∗(V ) is called the shuffle Hopf algebra over V .
The construction does not depend on the choice of the basis B, since all the algebras involved
only depend on the cardinality of B. The antipode on T (V ) is given by

S(v′1 · · · v
′
n) = (−1)nv′n · · · v

′
1;

by duality the same formula holds on Sh(V ).
Every polynomial P ∈ R[B ′] can be written in the form P =

∑
n Pn where Pn is the sum

of all monomials of P of degree n. It is called a Lie element if P0 = 0 and each Pn belongs to
the free Lie algebra generated by the v′i. The following is a classical theorem by Friedrichs.
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Theorem 5.1. A polynomial P is a Lie element if, and only if, it is primitive.

Proof. The ‘only if’ part follows easily by induction from the obviously true assertion for
n = 1. To prove the converse we invoke in context the Dynkin operator D, for whose study
we recommend [29,35,36]. An abstract definition of D is D = S∗Y , where Y is the derivation
given by the grading; equivalently id ∗D = Y . If Pn is primitive, then so are

nPn = Y Pn = π(id⊗D)(1⊗ Pn + Pn ⊗ 1) = D(Pn);

and vice versa. But D(Pn) is a Lie element, as it corresponds to the left-to-right bracketing:

D(xi1 . . . xin) = [. . . [[xi1 , xi2 ], xi3 ], . . . , xin] (the Dynkin–Specht–Wever theorem).

To prove the last equality, note that it is true for |w| = 1. Assume that it holds for all words
of degree less than n, and let w = xxin = xi1 · · ·xin . Then

∆w = ∆x∆xin = (x(1) ⊗ x(2))(xin ⊗ 1 + 1⊗ xin) = x(1)xin ⊗ x(2) + x(1) ⊗ x(2)xin .

Since Sxin = −xin and η(x) = 0,

(S ∗ Y )w = S(x(1)xin)Y x(2) + Sx(1)Y (x(2)xin)

= S(xin)Sx(1)Y x(2) + Sx(1)Y x(2)xin + Sx(1)x(2)Y xin

= −xinSx(1)Y x(2) + Sx(1)Y x(2)xin

= [Dx, xin ] = [. . . [[xi1 , xi2 ], xi3 ], . . . , xin ],

upon using the induction hypothesis in the last equality. (The definition D = Y ∗ S would
work the same, yielding right-to-left bracketing.)

When V is finite dimensional, the previous argument of Friedrichs’ theorem goes through
for formal power series, because the homogeneous components are polynomials, and there is
only a finite number of words of a given length. In the infinite-dimensional case Lie series
are defined as those such that their projections to any finite-dimensional subspace Ṽ are Lie
series over Ṽ , so the theorem also holds for series in the infinite-dimensional context [34,
Section 3.1].

Given a power series Z, let us denote by (Z,w) the coefficient of the word w in Z. The
topology in R[[B′]] alluded above is the weakest topology such that for each w the mapping
Z 7→ (Z,w) is continuous, when R is equipped with the discrete topology. In particular,
the neighbourhoods of 0 are indexed by finite sets of words, and correspond to those series
whose coefficients vanish on all the words of the given finite set. Thus, given a sequence of
series (Zn) such that for each neighbourhood of 0, all but a finite number of Zn’s are in this
neighbourhood, their sum

∑
n Zn is defined as the power series Z satisfying

(Z,w) =
∑

n

(Zn, w).

This sum makes sense since only finitely many terms are different ¿from zero for each w.
Notice that Z can be written as Z =

∑
w(Z,w)w, where the sum runs over the set of words.

(Henceforth we shall no longer be fussy on ‘topological’ matters.)
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When Z is a series such that (Z, 1) = 0, then the expression
∑

n λnZ
n has a meaning for

any choice of the numbers λn. In particular, we may define exponentials and logarithms as
usual:

exp(Z) =

∞∑

n=0

Zn

n!
and log(1 + Z) =

∞∑

n=1

(−1)n−1

n
Zn,

As expected
log
(
exp(Z)

)
= Z, and exp

(
log(1 + Z)

)
= 1 + Z.

and routine calculations establish that exp is a bijection from the set of primitive elements
in the completion of T (V ) into the set of grouplike elements, and vice versa for log.

Equation (5.1) entails

∆Z =
∑

w,x

(Z,w t x)w ⊗ x.

Since for grouplike elements ∆Z =
∑

w,x(Z,w)(Z, x)w⊗ x, it follows that

(Z,w t x) = (Z,w)(Z, x), (5.2)

for them. This of course means that the grouplike elements of R[[B ′]] are precisely those Z
for which the map w 7→ (Z,w) is an algebra homomorphism for the shuffle product. This
characterization is originally due to Ree [37].

We collect next some elements of structure theory of commutative or cocommutative
Hopf algebras —mostly due to Patras [38, 39]— beginning by a ‘double series’ argument
similar to the one in [34] for the shuffle-deconcatenation Hopf algebra.

Consider, for H =
⊕∞

m H(m) a graded connected commutative Hopf algebra with aug-
mentation ideal H+ and graded dual H ′, a suitable completion H ⊗ H ′ of the tensor pro-
duct H ⊗H ′. This is a unital algebra, with product m⊗∆t and unit 1⊗ 1. Now by Leray’s
theorem —an easy dual version of the Cartier–Milnor–Moore theorem— our H is a symmet-
ric algebra over a supplement V of H2

+ in H+ [3, 39]. Let A index a basis for V , let Ã (the
monoid freely generated by A) index the words Xu, and let Zu denote an element of the dual
basis in H ′; then the product on H ⊗ H ′ is given by the double series product:

( ∑

u,v∈Ã

αuvXu ⊗ Zv

)( ∑

w,t∈Ã

βwtXw ⊗ Zt

)
:=

∑

u,v,w,t∈Ã

αuvβwtXuXw ⊗ ZvZt.

The linear embedding EndH → H ⊗ H ′ given by

f 7→
∑

u∈Ã

f(Xu)⊗ Zu,

is really a convolution algebra embedding

(EndH, ∗)→ (H ⊗ H ′, m⊗∆t).
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Indeed,
(∑

u∈Ã

f(Xu)⊗ Zu

)(∑

v∈Ã

g(Xv)⊗ Zv

)
=
∑

u,v∈Ã

f(Xu)g(Xv)⊗ ZuZv

=
∑

t∈Ã

( ∑

u,v∈Ã

f(Xu)g(Xv) 〈ZuZv, Xt〉

)
⊗ Zt

=
∑

t∈Ã

( ∑

u,v∈Ã

f(Xu)g(Xv) 〈Zu ⊗ Zv,∆Xt〉

)
⊗ Zt

=
∑

t∈Ã

f ∗ g(Xt)⊗ Zt. (5.3)

Notice that the identities uη for convolution and id for composition in EndH correspond
respectively to

uη 7→ 1⊗ 1 and id 7→
∑

u∈Ã

Xu ⊗ Zu.

Denote

π1(Xw) :=
∑

k≥1

(−1)k−1

k

∑

u1,...,uk 6=1

〈Zu1 · · ·Zuk
, Xw〉Xu1 · · ·Xuk

=: log∗ idXw.

Using the same idea as in (5.3), we get

log

(∑

u∈Ã

Xu ⊗ Zu

)
:=
∑

k≥1

(−1)k−1

k

(∑

u6=1

Xu ⊗ Zu

)k

=
∑

k≥1

(−1)k−1

k

∑

u1,...,uk 6=1

Xu1 · · ·Xuk
⊗ Zu1 · · ·Zuk

=
∑

w∈Ã

∑

k≥1

(−1)k−1

k

∑

u1,...,uk 6=1

〈Zu1 · · ·Zuk
, Xw〉Xu1 · · ·Xuk

⊗ Zw

=
∑

w∈Ã

π1(Xw)⊗ Zw. (5.4)

We moreover consider the endomorphisms πn := π∗n
1 /n! so that, by (5.3):

∑

w∈Ã

πn(Xw)⊗ Zw =
1

n!

(∑

v∈Ã

π1(Xv)⊗ Zv

)n

.

We may put π0 := uη. Thus, if a ∈ H is of order n, πm(a) = 0 for m > n. Furthermore,
for n > 0,

id∗la = exp∗(log∗(id∗l)) a =

n∑

m=1

(log∗(id∗l))m

m!
a =

n∑

m=1

lm
(log∗ id)m

m!
a =

n∑

m=1

lmπm(a). (5.5)

In particular id =
∑

m≥0 πm. The graded maps id∗n are called the Adams operations or
characteristic endomorphisms of H; they play an important role in the (Hochschild, cyclic)
cohomology of commutative algebras [40–42]. The πn are often called Eulerian idempotents.
We have for them:
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Proposition 5.2. For any integers n and k,

id∗n id∗k = id∗nk = id∗k id∗n. (5.6)

and
πmπk = δmk πk. (5.7)

Proof. The first assertion is certainly true for k = 1 and all integers n, and if it is true for
some k and all integers n, then taking into account that id is an algebra homomorphism, the
induction hypothesis gives

id∗n id∗k+1 = id∗n(id∗k ∗ id) = id∗nk ∗ id∗n = id∗n(k+1).

Substituting the final expression of (5.5) in (5.6), with very little work one obtains (5.7). So
indeed the πk form a family of orthogonal projectors.

Thus the space H =
⊕∞

m H(m) always has the direct sum decomposition

H =
⊕

n≥0

Hn :=
⊕

n≥0

πn(H). (5.8)

Moreover, from (5.5),
id∗lHn = lnHn,

so the Hn are the common eigenspaces of the operators id∗l with eigenvalues ln. Thus, the
decomposition (5.8) turns H into a graded algebra. Indeed, if a ∈ Hr and b ∈ Hs, then

id∗l(ab) = id∗la id∗lb = lr+s(ab),

and therefore m sends Hr ⊗Hs into Hr+s. We shall denote by π
(m)
n the restriction of πn to

H(m), the set of elements of degree m, with respect to the original grading.

If H is cocommutative instead of commutative, the previous arguments go through. One
then has

log

(∑

u∈Ã

Xu ⊗ Zu

)
=
∑

w∈Ã

Xw ⊗ π1(Zw).

Furthermore, in this case the Eulerian idempotents of H are the transpose of the Eulerian
idempotents of the graded commutative Hopf algebra H ′. In particular, for H cocommuta-
tive, π1(H) = P (H), the Lie algebra of primitive elements in H. This is easily sharpened into
the following version [39] of the Cartier–Milnor–Moore theorem: the inclusion π1(H) ↪→ H
extends to an isomorphism of U

(
π1(H)

)
with H.

6 The CBHD development and Hopf algebra

There are three paradigmatic methods (and sundry hybrid forms) to deal with first order
non-autonomous differential equations: the iteration formula or Dyson–Chen expansional,
the Magnus expansion and the product integral. For reasons expounded later, at the begin-
ning of Section 10, in this paper we look first for the Magnus expansion [6]. In the influential
paper [43] dealing with the latter method (although Magnus’ seminal contribution is not
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mentioned) the famous Campbell–Baker–Hausdorff–Dynkin (CBHD) formula in Lie algebra
theory is shown to be a special case of general formulas for the solution of (1.2). This is
scarcely surprising, as that solution involves some kind of exponential with non-commuting
exponents; also the quest for ‘continuous analogues’ of the CBHD formula was a motivation
for Chen’s work. Conversely, a heuristic argument for obtaining Magnus’ expansion from the
CBHD formula has been known for some time [13, 44]; and a routine, if rigorous and Hopf
flavoured as well, derivation of Magnus’ method from CBHD is available in [45]. Hence the
interest, as a prelude to our own derivation of the Magnus expansion from the CBHD devel-
opment (that will employ the concept of nonlinear CBHD recursion and Rota–Baxter theory
techniques) of rendering the proof of the CBHD expansion in Hopf algebraic terms. This
was recognized as the deeper and more natural approach to the subject some fifteen years
ago, but remains to date woefully ignored. Standard treatments of the CBHD development
can be found in good Lie group theory books like [46].

In the sequel we follow [47] and [48]. It will be soon clear to the reader, according
to the previous discussion, that the CBHD formulae are universal; thus we can as well
return to the case where H is the Hopf tensor algebra T (V ) and where V possesses a basis
B = {X1, . . . , Xn }. The CBHD series

∑
m≥1 Φm(X1, . . . , Xn) is defined by

∑

m≥1

Φm(X1, . . . , Xn) = log
(
eX1 · · · eXn

)
,

where Φm(X1, . . . , Xn) are homogeneous polynomials of degree m.
Now, if a is a grouplike element in a Hopf algebra H, and f, h ∈ Hom(H,A), where A is

a unital algebra, then
f ∗ h(a) = f(a)h(a).

In particular

log
(
eX1eX2 · · · eXn

)
= log∗ id

(
eX1eX2 · · · eXn

)
=: π1

(
eX1eX2 · · · eXn

)
. (6.1)

Take first n = 2. Then Φm(X, Y ) = π
(m)
1

(
eXeY

)
. The Cauchy product gives

eXeY =
∑

m≥0

(
m∑

i=0

X i

i!

Y n−i

(n− i)!

)
,

hence

Φm(X, Y ) =
∑

i+j=m

1

i!j!
π

(m)
1 (X iY j).

A similar argument entails the following proposition.

Proposition 6.1.

Φm(X1, . . . , Xn) =
∑ 1

i1! · · · in!
π

(m)
1 (X i1

1 X
i2
2 · · ·X

in
n ), (6.2)

where the sum runs over all vectors (i1, . . . , in), with nonnegative coordinates, such that
i1 + · · ·+ in = m.
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Denote by ϕn(X1, . . . , Xn) the ‘multilinear’ part of Φn(X1, . . . , Xn) —that is, the ho-
mogeneous polynomial of degree n that consist of those monomials of Φn(X1, . . . , Xn) that
include all the Xi’s. This amounts to take X2

i = 0 in Φn(X1, . . . , Xn), for all i. So by (6.1)

ϕn(X1, . . . , Xn) = π
(n)
1 (X1 · · ·Xn),

since in that case

eX1 · · · eXn = (1 +X1) · · · (1 +Xn)

=
∑

i

Xi +
∑

i<j

XiXj +
∑

i<j<k

XiXjXk + · · ·+X1 · · ·Xn. (6.3)

Now, if Xσ := (X1, . . . , Xn) · σ := (Xσ(1), . . . , Xσ(n)) denotes the standard right action
of the symmetric group Sn on V ⊗n, then the monomials that include all the Xi’s are of the
form Xσ, therefore

π
(n)
1 (X1 · · ·Xn) =

∑

σ∈Sn

cσXσ,

for some coefficients cσ, that we shall determine in a moment.

