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SPHERICAL HOMOLOGY CLASSES IN THE BORDISM

OF LIE GROUPS

Richard Kane and Guillermo Moreno

The mod torsion Hurewicz map

tor compact Lie groups provides a useful and efficient means

of studying G. In effect, it measures how far G fails to be

a product of spheres. For the Hopf-Samelson theorem (see Milnor-

out that there exists

deg x. = 2r. - 1. In.other words,
~ 1.

inducing this

where

2n'-1
S ~ i/D).

{2n.-1, ... ,2n -1})
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isornorphisrn. Just take the

= E (x 1 ' • • • , x r )
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H*(Gi~) = H*( TI
i=1

a canonical map

(they lie in degreesTI*(G)/Tor
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Moore ["7]) teIls us that

Serre pointed
r 2n.-1

f : TI S 1.

i=1
generators of
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2n·-1

S ~ x ••• x
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x ••• xfr
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Observe that the Hurewicz map
2n.-1 r 2n.-1

H*(S 1. ) ~ H*( TI S ~ )
i=1 r

index of how far f* : H*( TI
i=1

is the study of the restrietions

f
~ H*(G). So it provides an

2n.-1
S 1. ) ~ H*(G) fails to be an

isornorphisrn.
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A great deal of information has been obtained about the map

f and/or the Hurewicz map hH. The study can, of course, be re­

duced to the case of p primary information through localization.

The approach has been to concentrate on reasonably large primes.

For such primes a complete solution has been given. The relevant

concepts are regularity (see Serre [21] or Kumpel [14]) or quasi­

regularity (see Mimura-Toda. [19], Rarper [9] and Wilkerson [27]).

For small primes much less is known. Arnong the various simple Lie

groups the Hurewicz map has been'calculated only for the classical

groups and for G2 and F4 . We will cite references at the

appropriate places in the text.

In this paper we will study the question of a general chara- ,

cterization of spherical homology classes. Such a characterization

would appear to be rather difficult in terms of ordinary homology.

The purpose of this paper is to study whether such a characteri-

zation can be obtained using MU theory. One has a factorization

TI*(G)/Tor

~ MU* (G) /Tor

. 1 T

~H*(G)/Tor

where the top map is the MU Hurewicz map and T is the Thom map.

So the determination of h MU also determines h H· In this paper

we will study whether Im h MU can be characterized as the

elements of MU*(G)/Tor which are primitive both with respect to

MU operations and with respect to the coalgebra structure of

MU*(G)/Tor. As we have already indicated, the study of h H and
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hMU can always be reduced to the p primary case through

localization. Our answers, in so far as it goes (G classical

or G = G2 ,F4 ), is "yes " for MU localized at an odd prime

and "no u for MU theory localized at p = 2.

Our study of the MU Hurewicz map is related to (and,'.indeed,

motivated by) another question about.the Hurewicz map. Atiyah

and Mirnura asked if, in the case of Lie groups, Im h
H

can be

characterized in terms of the ehern character

eh : K*(G) ~ m~ H*(G;W). Our answer agrees with Atiyah and

Mimura's expectations. In the printed version of the conjecture

(see Stasheff [23]) they expect a positive answer for all primes.

However, they lates allowed the possibility of the conjecture

failing for the 2 primary case. (We are grateful to J.F. Adams

for this last piece of information). See §7 for a further

discussion of the Atiyah-Mimura conjecture and its relation to

MU theory.

This paper is divided into three parts. In Part I we study

rational MU theory and define an operation P which characteri­

zes the operation primitive elements of MU*(X) ~ W. In Part 11

we study how one uses the rational information to obtain informa­

tion about the primitives in MU*(X)/Tor. One reduces to integra-

li ty problems connected wi th the inclusions MU* (X) /Tor c MU* (X) "CD

and IT* (MU) c IT* (MU) ~ W. In Part 111 we study the relation between

sphericals and primitives in the bordisrn of Lie groups.

In this paper X will denote the arbitrary space or spectrurn

while G will be reserved for a connected compact Lie group. Given
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a spectrum E we will adopt the usual convention of using

E*(X) and E*(X) to denote the homology and cohomology de~

fined by E. In particular Ml4
c
'" (X) and MU*(X) will be used

for bordism and cobordism, respecitvely. Also H*(X) ':.will

always be homology with ~ coefficients while H* (X) (p) will

denote homology localized at the prime p.

The first author would like to acknowledge the financial

support of NSERC grand #A4853 as weIl as the hospitality of the

Max-Pianck-Institut für Mathematik, Bonn, during the preparation

of this paper.
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PART I: The Operation P

§1 MD Theory

As a general reference for the material covered in Part I

we refer the reader to Adams [1].

(a) II* (MV)

The ring II*(MU) is a polynomial algebra Z[t
1
,t

2
, ••• ]

(deg t. = 2i). However, there is no obvi6us canonical choice of
J.

the generators {t.}. When we pass to rational MU theory this
J.

(deg b. = 2i)
J.

problem disappears. We can write

TI*(MU) 01;0 = OHb 1 ,b2 , ••• ]

= OHm1 ,m2 ,···] (deg m.
J.

= 2 i)

where {b.} and {m.} are canonical. The
J. J.

{b. }
J.

are obtained as

follows. There is a canonical map

co
w er P = MV ( 1) ~ MD

which lower degree by 2
co

in homology. If we write H* (a:1? ) =z [x l
co i

and choose ß. E H2 · «(['P) by <x, ß . > = 8 ..
J. J.' J. J.]

One has H*(MU) = Z[b1 ,b2 , ... l. The identity

then b i = w* (ß i +1 ) ·

TI* (MU) 0 CO ;; H* (MD) ~~;

then gives the first description of TI*(MU) ~ W.

The elements {m.} are the conjugates of the {b.}. If we
J. J.

consider the power series
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exp(X) =: L b.X i +1

i~O 1

and let log (X) be the inverse power series then

log (X) =: L
i~O

i+1m,X
1

If we apply the Todd map then exp(X) and log (X) turn into

the usual exp and log series. For Td: IT*(MU) ~ W~ W sends

1
~1,. If we considern .tob

n
andto --.L

n+1
then we have the following integrality condition

( 1 • 1 ) (n + 1 ) m E IT* (MU)n

(n + 1 ! ) b E IT* (MU) •
n

There are best possible since Td (IT* (MU) c Z.

(b) MU Homology and Cohomology

Both MU homology, MU*(X), and cohomelogy, MU*(X), are

modules over IT*(MU). One must, however, adopt the connection that

In ether words, the elements of IT*(MU) are censidered to be

negatively graded when one werks in cohomology. There is a

natural pairing
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Provided H*(X) in torsion free then MU*(X) and MU*(X) are

free IT*(MU) modules (the Atiyah-Hirzebruch spectral sequence

collapses) and the above pairing is non-singular. In such cases

we can think of MU*(X) and MU*(X) as being IIdual" IT*(MU)

modules. However, one must keep in mind the change in grading be-

tween homology and cohomology. As a result MU*(X) is always

connected and of finite type whereas MU*(X) need not be either.

2 00 00

For example let w E MV (<I:p) be given by the map w: ([:P ~ MU.

Then

00

MU* (<I:? ). = MU*[ [w]]

while

iwhere <w, ß . > = 0 . . . In the first case we have all formal power
J 1.J

series in w. In the second we have the free module generated by

In the case of rational MU theory the situation is always

simple. Both MU*(X) ~ Wand MU*(X) 0 W are free and are "dual ll
•

The Thorn map T: MU*(X) ~ W~ H*(XiW) is surjective with kernel



-'8-

§2 The Operation P

For each exponential sequence E = (e
1

,e
2

, ••• ) (i.e. a

sequence of non negative integers with only fintely many non

zero terms) we have the Landweber-Novikov operations

sE MU*(X) ~ MU*(X)

which,in the cohomology case,raise degree by lEI =2Le.
1

the homology case,lower degree by lEI. The action of

and,in

on

IT*(MU) is difficult to describe. When we pass to IT*(MU) ~ W

the situation improves. We have the canonical generators {b. }
1

given in §1. Given an exponential se-

quence

bE e
1

e
2

e
k= b

1
b 2 b k

E e
1

e 2 e km = m
1

m2 m
k

Then we have

(2 • 1 )
if E = F

and E * F

If

(2 .2)

then

is the conjugate of

acts by the rule

sE defined by the recursive formula
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(2.3) F = { 0,rE(m )
if

if E = F

and E * F

We now define operations

P MU*(X) ~ W~ MU*(X) ~ W

by the rule

\' E"P(X) = L. m sE(x)
E

where one sums over all exponential sequences. These operations

have a number of useful properties. We will only state them for

cohomology

(2.4) Multiplicative: P(xy) = P(x)P(y)

(2.5) Primitive Idempotent: p2 = P where Im P = the operator

primitives of MU* (X) ~ OJ and Ker P =the ideal (m, ,m2 , ... ) .

