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. Abstract

Ahlfors' finiteness theorem and its two complements namely
the area-inequalities of Bers and the finiteness of the cusps
due to Sullivan are some of the central results in the modern
theory ¢of Kleinian groups. Their proofs are analytic whereas
their conclusions have a geometric flavor. In this paper we
have attempted to explain the topological and group-theoretic
genesis of these theorems. 1In case the domain of discontinuity
is connected our approach is based on a structure theorem on
planar regular coverings which is a partial extension of the
Maskit's planarity theorem. In case the domain of discontinuity
is not necessarily connected our approach is based on a relative
version of the theorem "a finitely generated 3-manifold group

is finitely presented" due to Scott and Shalen.



§1. Introduction (1.0) Let T be a Kleinian group, i.e.

by definition, a discrete subgroup of M8bius transformations

of the Riemann : sphere 52_ Let A be its limit set which

may be defined as the closure of the set of fixed points of

elements of infinite order in T'. The set Q§§£ SZ—A is called

the set of discontinuity of T, for, indeed it may be shown that

I' acts properly discontinuously on 2 - i.e. for every compact

set K €Q the set {y ET|yK NK # ¢} is finite. Classically

one says that T is non-elementary 1if A has more than two

points. This 1is equivalent to T being not virtually abelian.
A central result in the modern theory of Kleinian groups is the

following finiteness theorem of Ahlfors.

(1.1) Theorem {(Ahlfors) If T 1is a finitely generated
non-elementary Kleinian group then F\Q has finitely many

components each of which, as an orbifold, is a hyperbolic

Riemann surface of finite type.
(Recall that a Riemann surface is said to be of finite
type if it is biholomerphic to a compact Riemann surface

with at most finitely many points removed. Of course, (1.1)

has content only when § # §.)

Ahlfors' proof of this theorem in (1] with a gap filled
by Greenberg,cf. [5], and in a different way by Bers, cf. (21,
rests on showing finite-dimensionality of certain spaces of

holomorphic g-differentials.

The theorem (1.1) has two major supplements. First, the



area-inequality of Bers, cf. [3] agserts that

(1.2) Theorem (Bers)”::ip"tpe;sitqation of (1.1),
(1.2.1) 3= {the hyperbolic.area 6f TI\a} < 2(N-1)

where N 1is the minimum numbérhof'genérators of T.

Now 82 may be regardedfésfthe sphere at infinity of the
hyperbolic 3-space H3, which 1s the symmetric space for the
M8bius group =,PSL2(¢). So the Mdbius group, and in particular
r, extend to H3 U 82; and ' acts properly discontinuously

on 1 U H3. Hence M

[

r\{n U H3} is a 3-manifold with boundary
F\p, and int M has a structure of a hyperbolic 3-manifold,
i.e. a complete Riemannian 3-manifold with constant curvature -1.

The-second supplement to (1.1) is due to Sullivan cf.,[17].

{({1.3) Theorem (Sullivan) let T,Q, be as in (l.1), and

N as in (1.2), and M as defined above. Then the

(1.3.1) d{cusps of M} < 5N-4.

The finiteness of the number of cusps, under some topological
regularity hypothesis is due to Marden, cf. [2], theorem 6.4,
and under a similar hypothesis Abikoff, cf. [17], p. 291,

obtained the upper bound 3N-3 for the same number.

The proofs of (1.1) - (1.3) use some deep analysis whereas
the conclusions have a strong geometric flavor. The motivation
of this paper is to understand the underlying topology and

group theory of this theoremn.



(1.4) Consider a finitely genérated group I of homeomor-
phisms of Sz. We shall assume that T is Orientation-preserving
and torsion-free. Assume also that T leaves some open, non-
empty subset Q E;SZ invariant on which it acts properly
discontinuously. Later on we shall need to impose an appropriate
"Kleinian condition" which ensures that the "limit set"

Agg; 82—9 is minimal 1n some sense. We consider two cases:

1) @ connected, ii) Q2 not necessarily connected. We shall
explain and partially extend (1.1) - (1.3), in case i} using
only 2-dimensional topology whereas in case ii) we shall also use

3-dimensional topology.

(1.5) In the set-up of (1.4) assume that g is connected.
Let Qg denote the end-compactification of ¢, and e(Q) =
Q-0 = the set of ends of 9, cf. Freudenthal [4]. Then e(qQ)
is a compact set, and Qe 1s homeomorphic to Sz. So I may
as well be taken simply as a properly discontinuous group of
homeomorphisms of a connected planar surface . Since T acts

propérly discontinuocusly it extends continuously as a group of

homéomorphisms of Rg- The Kleinian condition referred to above,

in this case, is formulated as follows.

(1.5.1) There exists «# € @ whose r-orbit accumulates

at every end, i.e. the derived set (r#*)' = e(q).

Mimicking the proof of Hopf's theorem, cf. (7], [10],[11]
on ends of groups it then follows from elementary topology of

surfaces that we have the following four possibilities:



gt s, = (e,

(1.5.2) 1) e(Q)

ii) e(ﬂ):%;iaspoint}u".ﬂ =]Rz,

r s nli(gisﬁfféceﬁof finite type).

iii) e(R) = {two points}, @ =IRXS1, r =z,
P\Q ~ a torus,’

iv) e(Q) ®* .a Cantor set.

(Here a surface of finite type means a compact surface with

at most finitely many points removed.)

- To complete the picture, 1t remains to decide the structure
of T and r\n in case iv). It is proved in [11], using only
the theory of ends of spaces and ends of groups, that in case
iv), 1 = i%: ry i.e. a finite free product where each

ry =omy (a surface of finite type). In this paper we show

(1.6) Theorem A Let Q,T " be as above, and assume that

(1.5.1) holds. Then F\Q is a surface of finite type.

