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Abstract

Ahlfors' finiteness theorem and its two complements namely

the area-inequalities of Bers and the finiteness of the cusps

due to Sullivan are some of the eentral results in the modern

theory of Kleinian groups. Their proofs are analytic whereas

their eonclusions have a geometrie flavor. In this paper we

have attempted to explain the topologieal and group-theoretic

genesis of these theorems. In ease the domain of diseont1nuity

i9 connected our approach i9 based on a str~cture theorem on

planar regular coverings which is a partial extension of the

Maskit's planarity theorem. In case thedomain of discontinulty

i8 not necessarily connected our approach 18 based on a relative

version of the theorem "a finitely generated 3-manifold group

i8 ,finitely presented 11 due to Scott and Shalen.



§1. Introduction (1.0) Let r be a Kleinian group, i.e.

by definition, a discrete subgroup of Möbius transformations

of the Riemann. sphere s~. Let A be its limit set which

may be defined as the closure of the set of fixed points of

elements of infinite order in r. The set odef S2_ A is called

the set of discontinuity of r, for, indeed it may be shown that

r acts properly discontinuously on 0 - i.e. for every compact

set K C n the set {y E rlyK n K F 0} 1s finite. Clagically

one says that r 18 non-elementary if A has more than two

points. This 1s equivalent to r being not virtually abelian.

A central result in the modern theory of Kleinian groups 1s the

following finiteness theorem of Ahlfors.

(1.1) Theorem (Ahlfors) If r 1s a finitely generated

non-elementary Kleinian group then r\n has finitely many

components each of whic~, as an orbifold, 1s a hyperbolic

Riemann surface of finite type.

(Recall that a Riernann surface 18 said to be of finite

~ if it is biholomorphic to a compact Riemann surface

with at most finitely many points removed. Of course, (1.1)

has content only when n F ~.)

Ahlfors' proof of this theorem in [1] with a gap filled

by Greenberg,cf. [5], and in a different way by Bers, cf. [2],

rests on showing finite-dimensionality of certain spaces of

holomorphic q-differentials.

The theorem (1.1) has two major supplements. First, the
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area-inequality of Bers, .cf. [3] 'a~serts that

(1.2) Theorem (Bers)", In' the,' 81tuation of (1. 1) ,
, . .. ~ . -

(1.2.1) 2\r {the hyperbo*~c;~area ,O"f r\ n} ~ 2 (N-l)
: . . . .;~

where N i5 the minimum n~er..of· gen~rators of r •
. .

Now 52 may be regarded."~s::'l·the sphere at infinity of the

hyperbolie 3-spaee H3 , whieh 1s the symmetrie spaee for the

Möbius group

Henee

So the Möbius group, and in partieular

and r aets properly discontinuously

M = r\{G U H3 } 1s a 3-manifold with boundary

:: PSL2 (1t).

H 3 U 52;extend tor ,

on

r\n, and i·nt M has a strueture of a hyperbolie 3-manifold,

i.e. a complete Riemannian 3-man1fold with eonstant eurvature -1.

The'second supplement to (1.1) 15 due to Sullivan ef.} [17].

(1.3) Theorem (5ullivan) Let r,o, be as in (1.1), and

N as in (1.2), and M as defined above. Then the

(1.3.1) ~{cusps of M} < SN-4.

The finiteness of the number of cusps, under some topological

regularity hypothesis i8 due to Marden, cf. [2], theorem 6.4,

and under a similar hypothesis Ab1koff, cf. [17], p. 291,

obtained the upper bound 3N-3 for the same nurnber.

The proofs of (1.1) - (1.3) use some deep analysis whereas

the conelusions have· a streng geometrie flavor. The motivation

ef this paper 18 to understand the underlying top~logy and

group theory of this theorem.
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(1.4) Consider a finitely generated group r of homeomor­

phisms of 52. We ahall assurne that r ia 6rientation-preserving

and tors10n-free. Assume also that r leaves same open, non-

empty aubset o C 52 invariant on which it acta properly

d1scont1nuously. Later on we shall need to impose an appropriate

"Kleinian condition ll which ensures that the IIlimit set ll

Adef 5
2-0 1s minimal in same sense. We consider two cases:

i) 0 connected, 11) n not necessarily connected. We shall

explain and partially extend (I.l) - (1.3), in case i} using

only 2-dimensional topology whereas in case ii) we ahall also use

3-dimenaional topology.

(1.5) In the set-up of (1.4) assume that n i8 connected.

Let Oe denote the end-compactification of Q, alJ,d e(n) =

n -0 = the set of ende of t), cf. Freudenthal [ 4 ] • Then e(n)e

18 a compact set, and ne 18 homeomorph1c to s2. So r may

as weIl be taken s1mply as a properly discontinuous group of

homeomorph1sms of a connected planar surface n. Since r acta

properly discontinuously it extends continuously as a group of

homeomorphisms of ° .e The Kleinian condition referred to above,

in this oase, 18 formulated as follows.

(1.5.1) There exists ; E n whose r-orb1t accurnulates

at every end., i.e. the derived set (r*) I = e(n).

Mirnicking the proof of Hopf's theorem, cf. [7], [10],[11]

on ends of groupa it then follows from elementary topology of

surfaces that we have the following four possibilities:
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-' .. . 2
e (n) = f6- ! n,:: s -- - _. r = {e },

': .<,' !.. -', ,.- ~

11) e (n) : .~'''::,:'.J 9- ~'point },,' .. n :: m2 ,

r = nl~(~\~~~f~~e~Of fin1te type).

111) e(n) =-:{-~wq"points}, n:: lRx 5 1 , r::?l,
• j • ~. • •

r\n z a torus,'

iv) e (0) Q·a ·Cantor set.

(Here a surface of finite type rneans a compact surface with

at most finitely many points removed.)

