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NONCOMMUTATIVE AFFINE SCHEMES.

Alexander L. Rosenberg

INTRODUCTION

The purpose of this work is to introduce the basics of noncommutative affi-
ne algebraic geometry. In other words, we consider here facts which are natural-
ly expressed in the language of rings, ideals, and modules, without using cate-
gorical approach (as in [R6]).

Section O contains preliminaries about Gabriel localizations.

Section 1 presents the first notions and facts of the noncommutative local
algebra: the left spectrum, localizations at points of the left spectrum, cano-
nical topologies, supports of modules.

In Section 2, we prove the ’stability’ of the left spectrum under localiza-
tions.

Section 3 is concerned with functorial properties of the left spectrum. If
fi A —— B is a generic associative ring morphism, the preimage of an ideal
from the left spectrum of B  does not belong, in general, to the left spectrum
of A.

A standart way to handle this situation is to single out the classes of
ring morphisms which respect the left spectrum. One of the (practically) most
important classes is the class of left normal morphisms which contains among
others central extensions.

Another way which proved to be much more important for applications (cf.
[R3], [R4], [RS]) is based on the observation that any ring morphism

ffA——B
induces a correspondence - a map from the left spectrum of the ring B into the
set of subsets of the left spectrum of the ring A. In commutative case, this
correspondence coincides with the preimage map.

The central fact of Section 4 is the description of the related to the left
spectrum radical which is, by definition, the intersection of all ideals of the
left spectrum. A surprising and important fact is that this radical equals to
one of the classical objects of ring theory:

Theorem (4.10.2). The intersection of all ideals of the left spectrum of a ring
coincides with the biggest locally nilpotent ideal (Levitzki radical) of this



ring.

One of the consequences of this theorem 1is that the (introduced in Section
1) Zariski topology of the left spectrum of an arbitrary associative ring has a
base of quasi-compact open sets. This fact is established, among others, in Sec-
tion 5.

Section 6 is concerned with structure (pre)sheaves on the left spectrum.
The central result is the reconstruction theorem (6.2) which, in commutative
case, implies the equivalence of the category of modules over a ring and the ca-
tegory of quasi-coherent sheaves on the spectrum of the ring.

In Section 7, the noncommutative quasi-affine schemes and the projective
spectrum are introduced.

Finally, we consider a couple of simplest examples. First, we describe the
left spectrum of a left and right principal tdeal domain (this happens to be
useful for all examples). This description is applied then to produce the spect-
ral picture of a generic quantum plane over an algebraically closed field. For
‘real’ applications, a reader is referred to [R3], [R4], and [RS5].

0. PRELIMINARIES: LOCALIZATIONS AND RADICAL FILTERS.

0.1. Conventions and notations. Let R be an associative ring with unity, IR
the set of left ideals of R. For an arbitrary left ideal m of R and a
subset w of elements of R, set (mw)= {z € R| zw < m/. It is easy to see
that (m:w) is a left ideal as well.

For any Z-module V, the symbol P(V) will denote the set of all finitely
generated Z-submodules of V.

Note that if x, y € P(R), then xy and x + y also belong to P(R).

The following relations are going to be used a lot:

(m:yx) = ((m:x):y) and (m:x+y) = (m:x) n (m:y)

for any left ideal m and Z-submodules x, y in R.

0.2. Multiplication of filters. Denote by fil-R the set of filters (with res-
pect to inclusion) of left ideals in the ring R. Define the Gabriel multipli-
cation, (F,G)—— FoG, on fil-R as follows:

FoG = U Fo{m]
me G
where

Foim]:={n € I[R| (n:w) € F for any w € P(m)}.



0.3. Radical filters. A filter F  of left ideals of a ring R is called a ra-
dical filter if FofR}] = F = FoF. Other names: a Gabriel filter, and an idempo-
tent topologizing filter.

0.3.1. Example: filters F I Let S be a subset of P(R). Denote by F < the
set of all left ideals m in R such that P{{m:x)) contains elements of §
for any x € P(R).

Call a subset S < P(R) a multiplicative system (or set) if st € § for

any s, t e S

0.3.2. Lemma. For any multiplicative system S < P(R), the set F IS
cal filter.

is a radi-

Proof. a) If m € FS’ then (m:x) € FS for any x € P(R), since
((m:x):y)=(m:yx) for any y € P(R); and therefore P(((m:x):y)) n S # @.

b) Let m € FS and n € Fse{m}; ie. (nx) e FS for each x € P(m).
Take an arbitrary y € P(R). Since m e F o there exists s € § such that sy
€ P(m). Therefore (n:sy) € F ¢ In particular, there exists t &€ § such that
{sy)=tsy < n; or, equivalently, s € P((n:ry)). Since s € § and y has
been chosen arbitrarily, this means that n € F N

0.4. Flat localizations and radical filters. A flat localization of an abelian
category 4 is an exact functor, Q: 4 ——— B, which has a fully faithful
right adjoint J: B —— 4. The category 3B here is called the quotient cate-
gory of 4.

Localizations Q: &4 —— B and Q@ 4 —— B are called equivalent if
there exists an equivalence 70 8 —— B such that T.Q=Q’". It is possible to
assign to any equivalence class of localizations its canonical (the largest in a
certain sense) quotient category. This correspondence admits a particularly nice
description in the case when 4 is the category R-mod of left modules over an
associative ring R.

Let F be a radical filter. Denote by  R-mod/F  the full subcategory of
the category R-mod formed by all the left modules M  such that the canonical
map M — HomR(m,M), which sends an element z of the module M into the
morphism r+——— r-z, is a bijection for any ideal m from the filter F.

On the other hand, for any R-module M, set

H’F(M):= colim{HomR(m,M) cme FJ
(morphisms in F  are inclusions). The  Z-module H’F(M) possesses a natural



structure, {, of R-module which is uniquely determined by the property:

the canonical map e M M — H’F(M) is an R-module morphism from M
to HF(M):=(H’F(M),C). Moreover, the map Mi—— HF(M) is extended to a func-
tor HF' R-mod —— R-mod such that T = {TF,M] is a functor morphism from
Id to HF' Denote the square of the functor HF by G (- the Gabriel func-
tor), and set jp;zHF‘l:Fo‘l:F.

04.1. Theorem. (a) Let F be a radical filter. Then the functor Cp takes va-
lues in the subcategory  R-mod/F. The corestriction  Q I3 of the functor g
onto  R-mod/F is a flat localization of the category  R-mod,  with the natural
inclusion as the right adjoint functor.

In particular, an R-module M  belongs to the subcategory R-mod/F if and
only if the canonical arrow jF(M): M— tBFM is an isomorphism.

(b) If Q is a localization of the category R-mod, then the set FQ of
all the left ideals m such that Q(R/m) = 0 is a radical filter.

(c) The map Fr+—— QF‘ defines a bijection of the set of all radical fil-
ters of left ideals in the ring R  onto the set of all equivalence classes of
flat localizations of the category  R-mod.  More explicitly, FQF = F, and the
localization QFQ is equivalent to Q for any radical filter F and any loca-
lization Q.

