Kdv-invariant polynomial functionals

by

Toru Tsujishita

Abstract

It is proved that the algebra of the KdV-invariant polynomial functionals on the space of C^{∞} functions on the one-dimensional torus is isomorphic to the polynomial algebra of the conserved quatities found by [MGK].

Table of contents

§ 1. Statements of the main results
1.1. Polynomial functionals
1.2. Spectral invariant functionals for the Hill operator
1.3. KdV-invariant functionals
1.4. Main theorem
§ 2. Description of polynomial functionals
2.1. Identification of $P(F(T))$ with the symmetric algebra of $D^{\prime}(T)$
2.2. Gelfand-Fuks filtration on. $P(F(T))$
2.3. Description of F^{k} / F^{k-1} ?
§ 3. The KdV-derivation D_{t} on $P(F(T))$
3.1. The infinitesimal generator of the kdV-flow.
3.2. Solvability of the Cauchy problem for the KdV equation
3.3. Description of D_{t} in terms of differential polynomials
§ 4. Proof of the main Theorem (1.4.2)
§ 5. Proof of Lemma (4.2)
§ 6. Algebraic independency
§ 7. Proof of Lemma (4.6)

§ 8. Remarks and Problems

§ A.1. Distributions
A.1.1. Structure theorem of distributions
A.1.2. Decomposition of $D^{\prime}\left(T^{n}, T^{n}(k)\right)$
A.1.3. Description of $D^{\prime}\left(T^{n}, T^{n}[p]\right)^{S(p)}$
A.1.4. Proof of Propositions (3.2.1-2)
§ A.2. Differential polynomials
A.2.1. The differential algebra A of differential polynomials
A.2.2. The variational operator δ_{u}
A.2.3. Evolutional derivations X_{K}
A.2.4. The twisted multi-variational operators
§ A.3. Conservations laws of the KdV equation
A.3.1. A complex associated to the $K d V$ equation
A.3.2. Computation of Ker Δ
A.3.3. Information on certain differential polynomials
A.3.4. Twisting of Δ
A.3.5. Independency of T_{i} and $T_{j k}$ modulo $\operatorname{Im} \Delta$
A.3.6. A refinement of Proposition (A. 3.2.4)

Introduction

It is now long since the Korteweg-de Vries equation

$$
u_{t}=u u_{x}+u_{x x x}
$$

is recognized as a completely integrable Hamiltonian system, for example, on the space of C^{∞} functions on the onedimensional torus T^{1}. A complete set of its first integrals or invariants is provided by the eigenvalues $\left\{\lambda_{1}[u]\right\}$ of the Hill's operator - $d^{2} / d x^{2}+u(x)$ (cf. [MM]), which are however highly transcendental functionals of u.

An infinite set of invariants $\left\{\tilde{I}_{\perp}[u]\right\}$ which are "elementary" functionals of u can be constructed through the asymptotic expansion

$$
\sqrt{4 \pi t} \quad \sum_{i} e^{-\lambda_{i}[u] t} \sim 1+\sum_{i=1}^{\infty} \widetilde{I}_{i}^{[u] t^{j}} \quad(t \geqslant 0) .
$$

In fact $\tilde{I}_{i}[u]$ is the integral of a local conserved density $I_{i}[u]$. Although $I_{i}[u]$'s are known to exhaust the space of equivalence classes of local conserved densities (cf. [KMGZ] or Theorem (A.3.3.1)), it is obvious that these elementary invariants have less information than $\lambda_{i}[u]$'s and do not form a complete set of invariants of the KdV-flow.

In this paper we take up the problem whether or not there are other "elementary" invariants other than $\tilde{I}_{i}[u]$'s.

The functionals which we consider as elementary are such K[u]'s as are expressible as

$$
K[u]=\sum_{n} \int_{T^{n}} K_{n}\left(x_{1}, \ldots, x_{n}\right) u\left(x_{1}\right) \ldots u\left(x_{n}\right) d x_{1} \ldots d x_{n^{\prime}}
$$

where K_{n} is a distribution on T^{n} and only a finite number of K_{n} 's are non-zero. These will be called polynomial functionals. The space of the polynomial functionals is strictly larger than the space multiplicatively generated by those with local densities, since it includes those expressed as iterated integrals of local densiities.

Our main result asserts that the functionals expressed as polynomials of $\tilde{I}_{i}[u]$'s are the only invariants which are polynomial functionals.

Our proof of this is rather involved due mainly to the simple topological fact that for $k \geq 3$ the space $\left\{\left(x_{1}, \ldots, x_{k}\right) \in T^{k} ; \dot{x}_{i} \neq x_{j}(i \neq j)\right\}$ is not connected. This fact gives rise to the possibility of the existence of first integrals expressible as iterated integrals of local conserved densities, which we were able to eliminate only after a detailed analysis of the local conserved densities of the KdV equation.

It seems to be an interesting problem to find a simpler proof, which admits us to infer whether other soliton equations have the same property or not.

For the evolution equations of space dimension greater than one, it seems probable that the similar result can be rather easily established because the space $\left\{\left(x_{1}, \ldots, x_{k}\right) \in M^{k}\right.$;
$\left.x_{i} \neq x_{j}(i \neq j)\right\} \quad$ is connected for each k when $d i m M \geq 2$.

In $\S 1$, we give basic definitions and state the main result (Theorem (1.4.1)). The rest of the paper is devoted to its proof. We start it first by describing the space of polynomial functionals by differential polynomials in § 2 applying the idea of Gelfand and Fuks ([GF]). In § 3 the derivation on the space of polynomial functionals corresponding to the KdV-flow is expressed in terms of a derivation on the algebra of differential polynomials. The outline of the proof of the main result is exposed in $\S 4$. The sections 5 and 7 prove key lemmas used in § 4 and the section 6 proves the algebraic independency of diagonal functionals. In $\S 8$ we give several remarks and raise a few related problems. We collected in the appendix certain facts and technical arguments in order to make it easier to see the main flow of the proof of the main result. In $\S A .1$. , we recall the structure theorem of distributions, with which. we prove the propositions of the section 3. In § A. 2., we give basic definitions about differential polynomials and recall some of the basic facts in the theory of formal calculus of variation ([GD]). The section A.3. recalls the result on the existence of infinite number of independent conserved densities ([MGK]) and derive from it various consequences, which play crucial roles in various parts of our proof of the main result.

The author is deeply indebted to T. Sunada who explained him his result ([s]) and suggested him the problem treated here.

Table of Symbols

A: $\widetilde{A}, A^{i}, A_{n}, A$ d: $a_{t}:$ $D^{\prime}(X, Y):$

R:

S:

T:
$T_{i}: \quad=\delta_{u} I_{i}(\S A .3 \cdot 2)$.

T_{ij} :	$=\delta_{u}\left(-I_{i} X_{j}+I_{j} X_{i}\right) \quad$ (§A.3.3.).
$\mathrm{T}^{\mathrm{n}}(\mathrm{k})$:	$=\left\{\left(x_{1}, \ldots, x_{n}\right) \in T^{n} ; \#\left\{x_{1}, \ldots, x_{n}\right\} \leq k\right\}$.
X_{1} :	the flux for I_{i} determined by Theorem (A.3.3.1.)
X_{K} :	the derivation of A corresponding to the evolutionary equation $u_{t}=K$ (§A.2.3.).
χ_{k} :	the map $D^{\prime}\left(T^{k}\right) \widetilde{A}^{\otimes k} \longrightarrow F^{k} \mathrm{P}(\mathrm{F}(\mathrm{T})$) defined in § 2.3.
2:	the ring of integers.
z_{+}:	the set of nonnegative integers.

All the vector spaces and all the tensor products are over R. For a group G and a G-module V, the space of all the G-invariant elements is denoted by V^{G}.
§ 1. Statements of the main results.
1.1. Polynomial functionals.

Let $T=R / Z$ be the one-dimensional torus and $F(T)$ the space of all the real valued C^{∞} functions on T, which we identify with the periodic real valued C^{∞} functions on R with period 1.

We call a real valued functional $u \longmapsto K[u]$ on $F(T)$ a polynomial functional if for $u \in F(T)$
(1.1.1) $K[u]=K_{0}+\sum_{n=1}^{\infty}\left\langle K_{n}, u^{\oplus n}\right\rangle$,
where $K_{0} \in R, T^{n}=R^{n} / Z^{n}, K_{n} \in D^{\prime}\left(T^{n}\right)=\left\{\right.$ distributions on T^{n}, $u^{\otimes n}=u \otimes \ldots u^{(n-t i m e s)}$ is the C^{∞} function on T^{n} defined by $u^{i n n}\left(x_{1}, \ldots, x_{n}\right)=u\left(x_{1}\right) \ldots u\left(x_{n}\right)$, and $k_{n}=0$ except for finite n's.

Example (1.1.2). The following are some of the examples of polynomial functionals:

$$
\begin{aligned}
& \mathrm{K}_{1}: u \longmapsto p\left(x_{0}\right), \\
& \mathrm{K}_{2}: u \longmapsto \hat{u}^{\prime}(n)=\int_{T} e^{2 \pi i n x} u(x) d x, \\
& K_{3}: u \longmapsto \int_{T} u(x) u^{\prime}(x)^{2} d x, \\
& K_{4}: u \longmapsto \int_{T} u(x) u\left(x+x_{0}\right) d x, \\
& K_{5}: u \not{\longmapsto} \underset{0 \leq x_{1} \leq \ldots \leq x_{n} \leq 1}{ } f_{1}[u]\left(x_{1}\right) \ldots f_{n}[u]\left(x_{n}\right) d x_{1} \ldots d x_{n},
\end{aligned}
$$

where $x_{0} \in T, f_{i}=f_{i}\left(u_{0}, u_{1}, \ldots\right)$ are differential polynomials (cf. § A.2.1) and $f_{i}[u]$ denotes the function made by the substitutions: $u_{i}=d^{i} f / d x^{i}$.

The space of all the polynomial functionals is denoted by $P(F(T))$, which is a commutative algebra by the multiplication:

$$
K_{1} K_{2}[u]:=K_{1}[u] K_{2}[u], u \in F(T)
$$

for $K_{1}, K_{2} \in P(F(T))$.

A polynomial functional K is called diagonal or local if supp K_{n} is in the diagonal of T^{n}. For example, K_{1}, K_{2}, K_{3} and K_{5} with $n=1$ are diagonal.
1.2. Spectral invariant functionals for the Hilloperator •

For $u \in F(T)$, we denote the spectrum of the Hill operator $L_{u}:=-d^{2} / d x^{2}+u$ by

$$
\operatorname{Spec}(u)=\left\{\lambda_{0}<\lambda_{1} \leq \lambda_{2}<\ldots<\lambda_{2 i-1} \leq \lambda_{2 i}<\ldots\right\} .
$$

A real valued functional K on $F(T)$ is called spectral invariant if $\operatorname{Spec}(u)=\operatorname{Spec}(v)$ implies $K[u]=K[v]$ for $u, v \in F(T)$. We denote by $P_{\text {spec }}(F(T))$ the subalgebra of $P(F(T))$ consisting of all the spectral invariant polynomial functionals.

Example ([MM]). For $u \in F(T)$ with $\operatorname{Spec}(u)=\left\{\lambda_{i}\right\}$, the following asymptotic expansion holds for $t>0$:

$$
\sum_{i \geq 1} e^{-\lambda_{i} t} \sim \sqrt{4 \pi t}^{-1}\left(1+\sum_{i \geq 1} \tilde{I}_{i}[u] t^{i}\right)
$$

Moreover a universal differential polynomial I_{i} exists such that

$$
\tilde{I}_{i}[u]=\int_{0}^{1} I_{i}[u](x) d x
$$

Obviously \tilde{I}_{i} 's are spectral invariant functionals, which are also polynomial and diagonal. Note that the differential polynomials I_{i} 's are not determined uniquely. We shall choose canonical ones by Theorem (A.3.3.1).

1.3. KdV-invariant functionals.

A functional K is called invariant under the KdV-flow, or $K d V$-invariant for short, if $K[u(\cdot, t)]$ is independent of t whenever $u(x, t)$ is a solution of the Korteweg-de Vries equation:
(1.3.1) $\quad \partial u / \partial t=3 u \partial u / \partial x-(1 / 2) \partial^{3} u / \partial x^{3}$.

We denote by $P_{K d V}(F(T))$ the subalgebra of $P(F(T))$ consisting of all the Kdv-invariant polynomial functionals.

The Lax representation of (1.3.1):
(1.3.2) $\frac{d}{d t} L_{u}=\left[2 \frac{d^{3}}{d x^{3}}-\frac{3}{2}\left(u \frac{d}{d x}+\frac{d}{d x} u\right), L_{u}\right]$

Proposition (1.3.3). The spectral invariant functionals are $K d V$-invariant: $P_{\text {spec }}(F(T)) \subset P_{K d V}(F(T))$.

1.4. Main theorem.

Theorem (1.4.1.) The algebra of the KdV-invariant polynomial functionals coincides with that of the spectral invariant ones and is isomorphic to the polynomial algebra generated by $\tilde{I}_{i}{ }^{\prime} s:$

$$
P_{\text {spec }}(F(T))=P_{K d V}(F(T)) \cong R\left[\tilde{I}_{1}, \tilde{I}_{2}, \ldots\right]
$$

This is an immediate consequence of Proposition (1.3.1) and the following

Theorem (1.4.2). The functionals $\tilde{I}_{i}^{\prime \prime s}$ are algebraically independent and generates the algebra of the KdV-invariant polynomial functionals.

We remark that the algebraic independency of \tilde{I}_{i} 's has been already proved by sunada (cf. [S]).