This last property has a number of consequences. We have that x

is primitive if and only if x = P(y) for some y. Also the Thom

map induces an isomorphism Im P ~ H* (X i an. In other words, al though

an element of H*(XiW) has many representatives in MU*(X) ~ m,
it has an unique primitive representative. Lastly, there exists an

unique factorization
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P
MU* (X) ~ m ); MU*(X) ~ m

...:=t

Ti ..........
/',- P.....

.;

H* (X) ~ m

The above discussion also applies in homology. Of course the

multiplicative property only holds in homology when X has

a product e.g. X is a ring spectrum or a H-space.

For proofs of all the above properties consult Kane [11].

There, a BP version of the operation P was constructed and

studied. Indeed, the next chapter-~ is devoted to recalling this

BP version. The arguments given in Kane [11] also apply to the

present MD operator. Properties 2.4 and 2.5 are deduced from

2.1, 2.2 and 2.3.

Remark 2.7: Although we will not need it in this paper it is

probably useful to point out that P has a lIdualll definition

as
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§3 BP Theory

As we have already mentioned the operation P has an

analogue in rational Brown-Peterson theory. This operation has

already been constructed in Kane [11]. Given a prime p then

Brown-Peterson theory is a canonical summand of MU theory

localized at p. If we rationalize then the relation between

the two is easy to state. Namely IT*(BP) ~ Wc IT*(MU) 0 W via

the identity

(3 • 1 ) = W[m -1' m 2 ' .. · ]
p P -1

Indeed Quillen defined BP so as to have precisely this property.

For each exponential sequence E he also defined operations

r E BP*(X) ~ BP*(X)

which raise degrees and lower degrees, respectively, by

i2Ee. (p -1). If we define the conjugate
1.

recursive rule

of r E by the

(3.2)

then sE covers the Steenrod operation pE defined in Milnor

[16]. In other words, we have commutative diagrams
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BP*(X)
sE

BP*(X) BP*(X)
sE

)' BP* (X))'

(3.3)

J J J J
pE pE

H* (XiJFp) > H*(X-:IF ) H* (XiF ) ) H* (XiJFp), p p

The vertical maps are the Thom map followed by reduction mod p.

Also is the left action defined

from from the usual left action of

rule

on by the

(3.4)
E E

<X (p ) (x) , y> =<x, P (y) >

for any.. x E H* (XiFp)

of pE).

and E
Y E H* (X iJF ). (X (P )

P
is the conjugate

If we let "Em
e

k
m k

p -1
then the operations

P BP*(X) ~ W~ BP*(X) 0 W

"EP(x) = L: m SE
E

satisfies properties analogous to the previous P. Also, the

factorization of P through H*(XiW) implies that we have a

cornmutative diagram

MU* (X)

l
BP*(X)
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PART 11: Integral Primitive Elements

§4 Integral Primitives

We have an imbedding MU* (X) /Tor c MU* (X) ~ W where

Tor ;;;; {x E MU* (X) I nx ;;;; 0 for some n E 7l}. By the discus sion

in Part I, the problem of determining primitive elements in

MU* (X) /Tor reduces to determining Im P nMU* (X) /Tor c MU* (X) /Tor.

In other words, we have an integrality problem. When does

x E Im P c MU* (X) ~ m belong to MU* (X) /Tor c MU* (X) ~ IJ} ?

One can always reduce this integrality problem to an inte-

grality problem concerning this inclus ion IT* (MU) c IT* (MU) ~ (D.

Choose a IT*(MU) ~ W basis {x.} of MU*(X) e m where the
1.

{x.} are elements of MU*(X)/Tor. Expand
1

P (x) ;;;; ~ Ci.. x.
1. 1

Ci.. E IT (MU) ~ CO •
1.

Then P (x) E MU* (X) /Tor if and only if CL. E IT* (MV) c IT* (MU) 0 W
1

for each a .. In the rest of Part 11 we will illustrate how one
1.

can study primitive elements in MU*(X)/Tor by the above method.

In §5 we will give some precis integrality conditions about

the inclusion TI*(MU) c TI*(MU) ~ IJ}. which will be used in solving

our problem for P(x). In §6 we will give some examples where we

solve the integrali ty question for Im P by.the above method.

It should be noted that the above approach is not really

practical as a general method for studyirtg the primitive of

MU*(X)/Tor. For it depends on being able to obtain reasonably

explicit exansions of P(x). Such knowledge is not always
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available. Even in this paper lackof knowledge of Im P

will soon cause us to abandom the above approach. In Part III

we will introduce and constantly use a cruder but more effective

tool. This cruder index is the image of Im P n MU*(X)/Tor under

the Thom rnap T:MU(X)/Tor ~ H*(X)/Tor. This subgroup of

H*(X)/Tor is easier to study than Im P n MU*(X)/Tor c MU*(X)/Tor.
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§5 Integrality Conditions for TI*(MU) ~ W

In this section we prove that certain specific elements of

TI*(MU) 0 W actually belong to TI*(MU) c TI*(MU) 0 W. Our arguments

are based on those used by Segal [20]. Let

b = 1 + b
1

+ b
2

+ •••

(b) ~ = the homogeneous component of degree -::1~j in (b) i
]

Proposition 5.1 E..!. (b)q E IT* (MD) if 2:i q:i r
2 r-q

Observe that the restrietion q ~ 2 is necessary. For (b) 1
r-1

= b r - 1 . And, as we observed in §1, one roust multiply b r - 1 by

r! to make it integral.

Proof of Proposition

We can expand

q q _ e O e 1 es
(b) = (bO + b 1 + ... ) - Z (e O,e 1 , ... ,es) b

O
b 1 b s where

( e) is the multinomial coefficients (eO+ +e s )!
~ 0 ' • • • , ." s -e 0 ! . . . es!

Then

=

and

(b) q
r-q I

eo+···+es=q

e 1 +2e 2+···+ses =r-q

=
e o+·· .+.es=q

e 1+2e 2+se s =r-q

e
b S

s

r! e o e 1
We will demonstrate that each term ~(eO,e1,···,es)bO b 1
E IT*(MU). We consider two separate cases

e
b s

s .
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some

.1 = ia b

b. E TI* (MO) •
~

q r!
then -2 b. -...

~1

• •• b
i

., E TI * (MD)
-q

it follows from

We know that i 1 + 1! .•. i + 1! b. . •.
q ~1

Consequently, if (1 1 + 1) + ••• + (iq + 1) = r

= ~ (i1 + 1! ••• 2q + 1 !) (i 1 + 1 I • • • I i q + l' ) b i 1

provided ( i 1 +. 1, ... , i q + 1) ii 0 mod 2. But

simple number theory that (i
1

+ 1 , ... , i q + 1) =:; 0 mod 2 if

b.
~q

for any a *b. For

(k
1

, ... ,k) e TI (k
1

, ... ,k .) mod 2
" s i S~

where k =. l:k 2 i
t t i

is the 2-adic expansion of

(ii) e. ~ 1 for .all i
~

He "have that (e O,e 1 , ... ,es) ~ 0 mod 2 since

r! e O es
Thus, as in (i), 2(eO' ... ,es)b O b s E JI* (MU).

Le. = q ~ 2.
~

Q.E.D.

Segal [20] made effective use of the Liulevicius version of

the Hattori-Stong theorem in studying TI*(MU) cTI*(MU) ~ W. Write

(5.2) x E H* (MD) belongs to Im TI * (MD) -+ H* (MV) if and only

tds
E

(x) E ~ for all; E.

The following fact will be used in our study of X = SO(2n+ 1).

In harmony with BP theory let v
1

= 2m1 . Then

Proposition 5.3:
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Proof: We will use criterion 5.2

(i). E = (0,0, ••• ).

2k-1!
To show 2 Td (b 2k- 2 + v 1b 2k- 3 ) E II* (MU) it suffices

to show 2k - 1! Td (b 2k- 2 + v ,b2k-
3

) E 2:1. We have

2k-1! 2k-1 !
2k - 1!Td(b2k _2 + v 1b 2k- 3 ) = 2k-1! + 2k-2!

= 1 + 2k - 1

= 2k

(ii) lEI> 0

We will consider the terms b 2k- 2 and v 1b 2k- 3 separately.

First of all

i
=y(b)2k-1-i

sE(b2k- 2 ) 1
o

E = 6.
1.

otherwise.

complicated argument of the same type handles the case

2k-1 !So, by Proposition 5.1, 2 TdsE (b 2k_2). E Z. A slightly more

2k-1 !
2

Q.E.D.
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§6 Examples

We now demonstrate how one solves integrality problems

for certain cases of both the MU and BP version of the operator

P.

