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Abstract: We study the homotopy category hmf(R,W ) of matrix factorizations of non-zero
elements W ∈ R×, where R is an elementary divisor domain. When R has prime elements and
W factors into a square-free element W0 and a finite product of primes of multiplicity greater
than one and which do not divide W0, we show that hmf(R,W ) is triangle-equivalent with an
orthogonal sum of the triangulated categories of singularities Dsing(An(p)) of the local Artinian
rings An(p) = R/〈pn〉, where p runs over the prime divisors of W of order n ≥ 2. This result holds
even when R is not Noetherian. The triangulated categories Dsing(An(p)) are Krull-Schmidt and
we describe them explicitly. We also study the cocycle category zmf(R,W ), showing that it is
additively generated by elementary matrix factorizations. Finally, we discuss a few classes of
examples.
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Introduction

The study of open-closed topological Landau-Ginzburg models [1,2,3,4] defined on a Stein
manifold X [5] leads naturally to the problem of understanding categories of finitely-generated
projective factorizations over the non-Noetherian ring O(X) of holomorphic complex-valued
functions defined on X. The simplest interesting models of this type arise when X is an arbitrary
borderless, smooth and connected non-compact Riemann surface Σ (which may have infinite
genus), with superpotential given by a non-vanishing holomorphic function W : Σ → C. In this
situation, the ring R = O(X) is a so-called elementary divisor domain (see Appendix B), i.e. it
has the property that any matrix with entries from R admits a Smith normal form. Since any
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elementary divisor domain is a Bézout domain, this implies that any finitely-generated projective
R-module is free (see [6]), hence the relevant category reduces to the usual homotopy category
hmf(R,W ) of finite rank matrix factorizations over R.

In the present paper, we consider a similar problem for any elementary divisor domain R
which has prime elements, showing that the triangulated structure of the category hmf(R,W )
can be determined explicitly for any element W ∈ R× which is critically-finite, i.e. which can be
written as a product W = W0Wc, where the non-critical part W0 is a square-free element of R×

and the critical part Wc is a (non-empty) finite product of prime elements of R, each of which
has multiplicity strictly greater than one (we also require that W0 and Wc are coprime). More
precisely, we will prove the following result, which can be viewed as a non-Noetherian extension
of the Buchweitz correspondence [7] to elementary divisor domains:

Theorem 0.1 Let R be an elementary divisor domain which has prime elements and W be a
critically-finite element of R with critical part Wc = pn1

1 . . . pnNN , where p1, . . . , pN (with N ≥ 1)
are prime elements of R which are not mutually associated in divisibility and ni ≥ 2. Then there
exist equivalences of triangulated categories:

hmf(R,W ) ' ∨Ni=1modR/〈pni 〉 ' ∨Ni=1Dsing(R/〈pni〉) , (0.1)

where modR/〈pni 〉 ' Dsing(R/〈pni〉) denotes the projectively-stabilized category of finitely-generated
modules (a.k.a. the category of singularities) of the ring R/〈pni〉, a ring which is Artinian.

Our proof relies on the fact that matrices over an elementary divisor domain admit a Smith
normal form, which allows us to reduce the problem to understanding certain properties of ele-
mentary matrix factorizations (i.e. those matrix factorizations whose reduced rank equals one).
The latter were studied in [8] for any Bézout domain. The triangulated categories Dsing(R/〈pni〉)
are Krull-Schmidt and they admit Auslander-Reiten triangles; their Auslander-Reiten quivers
are determined in Section 2. Together with Theorem 0.1, this gives a complete description of
the category hmf(R,W ) when the hypothesis of the theorem is satisfied.

The paper is organized as follows. In Section 1, we recall a few definitions and construc-
tions for matrix factorizations over Bézout domains. In Section 2, we discuss finitely-generated
modules over the quotient of a Bézout domain by a principal primary ideal. Section 3 consid-
ers the homotopy category of matrix factorizations over an elementary divisor domain for a
critically-finite W , giving the proof of Theorem 0.1. Section 4 discusses some examples, while
the appendices collect information about matrices over greatest common divisor (GCD) domains
and about elementary divisor domains (EDD).

Notations and conventions. We use the same notations and conventions as in [8]. In particular,
given an element x of a unital commutative ring R, the symbol (x) ∈ R/U(R) (where U(R) is
the group of units of R) denotes the class of x under association in divisibility. When R is a
GCD domain (see Appendix A) and x1, . . . , xn ∈ R, the symbol (x1, . . . , xn) ∈ R/U(R) denotes
the association in divisibility class formed by the greatest common divisors of x1, . . . , xn. The
symbol 〈x1, . . . , xn〉 denotes the ideal generated by x1, . . . , xn. The symbol Z2 stands for the field
Z/2Z, whose elements we denote by 0̂ and 1̂. The symbol N denotes the set of natural numbers

including zero, while N∗ def.
= N \ {0}.



Matrix factorizations over elementary divisor domains 3

1. Matrix factorizations over a Bézout domain

Categories of matrix factorizations over a Bézout domain were studied in [8], to which we refer
the reader for more detail. In this section, we recall some definitions and constructions which
will be used later on. Let R be a Bézout domain and W ∈ R× be a non-zero element of R.

1.1. Categories of matrix factorizations over R. As in [8], we consider the following categories:

• The R-linear and Z2-graded differential category MF(R,W ) of finite rank matrix factoriza-
tions of W over R. Its objects are pairs a = (M,D) with M a free Z2-graded R-module of finite
rank and D an odd endomorphism of M such that D2 = W idM . Since W is non-vanishing,
the even and odd components of M have equal rank, which we denote by ρ(a) and call the
reduced rank of a; we have rkM = 2ρ(a). Choosing a Z2-homogeneous basis of M allows us to
identify M with the R-supermodule Rρ(a)|ρ(a) whose Z2-homogeneous components are both
equal to the free module R⊕ρ(a). Then D is identified with a square matrix of size 2ρ(a) in
block off-diagonal form:

D =

[
0 v
u 0

]
,

where u and v are square matrices of size ρ(a) with entries in R. The condition D2 = W idM
amounts to the relations:

uv = vu = WIρ(a) , (1.1)

where Iρ(a) is the identity matrix of size ρ(a). Since W 6= 0, these conditions imply that the
matrices u and v have maximal rank. Given two objects a1 = (M1, D1) and a2 = (M2, D2) of
MF(R,W ), the Z2-graded R-module of morphisms from a1 to a2 is given by the inner Hom:

HomMF(R,W )(a1, a2) = HomR(M1,M2) = Hom0̂
R(M1,M2)⊕Hom1̂

R(M1,M2) ,

endowed with the differential determined by the condition:

da1,a2(f) = D2 ◦ f − (−1)κf ◦D1 , ∀f ∈ Homκ
R(M1,M2) ,

where κ ∈ Z2.

• TheR-linear and Z2-graded cocycle, coboundary and total cohomology categories ZMF(R,W ),
BMF(R,W ) and HMF(R,W ) of MF(R,W ).

• The subcategories mf(R,W ), zmf(R,W ), bmf(R,W ) and hmf(R,W ) obtained from MF(R,W ),
ZMF(R,W ), BMF(R,W ) and HMF(R,W ) by restricting to morphisms of even degree. Notice
that hmf(R,W ) is the usual homotopy category of finite rank matrix factorizations.

It is clear that MF(R,W ), BMF(R,W ) and ZMF(R,W ) admit double direct sums (and hence
all finite direct sums of at least two elements). On the other hand, HMF(R,W ) is an additive
category. Two matrix factorizations a1 and a2 of W over R are called strongly isomorphic if they
are isomorphic in the category zmf(R,W ). It is clear that two strongly isomorphic factorizations
are also isomorphic in hmf(R,W ), but the converse need not hold. Matrix factorizations for
which M = Rρ|ρ form a dg subcategory of MF(R,W ) which is dg-equivalent with MF(R,W ).
We will often tacitly identify MF(R,W ) with this subcategory. Given two matrix factorizations

a1 = (Rρ1|ρ1 , D1) and a2 = (Rρ2|ρ2 , D2) of W with Di =

[
0 vi
ui 0

]
and ui, vi ∈ Mat(ρi, ρi, R), a

morphism f ∈ Hommf(R,W )(a1, a2) has matrix form:

f =

[
f0̂0̂ 0
0 f1̂1̂

]
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with f0̂0̂, f1̂1̂ ∈ Mat(ρ1, ρ2, R) and we have:

da1,a2(f) = D2 ◦ f − f ◦D1 =

[
0 v2 ◦ f1̂1̂ − f0̂0̂ ◦ v1

u2 ◦ f0̂0̂ − f1̂1̂ ◦ u1 0

]
.

1.2. The triangulated structure of hmf(R,W ). The category hmf(R,W ) is naturally triangulated
with an involutive suspension functor. This triangulated structure is defined as follows (see [9]
for a detailed treatment).

Definition 1.1 Let a = (M,D) be a matrix factorization of W , where

D =

[
0 v
u 0

]
.

The suspension of a is the matrix factorization ΣM
def.
= (M ′, D′), where:

(M ′)0̂
def.
= M 1̂ , (M ′)1̂

def.
= M 0̂,

and:

D′
def.
=

[
0 −u
−v 0

]
.

Given two matrix factorizations a1 = (M1, D1) and a2 = (M2, D2) of W and a morphism
f ∈ Homhmf(R,W )(a1, a2), its suspension Σf coincides with f when the latter is viewed as an

element of Hom0̂
R(M ′1,M

′
2).

It is easy to check that Σ is an endofunctor of hmf(R,W ) which satisfies Σ2 = idhmf(R,W ).

Definition 1.2 Let ai = (Mi, Di) for i ∈ {1, 2} be two matrix factorizations of W with Di =[
0 vi
ui 0

]
and f : a1 → a2 be a morphism in hmf(R,W ) with f =

[
f0̂0̂ 0
0 f1̂1̂

]
. Then:

• The mapping cone C(f) of f is the matrix factorization C(f) = (M,D) of W , where:

M
def.
= M 0̂ ⊕M 1̂ with M 0̂ def.

= M 1̂
1 ⊕M 0̂

2 , M 1̂ def.
= M 0̂

1 ⊕M 1̂
2

and:

D
def.
=

[
0 v
u 0

]
, with u

def.
=

[
−v1 0
f1̂1̂ u2

]
, v

def.
=

[
−u1 0
f0̂0̂ v2

]
.

• The morphism ϕf : a2 → C(f) is defined via the following diagram:

M 0̂
2

u2−−−−→ M 1̂
2

v2−−−−→ M 0̂
2yι1 yι2 yι1

M 1̂
1 ⊕M 0̂

2
u−−−−→ M 0̂

1 ⊕M 1̂
2

v−−−−→ M 1̂
1 ⊕M 0̂

2

,

where ι1 : M 0̂
2 →M 1̂

1 ⊕M 0̂
2 and ι2 : M 1̂

2 →M 0̂
1 ⊕M 1̂

2 are the inclusions.
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• The morphism ψf : C(f)→ Σa1 is defined via the following diagram:

M 1̂
1 ⊕M 0̂

2
u−−−−→ M 0̂

1 ⊕M 1̂
2

v−−−−→ M 1̂
1 ⊕M 0̂

2yπ1 yπ2 yπ1
M 1̂

1
−v−−−−→ M 0̂

1
−u−−−−→ M 1̂

1

,

where π1 and π2 are the natural projections.

The following result is well-known (see [9] for details):

Theorem 1.3 The category hmf(R,W ) is triangulated when equipped with the suspension func-
tor Σ and with the collection of distinguished triangles given by sequences isomorphic with those
of the form:

a1
f−→ a2

ϕf−→ C(f)
ψf−→ Σa1 ,

where f : a1 → a2 is any morphism in hmf(R,W ).

Proposition 1.4 Let s be a unit of R. Then there exists a triangulated equivalence:

hmf(R, sW ) ' hmf(R,W ) .

Proof. Let Φs : zmf(R,W ) → zmf(R, sW ) be the functor which takes a factorization a =

(Rρ|ρ, D) of W with D =

[
0 v
u 0

]
into the factorization Φs(a) = (Rρ|ρ, Ds) of sW , where Ds =[

0 sv
u 0

]
is a factorization of sW and leaves unchanged the morphism f =

[
f0̂0̂ 0
0 f1̂1̂

]
from a1 to

a2 into itself. Using the explicit expression:

dsa1,a2(f) = Ds
2 ◦ f − f ◦Ds

1 =

[
0 sv2 ◦ f1̂1̂ − sf0̂0̂ ◦ v1

u2 ◦ f0̂0̂ − f1̂1̂ ◦ u1 0

]
, (1.2)

we conclude that:
D2 ◦ f − f ◦D1 = 0 ⇐⇒ Ds

2 ◦ f − f ◦Ds
1 = 0 .

This implies that the functor Φs is well-defined and1:

Homzmf(R,W )(a1, a2) = Homzmf(R,sW )(Φs(a1), Φs(a2)) .