For any M € ObR-mod/F and an element z of M, the action
R — M, r—— rz,
is extended uniquely to a morphism 6.k —— M - the composition of
tBF(-z).' GFR — GFM
and the isomorphism GFM —— M (cf. the assertion (a) of Theorem 0.4.1). The-

se morphisms define a map
M) : 6 R OM —— M (D

which depends functorially on M such that
W(GR): GpR ® GLR —— GpR (2)

is an associative ring structure; and WM) is a left GFR-modulc structure  for
any module M from the subcategory R-mod/F.

Note that the ring structure (2) is uniquely defined by the requirement
that jF(R): R —— GFR is a ring morphism; and the GF.R-module structure (1)
is uniquely defined by the compatibility with the R-module morphism

J F(M): M——> G F‘M
Thus, there is a functor §’F' R-mod/F ——— GFR—mod.



04.2. Proposition. The functor S is right adjoint to the localization at the
radical filter  F' of all left ideals m in the ring CBFR such that the prei-
mage jF"(m) of m belongs to F.

In particular, the category  R-mod/F is naturally equivalent to the cate-
gory GFR-mod/F’.

Proofs of Theorem (.4.1 and Proposition 04.2 can be found in [BD] or in
[F,I], Chapter 16.

1. LEFT SPECTRUM.

1. A preorder on the set of left ideals. Define a relation < on the set IR of

[
left ideals in the ring R as follows:
m<n if (mx)cn for some x e P(R).
1.1. Lemma. The relation < is a preorder.
Proof. Let m< m, and m < n; ie. (m':x) cm and (my) < n for

some x, y € P(R). Then ((m':y)x) © (m:x) € n. But (m':xy)=((m’:y):x), and
xy € P(R). =

1.2. Remark. It is easy to see that if the ideal m is two-sided, then the re-
lation m < n is equivalent to the inclusion m < n (since in this case m C
(m:x} for any subset x € R). In particular, if the ring R is commutative,
then the preorder < coincides with the inclusion. m -

Call a set J§ of left ideals in R  a uniform filter if it is a filter
with respect to <; ie. if me § and m < n, then n e 3.

1.3. Example: filters [m]. With a left ideal m, one can associate the set
[mj={n € IIRI m < n}. Obviously, [m] is the smallest among uniform filters
containing m.

It is easy to see that the filter [m] 1is topologizing.

In fact, if (m:x) ¢ n and (m:y) c n’ for some x and y from P(R),
then (m:x+y) = (m:x) q(my) cnpn. =

1.4. Example: filters <m>. Given a left ideal m, denote by <m> the set IIR
- {n € IlR| n £ mj. It follows from Lemma 1.7.1 that <m> is a uniform filter.
Clearly <m> s the biggest uniform filter which does not contain the ideal m.

1.4.1. Lemma. For any two left ideals m, n in the ring R,



m < n if and only if <n> < <m>.

In particular, m is equivalent to n  with respect to < if and only if

<m> = <n>.

Proof. If m < n, then IIR - <> g IZR - <n>;, or, equivalently, <n> s
a subset of <m>.
Conversely, the inclusion IIR - o<m> g ]IR - <> implies, evidently, that

me<n m

In other words, the associate with <  order is isomorphic to the ordered
set (f<m>| m e IIR}’;)

Note that, for a generic left ideal m, the filter <m> needs not to be a
cofilter. For example, if there exists a pair, o, B, of two-sided ideals such
that o Ppcm but oo-m and B -m are non-empty, then o, p € <m> and
anPe <m.

1.5. Left spectrum. The left spectrum, SpeclR, of the ring R  consists of all
left ideals p which have the following property:
(*) (p:x) <p forany x € R -p.

1.5.1. Note. Since, in commutative case, the relation < is the inclusion (cf.
Remark 1.2), the left spectrum of a commutative ring coincides with its prime
spectrum. m

The following lemma shows that the left spectrum is pretty ample.

1.5.2. Lemma. The left spectrum, SpeclR, contains the set Max!R of all maxi-

mal left ideals in the ring R.

Proof. In fact, if n, m are left ideals in R such that the relation
(m:x) < m does not hold if x € n, then it does not hold if x € n + m. But
if me Max[R and n is not contained in m, then n + m = R. In particular,
n + m contains the unity, 1, of R. Clearly (mn}) = m < m. Hence, if m €

Male, then »# < m. This means that m e SpeclR. s

1.6. Completely prime left ideals. Call a left ideal p  completely prime if
the set R - p is a multiplicative system. The set of completely prime left
ideals (completely prime spectrum) will be denoted by Spec?R.

As a rule, completely prime spectrum is much poorer than the left spectrum,
as one can see from the second assertion of the following lemma.



1.6.1. Lemma. /) Spec’l‘R c SpecIR.

2) A left maximal ideal m in the ring R is completely prime if and only
if m is two-sided.

3} If every left ideal in the ring R is two-sided (eg. R is commuta-

tive), then Spec’[‘R = SpecIR.

Proof. 1) Note that left ideal i} is completely prime if and only if
(L:x) < for any x € R -y This implies immediately that Spec’I‘R c Spec lR'
2) If m is two-sided, then m < (m:x) for each x € R. Therefore, if m

is a maximal left ideal, then (m:x) = m for any x € R - m; 1ie. m belongs
to Spec’l‘R.

Conversely, suppose that a left maximal ideal p  is completely prime. The
latter means that (p:x) ¢ b for all x € R - p.  Since (u:x) 1s a maximal
left ideal for any x € R, the inclusion (p:x} € p  implies that (u:x)  coin-
cides with . Therefore [ is a two-sided ideal.

3) For two-sided ideals, the preorder < coincides with <. m

1.7. Remark. The difference between Spec’l‘R and  Spec IR provides a number of
examples of radical filters of the form F < (cf. Example 0.3.1), where § s
not a multiplicative system.

In fact, for any p € SpeclR, the radical filter <p> coincides with F o
where § = R - p, and with FS’ where S = P(R) - P(p). m

1.8. The prime spectrum and the left spectrum. Recall that the prime spectrum,
SpecR, of R  consists of prime ideals. A two-sided ideal is called prime if,
for any pair of two-sided ideals, m, n, the inclusion mn < p  implies that

either m cp or n C p.
1.8.1. Lemma. For every p € SpeclR, the two-sided ideal (p:R) is prime.

Proof. Let m, n be two-sided ideals such that m is not contained in p,
but mn c p Since the ideal m is two-sided, m € <p>, and, therefore,
(mn:x) € <p> for any x € P(n). This implies that n ¢ p. Since the ideal n
is two-sided, and (p:R) is the maximal among the two-sided ideals which are

contained in p, the inclusion n ¢ p implies that n < (p:R). =

1.8.2. . Remark. We shall show later that if R is a left noetherian ring, then
SpecR < Spec[R.



1.9. The left spectrum and the filters <m>. For each proper left ideal m in
the ring R, denote by m” the set

{re R| (mr) e <m>].
It is clear that

(a) m C m™R;

(b) xr € m“ for any r € m* and x € P(R), since <m> is a filter with
‘respect to <, and (mer) < ((mer)ix) = (mexr).

It follows from (b) that mh is a left ideal if and only if it is a
Z-submodule of  R.  Nevertheless, it happens quite seldom that, for a given left
ideal m, the set m”" turns out to be a left ideal.