(Xl

(a) The Space X = ~p

For certain spaces one can obtain explicit formula for the

operation
(Xl

X = C::P

is the canonical exarnple. Write
(Xl

MU*(C::P ) = MU*[[w]] and
(Xl

MU*(~P ) = MU*{ß O,ß 1 ,ß 2 , ... } as in §1. The operations {sE}

act by the rule

It follows that

otherwise.

( 6 . 1 ) P(w) \' i+1= L. m.w ,
i~O ~

log (w).

Inverting, we have

(6.2) \' i+1w = exp P(w) = L. b:P(w)
i~O 1.

For each k ~ 1 we then have

(6.3)

where

and

(b)~ are the coefficients defined in §5. Since
1.

{ß.} are dual basis it follows that {P(wi )} and
'J

{P(-ß.)}
J

are also dual basis. If we dualize 6.3 then we obtain
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Proposition 6.4

It then follows from Proposition 5.1, plus

00

Carollary 6.5 k! P (:~) E MU 2k (a;p )

(b) The Space X = Sp(2)

We next demonstrate the usefulness of BP definition of the

P operation in understanding the MU version. The result obtained

is only partial. But it will play an important role in the study

of the spaces Sp(n) in Part III.

The problem we are dealing with at the moment is to determine

the minimal integer N such that NP(x) E MU*(x)/Tor c MU*(X) ~ W.

Ta determine the p prirnary factor of N it suffices to

localize and work with BP theory. In other words, if s
p is the

minimal power of p such that pSP(x) E BP*(X)/Tor then

N = pPN ' where (N',p) = 1. The advantage of BP is that even

if one has no information about P(x) E MU*(x) ~ W one can often

obtain information about P(x) E BP*(X) ~ W • For, as explained in

3.3, the BP operations {sE} are related to the Steenrod opera-

{pE} *tions . So one can use knowledge of the A (p) action on

H*(X;lF ) deduce results about P(x) E into = Ern SE (x)
P

BP* (X) 0 W . We give a simple but useful example of this process .

Recall that
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where IT*(MU) is the coefficient ring. We have x 3 = P(x
3

)

is primitive. On the other hand, it is not clear for what

coefficient N we have NP(x 7 ) E MU*(Sp(2)) we now obtain an

upper board.

Proposition 6.6 3!P(x7 ) E MU*(Sp(2)).

In §8 we will demonstrate that this is a best possible result.

We will prove the proposition by using the BP version of the P

operation. For each prime p we have BP*(Sp(2)) = E(x
3

,x
7

)

where IT*(BP) is the coefficient ring. It suffices to show

(i) for p = 2 2 P (x
7

) BP*(Sp(2))

(ii) for p = 3 3 P (x
7

) BP*(Sp(2))

(iii) for p ~ 5 P (x
7

) BP*(Sp(2))

Praaf of (i)

For p = 2 we have

Since 2m, E IT*(BP) we have

4Since S'q:'H7 (Sp(2);JF2 ) ~ H3 (Sp(2);JF'2) is trivial (A*(2) acts

unstably !) we roust have s2 '(x 7 ) = 2ax3 for some a E :I (2). Thus
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proof of (ii) and (iii)

For p = 3 we can write P(x7 ) = x 7 + m2 s 1 (x 7 ) and

3m2 E II * (BP) • For p,=S we -have P(x7 ) = x 7 ·

Remark 6.7: Observe how, in the case p = 2, we used the relation

between BP operations and Steenrod operations to deduce a fact

about P(x
7

) from our knowledge of the A*(2) action on

H* (SP ( 2) iJF2) •
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PART II!: Primitive versus Spherical Classes

§7 Primitive and Spherical Classes

So far we have only discussed homology classes which are

primitive with respect to cohomology operations. However a

homology theory also has a coalgebra structure induced by the

diagonal map IJ.: X~ X x X. And there is also the concept of a

homology class being primitive with respect to this coalgebra

structure. Given a coalgebra C with coproduct IJ.: C~ C ~ C,

an element of C is said to be (coalgebra) primitive if

lJ.(x) = x ~ 1 + 1 ~ x. We will use the symbol P(X) to denote -

such elements (The word "primitive" will be reserved for operation

primitives so far as that is possible.)

In the rernainder of this paper we will study spherical

homology classes in the bordism of Lie groups. It is weIl known

that spherical homology classes are always primitive in both senses

of the word. The question is to what extent,being biprimitive

characterizes spherical homology classes mod torsion. Möre

exactly, let

SMU = Im hMU
. IT*(G)/Tor ~ MU*(G)/Tor.

PMU = PMU*(G)/Tor n Im P c MU*(G)/Tor

Then SMU c PMU and our question is, to what extent, SMO = PMU ·

The conjecture that SMU = PMU is related to another

conjecture about spherical homology classes in Lie groups called

the Atiyah-Mimura conjecture. Let ch: K4 (X) ~ W~ H*(XiW)

be the Chern character isomorphism
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Atiyah-Mimura Conjecture: x E PH* (G) /Tor is spherical if and
-1 .

only if eh (x) E K*(G) c K*(G) c K*(G) ~ W.

This eonjeeture irnplies that SMU = PMU . The main point is

that we have a eommutative diagrarn

P
----+) MU*(X) ~ W

1CF
:-1

.. H* (X) ~ CD eh )- K* (X) ~ W

= x.

is the Conner-Floyd map (see Kane [11]). Consider

p2
= P we hav e P (x )

CFwhere

x E PMU. We want to show x E SMU. Sinee

Let x = T (x). Then eh-1 (x): CF P (x) = CF (x). Sinee x E MU*G/Tor

-1 -we have eh (x) EK*(G). So, by the Atiyah-Mimura eonjeeture, x

is spherieal. By the eommutativity of the diagram

x has a spherieal representative y in MU*(G)/Tor. But

x,y E PMU . Sinee we have an isomorphism T: Im P ~ H*(XiW)

the relation T(x) = x = T(y) forees x = y.

We should also note that, although we have not been able

to prove the reverse implieation, in praetieal terms, the two

eonjeetures are equivalent. All our arguments and results in

MU theory have appropriate anal9gues.
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As we indicated in §4 it can be quite difficult to deter-

mine PMU is an explicit manner. Fortunately, one can simpl~fy

the study of the inclusion SMU c P
MU

by passing to ordinary

homology. Let

PH = the image of PMU under T: PMU*(G)/Tor ~ PH*(G)/Tor

We have an inclusion SH c PH. Moreover the study of SH c PHis

equivalent to the study of SMU c. PMU . For, as we observed after

2.5, T is injective when restricted to P
MU

. So we have a

cornrnutative diagrarn

We will usually study SH c PH • For it is much easier to determine

PH rather than PMU · Consequently, it is easier to prove that

SH = PH or SH * PH rather than SMU := PMU or SMU * PMU · In

this manner we will often be able to settle the question SMU = PMU

without any explicit knowledge of PMU .

We will study the question SH ;: PH for the classical groups

plus the exceptional. Lie groups G2 and F 4. First, we do the

infinite Lie groups SU,Sp and SÖ~;. These results follow in a

fairly pleasant fashion. From these results the answer for SU(n)

and Sp(n) are automatie. However, the case SO(n) demands a

great deal more work. The result for SO does not simply desuspend.



-25-

Similarly, G2 and F 4 involve a great deal of effort.

Most of our energy will be expended on P
H

rather than

SH. For SH we will basically rely~on the calculations of

IT*(G)/Tor ~ PH*(G)/Tor as obtained from various sourees. We

will concentrate on caleulating PH. We can isolate two basic

techniques whieh will be utilized in this study. We might

describe the techniques as giving upper bound and lower bound

results. For example, let us suppose that we want to prove

PH C PH*(G)/Tor is given in degree k by NZ.cZ. The inelusion

is the upper bound resul t while the inelusion ~ c PH

is the lower bound result.

(a) Representations

Onee we have the answer for SU we ean use representations

to deduee upper bound results for other groups. As we will see,

PB c PH* (SU) is given in degree 2m + 1 by n!~ c 7l. If we have

a representation p: G~ SU such that p*: P 2n +1H*(G)/Tor ~

P2n+1 H*(SU) is of the form ~ ~ Z then PH for the case .G

must satisfy P
H

C ~!z-: For the conunutative diagram

PH
c P2n +1H*(G)/Tor

p*l !P*
PH

c P2n+1H*(SU)

is of the form

PH
C Z

! ~
xk

n!Z c Z
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(b) Generating Varieties

This technique is useful for the groups G = SU(n), SO(n),

G2 and F4 in obtaining lower bounds. Bott [3] demonstrated

that, for each compact Lie group G, there exists a (non unique)

finite complex V and a map f V·~ nOG so that H*(nOG)

is generated, as an algebra, by Im f*~. In other words,

f* : H*(V) ~ QH*(nOG) i5 5urjective. Both H*(V) and

H*(nOG) are torsion free. Consequently, the Atiyah-Hirzebruch

spectral sequence collapses in both cases and MU*(V) ~ QM~*(nOG)

is surjective. The map Lr2 0G~ Ginduces the "loop " maps.