The coboundary categories bmf(R,W ) and bmf(R, sW ) are also related to each other in a similar
way. More precisely, equation (1.2) gives:

dsa1,a2(f) = 0 ⇐⇒ da1,a2(f) = 0 ,

which implies the equality bmf(R,W )(a1, a2) = bmf(R, sW )(Φs(a1), Φs(a2)). As a result, the
functor Φs gives an equivalence of categories from hmf(R,W ) to hmf(R, sW ). Since the modules
of morphisms naturally coincide, we also conclude that Φs maps distinguished triangles into
distinguished triangles. This follows immediately from what we proved here and from Theorem
1.3. ut

1 Notice that the right hand side is always a subset of the left hand side for any element s ∈ R. The equality
holds since s is a unit.
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1.3. Localizations. Let S ⊂ R be a multiplicative subset of R containing the identity 1 ∈ R. Let

λS : R → RS denote the natural ring homomorphism from R to the localization RS
def.
= S−1R

of R at S. For any r ∈ R, let rS
def.
= λS(r) = r

1 ∈ RS denote its extension. For any R-module N ,
let NS = S−1N = N ⊗R RS denote the localization of N at S. For any morphism of R-modules

f : N → N ′, let fS
def.
= f⊗R idRS : NS → N ′S denote the localization of f at S. For any Z2-graded

R-module M = M 0̂ ⊕M 1̂, we have MS = M 0̂
S ⊕M 1̂

S , since the localization functor is exact. In
particular, localization at S induces a functor from the category of Z2-graded R-modules to the
category of Z2-graded RS-modules.

Let a = (M,D) be a matrix factorization of W . The localization of a at S (see [8]) is the
following matrix factorization of WS over the ring RS :

aS
def.
= (MS , DS) ∈ ObMF(RS ,WS) .

This extends to an even dg functor locS : MF(R,W ) → MF(RS ,WS), which is R-linear
and preserves direct sums. In turn, the latter induces functors ZMF(R,W ) → ZMF(RS ,WS),
BMF(R,W )→ BMF(RS ,WS), HMF(R,W )→ HMF(RS ,WS) and hmf(R,W )→ hmf(RS ,WS),
which we again denote by locS .

1.4. Critically-finite elements. Since R is a Bézout (and hence a GCD) domain, the irreducible
elements of R are prime, which implies that any factorizable element (i.e. an element with finite
factorization into irreducibles) of R has a unique prime factorization up to association. A divisor
d of the element W ∈ R× which is not a unit is called critical if d2|W . The critical ideal IW of
W is the ideal consisting of all elements of R which are divisible by every critical divisor of W :

IW
def.
= {r ∈ R | d|r ∀d ∈ R× such that d2|W} (1.3)

The following notion was introduced in [8]:

Definition 1.5 A non-zero non-unit W of R is called:

• non-critical, if W has no critical divisors;

• critically-finite if it has a factorization of the form:

W = W0Wc with Wc = pn1
1 . . . pnNN , (1.4)

where N ≥ 1, nj ≥ 2, p1, . . . , pN are critical prime divisors of W with (pi) 6= (pj) for i 6= j
and W0 is non-critical and coprime with Wc.

The elements W0, Wc and pi in the factorization (1.4) are determined by W up to association,
while ni are uniquely determined by W .

Remark 1.1. LetW be a critically-finite element of R with decomposition (1.4). Then the Chinese
remainder theorem gives an isomorphism of rings:

R/〈W 〉 ' R/〈W0〉 ⊕R/〈Wc〉 .

When R is a Bézout domain, the ring:

R/〈Wc〉 ' R/〈pn1
1 〉 ⊕ . . .⊕R/〈p

nN
N 〉 ' R/〈p

n1
1 . . . pnNN 〉

is Artinian and Gorenstein since R/〈pnii 〉 are Gorenstein Artinian rings (see Section 2). However,
the rings R/〈W0〉 and R/〈W 〉 need not be Noetherian.
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1.5. Elementary matrix factorizations. A matrix factorization a = (M,D) of W over R is called
elementary if it has unit reduced rank, i.e. if ρ(a) = 1. Any elementary factorization is strongly

isomorphic to one of the form ev
def.
= (R1|1, Dv), where v is a divisor of W and Dv

def.
=

[
0 v
u 0

]
, with

u
def.
= W/v ∈ R. Let EF(R,W ) denote the full subcategory of MF(R,W ) whose objects are the

elementary factorizations of W over R. Let ZEF(R,W ) and HEF(R,W ) denote respectively the

cocycle and total cohomology categories of EF(R,W ). We also use the notations zef(R,W )
def.
=

ZEF0̂(R,W ) and hef(R,W )
def.
= HEF0̂(R,W ) for the subcategories obtained by keeping only the

even morphisms. An elementary factorization is indecomposable in zmf(R,W ), but it need not
be indecomposable in hmf(R,W ).

2. Finitely-generated modules over the quotient of a Bézout domain by a principal
primary ideal

Let R be a Bézout domain and p ∈ R be a prime element. In this section, we study the category
of finitely-generated modules over the quotient ring R/〈pn〉 (with n ≥ 2) and its stable category.

2.1. The rings An(p). Fix an integer n ≥ 2 and consider the quotient ring2:

An(p)
def.
= R/〈pn〉 .

Let mn(p) = pAn(p) = 〈p〉/〈pn〉 and kp = R/〈p〉. The following result was proved in [8].

Lemma 2.1 The following statements hold:

1. The principal ideal 〈p〉 generated by p is maximal.

2. The primary ideal 〈pn〉 is contained in a unique maximal ideal of R.

3. The quotient An(p) is a quasi-local ring with maximal ideal mn(p) and residue field kp.

4. An(p) is a generalized valuation ring.

Remark 2.1. Let Z(An(p)) be the set of zero divisors, N(An(p)) be the nilradical and J(An(p))
be the Jacobson radical of An(p). Then we have (see [6, Exercise 1.1]):

Z(An(p)) = N(An(p)) = J(An(p)) = mn(p) .

Proposition 2.2 An(p) is an Artinian local principal ideal ring, whose ideals are 〈pi〉/〈pn〉 for
i = 0, . . . , n.

Proof. Let I be an ideal of R such that 〈pn〉 ( I ( 〈p〉. Since An(p) is a generalized valuation ring
by Lemma 2.1, its ideals are totally ordered by inclusion. Hence there exists an i ∈ {2, . . . , n−1}
such that 〈pi〉 ⊂ I ( 〈pi−1〉. Suppose that I \〈pi〉 is non-empty and take any element x ∈ I \〈pi〉.
Then x = rpi−1 for some r ∈ R such that p doesn’t divide r, i.e. (r, p) = (1). Since R is a
Bézout domain, there exist a, b ∈ R such that ar + bp = 1. Multiplying with pi−1, this gives
pi−1 = ax+bpi, which belongs to I since both x and pi belong to I. Thus pi−1 ∈ I, which implies

2 This ring will later on also be denoted by Λ for ease of notation.
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〈pi−1〉 ⊂ I and hence I = 〈pi−1〉, contradicting the fact that the inclusion I ⊂ 〈pi−1〉 is strict. It
follows that every ideal of R/〈pn〉 has the form 〈pi〉/〈pn〉 for some i ∈ {0, . . . , n}. In particular,
R/〈pn〉 is an Artinian (and hence Noetherian) local ring. Since R is a Noetherian Bézout ring,
it is also a principal ideal ring. ut

Remark 2.2. Since An(p) has non-trivial divisors of zero, it cannot be a regular local ring. It was
shown in [10] that the global dimension of a generalized valuation ring which is not an integral
domain is necessarily infinite. Thus gl dim(An(p)) =∞. Also notice that An(p) has length n as
a module over itself.

For simplicity, in the remainder of this section we denote An(p) by Λ, the residue field kn(p) by
k and the maximal ideal mn(p) by m.

2.2. The category modΛ. Let modΛ be the category of finitely-generated modules over Λ =
An(p). Since Λ is Artinian, the following statements are equivalent for a Λ-module M by the
Akizuki-Hopkins-Lewitzki theorem:

• M is Noetherian.

• M is Artinian.

• M is finitely-generated.

• M has finite composition length.

Let Λi = 〈pn−i〉/〈pn〉 = pn−iΛ with i ∈ {0, . . . , n} be the ideals of Λ, thus Λ0 = 0, Λn−1 = m
and Λn = Λ. These form the finite ascending sequence:

0 = Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λn−1 ⊂ Λn = Λ . (2.1)

Let Vi
def.
= Λ/Λn−i 'R R/〈pi〉 (with i = 0, . . . , n) be the cyclically-presented cyclic Λ-modules

with annihilators Ann(Vi) = Λn−i. We have natural isomorphisms of R-modules ϕi : Vi
∼→ Λi

given by taking the element x + 〈pi〉 (x ∈ R) of Vi 'R R/〈pi〉 to the element pn−ix + 〈pn〉 of
Λi. Unlike the ideals Λi (which can be viewed as non-unital Λ-algebras), the modules Vi have
a unital Λ-algebra structure with unit 1Λ + Λn−i. This unit is not preserved by the R-module
isomorphisms ϕi. It is clear that the non-zero cyclic modules V1, . . . , Vn are indecomposable,
with endomorphism rings given by the local rings:

EndΛ(Vi) ' R/〈pi〉 , ∀i ∈ {1, . . . , n} .

Recall that a commutative ring R is called an FGC (finitely-generated commutative) ring if
every finitely-generated R-module is isomorphic with a finite direct sum of cyclic modules. For
any FGC ring R, the finite direct sum decomposition of a finitely-generated R-module into
non-zero indecomposable cyclic modules is unique up to permutation and isomorphism of the
indecomposable cyclic summands [11].

Proposition 2.3 Λ is an FGC ring whose indecomposable non-zero finitely-generated Λ-modules
are the cyclic modules V1, . . . , Vn. Moreover, the decomposition of a finitely-generated Λ-module
into non-zero cyclic modules is unique up to permutation and isomorphism of factors, hence
modΛ is a Krull-Schmidt category.
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Proof. It is well-known that any module over a principal ideal ring decomposes as a direct sum of
cyclic modules [12]. In particular, Λ is an FGC ring. Uniqueness of the decomposition into non-
zero cyclic modules up to permutation and isomorphism of factors follows from [11, Proposition
3.4] since Λ is a generalized valuation ring. The indecomposable finitely-generated Λ-modules
coincide with the cyclic modules V1, . . . , Vn. See [13, Theorem 3.2]. ut

Proposition 2.4 The only non-zero indecomposable Λ-module which is projective is Vn'Λn=Λ.

Proof. Since any projective module over a local ring is free, it follows that a finitely-generated
Λ-module is projective iff it is free of finite rank. Such a module is indecomposable iff it has
rank one. Another way to see this is as follows. Since the non-zero indecomposable Λ-modules
are Vi with i ∈ {1, . . . , n}, it suffices to show that Vi is projective iff i = n. The module Λn = Λ
is projective since it is free. Thus it suffices to show that V1, . . . , Vn−1 are not projective. Recall
that Λn−i = piΛ is a principal Λ-module. It is well-known that such a module is projective iff
there exists an idempotent e ∈ Λ such that piΛ = eΛ. Suppose that this is the case for some
i ∈ {1, . . . , n− 1}. Then we must have:

p2iΛ = e2Λ = eΛ = piΛ . (2.2)

If 2i ≤ n, this amounts to Λ2i = Λi, which is impossible since the inclusions in (2.1) are strict. If
2i ≥ n, then we have p2iΛ = 0 and relation (2.2) amounts to piΛ = 0, which is impossible since
i belongs to the set {1, . . . , n− 1}. ut

2.3. Uniseriality. Notice that Λ is a uniserial ring and that the indecomposable cyclic modules
Vi 'Λ Λi are uniserial modules of length i. The unique composition series of Λi is given by:

0 = Λ0 ⊂ . . . ⊂ Λi .

In particular, the only simple Λ-module is Λ1 'R V1 'R k. We have:

Vi+1/Vi ' Λi+1/Λi ' k

and the only composition factor of Λi 'Λ Vi is k, with multiplicity i.

2.4. The Frobenius property. The following result shows that Λ is a Frobenius ring.

Proposition 2.5 The ring Λ is a commutative Frobenius ring. In particular, Λ is self-injective
and hence it is a Gorenstein ring of dimension zero. Thus:

ExtiΛ(k, Λ) 'Λ
{

k if i = 0
0 if i 6= 0

.

Proof. It is clear that Λ has a unique minimal ideal, namely Λ1. Since Λ is a local Artinian
ring, it follows that Λ is Frobenius. This implies that R is self-injective and hence Gorenstein of
dimension zero. ut

Since Λ is Noetherian and self-injective (i.e. quasi-Frobenius, which for a commutative ring is the
same as being Frobenius), it follows that a Λ-module is injective iff it is projective. In particular,
modΛ is a Frobenius category. Notice that KΛ = Λ is a canonical Λ-module. In particular, all
finitely-generated Λ-modules are reflexive.
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2.5. The Auslander-Reiten quiver of modΛ. The following result allows us to describe the mor-
phisms between the modules Vi.

