
Extremal even unimodular lattices of
rank 32 and related codes

Helmut Koch and Gabriele Nebe

Helmut Koch
Max-Planck-Arbeitsgruppe
fur Algebraische Geometrie und
Zahlentheorie
Mohrenstr. 39
0-1086 Berlin
Germany

Gabriele Nebe
Lehrstuhl/B für Mathematik
Templergraben 64
W-5100 Aachen

Germany

MPI/92-35

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



Introduction

In the following we consider even unimodular lattices A in the euclidean space R32 without

vectors of squared length 2. Such lattices are ca11ed extremal. They were studied in [5], [1].

One associates an invariant v(A) to A, the neighbor defect ([1], p. 156):

v(A) := 32 - max {E(A)vlv E A, (v, v) = 8}

where Av is the modification of A by means of v and E(Av ) is the rank of the root

lattice of Av '

There are five lattices A with v( A) = 0 ([1], Satz 10) corresponding to the five doubly-even,

self-dual, linear codes in F~2 with minimal weight 8. If v(A) > 0, then v(A) ~ 8 ([1],

Satz 4). In [3] it was shown that there are at least ten extremal lattices A with v(1\) = 8.

They are uniquely determined by linear codes C in F~4 with weight enumerator

fc(x) = 1 + 39x8 + 176x12 + 39x16 + x24
. (1)

In [3] these codes are denoted by 83, Cl, ... ,C5 , GI, ... G4. There are two further linear

codes Sl,82 with weight enumerator (1), which lead to lattices A with v(1\) = ° ([1],
Satz 14).

In the sections 1., 2. and 3. we prove the following .

Theorem 1. Any linear code C wirh weight enumerator (1) is equivalent to olle 0/ the twelve
codes SI, 52, S3, CI, ... ,C5 , GI, ... ,04 ,

Table 1 presents the twelve codes by means of basis words corresponding to the proof of

Theorem 1.

For a given extremal lattice A we denote the set of adjacent lattices Av with E(Av ) =
24 by LA. In [3] it was shown that the lattices A corresponding to the twelf codes in
Theorem 1 are pairwise not isometric. Hence up to isometry there are precisely ten extremal

lattices with neighbor defect 8.

Furthermore this implies that for a given lattice A the codes associated to the adjacent lattiees
Av with E(A v ) = 24 are equivalent. From this and from the considerations in [1], 1.8, it
follows that the automorphism group Aut A of A aets transitivelyon LA. Hence

where C denotes the code corresponding to A.

The cornputation of the function gA in [2] and [3] shows that gA (1 7) = 0 for a11 lattices A

with v(A) ::; 8. In section 4. we construct extremallattices A with YA(17) ~ O. In section
5. we study the transition from adjacent lattices L to' A in the case that the defect lattice l-/

of L has the property '1'" = ~'I where V* denotes the duallattice of 'I. We show that this
transition is uniquely determined up to isometry (Theorem 2).

The first author is grateful to B. B. Venkov for many discussions about the subject of

this paper. This research was carried out during the visit of the first author at the Max

Planck~Institut rur Mathematik in Bonn in 1991. He thanks the Institut for i18 hospitality.

Furthermore, we want to thank Ms Catto for her excellent typing of our manuscript.



1.

In the follwoing we identify a word w in F~4 with the set of places of w with coordinate

1. The places will be denoted by 1, ... ,24. We put 1 := {I, 2, ... , 24}. Furthermore

(al; 0.2; ... ;as ) denotes the set of words {ai + Ctj[i,j E {I, ... , s}}.

The basis for the classification of the linear codes with weight enumerator (1) is the following

Proposition 2. Any linear code C with weight enumerator (1) contains a subcode Cl which

is equivalenl 10 the code generated by

({I , ... , 6}; {7, ... , 12}; {13, ... , 18}; {I9, ... , 24})

and

{1,2,3,7,8,9,13,14,15,19,20,21}.

Proof. a) Let Yl be an element of C of weight 12. Without loss of generality we can

assurne

Yl = {I, ... , 12}.