Proposition 6.2.

π
(n)
1 (X1 · · ·Xn) =

∑

σ∈Sn

(−1)d(σ)

n

(
n− 1

d(σ)

)−1

Xσ. (6.4)

where d(σ) is the number of descents of σ, that is, the number of ‘errors’ in ordering con-
secutive terms in σ(1), . . . , σ(n).

Proof. Assume that σ has d descents, say in n0, n0 + n1, n0 + n1 + · · · + nj−1, set nj =
n−n0−· · ·−nj−1 and let Z =

∑
iXi +

∑
i<j XiXj + · · ·+X1 · · ·Xn. By (6.3), eX1 · · · eXn =

Z + Y , where Y is a collection of terms that contains at least one factor of the form X 2
i ,

therefore they will not contribute to the coefficient of Xσ, and we neglect them. Now, since

log(1 + Z) =
∑ (−1)j

j
Zj we have to compute the contribution c(j) from each power Z j.

Suppose that the monomial Xσ(1) · · ·Xσ(n0) is built ¿from j1 monomials of Z, and in
general that each monomial Xσ(n0+···+ni−1+1) · · ·Xσ(n0+···+ni) is the product of ji monomials
of Z. Notice that there are

(
ni−1
ji−1

)
manners to construct each monomial, in such a way,

because Xσ(n0+···+ni−1+1) is always in the first monomial, and once the first ji− 1 monomials
are chosen, the last monomial is fixed since σ is increasing in each segment. Thus

c(j) =
∑

(j0,...,jd)

(
n0 − 1

j0 − 1

)(
n1 − 1

j1 − 1

)
· · ·

(
nd − 1

jd − 1

)
,

where the sum extends over all vectors (j0, . . . , jd) satisfying j0 + · · ·+ jd = j. Since
(

nk−1
jk−1

)
is

the coefficient of xjk−1 in the binomial expansion of (1+x)nk−1, and
∑d

i=0(ji−1) = j−d−1,
c(j) is the coefficient of xj−d−1 in

d∏

i=0

(1 + x)nk−1 = (1 + x)
Pd

i=0(ni−1) = (1 + x)n−d−1,
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we therefore conclude that

c(j) =

(
n− d− 1

j − d− 1

)
.

Now, we have j ≤ n since Xσ has n letters. Also j ≥ d + 1 as Xσ is broken in d + 1 parts.
Therefore

cσ =
n∑

j=d+1

(−1)j−1

j

(
n− d− 1

j − d− 1

)
= (−1)d

m∑

i=0

(−1)i

i+ d+ 1

(
m

i

)
,

where m = n− d− 1. Now, from the binomial identity
∫ 1

0

(1− x)mxd dx =

m∑

i=0

(−1)i

(
m

i

)∫ 1

0

xi+d dx =

m∑

i=0

(−1)i

i+ d+ 1

(
m

i

)
.

Finally, a simple induction, using integration by parts, gives
∫ 1

0

(1− x)mxd dx =
d!m!

(m+ d+ 1)!
=

1

m+ d+ 1

(
d+m

d

)−1

=
1

n

(
n− 1

d

)−1

.

Our task is over. But the number of descents will reappear soon enough.

This construction performed here is arguably more elegant and simpler than the standard
treatments of the CBHD development by purely Lie algebraic methods. We came in by the
backdoor, using the bigger free associative algebra, knowing that log

(
eX1 · · · eXn

)
—and each

of its homogeneous parts— is primitive, i.e., a Lie element; and that we have the Dynkin
operator to rewrite it in terms of commutators.

Let us exemplify with the case n = 2. Obviously we have

Φ1(X, Y ) = X + Y ; Φ2(X, Y ) =
1

2
[X, Y ].

Now,

π
(3)
1 (X1X2X3) =

1

3
X(123) −

1

6

(
X(132) +X(213) +X(231) +X(312)

)
+

1

3
X(321).

Therefore

Φ3(X, Y ) =
1

2
(π

(3)
1 (X2Y ) + π

(3)
1 (XY 2))

=
1

2

(
1

6
X2Y −

1

3
XYX +

1

6
Y X2 +

1

6
XY 2 −

1

3
Y XY +

1

6
Y 2X

)

=
1

12
([[X, Y ], Y ]− [[X, Y ], X]) .

Both cubic Lie elements appear in Φ3. Similarly

π
(4)
1 (X1X2X3X4) =

1

4
X(1234) −

1

12

(
X(1243) +X(1324) +X(1342) +X(1423) +X(2134)

+X(2314) +X(2341) +X(2413) +X(3124) +X(3412) +X(4123)

)

+
1

12

(
X(1432) +X(2143) +X(2431) +X(3142) +X(3214) +X(3241)

+X(3421) +X(4132) +X(4213) +X(4231) +X(4312)

)
−

1

4
X(4321)
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We concentrate on X2Y 2, as it is clear that most terms coming from X3Y or XY 3 will
vanish; and in fact the corresponding contributions in toto come to naught. We obtain

Φ4(X, Y ) = −
1

192

(
4XYXY + 2XY 2X + 2Y X2Y − 3Y XYX − 2XY 2X − 3Y X2Y

)

= −
1

24
[[[X, Y ], X], Y ].

The identity of Jacobi has been used, under the form

[[[X, Y ], X], Y ] = [[[X, Y ], Y ], X].

It is remarkable that the other quartic Lie elements, [[[X, Y ], X], X] and [[[X, Y ], Y ], Y ], do
not appear in the fourth degree term.

7 Rota–Baxter maps and the algebraization of integration

This paper draws inspiration partly from [30], where Connes and Marcolli have introduced
logarithmic derivatives in the context of Hopf algebras. Our intent and methods are different;
but it is expedient to dwell here a bit on their considerations. Given H and A commutative
as in the last part of Section 4, and a derivation δ on A, for a multiplicative map φ ∈ GH(A)
Connes and Marcolli define two maps in Hom(H,A) by δ(φ) := δ ◦ φ, and then

Dδ(φ) := φ−1 ∗ δ(φ)

This yields an A-valued infinitesimal character. Indeed, using Sweedler’s notation and mul-
tiplicativity of φ ∈ GH(A), one has

Dδ(φ)[cd] = φ−1 ∗ δ(φ)[cd] = mA(φ−1 ⊗ δ(φ))∆(cd) = φ−1(c(1)d(1))δ(φ(c(2)d(2)))

= φ−1(c(1))φ
−1(d(1))

(
δ(φ(c(2)))φ(d(2)) + φ(c(2))δ(φ(d(2)))

)

= φ−1(c(1))δ(φ(c(2)))φ
−1(d(1))φ(d(2)) + φ−1(c(1))φ(c(2))φ

−1(d(1))δ(φ(d(2)))

= Dδ(φ)[c]ηA(d) + ηA(c)Dδ(φ)[d].

Therefore Dδ(φ) belongs to gH(A).
The Dynkin operator appearing in Section 5 —one of the fundamental Lie idempotents in

the theory of free Lie algebras [34,36]— is a close cousin of the logarithmic derivative Dδ(g).
Consider GH(H), for H connected and graded. The grading operator Y is a derivation of H

Y (hh′) = Y (h)h′ + hY (h′) =: |h|hh′ + hh′|h′|.

The map Y extends naturally to a derivation on End(H). With f, g ∈ End(H) and h ∈ H
we find

Y (f ∗ g)(h) := f ∗ g (Y (h)) = |h|(f ∗ g)(h) = |h|f(h(1))g(h(2))

= |h(1)|f(h(1))g(h(2)) + |h(2)|f(h(1))g(h(2)) = Y f ∗ g (h) + f ∗ Y g (h),

where we used that ∆(Y (h)) = |h|∆(h) =
(
|h(1)| + |h(2)|

)
h(1) ⊗ h(2). Now, as before,

convolution of the antipode S with the derivation Y of H defines a Dynkin operator, to be
interpreted as an H-valued infinitesimal character [29].
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Suppose we have a smooth map t 7→ L(t) from Rt to gH(A). We could say that one of
the main aims of this paper is to solve for g(t) the initial value scheme

Dd/dt

(
g(t)

)
= L(t); g(0) = ηA, (7.1)

at least for (real and) complex points. Now, both the classical notions of derivation and
integration have interesting generalizations. It would then be a pity to limit ourselves to the
classical framework; and so we now jump onto a somewhat more adventurous path.

For integration, one lacks a good algebraic theory similar to the one developed in [49], say.
Next we elaborate on a somewhat unconventional presentation of the integration-by-parts
rule using the algebraic notion of the weight-θ Rota–Baxter relation corresponding to the
generalization of the Leibniz rule in terms of weight-θ skewderivations. One should strive
for nothing less ambitious than developing Rota’s program, beautifully outlined in [50] in
the context of Chen’s work [8], of establishing an algebraic theory of integration in terms of
generalizations of the integration-by-parts rule.

Let us recall first the integration-by-parts rule for the Riemann integral map. Let A :=
C(R) be the ring of real continuous functions. The indefinite Riemann integral can be seen
as a linear map on A

I : A→ A, I(f)(x) :=

∫ x

0

f(t) dt. (7.2)

Then, integration-by-parts for the Riemann integral can be written as follows. Let

F (x) := I(f)(x) =

∫ x

0

f(t) dt, G(x) := I(g)(x) =

∫ x

0

g(t) dt;

then ∫ x

0

F (t)
d

dt

(
G(t)

)
dt = F (x)G(x)−

∫ x

0

d

dt

(
F (t)

)
G(t) dt.

More compactly, this well-known identity is written

I(f)(x)I(g)(x) = I
(
I(f)g

)
(x) + I

(
fI(g)

)
(x), (7.3)

dually to the Leibniz rule.
Now, we introduce so-called skewderivations of weight θ ∈ R on an algebra A [51]. A

skewderivation is a linear map δ : A→ A fulfilling the condition

δ(ab) = aδ(b) + δ(a)b− θδ(a)δ(b). (7.4)

We call skewdifferential algebra a double (A, δ; θ) consisting of an algebra A and a skewderiva-
tion δ of weight θ. A skewderivation of weight θ = 0 is just an ordinary derivation. An
induction argument shows that if A is commutative we have

δ(an) =
n∑

i=1

(
n

i

)
(−θ)i−1an−iδ(a)i.

Also

δn(ab) =

n∑

i=0

(
n

i

) n−i∑

j=0

(
n− i

j

)
(−θ)iδn−j(a)δi+j(b).
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Both formulae generalize well-known identities for an ordinary derivation. We mention
examples. First, on a suitable function algebra A the simple finite difference operation
δ : A→ A of step λ,

δ(f)(x) :=
f(x− λ)− f(x)

λ
, (7.5)

satisfies identity (7.4) with θ = −λ. See [52] for an interesting application of the λ = 1
case in the context of multiple zeta values. A closely related, though at first sight different,
example is provided by the q-difference operator

δqf(x) :=
f(qx)− f(x)

(q − 1)x
(7.6)

which satisfies the q-analog of the Leibniz rule,

δq(fg)(x) = δqf(x)g(x) + f(qx)δqg(x) = δqf(x)g(qx) + f(x)δqg(x).

This corresponds to relation (7.4) for θ = (1− q), modulo the identity

δq(fg)(x) = δqf(x)g(x) + f(x)δqg(x) + x(q − 1)δqf(x)δqg(x);

defining now δ̄q = xδq, it is a simple matter to check that δ̄q is a skewderivation of weight 1−q.
We may ask for an integration operator corresponding to the skewderivation in (7.5). On

a suitable class of functions, we define the summation operator

Z(f)(x) :=
∑

n≥1

θf(x + θn). (7.7)

For δ being the finite difference map of step θ,

Zδ(f)(x) =
∑

n≥1

θδ(f)(x + θn) =
∑

n≥1

θ
f(x + θn− θ)− f(x+ θn)

θ

=
∑

n≥1

f
(
x+ θ(n− 1)

)
− f(x+ θn) =

∑

n≥0

f(x+ θn)−
∑

n≥1

f(x+ θn) = f(x).

As δ is linear we find as well δZ(f) = f . Observe, moreover, that
(∑

n≥1

θf(x+ θn)

)(∑

m≥1

θg(x+ θm)

)
=

∑

n≥1,m≥1

θ2f(x+ θn)g(x+ θm)

=

( ∑

n>m≥1

+
∑

m>n≥1

+
∑

m=n≥1

)
θ2f(x + θn)g(x+ θm)

=
∑

m≥1

(∑

k≥1

θ2f
(
x+ θ(k +m)

))
g(x+ θm) +

∑

n≥1

(∑

k≥1

θ2g
(
x + θ(k + n)

))
f(x+ θn)

+
∑

n≥1

θ2f(x+ θn)g(x + θn) = Z
(
Z(f)g

)
(x) + Z

(
fZ(g)

)
(x) + θZ(fg)(x). (7.8)

Related to the q-difference operator (7.6) there is the Jackson integral

J [f ](x) :=

∫ x

0

f(y) dqy = (1− q)
∑

n≥0

f(xqn)xqn (0 < q < 1).
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This can be written in a more algebraic way, using the operator Pq[f ] :=
∑

n>0E
n
q [f ], with

the algebra endomorphism (q-dilatation) Eq[f ](x) := f(qx), for f ∈ A. The map Pq is

a Rota–Baxter operator of weight −1 and hence, id + Pq =: P̂q is of weight +1, see [60].
Jackson’s integral is given in terms of the above operators Pq and the multiplication operator

M [f ](x) := xf(x), f ∈ A, by J [f ](x) = (1− q)P̂qM [f ](x). The modified Jackson integral J̄ ,

defined by J̄ [f ](x) = (1− q)P̂q[f ](x), satisfies the relation

J̄ [f ] J̄ [g] + (1− q)J̄ [f g] = J̄
[
f J̄ [g]

]
+ J̄

[
J̄ [f ] g

]
.