Proposition 2.6 Let R be a Bézout domain and a, b ∈ R×. Then there exists an isomorphism
of R-modules:

qab : HomR(R/〈a〉, R/〈b〉) ∼→ R/〈a, b〉

which is determined up to multiplication by a unit of R. If a, b, c ∈ R× are three elements and
f ∈ HomR(R/〈a〉, R/〈b〉), g ∈ HomR(R/〈b〉, R/〈c〉), then we have:

qac(g ◦ f)
def.
= sabcqbc(g)qab(f) ,

where sabc ∈ (a,c)(b)
(b,c)(a,b) .

Proof. The cyclic module R/〈a〉 is generated by the element εa = 1 mod 〈a〉, while R/〈b〉 is gener-
ated by εb = 1 mod 〈b〉. Consider the injective R-module morphism ϕab : HomR(R/〈a〉, R/〈b〉)→
R/〈b〉 which associates to f ∈ HomR(R/〈a〉, R/〈b〉) the unique element ϕab(f) ∈ R/〈b〉 such
that f(εa) = ϕab(f)εb. Let r ∈ R be an element such that ϕab(f) = rmod〈b〉. Since aϕab(f)εb =
af(εa) = f(aεa) = f(0) = 0, we have aϕab(f) = 0 in the ring R/〈b〉, which is equivalent with
the condition b|ar. Writing a = a1dab and b = b1dab with dab ∈ (a, b) and (a1, b1) = (1), this
is equivalent with the condition b1|r, i.e. r ∈ 〈b1〉. Hence the image of ϕab equals 〈b1〉/〈b〉. The
map 〈b1〉 3 r → r/b1 ∈ R induces an isomorphism of R-modules ψab : 〈b1〉/〈b〉

∼→ R/〈a, b〉. Then

qab
def.
= ψab ◦ ϕab : HomR(R/〈a〉, R/〈b〉) → R/〈a, b〉 is the desired isomorphism of R-modules,

which acts as qab(f) = ϕab(f)
b1

= dabϕab(f)
b . Since dab is determined up to multiplication by a unit

of R, the same holds for qab(f).
Given three non-vanishing elements a, b, c of R and morphisms f, g as in the proposition, we

have:
(g ◦ f)(εa) = g(ϕab(f)εb) = ϕbc(g)ϕab(f)εc ,

which gives ϕac(g ◦ f) = ϕbc(g)ϕab(f). Thus:

qac(g ◦ f) =
dacϕbc(g)ϕab(f)

c
=

daccb

cdbcdab
qbc(g)qab(f) = sabcqbc(g)qab(f) ,

where:

sabc =
dacb

dbcdab
qbc(g)qab(f) ∈ (a, c)(b)

(b, c)(a, b)
.

Corollary 2.7 Let R be a Bézout domain and a, b, c ∈ R× be three elements such that a|c and
b|c. Then there exists an isomorphism of R/〈c〉-modules:

HomR/〈c〉(R/〈a〉, R/〈b〉) ' R/〈a, b〉 .

Proof. Restriction of scalars along the epimorphism π : R → R/〈c〉 gives a full and faithful
functor π∗ : ModR/〈c〉 → ModR. The composition qab ◦ π∗R/〈a〉,R/〈b〉 : HomR/〈c〉(R/〈a〉, R/〈b〉) →
R/〈a, b〉 is the desired isomorphism. ut

Proposition 2.8 For any i, j ∈ {0, . . . , n}, we have an isomorphism of modules:

HomΛ(Vi, Vj) 'Λ Vmin(i,j) .

For any i ∈ {1, . . . , n}, we have an isomorphism of rings:

EndΛ(Vi) ' R/〈pi〉 .
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Proof. Follows immediately from Corollary 2.7. ut

In particular, EndΛ(Vi) is a commutative local ring with maximal ideal mi
def.
= 〈p〉/〈pi〉 and

residue field equal to kp. Consider the field:

T (Vi)
def.
= EndΛ(Vi, Vi)/mi ' kp .

Proposition 2.9 For any 0 ≤ j ≤ i ≤ n, we have:

Vi/Vj 'Λ Vi−j .

Moreover, the natural surjection qn,i : Vn → Vi is a projective cover for all i ∈ {1, . . . , n} and
the first syzygy of Vi is given by:

Ω(Vi) = ker(qn,i) ' Vn−i .

Proof. We have Vi/Vj = 〈pn−i〉/〈pn−j〉 'R R/〈pi−j〉 = Vi−j , so similar isomorphisms hold over Λ.
Recall that Vn ' Λ is a projective module. Since each Vk has a single maximal submodule (namely
Vk−1), we have rad(Vk) = Vk−1 for all k ∈ {1, . . . , n}. The induced map q̄n,i : Vn/rad(Vn) →
Vi/rad(Vi) is an isomorphism since Vn/Vn−1 'Λ R/〈p〉 'Λ Vi/Vi−1. This implies that qn,i is a
projective cover by [14, Chap I.4, Proposition 4.3, page 13]. It is clear that ker(qn,i) ' Vn−i. ut

Proposition 2.10 Let f : Vi → Vj be an irreducible morphism in modΛ. Then one of the
following holds:

1. f is injective and j = i+ 1. In this case, f fits into a short exact sequence:

0 −→ Vi
f−→ Vi+1 −→ V1 −→ 0 .

2. f is surjective and j = i− 1. In this case, f fits into a short exact sequence:

0 −→ V1 −→ Vi
f−→ Vi−1 −→ 0 .

Proof. Recall that an irreducible morphism f : Vi → Vj in modΛ must be either a monomorphism
or an epimorphism [14, Chap. V.5, Lemma 5.1]. Distinguish the cases:

1. If f is a monomorphism, then imf = Vk for some k ≤ j. Since Vi 'Λ imf , we must have
k = i and imf = Vi. Thus i ≤ j. Moreover, imf must be a direct summand of any proper
submodule of Vj which contains imf . Since no submodule of Vj has a direct summand, we
must have imf = Vj−1 and hence j = i+ 1.

2. If f is an epimorphism, then ker f = Vk for some k ≤ i. Since Vj 'Λ Vi/ ker f = Vi/Vk 'Λ Vi−k,
we must have i ≥ j and k = i−j. Moreover, Vj must be a summand of Vi/M for any non-zero
submoduleM of Vi which is contained in ker f = Vk, i.e. it must be a summand of Vi/Vs = Vi−s
for any s ∈ {1, . . . , k}. Since none of the modules V1, . . . , Vn has direct summands, this means
that we must have k = 1, i.e. i = j + 1.

The short exact sequences follow immediately from the above. ut
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For any i ∈ {1, . . . , n − 1}, let si,i+1 : Vi → Vi+1 be the inclusion. For any i = 2, . . . , n, let
qi,i−1 : Vi → Vi−1 be the natural surjection. For any i ∈ {1, . . . , n− 1}, we have an almost split
sequence (see [14, p. 141]):

0 −→ Vi
gi−→ Vi−1 ⊕ Vi+1

fi−→ Vi −→ 0 ,

where gi =

[
−qi,i−1
si,i+1

]
and fi =

[
si−1,i , qi+1,i

]
. In particular, the morphisms si,i+1 and qi,i−1 are

irreducible by [14, Chap. V.5., Theorem 5.3, p. 167]. Moreover, the Auslander-Reiten translation
τ = DTr is given by:

τ(Vi) = Vi , ∀i ∈ {1, . . . , n− 1} , τ(Vn) = 0 .

(recall that DTr(P ) = 0 iff P is a projective module). It follows that DTr acts trivially on
Λ-modules which have no projective direct summands. By [14, page 229], the class s̄i−1,i of
si−1,i generates the T (Vi−1)

opp-vector space Irr(Vi−1, Vi) while the class q̄i+1,i of qi+1,i gener-
ates the T (Vi+1)

opp-vector space Irr(Vi+1, Vi). Similarly, the class s̄i,i+1 of si,i+1 generates the
T (Vi+1)-vector space Irr(Vi, Vi+1) and the class q̄i,i−1 of qi,i−1 generates the T (Vi−1)-vector space
Irr(Vi, Vi−1). Thus:

• Irr(Vi, Vi+1) is generated by s̄i,i+1 over both T (Vi)
opp and T (Vi+1) .

• Irr(Vi, Vi−1) is generated by q̄i,i−1 over both T (Vi)
opp and T (Vi−1) .

It follows that the arrow Vi → Vi−1 for i = 2, . . . , n − 1 and the arrows Vi−1 → Vi have trivial
valuation (1, 1). The Auslander-Reiten quiver of modΛ is shown in Figure 2.1.

V2 V3
V4 V5V1

Fig. 2.1. Auslander-Reiten quiver for modΛ when n = 5. The single projective injective vertex is shown
in blue. The Auslander-Reiten translation fixes all non-projective vertices.

2.6. The category modΛ. Let modΛ denote the projectively-stable category of finitely-generated
Λ-modules. Since any projective Λ-module is free, this category has the same objects as modΛ
and morphisms given by:

HomΛ(M,N)
def.
= HomΛ(M,N)/PΛ(M,N) , ∀M,N ∈ Ob(modΛ) ,

where PΛ(M,N) ⊂ HomΛ(M,N) is the submodule consisting of those morphisms from M to
N which factor through a free module of finite rank. Since modΛ is a Frobenius category, the
stable category modΛ has a natural triangulated structure.

The first syzygy induces a functor Ω : modΛ → modΛ which is an equivalence of categories
since Λ is self-injective (see [14, Chap. IV.3]). Since Λ is a symmetric Artin algebra, we also have
D ' HomΛ(−, Λ) and Ω2 ' DTr = τ . Since DTr acts as the identity functor on indecomposable
non-projectives of modΛ, we have DTr ' idmodΛ

and hence Ω2 ' idmodΛ
. The functor Ω is the

shift functor of the triangulated category modΛ.
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For i, j ∈ {0, . . . , n}, define:

δn(i)
def.
= min(i, n−i) ∈ {1, . . . , n−1} , µn(i, j)

def.
= min[δn(i), δn(j)] =


i if i+ j ≤ n & i ≤ j
j if i+ j ≤ n & i > j
n− i if i+ j > n & i > j
n− j if i+ j > n & i ≤ j

.

(2.3)
Notice the relations δn(i) = δn(n− i) and δn(n) = 0 as well as:

µn(i, j) = µn(j, i) = µn(n− i, j) = µn(i, n− j) , µn(i, n) = 0 . (2.4)

Proposition 2.11 For any 1 ≤ i, j ≤ n− 1, we have:

HomΛ(Vi, Vj) 'Λ Vµn(i,j) .

Proof. A similar statement is proved in [15, Lemma 2.3]. For completeness we sketch the proof.
Proposition 2.8 gives an isomorphism of Λ-modules:

HomΛ(Vi, Vj) 'Λ Vmin(i,j) 'Λ pn−min(i,j)Λ = pmax(n−i,n−j)Λ = (pn−iΛ) ∩ (pn−jΛ) ,

where we noticed that n−min(i, j) = max(n−i, n−j). The morphism f ∈ HomΛ(pn−iΛ, pn−jΛ)
factors through a free module iff3 its image through this isomorphism lies in the ideal pn−iΛpn−j =
p2n−i−jΛ. Thus:

Hom(Vi, Vj) 'Λ
pmax(n−i,n−j)Λ

p2n−i−jΛ
'Λ

pn−min(i,j)Λ

p2n−i−jΛ
.

The denominator is isomorphic to 0 when i+ j ≤ n. In this case we have:

Hom(Vi, Vj) 'Λ R/〈pmin(i,j)〉 = Vmin(i,j) .