. To complete the picture, it remains to decide the structure

of rand r\n in ease 1v). It is proved in [lI], uslng only

the theory o~ ends of spaees and ends of groups, that in ease
~n

iv), r:: n r i i.e. a finite free product where each
1=1

f i ~ rr l (a surface of finite type). In this paper we show

(1.6) Theorem A Let n,r be as above, and aS8ume that

(1.5.1) hold8. Then r\n i5 a surface of finite type.

Classieally, a Klein1an group r with n F ~ and connected,

or more generally, leaving a component of n invariant i8 ealled

a function group. Maskit, cf. [14], [15] has made a remarkable

study of this interesting class of groups. From his arguments

it i5 not difficult to see that given n:: 52 - {a Cantor set}

and r" a nontrivial free product of fundamental groups of

surfaees, there are only finitely rnany (up to topological
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equivalence) properly discontinuous actions of f on 0

satisfying (1.5.1). This 18 a much more precise information than
~ l i . I • : _ r

; \ .
what can be obtained fro~ (1.2) or (1.3). (In fact the equality

in (1.2.1) i8 attained precisely when f i8 free and topologically

equivalent to a 5hottky group.)

(1. 7) Now in the set-up of (1. 4) consider' the case where

n is not necessarily connected. In this case we consider 52

a8 the boundary of a closed ball and assurne, first of all,

that r extends continuously to D3 and acta properly

discontinuously on 3n U int D • As noted previously, this

condition i8 satisfied in th3 classical ease. We now forrnulate

t1the Kleinian condition ll as follows.

of

(1.7.1) There 1s no r-invariant open subset

52 such that the f-action on 01 U (int D3 )

nl~ n

iS'properly

discontinuous.

Now 1s a 3-manifold with boundary .

aM = r\n. In this paper we show

(1.8) Theorem B Let n,f,M be as above, and assurne that

(1.7.1) holds. Then aM has only finitely many components that

are not open annuli or dises; moreover there are only finltely

many homotopy classes (in M) of the annular components of aM.

The proof of. theorem B provides a more precise information.

It will be explained in §4 that the group r = n
1

(M) has
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finitely generated integer homology and weIl defined Betti
~'

numbers b i (r) and the EU+~r" pharacteris tic X ( r ) • I f S 15 a

s urface of fin! te type, Ie,t uS:' ~eF:

( 1 • 8. 1 ) X_ (s ) = E max (b ~'-':X (C) )
c' .

where C ranges over the components of S. It will be shown in

§5 that if we exelude the trivial ease r = ~} the following

inequalities hold. Let adenote the number of homotopy classes

of annular components (in M) of aM, - and T denote the nurnber

of toral components of 3M. Then

(1.8.2)

(1.8.3)

(1.9) Notice that in (1.2.1), since we are assurning r

to be torsion free, the Ieft-hand aide, by the Gauss-Bonnet

theorem and (1.1), 1s Ix(r\n) I = x_(aM). Write bi for bier).

If N 1s the minimum nurnber of generators of r then

b
1

< N. So

which 1s the right-hand aide of (1~2.1). Thus, (1.8.2) explains

and extends (1.2).

Next, in the classical case, a cusp of M corresponds to a

conjugacy class of maximal parabolle subgroups, and a neighborhood
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of such a eusp 15 hOf!le9mp~phie.,to (an annulus) x IR or (a torus)

x IR aeeording as i1;he" ,pa:;:-ab'9lfe subgroup 18 isomorphie to ?Z
~ ~ ~... , '

or 7l + 7l. Also the ~~riu+i:eorresponding to distinet rank-1

cusps are non-homotopi~"'~'f1 ..;'" M~ ,'Now (1.8.3) does not directly

explain (1.3.1), since th~-.9usps, by their very definition, da

not appear in aM. Indeed, they would not show up even under

quasi-conformal deformations of f. But it i8 pos8ible to have

topological deformations of r (in Homeo D3 ) which do not change

the topology of int M, but where the cusps would appear as

annular or toral components of the boundary of the deformed M.

This can be done by "blowing ll of the eusp somewhat in the sense

of real algebraic geometry. (More precisely, for each cusp of

M, delete from 0 a r-invar±ant family of open horoballs

which projects ento a neighborhood of the cusp in M. The closure
a

of 5uch/horoball meet5 aD 3 in a point, which i5 replaced by a

circle which rnay be identified with the set of directions at the

point tangential to aD3 • The resulting space DO is clearly

homeomorphic to D. The f-action extends to DO since it

was smooth on D. ) fB Now the right-hand side of (1.8.3) 15

-3(1-b1+b 2 )+b 2+1 ~ 3b
1
-4 ~ 3N-4

. if b 2 F O. (The proof actually shows that if b
2

= 0 then

a+T~3bl-3 unless b 1 = 1 in which case a+T .::.1.) So (1.8.3)

explains and extends (1. 3) .

(1. 10) In the si tuation of theorem B, wi th r F{el, M is

aspherical with infinite fundamental group. So no component

e The first author thanks J. McCarthy and J.-P. Otal for a useful
conversation on this point.
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of ~ can be a sphere. Btit,i~ is,not difficult to construct
. .

examples of non-virtually~abe~ian < r's so that same components
- , , ~ ..

cf aM ean be annuli er tor-'!-. > • ~n f,~l(;t, infini tely many annuli
'I ~ ,/-",

ean also ooeur. It remairis~undecided however whether disks can. ,t~ ~ ,. ~ .

also oceur as components of 'aM. A 2-dimensional analogue of, "

,
theorem B 18 more preelse: let r be a torsion-free, orientation-

preserving, finitely generated group of horneornorphisms of D2

which acts properly discontinuously on n U (int D
2 ) where n

18 ar-invariant open subset of aD2 satisfying "the Kle1nian

eondit10n ll i.e. (1.7.1) with 8 2 resp. D3 replaced by 8 1

resp.

group (in

Then r

Romeo D2
)

is topo!ogically conjugate to a fuchsian

so N = r',(il U (lnt D
2

)} 1s a 2-manifold.

with compact boundary - in particular no component of N can

be an arc. We see no reason however for this statement to carry

ovar to dimension 3.

