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Abstract

It is proved that the aigebra of the KdV-invariant
polynomial functionals on the space of c” functions on the
one-dimensional torus is isomorphic to the polynomial algebra

of the conserved quatities found by [MGK] .
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Introduction

It is now long since the Korteweg-de Vries equation

= + 1
ut uux XXX

is recognized as a completely integrable Hamiltonian system,
for example, on the space of C® functions on the one-
dimensional torus T1. A complete set of its first integrals
or invariants is provided by the eigenvalues {Ai[u]} of the
Hill's operator - dz/dx2+ u(x) (cf. {MM]), which are how-

ever highly transcendental functionals of u.

An infinite set of invariants {Ti[u]} which are "elementary"
functionals of u ' can be constructed through the asymptotic

expansion

-Ailult L
Jant ), e 7t ~ 1+ Zi=1Ii[u]t (tv0) .

In fact Ti[u] is the integral of a local conserved density
Ii[u]. Although Ii[u]'s are known to exhaust the space of
equivalence classes of local conserved densities (cf. [KMGZ]

or Theorem (A.3.3.1)), it is obvious that these elementary .
invariants have less information than ,[ul's and do not

form a complete set of invariants of the Kdv-flow.

In this paper we take up the problem whether or not

there are other "elementary" invariants other than Ti[u]'s.

The functionals which we consider as elementary are such

Klul's as are expressible as



K[ul= zn JTD Kn(x1,...,xn)u(x1)...u(xn) dx,...dx .,

where Kn is a distribution on rh and only a finite number
of Kn's are non-zero. These will be called polynomial
functionals. The space of the polynomial functiocnals is
strictly larger than the space multiplicatively generated by
those with local densities, since it includes those expressed

as iterated integrals of local densiities.

Our main result asserts that the functionals expressed
as polynomials of Ti[ﬁ]'s are the only invariants which

are polynomial functionals.

Our proof of this is rather involved due mainly to the
simple topological fact that for k23 the space
{(x1,...,xk) € Tk; ii & xj (1 #+3j)} 1is not connected. This
fact gives rise to the possibility of the existence of first
integrals expressible as iterated integrals of local conserved
densities, which we were able to eliminate only.after a
detailed analysis of the local conserved densities of the

Kdv equation.

It seems to be an interesting problem to find a simpler
proof, which admits us to infer whether other soliton

equations have the same property or not.

For the evolution equations of space dimension greater

than one, it seems probable that the similar result can be

rather easily established because the space {(x1,...,xk)€Mk



X, * xj(i¢j)} is connected for each k when dim M2 2,
In § 1 , we give basic definitions and state the main
result (Theorem (1.4.1)). The rest of the paper is devoted
to its proof. We start it first by describing the space of
polynomial functionals by differential polynomials in § 2
applying the idea of Gelfand and Fuks ([GF]). In § 3 the
derivation on the space of polynomial functionals corresponding
to the Kdv-flow is expressed in terms of a derivation on the
algebra of differential polynomials. The outline of the proof
of the main result is exposed in § 4. The sections 5 and 7
prove key lemmas used in § 4 and the section 6 proves the
algebraic independency of diagonal functionals. In § 8
we give several remarks and raise a few related problems. We
cbllected_ in the appendix certain facts and technical
arguments in order to make it easier to see the main flow
of the proof of the main result. In § A.1., we recall the
structure theorem of distributions, with which we prove the
propositions of the section 3. In § A.2., we give basic
definitions about differential polynomials and fecall some
of the basic facts in the theory of formal calculus of
variation ([GD]). The section A.3. recalls the result on
the existence of infinite number of independent conserved
densities ([MGK]) and derive from it various consequences,
which play crucial roles in various parts of our proof of the

main result.

The author is deeply indebted to T. Sunada who explained

him his result ([S]) and suggested him the problem treated here.
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Gu(-Iin + Iin) (§ A.3.3.).

It X
{(x1....,xn) € T ; # {x.l,...,xn} < k}

n

the flux for I, determined by Theorem (A.3.3.1.)
the der#vation of A corresponding to the evolutionary
K
equation u, = K (§ A.2.3.).
oKy . %K 13 . '
the map D'(T") ¢ A" —> F P(F(T)) defined in § 2.3.
the ring of integers.

the set of nonnegative integers.

All the vector spaces and all the tensor products are over R,

For a group G and a G-module V, the space of all the

G-invariant elements is denoted by VG |
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§ 1. Statements of the main results.

Let T = R/Z be the one-dimensional torus and F(T)
the space of all the real valued c” functions on T, which
we identify with the periodic real valued c” functions on

R with period 1.

We call a real valued functional u +—= K[u] on F(T)

a polynomial functional if for u€ F(T)

' — ® on
(1.1.1) Klul= Ky + Iomi <Kpeuo >

where KjE€R , T = rR%/z" K €D (T™) = { distributions on T"},

wW®? =y ®...ou (n-times) is the C* function on T defined by

u@n(x1,...,xn)==u(x1)...u(xn), and Kn==0 except for finite

n's.

Example (1.1.2). The following are some of the examples

of polynomial functionals:

K{ : ub— ulxg) ,

K, s ub—> U(n) = IT 2T | () ax,

K3 : U b— JTu(x)u'(x)zdx,

K4 ¢ ub— ITu(x)u(x+-x0)dx,

Kot u > Jf1[u](x1)...fn[u](xn)dx1...dxn ,
s

x,5...3x a1
1 n
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where x0€'r, fi = fi(uo,u1,..,) are differential polynomials
(cf. § A.2.1) and fi[u] denotes the function made by the

substitutions: u; = dif/dxi.

The space of all the polynomial functionals is denoted

by P(F(T)), which is a commutative algebra by the multipli-

cation:
Ky(ul := K (ulKy(ul , w€F(D)

for K1,K € P(F(T)).

2.

A polynomial functional K 1is called diagonal or local
if supp K, is in the diagonal of ™ . For example,

K1,K2,K3 and K5 wiph n = 1 are diagonal.

1.2. Spectral invariant functionals for the Hill operator .

For u€F(T), we denote the spectrum of the Hill

operator L, = -a?/dx2+u by

Spec(u) = {Ag < Ay S A, <. <Ay g S A, <L)

A real valued funétional K on F(T) 1is called spectral
invariant if Spec(u) = Spec(v) implies K[u] = K[v]

for u,veEF(T). We denote by Pspec(F(T)) the subalgebra of
P(F(T)) consisting of all the spectral invariant polynomial

functionals.

Example ([MM]). For u€F(T) with Spec (u) = {Ai} , the

following asymptotic expansion holds for t=~0:
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-Ait =1 = i
~ 1 I. t
21219 /4t (1 + 2121 jfult™)

Moreover a universal differential polynomial I, exists

such that

fitel = [ 1 telax.
Q
Obviously Ti's are spectral invariant functionals,
which are also polynomial and diagonal. Note.that the
differential polynomials Ii's are not determined uniquely.

We shall choose canonical ones by Theorem (A.3.3.i).

1.3. Kdv-invariant functionals.

A functiocnal K 1is called invariant under the Kdv-flow,
" or Kdv-invariant for short, if K[u(-,t)] is independent
of t whenever u(x,t) 1is a solution of the Korteweg-de Vries

equation:

(1.3.1) 3u/at = 3udu/dx - (1/2)3°u/3x> .

Kdv
consisting of all the KdV-invariant polynomial functionals.

We denote by P... (F(T)) the subalgebra of P(F(T))

The Lax representation of (1.3.1):

4=

3
d = _ 3 4a , 4
(1.3.2) & L, = [de3 S g e u),Lu]

implies
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Proposition (1.3.3). The spectral invariant functionals

are Kdv-invariant: Pspec(F(T))c PKdV(F(T)).