By using the composite

One can reduce the study of PMU c PMU*(G)/Tor to the study of

primitive elements ~n MU*(V). In the cases G; SU(n), SO(n),

G2 and F 4 the complex V is simple enough to enable one to

obtain detailed information about the primitives of MU*(V). On

the other hand, we have found no generating variety for Sp(n)

whose bordism MU*(V) is effectively computable (in terms of the

action of the operations). So it is fortunate that we can simply

deduce our answer for Sp(n) from the stahle case Sp.

We might also remark that the generating variety only appears

explicitly in the cases G; SO(n) and G; G2 . In the SU case
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we use the lIinfinite n generating variety
00

~p c nsu. In the

F case the generating variety appears irnplicitly in our appeal
n

to the calculations of Watanabe [26].
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§8 The Groups G = SO, Sp and SO

We begin our study with the infinite Lie groups SU = lirn SU(n) ,
n-+oo

Sp = lim Sp(n) and SO = lirn SO(n). As we will observe at the end
n-+oo n-+oo

of this chapter, our results for these groups autornatically extend

to certain other groups, namely SU(n), Sp(n) and Spin =

lim Spin (n)
n+oo

(a) The Group G = SU

Recall that H*(SU) = E(X 3 ,X S 'x7 ,·· .) and PH*(SU) has a

:I basis {x3 ,xS ' x 7 ' ... }. So we must study the inclusion SH C PR

in degrees 3,S,7, ... Our result is

PB.' C P 2n + 1H*

n!X Z I

for each n ~ 1. So SH = PH in this case.

We begin with the space x = E~poo. Our study of

in §6 also applies to
00

MU*(E([P ) with the obvious change of

degree. We will use the same symbol to denote corresponding elements

module with basis

module with basis

00

{ßk } and PMU C PMU*(E[P) is a free ~

{n! P (ß )}. So, in degree 2n + 1
n

PH C PH* (E'l:Poo ) i s the inclusion n!Z C Z. But we claim that

00

SH c PH* (EetP) is also given in degree 2n + 1 by n! Z c Z. Consider

f : S3 ~ K(Z,3) representing the generator of IT 3 (K(Z,3) = z.

The map nf : ns 3 ~ ~poo is multiplication by n! in degree

2n. (H*(OS3 is a divided polynornial algebra while H*«Cp
oo

) is
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a polynornial algebra). Consequently, the map S2n+1 c V S2n+1 =
n;;:2

L:rlS 3
---il- L:CCp

co
is rnultiplication by n1 in degree 2n + 1 •

We have a canonical rnap
co

L:~P ~ SU which induces an
00

isomorphism PMU*(L:CCP) - PMU*(SU). So 'our treatment of
co

X = L:~P extends to X = SU as weIl.

(b) The Groups G = Sp and G = SO

We now study the relation between SMU and PMU for the

spaces .G = Sp and G = so. Because of the Bott periodicity be-

tween Sp and it is advantageous to

treat these cases sirnultaneously. Recall that

H*(Sp) = H*(SO)/Tor = E(x3 ,x 7 ,x 11 , ... )

'and

We will demonstrate that the inclusions . SH c PH c PH* are given,

in degree 4k - 1, by the following charts.

c

k

k

even

odd

Sp

so

Sp

So

'2 (2k-1 1)Z 2k-11:.E ~ ..

2k-1 1Z 2k-1 1Z
~2 2

c

2k-1 11 Z 2k-11Zl Z

2k-11 Z 2k-1 1Z Z2
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So SR depends on k (mod 2). And the equality SR = PR has

a similar dependence. We now verify the charts

(i) Spherical Classes

Consider the cornrnutative diagrarns

TI 4k- 1 (SO)/Tor

1

The horizontal maps are induced by the standard inclusions

Sp c SU c so. Le t

k odd

k even

k odd

k even

Then the above diagrams are of the form

xa; ~bk

~
k- :;z :ll :> Z~

! !~2k-1 ! i t x2k-1!

:;z x1
Z Z

x2
> Z~

For the horizontal maps see Kervaire [13] and Cartan [5].

(ii) Primitive Classes

We will consider PR C PR* and write P4k- 1R* = Z.

First of all, we have

(*) {
PB C 2k-1!Z in the case

PR C 2k;1! ~ in the case

G = Sp

G = SO
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For the canonical maps SO ~ SV and Sp ~ SV induce

cornmutative diagrarns

.~

which are known to be of the form

--+)' 2k-- 1 I:lt

1x2
---:.0-)' ,~:X

--~) 2k - 1 IX

1
z

For the bottorn rnap see Cartan [5].

Secondly, in degree 4k - 1

f2k-1IzcPH in the case G ;;;; Sp
(**)

l2k-l I in the case G ;;;; SO
2 tl c PH

the Bott periodicity equivalences 4 SO, $1 4so Sp,For r2 0Sp ;;;; ;;;;

0

n4v ;;;; U induce a cornmutative diagrarn
0
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which is of the form

:I > Z

~1 ! '!x2

Z t x (2k)· (2k+1) ·z):

x2 r r x1

Z ) Z

For the middle horizontal map see Corollary 16.23 of Switzer [24].

We can deduce frornthe above that

n4
P4k_1 H*(Sp) ~ P4k +3H*(SO)/Tor is multiplication*

by (2k) (2k+1)
2

n4
P4k_1 H*(SO)/Tor ~ P4k+3 H*(Sp) is rnultiplication

*
by 2(2k) (2k+1).

We now prove (**) by induction on degree. Obviously (**) holds

in degree 3. By the example G = Sp(2) treated in §6 we can

assurne (**) holds for G = Sp in degree 7. We now proceed by in-

duction. A'flow chart for the argument is as follows

3 7 1'1 15 19 ·....
SO

3 ! 5 ! 7 ! 9 !
2 r 2 2 ·....

lXXX
Sp 1 31 51 71 91 ·....
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(c) The Groups G = SU(n), Sp(n) and Spin

We close §8 by observing that the preceeding results

for SU, Sp and SO pass to SU(n), Sp(n) and Spin respectively.

In the first two cases the inclusions SU (n) c SU and Sp (n) c Sp

induce homotopy equivalences in the range of degrees in ..which the

algebra generators of H*(SU]n)) and H*(Sp(n)) lie. In the last

case one can simply replace SO by Spin in all the preceeding

argument.

On the other hand, the results for SO(n) and Spin (n)

cannot be easily deduced from those for SO and Spin. For

the inclusions SO (n) c SO and Spin (n) c Spin are not homotopy

equivalences in a sufficient range of dimensions.



- 34 -

§9 The Groups G = SO{n) and Spin{n)

The study of these groups constitutes the major calculation

of this paper. We will study these groups via the generating

variety approach described in §7. For the presence of 2 torsion

in H*{SO{n)) and H*{Spin{n)) means that the structure of

MU*{SO{n)) and MU*{Spin{n)) is complicated. So the indirect

approach of studying MU*{~OSo{n)) and MU*{n Spin{n)) is

quite useful in this case.

We will concentrate on G = SO{n) . The arguments and re-

sults for G = Spin{n) are similar and will be indicated at

the end of the chapter.

Before studying SH c PH c PH*{SO{n))/Tor we first study

the relation of SO{n) to the generating variety Vn c nOSo{n) .

( a) Geherating Variety V
n

It was shown in Bott [3] that we can define the generating

variety Vn c nOSO{n) to be

v = SO{n)/SO{2) x SO{n- 2)
n

*The structure of H (V) is slightly different for n odd
n

*and n even. H (V2n+ 1 ) has a basis
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n-1 n 2n-1{1,A, ... ,A ,A /2, ... A /2}

while H*(V2n+2 ) has a basis

n n+1 2n{1,A, ... ,A,A /2, .... ,A /2,B}

where deg A = 2 and deg B = 2n. B is uniquely determined

by the requirement that

AB = An + 1 /2

If we dualize then H*(V2n+1 ) has a basis

The inclusion SO(n) c SO(n+ 1) induces a map Vn ~ Vn +1 .

