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Abstract

It is proved that the algebra of the KdV-invariant

polynomial funetionals on the space of C
OO

functions on the

one-dimensional torus is isomorphie to the polyno~ial algebra

of the eonserved quatities found by [MGK] •
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Intraductian

It is naw lang since the Korteweg-de Vries equation

u = uu + ut x xxx

1s recognized as a completely integrable Hamiltonian system,

for example, an the space of cro functions on the one­

dimensional torus T1 • A.complete set of its first integrals

or invariants is provided by the eigenvalues {Ai[U]} of the

HilI' s operator - d
2 /dx2 + u (x) (ef. [MM])" which are how-

ever highly transeendental funetionals of u.

An infinite set of invariants CIi [u]} whieh are "elementaryn

functionals of u· ean be eonstrueted through the asymptotie

expansion

- 1 + Lco
'i' [u]t

j
i=1 i

(t ... O) •

In fact Ii[u] is the integral of a loeal conserved density

Ii[U]. Although Ii[U]'S are known to exhaust the space of

equivalenee classes of loeal conserved densities (cf. [KMGZ]

or Theorem (A.3.3.1)), it 15 obvious that these ~lementary

invariants have less information tban A.[U]'S
.~

and do not

form a complete set of invariants of the KdV-flow.

In this paper we take up the problem whether or not

there are other "elementary" invariants other than I. Cu] 's.
~

The functionals whieh we consider as elementary are such

K[u] 's aso are expressible as



K[u]:::
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K (X
1

, ••• ,X )U(x
1

) ••• u(x) dx
1
••• dx,n n n n

where K 1s a distribution on Tn a~d only a finite nurnber
n

of K 's are non-zero. These will be called polynomialn

functionals. The space of the polynomial functionals 1s

strictly larger than the space multiplicatively generated by

those with Ioeal densities, since it incIudes those expressed

as iterated integrals of loeal densiities.

Our main resuit asserts that the functionals expressed

as polynomials of Ii[~]'s are the only invariants whieh

are polynomial func~ionals.

Our proof of this 15 rather involved due mainly to the

simple topological fact that for k ~ 3 the spaee

{ (x 1 ' ••• ,xk ) t ~; xi + x j (1 * j)} 15 not conneeted. This

fact gives rise to the possibility of the exis~enee of first

integrals expressible as iterated integrals of local conserved

densities, which we were able to eliminate only af~er a

detailed analysis of the Ioeal conserved densities of the

KdV equation.

It 5eems to be an interesting problem to find a simpler

proof, which admits us to infer whether other soliton

equations have the same pr9perty or not.

For the evolution equations of space dimension greater

than ane, it seems probable that the similar result can be

kra ther easily established because the space {(x 1 ' ••• , xk ) E M ;



-7-

is connected for each k when dirn M" 2.

In § 1 , we give basic definitions and state the main

result (Theorem (1.4.1». The rest of the paper is devoted

to its proof. We start it first by describing the space of

polynomial functionals by differential polynomials in § 2

applying the idea of Gelfand and Fuks ([GF]). In § 3 the

derivation on the'space of polynomial functionals corresponding

to the KdV-flow is expressed in terms of a derivation on the

algebra of differential polynomials. The outline of the proof

of the mairi result is exposed in § 4. The sections 5 and 7

prove"key lemmas used in § 4 and the section 6 proves the

~lgebraic independency of diagonal functionals. In § 8

we give several remarks and raise a few related problems. We

collected in the appendix certain facts and technical

arguments in order to make it easier to see the main flow

of the proof of the main result. In § A.1., we recall the

structure theorem of distributions, with which.~e prove the

propositions of the section 3. In § A.2., we g~ve basic

definitions about differential polynomials and recall some
•

of the basic facts in the theory of formal calculus of

variation ([GD]). The section A.3. recalls the result on

the existence of infinite number of independent conserved

densities ([MGK]) and derive fram it various consequences,

which play crucial roles in various parts of our proof of the

main result.

The author is deeply indebted ta T. Sunada-who explained

hirn his result ([5]) and suggested hirn the problem treated here.
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n

d:

or (X,Y) :

ö:

the x-derivation of A (§ A.2.1).
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which i5 the integral of I ..
~

{rl,d} :
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T. :
~

the complex a5soeiated to the KdV~equation (§ A.3.1.).
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the symmetrization operator (§ 2.1.).
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= Ö (-I
1

X
j

+ I.X.) (§ A.3.3.).
u ] ~

= {(x 1 ' • • • , Xn ) E T
n

; .# {x 1 ' • • • , Xn } S k}

the fl~x for 11 determined by Theorem (A.3.3.1.)

equation .ut = K (§ A.2.3 .• ).

the map D I (Tk ) ~ Ä0k ~ Fkp(F(T)) defined in § 2.3.

z: the ring of integers.

z+: the set of nonnegative integers.

All the vector spaces and all the tensor products are over R.

For a group G and aG-module V, the space of all the

G-invariant elements is denoted by vG.
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§ 1. Statements of the main results.

Let T = R/Z be the one-dimensional torus and F(T)

the space of all the real valued
00 •

C funct~ons on T, which

we identify with the periodic real valued C
OO

functions on

R with period 1.

We call areal valued furictional u ~ K[u] on F(T)

a polynornial functional if for u E F (T)

(1.1.1)
00

K[u]= Ra + \ <R ,u~n>
L n-1 n '

where

~n
u

K
O

ER, Tn = Rn/Zn , K
n

E D I (Tn ) = { distributions on

(
00 Tn= u ~ ••• ~ u n-times) 18 the C function on defined by

~n

u (x 1 ' • • • , X n ) = u (x 1 ) • • • U (xn ), and

nls.

K = 0
n

except for finite

Example (1.1.2). The following are same of the examples

of polynomial functionals:

A
K.... : u~u(n)
~

2'riinx
e u(x)dx,

u ~ J u(x)u' (x)2dx ,
T

u ~> JTu (x) u (x + x 0 ) dx ,

u ~ Jf 1 [u] (x,) ••• f n [u] (xn ) dX 1 ••• dxn
O~xl$6 .• $xn~1
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where X o E T, f i = f i (uo' u 1 ' •. ~ ) are differential polynomials

(cf. § A.2.1) and fi[u] denotes the function made by the

substitutions: u. = dif/dxi .
~

The spaee of all the polynomial funetienals is denoted

by P(F(T», whieh is a commutative algebra by the multipli-

cation:

for K 1 , K 2 ~ P (F (T) ) •

A pelynomial functional K i8 called diagonal er loeal

if supp Kn is in the diagonal of nT . For example,

K1 ,K2 ,K
3

and KS with n = 1 are diagonal.

For

operator

u E F (T), we denote the speetrum of the HilI

L := -d2 /dx 2+u by,
U ,

Areal valued funetional K on F(T) is called spectral

invariant if Spec(u) = Spec(v) implies K[u] = K[v]

for u, v E F (T). We denote by Pspee (F (T) ) the subalgebra of

P(F(T» consisting of all the spectral invariant polynomial

functionals.

Example ((MM]). For u E F (T) with Spec(u) = {Ai} , the

following asymptotic expansion holds for t'll 0:
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14TTt -1 (1 + I I. [u]ti ) .
i~1 ~

Moreover a universal differential polynomial

such that

I. exists
~

Obviously I 'si are spectral invariant functionals,

which are also polynomial and diagonal. Note that the

differential polynomials 1i'S are not determined uniquely.