Remark. Our results imply that if a functional of iterated integral type such as K_{5} in the Example (1.1.2) is spectral invariant, then there exists a unique polynomial $E\left(\tilde{I}_{1}, \ldots, \tilde{I}_{N}\right)$ with some N such that

$$
K_{5}[u]=F\left(\tilde{I}_{1}[u], \ldots, \tilde{I}_{N}[u]\right), u \in F(T)
$$

For example Sunada ([S]) obtains such spectral invariants $A_{i}^{n}[u]$ as the coefficients in an asymptotic expansion:

$$
\begin{aligned}
& F_{n}[u, t]:=\int_{0}^{1} d x \int \Omega \exp \left(-t \int_{0}^{1} u(x+n \tau+\sqrt{t} \omega(\tau)) d \tau\right) d \mu(\omega) \\
& \sim 1+A_{1}^{n}[u] t+A_{2}^{n}[u] t^{2}+\ldots \quad(t \geq 0),
\end{aligned}
$$

where Ω is the space of all the continuous functions $\omega:[0,1] \rightarrow R$ with $\omega(0)=\omega(1)$ and μ is the Wiener's measure on Ω. Our results implies that we can find polynomials $H_{1}^{n} \in R\left[\tilde{I}_{1}, \tilde{I}_{2}, \ldots\right]$ such that

$$
A_{i}^{n}[u]=H_{i}^{n}\left(\tilde{I}_{1}[u], \tilde{I}_{2}[u], \ldots\right), \quad u \in F(T)
$$

This is a weaker version of the Sunada's result, which gives much more precise information about the polynomials $\mathrm{H}_{\mathrm{i}}^{\mathrm{n}}$.
§ 2. Description of polynomial functionals.

Using a filtration similar to the one introduced by Gelfand and Fuks ([GF]) in the computation of the continuous cohomology of the Lie algebra of vector fields, we describe the algebra of the polynomial functionals in terms of differential polynomials.

```
2.1. Identification of \(P(F(T))\) with the symmetric_algebra of \(D^{\prime}(T)\).
```

A polynomial function on a vector space can be identified with an element of the symmetric algebra of its dual space. Analogously a polynomial functional K given by (1.1.1.) can be identified with the sequence $\left(K_{n}\right)_{n=0,1,2, \ldots}$, where K_{n} is a symmetric distribution on T^{n}, i.e., $K_{n}^{S}=K_{n}$ for all $s \in S_{n}$, where $\left\langle K_{n}^{S}, f\right\rangle:=\left\langle K_{n}, s_{f}\right\rangle f f \in F\left(T^{n}\right)$) with

$$
s_{f}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{s 1}, \ldots, x_{s n}\right)
$$

Hereafter we make the following identification:

$$
P(F(T))=\oplus_{n=0}^{\infty} D^{\prime}\left(T^{n}\right)^{S_{n}},
$$

where $D^{\prime}\left(T^{n}\right)^{S_{n}}$ denotes the space of the symmetric distributions on T^{n}.

$$
\begin{aligned}
& \text { Note that for } K \in D^{\prime}\left(T^{n}\right), \\
& \left\langle K, u^{\otimes n}\right\rangle=\left\langle S(K), u^{\otimes n}\right\rangle(u \in F(T)),
\end{aligned}
$$

where $S(K)$ denotes the symmetrisation of K :

$$
S(K)=(1 / n!) \sum_{s \in S_{n}} K^{s}
$$

2.2 Gelfand-Fuks_filtration_on $P(F(T))$.

For a subset X of T^{n}, denote by $D^{\prime}\left(T^{n}, X\right)$ the subspace of $D^{\prime}\left(T^{n}\right)$ consisting of all the distributions on T^{n} with supports in X . Define

$$
\left.T^{n}(k):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in T^{n}, \not \mathbb{x}_{1}, \ldots, x_{n}\right\} \leq k\right\}
$$

where ${ }^{\#}$ A stands for the number of the elements of a set A. Then $D^{\prime}\left(T^{n}, T^{n}(k)\right)(k=1,2, \ldots, n)$ is an S_{n}-invariant subspace of $D^{\prime}\left(T^{n}\right)$. We define $F^{0} P(F(T))=R$ and

$$
F^{k} P(F(T))=\oplus_{n} \not k_{k} D^{\prime}\left(T^{n}, T^{n}(k)\right), \text { for } k \geq 1
$$

This is an increasing filtration: $F^{0} \subset F^{1} \subset F^{2} \subset \ldots$, which is multiplicative, i.e., $F^{P_{F}} \subset^{q} F^{p+q}$. Note that $F^{1} P(F(T))$ is exactly the space of the diagonal polynomial functionals. Note also for example that $K_{4} \in F_{2} \backslash F_{1}$ and $K_{5} \in F_{n} \backslash F_{n-1} \quad$ (cf. Example (1.2.1)).
2.3. Description_of $\mathrm{F}^{\mathrm{k}} / \mathrm{F}^{\mathrm{k}-1}$

Let A be the algebra of differential polynomials of u (cf. §A.2.1.), and denote by \widetilde{A} the subspace of A consisting of all the elements with the zero constant
terms: $\widetilde{A}:=\{£ \in A, f(0)=0\}$. Denote by $\widetilde{\mathbb{A}}^{\oplus k}$ the tensor product of k copies of \widetilde{A} over R.

Define

$$
\tilde{x}_{k}: D^{\prime}\left(T^{k}\right) \otimes \tilde{A}^{\otimes k} \longrightarrow P(F(T))
$$

by

$$
\tilde{x}_{k}\left(w \otimes f_{1} \otimes \ldots \otimes f_{k}\right)[u]=\left\langle w, f_{1}[u] \otimes \ldots \otimes f_{k}[u]\right\rangle,
$$

where $w \in D^{\prime}\left(T^{k}\right), f_{i} \in \tilde{A}$ and $u \in F(T)$. This induces

$$
x_{k}:\left[D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\otimes k}\right]^{S_{k}} \rightarrow F_{k} P(F(T))
$$

where $s \in S_{k}$ acts on $D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\otimes k}$ by

$$
s\left(w \otimes f_{1} \otimes \ldots f_{k}\right)=w^{s} \otimes f_{t 1} \otimes \ldots f_{t k}
$$

$$
\left(t=s^{-1}\right)
$$

Then we have

Proposition (2.3.1). x_{k} is surjective.

This will be proved in § A. 1 using the structure theorems of distributions.

Now we describe $X_{k}^{-1} F_{k-1}$.
Define endomorphisms $d_{i}(i=1, \ldots, k)$ of $D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\otimes k}$
by

$$
\mathrm{a}_{i}:=\partial / \partial \mathrm{x}_{\mathrm{i}} \otimes 1+1 \otimes(1 \otimes \ldots \otimes 1 \otimes \mathrm{~d} \otimes 1 \otimes \ldots \otimes 1)
$$

d being on the $i-t h$ factor. Then we have

Proposition (2.3.2). $X_{k}^{-1}\left(F_{k-1} P(F(T))\right)$ is spanned by

$$
\left(\sum_{i=1}^{k} \operatorname{Im} d_{i}\right) \cap\left[D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\oplus k}{ }_{l}^{S_{k}}\right.
$$

and

$$
\left[D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes \tilde{A}^{\otimes k}\right]^{S_{k}}
$$

This will be also proved in § A. 1.
§ 3. The Kav-derivation D_{t} on $P(F(T))$

We introduce a derivation D_{t} on $P(F(T))$, which is in fact the infinitesimal generator of the KdV-flow on $F(T)$ and Ker $D_{t}=P_{K d V}(F(T))$ holds. In § 3.3, we find an operator which corresponds to D_{t} in the description of § 2.3 .

From now on, we rescale (x, t, u) to ($-x, 2 t,-3 u / 2$), so that the Korteweg-de Vries equation takes the simple form:

$$
\begin{equation*}
\partial u / \partial t=u \partial u / \partial x+\partial^{3} u / \partial x^{3} . \tag{3.0.1}
\end{equation*}
$$

Observe that the validity of the Theorem (1.4.2) does not change by this rescaling.
3.1. The infinitesimal_generator of the KdV-flow.

To the KdV-flow on $F(T)$ corresponds the derivation D_{t} on $P(F(T))$ characterized by

$$
\begin{equation*}
(d / d t) K[u(\cdot, t)]=\left(D_{t} K\right)[u(\cdot, t)] \tag{3.1.1}
\end{equation*}
$$

for $K \in P(F(T))$ and all the solutions $u(x, t)$ of (3.0.1).

It is easy to see that this derivation can be expressed for $K \in D^{\prime}\left(T^{n}\right)^{S_{n}}$ as

$$
\begin{equation*}
D_{t} K=L_{n}+L_{n+1} \tag{3.1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& L_{n}=-n s\left(\partial^{3} / \partial x_{n}^{3} K_{n}\left(x_{1}, \ldots, x_{n}\right)\right), \\
& L_{n+1}=n s\left(K_{n}\left(x_{1}, \ldots, x_{n}\right) \delta^{\prime}\left(x_{n}-x_{n+1}\right)\right) .
\end{aligned}
$$

Here $\delta(x-y) \in D^{\prime}\left(T^{2}\right)$ denotes the delta functional defined by

$$
\langle\delta(x-y), f\rangle=\int_{T} f(x, x) d x, \quad f \in F\left(T^{2}\right)
$$

and

$$
\delta^{\prime}(x-y)=\partial \delta(x-y) / \partial x=-\partial \delta(x-y) / \partial y \quad .
$$

3.2 Solvability of the Cauchy problem for the KdV-eguation.

We recall the following

Theorem (3.2.1) ([MT]). For every $u_{0} \in F(T)$, a undque solution $u \in F(T \times R)$ of the $K d V$ equation exists and satisfy $u(x, 0)=u_{0}(x)$.

This implies

Proposition (3.2.2). $\mathrm{P}_{\mathrm{KdV}}(\mathrm{F}(\mathrm{T}))=\operatorname{Ker} \mathrm{D}_{\mathrm{t}}$.
Proof. Obviously $D_{t} K=0$ implies that K is KdV-invariant by virtue of (3.1.1).

Conversely let K be a KdV-invariant polynomial functional.

For $u_{0} \in F(T)$, let $u \in F(T \times R)$ be the solution of the KdV-equation with $u(x, 0)=u_{0}(x)$. Then by (3.1.1),

$$
D_{t} K\left[u_{0}\right]=(d / d t) K[u(\cdot, t)]=0
$$

Hence

$$
D_{t} K=0
$$

Q.E.D.

We note that only the solvability of the KdV-equation In small time is necessary for the proof of this proposition.

We remark that we may as well define the notion of KdV-invariance of a polynomial functional K by $D_{t} K=0$, which is a little technical condition but makes it unnecessary to rely on the above deep result.
3.3 Description_of D_{t} in_terms_of differential_ polynomials.

Define a derivation d_{t} of A by $d_{t}=X_{u u_{1}+u_{3}}$ (cf. § A.2.3), i.e.,

$$
d_{t}:=\sum_{i=0}^{\infty} d^{i}\left(u u_{1}+u_{3}\right) \partial / \partial u_{i},
$$

and endomorphisms $d_{t, i}(i=1, \ldots, k)$ of $D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\prime} k$ by

$$
d_{t, i}:=1 \otimes \ldots \otimes d_{t} \otimes \ldots \otimes 1
$$

d_{t} being on the i-th place, and put

$$
\tilde{a}_{t}:=a_{t, 1}+\ldots+d_{t, k}
$$

Then

Proposition (3.3.1).

$$
D_{t} \circ x_{k}=x_{k} \circ \widetilde{\mathrm{~d}}_{t} .
$$

Proof. For $f \in A$ and a solution u of (3.0.1) we have obviously

$$
\partial f[u] / \partial t=\left(d_{t} f\right)[u] .
$$

Using this, we have for $K \otimes f_{1} \otimes \ldots \otimes f_{k} \in D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\otimes k}$

$$
\begin{aligned}
d / d t & \tilde{x}_{k}\left(K \otimes f_{1} \otimes \ldots \otimes f_{k}\right)=d / d t\left\langle K, f_{1}[u] \otimes \ldots \otimes f_{k}[u]\right\rangle \\
& =\sum_{i=1}^{k}\left\langle K, f_{1}[u] \otimes \ldots \otimes \partial f_{i}[u] / \partial t \otimes \ldots \otimes f_{k}[u]\right\rangle \\
& =\tilde{x}_{k}\left(K \otimes \tilde{d}_{t}\left(f_{1} \otimes \ldots \otimes f_{k}\right)\right)[u] .
\end{aligned}
$$

Hence, by Theorem (3.2.1), $D_{t} \circ \tilde{x}_{k}=\tilde{x}_{k} \circ \widetilde{d}_{t}$, from which the proposition follows immediately.
§ 4. Proof of the main Theorem (1.4.2).

The algebraic independency follows from a general Theorem (6.1). So we prove in this section, $P_{K d V}(F(T))=P_{0}$, where P_{0} denotes the subalgebra generated by \tilde{I}_{i} 's.

Let $K \in P_{K d V}(F(T))$. Let k be the integer satisfying $K \in F^{k} P(F(T)) \backslash F^{k-1} P(F(T))$.

We may suppose $k \geq 1$. We shall show that

$$
K \in F^{k-1} P(F(T))+P_{0} .
$$

Then by the induction on k it follows that $K \in P_{0}$.

First by Proposition (2.3.1), K can be expressed as

$$
K=x_{k}(J)
$$

for some $J \in\left[D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\otimes k}\right]^{S_{k}}$. Applying D_{t} to both sides, we obtain by Proposition (3.3.1)

$$
x_{k}\left(\tilde{a}_{t} J\right)=0
$$

Then Proposition (2.3.2) implies

$$
\begin{equation*}
\widetilde{d}_{t} J \in \sum_{i=1}^{k} I m d_{i}+D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes \widetilde{A}^{\otimes k} \tag{4.1}
\end{equation*}
$$

For each positive integer i, fix I_{i} and $X_{i} \in A$ which satisfies the conditions of Theorem (A.3.3.1). Denote
by C the subspace of A spanned by $\left\{I_{i} ; i=1,2,3, \ldots\right\}$.