(1.11) Throughout this paper we ahall assume that the group

runder consideration 1s torsion-free. In case r is a finitely

generated classical Kleinian group it i5 a relatively simple

matter to pass to a torsion-free subgroup of finite index. In

the topological case the existence of such a subgroup is a non-

trivial que'stion and probably cannot be settled by the elementary

techniques of this paper.
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§2. Structure of regular planar coverings

(2.1) Let n be a planar surface and r an orientation-

preserving, properly discontinuoUB, torsion-free group of homeo­

morphisms of 0 • Then p:"o..... r\o def. M 18 a regular planar

covering. The following theorem describes n
1

(0) as anormal

subgroup of n
1

(M). "Notice that we da not assume that r is

finitely generated.

If G 1s any group and A < G then «A» denotes the

srnallest normal subgroup of Gwhich contains A.

(2.2) Theorem Let p: n + r\n = M be as in (2.1). Then

there exists a farnily "g = {Ci} iEI of mutually disjoint, non-

nullhomotopic and pairwise non-hornotopic simple closed curves in

M such that

i) .any compact set K C M intersects only finitely many

elements of ~, and

(For any planar cover1ng a faml1y ,8 of the type deserlbed

in (2.2) will be sald to be adrniss1ble.)

Proof: In ease M 18 a surface of finite type then the

farnily A 18 necessarily fini te and the theorem in this ease

1s due to Maskit, cf. [13] theorem 3.
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Call a connected sub-s"urfa-c~~.. S of M incompressible

1 f, choosing a base-point *' in'- '8~'" i;:~he induced map 'IT (S,*) -+
1

'lT
l

(M,*) is injective." Let"~~" ~e a "Qompact subsurface with

boundary. If no component of ·'K - +nt s 1s = a closed d1sk

it i8 well-known that S 1s inqornpressible. So if S" itself

is not incompressible then we can attach to it the closed-disk-

components of M - int Sand obtain a new compact surface

51 2 S which, moreover, is inc~rnpressible.

Now let MI M2 be an exhaustion cf M by compact

sub-surfaces with boundary. Here MiS; int Mi +
l

, i = 1,2 ... ·

(One can obtain such exhaustions either from a triangulation cf

M or by a proper smooth Morse function. ) Moreover applying the

process descrlbed in the above paragraph, and changing notation

if necessary, we mayaIso assume that M '5
i

are incompressible

for i = 1,2,... . Choo5ing a base-point * in MI we thus obtain

an increa5ing sequence TI I (MI' *) ~ T1'1(M2 ,*) whose union

15 clearly 'lT1(M,*). Let
..

be a base-point in n lying* over

* and write N c p.'lT 1 (n,*), and Ni = N n TT 1 (Mi' *) • So N 1s
..

the union of the increasing sequence NI ~ N2
... . If Mi

i5 the component of p-l(M
i

) contalning *, 1t 1s clear that

PIM
i

: Mi -+ Mi 1s a regular planar covering with the group of

covering transformations isomorphi~ to Ni' i = 1,2, ••..

We now start constructing an admissible family ,.8 of simple
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closed curves as asserted in the theorem. By [13], cf. lemma 5

and theorem 3, there exists a family .J' = {C~ ,} i" = 1,2, ••• ,
1.)

j = 1,2, ... ,n
i
<~, of disjoint simple closed curved such that

form an adrnissible family for

~. (This t& I may not be adrnissible for p: n ..... M since the

condition i) of admissibility may fail.) We shall replace the

C!j'S by other mutually disjoint simple closed curves Cij'g

such that only finitely many Cij's will intersect any given

Mk, and {C 11 ,···,Ck ,n
k

} is still an admissible family for

Then clearly the new family will be admissible

for .p: n ..... M.

First we may assurne that C1j , if it intersects ~ for

k < i, then it interseet8 a~ transversely. Now let Clj =

Cij' j = 1',2, · • · , n 1 • Among the C' • s suppose there 1s a pair,2j

say Cil and Ci2 such that Cil n MI has an are-component

whieh 18 parallel to an arc-component of C22 n MI. Choose

or1entat1ons 50 that, say, Cil = a*c, Ci2 = b*d where a and

bare a pair of parallel arc-c9mponents lying in MI. Let c'

be an are parallel to (but disjoint from) c and having the

same ~nd-polnts ae b. Let C 11 CI

22
-1

C ''lfI d • Then clearly

and C" n MI22
has one less

arc-component lying in MI than C22 n MI. Continuing this

process we replace the C2j 's by C
2j ' s, j = 1,2, ••• ,n

2

such that for no two dlstlnct values jl' j2 of j , an arc-

component of C2 ' n MI 18 parallel to that of C
2j2

n MI.
J 1
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Proceeding further inductively we construct a farnily ~ =

{Cij } of disjoint simple closed curves such that no arc-component

of C n M. is parallel to an arc-component .of CL' n
i1jl -K -z J 2

Mk if i 1 ,1 2 > k and (i1,jl) F (i 2 ,j2)i and such that

Since each Mi 18 compact a family of rnutually non-parallel

and disj01nt simple elosed curves and properly embedded ares

with end-points on m1s finite. So it follows that at

most finitely many Cij'S can intersect ~ if k < i. This

proves that ) i8 an admissible family. q.e.d.

2.3 Remark: The theorem (2.2) 18 not valid if r 18 not

.S

m cf. ~.4) for apreeise statement. This fact i8 crucial also
in the proof of theorem B.
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fin1tely generated and ·conta1ns torsion. It 1s easy to construct .

examples when (2.2) fails in such cases.