Classically, a Kleinian group T with @0 # © and connected,
or more generally, leaving a component of g invariant is called

a function group. Maskit, cf. [14],(15] has made a remarkable

study of this interesting class of groups. From his arguments
it is not difficult to see that given ¢ = 52 - {a Cantor set}
and o * a nontrivial free product of fundamental groups of

surfaces, there are oniy finitely many (up to topological



equivalence) properly discontinuous actions of T on @

satisfying (1.5.1). Tp%s_és a much more precise information than
what can be obtained from (1.2) or (1.3). (In fact the equality

in (1.2.1) is attained precisely when‘ ' is free and topologically

equivalent to a Shottky group.)

(1.7) Now in the set-up of (l1.4) consider the case where

. 1s not necessarily conneéted. In this case we consider 52
as the boundary of a closed ball D3, and assume, first of all,
that 'F extends continuously to D3 and acts properly
discontinuously on Q U int D3. As noted previously, this

condition is satisfied in th= classical case. We noQ formulate
"the Kieinian condition” as follows.

{(1.7.1) There is no T~invariant open subset hlga Q
of 82 such that the Tr-action on Ql U {int D3) is properly
discontinuous.

P\(® U (int p3))

Now M = is a 3-manifold with boundary

M = P\Q. In this paper we show

(1.8) Theorem B Let Q,I' M be as above, and assume that
(1.7.1) holds. Then 3M has only finitely many components that
are not open annuli or discs; moreover there atre only finitely

many homotopy classes (in M) of the annular components of 3M.

The proof of. theorem B brovides a more precise information.

It will be explained in §4 that the group T = ﬂl(M) has



finitely generated integer homology and well defined Betti
numbers bi(F) and the Eulerbﬁharacteristic x(ry. I1f § 1is a

surface of finite type, let us. set.

(1.8.1) x_(S) = £ max(0,~x(C))
C .

where C ranges over the components of S. It will be shown in
§5 that if we exclude the trivial case T = {fe} the following

inequalities hold. Let o denote the number of homotopy classes
of annular components (in M) of 3M, .and 1 denote the number

of toral components of ©3M. Then
(1.8.2) x_(3M) < - 2x(Tr)
(1.8.3) a + 1<-3x(T) + bz(]‘) + 1

(1.9) Notice that in (1.2.1), since we are assuming T
to be torsion free, the left-hand side, by the Gauss-Bonnet

theorem and (1.1), is |x(r\@)| = x_(aM). Write b, for b, (T).

i
If N is the minimum number of generators of T then
b, < N. So

-2x(T) = =2(1-b,+b,) < 2(b;~1) < 2(N-1),

which is the right-hand side of (1.2.1). Thus, (1.8.2) explains

and extends (1.2).

Next, in the classical case, a cusp of M corresponds to a

conjugacy class of maximal parabolic subgroups, and a neighborhood



of such a cusp is homeomorphic to (an annulus) xIR or (a torus)
x JR according asjthélpa;abblic subgroup is isomorphic to Z

or Z+ Z. Also the annuli corresponding to distinct rank-1
cusps are non-homotopi¢'fnj‘M,"Now (1.8.3)does not directly
explain (1.3.1), since the cusps, by their very definition, do
not appear in oM. Indeed, they would not show up even under
quasi-conformal deformations of Tr. But it is possible to have

topological deformations of oI (in Homeo D3) which do not change

the topology of int M, but where the cusps would appear as
annular or toral components of the boundary of the deformed M.
This can be done by "blowing" of the cusp somewhat in the sense
of real algebraic geometfy. {More precisely, for each cusp of
M, delete from D a Tr-invariant family of open horoballs

which projects onto aneighborhood of the cusp in M. The closure
a

of such/horoball meets aD3 in a point, which is replaced by a

circle which may be identified with the set of directions at the

point tangential to 3D3. The resulting space Do is clearly

homeomorphic to D. The T-action extends to Do since it

was smooth on D.)e Now the right-hand side of (1.8.3) 1s

-3(1-b +b2)+b2+1 < 3b1-4 < 3N-4

1
if b, # 0. (The proof acfually shows that if b, = 0 then

atr<3b,-3 unless b, =1 in which case a+r<1.) So (1.8.3)

explains and extends (1.3).

(1.10) In the situation of theorem B, with T #{e}, M 1is

aspherical with infinite fundamental group. So no component

® The first author thanks J. McCarthy and J.-P. Otal for a useful
conversation on this point.



of & can be a sphere. But.it is not difficult to construct
examples of non-virtual}f:abelianj;T'é so that some components

of 3M can be annuli or Eb;;.;'ln‘fagt, infinitely many annuli
can also occur. It remaihskpﬂdegiéed-however whethe} disks can
also occur as components of  éM.“.A 2-dimensional analogue of
theorem B is more precise: 1e£ I be a torsion-free, orientation-
preserving, finitely generated group of homecomorphisms of D2
which acts properly discontinuously~on 2 U (int D2) where @

is a TrI'+~invariant open subset of BD2 satisfying "the Kleinian
condition" i.e. (1.7.1) with FSZ resp. D3 replaced by S1
resp. D2. Then T 1s topologically conjugate to a fuchsian
group (in Homeo D2) ~ so0 N = F\JQ U (int Dz)} is a 2-manifold.
with compact boundary -~ 1in particular no component of N can

be an arc. We see no reason however for this statement to carry

over to dimension 3.

{1.11) Throughout this paper we shail assume that the group
I under consideration is torsion-free. 1In case T 1is a finitely
generated classical Kleinian group it is a relatively simple
matter to pass to a torsion-free subgroup of finite index. 1In
the topological case the existence of such a subgroup is a non-
trivial question and probably cannot be settled by the elementary

techniques of this paper.