Define a subset T_{0} of T^{k} by

$$
r T_{0}:=\left\{\left(\left[x_{1}\right], \ldots,\left[x_{k}\right]\right) ; x_{1}<x_{2}<\ldots<x_{k}<x_{1}+1\right\},
$$

where $[x] \in R / Z$ denotes the class represented by $x \in R$. Then obviously T_{0} is a connected component of $T^{k} \backslash T^{k}(k-1)$. Let H be its characteristic function, 1.e., H is 1 on T_{0} and 0 on $T^{k}, ~ T_{0}$, which we regard as a distribution on T^{k}.

For $L \in \widetilde{A}^{\otimes k}$ define

$$
J_{L}:=(1 / k!) \sum_{s \in S_{k}} s[H \otimes L] \in\left[D^{\prime}\left(T^{k}\right) \otimes \tilde{A}^{\left.\otimes k^{\prime}\right]^{S_{k}}}\right.
$$

Denote by z_{k}. the cyclic subgroup of s_{k} generated by the cyclic permutation (12...k).

Lemma (4.2). If an element J of $\left[D^{\prime}\left(T^{k}\right) \otimes \tilde{A}^{\theta k}\right]^{S_{k}}$ satisfies (4.1), then an $L \in\left[C^{\otimes k}\right]^{Z}{ }^{k}$ exists such that

$$
x_{k}\left(J-J_{L}\right) \in F^{k-1} P(F(T))
$$

This is in fact one of the two key points in our proof of the main theorem and will be proved in $\S 5$.

When $k \leq 2$, we have $J_{L}=1 \otimes L$ because $T^{k} \backslash T^{k}(k-1)$ is connected. Hence we have modulo $\mathrm{F}^{\mathrm{k}-1} \mathrm{P}(\mathrm{F}(\mathrm{T})$)

$$
K=x_{k}(1 \otimes L) \in P_{0},
$$

which we wanted to show.

Suppose now $k \geq 3$.

We have proved that an $L \in\left[C^{\otimes k}\right]^{Z_{k}}$ exists which satisfies

$$
K-x_{k}\left(J_{L}\right) \in F^{k-1} P(F(T))
$$

Then by Proposition (2.3.1) we have an $N \in\left[D^{\prime}\left(T^{k-1}\right) \otimes \tilde{A}^{\otimes(k-1)}\right]^{S_{k-1}}$ satisfying

$$
K=x_{k}\left(J_{L}\right)+x_{k-1}(N)
$$

Applying D_{t}, we obtain

$$
\begin{equation*}
D_{t} x_{k}\left(J_{L}\right)+x_{k-1}\left(\tilde{a}_{t} N\right)=0 \tag{4.3}
\end{equation*}
$$

Now we calculate $D_{t} X_{k}\left(J_{L}\right)$. Define

$$
\partial: c^{\otimes k} \longrightarrow \widetilde{A}^{\otimes(k-1)}
$$

by

$$
\begin{aligned}
\partial\left(I_{i_{1}} \otimes \ldots \otimes I_{i_{k}}\right)= & S\left(i_{k}, i_{1}\right) \otimes I_{i_{2}} \otimes \ldots \otimes I_{i_{k}} \\
& +\sum_{j=1}^{k-1} I_{i_{1}} \otimes \ldots \otimes I_{i_{j-1}} \otimes S\left(i_{j}^{\prime} i_{j+1}\right) \otimes I_{i_{j+2}} \otimes \ldots \otimes I_{i_{k}} .
\end{aligned}
$$

Here $S(i, j):=-I_{i} X_{j}+I_{j} X_{i}$. Then we have

Lemma (4.4). For $L \in C^{\otimes k}$,

$$
D_{t} x_{k}\left(J_{L}\right)=x_{k-1}\left(J_{\partial L}\right)
$$

Proof. For the sake of simplicity, we prove this when $k=3$. Let $L=Z\left(I_{a} \otimes I_{b} \otimes I_{c}\right)$. Then, for $u \in F(T)$,

$$
\left(x_{3} J_{L}\right)[u]=\int_{0}^{1} d x \int_{x}^{x+1} d y \int_{y}^{x+1} d z I_{a}[u](x) I_{b}[u](y) I_{c}[u](z)
$$

Put $f_{i}=I_{i}[u]$ and $g_{i}=X_{i}[u](i=a, b, c)$ for brevity. Since $d_{t} I_{i}=d X_{i}$, we have

$$
\left(d_{t} I_{i}\right)[u]=\left(d x_{i}\right)[u]=g_{i}^{\prime}
$$

Hence we have

$$
\begin{aligned}
D_{t} X_{3}\left(J_{L}\right)[u] & =\int_{0}^{1} g_{a}^{\prime}(x) d x \int_{x}^{x+1} f_{b}(y) d y \int_{y}^{x+1} f_{c}(z) d z \\
& +\int_{0}^{1} f_{a}(x) d x \int_{x}^{x+1} g_{b}^{\prime}(y) d y \int_{y}^{x+1} f_{c}(z) d z \\
& +\int_{0}^{1} f_{a}(x) d x \int_{x}^{x+1} f_{b}(y) d y \int_{y}^{x+1} g_{y}^{\prime}(z) d z
\end{aligned}
$$

The first term is

$$
\begin{aligned}
& \quad \int_{0}^{1} d x\left\{\left[g_{a}(x) \int_{x}^{x+1} f_{b}(y) d y \int_{y}^{x+1} f_{c}(z) d z\right]^{\prime}+\right. \\
& \\
& \left.+g_{a}(x) f_{b}(x) \int_{x}^{x+1} f_{c}(z) d z-g_{a}(x) \int_{x}^{x+1} f_{b}(y) d y f_{c}(x+1)\right\}= \\
& = \\
& \int_{0}^{1} g_{a}(x) f_{b}(x) d x \int_{x}^{x+1} f_{c}(y) d y-\int_{0}^{1} g_{a}(x) f_{c}(x) d x \int_{x}^{x+1} f_{b}(y) d y .
\end{aligned}
$$

The second is

$$
\begin{aligned}
& \int_{0}^{1} f_{a}(x) d x \int_{x}^{x+1} d y\left\{\frac{\partial}{\partial y}\left[g_{b}(y) \int_{y}^{x+1} f_{c}(z) d z\right]+g_{b}(y) f_{c}(y)\right\} \\
= & -\int_{0}^{1} f_{a}(x) g_{b}(x) \cdot \int_{x}^{x+1} f_{c}(y) d y+\int_{0}^{1} f_{a}(x) d x \int_{x}^{x+1} g_{b}(y) f_{c}(y) d y .
\end{aligned}
$$

The third is

$$
\int_{0}^{1} f_{a}(x) g_{c}(x) \int_{x}^{x+1} f_{b}(y) d y-\int_{0}^{1} f_{a}(x) d x \int_{x}^{x+1} f_{b}(y) g_{c}(y) d y
$$

Hence we have

$$
\begin{aligned}
D_{t} x_{3}\left(J_{L}\right)[u] & =\int_{0}^{1}\left(-f_{a}(x) g_{b}(x)+g_{a}(x) f_{b}(x)\right) d x \int_{x}^{x+1} f_{c}(y) d y \\
& +\int_{0}^{1}\left(-f_{c}(x) g_{a}(x)+g_{c}(x) f_{a}(x)\right) d x \int_{x}^{x+1} f_{b}(y) d y \\
& +\int_{0}^{1} f_{a}(x) d x \int_{x}^{x+1}\left(-f_{b}(y) g_{c}(y)+g_{b}(y) f_{c}(y)\right) d y \\
& =x_{2}\left(J_{\partial L}\right)[u] .
\end{aligned}
$$

By this lemma, (4.3) implies

$$
\begin{equation*}
x_{k-1}\left(J_{3 L}+\tilde{d}_{t} N\right)=0 \tag{4.5}
\end{equation*}
$$

Lemma (4.6). If an $L \in\left[C^{\otimes k}\right]^{Z} k$ satisfies (4.5) for an $N \in\left[D^{\prime}\left(T^{k-1}\right) \otimes \tilde{A}^{\otimes(k-1)}\right]^{S_{k-1}}$, then L is S_{k}-invariant.

The proof of this is the most involved and will be given in § 7.

This lemma implies that $L \in\left[C^{\otimes k}\right]^{S_{k}}$, whence $J_{L}=1 \otimes L$. It follows then that modulo $F^{k-1} P(F(T))$

$$
K \equiv x_{k}(1 \otimes L) \in P_{0}
$$

This completes the proof of the main Theorem (1.4.2).
§ 5. Proof of Lemma (4.2).

We use the notations of §A.2.4 with $M=D^{\prime}\left(T^{k}\right)$ and $\partial_{j}=\partial / \partial x_{j}$. Further we define $\Delta_{j}:=D_{K, j}+X_{K, j}$ with $K=u u_{1}+u_{3}$.

Applying δ to the both sides of (4.1), we obtain

$$
\begin{equation*}
\left(\Delta_{1}+\ldots+\Delta_{k}\right) 8 J \in D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes \widetilde{A}^{\otimes k} \tag{5.1}
\end{equation*}
$$

because of Lemmas (A.2.4.1-2) and Corollary (A.2.4.3).

Denote by r the restriction map from $D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\otimes k}$ to $D^{\prime}\left(T^{k} \backslash T^{k}(k-1)\right) \otimes A^{\otimes k}$ - Then from (5.1) it follows

$$
\begin{equation*}
\left(\Delta_{1}^{\prime}+\ldots+\Delta_{k}^{\prime}\right) r(\delta J)=0, \tag{5.2}
\end{equation*}
$$

where $\Delta_{i}^{\prime}(i=1, \ldots, k)$ is the endomorphism of $D^{\prime}\left(T^{k} \backslash T^{k}(k-1)\right) \otimes \widetilde{A}^{\otimes k}$ denoted by Δ_{i} in $\S A .2 .4$ for $M=D^{\prime}\left(T^{k} \backslash T^{k}(k-1)\right)$ and $\partial_{j}=\partial / \partial x_{j}$.

Now we solve the equation (5.2).

Let T_{i} be the variational derivative of $I_{i}: T_{i}=\delta_{u} I_{i}$ (cf.§A.2.2 for the defintion of δ_{u}). Denote by δC the subspace of $\widetilde{\mathrm{A}}$ spanned by. $\mathrm{T}_{\mathrm{i}}{ }^{\prime} \mathrm{s}(i=1,2,3 \ldots)$, and by LC(X), the space of locally constant real valued functions on a topological space X. Then

Lemma (5.3). $\operatorname{Ker}\left(\Delta_{1}^{\prime}+\ldots+\Delta_{k}^{\prime}\right)=\operatorname{LC}\left(T^{k} \backslash T^{k}(k-1)\right) \otimes(0 C)^{\otimes k}$.

Proof. We apply Lemma (A.3.6.1) to
$M=D^{\prime}\left(T^{k} \backslash T^{k}(k-1)\right) \otimes \widetilde{A}^{\otimes(k-1)} \otimes R \quad$ with $\partial=\partial / \partial x_{k} \quad$ and $G=\Delta_{1}^{\prime}+\ldots+\Delta_{k-1}^{\prime}$. Then we obtain

$$
\operatorname{Ker}\left(\Delta_{1}^{1}+\ldots+\Delta_{k}^{\prime}\right)=\left(\operatorname{Ker}\left(\partial / \partial x_{k}\right) \cap \operatorname{Ker}\left(\Delta_{1}^{\prime}+\ldots+\Delta_{k-1}^{\prime}\right)\right) \otimes \delta C .
$$

By induction, we obtain

$$
\operatorname{Ker}\left(\Delta_{1}^{\prime}+\ldots+\Delta_{k}^{\prime}\right)=\left(\operatorname{Ker}\left(\partial / \partial x_{1}\right) \cap \ldots \cap \operatorname{Ker}\left(\partial / \partial x_{k}\right)\right) \otimes(\delta C)^{\otimes k}
$$

Q.E.D.

Hence we have

$$
r(\delta J)=\sum_{C} H_{C} \otimes \delta\left(L_{C}\right),
$$

where c ranges over the set of connected components of $T^{k} \backslash T^{k}(k-1), H_{C}$ is the characteristic function of c and $L_{C} \in C$. Since J is S_{k}-symmetric, we have

$$
\delta L_{s c}=\delta L_{C}
$$

for all c and $s \in S_{k}$, Hence putting $L:=L_{T_{0}}$, we have

$$
r \delta\left(J-J_{L}\right)=0
$$

which means

$$
\delta\left(J-J_{L}\right) \in D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes \tilde{A}^{\otimes k}
$$

It follows then by Lemma (A.2.4.1) that

$$
J-J_{L} \in \sum_{i=1}^{k}{I m d_{i}}^{k} D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes \widetilde{A}^{\otimes k}
$$

whence by Proposition (2.3.2)

$$
x_{k}\left(J-J_{L}\right) \in F_{k-1} P(F(T))
$$

Finally we note that L is Z_{k}-invariant. In fact the Z_{k}-invariance of T_{0} implies that, for $s \in Z_{k}$,

$$
\delta(L-s L)=0
$$

whence $\mathrm{L}=\mathrm{sL}$ because of Lemma (A.2.4.4).

This completes the proof of Lemma (4.2).
§ 6. Algebraic independency.

We prove in this section the following

Theorem (6.1). Let $\left\{K_{1}, \ldots, K_{m}\right\}$ be a linearly independent subset of $\bar{A}:=X_{1}(R \otimes \widetilde{A}) \subset F^{1} P(F(T))$. Then they are algebraically independent in the algebra $\mathrm{P}(\mathrm{F}(\mathrm{T}))$.