Let I?R denote the set of all proper left ideals m in the ring R for
which the following condition holds:

(") if the elements x, y of the ring R are such that

(m:x) € <m> and (m:y) € <m>,
then (m:{x,y]}) € <m>.

1.9.1. Proposition. /) For any n € I?R’ the set n™ is an ideal from SpeclR.
2) The following conditions on a proper left ideal m are equivalent:
(a) m" is a left ideal, and m"™ < m;
(b) the filter <m> is radical.
3) The following conditions on a proper left ideal m are equivalent:
(c) m = m’
(d) m e SpecIR.

Proof. 1) Suppose that n € I?R; re., for any pair x, y of elements of
n®, the ideal (n:x) ) (n:y) = (n:{x,y/) belongs to the filter <n>. Since
(n:x) n (n:y) € (nix+y),
the ideal (n:x+y) also belongs to <n>. This means that n* is closed under
the addition and is, therefore, a left ideal.
Let us show that n" € Spec[R. This fact is equivalent to the following
condition:

If ze R and (n™z) € <n>, then z € n
1.9.2. Lemma. Let n € IrR, and let w  be a finite subset in R  such that
(n*:w) is not contained in n” Then (n:w) Is not contained in n.

Proof. Suppose that (n:w) < n.  Then, for any x € (n:w)-n, the following
relations hold:



(n:xw) = ((n:w):x) < (n:x) £ n
On the other hand, since xw is a finite subset from »?  then (n:xw) €
<n>. Contradiction. m

For an arbitrary =z € R, we have, by Lemma 19.2, the following implicati-
ons: [(n:iz) € <n*>] & [(n:xz) is not contained in  n™  for any finite subset
x in R] = [(n:xz) is not contained in n for any finite x < R] < [(n:z) €
<n>; ie <z € n]

This is exactly what we wanted to prove.

2) (a) = (b). Given a left ideal n, we have:

[(m:x) € <m> for every x € n] = [n < m" (by definition of mN)] & [n £ m (since
m"< m by condition].

(b) = (a). 1t follows from the definition of I?R that any left ideal m
such that <m> is a topologizing filter belongs to I’I\R. Therefore, according
to the first assertion of this Proposition, mt e SpeclR. In particular, ph €
SpeclR if <p> is a radical filter. Moreover, since (p.x) € <p> for any x €
P(p*), the ideal p* does not belong to <p>; ie p* < p

3) The implication (d) => (c¢) follows from the definition of SpeclR. The
converse implication is obvious. m

1.9.3. Corollary. The following properties of a left ideal m in the ring R
are equivalent:

(i) there exists an ideal p  from SpeclR and an  x € P(R) such that
(p:x) € m < p (in particular m is equivalent to p);

(ii) the filter <m> s radical.

1.10. Topologies on the left spectrum. Define the specialization of a ’point’ p
€ Spec[R as the set of all pe Spec[R such that p < p’.  We are interested
only in the topologies compatible with specialization, i.e. topologies with the
property:

(s) the closure of a point p  contains the set s(p) of all the speciali-
zations of p.

1.10.1. The topologies T and T, Denote by 1T the strongest topology satis-
fying (s). The closure of a set X ¢ SpeclR in T is, evidently, the set

U s(p)
peX

It is easy to see that the set Open(t) of open in the topology T sub-



sets of SpeclR is closed under arbitrary intersections.

We denote by T, the weakest topology with the property:

the closure of a point p  coincides with the set  s(p) of its specializa-
tions.

The family of sets [s(p)| p € SpeclR} 1s the base of the topology T,

1.10.2. The topology 1. Given a two-sided ideal «, denote by Vl(a) the
set (p € SpeclR| o < p} and by UI(OL) the set SpeclR - V[(O‘,).

1.10.2.1. Lemma. Let K be a subset of the set IR of two-sided ideals in the
ring R, and let o, B € IR. Then
Ul(sup{a'| e Q) = ’U Uz(a’), U](cz n B = Ufa) n Ul(ﬁ)
o'e
Proof. 1) The first equality is equivalent to the equality
Vl(sup{al a'e Q) _a’g QVZ(OL),
which is obvious.
2) Clearly Ufa n B) ¢ Ufo) n UfP).
On the other hand, if p € SpecR  and o B p, but  is not
contained in p, then, for any x € [(-p, we have:
o c (o nPBx)c(px) <p
In particular, o < p. Since o is a two-sided ideal, this means that o < p.
Thus, we have checked that
Vio o B) < Vo) U VB,
or, equivalently,

Ufon B) 2 Ufa) n UfB). =

Lemma 1.10.2.1 shows that the collection of the sets Ul(a), where o
runs through the set /R  of all the two-sided ideals in R, forms the set of
open sets of a topology on Spec[R which we denote by 1"

The topology ™ is the less refined among reasonable topologies on the
left spectrum. It is, obviously, trivial if the ring in question is simple (i.e.
has no nonzero proper two-sided ideals). For example, it is trivial if R is
the algebra of differential operators with polynomial coefficients. We  shall
see, however, that the topology 1t  has the most desirable for algebraic geome-

try property: it has a base of quasi-compact open sets.

1.10.3. The topology t* The topology t* is determined by its base of closed

10



subsets which, by definition, consists of all sets of the form
V[(m).'={p € Spechl m < pj,

where m runs through the set of all the proper left ideals in the ring R.

The topology  T* is more refined, but, at the same time more capricious
than T~ However, it behaves itself properly when the ring has a finite Krull
dimension and in some other cases.

Clearly, if the ring R is commutative, then both 1 and 1t* coincide
with the Zariski topology. If it is commutative and noetherian, then the topolo-
gies 1, t* and T, -coincide.

1.11. The support of a module. The supporr of an R-module M is the set
Supp(M)} of all p e Spec[R such that G<p>M = 0.

Since the kernel of the canonical module morphism

JepsTeps. ' M > B pM
coincides with the <p>-torsion, <p>M=(§ € M| Ann(E) € <p>], and the canonical

map G M — G<p>(M/<p>M) is an isomorphism, the support of M can be des-

<p>
cribed as the set

{p € SpeciR| <p>M # M} = [p € SpecR| Ann(E) < p for some & € M)

Clearly the set Supp(M) is closed in the topology 1t for any module M
(cf. 1.10.1).

If M is a finitely generated R-module, then  Supp(M) is closed in the
topology t* (cf. 1.10.3).

1.11.1. Lemma. Supp(M) = @ if and only if M = 0.

Proof. 1) Clearly Supp(M) = & if M = 0.

2) Let M # 0, and let & be a nonzero element of M. Then Annf = (r ¢
R| r§ = 0J, being a proper left ideal in R, is contained in some left maximal
ideal, say (. In particular, Annf e <p>; ie. & ¢ <u>M. Since p € SpecR
(cf. Proposition 1.4.1), this shows that g € Supp(M). =

1.11.2. Proposition. /) If
0 N > M > L > 0
is an exact sequence of R-modules, then
Supp(M) = Supp(N) U Supp(L).

11



2) If M is the sum of a family {Ni' i € J] of its submodules, then

Supp(M)= U Supp(MI.).

ie J
Proof. 1) Clearly Supp(N) < Supp(M).
Let & e L, and let & belongs to the preimage of the element & in M.
If p e SpecR is such that Annf ¢ <p>, then, obviously, Annf’ & <p>. Thus,
Supp(L) < Supp(M).
It remains to show that there is the inverse inclusion:
Supp(M) < Supp(N) U Supp(L).