For motivational reasons we remark that the map P̂q is of importance in the construction
of q-analogs of multiple-zeta-values. The examples motivate the generalization of the dual
relation between the integration-by-parts rule and the Leibniz rule for the classical calculus.

Definition 3. A Rota–Baxter map R of weight θ ∈ R on a not necessarily associative
algebra A, commutative or not, is a linear map R : A→ A fulfilling the condition

R(a)R(b) = R(R(a)b) +R(aR(b))− θR(ab), a, b ∈ A. (7.9)

The reader will easily verify that R̃ := θ id−R is a Rota–Baxter map of the same weight, as
well. We call a pair (A,R), where A is an algebra and R a Rota–Baxter map of weight θ, a
Rota–Baxter algebra of weight θ. The indication ‘not necessarily associative’ is indispensable
in this paper, as we soon meet Rota–Baxter algebras that are neither Lie nor associative.

We state a few simple observations, which will be of use later. The so-called double
Rota–Baxter product

x ∗R y := xR(y) +R(x)y − θxy, x, y ∈ A, (7.10)

endows the vector space underlying A with another Rota–Baxter algebra structure, denoted
by (AR, R). In fact, R satisfies the Rota–Baxter relation for the new product. One readily
shows, moreover:

R(x ∗R y) = R(x)R(y) and R̃(x ∗R y) = −R̃(x)R̃(y), x, y ∈ A. (7.11)

This construction may be continued, giving a hierarchy of Rota–Baxter algebras.

Proposition 7.1. Let (A,R) be an associative Rota–Baxter algebra of weight θ ∈ R. The
Rota–Baxter relation extends to the Lie algebra A with the commutator [x, y] := xy − yx,

[R(x), R(y)] + θR
(
[x, y]

)
= R

(
[R(x), y] + [x,R(y)]

)

making (A, [., .], R) into a Rota–Baxter Lie algebra.

This is a mere algebra exercise. A more exotic result coming next will prove to be
important in the context of Magnus’ expansion and beyond.

Proposition 7.2. Let (A,R) be an associative Rota–Baxter algebra of weight θ ∈ R. The
binary composition

a ·R b := [a, R(b)] + θba (7.12)

defines a right pre-Lie (or Vinberg) product such that A becomes a Rota–Baxter right pre-Lie
algebra.
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Proof. Recall that for a pre-Lie algebra (A, ·) the (right) pre-Lie property is weaker than
associativity

a · (b · c)− (a · b) · c = a · (c · b)− (a · c) · b, ∀a, b, c ∈ A,

As the Jacobiator is the total skewsymmetrization of the associator, the pre-Lie relation is
enough to guarantee that the commutator [a, b] := a · b − b · a satisfies the Jacobi identity.
For the sake of brevity we verify only the weight-zero case and leave the rest to the reader.

a ·R (b ·R c)− (a ·R b) ·R c =
[
a, R([b, R(c)])

]
−
[
[a, R(b)], R(c)

]
=

=
[
a, R([b, R(c)])

]
+
[
[R(c), a], R(b)

]
+
[
a, [R(c), R(b)]

]

=
[
a, R([c, R(b)])

]
−
[
[a, R(c)], R(b)

]
=: a ·R (c ·R b)− (a ·R c) ·R b;

and R(a) ·R R(b) = [R(a), R(R(b))] = R
(
[R(a), R(b)]

)
+R

(
[a, R(R(b))]

)

= R
(
R(a) ·R b

)
+R

(
a ·R R(b)

)
.

Here we used Proposition 7.1 as well as the Jacobi identity.

The Lie algebra bracket corresponding to the double Rota–Baxter product (7.10) is the
double Rota–Baxter Lie bracket [a, b]R := a∗Rb−b∗Ra = a·Rb−b·Ra, known since the work of
Semenov-Tian-Shansky [53]. We should mention that these little calculations become more
transparent using the link between associative Rota–Baxter algebras and Loday’s dendriform
algebras [54, 55].

As a corollary to the last propositions we add the following identity which will also be
useful later

R(a ·R b) = R([a, R(b)]) + θba) = R([b, R(a)]) + [R(a), R(b)] + θR(ab)

= R(b ·R a) + [R(a), R(b)], (7.13)

which is another way of saying that

R([a, b]R) = R(a ∗R b− b ∗R a) = [R(a), R(b)] = R(a ·R b− b ·R a).

The triple (A, δ, R; θ) will denote an algebra A endowed with a skewderivation δ and a
corresponding Rota–Baxter map R, both of weight θ, such that Rδa = a for any a ∈ A
such that δa 6= 0, as well as δRa = a for any a ∈ A,Ra ∈ 0. We check consistency of the
conditions (7.9) and (7.4) imposed on R, δ. Respectively

θδR(ab) = R(a)b + aR(b)− δ(R(a)R(b)) = R(a)b+ aR(b)− R(a)b− aR(b) + θab = θab;

Rδ(ab) = R(aδ(b)) + R(δ(a)b)− θR(δ(a)δ(b)) = R(aδ(b)) +R(δ(a)b)

−R(aδ(b))− R(δ(a)b) + ab = ab.

The moral of the story is that Rota–Baxter maps are generalized integrals, skewderivations
and Rota–Baxter operators being natural (partial) inverses. As an example we certainly
have (C(R), d/dt,

∫
; 0), with δ = the derivative (with only the scalars in its kernel). Another

example is given by the aforementioned triple (A, δ, Z;−θ) of the finite difference map δ of
step θ and the summation Z in (7.7).

Rota–Baxter algebras have attracted attention in different contexts, such as perturbative
renormalization in quantum field theory (see references further below) as well as generalized
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shuffle relations in combinatorics [56]. A few words on the history of the Rota–Baxter relation
are probably in order here. In the 1950’s and early 1960’s, several interesting results were
obtained in the fluctuation theory of probability. One of the better known is Spitzer’s classical
identity [57] for sums of independent random variables. In an important 1960 paper [58], the
American mathematician G. Baxter developed a combinatorial point of view on Spitzer’s
result, and deduced it from the above operator identity (7.9), in the context where the
algebra A is associative, unital and commutative. Then G.-C. Rota started a careful in depth
elaboration of Baxter’s article in his 1969 papers [59,60], where he solved the crucial “word
problem”, and in [61], where he established several important results. During the 1960’s
and 1970’s, further algebraic, combinatorial and analytic aspects of Baxter’s identity were
studied by several people, see [62–64] for more references. Recently, the Rota–Baxter relation
became popular again as a key element of the Connes–Kreimer [65–67] algebraic approach
to renormalization.

At an early stage the mathematician F. V. Atkinson made an important contribution,
characterizing such algebras by a simple decomposition theorem.

Theorem 7.3. (Atkinson [68]) Let A be an algebra. A linear operator R : A → A satisfies
the Rota–Baxter relation (7.9) if and only if the following two statements are true. First,
A+ := R(A) and A− := (θ id − R)(A) are subalgebras in A. Second, for X, Y, Z ∈ A,
R(X)R(Y ) = R(Z) implies (θ id−R)(X)(θ id− R)(Y ) = −(θ id−R)(Z).

This result degenerates in the case θ = 0, whereby R = −R̃. A trivial observation is that
every algebra is a Rota–Baxter algebra (of weight 1); in fact, the identity map and the zero
map are a natural Rota–Baxter pair. The case of an idempotent Rota–Baxter map implies
θ = 1 and, more importantly, A− ∩A+ = {0}, corresponding to a direct decomposition of A
into the image of R and R̃.

Atkinson made another observation, formulating the following theorem, which describes
a multiplicative decomposition for associative unital Rota–Baxter algebras.

Theorem 7.4. Let A be an associative complete filtered unital Rota–Baxter algebra with
Rota–Baxter map R. Assume X and Y in A to solve the equations

X = 1A +R(aX) and Y = 1A + R̃(Y a), (7.14)

for a ∈ A1. Then we have the following factorization

Y (1A − θa)X = 1A, so that 1A − θa = Y −1X−1. (7.15)

For an idempotent Rota–Baxter map this factorization is unique.

Proof. First recall that a complete filtered algebra A has a decreasing filtration {An } of
sub-algebras

A = A0 ⊃ A1 ⊃ · · · ⊃ An ⊃ . . .

such that AmAn ⊆ Am+n and A ∼= lim←−A/A
n, that is, A is complete with respect to the

topology determined by the {An }. Also, note that

R(a)R̃(b) = R̃(R(a)b) +R(aR̃(b)),
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and similarly exchanging R and R̃. Then the product Y X is given by

Y X =
(
1A + R̃(Y a)

)(
1A +R(aX)

)
= 1A +R(aX) + R̃(Y a) + R̃(Y a)R(aX)

= 1A + R̃
(
Y a

(
1A +R(aX)

))
+R

((
1A + R̃(Y a)

)
aX
)

= 1A +R(Y aX) + R̃(Y aX) = 1A + θX aY.

Hence we obtain the factorization (7.15). Uniqueness for idempotent Rota–Baxter maps is
easy to show [69].

In summary, finite difference as well as q-difference equations play a role in important
applications; thus it is useful to consider generalizations of the classical apparatus for solving
differential equations. In the next section, by exploiting and complementing the CBHD
development of the previous one, we make preparations to extend the work by Magnus
on exponential solutions for non-autonomous differential equations to general Rota–Baxter
maps, beyond the Riemann integral.

8 The Spitzer identities and the CBHD recursion

In the last section we mentioned Spitzer’s classical identity as a motivation for Baxter’s work.
Now we spell out what that is. Spitzer’s identity can be seen as a natural generalization
of the solution of the simple initial value problem (1.1) on the commutative algebra A of
continuous functions over R,

df(t)

dt
= a(t)f(t), f(0) = 1, a ∈ A. (8.1)

This has, of course, a unique solution f(t) = exp
(∫ t

0
a(u) du

)
. Transforming the differential

equation into an integral equation by application of the Riemann integral I : A→ A to (8.1),

f(t) = 1 + I(af)(t), (8.2)

we arrive naturally at the not-quite-trivial identity

exp

(∫ t

0

a(u) du

)
= exp

(
I(a)(t)

)
= 1 +

∞∑

n=1

I
(
aI
(
a · · · I(a) · · ·

))

︸ ︷︷ ︸
n-times

(t). (8.3)

Taking into account the weight-zero Rota–Baxter rule (7.3) for I, the last identity follows
simply from (

I(a)(t)
)n

= n! I
(
aI
(
a · · · I(a) · · ·

))

︸ ︷︷ ︸
n-times

(t). (8.4)

Let now (A,R) to be a commutative Rota–Baxter algebra of weight θ 6= 0. We formulate
Spitzer’s finding in the ring of power series A[[t]], which is a complete filtered algebra with
the decreasing filtration given by the powers of t, An := tnA[[t]], n ≥ 0. Notice that the
power series algebra A[[t]] with the operator R : A[[t]] → A[[t]] acting on a series via R
through the coefficients, R

(∑
n≥0 ant

n
)

:=
∑

n≥0R(an)tn, is Rota–Baxter as well. Then we
have
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Theorem 8.1. (Spitzer’s identity) Let (A,R) be a unital commutative Rota–Baxter algebra
of weight θ 6= 0. Then for a ∈ A,

exp

(
−R

(
log(1− aθt)

θ

))
=

∞∑

n=0

(t)nR
(
aR
(
a · · ·R(a) · · ·

))

︸ ︷︷ ︸
n-times

(8.5)

in the ring of power series A[[t]].

Analytic as well as algebraic proofs of this identity can be found in the literature, see
for instance [61, 67]; and anyway it is a corollary of our work further below. Observe that

−θ−1 log(1− aθt)
θ↓0
−−→ at. Thus indeed (8.5) generalizes (8.3).

Moreover, identity (8.4) generalizes to the Bohnenblust–Spitzer formula [61] of weight θ.
This is as follows. Let (A,R) be a commutative Rota–Baxter algebra of weight θ and fix
s1, . . . , sn ∈ A, n > 0. Let Sn be the set of permutations of {1, . . . , n}. Then

∑

σ∈Sn

R
(
sσ(1)R

(
sσ(2) · · ·R(sσ(n)) · · ·

))
=
∑

T ∈Πn

θn−|T |
∏

T∈T

(|T | − 1)!R
(∏

j∈T

sj

)
, (8.6)

Here T runs through all unordered set partitions of {1, . . . , n}; by |T | we denote the number
of blocks in T ; by |T | the size of the particular block T . The Rota–Baxter relation itself
appears as a particular case for n = 2. The weight θ = 0 case reduces the sum over T
to |T | = n:

∑

σ∈Sn

R
(
sσ(1)R

(
sσ(2) · · ·R(sσ(n)) · · ·

))
=

n∏

j=1

R
(
sj

)
. (8.7)

Also, for n > 0 and s1 = · · · = sn = x we find in (8.6):

R
(
xR
(
x · · ·R(x) · · ·

))
=

1

n!

∑

T ∈Πn

θn−|T |
∏

T∈T

(|T | − 1)!R
(
x|T |
)
. (8.8)

Relation (8.6) follows from Spitzer’s identity (8.5) by expanding the logarithm and the
exponential on the left hand side, and comparing order by order the infinite set of identities
in A[[t]].

Spitzer’s classical identity constitutes therefore an interesting generalization of the initial
value problem (8.1), respectively the integral equation (8.2), to more general integration-like
operators R, satisfying the identity (7.9). Again we refer the reader to [61, 64] for examples
of such applications in the context of renormalization in perturbative quantum field theory,
q-analogs of classical identities, classical integrable systems and multiple zeta values. Also,
Atkinson’s factorization Theorem 7.4 is obvious from Spitzer’s identity. The right hand
side of identity (8.5) is a solution to X = 1A + tR(aX) in A[[t]] corresponding to the
factorization of the element 1A− θat. (One ought to be careful here, since Spitzer’s identity
as well as (8.4) are only valid for commutative Rota–Baxter algebras of weight θ, whereas
Atkinson’s factorization result applies to general associative unital Rota–Baxter algebras.)