1.4. Main theorem.

Theorem (1.4.1.) The algebra of the Kdv-invariant polynomial
functionals coincides with that of the spectral invariant
ones and is isomorphic to the .polynomial algebra generated

~ ' .
by Ii S:

P (F(T)) =

Spec g PKdV(F(T)) = R{I1'12fooo}‘ .

This is an immediate consequence of Proposition (1.3.1) and

the following

Theorem {(1.4.2). The functionals Ti's are algebraically

independent and generates the algebra of the KdvV-invariant

polynomial functionals.

We remark that the algebraic independency of Ti's

has been already proved by Sunada (cf. [S]}.

Remark. Our results imply that if a functional of iterated

integral type such as KS in the.Example (1.1.2) is spectral

invariant, then there exists a unique polynomial F(T1,...,T )

N
with some N such that

Kelul = F('f1[u],...,“I‘N[u]), u€F(T).
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For example Sunada ([S]) obtains such spectral
invariants A?[u] as the coefficients in an asymptotic

expansion:

1 1 '
F_lu,t] := J dx Jﬂ exp (-t J u(x + nt + YEwlt))dr)dp (w)
0 0
~ 1 + A? fult + Ag[u]t2+ .o (tw0),

where Q 1is the space of all the continuous functions
w:[0,1] —> R with w{0) = w(1) and p 1is the
Wiener's measure on { . Our results implies that we

can find polynomials. H? € R[T1,T2,...} such that

A’i‘[u] = H'i‘(T1[u], I,(ul,...) , w€F(T).

This is a weaker version of the Sunada's result, which

gives much more precise information about the polynomials

n

Hi'
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§ 2. Description of polynomial functionals.

Using a filtration similar to the one introduced
by Gelfand and Fuks ([GF]) in the computation of the
continuous cohomology of the Lie algebra of vector fields,
we describe the algebra of the polynomial functionals in

terms of differential polynomials.

A polynomial function on a vector space can be identified
with an element of the symmetric algebra of its dual space.
Analogously a polynomial functional K given by (1.1.1.) can

be identified with the sequence (Kn) , where K

n=0,1,2,...

is a symmetric distribution on T", i.e., Ki = K, for all

n

s€S , where <Kj,f> := <K ,SE>{f€F(T")) with

sf(x1,...,xn) = f(xs1,...,xsn) .

Hereafter we make the following identification:

- 'S
P(F(T)) = o o D'(T") " ,
S

where D'(T") " denotes the space of the symmetric

distributions on Tn .

Note that for KXKe€D'(T") ,

<k,u*™> = <s(K),u®™> (ueF(T)) ,
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where S(K) denotes the symmetrisation of K:

S(K) = (1/n1) J .o K .
n

2.2 Gelfand-Fuks filtration on P(F(T)) .

For a subset X of T% , denote by D' (T?,X) the

subspace of D' (T™) consisting of all the distributions

on T% with supports in X . Define
Tn(k) s = {(x1,...,xn) ETn, #{x1,...,xn} sk},
where #A stands for the number of the elements of a
set A. Then D'(T",T™™(k)) (k=1,2,...,n) is an s -invariant

subspace of D'(Tn). We define FOP(F(T)) = R and
k _ P o R ¢
FP(F(T)) = enak D'(T°, T (k})), for ka1,

This is an increasing filtration: FO ":F1 c:F2 C...

which is multiplicative, i.e., FPFIcFP'@ | Note that
F1P(F(T)) is exactly the space of the diagonal polynomial

fungtionals. Note also for example that K4 €F2\ F1 and

Kg €F NF._ (cf. Example (1.2.1)).

5 1

k-1

Let A be the algebra of differential polynomials
of u (cf. § A.2.1.), and denote by A the subspace of

A consisting of all the elements with the zero constant
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k

terms: A := {f€A, £(0) =0} . Denote by % the tensor

product of k cories of A over R.

Define

% D' (T5) @ AKX . p(F(T))

')‘{k(v.rebf1 ®...0f) [u] = <w,f1[u] ®...® fk[u]>,

where wED' (Tk) , fi €A and u€F(T). This induces

S
x:[D'(T%) o %1 K — F P(F(T)) ,

where sESk acts on D'(Tk) o'ﬂOk by

s(we f o.;.ofk)=wsof

1

(t = s-1).

Then we have
Proposition (2.3.1). X1 is surjective.

This will be proved in § A.1 using the structure
theorems of distributions.

-1F

Now we describe Xx k=1

Define endomorphisms di (1 = 1,...,k) of D'(Tk) ® A°

by

da. == 3/axi R1+18 (18...2194d0108...81)

’

k
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d being on the i-th factor. Then we have

‘Proposition (2.3.2). x, (F,_,P(F(T))) is spanned by

s

k ™~ k
(I1o, Ima) n(p'(rh) o X%

and

s
(D' (T8, ™ (k - 1)) o B®K] ¥

This will be also proved in § A.1.
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§ 3. The Kdv;derivation Dt on P(F(T))

We introduce a derivation Dt on P(F(T)), which

is in fact the infinitesimal generator of the KdVv-flow

on F(T) and Ker Dt = PKdV(F(T)) holds. In § 3.3, we

find an operator'which corresponds to D in the description

t
of § 2.3.

From now on, we rescale (x,t,u) to (-x,2t,-3u/2},

so that the Korteweg-de Vries equation Eakes the simple form:

(3.0.1) 3u/3t = uau/ax + 3°u/axs.

Observe that the validity of the Theorem (1.4.2) does not

éhange by this rescaling.

3.1.  The infinitesimal generator of the KdV-flow.

To the Kdv-flow on F(T) correéponds the derivation

Dy on P(F(T)) <characterized by

(3.1.1) (d/dt)Klu(-,t)] = (DtK)[u(’,t)]
for KEP(F(T)) and all the solutions u(x,t} of (3.0.1).

It is easy to see that this derivation can be expressed

S
for KeD'(T) * as

(3.1.2) Dth = Ln+Ln+1 '
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- - 3 3
Ln = =nS(3 /anKn(x1,...,xn)),

Ln+1= nS(Kn(x1,...,xn)6'(xn-xn+1)).

Here 6(x-y) € D'(Tz) denotes the delta functional

defined by

and

——— ——— ———— ——— = - v T 0 W et —— ——— ——————— —————  al] . S . ———

<§(x-y),£> Jf(x,x)dx, £ € F(T?)
T

§'(x-y) = 38({x-y)/3ax = =38(x~-y)/3y .

We recall the following

Theorem (3.2.1) - ([MT]).For every u

u€F(T x R)

This

Proposition (3.2.2), P

0
of the K4V equation exists and satisfy

inplies

(F(T)) = Ker D_.

Proof. Obviously D K = 0 4implies that K is Kdv-invariant

by virtue

Conversely let K be a KdV-invariant polynomial

Kdv t

t
of (3.1.1).

€ F(T), a unique solution

. AT LRTSTE

u(x,0) = uo(x)-

functional.
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For u, € F{(T), let uwu€F(T xR} be the solution of the

0

KdV-equation with u(x,0) = u,(X). Then by (3.1.1),

0
D.Kluyl = (d/dt)Klul-,t)] = 0.

Hence DtK =0

Q.E.D.

We note that only the solvability of the KdV-equation

in small time is necessary for the proof of this proposition.

We remark that we may as well define the notion.of
KdvV-invariance of a polynomial functional K by DtK = 0,
which is a little technical condition but makes it

unnecessary to rely on the above deep result.

3.3 Description of D, in terms of differential polynomials.

Define a derivation d of A by dt = X

t uu1+u3
(cf. § A.2.3), i.e.,
- 7% i /
4, := zi=0 d (uu1+u3)a/aui ,
. . y rmK kK
and endomorphisms dt i (i =1,...,k) of D'(T") o A by
dt,i-== 1o ...8d o ...01,

dt being on the i-th place, and put

dt := dt,1 + ... + d
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Then

Proposition (3.3.1). Dy o X = xk‘,at.

Proof. For fE€A and a solution u of (3.0.1) we have

obviously
2f[ul/at = (d,.£)(ul .