§3. Proof of theorem A

(3.1) Lerruna. Let 0 be a planar surface and r a fin1tely

generated, or1entatlon-preservlng torsion free, properly

discontinuous group of homeomorphisms of o. Then M c r\o 1s

a surface of finite type 1ff 11'1(0) regarded as a subgroup of

n1(M) 18 normally generated by finitely rnany elements.

Proof. The "on l y tf n part follows from Maskit's theorem

noted in (2.2) • The lIif ll part i8 trivial if M 18 compact.

So we may asswne that M 1s noncompact, hence rr 1 (M) :: a free

group. Now M is of finite type +=+ rr
1

(M) 18 fin1tely

generated~ 1I'1(M)/[n
1

(M),1T
1

(M)] 18 fin~tely generated. We also

have a short exact sequence 11'1(0) --. nl(M)~ f. Now if

{Xl' • • • , Xn } c; TT 1 (M). i8 such that i ts image in r generates r ,

and {~' ... 'Yn} ~ TT1(M) 1s such that TT 1 (0) c «Y1, ••• ,Yn»,

it i8 easy to see that the image of {x 1 ,···,xm, Y
1

, ••• ,Yn }

in 1I'l(M)/[n
2

(M),n 1 (M)] 1s a system of generators. Th1s f1n1shes

the proof. q.e.d.
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(3.2) Proof of (1.4) ," "L"~t" ."~~ri.P -.. r\n def M be the
r', I ·~~I ~~ ~

canonical pr.ojection -and,": ;-~g~~4L. '",;'~~:"p (;) as a base-point
. • .. . ~ ,. ~." 'r'·

in M. Let {xl' ... ,Xn } c..~ lHl',~p~pe such that its image in r
,~ ~~ "I ~ < . ~

generates r. Let Al' ••• '~n '.' pe' c+9sed curves based at *
, n

representing x 1 , ..• ,xn ·resp. Let A = U Ai and B = p-1(A).
1=1

Then B is a closed connected subset of O. Now the "Kleinian

condition" (1.5.1) implies that the closure of B

e «(1) •

in oe contains

We claim that each component of n-B 1s sirnply connected.

For indeed n ~ s2, so a Jordan curve C lying in a cornponente

a of Q-B is a comrnon boundary of two disks D
1

, 02 whose

union 18 Oe. If B intersected both D
1

and 02 it would

also 1ntersect C 8ince B i5 connected. But this 18 not

p08sible by construction. So suppose B does not intersect D1 •

But then 01 n e(O) = ~ since B accumulates at every end.

So 01 ~ n and again since B n 01 c ~ we roust have 01 S a

i.e. a i5 sirnply connected.

Now let ~ be an admis8ible family (§2) for the regular

planar covering p: n ~ M. Since A 18 compact there are only

finitely rnany elements of ~, say C1, ..• ,Cn , which" intersect

A. We claim that ~ = {C1, •.• ,C }. For indeed if C i8 any. n

s1mple'closed curve in M such that C n A = ~ and which lifts
....

to a simple closed curve C in 0' then ~~ n-B. Since each

component of O-B 18 sirnply connected C i8 null-hornotop1c.



15

So C is also null-homotopic, hence c~,8.

By Lemma 3.1, it now follows that M i5 of finite type.

q.e.d.

§4. Preliminaries for the prüof of theorem B

(4.0) Frorn thia section on we shall view Ahlfors· theorem

from the v1ewpoint of 3-dimens1onal topology. We ahall try to

separate the homolog1cal parts from those whieh depend on the

homotopy eonsiderations and then also point out the special

features of the low-dimensional topology. It 18 arnazing to see

how these different features are intricately intertwined in

the original analytie proof of Ahlfors.

(4.1) A qroup G is said to have finitely generated integer

i8 finitely generated for all i > 0

and = 0 for sufficiently large i. In this ease define the

Euler characteristic of G, denoted X(G), to be

CI) 1
1: ( - 1) d 1m Hi (G 1~) •

1=0
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It 1s easy to see that if two;3fFUPS GI and G2 have

finitely generated intege:(~homb+R9y?~;'~henso does their free:'.: >~":;' ;, ~ <: '":' .; ,i .

product .Gi *G2 • In fact·i"-~ 'H~\~~i~2;~), :: ?l, H1 (GI *G2 ; Zl) ::
r t.~. ~ l,· _ • .". ~ I ~.

Hi (G1 ; 2Z) + H1 (G 2 ' ZZ ) f 0 r i' -~ 1, ,Md , X ( G1*G2) = X ( G1) + X ( G2 ) -1 •

Recall also that 1f G is finitely generated (resp. finitely

presented) then H1(G;~)

(resp . i < 2).

1s finitely generated for i < 1,

(4.2) In the s~quel we shall often use the following fact

fram the homotapy theory. Let X,Y be two connected CW-complexes

c.p
and let w1 (X) ~ n1(Y) be a homomorphlsm. Then there exists

a cellular map x2 ! Y fram the 2~skeletan X2 af X into Y

such that f = ~ (defined w.r.t. a choice of a base-point.) If
*

in addition Y 1s aspherical, 1.e. ni(Y) = 0 for i > 1, then

f extends to a cellular map from X to Y.

(4.3) 3 be finitely generated. ThenLet r :: w
1

(M )

H1 (Mi ?l) :: H
1

(riZZ) :: r/[f,f] i5 fin1tely generated also. It is

a well-known fact that'if aM contains a handle i.e. equivalently

two simple closed curves intersecting transversely at exactly

one point then at least one of the curves is non-homologous to

zero in Mi and 1f there are r disjoint handles then

dirn Hl(Mi~) > r. This implies that if wl(M) 1s generated by

n elements then aM cannot contain more than n handles. Thus

the real difficulty in the proof of theorem B is to contral the

ends of aM.
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If M3 is compact then the homology-sequence of the pair

(M,3M) and Lefschetz duality shows X(3M) = 2x(M). If no

component of 3M is a sphere then each component of aM has

X < 0, so one has abound for the number of components with

X < 0 in terms of X(M).