On the other hand, when i+ j > n, we find:

Hom(Vi, Vj) 'Λ
〈pmax(n−i,n−j)〉
〈p2n−i−j〉

'Λ R/〈pmin(n−i,n−j)〉 = Vmin(n−i,n−j) ,

where we noticed that 2n− i− j = min(n− i, n− j) + max(n− i, n− j). The conclusion follows
upon noticing that:

µn(i, j) =

{
min(i, j) if i+ j ≤ n
min(n− i, n− j) if i+ j > n

. ut

2.7. The Auslander-Reiten quiver of modΛ. For any Λ-module M , there exists an injective res-
olution:

M −→M0 −→M1 −→ . . .

whose cohomology in degree one equals Ω(M). Hence we have natural isomorphisms of Λ-
modules Ext1(N,M) 'Λ HomΛ(N,Ω(M)) and any Auslander-Reiten sequence:

0 −→ X
f−→ Y

g−→ Z −→ 0 (2.5)

3 As in [15, Lemma 2.3], this follows from the fact that the natural morphism of modules from Vi ' pn−iΛ to
V ∨i = HomΛ(pn−iΛ,Λ) = HomΛ(Vi, Vn) ' Vmin(i,n) = Vi is an isomorphism by Proposition 2.8.
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induces an Auslander-Reiten triangle:

X
f
−→ Y

g
−→ Z

ψ−→ Ω(X) ,

where ψ ∈ HomΛ(Z,X[1]) = Ext1(Z,X) is the extension class defined by the AR sequence (2.5).
As a consequence, the category modΛ has Auslander-Reiten triangles which are given by:

Vi
gi−→ Vi−1 ⊕ Vi+1

fi−→ Vi −→ Ω(Vi) , ∀i ∈ {1, . . . , n− 1} . (2.6)

In particular, V1, . . . , Vn−1 are indecomposable objects of modΛ which have local endomorphism
rings. It follows that modΛ is Krull-Schmidt with indecomposables V1, . . . , Vn−1. Moreover,
gi are source morphisms and fi are sink morphisms, which implies dimT (Vi) Irr(Vi, Vi+1) =
dimT (Vi+1) Irr(Vi, Vi+1) = 1 and dimT (Vi) Irr(Vi, Vi−1) = dimT (Vi−1) Irr(Vi, Vi−1) = 1 (see [16]).
Hence all arrows of the AR quiver of modΛ have trivial valuation (1, 1). The AR translation is
given by τ(Vi) = Vi for all i ∈ {1, . . . , n− 1}. The AR quiver of modΛ is obtained from that of
modΛ by deleting the projective vertex; an example is shown in Figure 2.2.

V2 V3
V4V1

Fig. 2.2. Auslander-Reiten quiver for modΛ when n = 5. The translation fixes all vertices.

2.8. The Calabi-Yau property of modΛ. Recall that Λ is a self-injective (a.k.a. quasi-Frobenius)
commutative ring. This implies that all finitely-generated Λ-modules are reflexive and that the
dual D(M) = HomΛ(M,Λ) of any finitely-generated module is finitely-generated [17, Theorem
4.12.21]. Thus D is an involutive auto-equivalence of modΛ. Since Λ is self-injective, we have
modΛ ' modΛ and hence D induces a well-defined involutive autoequivalence of modΛ by [14,
Chap. IV.1, Proposition 1.9, page 106], which we denote by the same letter.

Lemma 2.12 We have:

D(Vi) 'Λ Vi , ∀i ∈ {1, . . . , n} .

Proof. For any i ∈ {1, . . . , n}, we have:

D(Vi) = HomΛ(Vi, Vn) 'Λ Vmin(i,n) = Vi ,

where we used Proposition 2.8. ut

Recall that an additive autoequivalence S of the R-linear category modΛ is called a Serre
functor if we have natural isomorphisms of Λ-modules:

HomΛ(M,N) 'Λ D(HomΛ(N,S(M))) , ∀M,N ∈ Ob[modΛ] .

This implies that S is a triangulated auto-equivalence. The following proposition shows that the
R-linear triangulated category modΛ is “1-Calabi-Yau”:

Proposition 2.13 The functor S = Ω is a Serre functor for modΛ.
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Proof. Since modΛ is Krull-Schmidt with indecomposable objects V1, . . . , Vn−1, it suffices to
show that we have natural isomorphisms in modΛ:

HomΛ(Vi, Vj) 'modΛ
D(HomΛ(Vj , Ω(Vi))) , ∀i, j ∈ {1, . . . , n− 1} . (2.7)

Since ΩVi 'Λ Vn−i, Proposition 2.11 shows that the right hand side of (2.7) is given by:

D(HomΛ(Vj , Ω(Vi))) 'Λ D(HomΛ(Vj , Vn−i)) 'Λ D(Vµn(j,n−i)) = D(Vµn(i,j)) 'Λ Vµn(i,j) ,

where we used relations (2.4) and Lemma 2.12. On the other hand, the left hand side of (2.7) is
given by:

HomΛ(Vi, Vj) 'Λ Vµn(i,j) .

Since all isomorphisms above are natural, we conclude that (2.7) holds since any isomorphism
in modΛ induces an isomorphism in modΛ. ut

2.9. A triangle generator for modΛ. We say that a full subcategory C of modΛ is closed under
extensions (also known as thick or épaisse) if, given any distinguished triangle:

X −→ Y −→ Z −→ Ω(X)

of modΛ, we have Y ∈ ObC provided that X and Z are objects of C. We say that a full
subcategory C of modΛ is isomorphism-closed (or strictly full) if any object of modΛ which is
isomorphic with an object of C is an object of C. A full subcategory C of modΛ is called saturated
if it is closed under direct summands. Given an object X of modΛ, let 〈X〉 denote the smallest
triangulated subcategory of modΛ which contains the object X and is strictly full and saturated.
This coincides with the smallest full subcategory of modΛ which is closed under isomorphisms,
direct sums, shifts and direct summands.

Proposition 2.14 The smallest full subcategory of modΛ which contains the object V1 = kp
and is closed under isomorphisms, direct sums, direct summands and extensions coincides with
modΛ. Hence:

〈V1〉 = modΛ .

Proof. Let T = 〈V1〉 be the smallest subcategory of modΛ which is closed under isomorphisms,
direct sums, direct summands and shifts and such that any distinguished triangle of modΛ for
which two objects belong to T lies in T .

We first show by induction that the modules Vi with i = 2, . . . , n− 1 belong to T . Consider
the AR triangle (2.6) for i = 1:

V1
g0
−→ V2

f0
−→ V1 −→ Ω(V0)

where we used the fact that V0 = 0. Since V1 ∈ ObT , we have V2 ∈ ObT . Suppose now that
Vi−1 and Vi are objects of T for some i ∈ {2, . . . , n − 1}. Considering the sequence (2.6) for i,
and using the fact that Vi is an object of T , we conclude similarly that Vi−1 ⊕ Vi+1 is an object
of T . Thus Vi+1 is also an object of T since T is closed under direct summands. We conclude
by induction that V1, . . . , Vn−1 belong to T . This gives the conclusion since T is closed under
direct sums and modΛ is additively generated by the objects V1, . . . , Vn−1. ut
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2.10. Equivalence between modΛ and the category of singularities of Λ. Recall that the category
of singularities of Λ is the Verdier quotient:

Db
sing(Λ)

def.
= Db(Λ)/Perf(Λ) ,

where Db(Λ) is the bounded derived category of complexes of finitely generated modules and
Perf(Λ) is the triangulated subcategory of perfect complexes. In our case, this category is
triangle-equivalent with modΛ, as we explain next.

Recall that the depth of a Noetherian Λ-module M is defined through:

depthΛ(M)
def.
= inf

i≥0

{
dim ExtiΛ(k,M) > 0

}
.

This quantity satisfies the inequality:

depthΛ(M) ≤ kdim(Λ/Ann(M)) ≤ kdimΛ .

There is another way to formulate this for local rings. Let (R,m) be a local ring. Recall that
a sequence x1, . . . , xr ∈ m is called an M -sequence if xi is a non zero divisor in the quotient
M/〈x1, . . . , xi−1〉 for all 1 ≤ i ≤ r. The depth of a module over a local ring (R,m) is equal to the
length of a maximal M -sequence. A Noetherian Λ-module is called maximal Cohen-Macaulay
(MCM) if depthΛ(M) = kdim(Λ). Let MCM(Λ) be the full subcategory of modΛ whose objects
are the MCM modules.

Lemma 2.15 Any finitely-generated Λ-module M is maximal Cohen-Macaulay. Thus MCM(Λ) =
modΛ.

Proof. This is well-known, but we sketch the proof for completeness. Since Λ is an Artinian
local ring, it has Krull dimension zero. On the other hand, the depth of any finitely-generated
Λ-module is zero since any element of m is nilpotent and hence a divisor of zero. ut

Proposition 2.16 There exists an equivalence of triangulated categories:

Db
sing(Λ) ' modΛ .

Proof. Since Λ is Gorenstein, there exists [7] a natural equivalence of triangulated categories
Db

sing(Λ) ' MCM(Λ), where MCM(Λ) is the projective stabilization of MCM(Λ). The conclusion
now follows from Lemma 2.15. ut

2.11. Localization at U(Λ). Since Λ is a local ring with maximal ideal 〈p〉, the multiplicative set
Λ \ 〈p〉 coincides with the group of units U(Λ).

Proposition 2.17 Localization at the multiplicative set U(Λ) = Λ \ 〈p〉 of units of Λ induces
an equivalence of triangulated categories:

locp : modΛ
∼→ modΛ(p)

Proof. Multiplication by any s ∈ U(Λ) gives an isomorphism of the Λ-modules Vi 'R Λi for
each i ∈ {1, . . . , n}. Since modΛ is additively generated by V1, . . . , Vn, it follows that s acts as
an isomorphism on any finitely-generated Λ-module. In particular, the localization functor locp
at the multiplicative set U(Λ) is an equivalence of categories between modΛ and modΛ(p)

. Since
this functor is exact, it is an equivalence of exact categories. Since modΛ is a Frobenius category,
it follows that the same is true for modΛ(p)

and that locp induces a triangulated equivalence locp
between the stable categories modΛ and modΛ(p)

. ut
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Remark 2.3. We have a natural isomorphism of rings:

Λ(p) ' R(p)/〈pn〉 .

3. Matrix factorizations over an elementary divisor domain

Let R be an elementary divisor domain and W be a non-zero element of R.

3.1. Isomorphism classes in zmf(R,W ). The Smith normal form theorem over an elementary
divisor domain (see Appendix B) allows us to characterize isomorphism classes of objects in the
category zmf(R,W ).

Proposition 3.1 Let a = (Rρ|ρ, D) and a′ = (Rρ
′|ρ′ , D′) be two finite rank matrix factorizations

of the non-zero element W ∈ R×, where D =

[
0 v
u 0

]
and D′ =

[
0 v′

u′ 0

]
. Let d1(v), . . . ,dρ(v)

and d1(v
′), . . . ,dρ′(v

′) be respectively the invariant factors of the matrices v ∈ Mat(ρ, ρ,R) and
v′ ∈ Mat(ρ′, ρ′, R). Then the following statements are equivalent:

(a) a and a′ are isomorphic in the category zmf(R,W ).

(b) We have ρ = ρ′ and the invariant factors of v and v′ are equal:

di(v) = di(v
′) , ∀i ∈ {1, . . . , ρ} .

Proof. By [8, Proposition 1.4], the matrix factorizations a and a′ are strongly isomorphic iff
ρ = ρ′ and the matrices v and v′ are equivalent. Recall that u, v, u′, v′ have maximal rank since
W 6= 0. Since R is an EDD, Proposition B.5 shows that v and v′ are equivalent iff ρ = ρ′ and
their invariant factors satisfy di(v) = di(v

′) for all i ∈ {1, . . . , ρ}. ut

The following result shows that any matrix factorization ofW is naturally isomorphic in zmf(R,W )
to a direct sum of elementary factorizations.

Theorem 3.2 There exists an autoequivalence F of the category zmf(R,W ) such that:

1. F is isomorphic with the identity functor idzmf(R,W ).

2. For any matrix factorization a = (Rρ|ρ, D) of W with D =

[
0 v
u 0

]
, we have:

F (a) = ed1(v) ⊕ . . .⊕ edρ(v) ,

where d1(v), . . . , dρ(v) ∈ R are representatives for the invariant factors of v, i.e. di(v) ∈ di(v)
for all i ∈ {1, . . . , ρ}.

Proof. For any v ∈ Mat(ρ, ρ,R), choose invertible matrices Av, Bv ∈ GL(ρ,R) such that v0
def.
=

AvvB
−1
v is in Smith normal form:

v0 = diag
(
d1(v), . . . , dk(v), 0, . . . , 0

)
,
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where dk(v) ∈ dk(v). For any matrix factorization a = (Rρ|ρ, D) of W with D =

[
0 v
u 0

]
, let

UD =

[
Av 0
0 Bv

]
and:

D0
def.
= UDDU

−1
D =

[
0 AvvB

−1
v

BvuA
−1
v 0

]
=

[
0 v0
u0 0

]
, (3.1)

where u0 = BvuA
−1
v . Since uv = vu = W , we have u0v0 = v0u0 = W . This requires that

u0 is diagonal (we have u0 = Wv−10 in the field of fractions of R), namely we have u0 =
diag(u1, . . . , uρ), where ui = W

di(v)
. Since di(v)|di+1(v), we have ui|ui−1 and hence u0 is the

reverse Smith normal form of u:

u0 = diag(dρ(u0), . . . , d1(u0)) .

Define F0 : ObMF(R,W )→ ObMF(R,W ) through:

F0(R
ρ|ρ, D) := a0

def.
= (Rρ|ρ, D0) . (3.2)

Notice that a0 coincides with the following direct sum of elementary matrix factorizations:

a0 = ed1(v) ⊕ . . .⊕ edρ(v) .