Using this, we have for K ® f1 ®....9 fkeD'(Tk) ® 'ﬁ@k

a/dt ';Zk(xof ®...8f)=d/at <K,f,[ul®...8 £ [u]>

1

k : |
- Zi=1 <K,£,(ul®...83£,[ul/3t®...0 £ [u]>

Xk @ d (£,8...0£)) [ul .

Hence, by Theorem (3.2.1), Do Qk = ';koﬁt ,  from which

the proposition follows immediately.



_.23_

§ 4. Proof‘of the main Theorem (1.4.2).

The algebraic independency follows from a general

Theorem (6.1). So we prove in this section, .PKdV(F(T)) = PO'
where PO denotes the subalgebra generated by Ti' S .

Let ‘K(EPKdV(F(T)) . Let k be the integer satisfying
KEFkP(F(T))\Fk-1E(F(T)) .
We may suppose ké 1 . We shall show that
KE;‘k-1P(F(T)) + P

0 -

Then by the induction on k it follows that KEEPO .

First by Proposition (2.3.1), K can be expressed as

kK, o, x0k;k
for some JE€([D'(T") © A~ 7} Applying D_ to both sides,

we obtain by Proposition (3.3.1)

Then Proposition (2.3.2) implies

k k ok ~ @k
(4.1) d.geli_, Imd, + D' (T, T (k-1)) © &

For each positive integer i, fix I, and X, €A

which satisfies the conditions of Theorem (A.3.3.1). Denote
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by C the subspace of A spanned by ({I,; i=1,2,3,...} .

il

Define a subset T, of ™ by -

© Ty := {([x1],..., [ku); X <Ky Seo. <X <X, +1})

where [x] € R/Z denotes the class represented by x€R .

k

Then obviously T0 is a connected component of T ‘~Tk(k-1).

Let H be its characteristic function, i.e., H is 1 on TO

and 0 on Tk\T0 ' which we regard as a distribution on Tk.

@k

For LE€A define

s
J,o:= (1/k1) § slHeL]l € [D'(TX) @& 8K &k
sesk

Denote by Zk. the cyclic subgroup of Sk generated by the

cyclic permutation (12...k}.

S
Lemma (4.2). If an element J of [D'(Tk)iaﬁak] k satisfies

ok , 2k
(4.1), then an L€ [C ] exists such that

k-1

(T =T € FR(E) .

This is in fact one of the two key polnts in our proof of

the main theorem and will be proved in § 5.

When ks2 , we have J. . =180L because Tk*\Tk(k—1) is

L
Fk—1

conhected. Hence we have modulo P(F(T))
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K = xk(1®L) € Po ’

which we wanted to show.

Suppose now Kk iz 3

Z
We have proved that an LE:[Cek] k exists which satisfies
K-y, (J.) € 57 p(F(T))
kYL
. ' -1, o @ (k=1) k-1
Then by Proposition (2.3.1) we have an N € [D'(Tk y 8 A” " ]
satisfying
K = xk(JL) * Xyoq (N)
Applying D£ , Wwe obtain
(4.3) | Dyxy (91) + Xpoq (E’ftN) = 0
Mow we calculaFe Dtxk(JL). Define
» O @)
by
a (I ®...9I°})=56(i_,i,) © I ®@...9 I
1, iy k' i, T
zk-1
+ I, ©...8I, @S{i ,i )®I ®...9I, .
j=1 14 Il L L2 Iy
Here S(i,j) := —Iixj-i-Ijxi . Then we have
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Lemma (4.4). For LecC®¥ ,

Dyxp (Tp) = Xpoq (Typ) -

Proof. For the sake of simplicity, we prove this when k=3,

Let L=Z(Ia®I eIc) . Then, for u€F(T) ,

b

1 x+1 x+1
(x59) [u] = Jodx Jx ay jy dz I_[ul(x) I, [ul (y) I_lul(z) ,

Put fi=Ii[u] and gi=xi[u] (1 =a,b,c) for brevity.

Since d,I, = dX

eIy we have

i r

(4, I;)[u] = (ax)lul = g, .

Hence we have

1, X+ 1 rX+1
doga(x)dx ), fb(y)dy ), fc(z)dz
1 x+1

+ 0fa(x)dx ) gb(y)dy Iy

Dtx3(JL)[u]

(X+1
fc(z)dz

- nx+1 -x+1 1
+ f_(x)dx £, (y)dy g (z)dz ,
Jo"a ), b by v

The first term is
1 x+1 X+1
Jodx {[ga(x) J fb(y)dy J fc(z)dz]' +
X Y

x+1 x+1 ,
+ ga(x)fb(X) I fc(Z)dz - ga(x) Jx fbbddy§5x+n} =
X

1 x+1 1 x+1
=Joga(x)fb(x)dx Jx f.ly)dy - Joga(x)fc(x)dx Ix £y (y)dy .
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The second is

1 x+1 x+1
J £ (x)dx J dy {3 (gy (¥) J fc(z)dz]-Pgb(y)fc(y)}
0 X y Y

X+1

1 X+ 1 1
=.uJ0fa(x) gb(x;-jx £_(y)dy + jofa(x)dx jx 9, (V) Eg(yay .

The third is

X+1

1 X+1
fplay - [ £otax [ £ e wiay .
X 0 X

1
Iofa(X)gC(X) J

Hence we have

1

. xX+1
k3l = [ (<£, gy 00 + g of 00 Jax | 2 may

0 b4

1 ' x+1
+ JO(—fc(x)ga(x) + gc(x)fa(x))dx J fb(y)dy

X

1 x+1
+J0fa(x)dx Jx (—fb(y)gc(y} + gb(y)fc(y))dy

(JaL)[u]

By this lemma, (4.3) implies

(4.5) Xpoq (I +8 (N =0

) - ok . 2k

Lemma 14.6) If an L€ [C ] satisfies (4.5) for an
S

N € [D'(T ) ® A®(k 1h k=1 then L is

[

Sk-invariant.
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The probf of this is the most involved and will be given

in §7.
| ok - °k
This lemma implies that L€ [CT] , whence JL =1®L .
It follows then that modulo FX 1P (F(T))

K= x (18L) € P,

This completes the proof of. the main Theorem (1.4.2).
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§ 5. Proof of Lemma (4.2).

We use the notations of §A.2.4 with M==D'(Tk) and

aj =3/ xj . Further we define aj := DK‘,j + X’K,j with K = uu, *u, .

Applying & to the both sides of (4.1}, we obtain

(5.1) (B +oenty) 87 € D' (TX, 78 (k-1)) o 8K

because of Lemmas (A.2,.4.1-2) and Corollary (A.2.4.3).

Denote by r the restriction map from D'(Tk) @'Egk ‘to

@k -

o' (TR~TX (k-1)) © A Then from (5.1) it follows

(5.2) | (A7+...+A)) ©(83) = 0 ,

1

where Ai (1=1,...,k) is the endomorphism of
D'(Tk\Tk(k—1)) ® Kek denoted by 4; in §A.2.4 for

M=D' (TN (k=1)) and 3, =2/0x, .

Now we solve the equation (5.2).

Let T, be the variational derivative of I.: T.=46 1
i i i u i

(cf. §A.2.2 for the defintion of Gu) . Denote by &C

the subspace of X spanned by T}s (1=1,2,3...) , and by
LC(X) , the space of locally constant real valued functions

on a topological space 'X. Then

LC(TETX (k-1)) @ (50) 8K

Lemma (5.3). Ker(A{+...+Aé)
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Proof. We apply Lemma (A.3.6.1) to
M= D (¥ (k-1)) 0 %% 1) 9 R with 3= g/0x,  and

G

1}

t
A{+...+Ak_1 . Then we obtain
Ker(A{+...+Ai) = (Ker(a/axk) N Ker(A;+...+A£#1)) ® §C .
By induction, we obtain
' ' = \ . ®k
Ker (Aj+...+4ap) = (Rer(3/3x,) n...N Rer(3/3x,)) @ (&C)

Q.E.D.