We ahall be extending partially these conaiderations when

M 15 non-compact which would t1 expl a in" the finiteness in

Ahlfors' theorem.

We first recall some term1nology and facts from 2- and

3-dimensional topology.

(4.4) Let S be a compaet orientable surface of genus g

with b > 0 boundary components. Then the number of non­

nullhomotopic, pairwise-non-homotop1c disjoint simple closed

+curves and non-boundary-parallel properly embedded ares

18 at most 3g -' 3 + 2b if this nurnber 1s > 0, and 1 if

9 = 1, b = 0 , and 0 if 9 = 0, b = 0 or 1.

(4.5) Let T be a cornpact, or1entable surfaee in a

connected orientable 3-manifold M which is properly ernbedded,

1.e. T n 3M D 3T. We aay that T 18 incompre881ble in M

if for every disk D C·M with D n 3T I: aD, aD 18 the boundary

+ 1.e. an are

exist an are

a disk.

a such that

ß c aS with

aa = a n aS and there does not

aa = aß such that a U abounds
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of a disk in T. It 1s a stand~~~:cqpsequence of Dehn's lemma
• .' ~.t ~ • ~J .:

and the loop theorem cf. [6] ot" ["9 j";:;t~hat T is 1ncompressible
~ " ~ I • \ '

lff for each component Ti o~ T, tne canonical map TI
1

(T
i

) ~

. ,

n
1

(T) 1s injective. It fellows easily (for example by

van-Kampen's theorem and the theory of generalized free products)

that if N is a compact, connected submanifold of M whose

+frontier 18 an lncompress1ble surface then rr
1

(N) ~ n 1 (M)

1s injective.

(4.6) A connected, oriented 3-manifold M 19 sald to be

boundary-1rreducible if for ever~ properly embedded d~sk D GM

(i. e. 3D = D n 3M), aD bounds Ci disk in aM. Again· by Dehn' s

lemma and the loop theorem this is equ1valent to the fact that

TT 1 (5) ~ 1f 1 (M) . 18 injective for every component S of aM.

From this algebra1c character1zation it follows that if M 18

boundary-irreducible, so 18 any of its covering space.

(4.7) It 1s a standard consequence of the sphere theorem

cf. [6],[9] that a connected 3-manifold M 1s aspherical 1ff

1) M is not closed, or else w1(M) 1s infinite,

(4.7.1)

and ii) every embedded 2-sphere in M bounds a compact

sl~ply connected submanifold.

+ The frontier of N means the "boundary " 'in the sense of
general topology; 'it will be denoted by FrN.
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It follows that a co'l1ne~~~d>3-dimensional, proper submanifold
'\ ~ ..~ ~ .'

. j;' ,f." I

of an aspherical 3-manifold .i5 a5pherical iff it satisfies 11).
- :4 ~ •

(4.8) It was shown in ,[16] that if the fundamental

group of a connected, orie~table 3-man1fold M is finitely

generated then it 18 fin1tely presented. It had been shown

previously, cf. [8]/that if ff1(M) is finitely presented, ~ ~,

and admit5 no non-trivial free-product decomposition then there

is a cornpact 3-manifold N S int M such that aN i5 incom-

pressible in M and ffl(N) ~ TI I (M) is an isomorphism. The

main result of ~his section 1s essentially a relative version

of the latter result.

( 4.9) If r .:: 3 1s finitely generated then by theTrI (M )

remarks in (4.2) and (4.8) H
i

(ri:?l) is finitely generated for

i < 2. Moreover, suppose that M3
is a connected aspherical- ..

manifold. Then Hi(r;~) - Hi(Mi:?l) for all i, and of course

Hi (Mi:?l) = 0 for i > 4 and H
3

(M,71) :::?l (resp. 0) if M

iso closed and orientable (resp. otherwise). So in this case r

has finitely generated integer homology.

(4.10) Definition. Let G be a group, and G1, ... ,G
k

,

k > 0 its subgroups + e. (k = 0 means the collection of

subgroups 18 empty.) We say that G 15 decomposable relative

to GI' • • •. , Gk if either .1) G :: :?l and k = 0 or

11) G = H1 *H 2 , a free product with H
I F'{e} F H

2
such that

each Gi 18 contained 1n a conjugate of H
1

or H2 •
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Evidently, "decomposab,ili ty rel. to GI' •.• ' Gk 11 depends

only on the conjugacy cl~sS~s-of Gi~S.

Also "indecomposable rel. "rO GI' •.. ,Gk
ll will mean

"not decomposable rel. to . GI' •.. , G
k

II •

(4.11) Lemma. Let G be a subgroup of a free product A*B,

A F{e}F B. Let GI, ... ,Gk , k > 0 be subgroups of G such that

each Gi is conjugate to a subgroup of A or of B. Suppose

that G 15 indecomposable relative to G1, ... ,Gk then G is

contalned in a conjugate of A or Band, in fact, all Gi's

are conjugates of subgroups of A or all of them conjugate9 of

subgroups of B.

Proof. This is immediate from the Kurosh subgroup theorem.

q.e.d.

(4.12)

following.

The rest of this section is devoted to proving the

Proposition. Let M be a connected, aspherical 3-man1fold

such that r = w1(M) 18 finitely generated and ,~~ Let

T1, ... ,Tk , k > 0 be compact, connected, mutually disjoint

surfaces contained in aM. Let ~i: n 1(T
i

) + r be the maps

induced by the inclusion·and r i c im ~i (which are well-defined

up to conjugacy). Suppose r
i

F{e} and r 19 indecomposable

rel. to r i . Then there i5 a compact, connected, aspherical

3-manifold N C M such that Tl U ••• U Tk ~ N and the
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canon1cal map n
1

(N) ~ r 15 an isomorphi5rn.

The proof extends over (4.~3) - (4.18).