We shall choose canonical ones by Theorem (A.3.3.1).

A functional K is called invariant under the KdV-flow,

or KdV-invariant for ahort, if K[u(·,t)] is independent

of t whenever u(x,t) is a solution of the Korteweg-de Vries

equation:

(1.3.1)

We denote by PKdV(F(T» the subalgebra of P(F(T»

consisting of all the KdV-invariant polynomial functionals.

The Lax representation of (1.3.1):

(1.3.2)

implies
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Proposition (1.3.3). The spectral invariant functionals

are KdV-invariant: P (F(T))c PKdV(F(T».
spec

1.4. Main theorem.

Theorem (1.4.1.) The algebra of the KdV-invariant polynomial

functionals eoin~ides with that of the speetral Lnvariant

ones and is isomorphie to the-polynomial algebra generated

by I. 's:
~

This is an immediate consequence of Proposition (1.3.1) and

the following

Theorem (1.4.2). The functionals I 'si are algebraically

independent and generates the algebra of the KdV-invariant

polynomial funetionals.

We remark that the algebraic independency of

has been already proved by Sunada (cf. [sJ).

I. '5
~

Remark. Our results imply that if a functional of iterated

integral type such as KS in the Example (1.1.2) 1s spectral

invariant, then there exists a unique polynomial F(Y1, ... "IN)

with some N such that
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For example 5unada ([5]) obtains such spectral

invariants

expansion:

as the coefficients in an asymptotic

U(X+ nT + /EW(T) )dT)dJ,L(w)

(t ~ 0) I

where n is the space of all the continuous functions

w:[O,1] ~ R with w(0) = w (1 ) and J,L i5 the

Wienerts measure on n . Our results implies that we

can find polynomials Hn
E R[I"I2 , ••• ] such thati

uEF(T).

This 15 a weaker version of the Sunadats result, which

gives much more precise information about the polynomials

",
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§ 2. Description of polynomial functionals.

Using a filtration similar to the one introduced

by Gelfand and Fuks ([GF]) in the eomputation of the

eontinuous cohomology of the Lie algebra.of vector fields,

we deseribe the algebra of the polynomial functionals in

terms of differential polynomials.

2.1. Identification of P(F(T»

of D'(T).

A polynomial funetion on a vector space can be identified

with an element of the symmetrie algebra of its dual spaee.

Analogously a polynomial funetional- K given by (1.1.1.) can

be identified with the sequenee

is a symmetrie distribution on

(K ) , where K
n n=O,1,2,... n

n. s
T , 1..e., K n = K n for all

s
f(x 1 ,···,x) = f(xS1 '···'x ) ·n sn .

Hereafter we make the following identification:

P(F(T»
00 S= 1B D 1 (Tn ) n
n=Q

S
where D 1 (Tn ) n denotes the spaee of the symmetrie

distributions on Tn .

Note that for K E D I (Tn ) ,
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where S(K) denotes the syrnmetrisation of K:

S (K) = (1 In 1) LS€S K
S

•
n

2.2 Gelfand-Fuks filtration on P (F (T» •
~---~~~~~--~~---~-~--~~~~~

Por a subset X of ~ , denote by 0 1 (Tn,X) the

subspace of 0' (Tn ) consisting of all the distributions

on Tn with supports in X. Define

where #A stands for the number of the elements of a

(k=1,2, ••• ,n) 1s an S -invariant
n

subspace of 0 1 (Tn ). We define FOp(F(T» = Rand

This 1s an increasing filtration: FO cF 1 c F2 c ... ,

which i s rnul ~ipIfcative, i. e • , Pppq C"Pp+q . Note tha t

p1 p (F(T» is exactIy the space of the diagonal polynornial

fUl1&:tionals. Note also for example tha t K4 E: F 2 ...... F 1 and

K
S

E: F ......p. (cf. Exarnple (1. 2 • 1 ) ) •
n n-1

Let A be the algebra of differential polynomials

of u (cf. § A.2.1.), and denote by
......
A the subspace of

A consisting of all the elements with the zero constant
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terms: A: =. {f E A, f (0) = O} . Denote by 'A"k the tensor

product of k

Define

...-oJ

copies of A over R.

by

where w E: D I (Tk ) I f E A and u E F (T). This induces
i

where 5 E Sk acts on D I (T
k ) "A~k by

-1
(t = 5 ).

Then we have

Proposition (2.3.1). Xk 1s surjective ..

This will be proved in § A.1 using the structure

theorems of distributions.

Now we describe

by

Define endomorphisms d. (i = 1, ••• /k)
1.

ä. : = a/a::<. ~1+1 ~ (1~ ••• ~1@ d 01 @ ••• ~.1 )
1. 1.
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d being on the i-th factar. Then we have

Proposition (2.3.2). -1
Xk (Fk_,P (F (T») is spanned by

and

This will be also proved in § A.1.
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§ 3. The KdV-derivation Dt on P(F(T»

We intro~uce a derivation Dt on P(F(T), which

is in fact the infinitesimal generator of the KdV-flow

on F(T) and Ker Dt = PKdV(F(T» holds. In § 3.3, we

find an operator which corresponds to Dt in the description

of § 2.3.

From now on, we rescale (x,t,u) to (-x,2t,-3u/2),

so that the Korteweq-de Vries equation takes the simple form:

(3.0.1)

Ob serve tha t .'·the val idity of the Theorem (1.4. 2.) doe 5 not

change by this rescaling.

To the KdV-flow on F(T) corresponds the derivation

Df on P(F(T» characterized by

(3.1.1) (d/d t) K [u ( • , t)] = (D tK) [u ( • , t) ]

for K E P (F (T» and all the salutions u (x, t) of (3. 0 • 1 ) •

It 1s easy to see that this derivation can be expressed
S

f or K E D I (Tn ) n as

(3.1.2) L + L
n n+1
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where

3 3= -nS (a lax K (x
1

I ••• IX »,
n n n

Here ö (x - y) E D I (T
2

) , denotes the deI ta functional

defined by

<ö(x-y),f> = J
T

f(x,xJdx,

and

6' (x -y) = aö(x -y)/ax = -aö(x -y)/ay

We recall the following

Theorem (3.2.1) ·([MT]).For every U o f F(T), a unique solution

uEF(TxR) of the KdV equation exists and satisfy u(x,O) ::: uO(x).

This implies

Propo s i tion ( 3 . 2 · 2). PKdV (F (T» = Ker Dt .

Proof. Obviously DtK = 0 implies that K is KdV-invariant

by virtue of (3.1~1).

Conversely let K be a KdV-invariant polynomial functional.
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For U o E F (T), let U E F (T x R) be the solutiön of the

KdV-equation with u(x,O) = uo(X). Then by (3.1.1),

Q.E.D.

We note that only the solvability of the KdV-equation

in smail time is necessary for the proof of this proposition.

We remark that we mayas weIl define the notion.of

KdV-invariance of a polynomial functional K by DtK = 0,

which is a little technical condition' but makes it

unnecessary to rely on the above deep resuit.

Define a derivation

(cf. § A.2.3), i.e.,

of A by

and endomorphisms d
t

. (i = 1, ••• , k) of D I (Tk ) 0 A~k by
,~

d t , i, : = 1 ~ ••• 0 d t '9 ••• ~ 1,

d t being on the i~th place, and put
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Then

Proposition (3~3.1).