§2. Structure of reqular planar coverings

(2.1) Let @ be a planar surface and I an orientation-
preserving, properly discontinuous, torsion-free group of homeo-
morphisms of Q. Then p: Q0 -+ r\n det. M 1is a regular planar
covering. The following theorem describes ﬂl(ﬂ) as a normal
subgroup of nl(M). ‘Notice that we do not assume that o is

finitely generated.

If G 1is any group and A < G then <<A>> denotes the

smallest normal subgroup of G which contains A,

(2.2) Theorem Let p: Q » F\Q =M be as in (2.1). Then

there exists a family ‘)?= {C of mutually disjoint, non-

1ier
nullhomotopic and pairwise non-homotopic simple closed curves in
M such thgt

i) .any compact set K € M intersects only finitely many

elements of /g , and

ii) nl(n) =-«[Ci]iEI>>, where [Ci] denotes the conjugacy

class in wl(M) defined by Ci'
(For any planar covering a family Af of the type described
in (2.2) will be said to be admissible.)

Proof: In case M 1is a surface of finite type then the
family /g is necessarily finite and the theorem in this case

is due to Maskit, cf. [13] theorem 3.



Call a connected sub-Surfabg% S of M incompressible

if, choosing a base-point * 'inl‘ébwﬁghe induced map wl(s,*) >
nl(M,*) is injective. Let %8 ‘be a”compact subsurface with
boundary. If no compoﬁent of "Mf - int S is =* a closed disk
it is well-known that S is incompressible. So if S itself
is not incompressible then we can attach to it the closed-disk-
components of M - int S and obtain a new compact surface

§, 2 8 which, moreover, is incompressible.

Now let Ml M2 ... be an exhaustion of M by compact

sub-surfaces with boundary. Here M C int M i=1,2... .

i i+1’
(One can obtain such exhaustions either from a triangulation of

M or by a proper smooth Morse function.) Moreover applying the
process described in the above paragraph, and changiné notation

if necessary, we may also assume that Mi's are incompressible

for 1 =1,2,... . Choosing a base-point #in M, we thus obtain

an increasing sequence nl(Ml,*)c: "1(M2’*) ..+ WwWhose union
is clearly "I(M'*)' Let # be a base-point in @ lying over

# and write N = p*“l(n’*)' and Ni = NN "l(Mi'*)' So N 1is

the union of the increasing sequence ng; N
1

2 “« a ¢ L If Mi

is the component of p (M) containing %, it is clear that

p|ﬁ 3 ﬂi > My is a regular planar covering with the group of
i

covering transformations isomorphic to N i=1,2,... .

ir

We now start constructing an admissible family"xg of simple



closed curves as asserted in the theorem. By [13}1, cf. lemma 5
and theorem 3, there exists a family JL' = {Cij} i'=1,2,...,

j = 1,2,...,ni < », of disjoint simple closed curved such that

1 [} 1 -~ . M
{Cll'CIZ""’Ck Wg form an admissible family for lek. Mk +

Mk' (This A' may not be admissible for p: 2+ M since the
condition 1) of admissibility may fail.) We shall replace the

Cij's by other mutually disjoint simple closed curves Cij's

such that only finitely many Cij's will intersect any given

M, and {Cll""'ck,nk} is still an admissible family for

plﬂk: ﬁk > Mk' Then clearly the new family will be admissible

for p: @ - M.

First we may assume that Cij, if it intersects Mk for

k < i, then it intersects aMk transversely. Now let Clj =

Cij. j = I,Z,...,nl. Among the Céj's suppose there is a pair,

say Cél and Ciz such that C!, N M has an arc-component

21 1

which 1s parallel to an arc-component of Céz n Ml. Choose

orientations so that, say, C!. = asc, = b*d where a and

t
21 €22
b are a pair of parallel arc-components lying in Ml. Let c¢'

be an arc parallel to (but disjoint from) ¢ and having the

same end-points as b. Let ng = ch-d-l. Then clearly

<<[Cj,1.0C5,)>> = <<[c), 1,[C5,1>>, and CJ

22 n M1 has one less

arc-component lying in Ml than Céz n Ml‘ Continuing this

process we replace the Cij's by Czj's, j o= 1,2,...,n2

such that for no two distinct values jl' j2 of j, an arc-

component of C2. n M is parallel to that of C

1

n M.
i 23, 1



M,

Proceeding further inductively we construct a family /g==
{Cij} of disjoint simple closed curves such that no arc-component

of ¢C

1.5 N Mk is parallel to an arc-component of C n

1-°1
if i

L3,

i, > k and (il’jl) # (12,j2); and such that

M 101s

k

<<[C [¢ ]>> = <<[Cil],...,{C' ]>>.

| PR
11 knk knk

Since each M, 1is compact a family of mutually non-parallel

i
and disjoint simple closed curves and properly embedded arcs

with end-points on aM; is finite.e So it follows that at

most finitely many C can intersect Mk if k < i. This

]
13 °
proves that ,Ag is an admissible family. g.e.d.

2.3 Remark: The theorem (2.2) is not wvalid if o 1s not

-

® cf. 4.4) for a precise statement. This fact is crucial also
in the proof of theorem B.



finitely generated and contains torsion. It is easy to construct

examples when (2.2) fails 1in such cases.

§3. Proof of theorem A

(3.1) Lemma. Let @ be a planar surface and T a finitely
generated, orientation-preserving torsion free, properly
discontinuous group of homeomorphisms of @. Then M = r\Q is
a surface of finite type iff nl(n) regarded as a subgroup of

nl(M) is normally generated by finitely many elements.