In fact, since the functor G <p> is left exact, the sequence

0 —— ¢ >N——)G<

< M—e_ L

p>
is exact. Therefore, if p € Supp(M), ie. G <p>M # 0,  then either & <p>N % 0,
or G <p>L # 0. In the first case, p € Supp(N), in the second case p belongs

P

to  Supp(L).
2) The inclusion U Supp(Mi) C Supp(M) is obvious, as well as the im-
i e J
plication: [<p>M # M] = [<p>Mi # M[. for some i € J]. =
1.11.3. Corollary. For any family M of R-modules,

Supp( @ M) = U Supp(M).
MeMm Mem

2. LOCALIZATIONS AND THE LEFT SPECTRUM.

2.0. Preorders (I[M,S) and localizations., Let R and B be associative
rings. Fix an (R, B)-bimodule M. Denote by (I[M,S) the set IZ‘M of all the
R-submodules of M with the preorder < which is defined as foliows:
N <N if (Nb):=fz e M| zb € NJ = N for some b e P(B)

Clearly if M is the (RR)-bimodule R, then the preorder (IlM,S) coin-
cides with IIR = (IIR,S). 5

Every functor F: R-mod ——— R’-mod  defines uniquely the functor F
from the category (R,B)-bi of (R,B)-bimodules into the category (R',B)-bi
of (R’,B)-bimodules. In particular, to the functor G there corresponds the
functor BCF

2.1. Proposition. Let F be a radical filter of left ideals in the ring R;
and let M be an (R,B)-bimodule. Then, for any R-submodule N of M and any

12



b € P(B), we have: GF(N:b) = (GFN:b).

Proof. Let b € B be an arbitrary element in B, and b the action of
b on M. For any R-submodule N of M, the square

T ]b (1)

in which the horizontal arrows are the embeddings, is cartesian. Since the func-
tor Cp is left exact, it sends the cartesian square (1) into the cartesian
square

i Y

T [

USF(N.’b) _— [BFM

Therefore GﬂN:b):(GFN:b).
Now, let b'e P(B) and {bi| i € I} be a finite set of generators of &'
Thanks to the left exactness of GF’ we have:

S N:b) = 6. (N:b)) = A GLANb) = (B NbD) = (6Nb).
F F(iQI 2 EQIF( v s v

2.2. Corollary. The functor g8 determines a morphism

(]lM.S) S ”I(BGFM)’S)’
of preordered sets.

2.3. Corollary. (i} For every radical filter F  of the left ideals in R, the
map mr——— Grm, m € IIGF.R is a morphism
(I6pRS) —— (I6R.<)
of preordered sets.
(ii) The map n+—— Gp, n € ]lR, is a morphism
(IIR,$) —_— (IIJBFR,S).

of preordered sets.

24, Note. If N is an R-submodule of GFM, then BFU,;"M(N)) is canonically
identified with GFN.
Indeed, by definition, the square



i JTV TFMJ'F,M (1)

Jp (M) ——— M

is cartesian; and G transforms cartesian squares into cartesian squares. In
. - 1 . . . .
particular, the arrow Gpi. GFOF,M(N)) _ GFN is an isomorphism. m

2.5. Proposition. Let F  be a radical filter in [ [R. Then the map
mr—— Gpm, m € I[R,
sends the ideals from SpectR - F into the ideals from Spec[usFR.

Proof. Let p € Spech - F, ne€ I[GFR; and (GFp:x) is not contained in
U3Fp for each x € P(n) In particular, (GFp.'jF R(x)) is not contained In
6pp for any x from P(J'}_rlR(”))- But, according to Proposition 2.1,

(Gppiip X)) = GR(pix)

for any x € P(R). Therefore the ideal (p:x} is not contained in p for any
X € P(j[','R(n)). Since p € Spec[R, this implies that jl;.lR(n) c p. Thus, we
have come to the inclusions (cf. Note 2.4) :

" Oplif,pn) = o < Opp
Hence G € Spec[u:FR. .

2.6. Proposition. Let p'e SpecSpR, and p.':jl':.l rP) & F.
Then p'=6G PP

Proof. By Note 2.4, p'c Spp- Our task is to prove the inverse inclusion.

Suppose that (p":x) < p° for some x € P(Ggp).  Then there exists a left
ideal m e F such that jo(mhx C jp) < p’. Since p ¢ F, the set Jp(m) -
p’ is non-empty. By condition, p’ belongs to SpecspR.  Therefore (p’ry) =
p’ for any element y in jg(m) - p’. In particular, BF(p’:y) # GpR.

Thanks to the inclusion (p'x) < p and the equality ((p":x):y)=(p":yx),
this implies that GF(p’:yx) # GFR. But yx < p’, and, therefore, GF{p’.'yx) =
GLR. Contradiction.

Thus, for any x € P(GI_-{)), the ideal (p’:x)_ is not contained in  p’.
Since p’ € Spec B R, this implies that 6pp C p.om

2.7. Lemma. Let F be a radical filter of left ideals in R; and let p be a
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left ideal in R  such that Gpp is a completely prime left ideal of BFR.
Then the ideal

Pp = Jp gl®pp) = (r € R] (p:r) € FJ
is completely prime.

Proof. If y € R - Pr and x € R, then
[yx € pF] < [jF(y)jF(x) € GFp] o [jF(x) € Gpp (since Cpp is completely prime
and jF(y) 3 GF{J)] = [x € pF]. (]

2.8. Corollary. If the ring R is commutative (or, more generally, all the left
ideals in R are two-sided), then, for every radical filter F, the map

mi—— Gpm determines a bijection of the set SpecR - F  onto the set of prime
ideals p’ of SR such that jf_;.lR(p') g F.

’

Proof. By Proposition 2.6, p’ = G where p = j;:IR(p’). By Lemma 2.7,
the ideal p is prime. The rest follows from Proposition 2.5. =

2.9. Remark. In general situation, we cannot maintain that
a) the ideal Gy is completely prime if p 1s completely prime;
. _ - .
b) the ideal Pp = jF’R(GFp) belongs to Spec[R if Cpp belongs to the
left spectrum of & FR
However, the last assertion becomes true if we add the following condition:
(#) p is a maximal with respect to < element of the set
{(p:x)| x € R (px) & FJj
In fact, by condition (#), (p:x) € F for any x such that (p:x) € <p>.
This means that p € I?R (cf. 1.15); hence pr={r € R| (p:r) € <p>} is a left
ideal from SpeclR.
On the other hand, p*={r € R| (p:r) € FJ}; and the right-hand set coinci-
. =
des with JF,R(GF‘D)' n

2.10. Localization of maximal left ideals. Here we have the following

2.10.1. Lemma. Let F  be a radical filter. If p is a maximal left ideal in
the ring R, and [ ¢ F, then Gl is a maximal left ideal in the ring GFR.