Hence we have

r(sd) = J_H_® §(L) ,

where ¢ ranges over the set of connected components of
k_ ok

TONT™ (k=1) , Hc is the characteristic function of ¢ and
LCEZC . Since J \is Sk—symmetric, we have

GLsc = 6Lc

for all c¢ and ‘s(ESk . Hence putting L := L we have

?
Ty

ré (J-JL) =0 ,
which means

§(J=J,.) €D’ (T, ¥ (k-1)) @ XK
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It follows then by Lemma (A.2.4.1) that

k

8k
J-J €],_4Ind

i+D'(Tk,Tk(k-1)) o ROk

whence by Proposition (2.3.2)

xk(J—JL) EF 1P(F (T))

k-

Finally we note that L 1is Zk-invariant. In fact the

Z, =invariance of T implies that, for s€Z

k 0 k'’

§(L-sL) =20
whence L =35s8l because of Lemma (A.2.4.4).

This completes the proof of Lemma (4.2).



-32-

§ 6. Algeﬁraic independency .

We prove in this section the following

Theorem (6.1). Let {K1,...,Km} be a linearly independent
subset of A := XT(R@X) c F'P(F(T)) . Then they are algebrai-

cally independent in the algebra P(F(T)) .

Proof. It suffices to show the injectivity of the map

S
—Qk] k

a (A ——> P(F(T))

®r=0

induced by the multiplication. Moreover we have only to show

for each k the injectivity of the map

s
a, (28%17k 5 FRpr(m)) /PR TR (R (T))

induced from a, since

Ky c F¥p (P (T))

S
a ([28K]

Suppose a is not injective, i.e.,

k

k-

a(3) er* p(r(m)) ,

S . S
k Choose gEZ[QQk] k such that

for some gE€ [R®K)

w—

g = Xk(1®g) where Q 1is a complement of Imd in A .

Then by Proposition (2.3.2)

s k
1ege (D' (%, T8 (k-1)) e &®K; k-+zi=11mdi
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Let T0 -be a connected component of Tk\Tk(k-1) . Then on

T we have

0

k
1@ ge],_,Imd

i
Now we use the results of § A.2.4 with

M = D'(TOJ , ai=a/axi . Then we have
§(1®g) = 0 .

But this implies §&§'g=0, where §' denotes the & of
§ A.2.4 with M=R and ai=0 . By Lemma (A.2.4.4), we
have g=0 , whence 5 =0 , establish_ing the injectivity

of ak

Q.E.D.
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§ 7. Proof of Lemma (4.6)

By virtue of Proposition (2.3.2) , it suffices to prove

the following. Put 2 =1/(k=1)! ] s .
SEZ, _4
Lemma (7.1). Let kgz 3 . Suppose an
. p/
L = Ja, 111@...®Ii€[®k]k
1"k 1 k
catisfies
(1) z(3L) Zi 1dN +d N on Ty

where T0 is a component of Tk 1\Tk’1(l'-2) and

Ni,-cD'(T)@'N@(k” . Then Letcek]

Proof. Since L 1is 2,-invariant, we have

k.

Kk k-1

Z(3L) = =3 {j=1 a; ®S5(i,,i. )01

i ®...8 Ii

¥ MR

1..-

We use the notations of § A.2.4 with M==D'(T0) and aj=a/axj.

Let AJ-—D 3 x.K with K==uu1+u3 . Applying § to (1) ,
we obtain

zk-1 : .
(2) ,oLa. T, 8...0 T, QT S @...8T =(A_ +...+A )P

where T, := 8(S(1,3)) € A, P=k/(k=1)8N .

Sublemma (7.2). Let k21 . The elements
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(T;©...8T, ©T, ®...8T, ;1s3sk,i €2z, <4y, }

1 3=1 jij+‘| s 3+

are linearly independent in D'(TO) ® Kek modulo Im(A1+...+.Ak).

By this, (2) implies

B354, .04, T Bid, ...d

3 k 3 k

for all :I.,j,.1'.3,...,ik . Since ay 4 is cyclic with re-

1°° "7k
spect to the suffixes, it follows that a; i is actually

S 1°°°7k
symmetric, whence L€ [Caklk .

Thus it remains to prove Sublemma (7.2).
Let k=1 . Suppose

(3) zi<j a;3Ty5= 8P

for some PED'(T) ® A with some aij 0 . We use the no-

tations of § A.3.4 with M=D'(T) and 3=3/3x .

Let P, be the A;'l-component of P and put

m := max{{2(i+j); aij* 0 U {i+3; APy

£0}] .

Note that m must be even. In fact otherwise, we have

APm_3 =0 , contradicting to the definition of m .

Put m=2s . Then the Ais-component of (3} 1is



AP

Lisg iy Tyg=0Ppg 3

Applying Proposition (A.3.5.1), we obtain aij =0 for
i+j=s and P25-3 =0 contradicting to the definition of

m=2s . Hence (3) implies aij=0 for all i1 and 3j .

Let now k22 and

. .
(4)] a T, ®...87; OT_ 8T,  ©...8T, =(b,+...+5, ) P
i1...i£_1sti£+1...ik 11 12—1 i£+1 ik 1 k
f\@k ° '
with Pe€eD' ('I‘ )®A . Suppose some of the a's is nonzero.
~®(k=1)

We use the notations of § A.3.4 now with M=D' ('I' ) ® A

and 3 =3/3x Then (4) can be rewritten as

k.
(5) a;®T, + J a,.@T,. = (G+a")p ,
i<3 L] J
where
k
a,.:=)a T, @...@T ,
i3 i...1k113 L i
k-1 _¢
a, := a; @...@T ®T_,OT, O...
i £=1 1.. i .'.ik1 12-1 st 1R+1

i be the A;-component of P . Let m be the maximum

number in the union of {2{(i+3j}; aij* 0}, (2i+2; ai*O} and

Let P



{i+3 ; {G+AM)P1¢O} .

Suppose m is odd and let m=2s+1 . Then the
2s :
and AM -components of (5) read
M =
A3P2s-2"0
M M _
By Pog-2 *83F2-3 1§j 335 @ Tyg*ag41 ® Touy
i+j=s

Then by virtue of Proposition (A.3.5.1) ,

a
s+1

which implies a =a =0 by virtue of Corollary {(A.3.3.3).
s+1 1,s-1

Then by (ii) of Proposition (A.3.5.1) aij =0(i+j=s) and
AHP?2_2==0 , which contradicts the definition of m .

Let m=2s . Putting st_2==0 . We can use the above
arguments to show that ag=0 , 334 = 0(i+j=s) énd AB;'PZs-G:
But then P =0 by Lemma (A.3.4.2). We obtain again a

2s5=-3

contradiction.

2s+2

By

This completes the proof of Sublemma (7.2) and hence

that of Lemma (7.1).

0.
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§ 8. Remarks and Problems.

Some of the following have also been stated in [T2].

8.1. The validity of our result relies partly on the following

algebraic fact: The map « :A2H1 —_— H2 induced from the

exterior product 91x 91-——>nz(cf} §A.3.1 for the notations)
is injective, which is an easy conseguence of Proposition

(A.3.5.1) .

Problem. Are the similar maps for other solition equations in-

jective?

8.2. Conversely if some evolution equation ut==F (FEA) has
the nonzero kernel of AZH1 —_—> H2 , then we can construct
an invariant which cannot be expressed as a polynomial of lo-

cal conserved quantities. For example, suppose there are
three 1-forms wi==Iidx+xidt(i=1,2,3) such that

Dpw, =0 (i=1,2,3) and W AW, =Dpwy . L.e.,

d,. 1 = dXi {(i=1,2,3) e

I.X, + I.X, = dX 4-dtI

172 271 3 37

where dt==XF {cft. §A.2.3) . Then it is easily shown that

m }{1 o
K[u]:= J I1 (x1)dx1 J Iz(xz)dxz + J I3(x)dx

-0 - -
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(Ii(x) :=Ii[u](x)) is an invariant with respect to the flow

on the Schwarz space S(R) induced by the equation.

