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Introduction

The generalized class numbers H(r, N) were inveted by H. Cohen [1].
They coinside with the usual class numbers of the binary positive defined
quadratic forms when r = 1. Since they are Fourier coefficients of the Eisen-
stein series of half integral weight r 4 1/2,

Hepro(t) = D H(r, N)g" q = exp(2miT),
N>0

one can prove their nice properties. In particular, generalizations of the
Kronecker - Hurwitz class number relation

STH(Q AN — %)+ Y min(AX) = 0y(n) N>0
scZ Numax!
AN >0
are investigated in [1]. These generalizations are based on the explicite con-
struction of spaces of modular forms of weight r41. The relations obtained in
[1] involve the numbers H(r, N) for » < 5. The basis problem becomes more
complicated when the weight increases. It yields that one can not hope to
obtain nice relations of this type when r is considerably large. In the present
note we get p-adic information about the numbers H(r, N) for arbitrary r.
Throughout the paper we fix an odd regular prime p.
For positive integers m,n we introduce the finite sets of non-negative
integers:
S(m,n) = {4mp™ — s* > 0|s € Z}

S*(m,n) = {dmp™ — s* > 0|s € Z,p [fs}

Theorem 1 Let r,m be positive integers such that m is nol a perfect square
and is not divisible by p. Denote by x_n the quadratic character associated
with Q(v/=N).
a. Suppose that
r=3,57,913modp—1 (1)

Then the double series

Fhy=5 S (@ —x-npp )H(r, NYNE-

n20 NeS*(mn)



converges p-adically for every non-negative integer [,
Its value at | =0 is

7(0) = 2y 2L

b. Suppose that p = (=1)"t! mod 4 and

-1
r+£2—E3,5,7,9,13modp—1 (2)
Then the double series

ﬂ0=2;'

E H(r,pN)N®-1)
NES*(m.n)

converges p-adically for every non-negative integer [.
Its value at | =0 is

1—p*=1¢(1—2n)
L—p ((-r)
If p=8,5,7 then one can omit the conditions (1) and (2).

G(0) = 20,(m)

Remark

The condition that m is not a perfect square is technical. The case when
m is a square, and in particular m = 1 brings nothing essential new but
slight modifications of the formulae.

The proof of the Theorem 1 is based on the methods and results of [1]
and [3].

The contents of the paper are as follows. In Chapter 1 we recall (slightly
modified) propositions from [1] and [3]. These propositions will be used in the
proof of Theorem 2. This theorem asserts some p-adic properties of Fourier
coeflicients of modular forms of half integral weight. p-adic analytic func-
tions associated with a modular form of half integral weight are constructed
in Corollary 1. Theorem 2 and Corollary 1 are formulated and proven in
Chapter 2. These constructions might be of independent interest. The proof
of Theorem 1 concludes Chapter 2.



Notations

Let X denote the group of continious p-adic characters of Z,*. For ¢t € Z,,,
u € Z/(p—1)Z we let (t,u) € X be the character which sends 2z € Z, to
< z >' w(z)*, where w is the Teichmiiller character and < z >= z/w(z) €
1+ pZ,. All elements of X are of the form ({,u). For a residue » modulo
p—1 we write (t,u) =rmod p—1iff u=r mod p — 1.

For a formal power series

g=2_b(n)g"  bn)eQ, (3)

n>0

we define vp(g) be the minimum p-adic ordinal of its Fourier coefficients b(n).

We call the series (3) a p-adic modular form of integral (half integral)
weight if there exists a sequence of modular forms of even weights k; on
SL(2,Z) (of half integral weights r; + 1/2 on ['g(4) ) with rational Fourier
coeflicients such that lim;,. fi = ¢ i.e. vp(fi — ¢} tends to infinity. It is
known [3], [2] that in this case the sequence k; (r;) converges in X.

The symbol lim will denote p-adic hmit.

We denote by ¢* the Kubota - Leoplodt p-adic {-function. The group X
is its area of definition.

Chapter 1.

For non-negative integers {,r, s, N put

4 200 (r+2gA—p-=-1
P( ) s, N) = —1)* ( S?l 2 B
e ) tz%o( ) pl@2 —2p)! (r+1-1)!

Proposition 1 Let ¢ = T nsoc(N)gY be a modular form of half integral
weight r +1/2 > 5/2 on congruence subgroup Vo(4).

Let D be an positive integer such that D = (—1)"' mod 4; let | be a
posttive integer.

Then

. 4N — §?
F= Zqupél)(S,N)C( B )

N>0 s€Z



is a modular form of weight 2L + v -+ 1 on congruence subgroup Uo(D) with
character x(_yyr-1p. It is a cusp form if 1 > 0.

This Proposition essentially coinside with Theorem 6.2 from [1]. We

change the normalization of the Gegenbauer polinomial Pz(,r ) and consider
arbitrary modular form of half integral weight ¢ instead of the Cohen series
‘H. The argument atays the same as in [1] up to the described modifications.

Proposition 2 Let f = ¥ ,50a(n)q" be a p-adic modular form of even
weight k # 0. Let m be a positive integer not divisible by p. Suppose that

k=4,6,8,10,14 mod p — 1. (4)
Then
2a(0)ok-1(m) = C*(1 — k) limyeoa(mp™)
If p=13,5,7 then one can omit the condition (/).

Proof.
Acting as in [3], proof of Theorem 4, p.209-210, one gets a p-adic modular
form f|iT(m) of the same weight &:

ST (m) = Z q" z d*la(mn/d?).

30 dimm)

Application of Theorem 7 of [3] (see also Remark, p. 216) completes the
proof.

Chapter 2.