Proof. It suffices to show the injectivity of the map $a: \oplus_{k=0}^{\infty}\left[\bar{A}^{\otimes \mathrm{k}}\right]^{S_{k}} \longrightarrow P(F(T))$
induced by the multiplication. Moreover we have only to show for each k the injectivity of the map

$$
a_{k}:\left[\bar{A}^{\otimes k}\right]^{S_{k}} \longrightarrow F^{k_{p}(F(T)) / F^{k-1} P(F(T))}
$$

induced from a, since

$$
a\left(\left[\bar{A}^{\otimes k}\right]^{S_{k}}\right) \subset F^{k^{\prime}}(F(T))
$$

Suppose a_{k} is not injective, i.e.,

$$
a(\bar{g}) \in F^{k-1} P(F(T))
$$

for some $\bar{g} \in\left[\bar{A}^{\otimes k}\right]^{S_{k}}$. Choose $g \in\left[Q^{\otimes k}\right]^{S_{k}}$ such that $\bar{g}=x_{k}(1 \otimes g)$ where Q is a complement of Imd in \widetilde{A}. Then by Proposition (2.3.2)

$$
1 \otimes g \in\left[D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes \widehat{A}^{\otimes k}\right]^{S_{k}}+\sum_{i=1}^{k} I m d_{i}
$$

Let T_{0} be a connected component of $T^{k} \backslash T^{k}(k-1)$. Then on T_{0} we have

$$
1 \otimes g \in \sum_{i=1}^{k} I m d_{i}
$$

Now we use the results of § A.2.4 with $M=D^{\prime}\left(T_{0}\right), \partial_{i}=\partial / \partial x_{i}$. Then we have

$$
\delta(1 \otimes g)=0
$$

But this implies $\delta^{\prime} g=0$, where δ^{\prime} denotes the δ of §A.2.4 with $M=R$ and $\partial_{i}=0$. By Lemma (A.2.4.4), we have $g=0$, whence $\bar{g}=0$, establishing the injectivity of a_{k}.
Q.E.D.

§ 7. Proof of Lemma (4.6)

By virtue of Proposition (2.3.2), it suffices to prove the following. Put $Z=1 /(k-1)!\sum_{s \in z_{k-1}} s$.

Lemma (7.1). Let $k \geq 3$. Suppose an

$$
L=\left[a_{i_{1}} \ldots i_{k} I_{i_{1}} \otimes \ldots \otimes I_{i_{k}} \in\left[c^{\otimes k}\right]^{2} k\right.
$$

satisfies

$$
\begin{equation*}
Z(\partial L)=\sum_{i=1}^{k-1} d_{i} N_{i}+\widetilde{d}_{t} N \quad \text { on } \quad T_{0} \text {, } \tag{1}
\end{equation*}
$$

where T_{0} is a component of $T^{k-1} \backslash T^{k-1}(k-2)$ and $N_{i}, N \in D^{\prime}\left(T_{0}\right) \otimes \tilde{A}^{\otimes(k-1)}$. Then $L \in\left[C^{\otimes k}\right]_{k}$.

Proof. Since L is Z_{k}-invariant, we have

$$
Z(\partial L)=\frac{k}{k-1} \sum_{j=1}^{k-1} a_{i_{1}} \ldots i_{j} I_{i_{1}} \otimes \ldots \otimes I_{i_{j-1}} \otimes S\left(i_{j}, i_{j+1}\right) \otimes I_{i_{j+2}} \otimes \ldots \otimes I_{i_{k}} .
$$

We use the notations of §A.2.4 with $M=D^{\prime}\left(T_{0}\right)$ and $\partial_{j}=\partial / \partial x_{j}$. Let $\Delta_{j}=D_{K, j}+X_{K, j}$ with $K=u u_{1}+u_{3}$. Applying δ to (1), we obtain
(2) $\quad \sum_{j=1}^{k-1} a_{i_{1}} \ldots i_{k} T_{i_{1}} \otimes \ldots \otimes T_{i_{j-1}} \otimes T_{i_{j}}{ }_{j+1} \otimes \ldots \otimes T_{i_{k}}=\left(\Delta_{1}+\ldots+\Delta_{k-1}\right) P$, where $T_{i j}:=\delta(S(i, j)) \in \widetilde{A}, P=k /(k-1) \delta N$.

Sublemma (7.2). Let $k \geq 1$. The elements

$$
\left\{T_{i_{1}} \otimes \ldots \otimes{\underset{i}{i}}_{j-1} \otimes T_{i_{j}} i_{j+1} \otimes \ldots \otimes T_{i_{k+1}} ; 1 \leq j \leq k, i_{a} \in z_{+}, i_{j}<i_{j+1}\right\}
$$

are linearly independent in $D^{\prime}\left(T_{0}\right) \otimes \widetilde{A}^{\otimes k}$ modulo $\operatorname{Im}\left(\Delta_{1}+\ldots+\Delta_{k}\right)$.

By this, (2) implies

$$
a_{i j i_{3}} \ldots i_{k}=a_{j i i_{3}} \ldots i_{k}
$$

for all $i, j, i_{3}, \ldots, i_{k}$. Since $a_{i_{1}} \ldots i_{k}$ is cyclic with respent to the suffixes, it follows that $a_{i_{1}} \ldots i_{k}$ is actually symmetric, whence $L \in\left[C^{\otimes k}\right]^{S}$.

Thus it remains to prove Sublemma (7.2).

Let $k=1$. Suppose

$$
\begin{equation*}
\sum_{i<j} a_{i j} T_{i j}=\Delta P \tag{3}
\end{equation*}
$$

for some $P \in D^{\prime}(T) \otimes \widetilde{A}$ with some $a_{i j} \neq 0$. We use the notations of §A.3.4 with $M=D^{\prime}(T)$ and $\partial=\partial / \partial x$. Let P_{i} be the A_{M}^{i} - component of P and put
$m:=\max \left[\left\{2(i+j) ; a_{i j} \neq 0\right\} \cup\left\{i+3 ; \Delta P_{i} \neq 0\right\}\right]$.

Note that m must be even. In fact otherwise, we have $\Delta P_{m-3}=0$, contradicting to the definition of m.

Put $m=2 s$. Then the $A_{M}^{2 s}$ - component of (3) is

$$
\sum_{i+j} a_{i j} T_{i j}=\Delta P_{2 s-3}
$$

Applying Proposition (A.3.5.1), we obtain $a_{i j}=0$ for $i+j=s$ and $P_{2 s-3}=0$ contradicting to the definition of $m=2 s$. Hence (3) implies $a_{i j}=0$ for all i and j. Let now $k \geq 2$ and
(4) $\sum \mathrm{a}^{\ell}{ }_{i_{1}} \ldots i_{\ell-1} s t i_{\ell+1} \ldots i_{k} T_{i_{1}} \otimes \ldots \otimes T_{i_{\ell-1}} \otimes T_{s t} 8 T_{i_{\ell+1}} \otimes \ldots \otimes T_{i_{k}}=\left(\Delta_{1}+\ldots+\Delta_{k}\right) P$
with $P \in D^{\prime}\left(T_{0}\right) \otimes \widetilde{A}^{\otimes k}$. Suppose some of the $a^{\prime} s$ is nonzero. We use the notations of §A.3.4 now with $M=D^{\prime}\left(T_{0}\right) \otimes \widetilde{A}^{\otimes(k-1)}$ and $\partial=\partial / \partial x_{k}$. Then (4) can be rewritten as

$$
\begin{equation*}
a_{i} \otimes T_{i}+\sum_{i<j} a_{i j} \otimes T_{i j}=\left(G+\Delta^{M}\right) p \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{i j}:=\left[a_{i_{1}}^{k} \ldots i_{k-1} i j^{\otimes T_{i_{1}} \otimes \ldots \otimes T_{i_{k-1}}},\right. \\
& a_{i}:=\sum_{\ell=1}^{k-1} a^{\ell}{ }_{i_{1}} \ldots i_{\ell-1} s t i_{\ell+1} \ldots i_{k-1} i^{T_{i_{1}} \otimes \ldots \otimes T_{i_{\ell-1}} \otimes T_{s t} \otimes T_{i_{\ell+1}} \otimes \ldots \otimes T_{i_{k-1}}}, \\
& G \quad:=\Delta_{1}+\ldots+\Delta_{k-1} .
\end{aligned}
$$

Let P_{i} be the A_{M}^{i}-component of P. Let m be the maximum number in the union of $\left\{2(i+j) ; a_{i j} \neq 0\right\},\left\{2 i+2 ; a_{i} \neq 0\right\}$ and
$\left\{i+3 ;\left(G+\Delta^{M}\right) P_{i} \neq 0\right\}$.
Suppose m is odd and let $m=2 s+1$. Then the $A_{M}^{2 s+2}-$ and $A_{M}^{2 s}$-components of (5) read

$$
\Delta_{3}^{M} P_{2 s-2}=0
$$

*

$$
\Delta{ }_{2}^{M} P_{2 s-2}+\Delta M_{3}^{M} P_{2 s-3}=\sum_{\substack{i<j \\ i+j=s}} a_{i j} \otimes T_{i j}+a_{s+1} \otimes T_{s+1}
$$

Then by virtue of Proposition (A.3.5.1) ,

$$
a_{s+1}+3 a_{1, s-1}=0
$$

which implies $a_{s+1}=a_{1, s-1}=0$ by virtue of Corollary (A.3.3.3). Then by (ii) of Proposition (A.3.5.1) $a_{i j}=0(i+j=s)$ and $\Delta^{M} P_{2 \ell-2}=0$, which contradicts the definition of m.

Let $m=2 s$. Putting $P_{2 s-2}=0$, we can use the above arguments to show that $a_{s}=0, a_{i j}=0(i+j=s)$ and $\Delta_{3}^{M_{2 s-3}}=0$. But then $P_{2 s-3}=0$ by Lemma (A.3.4.2). We obtain again a. contradiction.

This completes the proof of Sublemma (7.2) and hence that of Lemma (7.1).
§ 8. Remarks and Problems.

Some of the following have also been stated in [T2].
8.1. The validity of our result reltes partiy on the following algebraic fact: The map $k: \Lambda^{2} H^{1} \longrightarrow H^{2}$ induced from the exterior product $\Omega^{1} \times \Omega^{1} \longrightarrow \Omega^{2}$ (cf.§A.3.1 for the notations) is injective, which is an easy consequence of Proposition (A.3.5.1) .

Problem. Are the similar maps for other solition equations injective?
8.2. Conversely if some evolution equation $u_{t}=F$ (FEA) has the nonzero kernel of $\Lambda^{2} H^{1} \longrightarrow H^{2}$, then we can construct an invariant which cannot be expressed as a polynomial of local conserved quantities. For example, suppose there are three 1 -forms $w_{i}=I_{i} d x+X_{i} d t(i=1,2,3)$ such that $D_{F} W_{i}=0 \quad(i=1,2,3)$ and $w_{1} \wedge w_{2}=D_{F} w_{3}$, 1.e..

$$
\begin{aligned}
& d_{t} I_{i}=d X_{i} \\
& I_{1} X_{2}+I_{2} X_{1}=d x_{3}+d_{t} I_{3}
\end{aligned}
$$

where $d_{t}=X_{F}(c f . \S A .2 .3)$. Then it 1 easily shown that

$$
\mathrm{K}[\mathrm{u}]:=\int_{-\infty}^{\infty} \mathrm{r}_{1}\left(\mathrm{x}_{1}\right) \mathrm{d} x_{1} \int_{-\infty}^{x_{1}} I_{2}\left(x_{2}\right) d x_{2}+\int_{-\infty}^{\infty} I_{3}(x) d x
$$

$\left(I_{i}(x):=I_{i}[u](x)\right)$ is an invariant with respect to the flow on the Schwarz space $S(R)$ induced by the equation.
8.3. A similar result as Theorem (1.4.2) can be obtained when we consider the KdV-flow on the Schwarz space $S(R)$ on R.
8.4. When n is greater than one, there are spectral invariant polynomial functionals for the Laplace operator $\Delta+u$ on the n -dimensional torus which cannot be expressed as a polynomial of local spectral invariants (cf. [S]).

Problem. Find all the spectral invariant polynomial functionals: $F\left(T^{n}\right) \longrightarrow R$ for $-\Delta+u(n \geq 2)$.
8.5. We can conṣider a sort of de Rham complex on $F(T)$ as follows: A map $w: F(T) \times F(T)^{P} \longrightarrow R$ is called a polynomial p-form if it can be written as

$$
\begin{aligned}
w\left(u, x_{1}, \ldots, x_{p}\right)= & \sum_{N} \int_{T^{N} N_{T^{p}} p} w_{N}\left(x_{1}, \ldots, x_{N} ; y_{1}, \ldots, y_{p}\right) \\
& u\left(x_{1}\right) \ldots u\left(x_{N}\right) x_{1}\left(y_{1}\right) \ldots x_{p}\left(y_{p}\right) d x_{1} \ldots d x_{N} d y_{1} \ldots d y_{p}
\end{aligned}
$$

$\left(u, X_{i} \in F(T)\right)$, where w_{N} is a distribution on T^{N+p}, symmetric in X_{i} 's and antisymmetric in $y_{i} ' s$ and only a finite number of W_{N} 's are nonzero. Denote by $\Omega^{P_{F}(T)}$ the space of all the polynomial p-forms. Define the exterior differentiation $d: \Omega^{P} F(T) \longrightarrow \Omega^{p+1} F(T)$ by

$$
\begin{aligned}
& d w\left(u, x_{1}, \ldots, x_{p+1}\right) \\
=\sum_{N \geq 1}^{p+1} \sum_{i=1}^{p+1}(-1 & \int_{T^{N-1}}{ }_{\times T^{p+1}}{ }^{N w_{N}}\left(x_{1}, \ldots, x_{N-1}, y_{i}: y_{1}, \ldots, \hat{y}_{i}, \ldots, y_{p+1}\right) \\
& u\left(x_{1}\right) \ldots u\left(x_{N-1}\right) x_{1}\left(y_{1}\right) \ldots x_{p+1}\left(y_{p+1}\right) d x_{1} \ldots d x_{N-1} d y_{1} \ldots d y_{p+1} .
\end{aligned}
$$

Then we obtain a complex $\{\Omega \star F(T), d\}$. This is easily seen to be acyclic.