Moreover, relation (3.1) implies D0UD = UDD, showing that UD is an isomorphism from a to
a0 in zmf(R,W ):

UD : a
∼→ a0 . (3.3)

For any morphism f : a→ a′ in zmf(R,W ) with a = (Rρ|ρ, D), a′ = (Rρ
′|ρ′ , D′) and D =

[
0 v
u 0

]
,

D′ =

[
0 v′

u′ 0

]
, define a morphism F1(f) : a0 → a′0 in zmf(R,W ) as follows. Since f is a morphism

in zmf(R,W ) it satisfies the condition D′f = fD. Define:

F1(f) := f0
def.
= UD′fU

−1
D . (3.4)

where UD =

[
A 0
0 B

]
and UD′

def.
= Uv′ =

[
A′ 0
0 B′

]
, with A = Av, B = Bv, A

′ = Av′ and B′ = Bv′ .

Since D0 = UDDU
−1
D and D′0 = UD′DU

−1
D′ , the relation D′f = fD implies D′0f0 = f0D0,

showing that f0 is a morphism from a0 to a′0 in zmf(R,W ). If f is the identity endomorphism,
then f0 is the identity endomorphism. If g : a′ → a′′ is another morphism in zmf(R,W ), then
we have (gf)0 = UD′′gfU

−1
D = UD′′gU

−1
D′ UD′fU

−1
D = g0f0. This shows that F = (F0, F1) is

an endofunctor of zmf(R,W ). Relation (3.4) shows that the isomorphisms (3.3) satisfy U ′Df =
F1(f)UD and hence give an isomorphism of functors:

U : idzmf(R,W )
∼→ F .

In particular, F is an autoequivalence of zmf(R,W ). ut

The decomposition of a matrix factorization into elementary factorizations is generally non-
unique. The ambiguity in this decomposition can be characterized as follows.
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Corollary 3.3 The following statements hold:

1. If ev1 , . . . , evn are elementary factorizations of W , then we have:

ev1 ⊕ . . .⊕ evn 'zmf(R,W ) ed1 ⊕ . . .⊕ edn , (3.5)

where:

dk ∈
δk
δk−1

∀k ∈ {1, . . . , n} ,

with:
δk

def.
= ({vi1 . . . vik | 1 ≤ i1 < . . . < ik ≤ n}) . (3.6)

Moreover, if v1| . . . |vn then we can take dk = vk for all k ∈ {1, . . . , n} while if v1, . . . , vn are
mutually coprime then we have ev1 ⊕ . . .⊕ evn 'zmf(R,W ) e

⊕n−1
1 ⊕ ev1...vn.

2. If a matrix factorization a = (Rρ|ρ, D) of W with D =

[
0 v
u 0

]
satisfies:

a 'zmf(R,W ) ev1 ⊕ . . .⊕ evn

for some elementary factorizations evi such that v1| . . . |vn, then we have n = ρ and vi ∈ di(v)
for all i ∈ {1, . . . , n}. In particular, the strong isomorphism classes of matrix factorizations
of W are in bijection with finite ascending sequences of principal ideals In ⊂ . . . ⊂ I1 such
that W ∈ In.

Proof.

1. Let a
def.
= ev1 ⊕ . . . ⊕ evn . Then a = (Rρ|ρ, D) with D =

[
0 v
u 0

]
, where v = diag(v1, . . . , vn).

Since all non-principal minors of a diagonal matrix vanish, the determinantal invariants of
v coincide with δk, while the invariant factors coincide with dk. The first statement now
follows from Proposition B.5. If v1| . . . |vn, then we have δn = (v1 . . . vn) and dn = (vn).
If v1, . . . , vn are coprime then we have δ1 = . . . = δn−1 = (1) and δn = (v1 . . . vn), thus
d1 = . . . = dn−1 = (1) and dn = (v1 . . . vn).

2. Follows immediately from Theorem 3.2 and point 1. above. ut

Remark 3.1. The critical ideal IW defined in (1.3) annihilates the module Homhmf(R,W )(e1, e2)
for any two elementary matrix factorizations e1 and e2 of W (see [8, Remark 2.2.]). Using this
fact, Corollary 3.3 implies IWHomhmf(R,W )(a, b) = 0 for any two finite rank matrix factorizations
a, b of W (notice that an isomorphism in zmf(R,W ) induces an isomorphism in hmf(R,W )).
In particular, hmf(R,W ) can be viewed as an R/IW -linear category. Since W ∈ IW , we have
a natural epimorphism R/〈W 〉 → R/IW . Thus hmf(R,W ) is in particular an R/〈W 〉-linear
category.

Remark 3.2. Let v1 and v2 be two divisors of W . Then δ1(v) = (v1, v2) and δ2(v) = (v1v2) and
the quantities (3.6) are d1 = (v1, v2) and d2 = [v1, v2]. Thus (3.5) takes the form:

ev1 ⊕ ev2 'zmf(R,W ) ed1 ⊕ ed2 (3.7)

with d1 ∈ (v1, v2) and d2 ∈ [v1, v2]. If v1|v2 and ui = W/vi, then we have u2|u1 and:

Σ(ev1 ⊕ ev2) 'zmf(R,W ) eu2 ⊕ eu1 ,
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since Σevi = e−ui 'zmf(R,W ) eui (see [8, Section 1.7]). Corollary 3.3 shows that the subcate-
gory zef(R,W ) generates zmf(R,W ) under direct sums with the relations (3.7). At the level of
isomorphism classes, these relations correspond to the operation (I1, I2)→ (I1 ∩ I2, I1 + I2) on
principal ideals I1, I2 which contain W , where the RHS is a chain I1 ∩ I2 ⊂ I1 + I2 of principal
ideals containing W .

3.2. Direct sum decompositions in hmf(R,W ). The results of the previous subsection imply that
elementary matrix factorizations generate the category hmf(R,W ) under direct sums.

Proposition 3.4 There exists an autoequivalence Ψ of hmf(R,W ) such that:

1. Ψ is isomorphic with the identity functor idhmf(R,W ).

2. For any matrix factorization a = (Rρ|ρ, D) of W with D =

[
0 v
u 0

]
, we have:

Ψ(a) = ed1(v) ⊕ . . .⊕ edρ(v) ,

where d1(v), . . . , dρ(v) are representatives for the invariant factors of v.

In particular, the subcategory hef(R,W ) generates hmf(R,W ) under direct sum. Thus any ma-
trix factorization a ∈ Ob(MF(R,W )) is isomorphic in hmf(R,W ) with a direct sum of a finite
collection of elementary factorizations.

Proof. Follows immediately from Theorem 3.2 upon taking Ψ to be the autoequivalence of
hmf(R,W ) induced by the autoequivalence F of zmf(R,W ). ut

Notice that the decomposition of an object of hmf(R,W ) as a finite direct sum of elementary
factorizations need not be unique up to permutation and isomorphisms in hmf(R,W ). Moreover,
an elementary factorization need not be an indecomposable object of hmf(R,W ).

Remark 3.3. For any Bézout domain R, let hef(R,W ) be the subcategory of hmf(R,W ) which
is additively generated by elementary factorizations. In [8, Conjecture 3.4] it was conjectured
that the inclusion functor:

ι : hef(R,W )→ hmf(R,W )

is an equivalence of R-linear categories when W is a critically-finite element. Proposition 3.4
proves this conjecture when R is an elementary divisor domain, under the weaker hypothesis
that W is any non-zero element of R. It is an open question whether all Bézout domains are
elementary divisor domains.

3.3. Cones over morphisms between elementary factorizations. Let ev1 and ev2 be elementary

matrix factorizations of W and set ui
def.
= W/vi. By [8, Proposition 2.2], morphisms f : ev1 → ev2

in hmf(R,W ) have the form f = r ·
[
v2
d 0
0 v1

d

]
, where r is an arbitrary element of R and d ∈ (v1, v2)

is a gcd of v1 and v2.
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Proposition 3.5 Let f : ev1 → ev2 be a morphism in hmf(R,W ) corresponding to the element
r ∈ R. Let:

ξ ∈ (v1, v2, u1, u2, r)(v1)

(v1, v2)
and ζ

def.
= −v1u2

ξ
. (3.8)

Then there exists an isomorphism in zmf(R,W ):

C(f) 'zmf(R,W ) eξ ⊕ eζ . (3.9)

Proof. Let d ∈ (v1, v2) be a gcd of v1 and v2. Using Definition 1.2, we find that the mapping
cone of f is given by:

C(f) =


0 0 −u1 0
0 0 r · v2d v2
−v1 0 0 0
r · v1d u2 0 0

 .

Since R is an elementary divisor domain, the matrices A
def.
=

[
−v1 0
r · v1d u2

]
and B

def.
=

[
−u1 0
r · v2d v2

]
can be reduced to Smith normal form (see Appendix B). Furthermore, since AB = W we can find
invertible matrices P and Q such that PAQ and QBP have normal forms. Let ξ ∈

(
v1, u2, r · v1d

)
.

Then PAQ =

[
α1 0
0 α2

]
, where αi are invariant factors of A. By definition, α1 is a greatest

common divisor of all entries of A, which we can take to equal ξ. On the other hand, we have

α2 = detA
ξ = −v1u2

ξ = ζ. Hence the Smith normal form of B equals

[
W
ξ 0

0 W
ζ

]
. We conclude that

C(f) is isomorphic in zmf(R,W ) with the matrix:

C0(f) =


0 0 W

ξ 0

0 0 0 W
ζ

ξ 0 0 0
0 ζ 0 0

 = eξ ⊕ eζ .

Let s
def.
= (v1, v2, u1, u2) ∈ R/U(R) and b

def.
= (v1)

(v1,v2)
∈ R/U(R). By [8, eqs. (2.4)], we have

(v1, u2) = (s)(b). Thus: (
v1, u2, r ·

v1
(v1, v2)

)
= (sb, rb) = (s, r)b , (3.10)

which shows that (3.8) holds. ut

Corollary 3.6 Let f : ev1 → ev2 be a morphism in hmf(R,W ) which corresponds to an element
r ∈ R and let ξ and ζ be as in Proposition 3.5. Then f is an isomorphism in hmf(R,W ) if and
only if the following relations hold in R/U(R):

(ξ,W/ξ) = (ζ,W/ζ) = (1).

Proof. The morphism f is an isomorphism in the additive triangulated category hmf(R,W ) iff
C(f) is a zero object. By Proposition 3.5, this happens iff both eξ and eζ are zero objects. By
[8, Corollary 2.11], this is the case iff (ξ,W/ξ) = (ζ,W/ζ) = (1). ut
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3.4. Primary matrix factorizations. Recall that an element of R is called primary if it is a power
of a prime element.

Definition 3.7 An elementary factorization ev of W is called primary if v is a primary divisor
of W .

Let ev be a primary matrix factorization of W . Then v = pi for some prime divisor p of W and
some integer i ∈ {0, . . . , n}, where n is the order of p as a divisor of W . We have W = pnW1

for some element W1 ∈ R such that p does not divide W1 and u = pn−iW1. Thus (u, v) =
(pmin(i,n−i)).

Definition 3.8 The prime divisor p of W is called the prime support of ev. The order n of p
is called the order of ev while the integer i ∈ {0, . . . , n} is called the size of ev.

3.5. A Krull-Schmidt theorem for hmf(R,W ) when W is critically-finite. Recall that an object
of an additive category is called indecomposable if it is not isomorphic with a direct sum of
two non-zero objects. A Krull-Schmidt category is an additive category for which every object
decomposes into a finite direct sum of objects having quasi-local endomorphism rings.

Theorem 3.9 Let W be a critically-finite element of R. Then hmf(R,W ) is a Krull-Schmidt
category whose non-zero indecomposables are the nontrivial primary matrix factorizations of W .
In particular, hmf(R,W ) is additively generated by hef0(R,W ).

Proof. By [8, Proposition 3.1] and [8, Theorem 3.2], any elementary matrix factorization decom-
poses into a finite direct sum of primary matrix factorizations. On the other hand, any matrix
factorization of W decomposes as a finite direct sum of elementary factorizations and hence also
as a finite direct sum of primary factorizations whose prime supports are the prime divisors of
W . By [8, Proposition 2.24], every primary matrix factorization has a quasi-local endomorphism
ring. ut

Corollary 3.10 Let W ∈ R be an element of R which has a finite prime decomposition. Then
hmf(R,W ) is a Krull-Schmidt category whose indecomposables are the nontrivial primary matrix
factorizations of W .

Proof. Write W = W0p
n1
1 . . . pnNN , where pj are the critical prime divisors of W , nj ≥ 2 and W0

is the product of the non-critical prime divisors of W . Then W0 is non-critical and we can apply
Theorem 3.9. ut

Remark 3.4. Theorem 3.9 proves [8, Conjecture 3.5] when R is an elementary divisor domain.