Proof. The "only if" part follows from Maskit's theorem
noted in (2.2). The "if" part is trivial if M is cdmpact.
So we may assume that M is noncompact, hence nl(M) * a free
group. Now M 1is of finite type & nl(M) is finitely
generated &=» ﬂl(M)/[ﬂl(M),ﬂl(M)] is finitely.éenerated. We also
have a short exact segquence nl(n)-—» wl(M)—+D I'. Now if |
{xl,...,xn} g_ﬂl(M) is such that its image in T generates r,
and {%,...,yn} G 7, (M) is such that T (R) = <<y e, Y 2>y
it is easy to see that the image of {xl,...,x

m’ yly'oo,yn}

in ﬂl(M)/[ﬂz(M),ﬂl(M)] is a system of generators. This finishes

the proof. . q.e.d.



(3.2) Proof of (1.4) Let .

p;f’l +r\n 288 M pe the

B0y §

lﬁ?%:g(;) as a base-point

5

canonical projection andf?géaig“

in M. TLet {x,,...,x} Sfﬁfg@);jﬁ_be such that its image in T

generates T. Let A .,ag:fﬁe'ciosed curves based at #

l' L)
n
representing x.,...,x_ - resp. Let A = UA and B = p 1(A).
1 n i=1 1

Then B 1is a closed connected subset of . Now the "Kleinian
condition" (1.5.1) implies that the closure of B in Qg contains

e(R).

We claim that each component of 0-B is simply connected.

For indeed ﬂe = Sz, 80 a Jordan curve C 1lying in a component

o of Q-B 1s a common boundary of two disks Dl' 02 whose

union is Qe. If B intersected both D1 and D2

also intersect C since B 1is connected. But this is not

it would

possible by construction. So suppose B does not intersect Dl’

But then D1 N e() =@ since B accumulates at every end.

So b, 2 and again since B N D, = § we must have D € a

1
il.e. o 1is simply connected.

Now let /g be an admissible family (§2) for the regular
planér covering p: 2 + M. Since A 1is compact there are only
finitely many elements of ,g , say Cl""'cn' which intersect
A. We claim that /g = {Cl,...,cn}. For indeed if C 4is any
simple closed curve in M such that C n A = ¢ and which lifts
to a simple closed curve C in 2- then (¢ 0-B. Since éach

component of 0-B 1is simply connected ¢ is null-homotopic.

4



So C 1is also null~-homotopic, hence C E,S .

By Lemma 3.1, it now follows that M 1is of finite type.

g.e.d.

§4. Preliminaries for the proof of theorem B

(4.0) From this section on we shall view Ahlfors' theorem
from the viewpoint_of 3-dimensional topology. We shall try to
separate the homological parts from those which depend on the
homotopy considerations and then also point out the special
features of the low-dimensional topology. It is amazing to see
how these different features are intricately intertwined in

the original analytic proof of Ahlfors.

(4.1) A group G 1is said to have finitely generated integer

homology if Hi(G;Z) ' is finitely generated for all 1 > O

and =0 for sﬁfficiently large 1. 1In this case define the

Euler characteristic of G, denoted x(G), to be

t (-1)taim H, (G10).
1=0



It is easy to see that if two. groups Gl and G have
o

2
finitely generated intege;;hqm@lg§ylﬁhen so does their free

roduct “;7 RN ;i‘ : |
P uc GI*GQ' In fact,~ HQ{E;?QZ:%!: Z, H,(G.*G

B (G i) + H,(G,,®) for i > 1, and x(G ¥G,) = x(G;) + x(G,)-1.

Recall also that if G is finitely generated (resp. finitely
presented) then Hi(G;m) is finitely generated for i < 1,

(resp. 1 < 2).

(4.2) 1In the sequel we shall often use the following fact
from the'homotopy theory. Let X,Y be two connected CW-complexes
and let ﬂl(X) —ﬁy “1(Y) be a homomorphism. Then there exists
a cellular map X2 £ Y from the 2-skeletan X, cof X into Y
such that f* = ¢ (defined w.r.t. a choice of a base-point.) If
in addition Y is aspherical, i.e. ﬁi(Y) =0 for 41i > 1, then

f extends to a cellular map from X to Y.

(4.3) Let T

t

nl(M3) be finitely generated. Then

H (M;z) = H (r;Z) = r/[1,T7] is finitely generated also. It is

HX ]

a well-known fact that if B8M contains a handle i.e. equivalently
two simple closed curves intersecting transversely at exactly

one point thén at least one of the curves is non-homologous to
zero in M; and if there are r disjoint handles then

dim Hl(M;Q) > r. This implies that if ﬂl(M) is generated by

n elements then 3M cannot contain more than n handles. Thus
the real difficulty in the proof of theorem B is to control the

ends of M.



If M3 is compact then the homology-sequence of the pair

(M,3M) and Lefschetz duality shows x(3M) = 2x(M). If no
component of 9M 1is a sphere then each component of 8M has
X < 0, so one has a bound for the number of components with

x < 0 1n terms of yx(M).

We shall be extending partially these considerations when
M 1is non-compact which would "explain" the finiteness in

Ahlfors' theorem.

We first recall some terminology and facts from 2- and

3~-dimensional topology.

(4.4) Let S be a compact orientable surface of genus g
with b > O boundary components. Then the number of non-
nullhomotopic, pairwise-non-homotopic disjoint simple closed
curves and non-boundary-parallel properly embedded arcs’
is at most 39 - 3 + 2b if this number is > 0, and 1 \{if
g=1,b=20, ‘ .. and 0 if g=0, b=0 orl.