Let D_{t} be the Lie derivation on $\Omega \star F(T)$ induced by the KdV-flow on $F(T)$. Since D_{t} commutes with d, we can define the subcomplex of invariant polynomial forms: $\Omega_{K d V}^{*}{ }^{\mathrm{F}}(\mathrm{T}):=\operatorname{KerD}_{t}$. Note that our main result asserts that $\Omega_{K d V}^{0}(T) \cong R\left[\tilde{I}_{1}, \tilde{I}_{2}, \ldots\right]$.

Problem. Determine the space $\Omega_{K d v}^{\star} F(T)$ and then compute its cohomology.

The first step of the calculation goes just in the same way as in § 2-3. The second step corresponding to the determination of the space of local conserved densities is to calculate the $E_{1}^{1, P}$-terms ($p \geq 1$) of the Vinogradov's spectral sequence (cf: $[T 1, V])$ associated to the KdV-equation, which does not seem to be carried out yet.

§ A.1. Distributions.

In this section, we recall structure theorems of distributions and prove the propositions (2.3.1-2).
A.1.1. Structure theorem of distributions.

Let $R^{n+m}=R_{x}^{n} \times R_{y}^{m}$ be the Euclidean space with the standard linear coordinate system $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ and x the submanifold defined by $y_{1}=\ldots=y_{m}=0$, which we identify with R_{X}^{n}. Let K be a compact subset of X.

Define

$$
Q: D^{\prime}\left(R_{x}^{n}, K\right) \otimes R\left[\partial_{x}, \partial_{y}\right] \longrightarrow D^{\prime}\left(R^{n+m}, K\right)
$$

by

$$
\left\langle Q\left(w \otimes \partial{ }_{x}^{A} \partial_{y}^{B}\right), f\right\rangle=\left\langle w,\left.{ }^{A} x^{A} y_{y}^{B} f\right|_{y=0}\right\rangle
$$

for $w \in D^{\prime}\left(R_{x}^{n}, K\right):=\left\{w \in D^{\prime}\left(R_{x}^{n}\right) ; \operatorname{supp}(w) \subset K\right\} \quad, A \in z_{+}^{m}, B \in z_{+}^{n}$, $f \in F_{0}\left(R^{n+m}\right):=\left\{\right.$ smooth functions on R^{n+m} with compact supports\}. Here $\partial_{x}=\partial / \partial x, R\left[\partial_{x}, \partial_{y}\right]$ is the polynomial algebra on ${ }^{\partial} x$ and ${ }^{\partial}{ }_{y}$, and ∂_{x}^{A} stands for $\left(\partial_{x_{1}}\right)^{A_{1}} \ldots\left(\partial_{x_{n}}\right)^{A_{n}}$ when $A=\left(A_{1}, \ldots, A_{n}\right)$. The structure theorem of the distributions (cf. [Sch]) can be formulated as the following

Theorem (A.1.1.1). Q is an isomorphism on $D^{\prime}\left(R_{X}^{n}, K\right) \otimes R\left[\partial_{Y}\right]$.

We describe now the kernel of Q : Define endomorphisms $D_{i}(i=1, \ldots, n)$ of $D^{\prime}\left(R_{x}^{n}, K\right) \otimes R\left[\partial_{x}, \partial_{y}\right]$ by

$$
D_{i}:=\partial_{x_{i}} \otimes 1+1 \otimes \partial x_{i}
$$

where ${ }^{\partial} \mathbf{x}_{i}$ stands also for the multiplication map:
$P\left(\partial_{x},{ }_{y}\right) \longmapsto P\left(\partial_{x}, \partial_{y}\right) \partial_{x_{1}}$. Then obviously Q maps $I_{m} D_{1}+\ldots+I m D_{n}$ to zero. In fact we can show

Proposition (A.1.1.2). (1) $\operatorname{Ker} Q=\sum_{i=1}^{n} \operatorname{Im} D_{i}$.
(ii) For a compact subset L of K,

$$
Q^{-1}\left(D^{\prime}\left(R^{n+m}, L\right)\right)=D^{\prime}\left(R_{x}^{n}, L\right) \otimes R\left[\partial_{x}, \partial_{y}\right]+\sum_{i=1}^{n} \operatorname{Im} D_{i} .
$$

Proof. (ii) implies (1) if we put $L=\phi$.

Suppose

$$
Q\left(\sum w_{A B} \otimes \partial_{x}^{A_{\partial} B_{y}}\right) \in D^{\prime}\left(R^{n+m}, L\right)
$$

Since

$$
w \otimes \partial_{x}^{A} \partial_{y}^{B} B\left(-\partial_{x}\right)^{A}{ }_{w} \otimes \partial_{y}^{B}\left(\bmod \cdot \sum_{i=1}^{n} I m D_{i}\right),
$$

we have

$$
Q\left(\sum\left(-\partial_{x}\right)^{A} W_{A B} \otimes{\underset{y}{y}}_{B^{B}}\right) \in D^{\prime}\left(R^{n+m}, L\right),
$$

whence, by the above theorem,

$$
\left[\left(-\partial_{x}\right)^{A} W_{A B} \otimes \partial_{Y}^{B} \in D^{\prime}\left(R^{n}, L\right) \otimes R\left[\partial_{Y}\right]\right.
$$

Thus

$$
\left[w_{A B} \otimes \partial_{x} A_{y} \partial_{y}^{B} \in D^{\prime}\left(R^{n}, L\right) \otimes R\left[\partial_{y}\right]+\left[I m D_{i} .\right.\right.
$$

Q.E.D.
A.1.2. Decomposition of $D^{\prime}\left(T^{n}, T^{n}(k)\right)$.

We denote by $P(n, k) \quad(1 \leq k \leq n)$ the set of all the partitions of $\{1, \ldots, n\}$ into k nonvoid subsets:

$$
\begin{aligned}
P(n, k):= & \left\{p=\left\{p_{1}, \ldots, p_{k}\right\} ; p_{1} \cup \ldots \cup p_{k}=\{1, \ldots, n\},\right. \\
& \left.p_{i} \neq \phi, p_{i} \cap p_{j}=\phi(i \neq j)\right\}
\end{aligned}
$$

For $p \in P$, put

$$
T^{n}[p]:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in T^{n} ; x_{i}=x_{j} \quad \text { if } \quad i, j \in P_{a} \text { for some } a\right\}
$$

Then

$$
\dot{T}^{n}(k)=U_{p \in P(n, k)} T^{n}[p]
$$

Since the subset T^{n} is regular in the sense of [Sch], we have

Lemma (A.1.2.1). The map

$$
g: \oplus_{p} \epsilon_{P(n, k)} D^{\prime}\left(T^{n}, T^{n}[p]\right) \longrightarrow D^{\prime}\left(T^{n}, T^{n}(k)\right)
$$

induced from the inclusions is surjective.

Denote by $\bar{P}(n, k)$ the subset of $P(n, k)$ consisting of all the p's satisfying the following condition: whenever $i<j, a \in p_{i}, b \in p_{j}$, one has $a<b$. Let $S_{n} a c t$ on $P(n, k)$ by

$$
s p:=\left\{s p_{1}, \ldots s p_{k}\right\} \quad\left(s \in S_{n}, p \in P(n, k)\right)
$$

and define for $p \in P(n, k)$ the subgroup

$$
S(p):=\left\{s \in S_{n} ; s p=p\right\},
$$

which leaves $D^{\prime}\left(T^{n}, T^{n}(p)\right)$ invariant.

Lemma (A.1.2.2). g induces a surjection:

$$
G^{\prime}:=S^{\circ} \bar{g}: \oplus_{p \in \bar{P}(n, k)} D^{\prime}\left(T^{n}, T^{n}[p]\right)^{S(p)} \longrightarrow D^{\prime}\left(T^{n}, T^{n}(k)\right)^{S_{n}},
$$

where \bar{g} is the restriction of g and S is the symmetrination.

Proof. Let $K \in D^{\prime}\left(T^{n}, T^{n}(k)\right)^{S_{n}}$. By Lemma (A.1.2.1),

$$
K=\sum_{p \in P(n, k)} K_{p}
$$

for some $K_{p} \in D^{\prime}\left(T^{n}, T^{n}[p]\right)$. Then

$$
\begin{aligned}
K & =(1 / n!) \sum_{s \in S_{n}} s K \\
& =(1 / n!) \sum_{p \in P(n, k)} \sum_{s \in S_{n}} s K_{p} \\
& =(1 / n!) \sum_{q \in P(n, k)} \sum_{s \in S_{n}} s K s^{-1} q
\end{aligned}
$$

Put

$$
\widetilde{K}_{q}:=(1 / n!) \sum_{s \in S_{n}} s K_{s^{-1}}
$$

Since $\operatorname{supp}\left(s K_{p}\right) \subset T^{n}[s p]$, we have $\widetilde{K}_{q} \in D^{\prime}\left(T^{n}, T^{n}[q]\right)$. Furthermore it is easy to see that \widetilde{K}_{q} is $S(q)$-invariant and that $s \widetilde{K}_{q}=\widetilde{K}_{\text {sq }}$: Hence noting that $S_{n} \bar{P}(n, k)=P(n, k)$, we obtain

$$
\begin{aligned}
K & =\sum_{q \in P(n, k)} \tilde{K}_{q} \\
& =\sum_{p \in \bar{P}(n, k)}(1 / m(p)!) \sum_{s \in S_{n}} s \widetilde{K}_{p} \\
& =s\left(\sum_{p \in \bar{P}(n, k)}(n!/ m(p)!) \tilde{K}_{p}\right)
\end{aligned}
$$

where $m(p)=\#_{S}(p)$.
Q.E.D.
A.1.3. Description of $D^{\prime}\left(T^{n}, T^{n}[p]\right)^{S}(p)$.

Define for $p \in \vec{P}(n, k)$ the subspace $A<p>$ of $A^{\otimes k}$ spanned by all such elements $f_{1} \otimes \ldots \otimes f_{k}$ as f_{i} is homogeneous of degree $H_{p_{i}}(i=1, \ldots, k)$. Denote the restriction
of \tilde{x}_{k} on $D^{\prime}\left(T^{k}\right) \otimes A<p>$ by \tilde{x}_{p}.

Lemma (A.1.3.1).
(i) $\quad \operatorname{Im} \tilde{x}_{p}=g^{\prime}\left(D^{\prime}\left(T^{n}, T^{n}[p]\right)^{S(p)}\right)$,
(ii) $\operatorname{Ker} \tilde{X}_{p}=D^{\prime}\left(T^{k}\right) \otimes A<p>\cap \sum_{i=1}^{k} I m d_{i}$,
(iii) $X_{p}^{-1}\left(D^{\prime}\left(T^{n}, T^{n}(k-1)\right)\right)=D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes A<p>+\sum_{i=1}^{k} \operatorname{Im} d_{i}$.

Proof. (i) Obviously the left hand side is in the right. Denote by \bar{p}_{1} the number of the elements of p_{i} and denote the coordinates of R^{n} as $\left(x_{11}, \ldots, x_{1} \bar{p}_{1}, \ldots, x_{k \bar{p}_{k}}\right)$. Then $T^{n}[p]$ is the submanifold defined by the equations:

$$
x_{11}=\ldots=x_{1} \bar{p}_{1}, \cdots, \quad x_{k 1}=\ldots=x_{k} \bar{p}_{k}
$$

Hence, by Theorem (A.1.1.1), for each $K \in D^{\prime}\left(T^{n}, T^{n}[p]\right)$ we can find such an element $\left[K_{B} \otimes \partial_{X}^{B}\right.$ of $D^{\prime}\left(T^{k}\right) \otimes R\left[\partial_{X}\right]$ as

$$
\left(g^{\prime} K\right)[u]=\sum\left\langle K_{B}, L_{B, 1} u \otimes \ldots \otimes L_{B, k}^{u>}\right.
$$

for $u \in F(T)$, where

$$
L_{B, i} u:=\partial_{x_{i 1}}^{B_{i 1}} u \ldots \partial^{{ }_{x}}{ }_{x_{i} \bar{p}_{i}}^{B_{i} \bar{p}_{i}} \quad(1 \leq \pm \leq k)
$$

$\left(B=\left(B_{11}, \ldots, B_{1} \bar{p}_{1}, \ldots, B_{k 1}, \ldots, B_{k \bar{p}_{k}}\right)\right)$. If we put

$$
f_{B}:=u_{B_{11}} \cdots u_{B_{1} \bar{p}_{1}} \otimes \ldots \otimes u_{B_{k 1}} \ldots u_{B_{k \bar{p}_{k}}} \in A<p>,
$$

then

$$
\left(g^{\prime} K\right)[u]=\bar{x}_{k}\left(\sum K_{B} \otimes f_{B}\right)[u],
$$

which shows (i) . The other assertions follow immediately from Proposition (A.1.1.2).
Q.E.D.
A.1.4. Proof_of Propositions (2.3.1-2).

Proposition (2.3.1) follows directly from Lemma (A.1.2.2) and (i) of Lemma (A.1.3.1).

Proof of Proposition (2.3.2). Let $K \in D^{\prime}\left(T^{k}\right) \otimes \widetilde{A}^{\otimes k}$.