Theorem 2 Let f = 3,54 be a p-adic modular form of half integral weight
4 1/2. Let I,m be positive integers, m is not divisible by p.
a. Suppose that

r+20=3,579,13 modp— 1. (5)
Then for2l +r+1#0 in X, one has
la. lim 5 ¢N)N'=0

n—oo

NegS*(m,n)
2a. lim T o(n) =220
n—oo NeS(mn) C (—T’)



b. Suppose that
p—1
r+2l+—2-53,5,7,9,13m0dp——1. (6)

Then for p=(—=1)"*' mod 4, one has

1 !
1b lim 3 e(pN)N' =0
T o)D)
Opl)C
n—)ooNESz(;l,n) ( ) C‘(—r‘} -r - (p - ])/2)

If p=3,5,7 then one can omit the condilions (5), (6).

Corollary 1 Let f = S nsoc(N)g" be a p-adic modular form of weight

r+1/2. Let m be an integer not divisible by p. Denote by [ the element

(s,l0) of X, where ly is a fized residue modulo p—1 and s is a p-adic integer.
a. Letr be odd and 2l +r + 1 # 0. Suppose that

r+420=23,579,13 mod p—- 1. (7)
Then the series

Crmin(s) =2 3. (NN

n>0 NeS*(m,n)

converge p-adically for every s € Z, and the function ®; . (3) is analylic in
variable s.
b. Suppose that p = (—1)"*' mod 4 and

~1
r+210+32—z3,5,7,9,13modp—.l. (8)

Then the series

Usimi(s) =3, >, c(pN)N'

n>0 NeS*(m,n)

converge p-adically for every s € Z, and the funclion U, 1,(s) is analytic
in variable s.
If p=3,5,7 then one can omit the conditions (7) and (8).

S



Proof of the Corollary 1

Let us assume that part a of Theorem 2 is valid and prove part a of the
Corollary. Part b is similar.

It follows from 1a of Theorem 2 that the series in question converges for
s € Zy. The finite sum Yocncny nes(mn) (V)N is an analytic function.
It follows that the function ®;,,, is the limit of the sequence of analytic
functions. The application of [3], Lemma 12 completes the proof.

Proof of the Theorem 2

Consider the sequence f; = 3,50 ci(n)q" of modular forms of half integral
weights r; + 1/2 which defines the p-adic modular form f.

Since lim; 4o ¢;i(N) = ¢(N) uniformly in N, it is enough to prove the
assertion of the Theorem for the forms f;.

a. Applying to these forms Proposition 1 with D = 1 we obtain the
modular forms

Fu=3 4% PY (s, N)ci(4N — %)
N20 scZ
of weights 2/ + r; + 1 on SLo(Z). The constant term of the q expansion of
Fi1is equal to ¢(0) if { = 0 and vanishes if { > 0. Let us denote this number
by a;; and apply Proposition 2 to modular forms F;:

2a; 10214ri(m) = (" (=20 — ;) JH& Z I’é;‘)(s,dmp")c,-(élmpﬂ — s%). (9)
scZ
Since p 1s regular, {*(—2{ —r;) £ 0. Computation of the limit in the right
hand side of (9) yields:

i+ 20— 1)
2ai10914r,(m) = *(=21 — 7} lim (rit20-1)

nsos (1 + 1 — 1)) 2 ciltmyp” = 575", (10)

seZ
It follows that the assertion 2a of the Theorem holds for half the integral
weight form f;.

When [ > 0 (10) yields

0= lim Y c;(dmp™ — s%)s*
n—+oo 36Z
= lim Z C.,'(N)NI -{-pﬂ z c,'(pzN)Nl) . (11)

n—co
NgS*(m,n) NeS*(m,n-2)



Consider a sequence of rational integers I; — oo such that limjLe l; = {
in X. To be more specific one can pick [; =+ p(p—1), 7=1,2,3,....
Since (11) holds for { = I; for arbitrary j, the denominators of the Fourier
coefficients ¢;(N) of modular forms f; are bounded, and N* is p-adically
continious function on s when N is not divisible by p, the assertion 1a of
Theorem 2 for f = f; follows.

b. Applying to the modular forms f; Proposition 1 with D = p we obtain
modular forms

. 4N —~ s°
Fu= S ¥ S P s N (—-—)

N>0 52 p

of weights 2/ +7;+1 on congruence subgroup I'o(p) with character x(_yyri+1,.
It follows from [3], Theorem 12 that F;; is a p-adic modular form of weight
(I +ri+ 1,047+ E,El) € X. The rest of the proof is essentially the same
as of part a.

Proof of Theorem 1

It is known ([2], Theorem 4) that for any sequence of positive integers
r; — oo converging to r € X, the sequence of Eisenstein sries H, 4,72 con-
verges p-adically to a limit H; /2 = Xnso H*(r, N)¢". Moreover, the p-
adic Eisenstein series H;, /, Is invariant under Ug operator. In other words,

H*(r,p*N) = H*(r, N). It follows that

lim Y. H*(r,N)=

"7 NeSimon)
lim ( > H*(r,N)+ > H*(r,p*N) + .. ) = @y:+m'm,0(0).
NES'(‘m,n) NES'(m,n—'Z)

In the case under consideration Theorem 2, a yields that

¢(1 —2r)
¢(=r)

It means that we succeeded to calculate the value at s = 0 of the p-adic

analytic function on Z, @H:le'm,g(s). Let » = (s,0) € X for a positive
integer s. Using the identities ([2], Remark 3, p. 207)

(1’7.1;““‘,,,‘0(0) = 20.(m) (12)

H*(r,0) = ¢(1 — 2s)(1 — p*7"),

7



H*(r,N) = (1 = x(cuyn(p)p”" ) H(s, N)

and taking in account (12) we derive the assertion of Theorem 1 from Corol-
lary 1, a.
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