(4.5) Let T be a compact, orientable surface in a

connected orientable 3-manifold M which is properly embedded,

i.e. T N 3M = 3T. We say that T 1is incompressible in M

if for every disk DC M with DnNaT = 3D, 3D 4is the boundary

+ {i.e. an arc o 8uch that 3g = g N 38 and there does not
exist an arc B € 35 with 3o = 38 such that o« U g bounds
a disk.



of a disk'in T. It is a staﬂd@rd:chsequence of Dehn's lemma
: : "?.;'f':l
and the loop theorem cf. [6] pr;[Qlfthat T 1is incompressible

iff for each component T of T,'Ithe canonical map nl(Ti) +

i
nl(T) is injective. It folld@s'easily (for example by
van~-Kampen's theorem and the theory of generalized free products)
that if N 1is a compact, connected submanifold of M whose

frontier’ is an incompressible surface then ﬂl(N) -+ ul(M)

is injective.

(4.6} A connected, oriented 3-manifold M .is sald to be

boundary-irreducible if for every properly embedded disk D €M

{i.e. 3D =DnN 3M), 3D bounds a disk in 3M. Again by Dehn's
lemma and the loop theorem this is equivalent to the fact that
nl(S) + ﬂl(M) . 1s injective for every component S of 3M.

From this algebraic characterization it follows that if M is

boundary-irreducible, so is any of its covering space.

(4.7) It is a standard consequence of the sphere theorem

cf. {6]1,{9] that a connected 3-manifold M is aspherical iff

i} M 1is not closed, or else nl(M) is infinite,
(4.7.1)
and ii) every embedded 2-sphere in M bounds a compact

simply connected submanifold.

+ The frontier of N means the "boundary" in the sense of
general topology; ‘it will be denoted by FrN.
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It follows that a cdnﬁééggd@B—dimensional, proper submanifold

of an aspherical 3-m§q;£6lé £s aspherical iff it satisfies ii),

(4.8) It was sthn in [16] that if the fundamental
group of a connected, ofiépiable 3-manifold M 1is finitely
generated then it is finitely presented. It had been shown
previously, cf. [8] that if n, (M) is finitely presented, £z,
and admits no non-trivial free-product decomposition then there
is a compact 3-manifold N <€ int M such that 3N is incom-
preésible in M and nl(N) > nl(M) is an isomorphism. The
main result of this section is essentially a relative version

of the latter result.

(4.9) If T = n1(M3) is finitely generated then by the
remarks in (4.2) and (4.8) Hi(P;Z) is finitely generated for

i < 2. Moreover, suppose that M3

is a connected aspherical
manifold. Then Hi(r;z) 3 Hi(M;z) for all 1, and of course
Hi(M;Z) =0 for i >4 and H3(M,z) : Z (resp. O) if M
1s closed and orlentable (resp. otherwise). So in this case T
has finitely generated integer homology.

{4.10) Definition. Let G be a group, and Gl""'Gk'
k > 0 its subgroups # e. (k = O means the collection of

subgroups 1s empty.) We say that G 1is decomposable relative

to G ...,Gk if either 1) G = Z and k =0 or

1’-
ii) G = HlaHz, a free product with Hl Flel# H2 such that

each Gi is contained in a conjugate of H, or H

2



Evidéntly, "decomposability rel. to Gl""'Gk" depends

only on the conjugacy classes of Gy's.

Also "indecomposable rel;';o Gieer-

L1}
.

k

’Gk“ will mean

"not decomposable rel. to G ¢

(4.11) Lemma. Let G be a subgroup of a free product A#B,

A #{e}# B. Let G "Gk' k > 0 be subgroups of G such that

1,..
each Gi is conjugate to a subgroup of A or of B. Suppose
that G 1s indecomposable relative to Gl""’Gk then G 1is

contained in a conjugate of A or B and, in fact, all G,'s

i
are conjugates of subgroups of A or all of them conjugates of

subgroups of B.

Proof. This is immediate from the Kurosh subgroup theorem.

g.e.d.

(4.12) The rest of this section is devoted to proving the

following.

Proposition. Let M be a connected, aspherical 3-manifold

such that T = nl(M) is finitely generated and F e}, Let
TyreeerTyy k > O be compact, connected, mutually disjoint
surfaces contained in 3M. Let 4 ¢ w1(T1)+ I be the maps
inducéd by the inclusion-and ry = im ®y (which are well-defined
up to conjugacy). Suppose ry #{e}) and T 1is indecomposable
rel. to T

R Then there is a compact, connected, aspherical

3-manifold N C M such that T, U ... U T

1 < N and the

k



canonical map nl(N) £r is an isomorphism.
The proof extends over (4.13) - (4.18).

(4.13) A submanifold N of M 1s called ample if

i) N is compact and connected,

(4.13.1) ii) N n sM = T1 U T2 U +0. U Tk

r B

iii) There is a homomorphism > nl(N)

which is a right-inverse to the canonical homomorphism nl(N) S,

i.e. asg = 1, such that for i =1,2,...,k the diagram

nl(Ti)

FON

nl(N)

commutes modulo inner automorphism of r. (The slanted arrows
are induced by inclusion and are defined modulo inner automorphisms

of r.)

If N is ample, clearly by iii) the map o 1is surjective.
Now if FrN 1s incompressible then by (4.5) o is also injective.
Thus to prove (4.12) we need to produce an aspherical ample sub-

manifold with incompressible frontier.

Notice that if N, N are submanifolds of M with N

1

ample, N C.Nl, and 'Nl satisfies 1) and ii) then Nl is ample

also.
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(4.14) Lemma. There exists an ample submanifold of M.