(4.13) A subman1fold N of M is called ample if

(4.13.1)

N 15 compact and connected,

N n aM c Tl U T2 U ••• U Tk

There 1s a hornomorphism r ~ n
1

(N)

. .
wh1ch 1s a r1ght-inverse to the canonical hornornorphi5m

o
~ r,

1.e. oeS = 1, such that for 1 = 1,2, .•• ,k the diagram

r

cornrnutes modulo inner automorphlsrn of r. (The slanted arrows

are induced by inclusion and are defined module inner automorphisms

cf r.)

If N 18 ample, clearly by 111) the map a 1s surjective.

Now 1f FrN 18 1ncompressible then by (4.5) 0 1s also injective.

Thus to prove (4.12) we need to produce an aspherical arnple sub-

manifold w1th incompressible frentier.

Notice that if N, NI are submanifelds cf M with N

ample, N C NI' and .N 1 satisfies 1) and 11) then Nl i8 ample

also.
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(4.14) Lemma. There exists an ample subrnanifold of M.

Proof. We know r = TI 1 (M) is finitely presented. Choose

a finite 2-cornplex K and an isornorphism J: TI 1 (K) ~ r. Let

-10i = J 0 ~i where ~i: n 1 (Ti ) ~ rare the canonical rnaps.

f i : Ti + K. Let Zi be

L, the complex obtained

By (4.2) 0i 15 induced by a rnap

+the mapping cylinder of f i , and

from the disjoint union of K and Z I S
i

by identifying K

with lts image in each Zi. So L i8 a 3-dimens10nal complex

containing K as adeformation retract and T '5 are naturally1

ldentified with disjoint subcomplexes of L. Again by (4.2) J

1s induced bY a map K ! M, which extends to a rnap L ~ M

(einee there exists a deformation-retraction L + K) • By

construction, induces 'Pi' so 1s hornotopic to

the inclusion rnap Ti~M. By the hornotopy extension property

for polyhedra, we may assume that after modifying 9 by ~

homotopy 1f necessary (and still calling it g), we have

18 the inclusion rnap Ti e:.-" M.

homotopy we may assume that

By a further general-position
k

g(L) n aM = U Ti.
1=1

Now let N be a regular neighborhood of g(L) such that
k -1

N n aM = U Ti. Then N i8 ample: indeed set ß = goJ
leI *

where we consider 9* as the map 1T 1 (L) .... 1T
1

(N). It 18 easy

+ Recall that Z1 = {(T
1

X[O,1]) U K}/~ where for x E Ti

one identif1es (x,l) with fi(x).
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':', !',~..;' ,<~,\.t ::'" ';1' ',.:1

~~ \ J'
". ... ~ ~ L

\' :( .,'
, .':w" •• /~ /. ~j. ~f '"'~\:' ·'r

to see that the conditibns'in "(4. 3.1) hold. q.e.d.

··/;lth- -U~ -,. '\Fi

(4.15) Cutting or :·thlcke
J

ritil·g":along a cornpressing disk:
•• ~~" ' ~ 1 ~

. ~ I, ~f. ~ 4 i ~ .. '. ;.
Let N be a 3-dimension~+.~.. s~bmanifold of a 3-manifold M

such that F~N i8 a cornpressible surface, i.e. by definition,

there exists a 2-disk 0 eint M such that 0 n FrN = 3D and

aD does not bound a disk in F~N. Such a disk is called a

compresslng disk. A compress1ng disk D 1s contained either

in N or in M - int N. Let E eint M be a regular neighbor-

hood of D in N or M - int N, and set NI = N-E or N U E.

In the first (resp~ second) case we shall say that NI 1s

obta1ned fram .N ~ cutting alang D, (resp. ~ thickening

alang D).

N be an ample subrnanifald af M with
1s

Suppase DeN ~a compresslng dlsk, andcomF:essible frant1er.

NI Aobtained from N

(4.16) Lenuna. Let

by cutting along D. Then ltself or

a component of NI 18 ample.

Proof. There are two possibilities: e1ther NI 1s connected,

or it has two component8 say A and B. In the first (resp.

second) case n1(N) = nl(Nl)*~ (resp. n1 (N) = n1 (A)*n 1 (B»,

cf. figura i) (resp. 11» below .

Ci )
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Case 1. (Tl 1 (N) = Tl 1 ,( ~ !. )* ~ j .; .- Since D 1s disj01nt from

Tl U T2
U U T

k
it is clear·th~t f i = im <Pi are contained

in the conjugates of Tl1(N1~ in' . 1T I (N) • So since f 19,

by hypothesis, indecornposable w.r.t . ' r i' it follows by ( 4 .9)
..

that r is conjugate to a subgroup of TT 1 (N 1 ). This provides

the required homomorphisrn ß: r ~ Tl 1 (N 1 ) making NI arnple.

Case 2. (TT1(N) = Tl1(A)*n1(B». By the argument as in ease I,

now r i are conjugates of subgreups of Tl1(A) er of Tl1(B).

So by (4.11) r is conjugate to a subgroup of n1(A) or

say of TT1(A). Then as above A 1s arnple. q.e.d.

(4.17) We note one more property of an ample 8ubmanifo~d:

let n be a compressing disk for an ample submanifold N,

then an does not bound a disk in aN. Indeed an lies in

FrN and does not bound a disk in FrN. So if it bounds a disk

6 in aN then ~ C N n aM, so 6 contains one of the Ti'S,

say Tl. But then f 1 =~}, contrary to the hypothesis.

(4.18) Proof of (4.12): As neted in (4.13), we need to

produce an aspherical ample submanifold with incompressible

frentier. By (4.14) we know that ample submanifolds exist. Tc

an ample submanifold N attach its complexity: C(N) ~

E {1+(genusB)2} where B runs over the cornponents of aN. Let
B
NO be an ample submanifold with the least complexity. We show

that NO i8 aspherical and has incornpressible frontier.
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Let E eint NO be a~2~sphere. By (4.7) we need to show

that E beunds a domp~?~~::-:'"~~I}tPlY connected subrnanifold in NO.