Proof. For f E: A and a solution u of (3.0. 1) we have

obviously

Using this, we have for

d / d t Xk (K t3 f J S • • • S f k) = d / d t < K, f 1 [u] S ••• S .fk [ U ] >

= rk <K,f1[u]~ ••• @afi[u]/at0 ... E1) fk[u]>
1=1

Hence, by Theorem (3.2.1), fram which

the proposition follows immediately.

Q.E.D.
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§ 4. Proof of the main Theorem (1.4.2).

The algebraic independency follows from a general

Theorem (6.1). So we prove in this section, ,PKdV(F(T» = PO'

where Po denotes the subalgebra genera ted by 1i ' s.

Let K E PKdV(F (T» . Let k be the integer satisfying

K E Fkp (F(T» ....... Fk - 1p(F(T) ) .

We may suppose k ~ 1. We shall show that

Then by the induction on k i t follows that K E: PO.

First by Proposition (2.3.1), K can be expressed as

S
for some J E [D' (Tk ) @ A€I k] k. Applying D

t
to both sides,

we obtain by Proposition (3.3.1)

Then Proposi~ion (2.3.2) implies

( 4 • 1 ) "'!< \'k , k k ,..., ~ k
a t J E, L i = 1 Im d i + D (T , T (k -1 » ~ A •

For each positive integer i, fix I. and X. t A
~ ~

which satisfies the conditions of Theorem (A.3.3.1). Denote
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by C the subspace of A spanned by {li; i=1,2,3, .•• } •

Define a subset Ta of Tk by-

where [x] E. R/ Z denotes the class represented by xER .
Then obviously Ta 1s a connected component of Tk 'Tk (k-1) .
Let H be its characteristic function, i.e., H i5 1 on Ta

and a on T
k
'T which we regard as a distribution on Tk •o '

For LE'A Sk define

s [H 0 L] € [D I (~)
S

J
L

: = ( 1/k 1) L ~ASk] k
sE.S

k

Denote by Zk~ the cyclic subgroup of Sk genera ted by the

cyclic permutation (12 ••• k).

Lemma (4.2). If an element
Z

( 4 • 1 ), then an L € [C0k ] k exists such that

satisfies

",

This 1s in fact one of the two key points in our proof of

the main theorem and will be proved in § 5.

When k s 2, we have J L = 1 ~ L because T
k
'T

k
(k-1 ) is

connected. Hence we have modulo Fk - 1p(F(T»)
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which we wanted to show.

Suppose now k ~ 3 .

Z
We have proved that an LE [C0k ] k exists which satisfies

k-1
K - Xk (JL ) E F P (F (T» •

S
Then by Propos i tion (2. 3 • 1) we have an N E [D 1 (rt<-1) 0 ~ (k-1 )] k-1

satisfying

Applying Dt , we obta1n

(4.3)

by

a (I i 0 ••• @ 1i ) = S (ik ' 1 1) @ I i @... 0 I i
1 k 2· k

k-1
+ L 1 1 @ ••• @11 ~S(i,i )~I 0 ...~Ii.

J'=1 1 J'-1 j j+1 i, 2J+ k

Here Then we have
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Lemma (4 . 4). For L E c6'k ,

Proof. For the sake of simplicity, we prove this when k = ] •

Let L = Z(I
a
~ I b E) I

c
). Then, for u E F(T) ,

J
1 JX+1 JX+1

(x]JL) [u] = dx dy dz I [u] (x) I b [u] (y) I [u] (z) ,
o x y a c

Put f i = I i [u] and gi = Xi [u] (1 =a,b ,cl for brevity.

Since dtl i = dX1 , we have

Hence, we have

The first term is

J1 dX {[ga(X) J
X

+
1

f b (y)dY J
X

+
1

f c (Z)dZ]' +
o x y

+ ga (x) f b (x) JX+1 f c (z) dz - ga (x) J:+\b (y)dyfc (X+1l} =
x

=J~ga(X)fb(X)dX J:+
1

f c (y)dY - J~ga(X)fc(X)dX f:+ 1fb(y)dY



f
X+1

fc(y)dy
x

J
X+1

fb(y)dy
x
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The second 1s

The th1rd 1s

J1 fX+1 11 1X
+

1
f (x)g (x) fb(y)dy - f (x)dx fb(y)gc(y)dy

o a c x 0 a x

Hence we have

+ J:(-fc(XIga(XI + gc(xlfa (xl )dX

+f:fa(Xldx J:+1
(-fb (YIgc(YI +gb(ylfc(yl )dY

Q.E.D.

By this lemma, (4.3) implies

(4 .5)

z
Lemma ·(4.6). If an L E [C0k ] k satisfies (4.5) for an

S
N E [D I (Tk - 1 ) tO!. -A€l (k-1)] k-1 h . i i

~ t en L 15 Sk- nvar ant.
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The proof of this is the most involved and will be given

in § 7 •

This lemma irnplies that

It follows then that modulo

~k Sk
L € [C] I Whence

Fk -1 P (F (T) )

This completes the proof of·the main Theorem (1.4.2).
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§ 5. Proof of Lemma (4.2).

We use the notations of § A. 2.4 wi th M = D 1 (T
k

) and

a . = a/a x .•
J ]

Further we define

Applying ö to the both sides of (4.1), we obtain

(5 • 1 )

because of Lemmas (A.2.4.1-2) and Corollary (A.2.4.3).

Denote by r the restrietion rnap fram D' (Tk ) 0 Ä~k 'to

D I (Tk'Tk (k-1 » Ci!> ACi!>k • Then from. (5. 1) it follows

(5.2)

whe re 6 i (i =1 , •• ~ .' k )

D1 (Tk'Tk (k-1» 0 ~k

M = D I {Tk'Tk (k-1 ) ) and

is the endomorphism of

denoted by 6 i in § A. 2 • 4

a.=a/ax .•
] J

for

Now we solve the equation (5.2).

Let T. be the variational derivative of I. : T. = ö I il. l. l. u

(cf. § A. 2 .2 for the defintion of ö ) . Denote by öCu

the subspace of 'A spanned by. T.t 5 (1=1,2,3 ••• ) , and by
1.

LC (X) , the space of locally constant real valued functions

on a topological space X. Then
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Proof. We apply Lemma (A.3.6.1) to

M = D I (Tk'Tk (k-1» ~ Ä~ (k-1) 0 R with a::: q/ax
k

and

G = ~1+. ··+~k-1 · Then we obtain

By induction, we obtain

Ker(6i+ ... +~k) = (Ker(a/ax1 ) n ..• n Ker(d/a~» ~ (öC)@k

Q.E.D.

Hence we have

where c ranges over the set of connected components of

H 1s the characterlstic function of c andc

L
C

E C. Since J 1s Sk-sy~etric, we have

öL = öLsc c

for all c and ".·s E Sk • Hence putting L:= LTo
we have

which means
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It follows then by Lemma (A.2.4.1) that

whence by Proposition (2.3.2)

Finally we note that L" is zk-invariant. In fact the

Zk-invariance of Ta irnplies that, for 5 E Zk '

ö (L - sL) = a

whence L = sL because of Lemma (A. 2.4 .4) .

This cornpletes the proof of Lemma (4.2).
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§ 6. Algebraic independency.