3.6. The category hmfp(R,W ) and its equivalent descriptions. Let p be a prime divisor of W of
order n. Let hmfp(R,W ) denote the smallest strictly full4 subcategory of hmf(R,W ) which is
closed under direct sums and contains all those primary factorizations of W which have prime
support p. Propositions 3.4 and [8, Proposition 3.1] imply that hef(R,W ) is additively generated
by its strictly full subcategory hef0(R,W ) whose objects are the primary factorizations of W .

4 I.e., full and closed under isomorphisms.
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Lemma 3.11 A matrix factorization a of W is an object of hmfp(R,W ) iff Hom(eq, a) = 0 for
any prime divisor q of W such that (q) 6= (p).

Proof. Since hmf(R,W ) is additively generated by hef0(R,W ), it suffices to prove the statement
when a = ev is a primary matrix factorization. In this case, we have v = sk for some prime divisor
s of W and:

Homhmf(R,W )(eq, a) = Homhmf(R,W )(eq, esk) ' R/〈q, sk〉 'R
{
R/(s) if (q) = (s)
0 if (q) 6= (s)

.

Hence Hom(eq, a) vanishes for any prime divisor q of W such that (q) 6= (p) iff (s) = (p), which
is equivalent with the condition that ev is an object of hmfp(R,W ). ut

Proposition 3.12 hmfp(R,W ) is a triangulated subcategory of hmf(R,W ).

Proof. The subcategory hmfp(R,W ) of hmf(R,W ) is strictly full by definition. Since hmfp(R,W )
is additively generated by primary factorizations of prime support p, [8, Proposition 2.26] implies
that hmfp(R,W ) is closed under suspension. Let a → b → c → Σa be a distinguished triangle
of hmf(R,W ) such that a and b are objects of hmfp(R,W ). For any prime divisor q of W such
that q 6' p, the homological functor Homhmf(R,W )(eq,−) takes this triangle into a long exact
sequence:

. . . −→ Homhmf(R,W )(eq, b) −→ Homhmf(R,W )(eq, c) −→ Homhmf(R,W )(eq, Σa) −→ . . . (3.11)

Since b andΣa are objects of hmfp(R,W ), we have Homhmf(R,W )(eq, b) = Homhmf(R,W )(eq, Σa) =
0 by Lemma 3.11 and the sequence (3.11) implies Homhmf(R,W )(eq, c) = 0. Applying Lemma 3.11
once again, we conclude that c is an object of hmfp(R,W ). Since triangles can be rotated, it
follows that any triangle in hmf(R,W ) for which two objects are in hmfp(R,W ) has all its
objects in hmfp(R,W ). ut

Proposition 3.13 For any prime element p ∈ R, the ring R(p) is discrete valuation ring. In
particular, we have kdimR(p) = 1.

Proof. The maximal ideal of R(p) is the principal ideal (p). The powers of this ideal form the
strictly descending sequence:

R(p) ) 〈p〉 ) 〈p2〉 ) . . . .

The same argument as in the proof of Proposition 2.2 (but with R replaced by R(p)) shows
that these and the zero ideal are all the ideals of R(p). In particular, any strictly ascending
sequence of ideals terminates and hence R(p) is Noetherian and thus a PID. Moreover, we have5

∩∞i=1(p
i) = 0. The zero ideal is prime since R(p) is an integral domain and we have 〈0〉 6= 〈p〉.

Hence kdimR(p) = 1, which implies that R(p) is not a field. ut

Remark 3.5. Since any discrete valuation ring is a regular local ring, it follows that R(p) is a
regular local ring.

Proposition 3.14 Let p be a prime element of R and n > 0 be a positive integer. Then the

localization functor locp : hmf(R, pn) → hmf(R(p), p
n) at the multiplicative set Sp

def.
= R \ 〈p〉 is

a triangulated equivalence.

5 If x ∈ ∩∞i=1(pi), then (x) ⊂ (pi) for all i, which requires x = 0 since otherwise (x) would equal some (pj).
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Proof. Let W = pn. We have:

Spn
def.
=
{
r ∈ R | (r, pn) = (1)

}
=
{
r ∈ R | (r, p) = (1)

}
=
{
r ∈ R | p6 |r

}
= R \ 〈p〉 = Sp .

Hence [8, Proposition 2.15] implies that locp is an R-linear equivalence between hef(R, pn) and
hef(R(p), p

n). Since R is Bézout (and hence Prüfer), the localization R(p) is a (possibly non-
Noetherian) valuation domain and hence a Bézout domain. Since any local Bézout domain is an
EDD [18, Corollary 2.3], it follows that R(p) is an EDD. Since both R and R(p) are EDDs, the
categories hmf(R, pn) and hmf(R(p), p

n) are additively generated by hef(R, pn) and hef(R(p), p
n).

Thus locp is an R-linear equivalence between hmf(R, pn) and hmf(R(p), p
n). This implies the

conclusion since locp is a triangulated functor by [8, Proposition 2.12]. ut

Proposition 3.15 Let p be a prime divisor of W of order n. Then the categories hmfp(R,W )
and hmfp(R(p), p

n) are triangle-equivalent.

Proof. By [8, Proposition 2.12], localization at the multiplicative set Sp = R \ 〈p〉 gives a trian-
gulated functor locp : hmf(R,W )→ hmf(R(p),Wp), which restricts to a triangulated functor:

locp : hmfp(R,W )→ hmf(R(p),Wp) .

This restricts to a functor Φ : hefp(R,W ) → hef(R(p),Wp) which maps the elementary fac-
torization epi of W to the elementary factorization e′

pi
of Wp. It is clear that the functor Φ is

essentially surjective. It is also fully faithful, since any element s ∈ Sp = R \ 〈p〉 acts as an
automorphism of each module Homhmf(R,W )(epi , epj ) ' R/〈pmin(i,j)〉 by [8, Lemma 2.14]. Since
hef(R,W ) and hef(R(p),Wp) additively generate hmf(R,W ) and hmf(R(p),Wp), we conclude
that (3.6) is a triangulated equivalence. On the other hand, the localization Wp of W at p is
associated in the ring R(p) with the element pn ∈ R(p). This gives a triangulated equivalence
hmf(R(p),Wp) ' hmf(R(p), p

n) by Proposition 1.4. Composing this with (3.6) gives the conclu-
sion. ut

Composing the triangulated equivalences of Propositions 3.14 and 3.15 gives a triangulated
equivalence hmfp(R,W ) ' hmf(R, pn). We have a commutative diagram of triangulated cate-
gories and triangulated equivalences:

hmfp(R,W )

locp

��

// hmf(R, pn)

locp

��
hmf(R(p),Wp) // hmf(R(p), p

n)

Proposition 3.16 The restriction to hmfp(R, p
n) of the cokernel functor of hmf(R, pn):

Cok : hmfp(R, p
n)→ mod(R/〈pn〉) = modAn(p) (3.12)

is a triangulated equivalence.

Proof. Since R(p) is a local ring, the Eisenbud correspondence [19] gives a triangulated equiva-
lence:

cok : hmf(R(p), p
n)
∼→ modR(p)/〈pn〉 ,
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where cok is the cokernel functor of hmf(R(p), p
n). By Proposition 3.14, localization at the

multiplicative set R \ 〈p〉 gives a triangulated equivalence:

locp : hmf(R, pn)
∼→ hmf(R(p), p

n) .

By Proposition 2.17, localization at the multiplicative set U(R/〈pn〉) gives a triangulated equiv-
alence:

locp : modR(p)/〈pn〉
∼→ modR/〈pn〉 .

It is easy to see that we have the relation:

locp ◦ Cok = cok ◦ locp ,

which implies that Cok = loc−1p ◦ cok ◦ locp is a triangulated equivalence. ut

Explicit description of hmf(R, pn). Let p ∈ R be a prime element and n ≥ 2. By Theorem 3.9,
the indecomposable objects of the Krull-Schmidt category hmf(R, pn) are the non-zero primary
factorizations of the critically-finite element W = pn. For any 1 ≤ i ≤ k − 1, let:

ei := evi =

[
0 pi

pn−i 0

]
(3.13)

be the non-zero primary matrix factorization of W = pn corresponding to the primary divisor
vi = pi. For this factorization, we have ui = pn−i and (ui, vi) = (pmin(i,n−i)) 6= (1). Notice
that ei has order δn(i), where δn(i) was defined in (2.3). For any i, j ∈ {1, . . . , n − 1}, we have
(v1, v2, u1, u2) = (pµ(i,j)), where µ(i, j) was defined in (2.3). Thus [8, Proposition 2.2] shows that:

Homhmf(R,pn)(ei, ej) 'R R/〈pµ(i,j)〉

is a cyclically-presented cyclic module generated by the morphism:

ε0̂(vi, vj)
def.
=

[
pj−min(i,j) 0

0 pi−min(i,j)

]
.

On the other hand, [8, Proposition 2.8] shows that the composition of morphisms is given by:

f ◦ g = pρ(i,j,k)rsε0̂(vi, vk) ,

for all f = rε0̂(vj , vk) ∈ Homhmf(R,pn)(ej , ek) and g = sε0̂(vi, vj) ∈ Homhmf(R,pn)(ei, ej), where
r, s ∈ R and:

ρ(i, j, n) = max(i, j, n)−min(i, j, n)+min(i, n)−max(i, n) = max(i, j, n)−min(i, j, n)−|i−n| .

Since pn ∈ Ann(Homhmf(R,pn)(ei, ej)), we can view hmf(R, pn) as an An(p)-linear category. The
triangulated equivalence (3.12) sends the primary matrix factorization evi to the cyclic An(p)-
module Cok(vi) = Vi. For any i, j ∈ {1, . . . , n− 1}, we have:

Homhmf(R,pn)(ei, ej) ' R/〈pµ(i,j)〉 ' HomAn(p)(Vi, Vj) ,

where the last isomorphism follows from Proposition 2.11.
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3.7. Proof of the main theorem.

Proposition 3.17 Let W be a critically-finite element of R with decomposition (1.4). Then we
have an orthogonal decomposition:

hmf(R,W ) = ∨Ni=1hmfpi(R,W ) ,

where ∨ denotes the orthogonal sum of triangulated categories.

Proof. Theorem 3.9 and [8, Proposition 3.1] imply that hmf(R,W ) is additively generated (and
hence also triangle-generated) by the triangulated subcategories hmfpi(R,W ). These categories
are mutually orthogonal by [8, Lemma 2.25]. ut

We are now ready to prove Theorem 0.1.

Proof (of Theorem 0.1). The first equivalence in (0.1) follows from Propositions 3.17 and 3.16.
The second equivalence follows from Proposition 2.16. The fact that An(p) is Artinian follows
from Proposition 2.2. ut

4. Some examples

In this section, we discuss a few classes of examples to which the results of the previous sections
apply.

4.1. Holomorphic matrix factorizations over a non-compact Riemann surface. Let Σ be any
connected, smooth and borderless non-compact Riemann surface6. Then Σ is Stein by a result
of [20]. Moreover, any holomorphic vector bundle defined on Σ is holomorphically trivial (see
[21, Theorem 30.3]), so in particular Σ has trivial canonical line bundle. The critical set ZW
of any non-constant holomorphic function W : Σ → C consists of isolated points, so the to-
tal cohomology category HF(Σ,W ) of holomorphic factorizations of W defined in [5] can be
identified with the total cohomology category HMF(O(Σ),W ) of finite rank matrix factoriza-
tions of W over the ring O(Σ) of holomorphic complex-valued functions defined on Σ (see [5,

Proposition 7.1]). In particular, the even subcategory HF0̂(Σ,W ) can be identified with the ho-
motopy category of matrix factorizations hmf(O(Σ),W ). When the set ZW is finite, the category
HF(Σ,W ) ' HMF(O(Σ),W ) coincides with the category of D-branes of a B-type open-closed
topological Landau-Ginzburg model with finite-dimensional on-shell state spaces (see [2,3,4]).

The non-Noetherian ring O(Σ) is an elementary divisor domain [22,23,24,25] whose prime
elements are those holomorphic functions having a single simple zero and no other zeros. For
each point z ∈ Σ, we thus have a prime element pz ∈ O(Σ) (a holomorphic function which
has a simple zero at z and no other zeroes) which is determined by z up to multiplication
with a non-zero complex constant. A critically-finite superpotential is a holomorphic function
W ∈ O(Σ) of the form W = W0Wc, where W0 ∈ O(Σ) has only simple zeros (the number of
which may be countably infinite) while Wc ∈ O(Σ) has a finite number of zeros z1, . . . , zN ∈ Σ,
each of which has multiplicity ni ≥ 2 and differs from all zeros of W0. The critical set ZW
of such a holomorphic function contains the set {z1, . . . , zN}. In this case, Theorem 0.1 shows

that the triangulated category HF0̂(Σ,W ) ' hmf(O(Σ),W ) is the orthogonal direct sum of

6 Notice that such a Riemann surface Σ need not be algebraic. In particular, Σ may have infinite genus as well
as an infinite number of Freudenthal ends.
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the Krull-Schmidt triangulated categories modO(Σ)/(p
ni
zi

) associated with the points zi, whose

Auslander-Reiten quivers are entirely determined by the multiplicities ni. The Auslander-Reiten
quiver of modO(Σ)/(p

ni
zi

) has ni − 1 nodes and is of the type shown in Figure 2.2. Notice that

only the critical points z1, . . . , zN “contribute” to the orthogonal decomposition of the category
hmf(O(Σ),W ).