Let us adopt an even more general point of view. For functions with image in a noncom-
mutative algebra, say n × n matrices with entries in R, relation (8.3) is not valid anymore
as a solution to (8.1); nor is identity (8.4) valid. From our present perspective, however, it
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does seem quite natural to approach the problem of finding a solution to the initial value
problem, as well as relations (8.3) and (8.4), on a noncommutative function algebra A by
looking for a generalization of Spitzer’s identity to noncommutative unital associative Rota–
Baxter algebras of weight θ. This latter problem was finally solved in [70,71] —see also [69],
where the reader may find more detail and earlier references. We will review briefly those
results, prior to extend our findings by indicating a noncommutative generalization of the
Bohnenblust–Spitzer formula.

We then take the first steps towards the noncommutative Spitzer identity. Let A be a com-
plete filtered associative algebra. Bring in from Section 6 the Campbell–Baker–Hausdorff–
Dynkin (CBHD) formula for the product of exponentials of two non-commuting objects x, y

exp(x) exp(y) = exp
(
x+ y + CBHD(x, y)

)
, where

∑

m≥2

Φm(x, y) =: CBHD(x, y).

Now let P : A→ A be any linear map preserving the filtration and P̃ = θ id− P , with θ an
arbitrary nonzero complex parameter. For a ∈ A1, define the nonlinear map

χθ,P̃ (a) = lim
n→∞

χθ,P̃
(n) (a)

where χθ,P̃
(n) (a) is given by the so-called CBHD recursion,

χθ,P̃
(0) (a) := a,

χθ,P̃
(n+1)(a) = a−

1

θ
CBHD

(
P̃ (χθ,P̃

(n) (a)), P (χθ,P̃
(n) (a))

)
, (8.9)

and where the limit is taken with respect to the topology given by the filtration. Then the
map χθ,P̃ : A1 → A1 satisfies

χθ,P̃ (a) = a−
1

θ
CBHD

(
P̃ (χθ,P̃ (a)), P (χθ,P̃ (a))

)
. (8.10)

We call χθ,P̃ the CBHD recursion of weight θ, or just the θ-CBHD recursion. In the following
we do not index the map χθ(a) := χθ,P̃ by the operator P̃ involved in its definition, when it is
obvious from context. One readily observes that χθ reduces to the identity for commutative
algebras.

The following theorem states a general decomposition on the algebra A implied by the
CBHD recursion. It applies to associative as well as Lie algebras.

Theorem 8.2. Let A be a complete filtered associative (or Lie) algebra with a linear, filtration
preserving map P : A→ A and P̃ := θ id− P . For any a ∈ A1, we have

exp(θa) = exp
(
P̃ (χθ(a))

)
exp
(
P (χθ(a))

)
. (8.11)

Under the further hypothesis that the map P is idempotent (and θ = 1), we find that for any
x ∈ 1A +A1 there are unique x− ∈ exp

(
P̃ (A1)

)
and x+ ∈ exp

(
P (A1)

)
such that x = x− x+.

For proofs we refer the reader to [69]. Using this factorization one simplifies (8.10)
considerably.
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Lemma 8.3. Let A be a complete filtered algebra and P : A → A a linear map preserving
the filtration, with P̃ as above. The map χθ in (8.10) solves the following recursion

χθ(u) := u+
1

θ
CBHD

(
θu,−P (χθ(u))

)
, u ∈ A1. (8.12)

The convolution algebra (Hom(H,A), ∗), for H a connected graded commutative Hopf
algebra, will also be complete filtered. We may immediately apply the above factorization
theorem, giving rise to a factorization of the group GH(A) of A-valued characters, upon
choosing any filtration-preserving linear map on Hom(H,A). In fact, we find for θ = 1 in
the definition of χ the following result.

Proposition 8.4. Let A be a commutative algebra and H a connected graded commutative
Hopf algebra. Let P be any filtration preserving linear map on Hom(H,A). Then we have
for all φ ∈ GH(A) and Z := log(φ) ∈ gH(A) the characters φ−1

− := exp
(
P̃ (χ(Z))

)
and

φ+ := exp
(
P (χ(Z))

)
such that

φ = φ−1
− ∗ φ+. (8.13)

If P is idempotent this decomposition is unique.

A natural question is whether one can find closed expressions for the map χθ. The answer
is certainly affirmative in some non-trivial particular cases [69].

Corollary 8.5. In the setting of the last proposition we find for the particular choice of
P = π− : H → H being the projection to the odd degree elements in H (hence θ = 1)

χ(Z) = Z + CBHD
(
Z,−π−(Z)− 1

2
CBHD

(
Z,Z − π−(Z)

))
, Z ∈ gH(A).

Before proceeding, we must underline that the factorization is due solely to the map χθ;
in fact, the map P —respectively P̃— involved in its definition has only to be linear and
filtration preserving. The role played by this map is drastically altered when we assume it
moreover to be Rota–Baxter of weight θ, on a complete filtered Rota–Baxter algebra. This
we do next, to rederive and generalize the Magnus expansion. Also, it will soon become clear
what χ0 is. One of the aims of this paper is to attack the solution of the CBHD recursion
when P is Rota–Baxter.

We noted earlier Atkinson’s multiplicative decomposition of associative complete filtered
Rota–Baxter algebras. Let from now on (A,R) denote one such, of weight θ 6= 0. Observe
the useful identity

θ

n∏

i=1

R(xi) = R
( n∏

i=1

R(xi)−
n∏

i=1

R̃(−xi)
)
, for xi ∈ A, i = 1, . . . , n. (8.14)

This comes from the Rota–Baxter relation (7.9). The case n = 2 simply returns it. The
reader should check it with the help of the double Rota–Baxter product (7.10). In the

following we consider χθ := χθ,R̃ on A1. Using (8.14), for θ−1 log(1A − θa) =: u ∈ A1 one
readily computes

exp
(
−R(χθ(u))

)
= 1A +

∑

n>0

R(−χθ(u))n

n!
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= 1A +
∑

n>0

(−1)n

n!θ
R
(
R(χθ(u))n − (−R̃(χθ(u))n)

)

= 1A +
1

θ
R
(
exp
(
−R(χθ(u)

)
− exp

(
R̃(χθ(u)

))
= 1A +R

(
a exp

(
−R(χθ(u)

))
.

In the last step we employed the factorization Theorem 8.2 corresponding to χθ. Therefore,
on the one hand we have found thatX := exp

(
−R(χθ(u))

)
∈ 1A+A1 solves X = 1A+R(aX),

one of Atkinson’s recursions in Theorem 7.4. On the other hand, a solution to this recursion
follows from the iteration

X = 1A +
∑

n>0

R
(
aR(aR(a · · ·R(a)︸ ︷︷ ︸

n times

) . . . )
)
. (8.15)

Hence:

Theorem 8.6. The natural generalization of Spitzer’s identity (8.5) to noncommutative
complete filtered Rota–Baxter algebras of weight θ 6= 0 is given by

exp

(
−R

(
χθ

(
log(1A − θa)

θ

)))
=

∞∑

n=0

R
(
aR(aR(a · · ·R(a)︸ ︷︷ ︸

n times

) . . . )
)
, (8.16)

for a ∈ A1. Recall that χθ reduces to the identity for commutative algebras, yielding Spitzer’s
classical identity.

So far we have achieved the following. First we derived the general factorization The-
orem 8.2 for complete filtered algebras, upon the choice of an arbitrary linear filtration
preserving map. Specifying the latter to be Rota–Baxter of weight θ, that is, identity (8.14),
we have been able to show that Atkinson’s recursion equations in Theorem 7.4 have expo-
nential solutions. It is now natural to ask whether the Bohnenblust–Spitzer formula (8.6)
valid for weight-θ commutative Rota–Baxter algebras can be generalized to noncommutative
ones. The answer is yes! We outline next this generalization, postponing detailed proof to
the forthcoming [72], to keep this long work within bounds. First, by using the pre-Lie (7.12)
and the double (7.10) Rota–Baxter products, we find

R
(
x1R(x2)

)
+R

(
x2R(x1)

)
= R(x1)R(x2) +R(x2 ·R x1) = R(x1 ∗R x2) +R(x2 ·R x1).

Recall the relations (7.11). One may now check by a tedious calculation that
∑

σ∈S3

R
(
xσ1R

(
xσ2R(xσ3)

))
= R(x1 ∗R x2 ∗R x3) +R((x2 ·R x1) ∗R x3)

+R((x3 ·R x1) ∗R x2) +R(x3 ·R (x2 ·R x1)) +R(x1 ∗R (x3 ·R x2)) +R(x2 ·R (x3 ·R x1))

= R(x1)R(x2)R(x3) +R(x2 ·R x1)R(x3) +R(x3 ·R x1)R(x2)

+R(x3 ·R (x2 ·R x1)) +R(x1)R(x3 ·R x2) +R(x2 ·R (x3 ·R x1)). (8.17)

We obtain special cases of the above when x1 = x2 = x3 = x

3!R
(
xR
(
xR(x)

))
= R(x ∗R x ∗R x) + 2R((x ·R x) ∗R x) + 2R(x ·R (x ·R x))

+ R(x ∗R (x ·R x)) = R(x)3 + 2R(x ·R x)R(x) + 2R(x ·R (x ·R x)) +R(x)R(x ·R x).

Equation (8.17) is an instance of the following result, that seems to be new:
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Theorem 8.7. Let (A,R) be an associative Rota–Baxter algebra of weight θ. For xi ∈ A, i =
1, . . . , n, we have

∑

σ∈Sn

R
(
xσ1R

(
xσ2 . . . R(xσn

) . . .
))

=
∑

σ∈Sn

R
(
xσ1 �1 xσ2 �2 · · · �n xσn

)

where

xσi
�i xσi+1

=

{
xσi
∗R xσi+1

, σi < min(σj|i < j)

xσi
·R xσi+1

, otherwise;

furthermore consecutive ·R products should be performed ¿from right to left, and always before
the ∗R product.

This is the noncommutative Bohnenblust–Spitzer formula. Obviously, in the commutative
case, i.e., when a ·R b = θab, we just recover the classical Bohnenblust–Spitzer identities (8.6)
and (8.8). On the other hand, anticipating on coming sections, the case θ = 0 reduces to
Lam’s factorization theorem [73], stated in the context of a weight-zero Rota–Baxter algebra
of operator valued functions (B,

∫
; 0). Let us adopt Lam’s notation for the n-fold right

bracketed pre-Lie product by

CR
n := CR

n (x) := R(x ·R (x ·R . . . (x ·R x) . . . )). (8.18)

Also, we introduce a notation for the so-called Rota–Baxter words:

(Rx)[n+1] = R
(
x(Rx)[n]

)
, (8.19)

with the convention that (Rx)[0] = 1. Then we obtain the general expression

(Rx)[n] =
n∑

l=1

∑

k1,...,kl∈N∗

k1+···+kl=n

CR
k1
· · ·CR

kl

kl(kl−1 + kl) · · · (k1 + · · ·+ kl)
. (8.20)

That is to say, we sum over the compositions of n. The simplest cases already examined
now are written

2!(Rx)[2] := 2!R
(
xR(x)

)
= (CR

1 )2 + CR
2 ,

3!(Rx)[3] := 3!R
(
xR
(
xR(x)

))
= (CR

1 )3 + 2CR
2 C

R
1 + CR

1 C
R
2 + 2CR

3 . (8.21)

Later we make use of those expansions in relation with the Magnus expansion and the Dyson–
Chen series. In fact, the left hand side of the above expressions are the second and third
order terms in the path- or time-ordered expansion, in the context when the map R is the
Riemann integral. We just generalized this to general-weight Rota–Baxter operators.

9 The zero-weight recursion

Let us come back to the CBHD recursion χθ. The question of the limit θ ↓ 0 becomes subtler
than in the commutative case, due to the particular properties of relation (8.10). Now, in
general we may write Φ(a, b) = Φ1(a, b) + CBHD(a, b) as a sum

Φ(a, b) =
∑

n≥1

Hn(a, b),
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where Hn(a, b) is the part of Φ(a, b) which is homogenous of degree n with respect to a. For
n = 1 we have [34]:

H1(a, b) =
ad b

ead b − 1A

(a) =
ad b

2

(
coth

ad b

2
− 1
)
(a). (9.1)

In the limit θ ↓ 0 all higher order terms Hn>1 vanish and from (8.12) we get a nonlinear
map χ0 inductively defined on A1 by the formula

χ0(a) =
adP

(
χ0(a)

)

eadP (χ0(a)) − 1A

(a) =

(
1A +

∑

n>0

bn

[
adP

(
χ0(a)

)]n
)

(a). (9.2)

We may call this the weight-zero CBHD recursion. The coefficients are bn := Bn/n! with Bn

the Bernoulli numbers. For n = 1, 2, 4 we find b1 = −1/2, b2 = 1/12 and b4 = −1/720. We
have b3 = b5 = · · · = 0. The first terms in (9.2) are then easily written down:

χ0(a) = a−
1

2
[P (a), a] +

1

4

[
P
(
[P (a), a]

)
, a
]
+

1

12

[
P (a), [P (a), a]

]
(9.3)

−
1

24
P
([
P ([P (a), [P (a), a]]), a

]
+
[
P (a), [P ([P (a), a]), a]

]
+
[
[P ([P (a), a]), [P (a), a]

])

−
1

8
P
([
P ([P ([P (a), a]), a]), a

])
+ · · · .

We pause here to note that (9.1) is but an avatar of the formula

D(ea) = ea 1− e−ad a

ad a
Da, for D a derivation;

a noncommutative chain rule familiar from linear group theory. See [74, Chapter 1] for
instance. Apparently this is due to F. Schur (1891), and was taken up later by Poincaré and
Hausdorff. One may also consult the charming account of the determination of a local Lie
group from its Lie algebra, using canonical coordinates of the first kind, in [75, Chapter 13].
The appearance of the Bernoulli numbers is always fascinating. The deep reason for it is
that we are trying to express elements of the enveloping algebra in terms of the symmetric
algebra.

Now suppose P is a weight-zero Rota–Baxter operator, denoted R henceforth. The non-
commutative generalization of Spitzer’s identity in the case of vanishing weight is captured
in the following corollary.

Corollary 9.1. Let (A,R) be a complete filtered Rota–Baxter algebra of weight zero. For a
in A1 the weight-zero CBHD recursion χ0 : A1 → A1 is given by equation (9.2):

χ0(a) =
adR

(
χ0(a)

)

eadR(χ0(a)) − 1A

(a).