Since M i8 aspherical,~~"th~r~~"~xists such a subman1fold E ~ 1'1 •

If E ~ NO then NI = NO U'E' 1s a compact connected subman1fold.

Clearly NI n aM = N n aM = Tl U ... U Tk . So by the remark in

(4.13), NI 18 arnpie. Now the components of aN! are among

those of 3NO and clearly aN! has at least one component less

than those in aN
O

• So C(N
1

) < C(N
O

) contradicting the

definition of NO. So NO 1s aspherical. In particular no

cornponent of 3NO i5 a sphere. (For otherwise No would be

sirnply connected, and so r ={e}, contrary to our hypothesis) .

Next suppose that FrN
O

is compressible. Let D be a

cornpressing d1sk, and aD c the component B of 3NO•

Case 1. (D $ NO). Let NI be obtained from N by thickening

along- D. Again as above NI 1s arnple. If B-aD 1s disconnected

then the, components of aN l are these of aN except that B

1s replaced by two components BI' B2 such that genus B =

genus BI + genus B2 . Also ,genus Bi > 0, 1 = 1,2, for other­

wise D would not be a compress1ng d1sk by (4.17). It "1s now

clear that C(N l ) < C(NO) - a contradiction. If 3-aD 1s

connected then the components of NI are those of N except

that B 18 replaced by a component BI with genus BI = genus B-1.

So again C(N l ) < C(NO) - a contradiction.

Case 2. (D SNO) Let NI be obtained from NO by cutting
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along D. By (4.14) NI it~elf or a component of NI' say A,

is ample. If NI is conneCHeg ~~en:as in case I, C(N1 ) < e(NO)

a contradiction. If NI ,·i~ not·:: connected, clearly the components

of .dA are among the co~pone~~s'q~ dN l except that B 18
I

replaced by a component of lower genus. So again C(N
1

) < C(NO)

a contradiction.

These contradictions show that NO has incompressible

frontier. This finishes the proof of (4.12). q.e.d.

§5.~ Proof of theorem B

(5.0) Recall that r is a torsion-free, properly discontinuous,

3orientation-preserving group of homeomorphisms of D which acts

properly discontinuously on n u (int D
3

) where n i5 an open

subset of ao3 and the Kleinian condition (1.7.1) holds. We

3 3 3
set A = dD -0 and M = r\D -A. Since D -A i8 contractible,

M i8 a8pherical.

(5.1) Lemma. A connected, simply connected 3-dimensional

5uPmanifold K which i5 a closed subset of M and whose frentier
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I ". ...

,~ '" ..

. I -

is a finite union Dl ~'R2>~;"~':~
r _ ~ • '.' ~:" .• ~ ~~;:~ ~:' •

disks i.e. D1 n 3M ~: ~Pi ;:C,:~~n~n
• ~. • I ••_ ..~ j • ~

• <r +, f .~~: r~

'. "" \": "

U D of properly embedded
n

K 1s compact.

(K should be '~o~gn~ o'f.~··::~B',; ,in. the following picture.
• • 4 :~ .....~. ~ .•' .... .., ~ '.

• • ~ '.. r

) .

Proof. Lift' K to a connected simply connected submanlfold
...

D3-A • D3 •K of Let K be its closure in It is easy to see

y(R)
'r'

that for all y E r - {e} , we have n (K) :::: fl). Also

'"IC" - 3 If K'$0 then clearly it will have aK - K C 3D • K - non-

empty (2-dimensional) interior, say Land r will act properly

discontinuously on (D3~h) U {u yLI which contradicts (1.7.1).
yEr

So K= K i.e. K and hence K i8 compact. q.e.d.

CD

(5.2) First reduction: We can write aM c U Si' where
1&::11

Si 18 an open subsurface of finite type. Si ~ 51+1 , and each

component of 'Si i8 incompressible (in the sense of (2.2» in the

component of aM in which it lies. Set Mi = Si U {int M}.

Note that together with M, each Mi satisfies the property

mentioned in (5-.'1), namely,
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(5.2.1) A connected, simply connected, 3-dimensional

submanifold K which is a close~~~~set of Mi and whose
I. • ~~.

frontier is a union of finitely"mariylproperly embedded disks is
!

compact .

. (5.2.2) We shall call K as in (5.2.1) a test-submanifold.

(5.2.3) Now the right-hand eides of (1.8.2) and (1.8.3)

depend only in int M, and are finite. So if we e8tablish (1.8.2)

and (1.8.3) for Mi' i = 1,2,3, ... then they clearly hold for

M and theorem B would also be proved. In other words, it

suffices to show

Proposition Let M be an orientable aspherical 3-manifold

such that aM 18 of finite type, r: TI
1

(M) i8 flnitely

generated and 1{~. Suppose that M sat1sfles (5.2.1). Then

(1.8.2) and (1.8.3) hold.

(5.3) Remarks i) Let D be a properly embedded disk in

M, U = a regular ne1ghborhood of D in M, and N = M - int U.

If M satisfies (5.2.1) so does N.

(Indeed, let K be a test-submanifold of N. By an

amblent isotopy ~n N) we may remove the intersection of K with

FrU (in M). Now the FrK (in M) 18 an union of finitely

rnany embedded disks. S1nce M sat1sf1es (5.2.1), K 1s cornpact.)

11) Let M be an orientable, connected, aspherical 3-rnanifold.

Assume TI 1 (M) r{e} and M 18 boundary-irreducible (cf~. 4.6).
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Then M satisfies (5.?~1)~:'
. , "- "".