4.2. Valuation domains. Recall that a unital commutative ring is called a generalized valuation
ring [26] if its elements are linearly preordered by divisibility, i.e. if any two elements x, y ∈ R
satisfy one of the conditions x|y or y|x. The following characterizations are well-known [11,26]:

Proposition 4.1 Let R be a unital commutative ring. Then the following statements are equiv-
alent:

(a) R is a generalized valuation ring.

(b) The principal ideals of R are linearly ordered by inclusion.

(c) The ideals of R are linearly ordered by inclusion.

(d) R is quasilocal and any finitely-generated ideal of R is principal.

(e) If x1, . . . , xn are elements of R, then there exists j ∈ {1, . . . , n} such that 〈x1, . . . , xn〉 = 〈xj〉.

In particular R, is a generalized valuation ring iff R is a quasilocal Bézout ring.

A valuation domain7 is a generalized valuation ring which is an integral domain. Denote by
K the field of fractions of an integral domain R. Then R is a valuation domain iff any x ∈ K×
satisfies x ∈ R or 1/x ∈ R. An integral domain R is a valuation domain iff there exists a
totally-ordered Abelian group (G,+,≤) (called the value group of R) and a surjective valuation
v : K× → G such that R = {x ∈ K×|v(x) ≥ 0} ∪ {0}. In this case, (G,+,≤) is torsion-free [27]
and order-isomorphic with the group of divisibility of R (see Subsection 4.4). In fact, a classical
result of Krull [28] states that any totally-ordered Abelian group arises as the value group of a
valuation domain. By Proposition 4.1, a valuation domain is the same as a quasilocal Bézout
domain. Moreover, [18, Corollary 2.3] shows that a valuation domain is an elementary divisor
domain and that any finitely-presented module over a valuation domain is a direct sum of cyclic
modules.

Proposition 4.2 Let R be a valuation domain. Then R has prime elements iff the (unique)
maximal ideal of R is principal and different from zero. In this case, any two prime elements of
R are associated in divisibility.

Proof. By Proposition 4.1, R is a quasilocal Bézout domain. Thus Lemma 2.1 applies, showing
that any prime element p ∈ R generates a maximal ideal. Since R is quasilocal, this ideal must
coincide with the unique maximal ideal of R, which therefore must be principal and different
from zero. By the same token, any two prime elements of R must generate the same ideal
(namely the maximal ideal of R) and hence they must be associated in divisibility. Conversely,
if the maximal ideal of R is principal and different from zero, then any generator of this ideal is
a prime element of R since maximal ideals are prime ideals. ut

7 In some references, generalized valuation domains are called “valuation rings”, while discrete valuation domains
are called “discrete valuation rings”.
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Proposition 4.3 Let R be a valuation domain with a prime element p and W ∈ R be a non-zero
non-unit of R. Then the following statements are equivalent:

(a) W is critically-finite.

(b) We have W = upn for some n ≥ 2 and some unit u of R.

(c) We have W ∈ 〈pn〉 \ 〈pn+1〉 for some n ≥ 2.

In this case, the category hmf(R,W ) is triangle-equivalent to modR/〈pn〉.

Proof. By Proposition 4.2, the ideal m = 〈p〉 coincides with the maximal ideal of R. Since R is
quasi-local, we have U(R) = R \m.

1. (a)⇒ (b). If W is critically-finite, then W = W0Wc with Wc = pm for some m ≥ 2 and some
square-free element W0 ∈ R×. If W0 is a unit, then we can take u = W0 and n = m. If W0

is not a unit, then W0 ∈ R \ U(R) = m and hence p divides W0. Since W0 is square-free, it

follows that p does not divide u
def.
= W0/p, thus u belongs to the complement of m and hence

is a unit. In this case, we have W = upm+1 and we can take n = m+ 1.

2. (b) ⇒ (c). If W = upn with u ∈ U(R) and n ≥ 2, then W ∈ 〈pn〉. Since U(R) = R \m, the
prime p cannot divide u, hence W 6∈ 〈pn+1〉. Thus W ∈ 〈pn〉 \ 〈pn+1〉.

3. (c)⇒ (a). Suppose that W ∈ 〈pn〉\〈pn+1〉 for some n ≥ 2. Then W = upn for some u ∈ R\{0}.
Since W 6∈ 〈pn+1〉, the prime p does not divide u and hence u ∈ R \m = U(R) is a unit. In
particular, u is square-free and hence W is critically-finite.

The remaining statement follows immediately from Theorem 0.1. ut

Example 4.1. We give several examples of non-Noetherian valuation domains.

1. Let G = Zn for some n ≥ 2, totally ordered using the lexicographic order ≤lex. Since G is
not cyclic, it is not isomorphic to Z. Hence the valuation domain associated to (Zn,≤lex) is
not Noetherian (see Subsection 4.3). It has exactly one principal prime ideal which is also
maximal. Let ei for 1 ≤ i ≤ n be the canonical basis elements of the free Z-module Zn. The
inequality ei <lex ej for i < j implies that the principal filter ↑ e1 is prime. However, the
filters ↑ ei for i > 1 are not prime. For details on prime filters see Subsection 4.4.

2. Let K be a field and x be an element which is transcendental over K. For any prime number
p, consider the tower of integral domains:

K[x] ⊂ K[x1/p] ⊂ · · · ⊂ K[x1/p
k
] ⊂ . . . .

For any k ≥ 0, let mk be the maximal ideal of K[x1/p
k
] which is generated by the element

x1/p
k
. The localization Rk = K[x1/p

k
]mk at the multiplicative system given by the complement

of mk is a Noetherian discrete valuation domain. The ring R
def.
= ∪k≥0Rk is a non-Noetherian

valuation domain of Krull dimension 1 whose value group is given by G = {m
pk
|m ∈ Z, k ∈

N} ⊂ Q (endowed with the order induced by the natural order of Q). The maximal ideal of

this valuation domain is the ideal generated by the elements x1/p
k

with k ∈ N∗, which is not
principal.

3. Another example of the same type can be obtained by considering the direct limit of all rings
of the form K[x1/n] over all non-zero natural numbers n ∈ N∗. The resulting valuation domain
has value group Q. Therefore, it is not Noetherian. This valuation domain has no non-zero
prime element.
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4.3. Discrete valuation domains. A discrete valuation domain is a Noetherian valuation domain
which is not a field, i.e. whose maximal ideal is non-zero. By [6, Chap. II.1, Exercise 1.4], a
valuation domain is Noetherian iff its unique maximal ideal m satisfies ∩n≥1mn = 0. Notice
that a valuation domain with non-zero principal maximal ideal need not be a discrete valuation
domain (see the Example 4.1). The following characterizations are well-known (see, for example,
[29, Proposition 6.3.4]):

Proposition 4.4 Let R be an integral domain which is not a field and let K 6= R be its field of
fractions. Then the following statements are equivalent:

(a) R is a discrete valuation domain.

(b) R is a valuation domain with value group isomorphic to Z with its natural order.

(c) Every prime ideal of R is principal [6, Chap. II.1, Exercise 1.3].

(d) R is a principal ideal domain which has a unique non-zero prime ideal.

(e) R is a principal ideal domain which has a unique prime element p up to association in
divisibility.

(f) R is Noetherian and local and there is no ring S such that R ( S ( K.

(g) R is Noetherian of Krull dimension one and its maximal ideal is principal.

(h) R is Noetherian of Krull dimension one and integrally closed.

(i) R is local with principal maximal ideal m and we have ∩n≥1mn = 0.

In this case, the unique prime ideal of R coincides with the unique maximal ideal m and we have
m = (p), where p is the essentially unique prime element (called uniformizer) of R. Moreover,
the discrete valuation v : R → Z satisfies v(p) = 1 and any non-zero ideal of R has the form
(pn) for some n ≥ 0.

In particular, any valuation domain which is not a field and whose value group is not order-
isomorphic to Z is non-Noetherian. The following result (which follows immediately from Propo-
sition 4.3) recovers a statement which, in this Noetherian situation, also follows from the Buch-
weitz correspondence [7]:

Proposition 4.5 Let R be a discrete valuation domain. Fix a Z-valuation v : K → Z and
a uniformizer p of R. Then any critically-finite element of R has the form W = upn, where
n = v(W ) ≥ 2 and u is a unit of R. Given such an element of R, the category hmf(R,W ) is
triangle-equivalent to modR/〈pn〉.

4.4. Constructions through the group of divisibility. Recall that the group of divisibility G(R) of
an integral domain R is the quotient K×/U(R), where K is the quotient field of R and U(R)
is the group of units. It is an ordered Abelian group when endowed with the order induced
by the divisibility relation. The group of divisibility of a Bézout domain is lattice-ordered. In
fact, any lattice-ordered Abelian group G is the group of divisibility of some Bézout domain R
which can be obtained explicitly from G by a construction due to Jaffard and Ohm (see [30,
31]). There exists a dictionary between ideals of the Bézout domain R associated to G through
the construction given in op. cit. and the set of positive filters of G. Given a lattice-ordered
Abelian group (G,≤) and an element x ∈ G, the up and down sets determined by x are defined
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via ↑ x def.
= {y ∈ G |x ≤ y} and ↓ x def.

= {y ∈ G | y ≤ x}. A positive filter of (G,≤) is defined to
be a proper subset F ⊂ G+ such that:

1. F is upward-closed, i.e. x ∈ F implies ↑ x ⊂ F .

2. F is closed under finite meets, i.e. x, y ∈ F implies inf(x, y) ∈ F .

A positive filter F is called prime if G+ \F is a semigroup; it is called principal if it has the form
↑ x for some x ∈ F . The natural projection π : K× → G induces a one to one correspondence
between proper ideals of R and positive filters of (G,≤). Thus prime ideals correspond to prime
positive filters and non-zero principal ideals correspond to principal positive filters. For more
details and precise statements we refer the reader to [8, Section 5.2].

It is an open question whether every Bézout domain is an elementary divisor domain. Here
we consider a class of lattice-ordered Abelian groups which correspond to adequate Bézout
domains (see Definition B.8), which are special cases of elementary divisor domains (see [22,23]
and Appendix B).

Definition 4.6 Let (G,≤) be a lattice-ordered Abelian group and let G+ = {x ∈ G |x ≥ 0}
denote its positive cone. We say that (G,≤) is adequate or projectable if for every a, b ∈ G+

there exist r, s ∈ G+ satisfying the following conditions:

1. a = r + s.

2. inf(r, b) = 0.

3. If t ∈ G satisfies 0 < t ≤ s, then we have inf(t, b) 6= 0.

There exists a simple criterion for detecting adequate groups. Let G be a lattice-ordered group.
For any b ∈ G+, define G+

b = {a ∈ G+| inf(a, b) = 0} and Gb = {a1−a2 | a1, a2 ∈ G+
b }. It is easy

to see that Gb is a lattice subgroup of G. Then [18, Theorem 4.7] states that (G,≤) is adequate
iff Gb is a summand of G for every element b ∈ G+.

Proposition 4.7 [18] Let (G,≤) be an adequate lattice-ordered Abelian group. Then:

1. The Bézout domain R associated to (G,≤) by the Jaffard-Ohm construction is an adequate
Bézout domain (and hence also an elementary divisor domain).

2. The prime elements of R correspond to the principal prime positive filters of (G,≤).

Proof. The fact that G is adequate was shown in [18]. On the other hand, any adequate Bézout
domain is an elementary divisor domain (see [22,23]). The second statement follows immediately
from the discussion above. ut

If R is a Bézout domain with prime elements which is constructed from an adequate lattice-
ordered group as in Proposition 4.7 and W ∈ R is a critically-finite element, then Theorem 0.1
applies to the homotopy category of finite rank matrix factorizations of W over R.

Example 4.2. Let I be a non-empty set and let G be either the direct sum or the direct product
of a family of totally ordered groups (Gi)i∈I indexed by I. Then the Bézout domain R associated
to G is adequate (see [18, Corollary 4.8]). The prime elements of the corresponding elementary
divisor domain R were described in [8, Section 5.2]. Let W be a critically finite element of R.
By Proposition 3.17 the category hmf(R,W ) has an orthogonal decomposition indexed by the
critical prime divisors of W .
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4.5. Constructions through spectral posets. The spectral poset of a unital commutative ring R
is the prime spectrum Spec(R) endowed with the order relation ≤ given by inclusion. For two
elements x, y of a poset (X,≤), we write x � y if x < y and x is an immediate neighbor of y.
The spectral poset of any unital commutative ring satisfies Kaplansky’s conditions if (see [32]):

I. Every non-empty totally-ordered subset of (Spec(R),≤) has a supremum and an infimum
(in particular, ≤ is a lattice order).