Moreover:

1. The equation x = 1 +R(a x) has a unique solution x = exp
(
R(χ0(a))

)
.

2. The equation y = 1− R(y a) has a unique solution y = exp
(
R(−χ0(a))

)
.
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We will see pretty soon that the 0-CBHD recursion gives Magnus’ expansion. The dia-
gram (9.6) further below summarizes the foregoing relations, generalizing the simple initial
value problem (8.1) in a twofold manner. First we go to the integral equation (8.2). Then we
replace the Riemann integral by a general Rota–Baxter map and assume a noncommutative
setting. That is, we start with a complete filtered noncommutative associative Rota–Baxter
algebra (A,R) of nonzero weight θ in the appropriate field. The top of the diagram (9.6)
contains the solution to the equation

X = 1A +R(aX), for a ∈ A1, (9.4)

generalized to associative, otherwise arbitrary Rota–Baxter algebras (8.16),

X = exp

(
−R

(
χθ

(
log(1A − θa)

θ

)))
. (9.5)

The θ-CBHD recursion χθ is given in (8.10). The left wing of (9.6) describes the case when
first the weight θ goes to zero, hence reducing χθ → χ0; see (9.2). This is the algebraic struc-
ture underlying Magnus’s Ω series of the next section. Then, we let the algebra A become
commutative, which reduces χ0 to id. The right wing of diagram (9.6) just describes the
alternative reduction, i.e., we first make the algebra commutative, which gives the classical
Spitzer identity for nonzero weight commutative Rota–Baxter algebras, see (8.5). Then we
take the limit θ ↓ 0.

exp
(
−R
(
χθ(θ−1 log(1− θa))

))
θ 6=0, noncom

com
θ↓0

��

θ 6=0
com **UUUUUUUUUUUUUUUUU

θ↓0
noncomuukkkkkkkkkkkkkk

exp
(
R
(
χ0(a)

))
Magnus

com

))SSSSSSSSSSSSSSSSS

exp
(
−R
(
θ−1 log(1− θa)

))
Spitzer

θ↓0

ttiiiiiiiiiiiiiiiiiiiii

exp(R(a))
θ=0, com

(9.6)

Both paths eventually arrive at the elementary fact that equation (9.4) is solved by a simple
exponential in a commutative, weight-zero Rota–Baxter setting. We have succeeded in
finding the general algebraic structure underlying the initial value problem for generalized
integrals, that is, Rota–Baxter operators.

10 On Magnus’ commutator series

It is high time for us to declare why we choose to deal with first order non-autonomous dif-
ferential equations primarily via the Magnus expansion method. The latter has a somewhat
chequered history. To attack the initial value problem of the type (1.1):

d

dt
F (t) = a(t)F (t), F (0) = 1, (10.1)

with F a matrix-valued function, say, Magnus proposed the exponential Ansatz

F (t) = exp
(
Ω[a](t)

)
,
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with Ω[a](0) = 0. He found a series for Ω[a]:

Ω[a](t) =
∑

n>0

Ωn[a](t), (10.2)

in terms of multiple integrals of nested commutators, and provided a differential equation
which in turn can be easily solved recursively for the terms Ωn[a](t)

d

dt
Ω[a](t) =

adΩ[a]

ead Ω[a] − 1
(a)(t). (10.3)

It is worth indicating that originally Magnus was motivated by Friedrich’s theorem of our
Section 5. We already mentioned, however, that one of the papers most influential on
the subject [43] was written without knowledge of Magnus’ paper. In the 1990’s, several
mathematicians interested in approximate integrators for differential equations developed
the discipline of geometrical integration. Originally also unaware of Magnus’ work, they
derived anew Magnus’ expansion. The point was to make sure that the approximate solutions
evolve in the Lie group if ξ(t) in (4.4) remains in the Lie algebra. This is not true of the
iterative Dyson–Chen method —no finite truncation of the latter is the exact solution of
any approximating system. By construction χ0 respects the Lie algebra structure in (4.4),
and thus truncations of the series are sure to remain in the Lie group. This is one reason
why —in view also of the considerations in Appendix C— we give priority to the Magnus
method. For geometrical integration, consult [76, 77].

Comparison with (9.2) settles the matter of the link between Magnus series and the
CBHD recursion in the context of vanishing Rota–Baxter weight. Namely,

Corollary 10.1. Let A be a function algebra over Rt with values in an operator algebra.
Let R denote the indefinite Riemann integral operator. Magnus’ Ω expansion is given by the
formula

Ω[a](t) = R
(
χ0(a)

)
(t).

In conclusion, we could say that the θ-CBHD recursion (8.10) generalizes Magnus’ ex-
pansion to general weight θ 6= 0 Rota–Baxter operators R by replacing the weight-zero
Riemann integral in F = 1+R{aF}. Corollary 9.1 represents a more modest generalization,
to zero-weight Rota–Baxter operators different ¿from the ordinary integral.

Let us write explicitly the first few terms of the Magnus expansion using (9.3), when R
is the Riemann integral operator. The function a = a(t) is defined over R and takes values
in a noncommutative algebra, say of matrices of size n× n. We obtain

R(a)(t) =

∫ t

0

a(t1) dt1, (10.4)

−
1

2
R
(
[R(a), a]

)
(t) =

1

2

∫ t

0

∫ t1

0

[a(t1), a(t2)] dt2 dt1,

1

4
R
([
R
(
[R(a), a]

)
, a
])

(t) =
1

4

∫ t

0

∫ t1

0

∫ t2

0

[
[a(t3), a(t2)], a(t1)

]
dt3 dt2 dt1,

1

12
R
([
R(a), [R(a), a]

])
(t) =

1

12

∫ t

0

∫ t1

0

∫ t1

0

[
a(t3), [a(t2), a(t1)]

]
dt3 dt2 dt1.
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This gives indeed the first terms of the expansion precisely in the form that Magnus derived
it. However, in later works [43–45,78,79] the terms in the Magnus’ expansion are presented as
iterated commutator brackets of strictly time-ordered Riemann integrals. Especially in [43]
Strichartz succeeded in giving a closed solution to Magnus’ expansion —and hence to our
recursion χ0,R when R is the Riemann integral. With the notation of Proposition 6.2, he
found

Ω[a](t) =
∑

n>0

Ωn[a](t), with (10.5)

Ωn[a](t) =
∑

σ∈Sn

(−1)d(σ)

n2
(

n−1
d(σ)

)
∫ t

0

∫ t1

0

. . .

∫ tn−1

0

[
[. . . [a(t1), a(t2)] . . . ], a(tn)

]
dtn . . . dt2 dt1.

This formula clearly points to the close relation between the CBHD expansion and Magnus’
series, although the appearance of the number of descents is still ‘unexplained’. However, it
is not to everyone’s taste. It is immediate from the formula that

Ω2[a](t) =
1

2

∫ t

0

∫ t1

0

[a(t1), a(t2)] dt2 dt1,

coincident with the second term in (10.4); and clear enough that

Ω3[a](t) =
1

6

∫ t

0

∫ t1

0

∫ t2

0

([
[a(t1), a(t2)], a(t3)

]
−
[
[a(t2), a(t3)], a(t1)

])
dt3 dt2 dt1; (10.6)

however the number of terms grows menacingly with n!, it is never evident when we will find
cancellations, and one quickly concludes that the beauty of (10.5) hides its computational
complexity. Nor is it entirely obvious, although of course it is true, that (10.6) coincides
with the sum of the third and fourth terms in (10.4).

The best policy, in our opinion, is to invoke the alternative Dyson–Chen solution at this
point. This attacks three problems: systematic writing of the Magnus series simplifies; the
zero-weight recursion is solved; and the comparison between different expressions for the
same terms is made easier.

11 Enter the Dyson–Chen series

The first order initial value problem (10.1), respectively the corresponding recursion

F (t) = 1 +R(aF )(t),

where R is the Riemann integral operator, possess a natural solution in terms of iteration,
see (8.15). The resulting infinite series is called here Dyson–Chen integral. In the physics
literature those series are often referred to as time-ordered exponentials or path-ordered
integrals; their importance can hardly be overstated. To reflect such nomenclature in the
notation, write

T e
R t
0 a(t1) dt1 = T eR(a)(t) := 1 +

∑

n>0

R
(
aR(aR(a · · ·R(a))︸ ︷︷ ︸

n times

. . . )
)
(t).
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The operator T implies the strict iteration of the integral corresponding to the ‘time ordering’.
A short presentation of Chen’s work on this kind of integrals can be found in [80]; the findings
of Magnus and Chen played a decisive role, especially for Rota and his followers. Directly
from the group property of the flow, we have for the Dyson–Chen integral the factorization

T e
R t
0 a(t1)dt1 = T e

R t′

0 a(t1) dt1 T e
R t
t′

a(t1) dt1 ,

giving rise to many identities of integrals and concatenation products of series, which we need
not go into. This factorization might be compared with the quite different decomposition
induced by the CBHD recursion (8.11). The major result of the theory is the following
theorem.

Theorem 11.1. The logarithm of a Chen series is a Lie series.

The direct proof of this statement uses Hopf algebra, to wit, the shuffle product algebra
of our Section 5. It is just a matter of verifying Ree’s condition (5.2) inductively. In our
present context, the Dyson–Chen expansional is the solution to Atkinson’s recursion (9.4),
and the theorem scarcely needs justification.

Simply by taking the logarithm in

exp(Ω[a](t)) = T eR(a)(t),

we obtain

Ωn[a] =

n∑

k=1

(−1)k+1

k

∑

l1,...,lk∈N∗

l1+···+lk=n

(Ra)[l1] . . . (Ra)[lk]. (11.1)

This was of course known to the practitioners —see [79, 81] and references there. It is
derived in [3] by use of the Faà di Bruno Hopf algebra. Inverting these relations, one finds
the (Ra)[n+1]’s in terms of the Ωm[a]’s

(Ra)[n] =
n∑

k=1

1

k!

∑

l1,...,lk∈N∗

l1+···+lk=n

Ωl1 [a] . . .Ωlk [a]. (11.2)

The first examples are:

2!(Ra)[2] = Ω2
1[a] + 2Ω2[a],

3!(Ra)[3] = Ω3
1[a] + 3

(
Ω2

1[a]Ω2[a] + Ω2[a]Ω
2
1[a]
)

+ 6Ω3[a].

that might be compared with (8.21); of course Ra = Ω1[a] = CR
1 in the occasion. Now, both

sets of equations (11.1) and (11.2) simply describe how to link Magnus’ expansion to the
Dyson–Chen expansional. They purely follow from the Rota–Baxter relation as well as the
CBHD formula. Therefore they are valid for any weight-zero Rota–Baxter operator R.

By inverting the Rota–Baxter map, we solve moreover the zero-weight CBHD recursion:

χ0
n(a) =

n∑

k=1

(−1)k+1

k

∑

l1,l2,...,lk∈N∗

l1+l2+···+lk=n

(
a(Ra)[l1−1](Ra)[l2] · · · (Ra)[lk]+
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+ (Ra)[l1]a(Ra)[l2−1] · · · (Ra)[lk] + · · ·+ (Ra)[l1](Ra)[l2] · · ·a(Ra)[lk−1]
)
.

Next we are set to give an alternative formula to (10.5), keeping left-to-right bracketing.
This is better explained by way of example. Bring in Heaviside’s step function,

Θ1,2(t1, t2) := Θ(t1 − t2) :=

{
1, if t1 − t2 > 0,

0, otherwise;

with its help, iterated Riemann integrals can be rewritten

R
(
aR(b)

)
(t) =

∫ t

0

a(t1)

∫ t1

0

b(t2) dt2 dt1 =

∫ t

0

∫ t

0

Θ(t1 − t2)a(t1)b(t2) dt2 dt1. (11.3)

More generally,
Θi,j(t1, t2, . . . , tn) := Θ(ti − tj), for 1 ≤ i, j ≤ n,

and we can write

T e
R t
0 a(t1)dt1 = 1 +

∫ t

0

a(t1) dt1 +
∞∑

n=2

∫ t

0

· · ·

∫ t

0

Θ1,2 · · ·Θn−1,n a(t1) · · ·a(tn) dtn . . . dt1.

For instance, for the third term of the Magnus series, applying (11.1),

Ω3[a] =

∫ t

0

∫ t

0

∫ t

0

(
Θ1,2Θ2,3 −

1
2
Θ1,2 −

1
2
Θ2,3 + 1

3

)
a(t1)a(t2)a(t3) dt3 dt2 dt1.

Now, we know —if only from theorem (11.1)— this is a Lie element, so we can apply at once
the Dynkin operator to rewrite it with nested commutators:

Ω3[a] =

∫ t

0

∫ t

0

∫ t

0

(
Θ1,2Θ2,3 −

1
2
Θ1,2 −

1
2
Θ2,3 + 1

3

)
[[a(t1), a(t2)], a(t3)] dt3 dt2 dt1.

We see now that the last term actually does not contribute to the integral. With very little
work, just using Θ1,2 + Θ2,1 = Θ2,3 + Θ3,2 = 1, one recovers (10.6). An explicit formula for
all terms along these lines, fully equivalent to, but simpler to work with, than Strichartz’s,
is easily obtained [45]; we do not bother to write it. We must avow, however, that we do
not see a way to write terms like the third one in the integral above as a combination of
iterations and products of the R operators; thus we must conclude that formulae like (10.5)
and (10.6) are only valid for the Riemann integral.

For general zero-weight Rota–Baxter operators we may fall back on (11.1). Magnus him-
self did not use any property of the map R beyond integration-by-parts, and only presented
the expansion in a form equivalent to (9.3). Of course, even using purely the weight-zero
Rota–Baxter relation, there are many equivalent ways of writing the same. For instance,
simply by Proposition 7.1, one finds that the term at third order in Magnus’ expansion (10.4)
is rewritten

1

3
R
([
R
(
[R(a), a]

)
, a
])

(t)−
1

12

[
R
(
[R(a), a]

)
, R(a)

]
(t).