Since

$$
\widetilde{\mathrm{A}}^{\otimes k}=\oplus_{n \geq k} A(k, n)
$$

with

$$
A(k, n):=\oplus_{p} \in \bar{P}(n, k)^{A}\langle p\rangle
$$

we can write

$$
k=\sum_{n \geq k} \sum_{p \in \bar{p}(n, k)} K_{p}
$$

with $K_{p} \in D^{\prime}\left(T^{k}\right) \otimes A<p>$. Suppose $\tilde{x}_{k}(K) \in F^{k-1} P(F(T))$. Since $\tilde{x}_{k}(A(k, n)) \subset D^{\prime}\left(T^{n}\right)^{S} n$, we have for each n,

$$
\left.\bar{x}_{k}\left(\sum_{p \in \bar{P}(n, k)} K_{p}\right)\right) \in D^{\prime}\left(T^{n}, T^{n}(k-1)\right)^{S_{n}}
$$

Hence for each $p \in \bar{p}(n, k)$ we have

$$
\tilde{x}_{k}\left(K_{p}\right)=L-\sum_{q \in \bar{P}(n, k), q \neq p} \tilde{x}_{k}\left(K_{q}\right)
$$

with $L \in D^{\prime}\left(T^{n}, T^{n}(k-1)\right)$. Since

$$
\operatorname{supp} \tilde{x}_{k}\left(K_{q}\right) \subset U_{s \in S_{n}} T^{n}[s q]
$$

it follows

$$
\operatorname{supp} \tilde{x}_{p}\left(K_{p}\right) \subset T^{n}(k-1) \cup U_{(q, s)}\left(T^{n}[p] \cap T^{n}[s q]\right)
$$

where $(q, s) \in \bar{P}(n, k) \times S_{n}$ satisfies the condition either that $q \neq p$ or that $q=p$ and $s \neq 1 d$. Since

$$
T^{n}\left[p^{\prime}\right] \cap T^{n}\left[p^{\prime \prime}\right] \subset T^{n}(k-1)
$$

for $p^{\prime} \neq p^{\prime \prime}$, we obtain

$$
\operatorname{supp} \tilde{x}_{k}\left(K_{p}\right) \subset T^{n}(k-1)
$$

Then by (iii) of Lemma (A.1.3.1),

$$
K_{p} \in D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes A\langle p\rangle+\sum_{i=1}^{k}{I m d_{1}} .
$$

Hence we have proved

$$
\tilde{x}_{k}^{-1}\left(F^{k-1} P(F(T))\right)=D^{\prime}\left(T^{k}, T^{k}(k-1)\right) \otimes \tilde{A}^{\otimes k}+\sum_{i=1}^{k} \operatorname{Imd}_{i} .
$$

Restricting this to $\left[D^{\prime}\left(T^{k}\right) \otimes \tilde{A}^{\otimes k}\right]^{S_{k}}$, we obtain the provosition
§ A.2. Differential polynomials.
A.2.1. The_differential_algebra_A_of_differential_polynomials.

Let A denote the algebra of differential polynomials of u :

$$
A:=R\left[u_{0}, u_{1}, u_{2}, \ldots\right]=\bigcup_{k=1}^{\infty} R\left[u_{0}, u_{1}, \ldots, u_{k}\right]
$$

endowed with the derivation d defined by $d u_{i}=u_{i+1}(i=0,1,2, \ldots)$. We write often u_{0} simply by u :

We define the weight and the degree of differential polynomials multiplicatively by weight $\left(u_{i}\right)=1+2$ and degree $\left(u_{i}\right)=1$. We put

$$
\begin{aligned}
& A^{i}:=\{f \in A ; \quad \text { weight }(f)=1\} \text {, } \\
& A_{n}:= \begin{cases}R\left[u_{0}, u_{1}, \ldots, u_{n}\right] & \text { for } n \geq 0, \\
R & \text { for } n=-1,\end{cases} \\
& A(d):=\{f \in A ; \text { degree }(f)=d\}, \\
& A^{(i)}:=\sum_{j \leq i} A^{j} \text {, } \\
& A[d]:=\sum_{C \geq d} A(c) \text {, } \\
& A^{i}(d):=A^{1} \cap A(d), \\
& A_{n}^{i} \quad:=A^{i} \cap A_{n} \quad \text {, } \\
& \widetilde{\mathrm{A}}:=\mathrm{A}[1] \\
& \overline{\mathrm{A}}:=\mathrm{A} / \operatorname{Im} \mathrm{D} \text {. }
\end{aligned}
$$

The following is well-known:

Lemma (A.2.1.1). Ker $d=R$.

Proof. Suppose $g \in A_{n} \backslash A_{n-1}$ satisfies $d g=0$. Suppose $n \geq 0$. Then $\partial g / \partial u_{n}=\partial / \partial u_{n+1}(\partial g)=0$, a contradiction. Hence we must have $n=-1$, i.e., $g \in R$.
Q.E.D.

A.2.2. The variational_operator δ_{u}.

Define

$$
\begin{aligned}
& \delta_{u}: A \longrightarrow A \text { by } \\
& \delta_{u}:=\sum_{1=0}^{(-d)^{i} o \partial / \partial u_{i} .} .
\end{aligned}
$$

Then the following is well-known:
Proposition (A.2.2.1). Ker $\delta_{u}=R+I m d$.

Proof. From $\left[\partial / \partial u_{i+1}, d\right]=\partial / \partial u_{i}$, it follows immediately $\delta_{u}{ }^{\circ} d=0$.

$$
\begin{gathered}
\text { Suppose } \delta_{u} g=0 \text { for some } g \in A . \text { Then } \\
\sum u_{i} \partial g / \partial u_{i}{ }^{n} \delta_{u} g=0 \quad(\bmod . \operatorname{Im} d),
\end{gathered}
$$

whence $\quad i g_{i} \in \operatorname{Im} d, g_{i}$ being the $A(i)$-component of g. By the induction on the integer $n=\max \left\{n \mid g_{n} \neq 0\right\}$ we can show $g=g_{0} \quad(\bmod . \operatorname{Im} d)$.
A.2.3. Evolutional derivation X_{K}.

For $K \in A$, define a derivation of A by

$$
x_{K}:=\sum_{i=0}^{\infty} d^{i} k \partial / \partial u_{i},
$$

which commutes with d. Define an endomorphism D_{K} of A by

$$
D_{K}:=\sum_{i=0}^{\infty}(-d)^{i_{o}} \partial K / \partial u_{i}
$$

For example, if $K=\mathrm{uu}_{1}+\mathrm{u}_{3}$, then

$$
D_{K}:=u_{1}-d \circ u-d^{3}=-d^{3}-u d .
$$

Lemma (A.2.3.1). $\quad \delta_{u}{ }^{\circ} X_{K}=\left(D_{K}+X_{K}\right) \circ \delta_{u}$.

Proof. First we show

$$
g \delta_{u} d_{K} f=g\left(D_{K}+X_{K}\right) \delta_{u} f \quad(\bmod . \operatorname{Im} d)
$$

for $f, g \in A$. In fact, modulo Imd,

$$
\begin{aligned}
g \delta_{u} X_{K} f= & X_{g} X_{K} f \\
= & X_{g} \sum_{i} d^{i} K \partial f / \partial u_{i} \\
= & \sum_{i} d^{i}\left(\sum_{j} d^{j} g \partial K / \partial u_{j}\right) \partial f / \partial u_{i} \\
& \quad+\sum_{i, j} d^{i} K d^{j}{ }^{j} \partial^{2} f / \partial u_{i} \partial u_{j} \\
= & \sum_{j} d^{j} g \partial K / \partial u_{j} \delta_{u} f+\sum_{j} d^{j} g X_{K} \partial f / \partial u_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv g\left(\sum(-d)^{j}\left(\partial K / \partial u_{j} \delta_{u} f\right)+\sum_{j}(-d)^{j}\left(X_{K} \partial f / \partial u_{j}\right)\right) \\
& =g\left(D_{K} \delta_{u} f+X_{K} \delta_{u} f\right) .
\end{aligned}
$$

Now it is not difficult to see that, if $f \in A$ satisfies $f g \in \operatorname{Imd}$ for all $g \in A$, then $f \in 0$ (cf. for example [K]). Thus we have the lemma.
Q.E.D.

A.2.4. The_twisted_multizvariational_operators.

Let M be a vector space with k mutually commuting endomorphisms $\partial_{1}, \ldots \partial_{k}$. Put

$$
A_{M, k}:=M \otimes_{R} A^{\otimes k}
$$

where $A^{\otimes k}=A \otimes_{R} \cdots \otimes_{R} A(k$-times $)$. Put

$$
d_{i}=\partial_{i} \otimes 1+1 \otimes(1 \otimes \ldots \otimes 1 \otimes d \otimes 1 \otimes \ldots \otimes 1)
$$

d being on the i-th factor. Define

$$
\begin{aligned}
& \delta_{i}:=\sum\left(-d_{i}\right)^{n} \circ \partial / \partial u_{n}, \\
& \delta:=\delta_{1} \circ \ldots o \delta_{n} .
\end{aligned}
$$

Then we have

Lemma (A.2.4.1). Let P be a subspace of M invariant with respect to d_{i} 's. Then

$$
\delta^{-1}\left(A_{P, k}\right)=\sum_{i=1}^{k} I m d_{i}+M \otimes R^{\otimes k}+A_{P, k}
$$

Proof. It is easy to see as before $\delta d_{i}=0(i=1, \ldots, k)$, whence δ maps the right hand side into $A_{P, k}$.

$$
\text { Suppose } \quad g \in A_{M, k} \text { satisfies } \delta g \in A_{P, k}
$$

Then, modulo $\left[\operatorname{Im} d_{i}\right.$,

$$
\sum\left(\partial_{1, i_{1}} \ldots \partial_{k, i_{k}} g\right) \cdot u_{i_{1}} \otimes \ldots \otimes u_{i_{k}} g \delta g \cdot u \otimes \ldots \otimes u \in A_{P, k}
$$

where $\partial_{a, m}=1 \otimes\left(1 \otimes \ldots \otimes 1 \otimes \partial / \partial u_{m} \otimes 1 \otimes \ldots \otimes 1\right), \partial / \partial u_{m} \quad$ being on the a-th factor, and $A_{M, k}$ is considered as an $A^{\otimes k}$-algebra in the natural way. Now the argument in the proof of Lemma (A.2.2.1) shows $g \in M \otimes R^{8 k}+\left[\operatorname{Im} d_{i}+A_{P, k}\right.$.
Q.E.D.

For $K \in A$, define endomorphisms $X_{K ; i}, D_{K, i}(i=1, \ldots, k)$ of ${ }^{A}{ }_{M, k}$ by

$$
\begin{aligned}
& X_{K, i}:=1 \otimes\left(1 \otimes \ldots \otimes 1 \otimes x_{K} \otimes 1 \otimes \ldots \otimes 1\right), \\
& D_{K, i}:=\sum_{n=0}^{\infty}\left(-d_{i}\right)^{n} \rho\left(1 \otimes \ldots \otimes 1 \otimes \partial K / \partial u_{n} \otimes 1 \otimes \ldots \otimes 1\right)
\end{aligned}
$$

where X_{k} and $\partial K / \partial u_{n}$ are on the $i-t h$ factor. Then we have Lemma (A.2.4.2).
(i) If $i \neq j$, then δ_{i} commutes with $X_{K, j}$ and $D_{K, j}$. (ii) $\quad \delta_{i} \circ X_{K, i}=\left(X_{K, i}+D_{K, i}\right) \circ \delta_{i}$.

Proof. (i) is obvious and (ii) can be proved just in the same way as Lemma (A.2.3.1).
Q.E.D.

Corollary (A.2.4.3). $\quad \delta \circ \mathrm{X}_{\mathrm{K}, \mathrm{i}}=\left(\mathrm{X}_{\mathrm{K}, \mathrm{i}}+\mathrm{D}_{\mathrm{K}, \mathrm{i}}\right) \circ \delta$.

Finally suppose $M=R, \delta_{i}=0$. Then Lemma (2.4.1) implies the following

Lemma (A.2.4.4). Let Q be a complement of $R+\operatorname{lm} d$ in A. Then δ is infective on $Q^{\otimes k}$.

Proof. Obvious since $Q^{\otimes k}$ is a complement of $\sum \operatorname{Im} d_{i}$ in $A^{\otimes k}$.
§ A.3. Conservation laws of the KdV-equation.
A.3.1. A_complex_associated_to the_KdV_equation.

Define a complex

$$
0 \longrightarrow \Omega^{0} \xrightarrow{D} \Omega^{1} \xrightarrow{D} \Omega^{2} \longrightarrow 0
$$

as follows: Put

$$
\Omega^{1}:=A \otimes_{R} \Lambda^{i}[d x, d t],
$$

where $\Lambda^{*}[d x, d t]$ stands for the exterior algebra on R.dx \otimes R.dt and D is determined by

$$
\begin{aligned}
& D f=d f d x+d_{t} f d t, \text { for } f \in A=\Omega^{0}, \\
& D(g \wedge h)=D g \wedge h+(-1)^{a} g \wedge D h, \text { for } f \in \Omega^{a}, g \in \Omega^{b},
\end{aligned}
$$

where $d_{t}=X_{u u_{1}+u_{3}}$ in the notation of §A.2.3. Since d and d_{t} commutes with each other, we obtain a complex $\{\Omega *, D\}$. Denote by H^{i} the $1-t h$ cohomology space. We may call H^{1} the space of the equivalence classes of conserved densities of the KdV-equation, since Propositions (2.3.1-2) and (3.3.1) for $k=1$ imply that the map $\mathrm{fdx}+\mathrm{gdt} \longrightarrow \mathrm{X}_{1}(1 \otimes \mathrm{f}) \quad$ induces a map

$$
\mathrm{H}^{1} \longrightarrow \operatorname{Ker}_{\mathrm{t}} \cap \mathrm{~F}^{1} \mathrm{P}(\mathrm{~F}(\mathrm{~T})),
$$

which in fact is an isomorphism by the argument before (4.1) in §4.