We prove in this section the following

Theorem (6.1). Let {K1 , ••• ,Krn } be a linearly independent

subset of A:= X, (R~A) C F'P(F(T)) . Then they are algebral~

cally independent in the algebra P(F(T)) .

Proof. It .suffices to show the injectivity of the map

a : ----+) P (F (T) )

induced by the multiplication. Moreover we have only to show

for each k the injectivity of the map

induced from a, since

Suppose a
k

i9 not injective, 1.e.,

(2.3.2)

S
for same g E [Ä~k] k

g = X (1~g) where
k

Then by Proposition

S
Choose g E [Q@k] k

Q is a complement of

such that

Imd in A.

1 0 gE [D'(Tk ,Tk (k-1)) ~k Sk \'k
'CI ~ A ] + l..i=,Irnd i .
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Let TO ·be a connected component of Tk'Tk (k-1) . Then on

Ta we have

k
1 0 g € Li=1 Imd.

~

Now we use the results of § A.2.4 with

Then we have

ö(1~g) = 0 •

But this implies ö I g = 0, where ö I denote s the Ö of

§ A. 2 • 4 wi t h M = Rand ai = O. By Lemma (A. 2 • 4 • 4), we

have g = 0 , whence g =0, establishing the injectivity

of

Q.E.D.
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§ 7. Proof of Lemma (4.6)

By virtue of Proposition (2.3.2) , it suffices to prove

the following. Put Z=1/(k-1)! L EZ s
s k-1

Lenuna ( 7 • 1 ). Le t k ~ 3. Suppose an

0k Zk
L = Lai i 1 1 0 ••• 0 1 1 € [C ]

1 • •. k 1 k

satisfies

( 1 )
k-1

Z ( aL) c r~=1 d i Ni + dt N on

where Ta is a component of

Ni' N E: D' (Ta) S AS (k-1 ) Then

Proof. Since L is zk~invariant, we have

and

k k-1
Z(aL) =k-1 1:

J
'=1 ai i 1 i 0 •••011 0S(ij ,i,'+1)'01 i 0 •••@1

i
·

1 • •. k 1 j-1 - j+2 k

vle 'Use the notations of § A. 2.4 wi th

Let 6. =D . + lL_. with K = uu1+U 3 ·] K·, J --K, J

we obtain

M = D t (T )o
Applyin.g

and a. = alax .•
J J

ö to ( 1) ,

(2 )
k-1 • .

L. a. i Ti @••• @T. 0Ti i' ~ ... @T =(6 + ••• +6 )P,
J=1 1. 1 ••• k 1 l. j _ 1 j j+1 lk 1 k-1

where T,,: = ö (S (i , j » E A , P = k/ (k-1 ) öN •
1.J

Sublenuna (7.2). Let k ~ 1 • The elements
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(T. ~ ••• @ .Ti ~ Ti i ~. · ·0 Ti.+1; 1 ~ j :$ k , i E Z , i. < i. 1}
~1 j-1 j j+1 K a + J J+

are linearly independent in

By this, (2) implies

D' (T ) @ ~k moduloo

a 1 j 1
3

•• •1
k

= a j 1 i 3 .•. i
k

i , j , i 3 ' • • • , i k •

speet to the suffixes,

for all

symmetrie, whenee LE

Since a
i 1 • • •.i k

it follows that
S

[C0k ]k

18 cyclie with re-

a 1s aetually
i 1 • • • i k

(3 )

Thus it remains to prove Sublemma (7.2).

Let k = 1 • Suppose

for some PED'(T) 0 A with some a
ij

:$; 0 . We use the no-

tations of § A.3.4 with M=D'(T) and a=a/ax .
Let P. be the i

of p and put
~

Ar~ - eornponent

m : = max [ { 2 (i + j ); a i j * O} lJ {i+3; 6 P i '* O}] •

Note that m rnust be even. In faet otherwise, we have

6P 3 =0, eontradicting to the definition of m.m-

Put m = 2s . Then the 2s
AM - eomponent of ( 3 ) 1s
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Li+j a ij Tij =~P 25-3

Applying Proposition (A.3. 5. 1 ), ws obtain a ij = 0 for

i+j =5 and P 2s-3 = 0 contradicting to the def in! tion of

rn :c: 2s • Renee (3 ) irnplies air 0 for all i and j .

Let now k;;:; 2 and

(4) L a 9.1 i sti i Ti 0 •• ·@I'i 8'rst@l'i ~. • ·0Ti = (Li 1+. • •+Lik ) P
1··· t-1 t+1··· k 1 1-1 t+1 k

with P € D I (T ) @~ko Suppose some of the a's is nonzero.

We use the notations of § A. 3.4 now with M =D t (T ) ~ 1.@ (k -1 )
o

and a = a/ axk • Then (4) can be rewri tten as

(5 )

where

a i @ Ti + L. a i ·· Q Ti' = (G + Li
M

) P
i<J . J ]

a i . : = Laki i. i . ~Ti 0 •••@Ti. '
] 1• • ·K-1 J 1 K-1 •

:=\,k-1 ~
a i L. a. i st i i. i Ti @••• @ Ti @ T t @ T. @ •••eT. ,

1=1 1.1 • •• 1-1 R.+1 •• ·-k-1 1 R,-1 S 1. t +1 l.k-l

Let Pi be the i
AM-component of P . Let In be the maximum

number in the union of {2(i+j); a ij * O}, {2i+2; a
i
* O} and
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Suppose m i5 odd and let m = 25+1 .
25

and AM -cornponent5 of (5) read

M _
6 3 P 2s - 2 - 0

•

2s+2
Then the AM,

L a ij 0 T ij + a s + 1 @ T s+ 1 •
i<j

i+j=s

Then by virtue of Proposition (A.3.5.1) I

a s + 1 + 3 a 1 ,5-1 = 0

which implies a
S

+1 =a 1 I s-1 =0 by virtue of Corollary (A. 3.3.3) ·

Then by (ii)

1-1
6 P2:,t-2=O I

of Proposition (A.3. 5.1) a
ij

= 0 (i+j=s) and

which contradicts the definition of m.

Let m = 25. Putting P 2s-2 = 0 , we can use the above

arguments to show that a s = 0 I a ij = 0 (i+j=s) and t::. i'2S-3 = 0 •

Btit then .P 2s-3 = 0 by Lenuna (A.3. 4.2). We obtain again a

contradiction.

This cornpletes the proof of Sublemma (7.2) and hence

that of Lemma (7.1).

Q.E.D.
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§ 8. Remarks and Problems.

Same of the following have also been stated in [T2].

8.1. The validity of our result relies partly an the following

algebraic fact: The map K: A
2

H
1 -+ H

2 induced fram the

exter.!or praduct 0 1 )( Q1 ---+ n2 (cf. § A. 3 . 1 f or the notations)

is injective, which is an easy consequence of Proposition

(A.3.5.1) •

Problem. Are the similar rnaps for other selition equations in-

jective?

8.2. Cenversely if some evolution equation u t = F (F~A) has

the nonzero kernel of A
2H1 --+ H2 , "then we can construct

an invariant which cannot be expressed as a polynornial of 10-

cal conserved quantities. Für example, suppose there are

three 1-forms w
i

= I
i

dx+X
i
dt(i=1 ,2,3) such that

D w = 0F i

dX.
1.