8.3. A similar result as Theorem (1.4.2) can be obtained
when we consider the Kdv-flow on the Schwarz space S{(R} on

R L]

8.4, When n 1is greater than one, there are spectral inva-
riant polynomial functionals for the Laplace operator A+ u
on the n-dimensional torus which cannot be expressed as a

polynomial of local spectral invariants (cf. [S])

- Problem. Find all the spectral invariant polynomial func-

tionals: F(Tn) —>» R for -a+u(nz2) .

8.5. We can consider a sort of de Rhamcomplex on F(T) as
follows: A map w:F(T)xF(T)?P —» R is called a polyno-

mial p-form if it can be written as

w(u,x1,...,xp) = EN‘I . wN(x1,...,xN;y1,...,yp)
T XTP

u(x1)...u(xN)X1(y1)...Xp(y'p)dx1...dedy.,...dyp

(u,xiE F(T)) , where wNI is a distribution on TN+p , sSym-

metric in xi's and antisymmetric in yi's and only a finite

number of wN's are nonzero. Denote by QPF(T) the space

of all the polynomial p-forms. Define the exterior differen- .

tiation 4d: oPFr(T) — Qp+1F(T) by
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Nw (X ,...,X 'YL iY ,...,3’} reearyY }
_ N 1 N-1T 71 71 i p+1
N21 TN 1pr+1

u(x1)...u(xN_1)X1(y1)...xb+1(y?+1)dx1...de_1dy1...dyp+1.

Then we obtain a complex ({Q*F(T),d} . This is easily seen

to be acyclic.

t
Kdv-flow on F(T) . Since D

Let D be the Lie derivation on Q*F(T) induced by the

" commutes with 4, we can de-

fine the subcomplex of invariant polynomial forms:

QﬁdvF(T) := KerD Note that our main result asserts that

0
Brav

t -
F(T) RIT,,T,,...] .
Problem. Determine the space QﬁdvF(T) and then compute its

cohomology.

The first step of the calculation goes just in the same
way as in § 2-3. The second step corresponding to the deter-
mination of the space of local conserved densities is to cal-
culate the E}'p-terms(pz1) of the Vinogradov's spectral se-
quence (cf, [T1,V]) associated to the KdV-equation, which

does not seem to be carried out yet.
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§ A.1. Distributions.

In this section, we recall structure theorems of distri-

butions and prove the propositions (2.3.1-2).
A.1.1. Structure theorem of distributions.,

Let Rn+m==R2><R$' be the Euclidean space with the stan-
dard linear coordinate system (x1,...,xn,y1,...,ym) and X
the submanifold defined by Y4 =...'=yhl=0 , which we identify

with Rg . Let K be a compact subset of X .

Define

Q : p'(R%,K) @ R[3_,3 ] ——> D'(R"™M,K)

X X Y
by
A B _ A_B
<QUwed  a0) B> = <w,aLa f ly=0>

for w€D'(R2,K) := {w€D'(R2) ; supp(w) <K} , A€z , Bez] ,
fe FO(Rn+m) := {smooth functions on R™™ with compact supports!.
Here 3_=23/3x , R[3_,3 ] 4is the polynomial algebra on

X x'y A A
3 and 3 _ , and BA stands for (3_ ) 1...(& ) * when
X y X X4 n
A==(A1,...,An) . The structure theorem of the distributions

(cf.[sch]) can be formulated as the following

Theorem (A.71.1.1). Q 1is an isomorphism on

R ¢
D' (R, ,K) ® Rld3y]



-4 2=

We describe now the kernel of Q : Define endomorphisms

— n .
Di(i—1,...,n) of D'(RX,K) ® R[Bx,ay] by

where I stands also for the multiplication map:
i

P(ax,ay) —> P(Bx,ay)axi . Then obviously Q maps

ImD, + ...FZHnDn to zero. In fact we can show

n
Proposition (A.1.1.2). (1) KerQ=},_, ImDy.

(ii) For a compact subset L of K ,

n

=1 R o8 o | - n
Q (D'(R"T,L)) =D'(R,,L) eR{ax,ay_] +{i=1 ImD

i .

Proof. {(ii) implies (1) 4if we put L = ¢

Suppose
A_B n+m
Q(Z%Maﬁa ay) € D'(R,L) .
Since
A.B A B h
we axay a (-3,) we ay (mod. {i=1 ImD;) .
we have
(] (-3 )%, @ 3 Be p' R"™,1)
X AB Y r r

whence, by the above theorem,
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: A, B
L(=3,) Ty, ® e

|‘ n
€ D'(R",L) ® R[ay]

Thus

A B n )
Juw,, ® 3 73 "€ D'(RV,L)® R[3,1 + [InD, .

A.1.2. Decomposition of p' (T, ™ (k)) .

We denote by Pi(n,k) (1 sk sn) the set of all the

paftitions of {1,...,n} 1into k nonvoid subsets:
P(n'k) :={p={p1'o-o'pk}; p.lU.nooUpk: {1,.--,[‘1} Fi

p; ¢ rPinPj=¢(i+3)}
For p€P , put

Tn{p] :={(x1,...,xn) et ; x,=x if 1,3 €p, for some a}l.

173
Then

LN _ n
T (k) = UpEP(‘n,k) T [pl

Since the subset T is regular in the sense of [Schl] ,

we have
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Lemma (A.1.2.1). The map

§ @ gp 1D (T, T [p]) — D (T, T (k)

induced from the inclusions is surjective.

Denote by P(n,k) the subset of P(n,k) consisting of

all the p's satisfying the following condition:

whenever 1i<3j, aEpi, bepj , one has a<b . Let § act

on P(n,k) by
sp:={sp1,...spk} (sESn, PEP(n,k))

and define for p€P(n,k) the subgroup

which leaves D'(Tn,Tn(p)) invariant.

Lemma (A.1.2.2). g induces a surjection:

S
o', p)SP) 5 prr?, TR (k) P,

' .= q -
g' :=S°g 'QpEP(n,k)

where g is the restriction of g and S is the symmetri-

zation.

S

Proof. Let KEZD'(Tn,Tn(k)) n By Lemma (A.1.2.1) ,

K= loep(n,x) Kp

for some KpED'(Tn,Tn[p]). Then
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=
I

(1/n1) J g sK
: n

(1/nl) Zpep(n,k) EsesnSKp

(/1) loep(n,x) ZsesnSKs-1q

put

K := (1/n!)

q zSES SK -1
n q

s
n p N Y :
Since supp(st) < T'[spl] , we have KqE:D (T ,T7 [q]) .
Furthermore it is easy to see that Kq 1§ S(g)-invariant and
that sﬁq = ?sq . Hence noting that Snﬁ(n,k) = P(n,k) , we

obtain

=
I

Lac 2
qcP (n, k) &,

ZpEﬁ(n;k) (1/m(p) 1) ZsESn5§p

s(§ (n!/m(p)s)k‘p) ,

p€P (n,k)

where mi(p) = ﬁS(p) .

. : . S
A.1.3. Description of D' (1%, 1%(pl) P

—————

Define for p€ B(n,k) the subspace A<p> of ASK

spanned by all such elements f1 ®...9 fk as fi is homo-

geneous of degree Hpi (i=1,...,k) . Denote the restriction
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~s

X; on D' (%) ® A<p> by Y. .

£
© p

Lemma (A.1.3.1).