Now we cite the result of [MGK] in the following form:

Theorem (A.3.1.1). For each positive integer i, an element $w_{i}=I_{i} d x+X_{i} d t$ of Ω^{1} exists such that $D w_{i}=0$, weight $\left(w_{i}\right)=2 i$. Moreover the classes in H^{1} represented by $w_{i}^{\prime} s(1=1,2,3, \ldots)$ are non-zero.

$$
\begin{gathered}
\text { Put } \Delta:=D_{K}+X_{K} \text { with } K=u u_{1}+u_{3} \text {, i.e., } \\
\Delta:=d_{t}-u d-d^{3} .
\end{gathered}
$$

Then by Proposition (A.2.2.1) and Lemma (A.2.3.1), we have the following realization of H^{1} :

Lemma (A.3.1.2). The map $I d x+X d t \longrightarrow \delta_{u} I$ induces an injection $H^{1} \longrightarrow \operatorname{Ker} \Delta$.

A.3.2. Computation of $\operatorname{Ker} \Delta$

Put

$$
\begin{aligned}
\Delta_{3,0}= & \sum_{i, j, k=0}^{\infty} u_{i+1} u_{j+1} u_{k+1} \partial^{3} / \partial u_{i} \partial u_{j} \partial u_{k} \\
& +3 \sum_{i, j=0}^{\infty} u_{i+2} u_{j+1} \partial^{2} / \partial u_{i} \partial u_{j}, \\
\Delta_{3,1}=- & \sum_{i=0}^{\infty} \sum_{0<a \leq i}\left(\frac{1}{a}\right) u_{a} u_{i-a+1} \partial / \partial u_{i} .
\end{aligned}
$$

Lemma (A.3.2.1).
(i)

$$
\Delta=\Delta_{3,0}+\Delta_{3,1}
$$

$\Delta_{3, i}\left(A^{j}(k)\right) \subset A^{j+3}(k+i)$.
(iii) $[\partial / \partial u, \Delta]=0$.

Now we solve the equation $\Delta f=0$.

Lemma (A.3.2.2). Suppose $f \in A_{n} \backslash A_{n-1}$ satisfies $\Delta f=0$. Then n is even. Moreover, for $n \geq 4$,
and

$$
f=a\left(u_{n}+((n+1) / 3) u_{n-2}\right)+b u_{n-1}+c u_{n-2} .\left(\bmod \cdot A_{n-3}\right)
$$

$$
f=a\left(u_{2}+u^{2} / 2\right)+b, \text { for } n=2
$$

$$
f=a \quad, \text { for } \quad n=0
$$

with $a, b, c \in R$.

Proof. From $\partial / \partial u_{n+2}(\Delta f)=0$, we obtain

$$
d\left(\partial f / \partial u_{n}\right)=0 .
$$

Hence by Lemma (A.2.1:1), f must be of the form

$$
f a \operatorname{au} u_{n} \quad\left(\bmod . A_{n-1}\right)
$$

Thus for $n=0$ we obtain $f=a u+b$. But then

$$
\Delta f=a u^{2}
$$

whence a must be zero.

Suppose now $n \geq 1$. Then

$$
d\left(\partial f / \partial u_{n-1}\right)=\partial / \partial u_{n+1} \Delta f=0,
$$

whence

$$
f=a u_{n}+b u_{n-1}+f f_{n-2}
$$

with $a, b \in R$ and $f_{n-2} \in A_{n-2}$.

Suppose $n=1$. Then $\Delta f=a u_{1}^{2}+b u^{2}$, whence we have $a=0$, contradicting $f \notin A_{0}$.

Thus we have $n \geq 2$. Then from $\partial / \partial u_{n-2} \Delta f=0$, we
obtain

$$
d\left(\partial f_{n-2} / \partial u_{n-2}\right)=(n+1) a u_{1} / 3,
$$

whence

$$
\partial f_{n-2} / \partial u_{n-2}=(n+1) a u / 3+c
$$

with $a, c \in R$.

$$
\text { Suppose now } n=2 \text {. Then }
$$

$$
f_{0}=u^{2} / 2+c u+e
$$

with an $e \in R$, whence

$$
f=a\left(u_{2}+u^{2} / 2\right)+b u_{1}+c u+e .
$$

But then $\Delta f=b u_{1}^{2}+c u^{2}$, whence $b=c=0$.

Suppose now n 츨 3 . Then

$$
f_{n-2} \equiv(n+1) a u u_{n-2} / 3+c u_{n-2} \quad\left(\bmod . A_{n-3}\right)
$$

Hence

$$
f=a\left(u_{n}+(n+1) u u_{n-2} / 3\right)+b u_{n-1}+c u_{n-2} \quad\left(\bmod . A_{n-3}\right)
$$

Thus it remains to show that n is even. By (iii) of Lemma (A.3.2.1), $\Delta \partial^{k} f / \partial u^{k}=0$ for any k. Hence if. n is odd, we obtain an element of the form $a u_{1}+g(u)$ in Ker Δ. Then by what we have shown above we must have $a=0$, contradicting $f \notin A_{n-1}$.
Q.E.D.

Corollary (A.3.2.3). $\operatorname{Ker} \Delta \cap A_{n}^{n+3}=(0)$, for $n \geq 1$.

Proof. Suppose we have a nonzero element f in $\operatorname{Ker} \Delta \cap A_{n}^{n+3}$. Note that $A_{n}^{n+3}=A_{n-1}^{n+3}$, since weight $\left(u_{n}\right)=n+2$, and weight $\left(u_{j}\right) \geq 2$ for all j. Thus $f \in A_{k} \backslash A_{k-1}$ for some k with $0 \leq k \leq n-1$. By the above lemma, we have $f a a u_{k}\left(\bmod . A_{k-1}\right)$. But weight $\left(u_{k}\right)=k+2 \leq n+3$, whence $a=0$ contradicting $\mathrm{f} \ddagger \mathrm{A}_{\mathrm{k}-1}$ 。

Put $T_{1}=\delta_{u} I_{i}$, where I_{i} 's are those differential polynomials given in Theorem (A.3.1.1) . Then we have

Proposition (A.3.2.4).
(i) Ker $\Delta \cap A^{n}= \begin{cases}R . T_{1+1}, & \text { for } n=2 i, \\ (0), & \text { for odd } n .\end{cases}$
(i1) $T_{1}=c_{1}$,
$\mathrm{T}_{2}=\mathrm{c}_{2} \mathrm{u}$,
$T_{3}=c_{3}\left(u_{2}+u^{2} / 2\right)$,
$T_{1}=c_{i}\left(u_{2 i-4}+(21-3) u_{2 i-5} / 3\right)\left(\bmod . A_{2 i-5}\right)$
for $1 \geq 4$ with nonzero c_{i} 's.

Proof. Note first that $A^{n}=A_{n-2}^{n}$. Hence if n is odd, $\operatorname{Ker} \Delta \cap A^{n}=\operatorname{Ker} \Delta \cap A_{n-2}^{n}=\operatorname{Ker} \Delta \cap A_{n-3}^{n}=0$ by Lemma (A.3.2.2) and Corollary (A.3.2.3).

Obviously we have $T_{i+1} \in A^{2 i}=A_{2 i-2}^{2 i}, \quad$ which is nonzero Suppose now $T \in \operatorname{Ker} \Delta \cap A^{2 i}=\operatorname{Ker} \Delta \cap A_{2 i-2}^{2 i}$. . Then by Lemma (A.3.2.2)

$$
T=a u_{2 i-2} \quad\left(\bmod \cdot A_{2 i-3}\right)
$$

whence $T-b T_{1+1} \in A_{2 i-3}^{2 i} \cap \operatorname{Ker} \Delta=(0)$ for some $b \in R$. Hence $A^{2 i} \cap \operatorname{Ker} \Lambda=R \cdot T_{i+1}$, which gives (i).

```
Finally Lemma (A.3.2.2) gives (ii).
```

Q.E.D.
§ A.3.3. Information on certain differential polynomials.

First we refine Theorem (A.3.1.1) using Lemma (A.3.1.2) and Proposition (A.3.2.4).

Theorem (A.3.3.1). For each positive integer i, an element $w_{i}=I_{i} d x+X_{i} d t$ of Ω^{1} exists such that $D w_{i}=0$, weight $\left(I_{i}\right)=2 i$, weight $\left(X_{i}\right)=2 i+2$,

$$
\begin{array}{ll}
I_{1}=u, \\
I_{i}=u_{i-2}^{2} & \text { (mod. } A[3]), \text { for } i \geq 2, \\
x_{1}=u_{2}+u^{2} / 2, & \\
x_{i}=2 u_{i-2} u_{i}-u_{i-1}^{2} & (\bmod . A[3]), \text { for } i \geq 2 .
\end{array}
$$

Moreover the classes in H^{1} represented by $w_{i}{ }^{\prime}(i=1,2, \ldots)$ constitute a basis of H^{1}.

Proof. Lemma (A.3.1.2) and (i) of Proposition (A.3.2.4) imply obviously the last assertion.

It is obvious that w_{1} satisfies $D w_{1}=0$ and $\delta_{u} I_{1}=1$ also spans R.T . $_{1}$

Let $i \geq 2$. Let I_{i}^{\prime} be any element of $A^{2 i}$ such that $\delta_{u} I_{i}^{\prime}=T_{i}$. As an element of $A^{2 i}$, we can write

$$
I_{i}^{\prime} \equiv\left[a u_{2 i-2}+\sum_{k=0}^{i-2} a_{k} u_{k} u_{2 i-4-k} \quad(\bmod , A[3])\right.
$$

But modulo Ind, $u_{2 i-2} \equiv 0$ and

$$
u_{k} u_{2 i-4-k}=(-1)^{k} u_{i-2}^{2}
$$

Hence we may suppose $I_{i}^{1} a a_{i} u_{i-2}^{2}(\bmod . A[3])$. But then $\delta_{u} I_{i}^{\prime} \quad 2 a_{i} u_{2 i-4}(\bmod . A[2])$. Hence we must have $a_{i} \neq 0$. Thus we can take $I_{i}=I_{i} / a_{i}$.

Now modulo A[3]

$$
\begin{aligned}
d_{t} u_{i-2}^{2} & =2 u_{i-2} u_{i+1} \\
& =d\left[2 u_{i-2} u_{i}-u_{i-1}^{2}\right]
\end{aligned}
$$

Since $d A(m) \subset A(m)$ and Ker $d=R$, the $X_{i} \in A^{2 i+2}$ with $d x_{i}=d_{t} I_{i}$ must be of the form

$$
x_{i}=2 u_{i-2} u_{i}-u_{i-1}^{2} \quad(\bmod \cdot A[3])
$$

Q.E.D.

Define $T_{i j}:=\delta_{u}(S(i, j)) \in A^{2(1+j)}$, where we recall

$$
S(i, j)=-I_{i} X_{j}+I_{j} X_{i} .
$$

An easy calculation using the above Theorem shows the following

Lemma (A.3.3.2).
(i) For $1, j$ with $j>1 \geq 2$,

$$
T_{i j}=c_{i j} u_{i-2}^{2} u_{2 j-2} \quad(\bmod . A[4])
$$

with $\quad c_{i j} \neq 0$.
(ii) For $1 \geqq 2$,

$$
T_{1 i}=c_{i}{u u_{2 i-2}} \quad(\bmod \cdot A[3])
$$

with $c_{i} \neq 0$.

Corollary (A.3.3.3). $\quad T_{k}(k=1,2, \ldots)$ and $T_{i j}(1 \leq i<j)$ are linearly independent.

Proof. It suffices to show that T_{i+1} and $T_{k, i-k}(1 \leq k<[i / 2])$ are linearly independent, which is obvious by Proposition (A.3.2.4) and Lemma (A.3.3.2).
Q.E.D.

A.3.4. Twisting_of Δ.

Let M be an R-vector space with an endomorphism
$\partial: M \longrightarrow M$. Define $A_{M}:=M \otimes_{R} A$ and

$$
\begin{aligned}
& \text { weight }(m \otimes f)=i, \\
& \text { degree }(m \otimes f)=j,
\end{aligned}
$$

for $m \in M$ and $f \in A^{i}(j)$. We denote $M \otimes A^{i}, M \otimes A(j), M \otimes A_{n}$, $M \otimes A^{i}(j)$, etc. respectively by $A_{M}^{i}, A_{M}(j), A_{M, n}, A_{M}^{i}(j)$, etc. \therefore Define

$$
\begin{aligned}
& d^{M}:=\partial \otimes 1+1 \otimes d \\
& \Delta^{M}:=1 \otimes d_{t}-u d^{M}-\left(d^{M}\right)^{3}: A_{M} \longrightarrow A_{M} .
\end{aligned}
$$

Then we can decompose Δ^{M} :

$$
\Delta^{M}=\sum_{i, j}^{M}
$$

where $\Delta_{i, j}^{M}\left(A_{M}^{k}(n)\right) \subset A_{M}^{k+i}(n+j)$. Then it is easy to show

Lemma (A.3.4.1).

$$
\begin{aligned}
& \Delta_{0,0}^{M}=\partial^{3} \otimes 1, \\
& \Delta_{1,0}^{M}=3 \partial^{2} \otimes d, \\
& \Delta_{2,0}^{M}=3 \partial \otimes d^{2}, \\
& \Delta_{2,1}^{M}=\partial \otimes u \\
& \Delta_{3,0}^{M}=1 \otimes \Delta_{3,0}, \\
& \Delta_{3,1}^{M}=1 \otimes \Delta_{3,1},
\end{aligned}
$$

and $\Delta_{i, j}^{M}=0 \quad$ otherwise.