It is worthwhile to mention that Iserles and Norsett use binary rooted trees to achieve a
better understanding of Magnus’ expansion [76, 77].
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We have long taken the algebraic tack. But what about convergence of the Magnus series?
Note that Dyson–Chen series converge absolutely for all t if a is bounded, and this is why
they are preferred in quantum field theory; however this good property is not transmitted in
general to Magnus series via (11.1), as there is an infinite resummation involved. Excellent
bounds at small t have been found recently [82] for matrix systems. Strichartz linearizes
arbitrary initial-value problems, for which we cannot expect convergence in general in the
smooth category; but he does not fail to observe that Magnus’ expansion has especially
good properties for Lie–Scheffers systems [43, Section 3]. This is because the closing of the
involved vector fields to a finite-dimensional Lie algebra sharply improves the estimates.
Furthermore, for those systems Magnus’ exponential can be interpreted as the exponential
map of Lie theory.

12 Towards solving the θ-weight recursions

Let us now come back to Proposition 8.7 and take the first steps in going from the Dyson–
Chen series to the θ-weight CBHD recursion. This looks somewhat hard; but recall that Lam
found, in the context of the Riemann integral, another way to relate the terms in the Dyson–
Chen series to those in the Magnus expansion —consult [73,83]. In fact, Lam’s findings are
true in a much more general sense, i.e., for general weight Rota–Baxter algebras, as we will
indicate here. The attentive reader will remember the weight-zero pre-Lie product (7.12),
that allows for the following way of writing the weight zero CBHD recursion χ0(a), see (9.3):

χ0(a) = a +
1

2
a ·R a +

(1

4

(
a ·R (a ·R a)

)
+

1

12

(
(a ·R a) ·R a

))

+
1

24
R
(
a ·R

(
(a ·R a) ·R a

)
+
(
a ·R (a ·R a)

)
·R a + (a ·R a) ·R (a ·R a)

)

+
1

8
R
(
a ·R

(
a ·R (a ·R a)

))
+ · · · . (12.1)

This contains in germ the main idea. Remember (8.18) in terms of the (double and) pre-Lie
Rota–Baxter product. Lam made an exponential Ansatz

∑

n≥0

R(a)[n] = exp
(∑

m>0

Km(a)
)

and derived the following formulae for the Ki’s in terms of CR
1 (a), . . . , CR

i (a):

K1(a) = CR
1 (a), K2(a) =

1

2
CR

2 (a), K3(a) =
1

3
CR

3 (a) +
1

12
[CR

2 (a), CR
1 (a)],

K4(a) =
1

4
CR

4 (a) +
1

12
[CR

3 (a), CR
1 (a)], . . .

The weight-θ Rota–Baxter relation enters at the level of identity (8.20), hence implying the
particular form of the Ki’s. This naturally demands a comparison with the CBHD recursion,
respectively the generalized Spitzer identity.

Theorem 12.1. Let (A,R) be an associative Rota–Baxter algebra of weight θ. Then for
Ki = Ki(C

R
1 (a), . . . , CR

i (a); θ) we have
∑

i>0

Kit
i = −R

(
χθ
(
θ−1 log(1A − θat)

))
.
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Hence, finding a formula for the Ki’s gives a solution, in the sense of a closed expression,
to the CBHD recursion χθ, which follows from the Rota–Baxter relation. A full proof of
this statement lies beyond the scope of this work and will be provided elsewhere [72]. In the
context of Hopf and Rota–Baxter theory, it is the generalization of the shuffle relation to
the quasi-shuffle (or mixed-shuffle) identity [84] underlying the algebraic structure encoded
in the Rota–Baxter relation of nonzero weight, which generalizes the integration-by-parts
rule (7.3) corresponding to the shuffle relation.

Of course, when θ = 0 Lam’s Ki’s are just the Magnus Ωi’s. These are expressed as
sums of commutators of right-to-left bracketed integrals, when R is the Riemann operator.
This turns out to be the most efficient method for the expansion, as well. For instance, the
expression of K5 contains just six terms, whereas Ω5 is written usually with 22 terms [83].

We close this section with a simple but striking observation flowing ¿from the last the-
orem. Defining u(at) := θ−1 log(1A − θat), we recover −χθ(u(at)) from χ0(at), that is,
from (12.1), simply by using the weight-θ pre-Lie product 7.12). A full proof of this statement
will be given elsewhere. But we show this here up to third order. Using θ−1 log(1A− θat) =
−
∑

n>0
θn−1

n(at)n , we find for

−χθ(u(at)) = at−
∑

n>0

χθ
n(u(a))tn+1

the following

χθ
(1)(u(a)) =

1

2
θa2 −

1

2
[R(a), a],

χθ
(2)(u(a)) =

1

3
θ2a3 −

1

4
θ
(
[R(a2), a] + [R(a), a2]

)
+

1

4

[
a, R

(
[a, R(a)]

)]

+
1

12

([
[a, R(a)], R(a)

]
− θ
[
a, [a, R(a)]

])
.

Let us go back to (12.1) and use the pre-Lie product a ·R b := [a, R(b)] + θba of (7.12). We
obtain at second order

1

2
a ·R a =

1

2
[a, R(a)] +

1

2
θa2.

At third order we calculate:

1

4

(
a ·R (a ·R a)

)
+

1

12

(
(a ·R a) ·R a

)

= +
1

4
[a, R(a ·R a)] +

1

4
θ(a ·R a)a+

1

12
[(a ·R a), R(a)] +

1

12
θa(a ·R a)

=
1

4

[
a, R

(
[a, R(a)]

)]
+

1

4
θ[a, R(a2)] +

1

4
θ[a, R(a)]a +

1

4
θ2a3

+
1

12

[
[a, R(a)], R(a)

]
+

1

12
θ[a2, R(a)] +

1

12
a[a, R(a)] +

1

12
θa3

=
1

3
θ2a3 +

1

12

[
[a, R(a)], R(a)

]
+

1

4

[
a, R

(
[a, R(a)]

)]
+

1

4
θ
(
[a, R(a2)] + [a2, R(a)]

)

+
1

4
θ[a, R(a)]a−

1

6
θ[a2, R(a)] +

1

12
θa[a, R(a)]

=
1

3
θ2a3 +

1

4
θ
(
[a, R(a2)] + [a2, R(a)]

)
+

1

4

[
a, R

(
[a, R(a)]

)]
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+
1

12

[
[a, R(a)], R(a)

]
−

1

12
θ
[
a, [a, R(a)]

]
.

Earlier in Section 10 we have seen how the Magnus expansion naturally follows from the
CBHD recursion in the limit θ ↓ 0. In turn we see here the advantage of reformulating
Magnus’ expansion in terms of the Rota–Baxter pre-Lie product of weight θ yielding the
CBHD recursion.

13 Conclusion and outlook

Our purpose in this paper was twofold. Starting from the innocent-looking dynamical sys-
tem (1.1) —of classical Lie–Scheffers type when G is an ordinary Lie group— we sought
to reformulate it in Hopf algebraic terms, thus being led to generalized derivation and in-
tegration (Rota–Baxter) operators. Whereby we show that two of the three main ordinary
strategies to attack non-autonomous linear differential equations (linked respectively to the
names of Magnus and Dyson–Chen) still make sense in the broader context. In particular,
the noncommutative version of the Bohnenblust–Spitzer identity has been found, and we
blaze a trail to solve the nonlinear recursion introduced earlier by one of us in relation with
the noncommutative Spitzer formula.

There is no doubt that the product integral method to attack (1.1), often linked with the
name of Fer [85], is also susceptible to our kind of algebraic reinterpretation and generaliza-
tion. However, with a heavy heart, we leave this for a later occasion: the present paper is
already long enough.

Needless to say, the programmatic purpose of this work was to propagandize the Hopf
algebra approach to differential equations. The lure of presenting classical subjects under a
new light explains why we spent much space on a smooth transition from the standard to a
Hopf-flavoured view of dynamical systems; and indeed this article became a powerful spur
to revisit the traditional proof of the Lie–Scheffers theorem, and plug its gaps [17]. On the
other hand, many of our findings and procedures will surely not raise an eyebrow of people
working in sophisticated methods for control theory —on which we confess no expertise.
There is, at any rate, plenty left to do. Avenues open for possible research include:

• The Cariñena–Ramos’ approach to Lie–Scheffers systems, based on connections, should
be recast in the noncommutative mould, in the light of [20] and [30].

• To relate and compare the action algebroid approach to group & Lie algebra actions
with the Hopf algebra approach.

• Investigation of the product integral method.

• Further exploration of the theory of Rota–Baxter operators as natural inverses to
skewderivations; that is, developing Rota’s proposal of an algebraic theory of integra-
tion.

• Definitive clarification of the noncommutative Spitzer formula and the noncommutative
Bohnenblust–Spitzer identity in the light of Lam’s expansion.

• The bridge to control theory and chronological products, via Loday’s dendriform alge-
bras in particular, should be enlarged and strengthened. In this respect, Lie–Butcher
theory [86, 87] shows great promise.
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A Précis on group actions

Definition 4. A (left) action of a Lie group G on a manifold M is a homomorphism Φ of G
into DiffM . For x ∈M , and g ∈ G we denote

Φg := Φ(g) and Φ(g, x) := Φgx.

A right action is just an antihomomorphism of G into DiffM . The orbits of Φ are the subsets
of M of the form Φ(G, x) for a fixed x ∈M ; they are homogeneous manifolds, on which the
action is transitive. We will call Φx the map from G to M defined by g 7→ Φ(g, x). Recall
that a flow is an action of R on M . When Φ with the indicated properties is given, we say
M is a G-manifold. A Lie group action is proper if given any pair K,L of compacts subsets
of M , the set { g ∈ G : gK ∩ L 6= ∅ } is compact. The stabilizer or isotropy subgroups are
then compact. Proper actions, in particular compact group actions of general Lie groups,
have good properties: for instance the orbits of a proper action are closed submanifolds
of M [88]. An action is faithful (or effective, or essential) when the map g → Φg is injective;
if the kernel of this map is discrete, we say the action is almost faithful.

A good reference for Lie group actions is [2, Chapter 4]. As for the examples, any Lie
group G acts on itself by left and right translations Lg, Rg : G → G respectively given for
each g ∈ G by

g′ 7→ gg′, g′ 7→ g′g.

The inverse diffeomorphisms are L−1
g = Lg−1 and R−1

g = Rg−1 . This action is free and
transitive. Also G acts on itself by conjugation:

g′ 7→ gg′g−1 =: Ad(g)g′.

This action is neither free nor transitive; it is almost faithful iff the centre of G is discrete.

Definition 5. Suppose G acts both on N by ΦN and on M by ΦM . A smooth map f : N →
M between these manifolds is equivariant (with respect to the actions) if f ◦ ΦN

g = ΦM
g ◦ f

for each g ∈ G. The maps Φx : G → M , where Φ is a left (right) action are equivariant for
all x, with respect to the left (right) action of G on itself and Φ:

Φx ◦ Lg = Φg ◦ Φx or Φx ◦Rg = Φg ◦ Φx, (A.1)

as the case may be.

If G acts on M , then G also acts on TM by

(g, vx) 7→ (Φgx, TxΦgvx) =: ΦT (g, vx), for vx ∈ TxM .

When Φ is described in local coordinates, say by

Φi(g, x) = hi(g, x
1, . . . , xn), then TxΦgvx =

n∑

j=1

∂hi

∂xj
(g, x1, . . . , xn)vj

x.

Clearly the map vx 7→ ΦT (g, vx) from TxM into TΦ(g,x)M is linear and the canonical projection
τM : TM → M is equivariant with respect to these actions: τM

(
ΦT (g, vx)

)
= Φ

(
g, τM(vx)

)
.

We then say that Φ is equilinear [28]. For vector fields, then, there is the action:

(g,X) 7→ TΦg ◦X ◦ Φg−1 . (A.2)
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Corresponding to group translations we have then equilinear left and right actions of G
on TG; as well as actions on X(G). In view of (A.2), a vector field XL on G is left invariant
if for all g ∈ G, XL ◦ Lg = TLg ◦ X

L; this means that XL is Lg-related to itself for all
g ∈ G. Therefore the left invariant vector fields constitute a Lie subalgebra XL(G) =: gL

of X(G). Replacing Lg by Rg we obtain right invariant vector fields XR ∈ XR(G) and a
Lie subalgebra XR(G) =: gR. In particular, XL, XR are determined by their values in the
neutral element:

XL(g) = T1LgX
L(L−1

g g) = T1LgX
L(1G); similarly XR(g) = T1RgX

R(1G); (A.3)

for typographical simplicity we write T1 instead of T1G
. The dimension of XL(G) or of XR(G)

is thus that of the group. We denote byXL
ξ , X

R
ξ the left invariant, respectively right invariant,

vector field associated to ξ ∈ T1G. The (complete) flow of XL
ξ is (t, g) 7→ g exp(tXL

ξ ) and
the flow of XR

ξ is (t, g) 7→ exp(tXR
ξ )g.

We remark that gL is the commutant of gR in X(G), and vice versa. For instance, thinking
of the affine group of orientation-preserving transformations of the line as a neighbourhood
of (1, 0) with the multiplication rule:

(x1, x2) · (y1, y2) = (x1y1, x1y2 + x2),

then a basis for left (respectively right) invariant vector fields is

(XL
1 , X

L
2 ) := (x1∂1, x

1∂2); respectively (XR
1 , X

R
2 ) := (x1∂1 + x2∂2, ∂2).

With our Lie bracket, by the way: [XR
1 , X

R
2 ] = XR

2 . It is an easy exercise to check that if
a1(x

1, x2)∂1 +a2(x
1, x2)∂2 commutes with XL

1 , X
L
2 , then it is a linear combination of XR

1 , X
R
2

with scalar coefficients.
Consider the tangent map T ı : TG→ TG lifting the inversion diffeomorphism ı : g 7→ g−1

on the base; it carries left invariant vector fields into right invariant ones. The vector fields
T ı ◦ XL

ξ and −XR
ξ ◦ ı along ı coincide, that is, XL

ξ is ı-projectable on −XR
ξ . This simply

because
(
g−1 exp(tXL

ξ )
)−1

= exp(−tXR
ξ )g. Therefore [XL

ξ , X
L
η ] projects into [XR

η , X
R
ξ ].