1) ¥, = gt enS P,
. ~ ok : k
(1i) Kerx, = D'(T") @ A<p> N li=q Imd, . )

{=1 Imd

(111) T @ (@, k=1))) = DT, TR (k1)) @ Acp> + ] i
Proof. (i) Obviously the left hand side is in the right. De-
note by 51 the number of the elements of p, and denote the

n n
coordinates of R as (x11,...,x1§1,...,xk§k) . Then T [p]
is the submanifold defined by the egquations:

x = . & - =

11

X S see =

X,= paes X, = .
1p1' ! k1 kP
Hence, by Theorem (A.1.1.1), for each KeD' (TO, T [p]) we

can find such an element ZKB,Q BXB of D'(TX) ® R[ax] as

(g'K) [ul = J<Kp,Lp 4u @...@ Ly  u>

B,1 B,

for wE€EF(T) , where

Bj 1 Bip; (1s1isk)
LB'iu = ax u... axi- .
i1 Pi
(B = (Byy,ee2sBs= ,000, BiopeussB,=)) . If we put
11 1p1 k1 kpk
fg 3= ug ...ug _ ©...8 up +es Ug _ € A<p> ,
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then

(g'K) [u] = X (JKg® fp)[u] ,

which shows (i) . The other assertions follow immediately from

Proposition (A.1.1.2).

A.1.4. Proof_of Propositions (2.3.1-2).

Proposition (2.3.1) follows directly from Lemma

{A.1.2.2) and (i) of Lemma (A.1.3.1).

Proof of Proposition (2.3.2). Let K€1D'(Tk)® 3®k
Since
~Qk A(k,n)
A ianzk
with
we can write
K= ok zpeﬁ(n,k) Ko

with KpED'(Tk) ® A<p> . Suppose X, (K) € F* 'R(F(T))
S
Since xk(A(k,n))t:D'(Tn) n , we have for each n ,
'S
n

= vl D
Xk(zp€§'(n,k) K,)) € D' (7", 7" (k=1))
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Hence for each p € P(n,k) we have

Xk o) = L = lgeb(n,k) ,qep Xk Ky
with L€ED'(T®,T"(k-1)) . Since

supp Yy (K ) © Ugeg T lsql
n

it follows

supp ;p(Kp) c ™ (k-1) U Uig,e) (" [p] n T™[sql) ,

where (q,s) € P(n,k) x Sn satisfies the condition either that

g+p or that g=p and s#1d . Since
T (p'] 0 T(p"] < T" (k=1)
for p' #p" , we obtain
supp Xy (K,) < T" (k=1) .

Then by (iii) of Lemma (A.1.3.1) ,

K -k ok
! -
erD (T™, T (k=1)) ® A<p> + zi=1 Imd

Hence we have proved

~=1

(F* e (r(T))) =0 (T*, T (k-1)) @ B+ ¥ Ina
k i=1

S
Restricting this to [D'(Tk) e Kek] k , wWe obtain the propo-
sition

Q.EOD.
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§ A.2. Differential polynomials.

Let A denote the algebra of differential polynomials

A := R[uo,u1,u2,...] = L}k;1 Rluo,u1,...,uk]

endowed with the derivation d defined by du

izui+1 (i=0'1'2'a -a) .

We write often u, simply by wu.

0

We define the weight and the degree of differential

polynomials multiplicatively by weight(ui)= i+2 and

degree(ui) =1 . We put
AY := (feA ; weight(f) = i}
An = R[uo,u1,...,un] for nz0 ,
R ' for n= -1,
A(d) := {f€A ; degreef(f) = 4} ,
(i) . = j
A Ligi A o
alal := ] .4 Alc)
at@:= al naw@ ,
Ai t= Ai n A ’
n n
A := A[1]
A := A/ImD
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The followiﬁg is well-known:
Lemma (A.2.1.1). Kerd= R .

Proof. Suppose gEAn\An_.I satisfies dg=0 . Suppose nz20.

Then Bg/auz,1 =3/3%u (dg) =0, a contradiction. Hence we must

n+1

have n==1 , i,e., g€R .,

Q.E.D.

A.2.2. The variational operator ¢,k .

Define Gu: A——> A by

- -ayio
8, #=ly=g(-d) " ed/Bu, .

Then the following is well-known:

Proposition (A.2.2.1). Ker 6u= R+ Imd .

Proof. From [3/3u , dl = a/aui , it follows immediately

i+1
§,°d=0.

Suppose Gug=0 for some g€A . Then

Lu; 3g/du; & us g=0 (mod. Imd) ,

whence ):igi €Imd, g, being the A(i)-component of g. By
the induction on the integer n=max{n[gn¢0} we can show

g=4d, (mod. Imd) .
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A.2.3. Evolutional derivation Xy .

For Ke€A, define a derivation of A by

Y |
Xg =1;.9dK3/3u, ,

which commutes with d. Define ‘an endomorphism D of A by

K

*® i
DK :=zi=0 (-d) e BK/aui .

For example, if K==uu1+u3 . then

Dy := u ~deu-a’=-d’-ud
Lemma (A.2.3.1}. § %%y = (DK+XK) °8 -
Proof. First we show
g&udKf s g(DK+XK)6uf (med. Imd)

for f£f,g€A. In fact, modulo Imd ,

gGuXKf B xngf

i
X 1;d7Kaf/3uy

{idi(zj alg 8K/duy)af/du;

. 2
+Ei'jdinjqa f/auiauj

j 3
Zj d’g aK/3u8 £ + Zj d”g X, af/auj
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= g(Z(-—d)j(aK/auj Guf) + zj(—d)j(XKaf/auj))

= g(DKGuf + XK 6uf)
Now it is not difficult to see that, if f €A satisfies
fgeImd for all g€A , then £€0 (cf. for example [K]) .

Thus we have the lemma.

A.2.4. The_twisted multi-variational operators.

Iet M be a vector space with k mutually commuting

endomorphisms 31,...ak . Put

_ ek
AM,k := M @RA
®k _ _
where A -A@R...@RA (k-times). Put
di = 3191+19 (19...218d 918...2 1)

d being on the i-th factor. Define

6, = [(=a;)%ea/u_ ,

Then we have

Lemma (A.2.4.1). Let P be a subspace of M invariant with

respect to di's . Then
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1A, ) = Zk Ima, + MeR% 4
Bp k! T Lli=q i Pp,x -

Proof. It is easy to see as before Gdi=0 (i=1,...,k) ,

whence § maps the right hand side into AP K
?

Suppose gEAM,k satisfies GgEAP’k

Then, modulo  }Imd; |,

2(31,1 cerdy g

1 g) +u; ©...8u; = dg-ue...QuEA.P,k

k 1 k
where aa,m= ;19(19...@1@3/8um®1®...91) ' a/auIrl being on

the a-th factor, and AM K is considered as an Agk-algebra
r

in the natural way. Now the argument in the proof of Lemma
ok

(A.2.2.1) shows gEM@R '+ﬁmdi+AEk.
Q.E.D-
For KE€EA, define endomorphisms XK;i'DK,i(i=1“"’k)
of AM,k by
XK,i 1= 1@(1@...@19XK91®...®1) '

o«

- - n
Dp.i = lpeo(=dy) °(18...818 3K/3u_ 816...81)

where XK and aK/Bul,1 are on the i-th factor. Then we have

Lemma (A.2.4.2).

(1) If i#%#3j , then 61 commutes with X, . and DK

K,3 v J

(11) 83 o Xp 4 = (Xg 4 +Dg 3)°8;

Q.E.D.
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Proof. (i) 1is obvious and (ii) can be proved just in the

same way as Lemma (A.2.3.1).

Corollary (A.2.4.3). § o X = (X +D ) o8 .

K,i" °K,1

Finally suppose M=R, ai=0 . Then Lemma (2.4.1) implies

the following

Lemma (A.2.4.4). Let Q be a complement ©of R+ Imd in Aa .

Then & 1is injective on Qek .

8k

Proof. Obvious since Q is a complement of ZImci 8k

i- in A7,

Q.E.D.
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§ A.3. Conservation laws of the KdV-equation.

A.3.1. A _complex associated_to_the KdV_equation.