Put

$$
\Delta_{2}^{M}:=\Delta_{2,0}^{M}+\Delta_{2,1}^{M}, \quad \Delta_{3}^{M}:=\Delta_{3,0}^{M}+\Delta_{3,1}^{M}=1 \otimes \Delta .
$$

By Proposition (A.3.2.4), we have

Lemma (A.3.4.2).

$$
\operatorname{Ker} \Delta_{3}^{M} \cap A_{M}^{n}= \begin{cases}M \otimes_{R} R \cdot T_{i+1}, & \text { for } n=2 i, \\ (0), & \text { for } \text { odd } n .\end{cases}
$$

A.3.5. Independency_of T_{i} and $T_{j k}$ modulo $\operatorname{Im} \Delta$.

Let M and a be as above.
Proposition (A.3.5.1). Suppose $f_{j} \in A_{M}^{j}(j=2 i-2,2 i-3)$ satisfies

$$
\begin{equation*}
\Delta_{3}^{M} f_{2 i-2}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{2}^{M} f_{2 i-2}+\Delta_{3}^{M_{f}}{ }_{2 i-3}=a \otimes T_{i+1}+\sum_{1 \leq k \leq[(i-1) / 2]^{a}{ }_{k} \otimes T_{k, i-k} .} . \tag{2}
\end{equation*}
$$

Then $a+3 a_{1}=0$. Furthermore if a or a_{1} is zero, then all the a_{k} 's are zero and $\Delta^{\mathrm{M}_{f i-2}}=0$.

We need the following

Lemma (A.3.5.2). Let $p_{2}: A_{M} \longrightarrow A_{M}(2)$ be the projection. Then

$$
P_{2} \circ \Delta_{3}^{M}: A_{M}^{2 i-3}(1) \oplus A_{M}^{2 i-3}(2) \longrightarrow A_{M}^{2 i}(2)
$$

is injective and $M \otimes_{R} R \cdot u_{2 i-4}$ is a complement of its image.

Proof. Since

$$
p_{2} \Delta u_{3}^{M}\left(m \otimes u_{j} u_{2 i-7-j}\right)=3 m \otimes\left(u_{j+2} u_{2 i-6-j}+u_{j+1} u_{2 i-5-j}\right)
$$

for $0 \leq j \leq i-4$, we have

$$
m \otimes u_{j} u_{2 i-4-j} \equiv(-1)^{i+j} m \otimes u_{i-2}^{2}\left(\bmod . p_{2} \Delta_{3}^{\left.M_{A} A_{M}^{2 i-3}(2)\right)},\right.
$$

for $1 \leq j \leq i-3$. Further modulo $p_{2} \Delta_{3}^{M} A_{M}^{2 i-3}$ (2)

$$
\begin{aligned}
\Delta_{3}^{M}\left(m \otimes u_{2 i-5}\right) & =-m \otimes \sum_{j=1}^{2 i-5}\binom{2 i-5}{j} u_{j} u_{2 i-4-j} \\
& =-m \otimes \sum_{j=1}^{2 i-5}\binom{2 i-5}{j}(-1)^{i+j} u_{i-2}^{2} \\
& =(-1)^{1} m \otimes u_{i-2}^{2} .
\end{aligned}
$$

Hence $p_{2}{ }^{\circ} \Delta_{3}\left(A_{M}^{2 i-3}(1) \oplus A_{M}^{2 i-3}(2)\right.$ is spanned by $\left\{m \otimes u_{j} u_{2 i-4-j} ; m \in M, 1 \leq j \leq i-2\right\}$. The injectivity of $P_{2}{ }^{\circ} \Delta_{3}$ can be easily proved.
Q.E.D.

Proof of Proposition (A.3.5.1). By Lemma: (3.4.2),
(1) implies $f_{2 i-2}=m \otimes T_{i}$ with some $m \in M$. Then the $A_{M}^{i}(1)$-component of (2) gives $a=3 \partial m$. On the other hand, by virtue of the above lemma, we obtain comparing the coefficients of $\mathrm{uu}_{2 i-4}$ in (2)

$$
(2 i-2) \partial m=(2 i-1) a / 3+a_{1}
$$

whence $a+3 a_{1}=0$.

Suppose now $a=a_{1}=0$. We may suppose $i \geq 5$. Since $\partial m=0$, we have $\Delta^{M} f_{2 i-2}=\Delta \Delta_{3}^{M} f_{2 i-2}=0$, by virtue of Lemma (3.4.1). Thus we have

$$
\begin{equation*}
\Delta_{3}^{\mathrm{M}_{2}{ }_{2 i-3}=\sum_{2 \leq k \leq[(i-1) / 2]} a_{k} \otimes T_{k, i-k} .} \tag{3}
\end{equation*}
$$

Hence by Lemma (A.3.3.2),

$$
\Delta_{3}^{\mathrm{M}} \mathrm{f}_{2 i-3}=0 \quad(\bmod \cdot \mathrm{~A}[3])
$$

By Lemma (A.3.5.2) above, we have

$$
f_{2 i-3} \leq A[3]
$$

Hence we can write

$$
f_{2 i-3}=\sum_{j=0}^{2 i-9} f_{j} u_{j} \quad\left(\bmod . A_{M}[4]\right)
$$

where

$$
\begin{aligned}
& f j \in A_{M}(2) \cap A_{M, j} \text {. If } j \geq i-4, \text { then } \\
& \text { weight }\left(u_{a} u_{j}^{2}\right)=6+2 j+a \geq 2 i-2
\end{aligned}
$$

whence f_{j} cannot have a nonzero term having u_{j} as a factor. Thus actually

$$
\begin{equation*}
f_{j} \in A_{M, j-1}, \text { for } j \geq i-4 . \tag{4}
\end{equation*}
$$

Thus
(3) can be written as

$$
\begin{gather*}
\Delta{ }_{3}^{M}\left(f_{2 i-9} u_{2 i-9}+\ldots+f_{i-4} u_{i-4}+h_{i-5}\right) \tag{5}\\
\quad=\sum_{2 \leq k \leq[(i-1) / 2]} a_{k} \otimes T_{k, i-k}
\end{gather*}
$$

Modulo $A_{M}[4]$ with $f_{j} \in A_{M, j-1}$ and $h_{i-5} \in A_{M, 1-5}$.

Consider now the following assertion:
(6) ${ }_{k} \quad\left\{\begin{array}{lll}a_{j}=0, & \text { for } & j \leq k, \\ f_{j}=0, & \text { for } & j \geq 2 i-2 k-4\end{array}\right.$

What we must show is $\quad(6)_{p-1}$ when $i=2 p$ and (6) ${ }_{p}$ when $i=2 p+1$. In either case we have only to show ${ }^{(6)}[(i-1) / 2]$, which we shall prove by induction on k.

First comparing the coefficients of $u^{2} u_{2 i-6}$ of we have $a_{2}=0$. Hence $(6)_{2}$ is valid if we consider f_{j} to be zero for $j \geq 2 i-8$.

Suppose now that for some k such that $2 \leq k \leq[(i-1) / 2]-1$ the assertion $(6)_{k}$ is true. Then (5) looks like

$$
\begin{align*}
& \Delta_{3}^{M}\left(f_{2 i-2 k-5} u_{2 i-2 k-5}+f_{2 i-2 k-6} u_{2 i-2 k-6}+\ldots\right) \tag{7}\\
& \quad=a_{k+1} \otimes\left(u_{k-1}^{2} u_{2 i-2 k-4}+\ldots\right)+\ldots
\end{align*}
$$

modulo $A_{M}[4]$. Since $k \leq[(i-1) / 2-1]$, we have $2 i-2 k-6 \geq i-4$, whence

$$
f_{s} \in A_{M, s-1} \text { for } s=s i-2 k-5,2 i-2 k-6 .
$$

Comparing the coefficients of $u_{2 i-2 k-3}$ in (7), we obtain

$$
(1 \otimes d) f_{2 i-2 k-5}=0
$$

This implies by Lemma (A.2.1.1) $f_{2 i-2 k-5}=0$. Comparing
further the coefficients of $u_{2 i-2 k-4}$ in (7) , we obtain

$$
(1 \otimes d) f_{21-2 k-6}=a_{k+1} \otimes u_{k-1}^{2}
$$

Applying $1 \otimes \delta_{u}$, we obtain $a_{k+1} \otimes u_{2 k-2}=0$, whence $a_{k+1}=0$. Then we have $f_{2 i-2 k-6}=0$, establishing $(6)_{k+1}$.
Q.E.D.
A.3.6. A_refinement_of Proposition (A.3.2.4).

Let M and ∂ be as in §A.3.4 and G an endomorphism of M.

Lemma $(A \cdot 3.6 .1) . \operatorname{Ker}\left(\Delta^{M}+G \otimes 1\right)=(\operatorname{KerG} \cap \operatorname{Ker} a) \otimes \mathbb{T}$,
where \widetilde{T} is the subspace of A spanned by T_{i} 's.

Proof. Suppose $g \in A_{M}$ satisfies

$$
\begin{equation*}
\left(\Delta^{\dot{M}}+G \otimes 1\right) \quad g=0 \tag{1}
\end{equation*}
$$

Let g_{k} be the A_{M}^{k}-component of g and n the maximal mumben such that $g_{n} \neq 0$. The A_{M}^{n+3}-component of (1) gives $\Delta_{3}^{M} g_{n}=0$, whence by Lemma (A.3.4.2), n is even: $n=2 i$ and $g_{2 i}=a_{1} \otimes T_{i+1}$ for some $a_{1} \in M$. Then the $A_{M}^{2 i+2}$-component of (1) gives

$$
\partial a_{1} \otimes\left(3 d^{2} T_{i+1}+u T_{i+1}\right)+\Delta{ }_{3}^{M} g_{2 i-1}=0
$$

Since $\operatorname{Im} \Delta_{3}^{M} \cap A_{M}(1)=0$, we obtain $\partial a_{1}=0$ if we compare the coefficients of $u_{2 i}$. Thus we have $\Delta^{M}\left(a_{1} \otimes T_{i+1}\right)=0$ and $\Delta_{3}^{M} g_{2 i-1}=0$, whence $g_{2 i-1}=0$.

Now the $A_{M}^{2 i+1}$-component of (1) reads $\Delta_{3}^{M} g_{2 i-2}=0$, whence $g_{2 i-2}=a_{2} \otimes T_{i}$ for some $a_{2} \in M$.

Finally the $A_{M}^{2 i}$-component of (1) gives
(2)

$$
\left.G\left(a_{1}\right) \otimes T_{i+1}+\partial a_{2} \otimes\left(3 d^{2} T_{i}\right)+u T_{i}\right)+\Delta M_{2 i-3}^{M}=0
$$

By Lemma(A.3.5.2), the coefficients of $u_{2 i-2}$ and $u u_{2 i-4}$ in (2) give when $i \geq 3$

$$
G\left(a_{1}\right)+3 \partial a_{2}=0
$$

$$
\begin{equation*}
(2 i-1) G\left(a_{1}\right) / 3+(2 i-2) \partial a_{2}=0, \tag{3}
\end{equation*}
$$

whence $G\left(a_{1}\right)=0$. When $i=2$, (3) is replaced by

$$
G\left(a_{1}\right)+\partial a_{2}=0,
$$

whence $G\left(a_{1}\right)=0$ again. Finally when $i=1$, we have

$$
\begin{gathered}
g=a_{1} \otimes u+a_{2} \otimes 1, \\
\left(\Delta^{M}+G \otimes 1\right) g=G\left(a_{1}\right) \otimes u+G\left(a_{2}\right) \otimes 1=0,
\end{gathered}
$$

whence $G\left(a_{1}\right)=0$.

Thus we have

$$
a_{1} \otimes T_{i+1} \in(\text { Ker } G \cap \operatorname{Ker} \partial) \otimes \tilde{T}
$$

and

$$
g-a_{1} \otimes T_{i+1} \in A_{M}^{n-1}
$$

Hence by the induction on n, we obtain the Lemma.
Q.E.D.

References

[GD] Gelfand, I.M., Dikii,L: Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of Koretweg-de Vries equations. Uspehi Math. Nauk 30(5), 67-100 (1975).
[GF] Gelfand, I.M., Fuks, D.B.: Cohomology of Lie algebra of tangential vector fields of a smooth manifold. Funkt. Analiz. 1. Ego Pril. 3(3), 32-52 (1969).
[K] Kuperschmidt, B.A.: Discrete Lax equations and differential-difference calculus. Revue Asterique v. 123 (1985), Paris.
[KMGZ] Kruscal, M.D., Miura, R.M., Gardner, C.S., Zabusky, N.: Korteweg-de Vries equation and generalization, V. Uniqueness and non-existence of polynomial conservation laws. J. Math. Phys. 11, 952-960 (1970).
[MGK] Miura, R.M., Gardner, C.S., Kurscal, M.D.: Kortweg-de Vries equation and generalizations, II. Existence of conservation laws and constants of motion. J. Math. Phys. 9, 1204-1209 (1968).
[MM] McKean, H.P., van Moerbeke, P..: The spectrum of Hill's equation. Inv. Math. 30, 217-274 (1975).
[MT] McKean,H.P., Trubowiz,E: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math. 29, 141-226 (1976).
[S] Sunada, T.: Trace formula for Hill's operators. Duke Math. J. 47, 529-546 (1980).
[Sch] Schwarz, L.: Théorie des distributions, Paris: Hermann 1966.
[T1] Tsujishita, T.: On variation bicomplexes associated to differential equations. Osaka J. Math. 19, 311-363 (1982).
[T2] Tsujishita, T.: Open problems. Proceedings of the 15 th international symposium, division of mathematics, Taniguchi Foundation, 35-37, Nagoya: Nagoya University 1985.
[V] Vinogradov, A.M.: A spectral sequence associated with a nonlinear differential equation, and algebro-geometric foundations of Lagrangian fields theory with constraints. Soviet Math. Dokl. 19, 144-148(1978).