1_ 1 - • ~ f •

. ~ \;.; ~.' .
(lndeed let K' 1:;l~ :'~ f 1;:.trs 1;:-subrnanifold and FrK is an

I r I ~ ".~.,.. _ ~

union of properly embed~eq\~:di.SkS 0i' i = 1,2, ... ,r. By

boundary-irreducibili ty ,.~ aO
i

: bounds a disk 0i 1n aM. So by

(4 .7) 0
1

U 0' bounds a sirnply connected compact submanifoldi

Ei of M. For each i, ei ther K ~ Ei or K n Ei = Di · lf

K C Ei for some i then K is clearly compact. But otherwise

M = K U EI U ••• U E and so TrI (M) = {e}, a contradiction.) .r

e5.4) Second reduction Suppose M, f are as in (5.2.3)

and M i8 boundary-reducible cf. (4.6). Let D be a properly

embedded disk in M such that aD does not bound a disk in ~.

Let U be a regular neighborhood of 0 and N ~ M - int u.

Case I (0 separates M). Let NI' N2 be two cornponents

of N. By (5.3) each of NI' N2 satisfies (5~2.1). We note

that

Since

and

TTI(N I ) r{e}1 TT
1

(N
2
). For otherwise, say 1T

I
(N

I
) =I: {e}.

NI satisfies (5.2.1), we see that NI must be compact

(N :: 52 hut then an would bound a disk in dM a
I

contradiction. Also both NI' N2 are orientable and aspherical

and their boundaries are of finite type. Moreover

18 a nontrivial free product. By Grushko's theorem each of

Tr1eNi), 1 = 1,2 has fewer minimum number of generators than f,

and 80 by Induction on the minimum number of generators we may
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assurne that (1.8.2) and (1.8.3) hold for NI and N2 . But then

= -2x(r)

i.e. (1.8.2) holds for M. Secondly the toral and annular

components of aM are clearly disjoint from D. So if 0 1 , Ti

denote the number of homotopy classes (in aNi ) of the annular

components and the number of taral companents of aN!, 1 = 1,2

and a,T denote the number af homotopy classes (in aM) of

the annular components and the number ef-taral compone~~s of

aM then

a <

So

S In fact a = 01 + 02 also.
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= -3{X(r)+1} + b 2 (r) + 2

< -3X(r")+b
2

(r) + 1

So (1.8.3) also holds for M.

Case 2 (0 does not separate M) • If TT 1 (N) :;{e} then

clearly TT 1 (M) : Z and aM 18 a torus. So (1.82) and (1.8.3)

are va.lid for M. So assume TT1(N) ;t {e}. Again N 1s orientable,

aspherical wlth aN of finite type, and

As before, by induction on the minimum number of generators we

may assume that (1.8.2) and (1.8.3) hold for N. By a calculation

as above we see that they hold for Malso.

In other words we have shown

(5.4.1) Proposition It 8uffices to prove (5.2.3) under

the'additional assumption that M 1s boundary-irreducible.

(.5 • 5) Third reduct!on Now suppose M,r are as in (5.2.3),

M i8 boundary-irreducible but r i8 decornposable relative to

Gi c irn(TT 1 (T i ) ~ r) where Ti' i = 1,2, ..• ,k are the non-simply

connected components of aM. (Note that Gi ;{e} by the

boundary-irreducibili ty. ) If r:: Zl and k = 0, clearly
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(1.8.2) and (1.8.3) hold"for M. So suppose

(a nontrivial product)

and each Gi is conjugate to a subgroup of flor r 2 - say,

by reindexing if necessary,

subgroups of

subgroups of

and

Let

GilS, 1 < i < 1 are conjugate to

t+l < i < kare conjugate to

be the covering of M w.r.t.
~

f j , j = 1,2. There exists components Ti 1 < i < t (resp.
~

1+1 < i ~ k) of aMI (resp. aM2 ) which are mapped homeomor-

phicallyento Ti. Set

By (4.6) Mj and N
j

are boundary-irreducible. By inductlon

on the minimum nurnber of generators we may assume that (1.8.2),
, ,

(1.8.3) hold for N., j = 1,2. As in (5.4) one sees that (1.8.2),
J

(1.8.3) also hold for M.

In other words,

(5.5.1) Proposition It suffices to prove (5.2.3) under

the assumptions that M i8 boundary-irreducible and r is

indecomposable relative to Gi = irn(n1(Ti ) + f) where Ti are

the non-simply connected cornponents of aM.
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(5 •6) Proof of (5. 2. j) <' ~~e \l~e in addition the assurrptions stated aOOve.
Let Ti be carpact subsurfa:~:,:which are defonnaticn-retracts
of Ti. By (4. 12) :tO~.~E7·;'.e,~ists a compact '"

connected aspherica~ ~~rna~ifOld N CM such that T~ U ... U T~
" .~ , ~; , . a

C N and the canonical.!JIaf:!Tf1(Nl +:r is an isomorphism. Also

by boundarY-irreducibi~t~r':n1(T~) + 'Gi. In particular no
. ",. ...... ,

component of aT~ 18 contractible in M. So no component of

.aN - int {T~ U U T'} is a d1sk. Also since N 15 aspherlcal
k

,
and r J ~1 no component. of aN is a sphere. So every component

of aN - int{T~ U •.• U ~k} has Euler characteristic < o.

Hence

k
X (aM) = - E X(T~) <- - X(aN) = -2x(N) = -2x(tr

1
(N» =-2x(f)

i=l

whlch proves (1.8.2).

-Next let U be the union of the taral components of aM,

so U has T companents. Clearly U C aN. Let V denote the

toral components of aN-U, and W the rema1nlng components of

aN. Then the number a of homotopy classes (in aM) of the

annular components of aM 1s at most the maximum number of

disjoint, non-nullhomotoplc and pairwise nonhomotopic simple

closed curves in V U W. The maximum number of such curves in

V are just the number v of components af V, and thls

nurnber in W 15
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cf. (4.4). On the other hand,

v + T ~ + cornponents of aN

<

Thus

a + T < V -

which proves (1.8.3).

This flnishes the proof of (5.2.3) and hence of theorem B.

q.e.d.
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