Gur notation is chosen so that elements with the same name

correspond under the induced maps in hornology and cohornology.

Also, A has the property of generating

Ker {H2'~'(V2n+2) --..,... H2n (V2n+3)} while An - 2B has the property

, { 2n 2n}of generating Ker H (V2n+2 ) --..,... H (V2n+1 ) .
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We next study the relation between

H*(SO(n))/Tor

(b) Cohomology

and then between H*(V)
n

H*(V) and
n

and H*(SO(n))/Tor.

First of all the mod 2 cohomology of SO(n) can be

described in terms of a simple ·systern of generators as

H* (SO (n) i.... lF 2) = ß (x
1

,x2 , ••• ,x
n

-
1

)

(To obtain the cornplete algebra structure of H*(SO(n)j lF'2)

one rnust replace each x 2k by x~) . Let {B
r

} be the Back­

stein spectral sequence for 2 torsion in H*(SO(n)) . Then

B 2 = H* (SO (n) ) / Tor ~ l]F2'

Since d 1 = S~ we can calculate

x = SO (2n + 1)

x = SO(2n+2)

where
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z =

{x2n+1 } n even

(In the description of Y4k-1 we are assuming that X4k- 1 = 0

when 4k - 1 > 2n + 1 ). So we can wri te

H*(SO(2n+ 1»/Tor::::: E(Y 3 ,Y7 , ... ,Y4n- 1)

H*(SO(2n + 2) )/Tor = E(Y 3 ,Y7 , ... ,Y4n- 1 ) 0 E(Z)

where {Y.} and Z reduce mod 2 to {y.} and z . Our
1 1

notation,' is consistent with the maps so (n) ~ so (n + 1) in that

symbols with the same name map~to each other. Observe, also, that

Z maps to Y2n+1 under the map

H*(SO(2n + 2) )/Tor ~ H*(SO(2n + 1»/Tor when n is odd.

Now consider the loop map

n* QH*(SO(n»/Tor ~ PH*(nOSO(n»

The assertion that H*(Vn ) ~ QH*(nOSO(n» is surjective dua~

lizes to give PH*(nOSO(n» c H*(Vn ) is a direct summand. We

will describe Im n* in terms of H*(V) . We have
n
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Proposition 9.1:

(i) n*(Y2i+1)' = Ai for i = 1,3,5, ... ,2n-1

(ii) { 2B ·n odd
n*(z) =

2B - An n even

PROOF: For (i) we need only consider SO (2n + 1) . We have a

commutative diagrarn

Q4i-1 H*(SO(2n+ 2k+ 1))/Tor --=--+ Q4i-1 H*(SO(2n+ 1))/Tor

~* 111 J

p4i-2H* (nasa (2n + 2k + 1) )

11 [J
4i-2

H .. (V )
- 2n+2k+1

(Assume k» 0 and 1 ~ i ~ n ).

We have already justified 'all the isomorphisms except for

the left vertical isomorphism involving fil* . It follows from the

fact that n*: Qodd~'; (SO (2n+ 2k+ 1 ) J' wi» ~ pevenH* (naSa (2n+2k+ 1) , lF 2)
] -

is injective (see, for exarnple CLARK [6]). Since k» 0 Y4i+1

is represented rnod 2 by X 4 ' 1 + x 2 , 1X 2"1- 1-.' 1
where x 4i - 1 = 0 ·

So n*(x 4i - 1) * 0 forces n*(y 4i - 1) * 0 mod 2 .
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The fact that the right hand composition in the diagram must

also be an isomorphism now gives us property (i).

Regarding (ii) we must treat n odd and n even

separately. When n is odd we can choose y
2n+1 and z so

that Y2n+1'- Z E Ker {H* (SO (2n + 2) ) /Tor ~ H* (SO (2n + 1) ) /Tor} .
But then' rl* (Y - Z) E Ker{H*(V2n+2 ) ~ H*(V2n+1 )} . So2n+1

n* (Y - Z) n (In particular already know that it2n+1 = A - 2B . we

is non zero mod 2 ). Since n*(y
2n

+
1

) = An we have

n*(Z) = 2B . When n is even we can choose Z from

Ker{H* (SO (2n + 2) ) /Tor ~ H* (SO (2n + 1) ) /Tor} . We then obtain

.Q*(Z) = An _ 2B .

Q.E.D.

(c) Homology

If we dualize the above description then we obtain

where {a.} U {ß} is a basis of PH*(SO(n))/Tor and elements
1.

with the same symbol correspond under the maps

SO (n ) --+- SO (n + 1) .
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QH*{SO{n»/Tor ~ PH*{SO{n»/Tor is des-

i = 1,3,5, ... , 2n - 1

Remember, of course, that, for n ~ i :S 2n - 1 , Q21H* (nOSO (n) )

is not generated by o. but by 20 .. So, in those degrees,
1 1

n* is multiplication-by 2.

We will also need to know a little about the relation between

H* (SO (n) ) /Toi: and: H* (SO (n) -i.,:..IF 2) . If we dual1ze our description

of H* (SO (n) i lF2) then we can write

This time the identity 1s as algebras, not just with respect to

a simple a simple system of generators. Let Dq = the q fold

decomposables of H* (SO (n) .~ IF 2) and let

p : H* (SO (n» ----? H* (SO (n): ~ JF2) be the - mod 2 reduction rnap.

Our main result is

Propos i tion 9. 2 : Let ß E H* {SO (2n + 2) ) be any representative

for ß E H* (SO (2n + 2) ) /Tor
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Then

2 forY2n+1 mod D n even

p ( ß) =

L 3 for oddYnYn +1 + EijYiY2n+1-i mod D n
i<n

Let {Br } be the homology Backstein spectral sequence

with respect to 2 torsion in H*(SO(n», . It is dual to the

spectral sequence {B} considered in part (b). So it follows
r

2
from the calculations in part (b) that B = H*(SO(n»/Tor ~F2

is an exterior algebra on odd degree generators. Ho~ever, it 1s

difficult to explicitly calculate B
2

. For, although

1
d Y2k-1 = 0 , the {Y 1 , ... ,Yn- 1 } are not invariant under the

action of d 1 . However we can use the results from part (b) to

deduce that, in the case X = so (2n + 2)

(*) one can choose {Y 2n+1 } (n even) and '{YnYn +1 +' ?}

where ? E D
3 (n odd) among exterior algebra generators

of B
2

.

We need to show that the classes and 1
Y Y 1 + ? E Ker dn n+

and that they pair off non trivially with the cohomology elements

x 2n+1 and x x
n n+1 respectively. The only fact which needs

comment is that we can choose a class of the form

YnYn +1 + ? in Ker d 1 . If we filter B
1

= H*(SO(2n+ 2)j JF'2)

by {Dq } then, as in Browder [ 4] we obtain a spectral sequence
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converging to B2 . The action of d 1 :::;; S~ on

1 1
EOB :::;; E(Y1 ,Y 2 , 'Y2n-1) is S~{Y2i) :::;; Y2i - 1 · So

E({Y 1Y2 }'{Y3Y4}' '{Y2n-1Y2n}) 0 E{y 2n+ 1) · Therefore

Eoo = EOB2 · In particular {YnYn + 1 } (n odd) survives the

spectral sequence.

We can rephrase (*) as stating that the canonical map

p: H* {SO (2n + 2» ~ H* {SO (2n + 2» /Tor 0 JF2 satisfies

p{B) = {Y 2n + 1} or {YnYn + 1 +?} • This determines p{ß) for

p : H* (SO (2n + 2» ~ H* {SO (2n + 2) i JF2) modulo the indeter-

l' 1
minancy Im d . However, Im d is spanned by the monomials of

D
2

distinct from YnYn + 1 . So Proposition 9.2 follows.

(d) Spherical Classes

As we will see the Hurewicz map for SO{n) is roughly the

same as for SO. Some added complications arise, however.