The type (a, b) of x E C/(YI,1) is defined by

for x of minimal weight in its dass in C/(Yl, 1). The possible types are (0,0), (2,6) =

(6,2), (4,4), (6,6). A class of type (2,6), (4,4), (6,6) contains 2,1,°words of weight 8.
Let 0:1,CY2,0'3 be the number of classes of type (2,6), (4,4), (6,6) respectively. Then

0'1 + 0'2 + 0'3 = 63, 20:1 + 0:2 = 39.

1t follows -al + 0'3 = 24, hence 0'3 > 0. Let Y2 be a word of type (6,6). Without loss

of generality we can assurne

Y2 = {7, ... , 18}.

b) Now we consier in the same way the classes of C/ (YI, Y2, 1). There are six types

(0,0,0,0), (2,2,2,2), (2,2,4,0), (1,1,1,5), (1,1,3,3), (3,3,3,3).

They contain 0,1,3,4,2,°words of weight 8 respectively. The even classes form a subgroup

of index 1 or 2.

If the index is 2, we have with similar notation as in a)

hence 0'5 = 4 + 0'2 + 03 > 0. This implies Proposition 2.

c) Now we consider the csse that there are only even classes. Then (\:1 = 27, Q'2 = 4. We

change our notation and write the words of C as four dimensional vectors with coordinates

which are subsets of {1, ... , 6}. Since there are 15 pairs in {1, ... , 6} and 27 words

of type (2,2,2,2), C contains words Xl = (4), a2, Ct3,ct4), X2 = (bl,<p,b3,b4), X3
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(Cl, C2, 4>, C4), X4 = (eh, d2, da, 4». They deliver us the four classes Xl, X2, 2:3, ,1:4 of type
(2,2,4,0) in CI(yl, Y2, 1). Without 10ss of generality we can assurne

Xl = (4),{1, ... ,4},{1, ... ,4},{1, .. ,,4}).

We haye up to equiyalenee the following possibilities for .1;2 :

X2 = ({1, .. ,,4}, 4>, {2, ... ,5}, {2, ... ,5}),
,

x2 = ({1, .. ,,4}, 4>, {3" .. ,6}, {3, ,6}),

x~ = ({1, ... ,4}, 4>, {1, ... ,4}, {3, ,6}).

Assurne X2 E C. Then 2'1, X2 give the (6,6,6,6)- division

((4>,4>, {2,3, 4}, {2,3,4}); (4), {1,2, 3,4}, {I}, {I}); ({I, 2,3,4}, 4>, {5}, {5});

({5, 6}, {5, 6}, {6}, {6} )),

for which (4), {I, ... ,6} {I, ... , 6}, 4» is odd. Hence we come back to b).

d) Now assume that corresponding coordinates of :1:1, ... , X4 haye even intersectioo. Then

the classes Xl, ... , X4 in CI (YI, Y2, 1) can not be linearly independent.

If Xl + X2 + xa = 0, then we haye without loss of generality

Xl = (4), {I, ,4}, {1, ,4}), X2 = ({1, ... ,4}, 4>, {1, ,4}, {3, ,5}),

2'a = ({1, ,4}, {1, ,4}, 1;, {1,2,5,6}), X4 = ({3, ,6}, {3, ,6}, {3, ... ,6}, rjJ).

Let Xs be a further basis element. Xs has type (2,2,2,2). Its coordinates are pairs distinet

frorn {1,2}, {3,4}, {5,6}. Choosing suitable words ofweight 12 in :l:5 and (YI,Y2, 1) one

finds a (6,6,5,6)- division for whieh Xl is odd. The ease Xl + 2:2 + 2:3 + X4 = °can be
handled analogously. Tbis finishes the proof of proposition 2.

2.
By Proposition 2 we can assume that C contains the words

1 = {I, , 24},

'YI = {I, , 12},

Y2 = {7, , 18},

Ya = {1,2,3, 7,8,9,13,14,15,19,20,21}.