Proof. Let v be a proper left ideal of GFR which contains  the ideal
GFu. Then jI':'R(v) is a proper left ideal in R. Since N < j}}‘R(v) and
is maximal, u:jj:]R(v). Thus we have:

Bl © vV C Glgjl}"R(v)) = Gl



ie. v = BFu. n
3. MORPHISMS OF LEFT SPECTRA.

The only one of the major ’'commutative’ properties of the spectrum which
fails to have a straightforward noncommutative analogue is the functoriality
with respect to arbitrary ring morphisms: for a generic associative ring mor-
phism, ¢ A ——— B, *and a generic p € SpeclB, the left ideal ¢ '(p) s
not necessarily an element of Spec[A.

The main goal of this section is to single out some important for applica-
tions classes (subcategories) of ring morphisms that preserve the left spectrum.

3.1. The category LRings. Let LRings denote the class of all ring morphisms,
¢: R —— R’, such that

(L) If pe SpeclR’. and m is a left ideal in R such that m < p/,
then o '(m) < ¢ \(p').

Or, equivalently,

If p e SpecR, m e IR and 0'(m) e <&’ \(p')>  then the ideal m
belongs to <p’>.

3.1.1. Proposition. Let ¢ R —— R be a morphism from LRings. Then the map
o m — ¢"(m) induces the map
o SpeclR' — SpeczR,

which is continuous with respect to the topologies T, T, and 7 (c¢f. 1.10).

Proof. 1) If pe Spec[R’ then, for any x € P(R), we have:
[&(0)x) &€ <p'>] = [(P:0(x) € <p'>] =

[p’ contains &(x)] & [¢"(p') contains  x].
Therefore, since x € P(R) is arbitrary, o7'(p') € SpecR.

2) The map ¢l: SpeclR’ — Spec lR is continuous with respect to the
topology 7.
In fact, let W be a closed subset of (SpeclR,*c); ie W = {p € SpeclR|

! 1
Ll

p < p’ for some p € W}. Suppose that p'e Spec;R’, and p < p’  for some ‘p
from the preimage W (with respect to ¢l) of the set W. Since ¢ is a mor-
phism from  LRings, ¢ '(‘p) < ¢ '(p).  Therefore, thanks to the closedness of
the set W, the inclusion d)"(‘p) e W implies that (b"(p’) belongs to W,

ie. pe W
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3) Clearly the same argument shows that
The map ¢vl: SpeclR' — SpeclR’ s continuous with respect to the topo-
logy 74

4) It remains to show that
the map ¢1 is continuous with respect to the topology TN

More exactly, the preimage of the <closed subset Vl(oc) of the space
(SpectR,'c"), o € IR, coincides with Vl(aq)), where o is the two-sided ide-
al in the ring R’ generated by o(a).

In fact, 1 o .
¢I (Vl(oc))={p € SpectR| ¢ (p’) contains @} =

{p’e R’| p’ contains R'¢(c)}.

Since ¢ is a morphism of the category  LRings, the following implicati-
ons hold:
[ '(p) contains o, p < p, pe SpeclR’] = [a < ¢'(p)] & [6(p) contains o]
& [p’ contains  R'¢(a)].

In particular, since p € SpeclR’, we have:

[6'(p) 2 o] = [(pz) 2 R&) for all z € P(R)] = [the two-sided ideal 00
generated by (o) is contained in p].

In other words, the preimage of Vl(a) is Vl(oub). n

3.1.2. Corollary. LRings is a subcategory of Rings.

3.2. Left normal morphisms. Denote by L Rings the subcategory of the category
Rings formed by all the ring morphisms ¢: R —— R’ such that the map o'
is a morphism of preordered sets

(IIR',S) -— (IIR,S).

Clearly L Rings is a subcategory of the category  LRings.  According to
Lemma 3.1.1, all ring epimorphisms belong to the subcategory L™ Rings.
Now we are going to give much more subtle "estimate from below" of this ca-
tegory.
For an arbitrary ring morphism ¢: R —— R’, set
N1(¢):={z € R': &(x)z € R'¢(x) for any x € RJ.
It is easy to see that N{¢) is a subring of the ring R

3.2.1. Definition. A ring morphism ¢ R —— R will be called left normal if
the subrings ¢(R) and N{(¢) generate R.
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3.2.2. Lemma. The class NlRings of left normal morphisms forms a subcategory
of the category Rings.

Proof is left to the reader.

3.2.3. Proposition. The category NRings is a subcategory of L Rings.

Proof. Let O:R —— R’ be an arrow from N[Rings; and n, m be left
ideals in the ring R’ such that m contains (n:y) for some y € P(R). We
have to show that there exists a finite subset w  of elements of the ring R
such that (q)'](n):w) is a subset of the ideal q)'l(m).

1) It follows from the definition of the subring Nl(dp) that, for any left
ideal m" in the ring R’ and for any element z from N(%), the ideal
Q'I((m':z)) contains q)"(m’).

2) Suppose that a Z-submodule y is generated (over Z) by an element u
of R’, and consider different possibilities.

a) If u € Nf¢) then 1) implies that o'(n) < ¢ '(m).

b) If u = ¢o(x)z for some z € N[(¢)) and x € R, then

(n:u)=((n:z):0(x)).
Therefore
0" ((m:w) = 07 (((n:2):9(x))=(0 (n:2))ix) 2 (97 (n):x).
c) If u = zo(x), where z € Nl(d)), then

0" ((n:w) = 07 (((n:0(x)):2) 2 07 (md(x) = (67 (n):x).
Thus, in both cases, b) and c), (@ '(n):x) = ¢ '(m).
d) Applying the standart induction to the situations b} and c¢), one can ea-
sily check that if u is the product of several elements of the form qJ(xj),

O<j<k, by elements Zp O<i<r, from N[(q)) (the factors are aranged in an

arbitrary order), then the ideal o : ((n:u)) contains the ideal
(¢(n):xj ...xj ), where jl....jk are numbers of factors in the order of the
7k

appearence of q)(xj) in the expression of « (from the left to the right).
e) Consider now the general case. Since ¢ is a morphism from N[Rings,
every element # € R is of the form

+ + o+ ou
“ 4y Her

where each summand is the product of elements from ®(R) by elements from
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N[(tb). Therefore, for each summand w0, there exists, according to d), an ele-

ment  x; € R such that the ideal ¢"((n:u1.)) contains the ideal ((D"(n):xi).
Thus, we have:

o”'((n:u) 2

where x:= {xi: 1<i<s).

(0" (n:u))f 2 (7 (n):x ) 2 (67 (n):x),
< 1<i<s

n.
I<i<s

3) This implies that, for any finite family u of generators of the Z-
module y, there exists a finite subset x  of elements from R  such that

0 '((n:u)) contains (6 '(n):x). =

3.3. Central extensions. A ring morphism ¢ R —— R’ is called a central
extension if its centralizer Z(¢):={z € R’: ¢(x)z=20(x) for any x € R} and its
image, ¢(R), generate the ring R’

Clearly central extensions form a subcategory of the category NlRings. In
particular, if ¢ is a central extension then the map

-1 -
O - mi— 0 I(m)
induces a continuous map

(Spec[R’,‘r’) — (SpeclR,'E'),
where the topology 1" is either T or 1" (cf. Proposition 3.1.1).