Proof. We know T = nl(M) is finitely presented. Choose

a finite 2-complex K and an isomorphism J: nl(K) + I'. Let

-1

a; = J b 04 where "1(Ti) + ' are the canonical maps.

by ¢

By (4.2) is induced by a map £,: T, - K. Let 2 be

%4 it 71 1
the mapping cylinder+ of fi' and L, the complex obtained

from the disjoint union of K and 2Z,'s by identifying K

i
with 1ts image in each Zi' So L 1is a 3-dimensionéi complex
containing K as a deformation retract and Ti's are naturally
identified with disjoint subcomplexes of L. Again by (4.2) J
is induced by a map K £ M, which extends to a map L g M

(since there exists a deformation-retraction L - K). By

construction, gIT 1nduées Pyr 50 g|T is homotopic to
i i

the inclusion map Tiha»M. By the homotopy extension property
for polyhedra, we may assume that after modifying g by a

homotopy if necessary (and still calling it g}, we have g|T
i

is the inclusion map Ticavm. By a further general-position
k
homotopy we may assume that g(L) N sM = U Ti'
i=1

Now let N be a regular neighborhood of g(L) such that
k —
NNnaM= U Ti‘ Then N 1s ample: indeed set B8 = g:.J !
: i=1

where we consider g, as the map ul(L) -+ nl(N). It is easy

+ Recall that Zi = {(Tix[o,l]) U K}/. where for x € Ti
one ldentifies (x,1) with fi(x). ’



to see that the condiﬁigﬁsginﬁk4.13.l) hold. gqg.e.d.
T T N

4 -4

(4.15) Cutting orithiéﬁshihéﬁalong a compressing disk:

Let N be a 3—dimensioﬂ§_i£m§ma}iifold of a 3-manifold M
such that FxN 1is a compressible surface, l.e. by definition,
there exists a 2-disk D« int M such that D n FrN = 3D and
3D does not bound a disk in FrN. Such a disk is called a

compressing disk. A compressing disk D 1s contained either

in N or in M - int N. Let E cint M be a regular neighbor-

hood of D in N or M - int N, and set Nl = N-E or N U E.

In the first (resp: second) case we shall say that Ny, is

obtained from N by cutting along D, (resp. by thickening

along D).

{4.16) Lemma. Let N be an ample submanifold of M with

is
compressible frontier. Suppose D¢ N (a compressing disk, and
=]
N, fobtained from N by cutting along D. Then N, itself or

a component of Nl is ample.

Proof. There are two possibilities: either N is connected,

1
or it has two components say A and B. In the first (resp.

second) case nl(N) = nl(Nl)uZ (resp. "I(N) = ﬂl(A)*ﬂl(B)):

cf. figure 1) (resp. 1i)) below .

D




Case 1. (7 (N) = nl_(Nl')*’zz) .- Since D 1is disjoint from
T1 U T2 U ... U 'I‘k it islc}egr’that r, = im ¢, are contained
in the conjugates of wl(Nll in"wl(N). So since I |is,
by hypothesis, indecomposéblé w.r.t. -Pi, it follows by (4.9)

that T 1s conjugate to a subéroup of nl(Nl). This provides

the required homomorphism g8: T - vl(Nl) making N ample.

1

Case 2. (ﬂl(N) = wl(A)*nl(B)). By the argument as in case 1,
now Fi are conjugates of subgroups of nl(A) or of wl(B).
So by (4.11) T is conjugate to a subgroup of nl(A) or

nl(B) - say of nl(A). Then as above A 1is ample. g.e.d.

(4.17) We note one more property of an ample submanifold:
let D be a compressing disk for an ample submanifold N,
then 3D does not bound a disk in 3N. Indeed 3D 1lies in
FrN and does not bound a disk in FrN. So if it bounds a disk

5 in 3N then A C N (}9M, so A contains one of the T, 's,

i

say T But then rl ={e},'contrary to the hypothesis.

1"

(4.18) Proof of (4.12): As noted in {(4.13), we need to

produce an aspherical ample submanifold with incompressible

frontier. By (4.14) we know that ample submanifolds exist. To

an ample submanifold N attach its complexity: C(N) def

I {14+(genus Bfﬁ where B runs over the components of 3N. Let
B ‘ .
No be an ample submanifold with the least complexity. We show

that No 1s aspherical and has incompressible frontier.



Let L € int N be a 2-sphere. By (4.7) we need to show

0

that [ bounds a éomPQEFQKSimply connected submanifold in NO'

Since M is asphericalitheré%exists such a submanifold E&IM.

If E g No then- Nl =.N0 U‘l'EJ’ is a compact connected submanifold.
Clearly N1 N 3M = NN 3M = Tl u ... U Tk' So by the remark ih
(4.13), N1 is ample. Now the components of aNl are among
those of aNO and clearly aNl has at least one component less
than those in aNo. So C(Nl) < C(NO) contradicting the
definition of No. So NO is aspherical. 1In particular no
component of N, is a sphere. (For otherwise N, would be

simply connected, and so T ={e}, contrary to our hypothesis).

Next suppose that FrN is compressible. Let D be a

0

compressing disk, and 3D < the component B of aNo.

Case 1. (D i Ng). Let N, be obtained from N by thickening

1

along D. Again as above N1 is ample. If B-3D is disconnected

then the components of aNl are those of 3N except that B

is replaced by two components Bl’ B such that genus B =

2

genus Bl + genus B Also genus B, > 0, i =1,2, for other-

2° i
wise D would not be a compressing disk by (4.17). It is now
clear that C(Nl) < C(NO) - a contradiction. If 3-9D 1is

connected then the components of N, are those of N except

that B 1is replaced by a component B1 with genus B, = genus B-l.

1
So again C(Nl) < C(No) - a contradiction.

Case 2. (D g;NO) Let N1 be obtained from NO by cutting



l l' Say A,

is ample. 1If N1 is conneéged“thn;és in case 1, C(Nl) < €(NO)

- a contradiction. If N1 is nét“connected. clearly the components

along D. By (4.14) N itself or a component of N

of 3A are among the components of 9N except that B 1is

1
repﬁaced by a component of lower génus. So again C(Nl) < C(NO)

- a contradiction.

. These contradictions show that NO has incompressible

frontier. This finishes the proof of (4.12). g.e.d.