We denote by Cl the code generated by these words. Cl gives a division of {I, ... , 24}
in 8 parts {I, 2, 3}, ... , {22, 23, 24}. Tbe classes in CICI are type

Ao = (0,0,0,0,0,0,0,0),

Al = (1,1,1,1,1,1,1,1),

A2 = (1,1,1,1,2,2,0,0),

Aa = (2,2,2,0,2,0,0,0).

Tbe components of the types ean not be arbitrarily permuted. The admissible

permutations are the permutations of the (8,4)- Hamming code H generated by

{I, ... ,8}, {I, ... ,4}, {3, ... ,6}, {1,2,5, 7} according to the structure of Cl. This ffieans
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that one can prescribe the images of four places which do not form a set in H, such that the

set of images is not in H, too. This detennines an automorphism of H.

Let (Xi be the number of classes of type Ai. Then

and therefore (Xl - 0'3 == 3.

Furthermore let Cz be the linear code in F~4 generated by {I, 2, 3}, {4, 5, 5}, ... , {22, 23, 24}.

Then C n C2 == Cl. Each class in CCz/Cz ;; C/Cl has a unique representative with com·

ponents of cardinality °or 1. In the following we write 0,1,2,3 for these components.

For instance the class of the word {I, 2, 4, 5,7,8,13, 14} will be written (3,3,3,0,3,0,0,0).

Hence we consider now the group 1(8 with !( == Ft. We call an element of 1(8 admissable

if the corresponding class in C/Cl is of type Aa, Al, Az or A3. A subgroup U in 1(8 of

order 16 corresponds to a code C if and only if a11 its elements are admissible and the

equation al + 3az + 50'3 == 39 is satisfied.

Since (Xl ~ 3, we can choose our next basis element in the form

x == (1,1,1, 1,1,1,1,1).

Every further basis element of type Al in U contains 0,2 or 4 coordinates 1. Hence we

have up to equivalence three possibilities:

0.) y == (2,2,2,2,2,2,2,2),

b) y == (1,1,2,2,2,2,2,2),

c) y == (1,1,1,2,1,2,2,2).

a) If U contains an element with four coordinates 0, then up to equivalence the next basis

element can be chosen in the form

o.a)z == (0,0,0,1,0,1,1,1)

or

ab) z == (0,0,0,1,0,1,2,2).

If U contains no vector with four coordinates 0, then a11 further vectors of U are of type

Az and consists of two components 0,1,2,3 respectively. Up to equivalence there are three

possibilities:
ac) z == (0,0,1,1,2,2,3,3),

ad) z == (0,0,1,1,2,3,2,3),

ac) z == (0,0,1,2,1,3,2,3).

b) There is a further vector of type Al in U. It contains 2, 1 or °coordinates 1 at the

first two components. Let z == (Zl, Zz, . .. ,Z8)' ba) Zl == Z2 == 1. We can assurne that there
are exactly two further coordinates 1. Otherwise oue permutes 1 and 2 in a11 components

beside the first two.

baa) Z == (1,1,1,2,1,2,3,3),

bab) z == (1,1,1,2,1,3,2,3),

bac) z == (1, 1, 1, 3, I, 3, 3, 3).
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bb) Zl 1, Z2 = 2.

bba) z = (1, 2, I, 1, 1, 2, 2, 2) ,

bbb) z = (1, 2, I, 1, 1, 2, 3, 3),

bbe) z = (1, 2, I, I, I, 3, 2, 3),

bbrl) z = (1,2,1,2, 1,3,3,1),

bbe) z = (1, 2, I, 3, 1, 3, 2, 1),

bbf) z = (1,2,1,3,2,3,3,3).

be) Zl 2.

bca) z = (2,2,1,1,1,2,1,2),

beb) z = (2,2,1,1,2,2,3,3),

bec) z = (2, 2, I, 1, 2, 3, 2, 3),

bed) z = (2,2,1,2,1,2,3,3),

bee) z = (2,2, 1,2,1,3,2,3).

c) Up to equivalence and cases which appear already in a) or b) we have only two possibilities

ca) z = (1, 1, I, 3, 1, 3, 3, 3),

eb) z = (1, I, 2, I, 2, 2, 1, 2).