Now, TG is itself a group, with product Tµ lifted from the product µ : G×G→ G. The
short exact sequence (where T1G is the additive group of this tangent linear space)

0→ T1G→ TG→ G→ 1

splits, which means TG ∼ T1G o G, with T1G embedded in TG as a normal subgroup. In
particular TG is a trivial vector bundle. We have in TG:

gvg′ = TLgvg′ ; vg′g = TRgvg′ . (A.4)

Clearly, the action of G on T1G is just AdT
1G

. Henceforth we write Ad for this adjoint action
of G on T1G. A Lie bracket can now be defined directly on T1G by [ξ, η] := ad(ξ)η :=
T1 Ad(ξ)η. One could also transfer to T1G the Lie algebra structure from XL(G) or XR(G),
say [ξ, η] := [XR

ξ , X
R
η ](1). That these and other natural definitions amount to the same is

standard fare [89, Appendix III]. The space T1G with any of these equivalent structures is
what people call the tangent (Lie) algebra g of G.
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Definition 6. A left (right) Lie algebra (infinitesimal) action λ on M is a Lie algebra
homomorphism (antihomomorphism) g 3 ξ 7→ λξ ∈ X(M); we say M is a g-manifold. The
action is said transitive at x when the λξ(x) span TxM . It is furthermore primitive when the
stabilizer gx is a maximal subalgebra; these concepts are analogous to the case of Lie group
actions. When the action is transitive at all points of M , we say infinitesimally transitive.
Given λ : g → X(M), if λg is made up of complete vector fields (in particular when M is
compact, guaranteeing completeness of all vector fields) and G is the simply connected Lie
group with Lie algebra g, then there is a unique Φ : G → DiffM such that T1Φ = λ. This
lifting to a group action always exists locally. We remark as well that our choice of sign for
the bracket of vector fields insures that the derivative T1Φ of a left action is a left action.

For the infinitesimal description of actions, the following notion is essential.

Definition 7. Let Φ denotes an action ofG onM . For ξ ∈ g, the map (t, x) 7→ Φ(exp tξ, x) is
a flow on M . The fundamental vector field or infinitesimal generator ξΦ

M of Φ corresponding
to ξ is the vector field

ξΦ
M(x) :=

d

dt

∣∣∣∣
t=0

Φ(exp tξ, x) = T1Φx(ξ) . (A.5)

The superscript Φ is omitted in the notation when the action is clear in the context. The
image of g under T1Φx is the tangent bundle T (G · x) of the Φ-orbit. The corresponding
differential operator is given by

ξΦ
Mf(x) :=

d

dt

∣∣∣∣
t=0

f
(
Φ(exp tξ, x)

)
.

The anchor map ξ 7→ ξΦ
M from the tangent algebra g to X(M) constitutes a Lie–Rinehart

algebra; the corresponding Lie algebroid will be transitive when the action of g on M is
infinitesimally transitive.

For example, when Φ is Lg : G → G, we know that the corresponding flow is (t, g ′) 7→
Rg′ exp tξ. Therefore

ξG(g′) = T1Rg′ξ = XR
ξ (g′), (A.6)

the right invariant vector field associated to ξ. By the same token ξR
G(g) = XL

ξ (g).
If M is a G-manifold, the flow of ξM is given by Φexp tξ. Indeed,

d

dt
Φ(exp tξ, x) =

d

ds

∣∣∣∣
s=0

Φ(exp(s+ t)ξ, x)

=
d

ds

∣∣∣∣
s=0

Φ(exp sξ, x) ◦ Φ(exp tξ, x) = ξM ◦ Φexp tξ(x).

As a consequence ξM is complete. The reader will have little difficulty in verifying the
following

Proposition A.1. Let N,M be G-manifolds with respective actions ΦN ,ΦM , and f : N →
M a smooth map equivariant with respect to these actions; then ξN ∼f ξM , that is Tf ◦ ξN =
ξM ◦ f . More precisely, ξN ∼f ξM iff the flows verify

f ◦ ΦN
exp(tξ) = ΦM

exp(tξ) ◦ f.
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Proposition A.2. For every ξ, η ∈ g we have

[ξM , ηM ] = [ξ, η]M .

In other words: ξ 7→ ξM is a left Lie algebra action.

Proof. A simple calculation gives

(Adg ξ)M = TΦg−1ξM .

We obtain the result immediately by differentiation. Our unconventional choice of sign for
the Lie bracket of vector fields avoids the obnoxious minus signs of the usual treatments.

The action Φ of G on M lifts naturally to representations of G on the various linear
spaces associated with M —for instance to representations on spaces of sections of vector
bundles [90] or on morphisms of vector bundles. We will limit ourselves to some simple
cases, needed in the main text. For f ∈ F(M), we consider (g · f)(x) := f

(
Φ(g−1, x)

)
; then

for T ∈ F ′(M) and for D ∈ D(M):

〈g · T, f〉 := 〈T, g−1 · f〉, respectively (g ·D)f := g ·D(g−1 · f).

Invariant functions, distributions and differential operators are defined in the obvious way.

B Differential equations on homogeneous spaces

The problem of solving non-autonomous differential equations on homogeneous spaces of
Lie groups is intimately linked to Lie–Scheffers theory: given an arbitrary Lie group G and
an action of it on a manifold M , for most purposes one can restrict oneself to the orbits
of the action, that is, the points of M/G; these are (immersed) submanifolds of M of the
form G/Gx, with Gx := { g ∈ G : Φ(g, x) = x } the stabilizer of a point x of the orbit, a
closed Lie subgroup of G. From this perspective, Lie–Scheffers systems are precisely those
that can be rewritten in the form

ẋ(t) = λξ(t)

(
x(t)

)
, (B.1)

where A : R → g is a curve on the Lie algebra g and λ denotes an infinitesimal action. If
λ = TΦ for some action Φ of G on M and g(t) solves the initial value problem (2.9):

ġ(t) = ξG(t, g(t)); g(0) = 1G, (B.2)

then the solution of (B.1) with initial condition x(0) = x0 is given by the integrated action:
x(t) = Φ(g(t), x0). At this point we again advise the reader to consult [17].

In practice we consider transitive actions on M ≡ G/Gx. Suppose that x(1) is a particular
solution of (B.1) satisfying x(0) = x0. Let g1 ∈ Map(Rt, G) such that x(1)(t) = Φ(g1(t), x0).
Such curve is not unique in general; but, if g2 is another one, then g2(t) = g1(t)h(t) with h in
Map(Rt, Gx0). It is convenient to choose h so that g2 is the fundamental solution of (B.1):

ġ2(t) = T1Rg2(t)ξ(t),
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upon using (A.6) in the last equality. Then h is the fundamental solution of the Lie–Scheffers
system associated to the curve B : R→ gx0 , given by [91]:

B(t) = T1Lg1(t)−1

(
T1Rg1(t)ξ(t)− ġ1(t)

)
.

Therefore the knowledge of a particular solution of (B.1) that satisfies x(1)(0) = x0 reduces
the problem of finding the fundamental solution for G to finding the fundamental solution
for the subgroup Gx0 . Naturally if more particular solutions are known, whose values at 0 are
x1, . . . , xr, then we can reduce the problem to solving a Lie–Scheffers system in the subgroup
Gx0 ∩ · · · ∩ Gxr

. When this group is discrete, one can explicitly compute the fundamental
solution for G, from which the general solution of the original Lie–Scheffers system can be
derived. This is known as the Lie reduction method.

A variant of the Lie reduction method was studied in the language of gauge theory in [16].
Without actually invoking connections, we illustrate the approach in this last reference
with the Riccati equation (2.5). The latter seeks the integral curves of the vector field
along π2 : Rt ×M →M :

Ȳ =
(
a0(t) + a1(t)x+ a2(t)x

2
) ∂
∂x
.

For vector fields E+ = ∂/∂x,H = x ∂/∂x and E− = x2 ∂/∂x we observe the commutation
relations

[H,E+] = E+; [E+, E−] = −2H; [H,E−] = −E−, (B.3)

exactly those of the matrices E ′
+ :=

(
0 1
0 0

)
; H ′ :=

(
1
2

0
0 −1

2

)
; E ′

− :=

(
0 0
−1 0

)
. Therefore

E±, H realize the (perfect) Lie algebra sl(2; R) of the group SL(2; R). The corresponding
flows of R are respectively

x0 7−→ x0 + t; x0 7−→ x0e
t; x0 7−→

x0

1− x0t
;

the last one blows up for x0 > 0 in finite time, indicating that E− is not complete. This
can be corrected by adding to R the point at infinity. More precisely, we have the well-
known action of the projective group SL(2; R)/Z2 on the projective line R ∪ ∞ —to wit,
the projectivization of the fundamental action of SL(2; R) on R2. Just as well, in the spirit
of this article, we can decide to regard the action as a local one, defined on the open set
of SL(2; R)× R given by the pairs such that cx + d 6= 0.

Now, consider the group Map
(
Rt, SL(2; R)

)
of curves acting on the set of Riccati equa-

tions (that is, the group of automorphisms of the trivial principal bundle SL(2; R)×Rt → Rt)
corresponding to the indicated action, expressed by:

Φ
(
A(t), x(t)

)
= Φ

((
α(t) β(t)
γ(t) δ(t)

)
, x(t)

)
=
α(t)x(t) + β(t)

γ(t)x(t) + δ(t)
,

together with the other obvious cases. When x(t) is a solution of the Riccati equation (2.5),
then x′(t) := Φ

(
A(t), x(t)

)
is also a solution of a Riccati equation with coefficients



a′2(t)
a′1(t)
a′0(t)


 =




δ2 −δγ γ2

−2βδ αδ + βγ −2αγ
β2 −αβ α2





a2(t)
a1(t)
a0(t)


 +




γδ̇ − δγ̇

δα̇− αδ̇ + βγ̇ − γβ̇

αβ̇ − βα̇


 .
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The second term on the right hand side is a 1-cocycle for the linear action on the co-
efficients of the Riccati equation given by the first term. If a particular solution x(1)(t)

of (2.5) is known, the element A1(t) =

(
1 0

−x−1
(1)(t) 1

)
∈ Map

(
Rt, SL(2; R)

)
, transforms the

original Riccati equation into the linear equation dx′/dt =
(
2x−1

(1)(t)a0(t) + a1(t)
)
x′ + a0,

thereby reducing the group SL(2; R) to the subgroup A(1; R). When a second particular
solution x(2)(t) of (2.5) is given, then x′ = x(1)x(2)/(x(1) − x(2)) satisfies the linear equa-
tion, therefore we obtain the corresponding homogeneous linear equation using the matrix

A2 =

(
1 −x(1)x(2)(x(1) − x(2))

−1

0 1

)
. Concretely, the change of variables

x′′ = Φ(A2, x
′) = Φ(A2A1, x) =

x2
(1)(x− x(2))

(x(2) − x(1))(x− x(1))

leads to the homogeneous linear equation dx′′/dt =
(
2x−1

(1)(t)a0(t) + a1(t)
)
x′′. Finally, if x(3)

is a third particular solution of (2.5), then z = x2
(1)(x(2)−x(3))/(x(2)−x(1))(x(1)−x(3)) solves

this linear equation, thus if A3 =

(
z−1/2 0

0 z1/2

)
, the transformation

x′′′ = Φ(A3A2A1, x) =
(x− x(2))(x(1) − x(3))

(x− x(1))(x(2) − x(3))

gives the reduced equation dx′′′/dt = 0, which is the superposition principle (2.3) for the
Riccati equation.

We are not likely to find an exact solution for (B.2) in most cases. This is one reason why
we concentrate on approximate solutions in this paper. To attack (2.8), it is generally a good
strategy to move on to an equivalent system on the tangent algebra of G —a coordinate space
for G which enjoys the advantage of being a linear space. To effect properly the method of
working on the tangent algebra, one needs to ponder equivariant maps between homogeneous
spaces. We go to this in the next appendix.

C More on the same

Consider again the canonical action of G on its tangent algebra g, and let f : g → G be
a local coordinate map. The exponential map is an example, but of course there are slight
variants of it (see below); or we could employ, if available, the Cayley map [92]. A local action
Bf of G on g is constructed by Bf

g = f−1 ◦ Lg ◦ f . This is a (somewhat skew) generalized
version of the CBHD map, since, if f is the exponential map, then for η ∈ g we obtain:

Bexp(g, η) = log(g exp η) = log g + η + CBHD(log g, η),

with the notation of Section 8. Similarly for right actions.
By definition the map f is equivariant with respect to Bf and left translations. Since the

maps Φx are also equivariant, their composition Φx ◦ f : g→ G→M is equivariant, and we
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have the following commutative diagram relating the flows on M,G and g:

g
f // G

Φx // M

g

Bf

etξ

OO

f
// G

L
etξ

OO

Φx

// M,

Φ
etξ

OO

with the notation of Section 4 for exp(tξ). By Proposition A.1, this commutative diagram
can be extended to:

Tg ≈ g× g
Tf // TG

TΦx // TM

g

ξg

OO

f // G

ξG

OO

Φx // M

ξM (x)

OO

g

Bf

etξ

OO

f
// G

L
etξ

OO

Φx

// M ;

Φ
etξ

OO

in particular
ξM(x) ◦ Φx ◦ f = TΦx ◦ Tf ◦ ξg. (C.1)

The overarching question is now: what is the concrete description of ξg? This we answer
next, and we obtain a congenial reply. Write g = f(u) with u ∈ g, to distinguish the role
of the points of g as coordinates for G. The map Tuf : Tg → TG can be factorized into
a map from Tug ≈ g to g, say Af

u, and the translation T1Rf(u). Now, in view of (A.6),
Tf ◦ ξg = ξG ◦ f gives

T1Rf(u) ◦ A
f
u ◦ ξg(u) = T1Rf(u) ξ;

therefore
ξg(u) = (Af

u)
−1ξ, (C.2)

where Af
u = Tf(u)Rf−1(u) ◦Tuf is the Darboux derivative of f , a map Tg→ g×g yielding the

pullback via f of the right Maurer–Cartan form on G (a g-valued 1-form on g). Then one
recovers the ‘static’ version of (2.7) from a slightly different viewpoint. Note the double role
of g in the construction: on the one hand, its elements are parameters of the infinitesimal
generators on M ; on the other hand they serve as coordinates of the linear space on which
we want to solve a differential equation equivalent to the one originally given on M . The
general Darboux derivative for group-valued maps on manifolds is a key ingredient in the
study of connections via transitive Lie algebroids [5].