33.1. Lemma. Let ¢: R —— R be a central extension. Then the map ¢"

determines a continuous map a¢: SpecR” ——— SpecR.

Proof. For any p’e SpecR and a par o, B of two-sided ideals in the
ring R, there are the following implications:
[07'(p) contains of] < [p contains  (e)d(P)] = [p’ contains  G(WHP) +
HO(R)Z(O)O(B)=(d(0) + d()R)O(B)] = [p’ contains either (o) or &(B)].

The verification of the identity % '(V(a)) = V(aop), where oo is the
two-sided ideal in the ring R’ generated by &(a), is left to the reader. w

34. A nonabelian functoriality. Most of ring morphisms are not compatible with
the left spectrum in the way morphisms of LRings are. It is possible, however,
to establish a weaker sort of functoriality for arbitrary ring morphisms.

First note that we are interested not in the left spectrum of a ring R,
but in the quotient of Spec[R by the equivalence relation induced by the pre-
order <. Denote this quotient ordered set by SpeclR. According to Lemma
1.4.1, the set Spec’R can be canonically realized as the set [<p>| p €
Spec[R} with the order given by the inverse inclusion, 2.
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Let ¢ A —— B be a ring morphism. We can try to assign to ¢ a map
from  Spec,B 1o SpeclA as follows. Take p € Spec,B,  set p’:=6"'p, and
consider the set Qp,={(p’:a)| ae A -p'}] of left ideals in the ring A.

3.4.1. Lemma. Suppose that a left ideal v in the ring R is such that the set
Qv = {(via)| a € A - v} has a maximal element with respect to the preorder <.

Then this maximal element belongs to SpecR.

Proof. Let a be such an element of A - v that (v:a) 1is a maximal
element of QV. This means that if (v:e) < (v:a’) for some a € A - v, then
(v:a) = (v:a’).

Suppose that x € A - (v:a); or, equivalently, xa ¢ v. Then (v.ixa) <
{v:a). But, since {v:xa)=((v:a):x) and (v:a) < ((v.a)x), this implies that
((v:a):x) = (v:a) for any x € A - (v:a), ie. (v:a) € Spec[A. n

Return now to our ideal p’=¢ 'p. Suppose that the set
Qp' = {(p':a) - a € A - p}
has a maximal with respect to < element, say (p':a). Since (p':a):=
(0 p:a) = o' (pd(a)), p € SpecB and  (a) € p, the left ideal  (p:9(a)
is equivalent to the ideal p.

Denote by 4 the map which assigns to any class <p> of elements of
SpeclB the set

[<¢"p’>| p=p and ¢0'p € SpecA).

Clearly the map “¢ is well defined, and, if the preordered set (I[A,S)
is noetherian (for instance, A is a commutative, noetherian ring), the set
Do <p>) 1s nonempty for any <p>.

If the morphism ¢ - A —— B is from LRings, then a¢(<p>) equals
{<q>"(p)>}; ie. ad) coincides in this case with the preimage map. Note that
if the ring B is commutative, then any morphism to B is from LRings.
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4. LEFT SPECTRUM AND LEVITZKI RADICAL.

4.0. Left radical. Fix an associative ring R.  For any closed in the topology
T (cf. 1.10.1) subset W of SpeclR, denote by rad[( W)  the intersection of
all ideals from W. Since p € W implies that the ideal (p:x) is in W for
every x € R - p, we have:

radfW) = n (n (px) = n (pR).
pe Wxe R pe W

In particular, rad[( W) is a two-sided ideal. We call the ideal radl(W)
the radical of the set W.

f W= V[(m):= {p e Spec[R| m < p} for some left ideal m, we shall
write radl(R|m) instead of rad[( V[(m)) and call the ideal rad[(R[m} the
left radical of m. Finally, we shall write rad[(R) instead of radl(R|0) =
radl(SpeclR) and call this ideal the left radical of the ring R.

The goal of this section is to prove that rad(R)  coincides with the lar-
gest locally nilpotent ideal of the ring R.

4.1. [-Systems. A subset S of P(R) will be called an [-system if, for any
t € 8§, there exists a € P(R} such that Sar is a subset of S; ie. [rar €
§ for any € S. Obviously, any multiplicative system S of P(R) (i.e.
st €¢ § for any s, ¢t € §) is an [-system. Another series of examples of
I-systems is provided with the following lemma.

4.2. Lemma. A left ideal p of the ring R belongs to Spec[R if and only if
the set S(p):=P(R)-P(p} is an l-system.

Proof. By definition, p  belongs to  Spec,)R if and only if (p) < p
for any t € S(p) This means exactly that (p:at)=((p:t):a) is a subset of
the ideal p for some a € P(R). Clearly p contains (p:at) if and only if
S(p) contains the set Sat. =

4.3. Proposition. If S is an [I-system of the ring R then the set of left
ideals FS:={n € IlR > P((n:x)) n S is non-empty for any x € P(R)} is a radi-
cal filter.

Proof. Let m € FS and n € FSo{m}; ie. the intersection P((n:y)) n S
is non-empty for any y € P(m) and P((m:x)) n S is non-empty for any x €
P(R). We need to show that P((n:x)) n S is non-empty for every x € P(R).
Let ¢ be an element of S such that tx € P(m), and let a Dbe an eclement of
P(R) such that Satr is contained in S. Since atx € P(m), then there exists
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Y € § such that ratx is a subset of the ideal n; ie. fat € P((n:x)).
But, since S is an /-system, fat € S.m

4.4. Levitzki radical. A ring R’ is called locally nilpotent if every finite
subset X of its elements generates a nilpotent subring. This means that there
exists N = MX) 2 1 such that the product of any N elements of X is zero.
The following facts are well known (cf. [J], Ch.8, Section 3):

4.4.1. Theorem. 1) A two-sided ideal geﬁerated by a left or right locally nilpo-
tent ideal is locally nilpotent.

2) The sum L(R}) of all the locally nilpotent ideals of R is a two-sided
locally nilpotent ideal.

The (obviously) largest locally nilpotent ideal L(R) is called Levitzki
radical of the ring R.

4.5. Proposition. The following properties of a left ideal m of the ring R
are equivalent:

(a) Any l-system S such that §  P(m) is non-empty contains {0].

(b) Any multiplicative subset S of  P(R)  such that the intersection of
S and P(m) is non-empty contains {0].

(c) the ideal m is locally nilpotent.

Proof. (a) = (b), since any multiplicative subset of P(R) is an
l-system.

(b} = (c). Obviously, the ideal m is locally nilpotent if and only if
for any t € P(R), there exists N = N(t} such that tN={0}; ie. {0} Dbe-
longs to the multiplicative system generated by r.

(c) = (a). Let S be an [-system, and let .r € S n P(m). By definition,
there exists @ € P(R) such that Sar is a subset of §. In particular, tat,
(tat)at, ..., t(at)k are elements of § for all &k 2 1. Since at belongs to
P(m), th@re exists (by hypothesis) i 2 such that (at)i= {0}. Therefore
{0) = t(at)* belongs to S. m

4.6. Corollary. The intersection rad [(R) of all ideals of the left spectrum of

an arbitrary associative ring R contains the Levitzki radical of this ring.