3.

We have seen in 2. that every code with weight enumerator (1) is of the form S= (S, v)
for one of the 21 codes S of dimension 7 and some 1) E S1.. It suffices to look at some

representative v for each of the 210 classes in S..l f S.

For the testing of the equivalence of codes we introduce the following notion of profile:

Let C be a code with weight enumerator (1). For 'W E Cs := {c E Cfici = 8} define A w

by A w := {c E Cslc n 'tU = cP}. Since {I + 'W, cP} u A w is a linear code the cardinality of

A w is 2i - 2 for some i E lV. We put

Zi := I{w E Csll.4101= 2
i

- 2}1·

The tripie ZC := (Z1, Z2, Za) is called the profile of the code C.

It is clear that equivalent codes have the same profile. The twelve known codes have

the following profiles: ZS3 = (0,0,36), ZS'J = (0,24,12), ZS3 = (24,0,15), ZCI =
(0,32,6), ZC2 = (8,24,7), ZC3 = (16,18,5), ZC4 = (24,12,3), ZC!5 = (16,21,2), ZG t =
(24,15,0), ZG2 = (18,21,0), ZG3 = (0,39,0), Za... = (32,6,1).

Hence we can distinguish them by their profiles. A computer test shows that all codes S have

one of the profiles above. It remains to show that S is equivalent to the corresponding known

code. This was done by a slight modification of an algorithm of W. Plesken and M. Pohst [4].

The following table presents the codes of Theorem 1 in the form (5, v).
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0 s c lAut 01
51 ac) (0,0,2,2,3,3,1,1) 215 . 32

52 ac) (3,0,1,2,3,0,1,2) 213 ·3

53 ad) (3,3,1,1,2,0,2,0) 27 .33 . 5

Cl ac) (1,0,1,0,3,2,3,2) 25 .3

C2 bec) (0,2,0,2,3,1,2,1) 26

C3 bba) (3,3,3,1,1,0,3,0) 27

C4 bea) (2,2,0,3,3,3,0,3) 26 .3

C5 bec) (1,2,1,3,1,3,1,2) 24

GI ab) (3,2,2,1,1,2,3,2) 25 .3.5

G2 ab) (3,3,2,1,1,3,3,2) 1

G3 ab) (3,1,2,3,3,2,3,1) 26 .32

G4 ab) (3,2,2,2,1,1,3,2) 27 ·3

Table 1

4.

In the study of even unimodular extremal lattices A of rank 32 one finds that in the cases of

neighbor defect 0 and 8 one has always 91\(17) = 0([2], [3]). Therefore the question arises

whether this is true for all extremal lattices A of rank 32. In the following we construct

extremallattices A with gA(17) i- O. Such a lattice has by definition a neighbor Aw with

root system {±(q, ... , ±a17} and by [1], Theorem 4, the defect lattice of Aw has the form

V2 (A15)' On the other hand it is easy to see and we come to this question in 5. that for

any even unimodular lattice L of rank 32 with root system {±al, ... ,±a17} there exists a
neighbor without roots. Hence it is sufficient to consider such lattices L. By [2), Satz 1.5,
the code D of L has dimension 1. Hence up to equivalence there are three possibilities:

a) D=({l, ... ,16}), b) D=({l, ... ,12}), c) D=({l, ... ,8}). Weconsiderhereonly
the first case.
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(1)

(2)

We assume D = ({1, ... , 16}). Then Dl. is generated by {17} and D' =
{cl ~ {1, ... , 16} Ildl E 2Z}. Let U be the code lattice of L, which as abelian group is

generated by aI,··., 0.17, ~(a1 + ... + 0.16)'

We represent V2(A15) in the standard form

{

16 16}
12(.415) = t; ßibilßi E Z, t; ßi = 0 ,

where bl , ... , bI6 denotes an orthogonal basis of RI6 with (bi, bi) = 2 for i 

1, ... , 16. Then V2 (AI5) is generated by V2(AI5) and the vector ~(bl + ... +b12 ) 

~(bI3 + ... + bI6). In the gluing process we have to combine ~(L17 with a vector v whose

class in -J2 (A15 ) I V2(A15 ) has minimal length ~. One can take for instance

1 7
v = S(b1 + ... + b14 ) - S(b15 + bI6).