Define a complex

0 —->QO —D->Q1 —D—>92 — 0

as follows: Put

.i i
Q7 3= A@Rh[dx,dt] '

where A*[dx,dt] stands for the exterior algebra on

R.dx®R.dt and D 1is determined by

Df = dfdx +d fat , for fea=a" ,

ﬁ(gAh) = Dga h+ (-1)agADh , for fEs‘za,gE‘nb ’

where dt=}( in the notation of §A.2.3. Since
uu, +u,

d and dt commutes with each other, we obtain a complex

{@*,D} . Denote by Hi the i-th cohomology space. We may

call H1 the space of the équivalence classes of conserved

densities of the KdV~equation, since Propositions (2.3.1-2)

and (3.3.1) for k=1 imply that the map

fdx + gdt —— X1(1 ® f) induces a map

H‘I —_— KerDt n F1P(F (T)) ,

which in fact is an isomorpvhism by the argument before

(4.1) in § 4.
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Now we cite the result of [MGK] in the following form:

Theorem (A.3.1.1). For each positive integer 1, an element

wy = Iidx + xidt of 91 exists such that Dwi=0 , weight (wi) =2i.

Moreover the classes i1in H1 represented by wi's(i=1,2,3,...)

are non-—-zero.

Put A := DK-FX with K=uu,+u, , i.e.,

K 1 73

3

As:=d,_-ud-d .

t

Then by Proposition (A.2.2.1} and Lemma (A.2.3.1) , we have

the following realization of H1:

Lemma (A.3.1.2). The map Idx+ Xdt —> GuI induces an injec-

tion H1 — Ker a .

© : 3
3,0 = zi,j,k=0 ui+1uj+1uk+1a /auiaujauk
2

* 314,520 eaUye1

T ' i
3,1 7 Z:L=0 zO(asi(a) uaui—a+1a/3ui

Then it is easy to show
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Lemma (A.3.2.1).

(i) A = A

3,07 %3,1 7
(i1) 2, jL(Aj k)) < ad*3 (ke) .
(111) [3/3u,a] = 0

Now we solve the equation 4f = 0

Lemma (A.3.2.2). Suppose fE:An\An_1 satisfies af =0 . Then

n 1s even. Moreover, for nzd4,

f = a_(un+((n+1)/3)uun_2)+bun_7+cun_2, (mod. A__5)
and 5
_f=a(u2+u /2) +b , for n=2
f = a ’ for n =20

with a,b,c€R .

Proof. From 3/3u {(Af) = 0 , we obtain.

n+2
d(af/aun) =0

Hence by Lemma (A.2.1:1), £ must be of the form
£ Ea?n (mod. A__,).

Thus for n=0 we obtain f=au+b . But then
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whence a must be zero.

Suppose now n =1 . Then

d(af/aun_1) = a/aun+ Af = 0 ,

1

whence

with a,b€R and £ .,€A _, .

Suppose n=1 . Then Af==au$i—bu2 , whence we have

a=0 , contradicting £ ¢ AOI.

Thus we have nz2 . Then from a/aun_zAf= 0, we
obtain

d3f __,/3u _5) = (n+l)au,/3 ,

whence
afn_z/aun_2 = (n+l1)au/3 +c
with a,c&€R .
Suppose now n=2 . Then

fO = u2/2+cu+e

with an e &€ R , whence

£ = a(u2+-u2/2)-+bu1-+cu-+e .
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But then Af = bua2 + cu2 , whence b=c=0 .

Suppose now na . Then
f._, = (n+1)auun_2/3+cun_2 (mod. A_3) -
Hence
£ =afu + (n+f)uu _,/3) +bu _, +cu . (mod. A _,).

Thus it .remains to show that n 1s even. By (iii) of
Lemma (A.3.2.1), Aakf/auk=0 for any k . Hen;:e if n is
odd, we obtain an element of the form au, +g(u) in Ker a
Then by what we have shown above we must have a =0 , contradic-

ting f ¢ A ;-

QOE.D.
Corollary (A.3.2.3). Kera nal™ = (0) , for nz1 .
Proof. Suppose we have a nonzero element f in Ker A nA2+3 .

n+3 _ n+3
. Note that Al =A _]

since weight(un) = n+2 , and
weight (u)z 2 for all j . Thus £E€A~A . for some k with

0sksn-1 . By the above lemma, we have f =au, (mod. A _q)

But weight(uk) = k+2 sn+3 , whence a=0 contradicting

£E€a _, - | )
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Put T, = 6uIi , where Ii's are those differential poly-

nomials given in Theorem (A.3.1.1) . Then we have

Proposition (A.3.2.4).

(i) Kera nAal= R'Ti+1" for n=21i ,
(o) , for odd n
(ii) T1 = c1 ’
T2 = czu ’
T, = c.,(u +u2/2)
3 3'°2 ’

T, = ¢yluyy 4+ (2L-3)uuy, o/3) (mod. A,, )

for 124 with nonzero ci's

Proof. Note first that An=A2_2 . Hence if n is odd,

n _ n _ n
Kera N A" =KerdA 0 A .= Kerd 0 A _

and Corollary (A.3.2.3).

3 =0 by Lemma (A.3.2.2)

Obviously we have Ti+1€4A21== A%i_z , which is nonzero
Suppose now T & KeraA n AZi = KexraA N Agi_'z, . Then by Lemma
(A.3.2.2)

T = auy, _, (mod. A21_3) '
whence T -DbT € A?'i N Kera = (0) for some bER . Hence
o) 1+1 2i-3

A" NKer A= R.Ti+1 , which gives (1)} .

Finally Lemma (A.3.2.2) gives {ii) .
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§ A.3.3. Information on certain differential polynomials.

First we refine Theorem (A.3.1.1) using Lemma (A.3.1.2)

and Proposition‘(A.3.2.4).

Theorem (A.3.3.1). For each positive integer 1, an element
1

Wy =Iidx-+xidt of @ exists such that Dwi==0 ’ weight(Ii)=2i,
weight(xi) = 21+ 2,
I1 =u ,
I, = u’ ' (mod. A[31]) for iz2
i i-2 : ’ ’
= 2/9-
Xy = u,y +u /2,

Xy ® 2uy_,u;-ui_, (mod. A[3]), for iz2

Moreover the classes in H1 represented by wi's(i=1,2,...)

constitute a basis of I-I1

Proof. Lemma (A.3.1.2) and (i) of Proposition (A.3.2.4)

imply obviously the last assertion.

11
-

It is obvious that w1 satisfies Dw1==0 and auI

also spans R.T1

Let 1iz2 . Let Ii be any clement of AZi such
that GuIi = 'I‘i . As an element of A21 , We can write
v i-2
1
I sJau,, o + [h_g @ UkUoj gk (mod. A[3]) .
But modulo Imd u 20 and u,u a(-1)ku2
! 2i-2 k 2i-4-k i-2
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Hence we may suppose Ij'_ naaiuf._2 (mod. Af{3]) . But then
Gqu'_ aZaiuZi_4 (mod. A[2]) . Hence we must have ay 0 . Thus

-— 1
we can take Ii-'Ii/ai .

Now modulo A[3]

Since dA(m) cA(m) and Kerd = R , the xi€A21+2 with
dxi = dtIi must be of the form
X, & 2u u -u2 (mod. A[3])
i i-2"1 i-1 * -
Q.E.D.

2{i+j)

Define Tij i = Gu(S(i,j)) €A where we recall

An easy calculation using the above Theorem shows the following

Lemma (A.3.3.2).

(i) For i,j with j>122 ,
T,.mc,.u’ ,u (mod. A[41])
15 ® €15 Y1-2Y%25-2 y

with cij*o .

(i) For 1iz2,
T,y S C Uy, 5 (mod. A[3])
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with ¢, #0 .

Corollary (A.3.3.3). Tk(k==1,2,...) and Tij(1s i<3j) are

linearly independent.

and T '4k(1 sk<[i/2])

i+1 k,1i
are linearly independent, which is obvious by Proposition (A.3.2.4)

Proof. It suffices to show that T

and Lemma (A.3.3.2).