In summary, a differential equation on a homogenous G-manifold M —described by
infinitesimal generators of the Lie group action along the projection Rt ×M → M— has
been transformed to a ‘pulled-back’ equation on the tangent algebra of the group:

u̇ = ξg(u; t), (C.3)

by means of the commutative diagram

Tg
TΦx◦Tf // TM

Rt × g

ξg

OO

Φx◦f // Rt ×M,

ξM

OO
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where ξg is the vector field along Rt × g → g associated to the curve t 7→ ξ(t), explicitly
given by formula (C.2). The equation evolving on the Lie algebra is susceptible of attack by
geometrical integration techniques, a point made in [93].

To exemplify, let us look at Riccati’s equation (2.5) again. Consider

L := a0(.)E
′
+ + a1(.)H

′ + a2(.)E
′
− ∈ Map

(
Rt, sl(2; R)

)
.

We know that if we are able somehow to solve the equation

dg

dt
= L(t)g(t), with g(t0) = 1SL(2;R), (C.4)

then (2.5) is entirely solved by the ‘Green operator’

x(t) = Φ(g(t), x0).

where Φ is the integrated action considered in the previous section. To search for that
solution, let us bring in a variant of the exponential map [94]. Using canonical coordinates
of the second kind for the element g(t) ∈ G, write:

g(t) = f(u(t)) := exp(u0(t)E ′
+) exp(u1(t)H ′) exp(u2(t)E ′

−)

=: exp(u0(t)L′
0) exp(u1(t)L′

1) exp(u2(t)L′
2). (C.5)

Therefore f denotes the defined locally bijective map from sl(2; R) onto SL(2; R), with
u ≡ (u0, u1, u2). (Incidentally, this means that we seek the general solution of the Riccati
equation under the form

x(t) =
eu1(t)x0

1− u2(t)x0
+ u0(t);

then, taking x0 =∞, 0, 1, three particular solutions are obtained, and the reader will see at
once that the superposition formula (2.3) follows from here.)

Replacing g(t) in (C.4) by (C.5), upon using the commutation relations we obtain

dg(t)

dt
g−1(t) = u̇0E ′

+ + u̇1eu0E′

+H ′e−u0E′

+ + u̇2eu0E′

+eu1H′

E ′
−e

−u1H′

e−u0E′

+

= u̇0E ′
+ + u̇1 exp(u0 adE ′

+)H ′ + u̇2 exp(u0 adE ′
+) exp(u1 adH ′)E ′

−

= u̇0E ′
+ + u̇1(H ′ − u0E ′

+) + u̇2e−u1

exp(u0 adE ′
+)E ′

−

= u̇0E ′
+ + u̇1(H ′ − u0E ′

+) + u̇2e−u1

(E ′
− − 2u0H ′ + (u0)2E ′

+)

= (u̇0 − u0u̇1 + (u0)2e−u1

u̇2)E ′
+ + (u̇1 − 2u0e−u1

u̇2)H ′ + e−u1

u̇2E ′
−

= a0(t)E
′
+ + a1(t)H

′ + a2(t)E
′
−.

This leads to the following differential equations for the u-variables:

u̇0 = a0(t) + a1(t)u
0 + a2(t)(u

0)2

u̇1 = a1(t) + 2a2(t)u
0 (C.6)

u̇2 = a2(t)e
u1

,

to be solved under the initial conditions u0(t0) = u1(t0) = u2(t0) = 0. With the chosen
map f , the first equation of this system is the same Riccati equation we started with. This
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we contrived to make the point again that one particular solution needs to be known, for
the general solution to be obtainable by quadratures. The explicit form of the Darboux
derivative Af

u in our example is

(u0, u1, u2; v0, v1, v2) 7→
2∑

k=0

AdQk−1
i=0 exp(uiL′

i)
vkL′

k.

The inversion of this map was just performed, with result the field corresponding to the
system (C.6), to wit,

(
a0(t) + a1(t)u

0 + a2(t)(u
0)2
)
∂0 +

(
a1(t) + 2a2(t)u

0
)
∂1 + a2(t)e

u1

∂2,

which is our (C.3). Once the latter equation is solved, the rest is obvious: as repeatedly
said, one just uses the map Φ ◦ f , to go back to M .

The perceptive reader would ask at this point: what about transferring the convolution
algebra in Section 4 to the tangent algebra, too? We know nowadays that for conjugation
invariant distributions this can be done [95].

Further work on connections à la Lie–Rinehart in the respect of Lie–Scheffers systems is
in progress [96].

D Faà di Bruno Hopf algebra and the Lie–Engel theorem

Due to its fundamental nature, the Hopf algebra we conjure next is ubiquitous. Let Diff+
0 (R)

be the group of orientation-preserving formal diffeomorphisms of R (similarly for C) leaving 0
fixed. We think of them as exponential power series:

f(t) =

∞∑

n=1

fn

n!
tn with f1 > 0. (D.1)

On Diff+
0 (R) we consider the coordinate functions

an(f) := fn = f (n)(0), n ≥ 1.

Now,

h(t) =
∞∑

k=1

fk

k!

( ∞∑

l=1

gl

l!
tl
)k

,

where h is the composition f ◦ g of two such diffeomorphisms. Therefore, from Cauchy’s
product formula, the nth coefficient hn = an(h) is

hn =
n∑

k=1

fk

k!

∑

li≥1, l1+···+lk=n

n! gl1 · · · glk

l1! · · · lk!
.

To rewrite hn in a compact form, it is convenient to introduce the notation

(
n

λ; k

)
:=

n!

λ1!λ2! . . . λn!(1!)λ1(2!)λ2 . . . (n!)λn
.
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Then, taking in consideration that the sum l1 + · · ·+ lk = n can be rewritten as

λ1 + 2λ2 + · · ·+ nλn = n, where λ1 + · · ·+ λn = k

if there are λ1 copies of 1, λ2 copies of 2, and so on, among the li; and that the number of
contributions from g of this type is precisely the multinomial coefficient

(
k

λ1 · · ·λn

)
=

k!

λ1! · · ·λn!
,

it follows:

hn =
n∑

k=1

fk

∑

λ`n,|λ|=k

(
n

λ; k

)
gλ1
1 . . . gλn

n =:
n∑

k=1

fk Bn,k(g1, . . . , gn+1−k). (D.2)

We have used notations of the theory of partitions of integers. The Bn,k are called the
(partial, exponential) Bell polynomials, often defined via the expansion

exp

(
u
∑

m≥1

gm
tm

m!

)
= 1 +

∑

n≥1

tn

n!

[ n∑

k=1

ukBn,k(g1, . . . , gn+1−k)

]
,

which is a particular case of (D.2). Each Bn,k is a homogeneous polynomial of degree k.
According to (4.5), a coproduct on R(Diff+

0 (R)), which we realize as the polynomial
algebra R[a1, a2, . . . ], is given by ∆an(g, f) = an(f ◦ g). This entails

∆an =
n∑

k=1

∑

λ`n,|λ|=k

(
n

λ; k

)
aλ1

1 a
λ2
2 . . . aλn

n ⊗ ak. (D.3)

The flip of f and g is done to keep the tradition of writing the linear part on the right of the
tensor product; this amounts to taking the opposite coalgebra structure. With (D.3) we have
a bialgebra structure. In a Hopf algebra grouplike elements are invertible: g−1 = Sg. Since
a1 is grouplike, to have an antipode one must either adjoin an inverse a−1

1 , or put a1 = 1.
The latter is equivalent to work with the subgroup Diff+

0,1(R) of Diff+
0 (R), of diffeomorphisms

tangent to the identity at 0, that is, to consider power series such that f0 = 0 and f1 = 1.
The coproduct formula is accordingly simplified to:

∆an =

n∑

k=1

∑

λ`n,|λ|=k

(
n

λ; k

)
aλ2

2 a
λ3
3 · · · ⊗ ak =

n∑

k=1

Bn,k(1, . . . , an+1−k)⊗ ak.

The resulting graded connected Hopf algebra F = Rcop(Diff+
0,1(R)), where the superindex

stands for the opposite coalgebra structure, was baptized Faà di Bruno Hopf algebra by Joni
and Rota [97]. The degree is then given by |an| = n− 1.

Several comments are in order. Formula (D.2) can be directly expressed in terms of
partitions of finite sets; consult [3] or [98, Chapter 5]. The happy fact that the algebra
of representative functions Rcop(Diff+

0,1(R)) is graded is related to the linearity of the pro-

duct f ◦ g in one of the coordinates. This also means that Diff+
0,1(R) is the inverse limit of

finite-dimensional matrix groups, and that it possesses a (necessarily unique) right invariant
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connection with vanishing torsion and curvature. Also, although ‘formal’ may sound a bit
dismissive, one should remember that, in view of E. Borel’s theorem, expression (D.1) does
represent a smooth function; and that (D.2) can be used to show without having recourse
to complex variables that the composition of analytic functions on appropriate domains is
analytic [99].

Let us turn our attention to the dual of the Faà di Bruno Hopf algebra F . Since we are
dealing with a graded connected Hopf algebra it is natural to consider the graded dual, that
we denote simply by F ′; for which F ′′ = F . (From the discussion in Sections 4 and 5 we
know there exist bigger duals, for instance F ′ does not have grouplike elements apart from
its unit η.) Let a′n be the linear functionals defined by 〈a′n, P 〉 = ∂P/∂an(0), where P is a
polynomial in R[a2, a3, . . . ]. In particular the a′n kill non-trivial products of the aq generators.
Also, taking in consideration that the counit η(P ) = P (0) of F is the unit in F ′

〈∆a′n, P ⊗Q〉 = 〈a′n, m(P ⊗Q)〉 = 〈a′n, PQ〉 =
∂(PQ)

∂an
(0) = 〈a′n ⊗ 1 + 1⊗ a′n, P ⊗Q〉,

Thus the a′n are primitive. Using the definition of the Bell polynomials

〈a′na
′
m, aq〉 = 〈a′n ⊗ a

′
m,∆aq〉 =

{(
m+n−1

n

)
if q = m + n− 1

0 otherwise.

On the other hand, note that

∆(aqar) = aqar ⊗ 1 + 1⊗ aqar + aq ⊗ ar + ar ⊗ aq +R,

where R is either vanishing or a sum of terms of the form b ⊗ c with b or c a monomial
in a2, a3, . . . of degree greater than 1. Therefore

〈a′na
′
m, aqar〉 = 〈a′n ⊗ a

′
m,∆(aqar)〉 =





1 if n = q 6= m = r or n = r 6= m = q,

2 if m = n = q = r,

0 otherwise.

Similarly, since all the terms of the coproduct of three or more aq’s are the tensor product
of two monomials where at least one of them is of order greater than 1, it follows that

〈a′na
′
m, aq1aq2aq3 · · · 〉 = 0.

Collecting all this together,

a′na
′
m =

(
m− 1 + n

n

)
a′n+m−1 +

(
1 + δnm

)
(anam)′.

In particular,

[a′n, a
′
m] := a′na

′
m − a

′
ma

′
n = (m− n)

(n+m− 1)!

n!m!
a′n+m−1.

Therefore, taking b′n := (n + 1)!a′n+1, we get the simpler looking

[b′n, b
′
m] = (m− n) b′n+m. (D.4)
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The Cartier–Milnor–Moore theorem implies that F ′ is the enveloping algebra of the Lie
algebra spanned by the b′n with commutators (D.4). Obviously F ′ can be realized by the
vector fields Zn := xn+1 ∂/∂x, for n ≥ 1, on the real line [100].

Consider the ‘regular representation’ of F given by 〈a . a′, b〉 := 〈a′, ba〉 on F ′. Since

〈b . (a . a′), c〉 = 〈a . a′, cb〉 = 〈a′, cba〉 = 〈ba . a′, c〉 and 〈1 . a′, b〉 := 〈a′, b〉,

we do obtain a left module algebra over F . Let now a be a primitive element of F ; using
the Sweedler notation:

〈a . b′a′, c〉 = 〈b′a′, ca〉 = 〈b′ ⊗ a′,∆(ca)〉 = 〈b′ ⊗ a′,∆c∆a〉

= 〈b′ ⊗ a′, c(1) ⊗ c(2)(a⊗ 1 + 1⊗ a)〉

= 〈a . b′ ⊗ a′ + b′ ⊗ a . a′, c(1) ⊗ c(2)〉

= 〈(a . b′)a′ + b′(a . a′), c〉,

so a acts as a derivation. In particular if a . a′ = a . b′ = 0, then a . (a′b′) = 0, hence the
kernel of the map a . · is a Lie subalgebra of vector fields, and we conclude that primitive
elements of F identify finite-dimensional Lie subalgebras of vector fields. Now, the space

P (F) of primitive elements of F has dimension two. Indeed, P (F) =
(
R1⊕ F ′

+
2)⊥, where

F ′
+ := ker η is the augmentation ideal of F ′. By (D.4) there is a dual basis of F ′ made of

products, except for its first two elements. Hence dimP (F) = 2. A basis of P (F) is given by
{a2, a3−

3
2
a2

2}. This yields the equations y′′ = 0 and y′y′′′− 3(y′′)2/2 = 0, respectively solved
by dilations and by the action of SL(2; R) we know; translations do not show up because we
made a1 = 1.

The previous argument, together with the part of classical one [101] —more recently
rehearsed in [28, Section XIX] or in [91]— to the effect that infinitesimally transitive actions
on the line must correspond to Lie algebras of vector fields of dimension at most three,
shows that Riccati’s is the only nonlinear Lie–Scheffers differential equation on the real (or
complex) line. Whether or not it is simpler to think in Hopf algebraic terms seems largely
a matter of taste. We do contend that the Beatus Faà di Bruno algebra is too fundamental
an object to ignore.
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[14] J. F. Cariñena, J. Grabowski and G. Marmo, Lie–Scheffers system: a geometric ap-
proach, Bibliopolis, Naples, 2000.

[15] O. Stormark, Lie’s structural approach to PDE systems, Cambridge University Press,
Cambridge, 2000.
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