Proof. 1Let m be a left ideal in R such that the set m-raa‘l(R) is not

empty. This means that m-p is non-empty for some p € Spec IR' If m were lo-
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cally nilpotent then this would imply (by Proposition 10.5 and Lemma 10.2) that
the set S(p) = P(R) - P(p) contains (0). But this is impossible. Hence we
have the following implication:

If a left ideal m of the ring R is not contained in rad[(R), then m
is not contained in the -Levitzki radical L(R), ie. L(R) is a subset of
rad l(R)' .

Thus, we have improved the estimate of the left radical from the low; i.e.
from B(R) < radI(R) < J(R) we have passed to
LR) g rad (R} < J(R).

Our next step is to improve the estimate from the above.

4.7. The upper nil-radical. A ring is called a nil-ring if every its element is
nilpotent. An ideal is called a nil-ideal if it is a nil-ring.
The following fact is well known ([J], Ch.8, 1}:

4.7.1. Theorem. The sum K(R) of all two-sided nil-ideals of the ring R Is a
nil-ideal.

Clearly the ideal K(R) is the largest two-sided nil-ideal of the ring R.
It is called the upper nil-radical or the Kethe radical of the ring R.

4.8. Proposition. The left radical of an arbitrary associative ring is contained

in its upper nil-radical.

Proof. Obviously, it suffices to show that mdl(R]K(R)) = K{(R) for any
associative ring R (cf. 4.0). Let o be a two-sided ideal of R. There
exists a natural isomorphism rad I(R/a) = rad [(Ri(x)/a which follows from the
bijectivity of the map V() — SpeclR/OL, pr— p/o.

Therefore radl(R]Ot) = o if and only if raa’l(R/a) = 0. In particular,
radI(R|K(R)) = K(R) if and only if radl(R/K(R) = 0.

Thus, we should show that the left radical of the ring R'= R/K(R) is tri-
vial. For this purpose, we shall use the following theorem of Amitsur ([16],
6.1.1):

4.9. Theorem. [f the ring R"  has no non-zero two-sided nil-ideals, then the

polynomial ring R'[t] is semiprimitive (i.e. its Jacobson radical is zero).

Since, for any ring A, we have rad[(A) < J(A), Theorem 4.9 implies that
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rad[(R’[t]) = (. Here, as above, R’=R/K(R).
Now notice that the natural embedding R —— Rft] is a central extension;
hence, the map p+—— i R is a preordered sets morphism
(![R[t],S) _ (IIR,S)
(cf. 3.3). In particular, the restricion map pw+—— | R  sends Spec[R[t]
into Spec[R. Therefore rad[(R’) c radl(R’[t]) ANR=0 =

4.10. Left radical and Levitzki radical. It remains to perform the last step: to
pass from the estimate L(R} < rad[(R) c K(R) to the equality rad[(R) = L(R).
In order to do it, consider the polynomial ring

R = Rt 15..]
in infinitely many non-commuting indeterminates.

4.10.1. Lemma. If R  has no non-zero locally nilpotent ideals then R_ has no
non-zero nil-ideals; i.e. K(Roo) = 0.

Proof. Denote by N © the set of all the finite ordered sets of positive
integers. For every i = (in""'in) e N e denote by £ the product
t. -ti -...-Il. .
b2 n i

Suppose that  K(R_) is non-zero; and let f{t) = )y a;t be a generic

ieE
non-zero element of K(Roo).

a) The subring of the ring R  generated by the set of coefficients {ai: i
e EJ is nilpotent.

In fact, by hypothesis, xfft) is a nilpotent element of R for each x
€ Rm. Now, take x = tk’ where k& is an index which is not encountered among

the elements of 1i. Since

(z arri]n= T a .a tti’t rri”
icF ik ive EY lnk kKk
1SVZn

the condition the n-th  power of the element tkf(r) vanishes means exactly
that o
ail-...~ain= 0 for every (11"“’111) e E X .. XE
b) Now we shall show that the left ideal, generated by the set of coeffici-
ents {ai| i € E}, is locally nilpotent.
In other words, we should check that, for any finite set {bi,v| (iv) € E

X £} of elements of the ring R, the subring generated by the set {ai,
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bi vai' ve Q ie E} is nilpotent.

Select positive integers &, ki, i € E, such that

1) ki # k for every i€ E, and ki= ki’ iff i coincides with i’

2) neither k nor any of ki is encountered among the indeces of the sets
i, ie E

Consider the linear form

g(t)=t, + )y b, t
K v) e Ex Q Wy

By hypothesis, g(t)-f(t) is an element of the nil-radical K(Rw). As it

has been just shown, this implies that the set of coefficients of the polynomial

.7

sfi) = % at, D+ Y be a1, A
icER e ExaWl Ky
generates a nilpotent subring of the ring R Obviously, if a set of elements

of R  generates a nilpotent subring, then so does any of its subsets. In parti-
cular, {ai, bi vai| (iv) € E x Q} generates a nilpotent subring. m

4.10.2. Theorem. The left radical of any associative ring R  coincides with its
Levitzki radical: radl(R) = L(R).

Proof. Since we have already established that L(R) < rad[(R}, it remains
to verify the inverse inclusion. Taking the quotient of R modulo L(R), we
reduce the desired assertion to the following one:

If R has no non-zero locally nilpotent ideals, then raa’[(R) = {0].

Proof of this assertion follows the scenario of the proof of Proposition
4.8 with the ring Rt/ being replaced by the ring R__ = R[t],tz,...].

The natural embedding R —— R is a central extension. Therefore the
map p—— p n R sends ideals from SpeclR into the ideals from SpecR .

Hence the inclusion
rad[(R) S R radl(Rm)

holds. But, according to Proposition 4.8, radl(Rm) c K(R_); and, as Lemma
4.10.1 claims, K(R_) = (0J if L(R) = {0}. Therefore rad[(Roo) = {0}, and
rad[(R) =R radl(Roo) = {0]. u

5. THE LEVITZKI SPECTRUM AND THE LEFT SPECTRUM.

5.1. Levitzki spectrum  LSpecR of the ring R is the set of all the prime ide-
als p of the ring R such that the quotient ring R/p  has no locally nilpo-
tent ideals. The topology on  LSpecR is induced by the Zariski topology on the
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prime spectrum SpecR.

5.2. Lemma. (a) For any p € SpeczR. the two-sided ideal (p:R) belongs to the
Levitzki spectrum of R.

(b) For any two-sided ideal o in R, its left radical, rad[(R|0L), co-
incides with the preimage of the Levitzki radical of the quotient ring R/oL.

(c) In particular, a prime ideal p belongs to LSpecR if and only if p
is equal to rad[(R|p).

Proof. (a) Fix a p € SpeclR. By Lemma 1.8.1, the two-sided ideal (p:R)
is prime. Obviously, (p:R) is the intersection of all the ideals (p:x),  whe-
re X runs through the set R-p. The left 1deal (p:x)/(p:R) belongs to
SpeclR/(p:R). Therefore, by Theorem  4.10.2, the ring  RAp:R)  has no locally
nilpotent ideals.

(b) By Theorem 4.10.2, raa'l(R/a) coincides with Levitzki radical of the
ring R/oe, and rad[(R/a) = rad[(R|0L)/oc.