Q.E.D.

A.3.4. Twisting of 4.

Let M be an R-vector space with an endomorphism

93: M —> M . Define AM s = M@RA and
weight(m® f) = 1,
degree(m® f) = j ,
for m€M and feAi(j) . We denote M@Ai, MO®A(j) , M@J\n,

i,. i . i,. .
M®A~(j) , etc. respectively by AM’ AM(j), AM,n’ AM(j), etc..

Define
a" ;= se1+104a ,
M _ _aaM_ M3
A --1®<:‘1t ud (@) : Ay —> A, . .
Then we can decompose AM:
M M
AT = .
1,3

where A? j(A;(n)) c A;+l(n+j) . Then it is easy to show
4
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Alg'O =231

2t o = 39204

by o = 3n@a®

A§,1 = 3Qu R

A?,O = 1@ 63'0 ’

b3,0 7 18834
and A?,j =9 otherwise.
Put A§:= A§’0+Arg'1 R A§:=Ar;’0+ar;’1 = 1® 4 .
By Proposition (A.3.2.4); we have

Lemma (A.3.4.2).

3

Ker A

M _
3 NBy = ®

_____________ i

and Tjk modulo ImaA .

Let M and 3 be as above.

J
Proposition (A.3.5.1). Suppose ij,A (j=2i-2 , 2i-3)

M

satisfies
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M =

(1) b3f,i 0 =0

M A M '
(2) 8355 % 03853 3%8@Ty 1 v 1y gy g [(5-1) /21 ® Tk, 1k
Then a+3a,=0. Furthermore if a or a4, 1is zero, then all
the a,'s are zero and Mg =0

k 21-2

We need the following
Lemma (A.3.5.2). Let P, ¢ A e A (2) Dbe the projection.
Then

M - 2i-3 21i- 21
Pyoby ¢ Ay (1) & Ay (2}—*—> Ay (?)

is injective and M® p R.uu,, _, is a complement of its image.

Procf. Since

) = 3m® (u. .u .+u

8y 3 (M@uu, 4 5 s : 5+2921-6-7

Py 541924-5-3]

for 0sjsi-4 , we have

_qyit3 2 M, 2i-3
m@uJuZi 4 Js( 1) me uy_, (mod. p2A3AM (2y) ,
for 15 jsi-3 . Further modulo Pyh ? ii 3(2)
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' 2i-5/21=5
(m®u -m@}:l 5( _ )uju21_4_j

21-5) = _
j=1 ]
. 221 5(21.5)( ity i ,
j=1 J
i 2
= (-1 m®uy_, .
Hence pz°A3(Aii—3(1)(£A§i—3(2) is spanned by
{m®u, 3924-4-57 smMEM, 15jsi-2} . The injectivity of p,°4; can

be easily proved.

Q.E.D.

Proof of Proposition (A.3.5.1). By Lemma: (3.4.2),

(1) implies =In913. with some m gM. Then the

£21-2
A;(1)-component of (2) gives a=33m . On the other hand,
by virtue of the above lemma, we obtain comparing the coeffi-

cients of Uly i g in (2)
(2i-2)om = (2i-1) a/3 + a1

whence a+3a1 =0 .

Suppose now a=a, =0 . We may suppose 1i325 . Since

_ M R
am=0 , we have A f2i-2 3f21 -2 =0 , by virtue of Lemma

(3.4.1). Thus we have
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M. _
(3) 83513 “Logks((i-1) /2] 2k © Tk, i-k °

Hence by Lemma ' (A.3.3.2),

M

A3f « 0 (mod. A(3]) .

2i-3
By Lemma (A.3.5.2) above, we have

f,,-3 ZAI3].

Hence we can wrlte

2i-9

£21-3 % Ly=0 f3Y;

(mod. AM[4]) ’

where fj € AM(2)11AM,j . If jzi-4 , then

weight(uaug) = 6+2j+a22i-2

- whence fj cannot have a nonzero term having uj as a fac-

tor. Thus actually

(4) f.e A

3 M,j-1 ' for jezi-4 .

Thus (3) can be written as

M

(5) A3(E,  gUpi gt Ey_4uy_y4+hy_g)
® Losksl(i-1)/2] 3k ® Tk, 1-k
Modulo AL[4] with ijAM,j-‘I and hi-SEAM,i-S
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Consider now the following assertion:

aj =0 , for j sk,
(6)

fj =0, for j22i-2k-4
What we must show 1is (6)p_1 when 1=2p and (6)_  when
i=2p+1 . In either case we have only to show (G)[(i—1)/2] '

which we shall prove by induction on k.

First comparing‘the coefficients of u2u21-6 of (3) ,
we have a, =0. Hence '(6)2 is valid if we consider fj

to be zero for jz2i-8.

Suppose now that for some k such that

2sks[(i-1)/2]-1 the assertion (6) is true. Then (5)

k
looks like
(7) AM (s Uay o o+ f u ..
3'721i=2k=~5"2i-2k=5 2i=-2k=6"2i=-2k=-6 °°°
= a @(u2 u + ) +
k+1 k=1"2i=-2k-4 =t v

modulo AM[4] . Since ks [(i-1)/2 -1}, we have 2i-2k-6321i-4,

whence
s M,s-1 for s = si-2k-5 , 2i-2k-6 .

Comparing the coefficients of wu,. ., _, in (7) , we obtain

(1@A)f,. oy _c =

This implies by Lemma (A.2.1.1) f2i—2k—5 =0 . Comparing
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© 2
(1@d)f eu_,

21-2k-6 ~ Fk+1
Applying 1@6u , we obtain ak-‘_1 ®u2k_--2 = 0 , whence

Apsq = 0. Then we have f = 0, establishing

21-2k-6 (6) 1 4q-

A.3.6. A_refinement of Proposition (A.3.2.4}).

Let M and 3 be as in §A.3.4 and G an endo-

morphism of M.

Lemma (A.3.6.1). Ker(a¥+G®1) = (RerGnKers) o ¥ ,

where T is the subspace of A spanned by T,'s .

Proof. Suppose gEAM satisfies

(1) (sM+ce1) g=0 .

Let Ik be the A];l-component of ¢ and n the maximal num-

ber such that g, * 0 . The A;+3-component of (1) gives
A,L;gn=0 , whence by Lemma (A.3.4.2) , n 1is even: n=21i

_ 2i+2 _ _
and 954 = 34 e Ti+1 for some ay €M . Then the AM compo

nent of (1) gives

2 M _
331 @ (3ATT g +uTy,q) * 83955 = O
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M, ~ . _
Since ImA311AM(1) = 0 , we obtain 3a, =0
the coefficients of

M - =
and A3g21_1-0 , Whence g21_1-0 .

2i+1

M
Uyy - Thus we have A (a.I ®Ti+

if we compare

1) 0

Now the AM -component of (1) reads A§g21_2 =0,

whence Jgi-p = @, @Ty for some a, €M.

Finally the Aﬁi-component of (1) gilves

2 M o
(2) G(a1) 9Ti+1 +3a,® (3d Ti) +uTi) * 839,44 = 0 .
By Lemma (A.3.5.2), the coefficients of Uyy-p and uu,, .,
in (2) give when 1323
G(a1) + 3aa2 = 0
(3) (21—1)G(a1)/3+{21—2)aa2 =0 ,

f

whence G(a1)

G(a1) + 3a2 =0 ,

whence G(a1) 0 again. Finally when i=1 ,
g==a1®t1+a2691 ’

(AM+G®1)g=G(a1) @u+Glay) 1= 0 ,

whence G(a1) =0

0 . When i=2 , (3) 1is replaced by

we have



-71 -

Thus we have

a,®T, . € (Ker G NKer 3) ®T
and
n-1
g-a1@Ti+1€AM .
Hence by the induction on n, we obtaiﬁ the Lemma.

Q.E.D.
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