§5. Proof of theorem B

(5.0) Recall that T 1is a torsion-free, properly discontinuous,

3 which acts

orientation-preserving group of homeomorphisms of D
properly discontinuously on o U (int D3) where g is an open
subset of 3D and the Kleinian condition (1.7.1) holds. We
seL A = aD°-q and M = F\D3-A. Since D°-p 1is contractible,
M :is aspherical.

|

i (5.1) Lemma. A connected, simply connected 3-dimensional

submanifold K which is a closed subset of M and whose frontier



is a finite union D, Q QZ(U"3° U b, of properly embedded

disks i.e. Di N aM f'igi

.

7591*1 ).

Proof. Lift" K to a connected simply connected submanifold

K of D3-A. Let K be its closure in D3. It is easy to see

that for all y €T - {e}, we have y(ﬁ) n (ﬁ) = . Also

3

K-K c3p”. If K - K $n then clearly it will have a non-

empty (2-dimensional) interior, say L and T will act properly

discontinuously on (DBfA) ufu YL} which contradicts (1.7.1).
T - - YET
So K=K 1i.e. K and hence K is compact. g.e.d.

u Si, where
i=1

Si is an open subsurface of finite type. Si E.Si+1,

is incompressible (in the sense of (2.2)) 1in the

'(5.2) First feduction: We can write 3M =

and each

component of ‘Si

component of 3M 4in which it lies. Set M, = Si u {int M}.

i
Note that together with M, each Mi satisfies the property

mentioned in (5.1), namely,



.. (5.2.1) A connected, simply connected, 3-dimensional
submanifold K which is a closed subset of Mi and whose
frontier is a union of finitelyrpaﬁ&?properly embedded disks is

compact.

. (5.2.2} We shall call K as in (5.2.1) a test-submanifold.

(5.2.3) Now the right-hand sides of (1.8.2) and (1.8.3)
depend only in int M, and are finite. So if we establish (1.8.2)

and (1.8.3) for M i=1,2,3,... then they clearly hold for

il
M and theorem B would also be proved. In other words, it

suffices to show

Proposition Let M be an orientable aspherical 3-manifold

such that M 1is of finite type, T * nl(M) is finitely
generated and #{el. Suppose that M satisfies (5.2.1). Then

(1.8.2) and (1.8.3) hold.

(5.3) Remarks i) Let D be a properly embedded disk in
M, U = a regular neighborhood of D in M, and N =M - int U.

If M satisfies (5.2.1) so does N.

(Indeed, let K be a test-submanifold of N.. By an
amblent isotopy ln N) we may remove the intersection of X with
FrU (in M). Now the FrK (in M) 1is an union of finitely

many embedded disks. Since M satisfies (5.2.1), K 1is compact.)

ii) Let M be an orientable, connected, aspherical 3-manifold.

Assume nl(M) F{e} and M is boundary-irreducible (cf. 4.6).



Then M satisfies (5.21;1,}if

.
1

1

(Indeed let K ‘ﬁé'é\ggég-submanifold and FrkK is an

i i=1,2,...,r. By
i: bounds a disk Di in 3M. So by
(4.7) Di U Di bounds a simply connected compact submanifold

union of properly embeadéd;;disks D

boundary-irreducibility *aD

E; of M. For each i, either X CE, 4 =Dy If

K C.Ei for some i then K is clearly compact. But otherwise

or K NE

M=K uU E1 U oo U Er and so "1(M) ={e}, a contradiction.) .

(5.4) Second reduction Suppose M,T are as in (5.2.3)

and M is boundary-reducible c¢f. (4.6). Let D be a properly
embedded disk in M such that 3D does not bound a disk in M.

Let U be a regular neighborhood of D and N =M - int U.

Case 1 (D separates M). Let Nl, N, be two components

of N. By (5.3) each of Nl, N satisfies (5.2.1). We note

2
that nl(Nl) Flel? "1‘“2" For otherwise, say nl(Nl) *{e)

Since N1 satisfies (5.2.1), we see that N1
and 3\11 382 but then a0 would bound a disk in ™M - a

contradiction. Also both Nl' N

must be compact

2
and their boundaries are of finite type. Moreover

are orientable and aspherical

P % m (N,) #m (N,)

is a nontrivial free product. By Grushko's theorem each of
nl(Ni), 1=1,2 has fewer minimum number of generators than T,

and so by induction on the minimum number of generators we may



assume that (1.8.2) and (1.8.3) hold for N1 and N2. But then

x_ (M) = x_(aNl) + X_(3N2) + 2

|A

=2x(w (N))) = 2x(x (N,)) + 2
= -Z{X(wl(Nl)*ﬂl(Nz))

= =2y(T)

i.e. (1.8.2) holds for M. Secondly the toral and annular
components of 3M are clearly disjoint from D. So if ays Ty
denote the number of homotopy classes (in aNi) of the annular
components and the number of toral components of 3N, , i=1,2
and a,t denote the number of homotopy classes (in 3M) of
the annular components and the number of.toral components of

aM then

So

atT = 0 T ta tT, < -3x(ﬂ1(Nl))+b2(ﬂl(N1)) + 1

-3x(ﬂ1(N2))+b2(nl(N2) + 1

+ a also.

® 1In fact o = 2

s |



= -3{x(Tr)+1} + bz(r) + 2

A

-3x(r')+b2(r) + 1

So (1.8.3) also holds for M.

Case 2 (D does not separate M)}. If "1(N) = {e} then
clearly nl(M) z Z and 3M 1is a torus. So (1.82) and (1.8.3)
are valid for M. So assume nl(N) }{e}. Again N 1s orientable,

aspherical with 3N of finite type, and
r = nl(N)*R .

As before, by induction on the minimum number of generators we
may assume that (1.8.2) and (1.8.3) hold for N. By a calculation

as above we see that they hold for M also.