II. Given any elements x, y ∈ Spec(R) such that x < y, there exist distinct elements x1, y1 of
Spec(R) such that x ≤ x1 < y1 ≤ y and such that x1 � y1.

A poset (X,≤) is called a tree if for every x ∈ X, the lower set ↓ x = {y ∈ X|y ≤ x} is totally
ordered. One has the following result due to Lewis:

Theorem 4.8 [33] Let (X,≤) be a partially-ordered set. Then the following statements are
equivalent:

(a) (X,≤) is a tree which has a unique minimal element θ ∈ X and satisfies Kaplansky’s
conditions I. and II.

(b) (X,≤) is isomorphic with the spectral poset of a Bézout domain.

Moreover, R is a valuation domain iff (X,≤) is a totally-ordered set.

The Bézout domain in Theorem 4.8 is obtained by associating a lattice-ordered group G to the
poset (X,≤) and applying the Jaffard-Ohm construction to G. The following result was proved
in [8]:

Proposition 4.9 Let (X,≤) be a tree which has a unique minimal element and satisfies Ka-
plansky’s conditions I. and II. and let R be the Bézout domain determined by (X,≤) as explained
above. Then for each maximal element x of X which belongs to the set

X∗
def.
=
{
x ∈ X | ∃y ∈ X : y � x

}
,

the principal positive filter ↑ 1x is prime and hence corresponds to a principal prime ideal of R.
Moreover, we have:

↑ 1x =
{
f ∈ G+ | supp(f)∩ ↓ x 6= ∅

}
(4.1)

and:

Fx =
{
f ∈↑ 1x | inf Sf (x) ∈ Sf (x)

}
=
{
f ∈↑ 1x | ∃minSf (x)

}
, (4.2)

where:

Sf (x)
def.
= supp(f)∩ ↓ x .

A particularly simple example of elementary divisor domains is provided by those Bézout do-
mains R which are PM∗ rings, i.e. which have the property that any non-zero prime ideal of R
is contained in a unique maximal ideal (see Theorem B.7 in Appendix B).

Definition 4.10 A tree (X,≤) is called a PM∗ tree if the following three conditions hold:

1. X has a unique minimal vertex θ (called the root).

2. X satisfies Kaplansky’s conditions I. and II.
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3. X is branched only at the root, i.e. for every x ∈ X \ {θ}, there exists at most one element
y ∈ X such that x� y.

Proposition 4.11 Let X be a PM∗ tree and R be the Bézout domain associated to X as
explained above. Then R is a PM∗ ring and hence an elementary divisor domain.

Proof. Condition 3. in definition 4.10 implies that every element x ∈ X \ {θ} is bounded from
above by a unique maximal element of X. Since the elements of X \ {θ} correspond to the
non-zero prime ideals of R, this implies that any non-zero prime ideal of R is contained in a
unique maximal ideal. Thus R is a PM∗ ring. Since R is also a Bézout domain by Theorem 4.8,
we conclude by Theorem B.7 that R is an elementary divisor domain. ut

Example 4.3.

1. Let X be a tree with a unique minimal element which satisfies Kaplansky’s conditions I. and
II. Assume that the set of maximal vertices of X is countable. Then it was shown in [34]
that the associated Bézout domain R is an elementary divisor domain. As a simple example,
consider a countable corolla T as in [8, Example 5.8]. The vertices of T are the elements of
the set N = Z≥0, with the partial order given by 0 < x for every x ∈ N∗ = Z>0 and no further
strict inequality. The root of T is the element 0 ∈ N while every maximal vertex x ∈ N∗
corresponds to a principal prime ideal of the associated Bézout domain.

2. If we replace each edge of the countable corolla T discussed above with some finite tree, then
the collection of maximal vertices of the resulting tree T ′ is still countable and the associated
Bézout domain R′ is an elementary divisor domain which need not be a PM∗ ring.

A. Matrices over a GCD domain

Recall that an integral domain R is called a GCD domain if any two elements f, g ∈ R
admit a greatest common divisor (gcd). In this case, any non-empty finite collection of elements
f1, . . . , fn ∈ R admits a gcd and and lcm, both of which are determined up to association and
whose classes we denote by:

(f1, . . . , fn) ∈ R/U(R) and [f1, . . . , fn] ∈ R/U(R) .

The gcd class (f) of a single element f ∈ R coincides with the equivalence class of f under
association in divisibility.

Definition A.1 Let A ∈ Mat(m,n,R) be an m by n matrix with coefficients from a GCD
domain R. For any k ∈ {1, . . . , r}, the k-th determinantal invariant δk(A) ∈ R/U(R) of A is
defined to be the gcd class of all k × k minors of A. We also define δ0(A) = (1).

Proposition A.2 [35] Let R be a GCD domain. For any A ∈ Mat(m,n,R), we have:

δk−1(A)|δk(A) , ∀k ∈ {1, . . . , rkA} .

Defining the invariant factors dk(A) ∈ R/U(R) by:

dk(A)
def.
=

{
δk(A)

δk−1(A)
if δk−1(A) 6= 0

(1) if δk−1(A) = 0
, ∀k ∈ {1, . . . , rkA} ,
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we have:

dk−1(A)|dk(A) , ∀k ∈ {2, . . . , rkA} .

Proposition A.3 [35] Let R be a GCD domain and A,B ∈ Mat(m,n,R). If A and B are
equivalent, then rk(A) = rk(B) = r and dk(A) = dk(B) for all k ∈ {1, . . . , r}.

B. Elementary divisor domains

In this appendix, we collect some facts about elementary divisor domains.

Definition B.1 An integral domain R is called an elementary divisor domain (EDD) if for any
three elements a, b, c ∈ R, there exist p, q, x, y ∈ R such that (a, b, c) = pxa+pyb+ qyc is a GCD
of a, b and c.

B.1. Examples of elementary divisor domains. The following are examples of elementary divisor
domains:

• Any Bézout domain which is an F -domain (i.e. for which any non-zero element is contained
in at most a finite number of maximal ideals) is an EDD [36, Sec. 4]. In particular, any PID
is an EDD.

• The ring A of algebraic integers is an EDD [37, Theorem 5] which has no prime elements.

• The ring of entire functions defined on the complex plane is an EDD [22,38]. The prime
elements of this ring are the entire functions which have a single simple zero in the complex
plane.

• If R is an EDD with quotient field K and J is any integral domain such that R ⊂ J ⊂ K,
then J is an EDD [36, Sec. 4]. When R is a PID, it is known that any domain J of this type
is a PID and hence Noetherian.

• Any Kronecker function ring is an EDD [39].

• Any generalized valuation domains is an EDD. If V1, . . . , Vn are generalized valuation do-

mains with the same quotient field K, then R
def.
= ∩ni=1Vi is an EDD [36, Sec. 4].

• The domains formed by Jaffard’s pull-back theorems are EDDs [36, Sec. 4].

• Let B be an EDD with quotient field K and let m be the maximal ideal of the power series
ring K[[x]] in one variable. Then R := B +m is an EDD [36, Sec. 4].

• Let B be an EDD with quotient field K and X be an indeterminate. Then R := B+XK[X]
is an EDD [40].

• Let K be an algebraically closed field of characteristic different from two and let x1 be an
indeterminate over K. Let x2 be a square root of x1, x3 be a square root of x2 and so on.
Then the ring R := ∪∞n=1K[xn, 1/xn] is an EDD [36, Sec. 4].

B.2. Kaplansky’s characterization of EDDs.

Definition B.2 Let R be a commutative ring. We say that R satisfies Kaplansky’s condition
if for any three elements a, b, c in R such that (a, b, c) = (1), there exist elements p, q ∈ R such
that (pa, pb+ qc) = (1).
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Proposition B.3 [41] An integral domain R is an EDD iff it satisfies the following two condi-
tions:

1. R is a Bézout domain.

2. R satisfies Kaplansky’s condition.

B.3. The Smith normal form theorem over an EDD.

Theorem B.4 [35] Let R be an EDD. For any matrix A ∈ Mat(m,n,R), there exist matrices
U ∈ GL(m,R) and V ∈ GL(n,R) such that:

UAV −1 = D ,

where Dij = 0 for all i 6= j and the diagonal entries di
def.
= Dii (with i ∈ {1, . . . , r}, where

r
def.
= rkA ≤ min(m,n)) are non-zero elements which satisfy the condition:

d1|d2| . . . |dr .

In this case, the matrix D is called the Smith normal form of A. Moreover, the association
classes of dk coincide with the invariant factors of A:

(dk) = dk(A) , ∀k ∈ {1, . . . , r} .

Proposition B.5 [35] Let R be an EDD and A,B ∈ Mat(m,n,R). Then A and B are equivalent
iff they have the same rank r and their invariant factors coincide:

dk(A) = dk(B) , ∀k ∈ {1, . . . , r} .

B.4. Some special classes of EDDs. It is an unsolved problem (going back at least to [22])
whether any Bézout domain is an EDD. Here we mention a few special classes of Bézout domains
which are known to be elementary divisor domains. One special class is provided by those Bézout
domains which are PM∗-rings.

Definition B.6 [42] A PM∗-ring is a unital commutative ring R which has the property that
any non-zero prime ideal of R is contained in a unique maximal ideal of R.

Theorem B.7 [43] Let R be a Bézout domain which is a PM∗ ring. Then R is an EDD.

It was shown in [44] that a Bézout domain is an EDD iff it has Gelfand range one.

Another special class is that of adequate Bézout domains [18,22,45].

Definition B.8 [22] A Bézout domain R is called adequate if for all a, b ∈ R with a 6= 0, there
exist r, s ∈ R such that a = rs, (r, b) = R and such that any non-unit s′ which divides s satisfies
(s′, b) 6= R.

Proposition B.9 [23] Any adequate Bézout domain is a PM∗ ring.



Matrix factorizations over elementary divisor domains 35

Corollary B.10 [22] Any adequate Bézout domain is an EDD.

Remark B.1. It is known that the inclusions:

{adequate rings} ⊂ {PM∗ rings} ⊂ {elementary divisor domains}

are strict (see [43,46]).

Theorem B.11 The ring O(Σ) of entire functions on any connected and non-compact border-
less Riemann surface is an adequate Bézout domain.

The case Σ = C of this theorem was established in [22,23]. This generalizes to any Riemann
surface using [24,25]. Since O(Σ) is an adequate Bézout domain, it is also a PM∗ ring and hence
and EDD.

B.5. The Noetherian case. The following characterizations are well-known.

Proposition B.12 Let A be a Noetherian integral domain. Then the following statements are
equivalent:

1. A is an EDD.

2. A is a Bézout domain.

3. A is a PID.

In particular, matrices valued in a Noetherian domain A admit a Smith normal form iff A is a
PID. It is obvious that every PID is Noetherian.

Proposition B.13 Let A be an integral domain. Then the following statements are equivalent:

1. A is a PID.

2. A is a UFD and a Bézout domain.

3. A is a UFD and a Dedekind domain.

4. A is a UFD and has Krull dimension one (equivalently, any non-zero prime ideal is maximal).

Proposition B.14 Let A be a Noetherian integral domain. Then the following statements are
equivalent:

1. A is a UFD.

2. A is normal and its divisor class group vanishes.

3. Every height one principal ideal of A is principal.

Acknowledgements. This work was supported by the research grant IBS-R003-S1.



36 Dmitry Doryn1, Calin Iuliu Lazaroiu1, Mehdi Tavakol2

References

1. C. I. Lazaroiu, On the structure of open-closed topological field theories in two dimensions. Nucl.
Phys. B 603 (2001) 497–530.

2. C. I. Lazaroiu, On the boundary coupling of topological Landau-Ginzburg models, JHEP 05 (2005)
037.

3. M. Herbst, C. I. Lazaroiu, Localization and traces in open-closed topological Landau-Ginzburg models,
JHEP 05 (2005) 0449.

4. E. M. Babalic, D. Doryn, C. I. Lazaroiu, M. Tavakol, Differential models for B-type open-closed
topological Landau-Ginzburg theories, arXiv:1610.09103, to appear in Commun. Math. Phys.

5. E. M. Babalic, D. Doryn, C. I. Lazaroiu, M. Tavakol, On B-type open-closed Landau-Ginzburg
theories defined on Calabi-Yau Stein manifolds, arXiv:1610.09813.

6. L. Fuchs, L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs
84, AMS, 2001.

7. R. O. Buchweitz, Maximal Cohen-Macaulay Modules and Tate Cohomology over Gorenstein Rings
(1986), manuscript available at https://tspace.library.utoronto.ca/handle/1807/16682.

8. D. Doryn, C. I. Lazaroiu, M. Tavakol, Elementary matrix factorizations over Bézout domains,
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