(i) The Case X = So (2n + 1)

The Hurewicz map has been deterrnined by Barratt-Mahowald

[2], Kervaire [13] and Lundell [15]. If we ignore k = 1,2,4

then, for k S 2n, we have a comrnutative diagram
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IT 4k- 1 (SO)/Tor = ZII 4k- 1 (SO (2n + 1) ) /Tor

. 1 I

VI

2k - 1 1

P 4k-1H* (SO (2n + 1» /Tor ~ ~4k-1H* (SO) /Tor = Z

So, in those cases, SH C P4k_1H*(SO(2n+ 1» is given by

2k - 1 1 Z c Z • When k = 1 then, in certain cases, the rnap

II 4k-1 (SO (2n + 1) ) /Tor ~ P 4k-1 H* (SO (2n + 1) ) /Tor is not an iso­

rnorphisrn. The following diagrams describes these cases.

x2 •

71/271

II1S (SO (9» / Tor ~

1
71

v ~

I1 SH (SO (9» / Tor ~ I1 SH (SO (10» / Tor ~ I1 SH (SO (11» / Tor ~ I1 SH (SO (12» / Tor ~ I1 SH (SO) /Tor
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(ii) The Case X = SO(2n+ 2)

Again, the Hurewicz map for X = SO( 2n + 2) is similar to

that for X = SO . We have the deviation between the two already

noted above in degrees 7 and 15. We also have the added eompli-

cation that, in degree 2n + 1 , I1 2n +1 (SO (2n + 2) ) /Tor

----:--- I1 2n+1 (SO)/Tor and P2n+1H*(SO(2n+ 2) )/Tor ~ P2n+ 1H*(SO)/ Tor

have non trivial kernels. We know that the homology kernel is

~ generated by 8. At the moment we show

Proposition 9.3: 28 E SH

Of course, it is possible that 8 E SH . We will later show that

64 PH . So SH C P 2n+ 1H*(SO(2n+2» =:1 t»'~. is givenly

~! Z ~ 2 Z with the exeeptions noted in degrees 7 and 15.

PROOF: The map H*(V2n+2 ) ~ H*(V2n+3 ) has kernel Z ge­

nerated by A. It follows that A E H2n+ 1 (EV2n+ 2 ) is spherical

(look at the eofibre sequence V2n +2 ~ V2n+3 ~ K ~ EV2n + 1 ~

EV 2n+ 3 ) . Since n*(A) = 26 we have 28 is spherical.

(e) Primitive Classes for X -" so (2n + 1)

We have to study the submodule P
H

c P 4k_
1

H*(SO(2n+ 1»/Tor

for 1 $ k ~ n . We will obtain the same answer as for the stable

case X = so . Because of the homotopy equivalence between the
-

2n -'::1 skeletons of SO (2n + 1) and SO this is" automatie when

2k ~ n . But, for n+ 1 ~ 2k ~ 2n , we must produce an entirely

new argument. The ease n = 1 is easy. For MU*(SO(3»/Tor = E(X3 ).
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So PH = P3H*(SO(3))/Tor · So we can assume that n (and hence

k ) ~ 2 . Our goal is to prove.

Proposi tion 9. 4 : Let n &;; 2 and n + 1 :Si 2k ~ 2n . Then

P
H

c P 4k_1H*(SO(2n+ 1))/Tor 1s given by

2k-1 !
2

z c Z •

Write P4k_1H*(SO(2n+ 1))/Tor = Z . Then we want to prove

P
H

= 2k;1! X . The inclusion P
H

C 2k;1! ~ is easy. For the

diagram

P4k-1H* (SO (2n + 1)) /Tor

j

is o~ the form

2k-1 !
2

P C Z
H

1_ ill

2k-1 !The reverse inclusion 2 Z c PH demands all the work. We

will use the generating variety V( = V2n+1) described in part (a).



- 46 -

Because of the isornorphisrns

P 4k-1H* (SO (2k + 1)) /Tor - P 4k-1H* (SO (2k + 3)) /Tor

- P 4k-1 H* (SO (2k + 5) ) /Tor

we can reduce to the case

k = n

We first rernark that we will defer our treatment of the

case k = n = 3 until §10. The argument we are about to give

fails in this case. (At the end of §10 we will indicate the

nature of the failure). However, our treatment of the ex-

ceptional group G2 in §10 will handle the case k = n = 3 .

We want to show that PH C P11H*(SO(7))/Tor satisfies

~! Z c PH · Now, the canonical maps G2 ~ Spin(7) ~ SO(7)

induce· isomorphisms

P11R*(G2)'/Tor 5 P 11 R*(Spin(7))/Tor 5 P11 H*(SO(7))/Tor . So it

suffices to show that PR C P 11 H*(G
2

)/Tor is given by

~ Z c ~ . This will be done in §10.
2

We now set about treating the cases n = 2 and n ~ 4 .

Let {l:O,l:1,L
2

, ••• ,L
2n

-
1

} be a I1*(MU) basis of MU*(V) .

The map MU*(V) ~ QMU*(n OSO(2n+ 1)) is surjective. We will
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also use Ei to denote the image of Ei in QMU* (na SO ( 2n + 1)) ·

In QMU* (naSO (2n + 1) ) we have the relation

where

(The arguments in Kane [10] establish that relations of this sort

2n-1 !exist). In order to prove 2 Z c PH it suffices to prove

2n-1 !4 P(L: 2n- 1 ) E QMU* (n OSO(2n + 1)) for n ~ 4 .

To see the sufficiency of this proposition consider the commutative

diagram

S"2*
QMu*(n aSO(2n+ 1)) ~ PMU* (SO (2n + 1) )

IT
T

n*
v

QH* (QaSO (2n + 1) ) ~ PH* (SO (2n + 1) )

Since T(E 2n_ 1 ) = 202n-1 and ~*(o2n-1) = a 4n- 1 we have

Tn*(L: 2n_
1

) = n*T(L: 2n_
1

) = 2a4n_ 1 . On the other hand, the proposition

implies that 2n-1! pn (L: ) E PMU* (SO (2n + 1)) . Consequently,
4 * 2n-1

2n-1! 2n-1!2 a 4n- 1 E PH • In other words, 2 ~ c PH as required.

To prove the proposition expand
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L2n- 1 + E c. L.
i:;;;2n-2 1. 1.

Fo~ the moment assume that we are dealing with the case n ~ 4 •

So we want to show that for

each 1 :S i :S 2n - 2 . We will divide our argument into two cases

(i) i ~ n+ 1

(ii) i:;;; n

(i) The Case i i?; n + 1

Given k = E k 2 s (2-adic expansion) lets

et(k) = Ek s

Y2(k) = maximal power of 2 dividing k

It is easy to prov~

LEMMA 9. 6 : y 2 (k!) = k - Cl (k)

LEMMA 9.7: Ek s

Since n;;;: 4 we have n ~ et (2n '- 1) + 1 . Thus i ~ n + 1 2::

a (2n - 1) + 2 . It follows that
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deg c.
1

2

Thus c. can be expanded in terms of the monomials
1

bk •• • "bk where E k
s

:;; y 2 en~ 1 !) . Now by 1. 1 ,
1 r

k 1 + 1! ... k r + 1 ! Pk 1

So, by lemma 6.7, 2k-1!
4 bk

1

(ii) The Case i ~ n

Before handling these cases we put some restrictions on

the coefficients c .. As before write MU*(~p2n-1)
1

= JI* (MU) {6
0

, 6
1

, ... , 6
2n

-
1

} ." There exists a map f:V ~ «:p2n-1

2n-1
such that f*:MU*(V) ~ MU*(~P ) satisfies

We use this rnap to prove

i ~ n - 1

i = n

i ~ n + 1

LEMMA 9.8: For i ~ n - 1 i
one can assume ci = 2(b)2n-i-1

For i = none can assume c = (b)n
n n-1
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PROOF: Since f* (L 2n-1) = ß2n- 1 +? and since P annihilates

(m1 ,m2 , ... ) we have

Expanding both sides we obtain

i
L . (b) 2 _ 1_ i ß .

iS2n-1 n J.

If we replace each by its expression in the { ß. }
J.

and collect the coefficients of {ß
1

, ... ,ßn } then we have

i = n

i ~ n - 1

2c +?
n

c. + ?
J.

= 2(b)2n-1
n

i
= 2(b)2n-1-i

It follows from our discussion of the case i ~ n + 1 that

2n~ 1! ( ?) E TI (MU ) C tl t* (2). onsequen y, 0 prove
2n-1!

4 ci E

TI* (MU) (2) for i:S n i t suffices to reduce to the cases

given in the lemma. Q.E.D.

In the case i = 1 we actually want to make a further

modification in

LEMMA 9.9: We can assurne c 1 = 2b2n_ 2 + 2v1b 2n- 3
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PROOF: By lemma 9.8 we have already reduced our expansion

of P(L 2n- 1 ) to the form

P(L 2n- 1 )

Now

By the relation

place 4b
2n

_
3

ß
2

2 b '"ßv 1 2n-3 1 .

2 1= L 2n- 1 + ••• + 2 (b) 2n-3 Li + 2 (b) 2n-2 L1

2
(b)2n-3 = 2b2n_ 3 + ...

1
(b)2n-2 = b 2n- 2

2 L2 = v 1 L1 in QMU* (Sl 0 SO (2 n + 1) ) we c an re­

(in the expansion of P(L 2n- 1)) by

Q.E.D.