(i=1,2,3) "

where d t = XF (cf. §A.2.3) • Then it 1s ·easily shown that

m . x1 ~

K[u]:= J I 1 (x1)dx, J I 2 (x2)dx2 + J I 3 (x)dx
-00
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(li (x) : = I~[U] (x» is an invariant with respect to the flow

on the Schwarz spaee S(R) indueed by the equation.

8.3. A similar result as Theorem (1.4.2) can be obtained

when we eonsider the KdV-flow on the Schwarz space S(R) on

R •

8.4. When n is greater than one, there are spectral inva-

riant polynomial functionals for the Laplace operator !J. + u

on the n-dimensional torus which cannot be expressed as a

polynomial of loeal speetral invarlants (cf. [5]) .

Problem. Find all the spectral invariant polynomial func­

tionals: F(Tn ) ~ R for -!J.+u(n~2) •

8.5. We can con~ider a sort of de Rham complex on F (T) as

follows: A rnap w: F (T)x F (T) P ---;.. R is called a polyno-

roial p-forro if it ean be written as

(u,X. E F(T» , where wN is a distribution on TN+P , sym-
~

metrie in x 's and antisymmetrie in y. 's and only a finitei ~

number of w '5 are nonzero. Denote by nPF(T) the space
N

of all the polyn~mial ·p-forms. Define the exterior differen­

tiation d: nPF(T) --;> nP + 1F(T) by
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d w (u , X 1 ' • • • ,Xp + 1 )

p+1 i J= I Li =1 (- 1 ) NwN (x 1 ' • • • ,x , y ~ y ,...,y.,· · · ,y )
Nii:1 TN- 1xTP + 1 N-1 i 1 ~ 0+1

Then we obtain a complex {n*F(T) ,d}. This is easily seen

to be acyclie.

Let Dt be the Lie derivation on n*F(~) induced by the

KdV-flow on F (T) . Since Dt commutes with d,

fine the subcomplex of invariant polynomial forms:

we can de-

n~d~ (T) : = KerDt • Note that our main resul t asserts that
o ,...., ,....,

, nKdVF (T) '?! R [1 1 ,I 2 ~ • · .] •

Problem. Deterrnine the space nKd~(T) and then compute its

cohomology.

The first step of the caleulation goes just in the same

way as in § 2-3. The second step eorresponding to the deter-

mination of the space of Ioeal eonserved densities is to cal­
1 ,p

culate the E1 -terms(pii:1) of the Vinogradov's spectral se-

quenee (cf! [T1,V]) assoeiated to the KdV-equation, which

does not seem to be earried out yet.
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§ A.1. Distributions.

In this section, we recall structure theorems of distri-

butions and prove the propositions (2.3.1-2).

A.1.1. Structure theorem of distributions.

Let R
n +m =Rn x R m be the Euclidean space with the stan­x y

dard linear coordinate system (x 1 , ••• ,xn'Y" ••• 'Ym) and X

the submanifold defined by y = ••• =y =0 I, m which we identify

with Let K be a compact subset of X .

Define

Q 0' (Rn K) ~ R[ a , a ]
x' x y

--+)l D I (Rn +m,K)

py

=

when

1s the polynomial algebra on
A, An

(a ) ..• (a· )
x, xn

, R[a ,a 1x y
Aand astands forxa ,

y
andax

for w E D 1 (R~,K) := {w E D 1 (R~) ; supp(w) eK}

f E F 0 (R
n

+
m) : = {smooth functions on R

n +m wi th cornpact sppports}.

Here a = a/axx

A = (A" ... ,An) . The structure theorem of the distributions

(cf. [Schl) can be formulated as the following

Theorem (A.'.1.1). Q 1s an isomorphism on

D 1 (R~, K ) 0 R [ ay ~ .
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We describe now the kernel of Q: Define endomorphisms

D. (i=1 , ••• , n) of D I (Rn, K) @. R [a , a] by
~ x x y

where a stands also for the multiplication map:
.x i

P (d
X

' dy ) ~ P (a x ' dy ) d
X

• Then obviously Q maps
. 1

ImD
1

+ ••• + ImDn to zero. In fact we can show

n
Proposition (A.1.1. 2) • (1) Ker Q =Li=1 Im D1 .

(ii) For a compact subset L of K,

Proof. (il) irnplies (1) if we put L = ~ .

Suppose

Since

A B A B n
w 0 d a B (- a ) w 0 d (mod • \'. 1 Im D. )x y x y L~= ~

we have

whence, by the above theorem,
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\'. (- a )A.\'lAB ~ a B E D' (Rn, L)@R[a].
L x y y

Thus

Q.E.D.

A.1.2. Decoffioosition of D 1 (Tn,Tn(k)) .

We denote by P (n,k) (1:ii k:s n) the set of all the

partitians of {1, ... ,n} into k nonvoid subsets:

P (n I k) : = {p = {p 1 I • • • I Pk } P 1u. • · U P k = {1 I • • • ,n} I

Pi * <jl I P i n P j = <jl (i +j ) }

For p € P, put

if i, j E P for same a} .a

Then

Since the subset Tn is regular in the sense af [Sch] ,

we have
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Lemma (A.1~2.1). The map

induced fram the inclusions is surjective.

Denote by P(n,k) the subset of P(n,k) consisting of

all the piS satisfying the following condition:

whenever i < j, a E Pi ' b E p. ,
]

one has a < b . Let act

on P(n,k) by

sp : = {sp 1 ' • • • sPk } (s E Sn' pEP (n ,k) )

and def ine f or pEP (n ,k) the subgroup

S(p) := {sES
n

i sp=p} ,

which leaves D' (Tn,Tn(p» invariant.

Lemma (A. 1 .2.• 2) • ginduces a surjection:

-where g 1s the restrietion of g and S 1s the symmetri-

zation.

S
Proof. Let K E D I (Tn ,Tn (k» n. By Lemma (A.1.2.1) ,

K = \' K
l..pEP (n ,k) p

for some K E D t(Tn ,Tn [p]). Then
p
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K = ( 1 /n 1) LsEs sK
n

= (1/n!) LpEP(n,k) LsES sKp
n

= ( 1/n! ) LqEP(n,k) LsES sK -1
n s q

Put

Kq := (1/n!) LsES sK -1
n 5 ~

nSince SUPP(SKp ) C T [sp] we have

Furtherrnare it is easy to see that

Hence noting thatthat sK :::Iq

K
q

E D I (Tn , Tn [q] ) ,

Kq 1s S(q)~invariant and

S P (n , k ) = P (n , k ) , we
n

obtain

= LpEP(n,k) (1/m(p) 1) LsES s~
n

where m(p) = HS(p) .

Q.E.D.

A.1.3.

Define for pEP (n ,k) the subspace A<p> of A~k

spanned by all such elements f 1 ~ ... ~ f k as f
i

is homo­

geneous of degree Hpi (i=1, ... ,k) . Denote the restrietion
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by

Lenuna

(i)

(ii)

(lil)

(A.1.3.1).

ImX = g I (D I (Tn , Tn [p ] ) 5 (p») ,
p

k . k
Kerxp = D' (T ) ~ A<p> n Li=1 Imdi '

k
x~1 (D I (T

n
,T

n (k-1 ) ») = D' (T
k

,T
k (k-1 » ~ A<p> + Li=1 Im d i .