To finish the gluing process, it is sufficient to combine the vector classes x = ~ l: o,j +U for
iEd

cl E D' with vector classes w in V*111 such that the corresponding mapping U* IV --+ V* IV
is an isomorphism and

l (w) + l (x) E 2Z, l (w) + l(x) # 2,

where 1 denotes the minimal (squared) length of a vector dass. Every dass 'lii in \1* IV
with integral length l (w) contains a representative 'tu in ~(AI5) such that 1(1Ü) =
nün {(W, 'tu), 2}.

We consider the linear code C C F~2 which is constructed as follows: c E C if and only if

1 1
2L (Li + 2L bj-IB E L,

iEd jE(!'

where c' = Cn {1, ... ,16}, d' = Cn {17, ... ,32}.

By construction it is clear that C is doubly even and has minimal weight 8. Furthennore,

since diln Dl. = 15 and {17, ... , 32} E C, the dimension of C is 16 hence C is self-dual.
One knows from (0) that there are precisely five inequivalent linear codes C in F~2 which
are doubly even, self-dual and of minimal weight 8. Each such code contains words h of
weight 16 which contain 00 subword # <P lying in C.

On the other hand, given such a pair C, hone gets a lattice L with the desired properties

by means of (1), (2) with h = 1, ... ,16.

5.

Now we consider the transition from L to A. More generally we want to prove the following
Theorem.

Theorem 2. Let L be an even unimodular lattice ofrank 32 such that L2 = {±al, ... ,±as }

and such that the defect lattice ,I 0/ L, i.e. the sublattice 0/ L consisting 0/aU vectors which

7



are orthogonal to al, ... , a~ll has the property V* = !\/. Then a) s 2:: 16. b) There is IIp
to isometry at most one adjacent laUice o[ L withollt roots. c) If s > 16 then there exists
an adjacent lattice of L WithOlit roots. d) If s = 16, thell there exists an adjacent laffice o[

L if and only if ~ \1 is odd.

Proof: We denote the code lattice of L, i.e. the sublattice of L consisting of all linear

combinations of al, ... , as , by U. Furthermore

c == {C E F21~ 'Eai E L}
lEe

denotes the code of L.

\1* == ~ \1 implies

s - 2 dhn C == dhn C1../C = clhn U*/U == dilll \1*lV == 32 - s

hence diIn C == s - 16. This proves a).

Let y E L with (L Y)2 == cP. Then y can be chosen in the form

1
y == 2((L! + ... + a.'l) + Z (3)

or

(4)

with z E \1*.

If ~V is even all vectors of l/ have integral squared length. Therefore {I, ... , s} E C

and !(al + ... + as) E U, zEll. Then there is an 'U E U* such that u + !Z E Land

(u + ~z, y) E 2Z. Hence !y- Cu + !z) E Ly. It follows that up to isometry y ean be chosen

in the form (3) or (4) with Z == 0 if s == 32 or s == 24 and A does not exist if s == 16.

If ~1/ is odd z rt 1/. Hence there is an x E \f such that (z, x) == 1 (rnod 2) and therefore

in the case (4)

1 1 1
"2 Y + (J,I +:c == 4(a l + ... +as ) + 2z +.1: E L y.

Hence it is suffieient to consider the ease (3).

Now let Yt, Y2 be vectors of L such that (LY.)2 == 4J and

Yj = ~(al + ... + as ) + Zj, Zj E V, i = 1, 2.

Then Zl - Z2 E V. Hence thefe is auE U* with

Therefore

8



or

This shows that Ly'J is isometrie to LY3

1
Y3 = '2 (- 30.1 + a2 + ... + a17) + zl

But in the second case L Y3 is odd. Hence L Y2 is isometrie to
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