We can now set about showing that 2n-11
4 ci E TI * (MU) (2) •

For i = 1 and 2 ~ i :i n - 1 we appeal to Proposi tions 5.3

and 5.1 respectively. Regarding i = n the argument given in

part (i) for the case i f: n + 1 al so covers the case

i = n ~ 5 . For the argument given there actually applies to the

cases i ~ 0. (2n - 1) + 2 . Regarding i = n = 4 i t follows from

Lemma 9.8 that

71 (b)4 (5ince (k + ~~) 1b k E: IT* (MU) i t follows that 4 3 E: IT* MU) .
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We have now finished our proof of Proposition 9.5 for the

n ~ 4 case. For n = 2 we have, by Lemma 9.8,

( f) Primitive Classes for X = SO (2n + 2)

First of all, in degrees * 2n+ 1 , our description of

PH for X = SO (2n + 1) applies for X = SO (2n +' 2) as weIl.

Proposi tion 9. 10: Given 1 $ k ~ n where 4k - 1 :1= 2n + 1

then P
H

C P
4k

_
1

H*(SO(2n+ 1))/Tor is given by 2k;1!:1 C Z .

PROOF: Consider the maps

P .14 (SO (2n + 1) ) /Tor ...1... P ,14 (SO (2n + 2) ) /Tör 4 P, H* (SO (2n + 3) ) /Tor
~ 1 1

It follows from our description of homology in part (c) that

f is surjective in degrees * 2n+ 1 while g in injective in

degrees * 2n + 1 . Because of Proposi tion 9. 4 we can use

force 2k; 1! :I c PH in degree 4k - 1 and g to force

2k-1! rw2 aJ in degree 4k - 1 •

PH C

Q.E.D.
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On the other hand, in degree 2n + 1 , the difference

between X = SO (2n + 1) and X = SO (2n + 2) appears. For

H* (SO (2n + 2) ) /Tor ~ H* (SO (2n + 1) ) /Tor 0 E (ß) where ß

generates ker {p2n+ 1H* (SO (2n + 2) ) /Tor --..,... P 2n+ 1H* (SO) /Tor} ·

We have already shown in Proposition 9.3 that 2ß E SH • The

other key result about ß is

Proposition 9.11: ß ~ P
H

PROOF: We begin with n odd. If ß E P
H

then it follows from

Proposition 9.2 that Im {PT:MU2n+1 (SO(2n+2» ~ H2n +1 (SO(2n+2»}

contains an element of the form . E E .. Y . y. +? where
i+j=2n+1 1.J 1. J

? E D
3

• We claim that this is not possible. For
llk

Im pT c n Sq~ while such an element does not belong to
k,=1 :'.;

n,1:'- ß 2Ker Sq n Ker Sq . Filter H*(SO(2n+2);JF 2 ) by the de-

composables {Dq } and pass to the associated graded object

EOH* (SO (2n + 2) ; JF 2) . So we can ignore ? Now S~, and sg 1

act by the rule

(i ;;:; 1)

(i ~ 2)

Consequently, the elements of the form

1to Ker Sq are spanned by

E E .. y. y.
1.J 1. J

belonging
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Y2' Y2' 1 + Y2' 1Y2 .1 J- '1- J

while such elements belonging to Ker sg1 are spanned by

Consequently, an element

Ker S~ n Ker sg1 only if

x =

n

L s .. YiY; ean belong to1.J _ J

is even and

• •• +' Y Y 1 •n n+

Now consider n even. Suppose T(w) = ß . (If B ~ Im T

then, as above, we are done). We will show that we roust have

s1 (w) * 0 in MU* (SO (2n + 2) ) /Tor . In particular, w is not

primitive. So ß ~ PH •

It suffices to show TS 1 (w) * 0 in

H* (SO (2n + 2) ) /Tor ~ lF2 • Let {Br } be the hamology Backstein

speetral sequenee studied in part (e). Consider pTs 1 (w) E B1 =

H*(SO(2n+ 2)j lF 2) . Sinee Im pT c Ker S1 we haveq
1 = 0 {pTS 1 (w) } ß2 = H* (SO (2n + 2)) /Tar i8SqpTS 1 (w) . So E t3l IF 2

defined. Tc see {PTS 1 (W)} * 0 we use the equations

pTS 1 (w)
2

= SqpT(w)

2 2
= Sq(~2n+1) mod D

(by 3.3)

(by 9.2)
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= y mod D2
2n-1

The last equality is based on the fact that, by Thomas [25],

S~(Y2n+1) = Y2n-1 for n even. Lastly, since Y2n-1 +? pairs

off non trivialy with the cohomolbgy class x 2n-1 and

it follows that

Q.E.D.

{x 1} * 0 inan-

{Y 2n- 1 +?} * 0

B 2 = H* (SO (2n + 2)) /Tor ~ lF2

in B
2

•

We can now deterrnine PH (as weIl as SH) in degree

2n + 1 •

n even'

We have P 2n+ 1H* (SO (2n + 2) ) /Tor = Z generated by ß .
We have SH C PH c P2n+1H*(SO(2n+ 2))/Tor is given :=-by

2 ~ = 2 Z c Z . This follows from the already demonstrated re-

lations 2 Z c SH and P
H

c 2 ~ •

n odd

In this case we have P2n+1H* (SO (2n + 2) ) /Tor = Z ~ ~

generated by a and ß . We claim that PH c2n+1

P2n+1H* (SO (2n + 2)) /Tor 15 givenly n!
Z e 2 X c Z e Z The"2 .

n! Z factor arises as in the case of deg * 2n + 1 . The 2 ?l2

factor arises in a similar fashion to the case of deg = 2n + 1

and n even. This time we do not have SH = PR . For the
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spherical classes contained in the

variation described in part (d).

(g) The Case X = Spin (n)

~z
2

factor have the

We finish §9 by describing SH c: PH c: PH*(Spin (n))/Tor .
Pick s where 2 5

< n ~ 2s + 1 . Then our answer for X = Spin (n)

is the same as for X = SO(n) except in degree 2 5 + 1 _ 1 . In

that degree we roust divide our answer by a factor of 2. This

result is based on the commutative diagrarn

TI. (Spin(n))/Tor ~
1

h

TI. (SO (n) ) /Tor
1

j h

P. H* (Spin (n) ) /Tor ~ P H (SO (n) ) /Tor

1 Q~-V*
H* (V)

plus the fact that

Proposition 9.12: The map g is an isomorphism except in degree

2
8

+1 - 1 . In that degree g is injective but has cokernel = 72/2

Equivalently, 0*

isomorphism.

H (V) ~ P +1 H*(Spin(n)) is an"
2 5 + 1 - 1 2 5

- 1
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PROOF: g is a m isomorphism. By using a Bockstein spectral

sequence argument we can show that f is a mod 2 isomorphism

in degrees :1= 2s +1 - 1 while, in degree 2s +1 - 1

has kernel = cokernel =W2 • (We have already written down

H* (SO (n) ; lF2) • On the other hand, H* (Spin (n) ;~ lF2)

= ß(x
i

(3 ~ i :;i n- 1, 1 :1= 2 j
) ~ ß(x ß 1 )) So the proposition

2 + - 1 ~
is proved for f except that, in degree 2·~+1 - 1 , f is only

known to be of the form Z/2k for some k 6 1 . We now use the

bottom triangle of the above diagrarn plus our knowledge of

n* : H*(V) ~ PH*(SO(n))/Tor from part (c) to deduce that f

can be multiplication by at most 2 and that

n* : H*(V) ~ PH*(Spin(n))/Tor- is an isomorphism in degree

2 s + 1 - 1 • Q.E.D.

The only remark we might add 1s that, in the case when

generated byso,and,n = P H*(SO(n))/Tor = Z ~ Z
2 s +1 - 1

a s+1 and 8, it is the factor corresponding to 8 which
CL - 1

1s altered by 2. In other words, 8 E SH instead of 28 E SR

as before.
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§10 The Group G = G-----------2

Now H*(G 2)/Tor = E(X 3 ,X 11 ) . Of course, in

P3 H*(G 2)/Tor = Z we have SH = PH = ~ . We now show

is given by

5 , rr7 51,.,.
.UJc 2 41 •

All of §10 will be devoted to the proof of this proposition.

(i) Spherical Elements

We will reduce to the case G = SO • We have a diagram

-+ TI" (SO) /Tor

1

~ TI, 1 (Spin) /Tor-+ TI" (Spin(7»/Tor

1 VI

P1,H*(G2)/Tor ~ P'1H*(Spin (7»/Tor ~ P"H*(Spin)/Tor ~ P"H*(SO)/Tor

where the vertical maps are the Hurewicz maps. The horizontal

maps are all incuced from standard maps. In particular, the

fibration G2 ~ Spin (7) ~ S7 gives rise to the first

square. The bottom horizontal maps are all isomorphisms. (Use
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Bockste~n spectral sequence arguments). The top maps imbed

TI*(G2 )/Tor as a direct summand of

we use the fact that, for p = 2 ,

for p odd, 7
TI 11 (S ) (p) = 0 The

TI*(SO)/Tor . For the first map

Spin (7) ( ) !::::::! G2 x S7 whi le ,
CX> (2)

fact that the second map is an

isomorphism was established in part (d) of §9.