Proof. (1) Obviously the left hand side is ln the right. De-

-note by Pi the number of the elements of Pi and denote the

coordinates of Rn as (x 11 ' ... 'x 1- , ••• ,xk - )
P 1 Pk

18 the submanifold defined by the equations:

x
11

=

Hence, by Theorem (A.1.1.1), for each

can find such an element rKB,e dx
B of

K E D ' (Tn , T
n [p ] )

o ' (T
k

) 0 R [ a· ]x

we

as

for u E F (T) , where

Bi1
LB , i u : =ax u· · ·

11

(1 :iiSk)

(B :::::I ( B11 ' · · · , B1- ,..., Bk1 ' · • · , Bk- » • I f we put
P 1 Pk

~ .•. 0
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then

(g t K) [u] = X
k

( LK
B

3 f B) [u] ,

which shows (i) • The other assertions follow imrnediately fram

Proposition (A.1.1.2).

Q.E.D.

Proposition (2.3.1) follows directly from Lemma

(A. 1 . 2 • 2) and ( i ) 0 f Lemma (A. 1 . 3 • 1 ) •

Proof of Proposition (2.3. -2). Let K E D t (Tk ) @ ~k •

Since

~k= e A(k,n)
ni::k

with

we can write

A(k,n) •• = m - A<p>WpEP(n,k) I

with Kp E D I (Tk ) 0 A<p>. Suppose Xk (K) E Fk - 1P (F (T) )

S
Since Xk (A (k ,n) ) cD I (Tn ) n, we have for each n I
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Hence for each pEP (n ,k) we have

,..., (K) L "' ,.J (K )
Xk ,p = - l.qEP (n ,k) ,q*p Xk q

with L E D' (Tn ,Tn (k-1 )) • Since

USESn

nT [sq] ,

it follows

where (q,s) E P(n,k) x S satisfies the condition either that
n

q: * p or tha t q =p and 5 * id. Since

for pt +pU , we obtain

Then by (lil) of Lemma (A.1.3.1) ,

k
Kp E D I (T

k
IT

k
(k-1 )) ~ A<p> + Li=1 lmd i

Hence we have proved"

'X 1 (Fk - 1 P (F (T)) ) ="-0 I (Tk ITk (k-1)) ~ ~k + l:k lrnd
i

k i=1

S
Restricting thls to [D' (Tk ) ~ ~k] k, we obtain the propo-

sition

Q.E.D.

'.
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§ A.2. Differential polynomials.

Let Adenote the algebra of differential polynomials

of U

0)

A := R[UO'u1 ,u2 , ••• ] = U R[u u, ,u]k= 1 0' 1 ••. k

endowed with the derivation d def'ined by dUi =ui +1 (i=O, 1 ,2, •.• )

We write often simply by u.

We defihe the weight and the degree'of differential

polynomials rnultiplicatively by weight (u i ) =1+2 and

degree(ui ) = 1 • We put

Ai := {f E A i weight(f) = 1}

A := {R[UQ ,u, , .. · ,Un ] for n '= 0n

for -1:R- n= ,

A(d) := {fEA degree(f) = d}

A(i):= Lj~iAj

A[d] := LCSi:d A(c)

Ai (d):= Ai n A(d) ,

Ai := Ai n A
n n

1"'.1

A := A[ 1 ]

A : = A/lrn D
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The following is well-known:

Lemma (A. 2 . 1 . 1 ) • Ker d = R •

Proof. Suppo se g E An.......An -
1

satisfies dg = 0 • Suppose n ~ 0 •

Then ag/aun =a/aun + 1 (dg) =0, a contradiction. Hence we must

have n = - 1 , i. e ., gER •

Q.E.D.

Define A ---+ A by

Then the following is·well-known:

Proposition (A.2.2.1). Ker eS = R + Im d •u

Proof. From [a/au i +
1

, d] = a/au i , it follows immediately

6 0 d = 0 •
u

Suppose ö g = 0 for some g E A •
u

Then

•

(mod. Im d)

whence Lig i E: Im d , gi being the A (i) -component of g. By

the induction on the integer n =max{n Ig *O} we can shown

g i1 go (mod. Im d) •

Q.E.D.
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Far K E A, define a derivation of A by

which cornmutes with d. Define 'an enda~orphisrn D
K

of A by

For example, if K = uU 1+u3 ' then

3 3: = u 1 - d oU - d = -d - ud .

Lemma (A.2. 3.1) •

Proof. First we show

(mod. Imd)

for f , g E A. In fact, modulo Im d

= Xg LidiK af/au i

i .
= Lid (L j d J g aK/ au j ) af / au i

+ Li, j diK djg a
2
f/a u i aU j

!3 L' d j g CI K / au ,ö f + LJ' d j g X
K

CI f / CI u .
J ] U ]
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a g ( L(-d) j ( aKI Cl u. ö f) + L' (-d) j (x..~ f/a u. ) )
J u J -1<" J

= g (D K öuf + XK öuf)

Now it is not difficult to see that, if f EA satisfies

fg € Im d for all g E A, then f E 0 (cf. for example [K]) •

Thus we have the lemma.

Q.E.D.

Let M be a vector space with k mutually commuting

endomorphisms d
1

, .•• ak • Put

A M 0 A~k
M,k:= 'OI R

where ~k
A =A~ R ••• 0 RA (k-tirnes). Put

d i = Cl
i
~ 1+1 ~ (1 ~ ••• 01@d @1@ ••• ~ 1)

d being on the i-th factor. Define

ö i : = L(- d i ) n 0 Cl I aun '

Then we have

Lemma (A.2.4.1). Let P be a subspace of M invariant with

respect to di's. Then
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Proof. It is ~asy to see as before od i =0 (i=1, ... ,k)

whence o maps the right hand side into ~,k.

Suppose g E AM,k satisfies og E ~,k •

Then, module LI~ d i

where aa , m = J t9 ( 1. c;i) • • • @1 @ a/ aum €'1 0. • •~ 1) , a/ aum being on

the a-th factor, and AM,k is considered as an A@k-algebra

in the natural way. Now the argument in the proof of Lemma

(A.2.2.1) shows gEM0R
0k

+ Llmd i + Ap,k •

For K E A ,

of AM,k by

define endomorphisms XK ~ i' DK , i (i=1 , ... ,k)

XK,i := 10 (1~ ••• @1~ XK~1@••• @ 1) ,

D
K

.
,~ '.

where XI< and

Lemma (A.2.4.2).

aK/aun are on the i-th factor. Then we have

(i) If i * j , then o. comrnutes with XK · and DK . ·
~ , J , J

(ii) (XK i+DK .)00. •
, , ~ 1.

Q.E.D.
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Proof. (i) is obvious and (li) can be proved just in the

same way~ Lemma (A.2.3.1).

Q.E.D.

Corollary (A.2.4.3). ö 0 X iK, = (XK ,i + DK , i) 0 Cl •

Finally suppose

the following

M=R, ö.=O •
~

Then Lemma (2.4.1) irnplies

Lemma (A. 2.4.4). Let Q be a complement öf R + Im d in A.

Then ö 18 injective on Q~k

Proof. Obvious since Q0k 15 a complement of Llm d i . in A0k .

Q.E.D.
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§ A.3. Conservation laws of the KdV-equation.