In other words we have shown

(5.4.1) Proposition It suffices to prove (5.2.3) under

the additional assumption that M is boundary-irreducible.

{(5.5) Third reduction Now suppose M,T are as in (5.2.3),

M 1is boundary-irreducible but T is decomposable relative to

Gi = im(nl(Ti) + TI') where Ti' i=1,2,...,k are the non-simply

connected components of 3M. (Note that Gi 7 {e} by the

boundary-irreducibility.) If T * Z and k = 0, clearly



(1.8.2) and (1.8.3) hold for M. So suppose

r = 1, T (a nontrivial product)

and each G is conjugate to a subgroup of T or P2 - say,

i 1

by reindexing if necessary, Gi's, 1 <1 < 2% are conjugate to

subgroups of T and G,'s &+l <1 < k are conjugate to

1 i
subgroups of T,. Let ﬂj be the covering of M w.r.t.
Pj' j = 1,2. There exlsts components ii 1 <i <& (resp.
L+l < 1 < k) of aﬁl (resp. 3&2) which are mapped homecmor-
phically onto Ti' Set
Nl = (int Ml) u Tl U T2 U ... U Tg,
N, = (int Mz) UT, g Y eee U Tk’

By (4.6) Mj and Nj

on the minimum number of generators we may assume that (1.8.2),

are boundary-irreducible. By induction

(1.8.3) hold for Nj' j =1,2. As in (5.4) one sees fhat (1.8.2),

(1.8.3) also hold for M.
In other words,

(5.5.1) Proposition It suffices to prove (5.2.3) under

the assumptions that M 1is boundary-irreducible and T |is

i
the non-simply connected components of M.

indecomposable relative to G, = im(nl(Ti) + T) where Ti are



(5.6) Proof of (5. 2v3) WE make in addition the assumptions stated above.
Iet T} be:xmmactsmtﬁurfmxm which are deformation-retracts

of Ti By (4. 12) there exlsts a compact

/

connected aspherlcal 3-manifold N & M such that T1 u ... u Ty

€ N and the canonical map,gvl(N) £r is an isomorphism. Also

~
-

by boundary-irreducibi}%ty'?ﬂl(Tl) + 'G;. In particular no

i
3N - int{T; U ... U Tﬁ} is a disk. Also since N 1is aspherical

component of 3T is contractible in M. So no component of
and T #{e}, no component of 3N is a spheie. So every component
of 3N - int{T1 U ... U Ti} has Euler characteristic < O.

Hence

x_(3aM) = -

x(T{) < = x(3N) = =2x(N) = =2x(w,(N)) ==2x(T)
i 1
i

[l

1

which proves (1.8.2).

Next let U be the union of the toral components of 3M,
so U has 1t components. Clearly U € aN. Tet V denote the
toral components of ©3N-U, and W the remaining components of
3N. Then the number a of homotopy classes (in 3M) of the
anhular components of 3dM 1is at most the maximum number of
disjoint, non-nullhomotopic and éairwise nonhomotopic simple
closed curves in V U W. The maximum number of éuch curves in
V are just the number v of components of V, and this

number In W is

t

{

>
Lo}
=,
S

L]

= 3x(3N) = =3x(N) = =3y(n, (N)) = -3x(T)



cf. (4.4). On the other hand,

v + T < dpcomponents of 2N

< by(N) + 1 =Db,() +1
Thus
@+ TV = M) 4 1 < =3x(T) + by(r) + 1

which proves (1.8.3).

This finishes the proof of (5.2.3) and hence of theorem B.

.q.e.d.



References

(1] L. Ahlfors, Finitely generated Kleinlan groups,
Amer. J. Math. 86 (1964), 413-429.

[2] L. Bers, On ahlfors' finiteness theorem,
Amer. J. Math. 89 (1967), 1078 - 1082,

[3] ————, Inequalities for finitely generated Kleinian groups,
J. Analyse Math. 18 (1967}, 23 - 41,

[4] H. Freudenthal, tlber die Enden topologischer RH¥ume und
Gruppen, Math. Zeit. 33 (1931), 692-713,

(5] L. Greenberg, On a theorem of aAhlfors and conjugate
subgroups of Kleinlan groups, Amer. J. Math. 89 (1967),
56 ~ 68, .

[6] J. Hempel, 3-manifolds, Ann. of Math. Studies 86,
Princeton University Press (1976),

(7] H. Hopf, Enden offener Rdume und unendliche discontinuier-
liche Gruppen, Comment, Math. Helv. 16 (1943-44)}, 81 - 100,

[8] W. Jaco, Finitely presented subgroups of 3-manifold groups,
Invent. Math. 13 (1971}, 335 - 346,

(9] W. Jaco, Lectures on Three-Manifold Topoldgy,K CBMS
Regional Series in Math. 43, AMS (1980),

(10] R.S. Kulkarni, Some topological aspects of Kleinian groups,
Amer. J. Math. 100 (1978), 897 - 911,

[11] , Groups with domains of discontinuity,
Math. Ann. 237, (1978), 253-= 272,

{12] A. Marden, The geometry of finitely generated Kleinian
groups, Ann. of Math. 99 (1974), 383 - 462,

[13] B. Maskit, A theorem on planar covering surfaces with
applications to 3~manifolds, Ann. of Math. 81 (1965),

341 - 355,

[14]Q5] =———— , On the classification of Kleinian groups I and
II, Acta Math. 135 (1975), 249 Z%270-and ibid. 138 (1977),
17 - 42, . A

(16)] G.P. Scott, Finitely generated 3-manifold groups are
finitely presented, J. London Math. Soc. (2) 6 (1973),
437 - 440,

[17}] D. Sullivan, A finiteness theoreh”fdrhcusps,
Acta Math. 147 (1981), 289 - 299