So, since SH = 51 ~ for G = SO , the same result holds

for G = G2 .

(ii) Primitive Elements

First of all, the map' P11H*(GZ)/Tor ~ P11 H*(SO)/Tor teIls

that P C ~ ~ T th t 51 ~ Pus H Z ~. 0 prove a ~ ~ C H we use a gene-

rating variety. Let V c nG2 be the generating variety of G2

given in Bott [3]. Then H*(V) has an additive basis

2 3 4 5
{ XX x x}

1 , x, ~ , 2.3 ' 2.3 2 ' 2.3 2 deg x = 2

(This basis is due to Clarke [7] and corrects the one given by

Let {L O,L
1

, ••• , L
S

} be a TI*(MU) basis of MU* (V) we

will use the same symbols to denote the image of these elements in
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PROOF: By the argument given at the end of part (e) of §9 we

have P(L 3 ) E MU*(V) (2) • Since L3 is any representative for

03 we might as weIl assume that L3 = P(L 3 ) • Now

Consequently

So L
3

= XL
1

+YL
2

where x,y E II*(MU) • But, by 2.5,

P(x) = P(y) = 0 • So L
3

= P(L
3

) = P(X)P(L
1

) + P(y)P(L
2

) = 0 .

Q.E.D.

We want to show that

Since n* . Q10H*(OG2 ) ~ P 11 H*(G 2)/Tor is of the form.
z~ z (see the argument in parts (b) and (c) of §9) this re-

sult will suffice to show that 5 ! Z c P
H"2 .

We will localize and work at each prime separately. This

is more out of convenience than necessity. In particular we will

be able to make use of lemma 10.2. But we are not localizing, as
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in some of our previous arguments, to make use of BP theory.

I f we wri te P ( L 5) = L c. L. then the
.11
1

Ci E JI* (MU) 0 OF = <Il[b 1 ,b 2 , ... ] are polynomials in

{b 1 ' b 2 ' b 3 ' b 4 }. BY 1. 1 b 1 ' b'2 ' b 3 ' b 4 E JI * (MU) (p) · So

P ( L5 ) E MU* (v) (p) •

p ~ 5: This time we have 5b1,b2,b3'~4 E IT*(MU) (5) . So

SP(L S ) E MU*(V) (5) •

p = 3: Since c 2 ,c3 ,c4 are polynomials in ~1,b2,b'3 and since

b 1 ,3b 2 ,31?3 E II*(MU) (3) we have 3c2 ,3c 3 ,c 4 E II*(MU) ("3) . Regar­

ding c 1 we can reduce, as in lemma 9.8, to the case c 1 = 2b 4 .

And 3b 4 E II*(MU) (3) • So 3P(L S) E MU*(V) (3) •

p = 2 Since c 4 only involves l?'1 we obviously have

2c 4 E II*(MU) (2) . Regarding c 1 ,c2 and c 3 we can reduce to the

cases

c = 0 (by 10.2)
3

By Propositions 5.1 and 5.3 we have 2c 1 ,2c2 E II*(MU) (2) .
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3REMARK: As in 9.8 we could have reduced c 3 to c 3 = (b)2 .

However 2 (b)" ~ ~ II* (MU) (2) . Rather 4 (b) ~ E II* (MU) (2) . Our

way out of this obstruction was to appeal to 10.2.

Now this same obstruction arises if we attempt to deter-

mine PH C P11H*(SO(7»/Tor by the argument in part (e) of §9.

Moreover, we do not know how to prove 10.2 for 50(7) . It was

for these reasons that we reduced our study of

PH C P11H*(SO(7»/Tor in part (e) of §9 to the study of

PH C P11 H*(G2 )/Tor ·
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_T_h_e_G_r_o_u_p,-_G__=_F4

We will localize and work one prime at a time. Loca~

lizing will enable us to often decompose the space F 4 into

simpler factors. In particular, the space B (p)
n

will often

appear as a factor. By B (p) we mean the total space of the
n

. 2n+2p-1 . 2n+1bundle wlth base S and flbre S such that

Then H*(Bn(p)) = E(Y2n+1'Y2n+2p-1) and it is easy to show that

in degree 2n+2p-1 the inclusion SH c PH c P2n+2p-1H*(Bn(p)) =~

is given by SH = PH = P ~ . (Consult the study of G = Sp(2)

in § 6) .

We have

So we must study SH c PH C PH*(FK)/Tor in degrees 3, 11, 15

and 23. The relations are surnmarized in the following chart
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(11.1)

3

1 1

15

23

. ,

~ :x 7l

2
3

.5 Z 2
2

.5 Z Z

3 3
Z Z2 .3. 7 Z 2 .3.7

',' 2 7 2
2~.3 .5.7.11 ~ 2 .3 .5.7.11 ~ ~Z

p ~ 5 .For such primes F4 is quasi-regular. Here we are

using the results of Mimura-Toda [19]. They show

p = 3 Harper [8] has shown that

where

(p ~ 13)
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P1. (x ) = x
3 7

o(x7 ) = xe

So H*(K)/Tor = E(Y3'Y23) . This time we claim that

SH c PH c P23 H*(K)/Tor = :;r; is given by 32
~ = 3 2

7.l ~ Z . It

suffices to show 3
2

Z c SH and P
H

c 3 2 Z .

Sphericals

We use connective coverings of K .. Consider the fibration

f g
F ~ K~ K( Z(p) ,3)

3
where g represents a generator of H (K) (3) = Z(3) . It is

easy to calculate that, in degree S 24

The relation 3
2

X c SH follows from the comrnutative diagrarn
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z = II 23 (F)/Tor~ P23 H*(F)/TOr = 7.l

'ils I Ix3

7.l = II 23 (K)/Tor ------iI'- P23H* (K) /'Tor = ~

It follows from Smith [22] that the right map is multiplication

by 3 while it is easy to calculate that the top map is multi-

plication by 3.

Primitives

Consider the representation A : F 4 ~ SU(26) studied

by Watanabe [26]. We have a cornrnutative diagrarn

(nA) *
Z = Q22H*(nF4 )/Tor~ Q22H*(nSU(26» = ~

Watanabe proved that
3is multiplication by ,3 • Also

"4 is an isomophism for SU(26) while n* is multiplication

by 3k where k ~ 1 for F 4 . It now follows from the diagrarn

that A* is multiplication by 3~ where g, ~ 2 .

Since 11r = 3
4

N where (N,3) = 1 it follows from §8

that PH C P23H*(SU(26» is given by 3
4

Z C X . The commutative
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diagram

PH
c P23R*(F 4)/Tor = :;z

1 1x3
Jt

3 4 Z = PR c P 23 H* (SU (26» = z

p = 2: In degrees 3 and 11 the relation SH c PH C PH*(F 4)/Tor

is the same as in the G2 case. For G2 c F 4 is a rnod 2 homo­

topy equivalence in degree ~ 14.

* 4(H (F 4 ; F 2 ) = E(x5,x15,x23) 0F2 [x3 ]/(x3 ). In degree 15 and 23

it suffices to prove

for deg 15

for deg 23

Primitives

The relations P
H

c 23 Z in degree 15 and PH C 2
7 ~ in

degree 23 follow from an argument similar to that used above in

the p = 3 case. It is based on two facts. Watanabe has cal-

culated that nA gives maps
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(nA)*

Also P
H

c PH*(SU(26)) is given by 7 ! Z c Z in degree 15

and 11 ! Z c Z in degree 23. (In terms of 2 primary information

these become 2 4 ~ c Z and 28 Z c ~) .

Sphericals:

The relations 2
3

Z c SH in degree 15 and

in degree 23 follows from the i~formation obtained by Mirnura

[18] regarding the space F 4/G 2 . One has H*(F 4/G8 ) = E(Y15'Y23).

For both k = 15 and k = 23 we have a cornmutative diagrarn

.' ----+-

h
~ VI

:E = PkH* (F 4? /Tor~ -P'k :-H* (F 4/G2) = Z

= Z/8 ~ Z/2

Since h

~ =. Z k = 15

k = 23

we conclude that P
H

C P
k

H*(F 4 )/Tor ·satisfies PH C 2
3

Z

and PR c 27 Z in degrees 15 and 23 respectively.
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