Define a ~omplex

as follows: Put

i
ni

::::l A ~ R h [dx, d t] ,

where A*[dx,dt] stands for the exterior algebra on

R. dx eR. dt and D is determined by

Df = dfdx + dtfdt , for

where

d and

cl =X in the notation of § A. 2.3 . Sincet uu
1

+u
3

d t comrnutes with each other, we obtain a complex

{n*,D}. Denote by Hi the i-th cohomology space. We may

call H1 the space of the equivalence classes of conserved

densities of the KdV-equation, since Propositions (2.3.1-2)

and (3. 3. 1 ) for k = 1 imply that the map

fdx + gdt ~ X1 (1 ~ f) induces a map

which in fact

( 4 • 1) in § 4.

is an isomorphism by the argument be[ore
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Now we cite the result of [MGK] in the following form:

Theorem (A.3.1.1). For each positive integer i, an element

exists such that DWi = 0 , weight (vii) = 2i .

Moreover the classes in H1 represented by wi ' s(i=1 ,2,3, ... )

are non-zero.

3
!J. : = d t - ud - d

Then by Proposition (A.2.2.1) and Lemma (A.2.3.1)

the following realization of H1 : .

we have

Lemma (A.3.1.2). The map

tion H
1 ~ Ker!J.

Put

Idx.+ Xdt ~ eS I
u

induces an injec-

~ 3
63 ,0 = Li,j,k=O ui+1Uj+1uk+1d /dUidUjdU k

Then it is easy to show
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Lemma (A. 3 . 2 . 1 ) .

( i ) ß = ß 3 " 0 + ß 3 , 1 '

(iii) [a/au"ß] = o.

Now we salve the equation ~f = 0 .

Lenuna (A.3.2.2). Suppo!?e f E A .......A 1n n- satisfie 5 ßf = 0 • Then

n is even. Moreover, f or n &: 4 ,

f a a(u +«n+1)/3)uu 2)+bu 1+cU 2 (mod. An - 3 )
and

. n n- n- n-

f
2

+b for 2= a(u2+u /2) n =
f = a for n = 0

wi th a,b,c ER.

Proof. From a/aun +2 (ßf) = 0, we obtain.

d(af/au) = 0 •
n

Hence by Lemma (A.2.1:1), f muse be of the form

f a au (mod. A 1 ) .n n-

Thus for n = 0 we obtairi f = au+b. But then

2ßf = au
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whence a roust be zero.

Suppose now n ~ 1 • Then

whence

f = au + bu 1 + f 2n n- n-

with a,b e: Rand f ,)€A 2.n-.... n-

Suppose n = 1 • Then 2 26.f = aU1 + bu whence we have

a = 0 , contradicting

obtain

Thus we have n '= 2 • Then from a/au 2l!.f = 0 ,n- we

whence

-d ( af n _ 2 / aun _ 2 ) = (n+1 ) au1 / 3 ,

with a,c ER.

Suppose now n = 2 • Then

with an e € R, whence

f = a (u
2

+ u
2

/:2) + bU, + cu + e .
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·22
At = b u 1 + cu I whence b = c = 0 •

Suppos~ now n ~ 3. Then

Hence

f 2 B (n+1)auu 2/ 3 + CU 2n- n- n- (rnod. A 3) •n-

f iiiI a(u + (n+1)uu 2/ 3 ) +bu 1 +CU 2 (rnod. A 3).n n- n- n- n-

Thus it remains to show that n is even. By (ii1) of

L (A 3 2 1) A ak f / aU
k = 0 f kemrna ••• , u or any • Hence if n 1s

odd I we obtain an element of the form aU
1

+ g (u) in Ker 11

Then by what we have shown above we roust have a = 0 I contradic-

ting f ~ An - 1 .

Q.E.D.

Corollary (A. 3.2.3) • Ke r 11 n An + 3 = (0 )
n f or n i: 1 •

= n+2 , and

Proof. Suppose we have a nonzero element

Note that An
+ 3 =An + 3 since weight (U

n
)n n-1 I

f in Ker 11 n An + 3
n

By the above lemma I we have f a aUk (mod. ~-1)

weight (u .);;: 2
]

o ;$ k S n-1 •

for all j. Thus f E l\:......~-1 for sorne k wi th

But weight (u
k

) = k+2 s n+3 I whence a = 0 contradicting

f~Ak_1 •

Q.E.D.
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Put Ti = 0u!!' where Ii'S are those differential poly­

nomials given in Theorem (A.3.1.1) • Then we have

Proposition (A.3.2.4).

(i) Kerf. n.A
n

= { R.T 1+1 . ,

(0) ,

for n = 2i ,

for odd n .

(ii) T1 = C1
,

T2 = c
2

u ,

2T3 = c
3

(u2 +U /2)

Ti = ci (U21 - 4 + (2i-3)uU
2i

_
S

/3) (mod. A2i - S )

for i ~ 4 with nonzero

Proof. Note first that Hence if n 15 odd,

Kerö n An = Ker6 n A~_2 = Ker6 r1 A~_3 ::: 0 by Lemma (A.3. 2.2)

and Corollary (A.3.2.3).

. 21 21 hi h
Obv~ously we have T1+1 E A = A21- 2 , W C 19 nonzero

Suppose now T E Ker6 n A21 =Kert. n A~~_2.. Then by Lemma

(A.3.2.2)

T l!I aU
2i

_
2

21
whence T - bT1+1 € A21 - 3 n Ker6 = (0) for some b ER. Hence

21
AnKer A = R.T i + 1 ' which gives (i) •

Finally Lemma (A.3.2.2) gives (ii) •

Q.E.D.
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§ A.3.3. Information on certain differential polynomials.

First we refine Theorem (A.3.1.1) using Lemma (A.3.1.2)

and Proposition (A.3.2.4).

Theorem (A.3.3.1). For each positive integer i, an element

of exists such that we i g h t (I.) =21 ,
~

we i g h t (Xi) = 2 i + 2 ,

I, = u ,

2
1 i !!!I u i - 2

x, = u 2 +u 2/2",

(mod. A [3 ]) ,

(mod. A [3 ]) ,

for 1 ji:.2 ,

for i;;: 2 .

Moreover the classes in H1 represented by wi
l sCi=' ,2, ... )

constitute a basis of H' .

Proof. Lemma (A.3.1.2) and (i) of Proposition (A.3.2.4)

irnply obviously the last assertion.

It 1s obvious that w, satisfies Dw - 0 and Ö I =,1 - u 1

also spans R.T 1 ·

Let i ~ 2 · Let r' be any element of A2i suchi

that ö I! - T · As an element of A2i , we can write
u ~

- i

1-2
I ! ~ Lau2i - 2 + Lk=Q akuku2i-4-k (rnod. A [3] ) .
~

But module Im d , u 2 i _ 2 EI Q and



-62-

Hence we may suppose I1.. a a i uf·-2 (mod. A[3]) • But then

6ul:L B 2a i u 2i- 4 (mod. A [2 ]) • Hence we roust have a i * 0 . Thus

we can take l i .= li/ai ·

Now modulo A[3]

Since dA (m) c: A (m) and Ker d = R , the X € A2i + 2 with
i

(mod • A [ 3 ]) •

Q.E.D.

Define T ~ (S (' '» E A2 (i+ j ) ,
i ' := u ~,J] u

where we recall

An easy calculation using the above Theorem shows the following

Lemma (A.3.3.2).

".

(i) For i, j with j > i '= 2 ,

2
Tij 15 c ij u i - 2 u 2j - 2

(mod. A [4 ] )

with

(11) For i ~ 2,

(mod. A [3] )
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with ci * 0 .

Corollary (A.3.3.3).

linearly independent.

Tk (k = 1 ,2, ..• ) and T.. (1 ~ i < j)
~J

are

Proof. It suff lces to show that Ti+ 1 and Tk , i-"k (1 :i k < [i/ 2] )

are linearly independent, which 18 obvious by Proposition (A.3.2.4)

and Lemma (A. 3.3 ..2) •

Q.E.D.

Let M be an R-vector space with an endomorphism

a : M -----ilo M. Define AM: = M ~ RA and

we i gh t (rn 0 f) = i

degree (rn Ci!) f) = j ,

Define

and

etc.

f E Ai (j) • We denote M0 Ai, M~ A ( j ) , M6) 1'\ ,
n

i i
respectively by AM' ~(j), AM,n' AM(j), etc ..

d
M

: = a 0 1 + 1 ~ d ,

Then we can decornpose Li
M :

where Li~. (AkM(n)) C AkM+i(n+j)
~,J

Then it 15 easy to show
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Lemma (A. 3 • 4 • 1 ) •

AM = a3a 1uO,O '0'"
,

,

3f&u ,

and
M

6. . = 0
~,J

otherwise.

Put 1 ~ 6 •

By Proposition (A.3.2.4), we have

Lemma (A • 3 • 4 • 2) •

Ker 6~ n~ = for n = 2i

for odd n •

A.3.5. and Im 6 •

Let M and a be as above.

j
Proposition (l\.. 3.5. 1). Suppose f j E AM (j =21-2 , 21-3) satisf ies
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( 1 )

( 2 )

Furthermore if a or a1 is zero, .then all

the a 'sk
are zero and /)"Mf = 0 •

2i-2

We need the following

Lemma (A. 3.5.2). Let P2: A
11
~ AM (2) be the projection.

Then

is injective and M@ R R. UU 2i - 4 i5 a complement of its image.

Proof. Since

M
P2/),,3(m~u,u2' 7 .) = 3m @ (u. 2u 2i 6 .+U. 1u 2' 5 .)J 1- -J J+ - -J J+ 1--J

for 0 ~ j ~ i-4 , we have

for 1 s j s 1-3 . Further modulo
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EI -rn 0 ~2i-5(2i~S) (-1 ) i+ju2_
. l' i 2J= ]

i 2= (-1) rn0u
i

_
2

Hence P2 063 (A~i-3 (1) EB A~i-3 (2) is .spanned by

{m ~ u j u 2i- 4- j i m E M, 1:iiij Si-2}. The injectivity of P2063 can

be easily proved.

Q.E.D.

Proof of Proposition (A.3.S·.1). By Lemma' (3.4.2) I

(1 ) implies f 2i-2 = rn ~ Ti with some m € M. Then the

A~ (1 ) -cornponent of (2) gives a = 3 arn. On the other hand I

by virtue of the above lemma, we obtain comparing the coeffi-

eients cf uU2i- 4 in (2)

(2i-2)am = (21-1) a/3 + a
1

whence

am = 0 ,

a + 3a 1 = 0 •

Suppose noVf a = a 1 = o. We may suppose 1 ~ 5 . Since

M 1-1
we have ß f 2i- 2 = ß 3 f 21-2 =0 , by virtue cf Lenuna

(3.4.1). Thus we have
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(3 )

Hence by Lemma ·(A.3.3.2),

(mod. A[3]) .

By Lemma (A.3.5.2) above, we have

f 2i- 3 ~ A(3].

Hence we can write

2i-9
f 2i- 3 B Lj=O fjU j

where f. E A--(2) nA
M

.• If j ~ i-4 , thenJ -~ , J

whence f, cannot have a nonzero term having u. as a fac-
J ]

tor. Thus actually

(4) f j E AM, j -1 ' for j ~ i -4 •

'.

Thus (3) can be written as

(5 )

with f . E AM . 1J , J-
and
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Consid"er now the following assertion:

fj = 0 for j :s "k ,
(6) k

f. = 0 for j a 2i-2k-4
J

i = 2p+1 . In either ca5e we have only to show

What we must show i5 when i = 2p and (6) when
p

(6) [(1-1) /2] ,

which we shall prove by induction on k.

First comparing the coefficients of

we have a 2 = 0 • Hence . (6) 2

of

is valid 1f we consider

(5) ,

f.
]

to be zero for j ii: 2i-8 •

Suppose now that for same k such that

2 :s k :s [ (1-1 ) /2] -1 the assertion (6)k 1s true. Then (5)

looks like

(7)

2
!! ak + 1 Ei) ( uk -1 u 21 - 2k - 4 + • • .) + •• •

... )

module ~[4]. Since k:s [( 1-1 ) /2 -1], we have 2i-2k-6 a1-4,

whence

f E AM 15 ,s- for 5 =s1-2k-S , 21-2k-6 .

Comparing the coefficients of u2i-2k-3 in (7) , we obtain

(10d)f2i_2k_S = 0 •

This implies by Lemma (A. 2. 1 .1) f 2i-2k-S = o. Comparing
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further the,coefficients of u2i-2k-4 in (7) , we obtain

(1 ~ d) f 2i-2k-6

Applying 1 ta öu ' we obtain a k +1 ~ u 2k-'2 = 0 , whence

a k + 1 = 0 • Then we have f2i-2k-6 = 0-, establishing (6)k+1.

Q.E.D.

Let M and a be as in § A.3.4 and G an' endo-

rnorphism of M.

Lemma (A. 3 . 6 • 1 ) • Ker (6M + G 0 1) = (KerG n Ker a) €) 'X ,

where T l·s the subspace of A spanned by Tl I s •

Proof. Suppose g € AM satisfies

( 1 )

Let be the k of and the maximalgk AM-cornponent g n num-

ber such that gn '* 0 The
n+3

of ( 1 ) givesAM -component

~1
whence by (A.3.4.2) 1s even: TI =2itJJ

g n = 0 , Lemma n

and g2i=a1~Ti+1 for some a 1 E M Then the 21+2. A -compo-
M

nent of (1 ) gives

2
+uT i + 1 )

M 0aa 1 0 (3d Ti + 1 + ~3g2i-1 = .
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we obtain aa 1 = 0 if we compare

the coefficients of Thus we have

a.nd whence g 21-1 = 0 •

Now the 2i+1 (1 ) reads M o ,AM -component of ß 3g 2i - 2 =
whence g2i-2 = a 2 ~ Ti for some a 2 € 1-1 •

Finally the 2i of (1 ) givesAM -component

By Lernrna(A.3.5.2), the coefficients of U2i- 2 and uU
2i

_
4

in (2) give when i ~ 3

(3 ) (2i-1)G(a1 )/3 +{2i-2)aa2 = 0

whence G (a,) = o. When i = 2, (3) is replaced by

whence G(a,) = 0 again. F inally when i =, , we have

whence G(a 1 ) = 0 .



-71 -

Thus we have

?l1 ~ Ti + 1 E (Ker G n Ker a) @ T

and

o T e: An
M

- 1 •g-a 1 'C1 1+1

Hence by the induction on n, we obtain the Lemma.

Q.E.D.
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