The assertion (¢) is a special case of the assertion (b). m

Recall that a topological space X  is called sober if every nonempty clo-
sed irreducible subset of X has a unique generic point.

5.3. Theorem. (a) The map p—— (p:R) is a quasi-homeomorphism
(SpeclR,‘r) —— LSpecR.
(b) The space LSpecR sober.

Proof. (a) 1) It follows from the assertion a) of Lemma 4.4 that the map
p — (p:R)
sends the left spectrum of the ring R into its Levitzki spectrum.

2) The map, which assigns to a subset V of Spec[R its radical - the in-
tersection of all the ideals from V - induces a bijection of the set of closed
subsets of the space (SpeclR.‘l:) onto the set of all the two-sided ideals o
such that o = rad[(a).

3) Similarly, the map, which assigns to a subset 'V of the Levitzki spect-
rum LSpecR  the intersection of all the ideals from 'V  induces a bijection of
the set of closed subsets of the space  LSpecR onto the set of all the two-
sided ideals coinciding with their Levitzki radical.

4) But, according to the assertion b) of Lemma 4.4, these two kinds of two-
sided ideals coincide. Hence the map

q: Spec[R ———— LSpecR, p——— (p:R)
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is a quasi-homeomorphism.

b) Note that

the closed subset X  of the space  LSpecR  is irreducible if and only if
its radical r(X) - the intersection of all ideals of X - is a prime ideal.

In fact, let o and B be two-sided ideals such that of < rnX). Suppose
that o is not contained if AX); or, equivalently, ~AX) is not a subset of
the closed subset LV(a):={p € LSpecR| a < pJ. Therefore, since

X c LV(of}) = LV(a) U LV(B),
and, by assumption, the set X is irreducible, that  LV(B) contains X or,
equivalently, B < 1X). =

54. Remark. Now it is an appropriate moment to compare the left geometry with
the right one. First of all, it follows from Theorem 4.5 that
rad[(R|0L) = radr(R|0c) for any two-sided ideal «,

where the right radical radr(R |ot) is the intersection of all the ideals of the
right spectrum, Spech, of the ring R.

The topological space (Spec,R,‘t") is equivalent, from the sheaf-theoretic
point of view, to its right analogue (Specl_R,‘c"), since there are canonical
quasi-homeomorphisms

(SpeclR,‘c") —— LSpecR «—— (Spech,T"‘)
Of course, the categories of quasi-coherent (pre)sheaves on (SpeclR,”c"}
and (Spech,’t"‘) (which are introduced in Section 6) can differ considerably. m

55. Lemma. Let ¢ be a directed (with respect to <) family of two-sided ide-
als which coincide with their Levitzki radical. Then the supremum of the family

3, sup(3), also has this property.

Proof. Let x € P(R) be such that ' s a subobject of sup(¥) for some
n > 0. Since 7 i§ a finitely generated Z-module, and the family % is di-
rected, x' < o for some ideal o € ¢ By hypothesis, o coincides with its

Levitzki radical. Hence x c o. m

5.6. Theorem. An open subset U of the space (Spec!R,“c") is quasi-compact if
and only if U = Ul(a) Jor some finitely generated two-sided ideal o

Proof. 1) Let o be a finitely generated two-sided ideal; and let { Ul. |
i € I}] be an infinite cover of the open set UI((I). Denote by I the directed
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(with respect to inclusion) set of finite subsets of I, and let Ul be the
union of the family of sets { U i e i/ for each i e I We have to prove
that U = U' for some i€ L

Denote by 0 the radical of the complement to Ul closed subset; i.e.
o is the intersection of all the ideals from SpeclR - U' . The ideals Q;
coincide with their left radicals : o= md[(R|oci). By Theorem 4.10.2, this
means exactly that each ideal o coincides with its Levitzki radical. Accor-
ding to Lemma 4.7, the supremum [ of the family { o i e I} also equals
to its Levitzki (or, equivalently, left) radical: B = radl(R|B). Therefore B
is the largest two-sided ideal with the property U I(B)
since U = U[(a), the ideal o is contained in .

U. In particular,

By hypothesis, the ideal o is finitely generated (as a two-sided ideal).
Therefore, since the family { o ie I} is directed, the inclusion a c B
implies that o C o for some i. Thus, U = Ul(ai)‘

2) Let now U l(oc’) be a quasi-compact open subset of Spec R The ideal
o can be represented as a supremum of a directed family ¥  of finitely gene-
rated two-sided ideals.  The quasi-compactness of U l(oc’) implies that U 1(0:'}
= Ul(a) for some ideal o € % »u

5.7. Corollary. An open subset of the Levitzki spectrum of a ring R is quasi-
compact if and only If it coincides with LU(a) for some finitely generated
ideal 0.

Proof follows immediately from Theorem 4.5.
6. STRUCTURE PRESHEAVES. RECONSTRUCTION OF MODULES.

6.0. Structure presheaves. The definition of a radical filter (cf. 0.3) can be
reformulated as follows:

a uniform (i.e. with respect to <) filter F  of left ideals of a ring R
is radical iff the following condition holds:

if me F and a left ideal »n is such that (n:x) € F for any x € P(R),
then n e F.

This reformulation makes clear that the intersection of an arbitrary family

of radical filters is a radical filter. In particular, to any subset 1% of
SpeclR, we can assign a radical filter <V>:= <p>.
peV
Fix a topology X on SpecR. Define a presheaf of modules on % =

(Spec,R,X) as any functor F: Openk P, R-mod such that F(U) 15 an ob-
PEC Yy
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Ject of the subcategory R-mod/<U> for every open set U. Denote by 9Phx (or
by EDb(SpeclR,I)) the full subcategory of the -category Funct(Openz®P,R-mod)
generated by all presheaves of modules.

There is the global sections functor

I Ph¥ ——— R-mod

which sends a presheaf of modules F it value at Spech. ’

The structure presheaf of an R-module M is the presheaf of modules M~ =
MI which assigns to every open subset U  of the space % = (SpeclR,x) the
R-module & <U>M'

Clearly the map M+—— M extends to a functor
A R-mod —— Dhx.

6.0.1. Proposition. The global sections functor is left adjoint to the functor
A. The functor A is fully faithful.

Proof. Set for convenience X = Spec,R. Fix a presheaf of modules F. For
any open subset U of X, the restriction map F(X) —— F(U) is uniquely
decomposed (since F(U) € R-mod/<U>) into the adjunction morphism

j<U>“ F(X) —— F(X)"(U):= 03<U>F(X)
and a morphism

SF(U): F(X)(U) —— F(U).

The set SF:= {SF(U)| U € Openi} is a functor morphism from A-T  to
]dipbx'

For every R-module M, we have an isomorphism (which can be chosen to be
identical) eM): M —— M (X). The set e:= (g(M)} is a functor isomorphism
Id ——— T'eA. One can see that

R-mod
Idoell = idp, and dA-Ae = idA
which means that & and & are adjunction arrows. Since € is an isomorphism,
the functor A is fully faithful. m

Call a presheaf of modules quasi-coherent if it is isomorphic to a struc-
ture presheaf of some R-module. Denote the category of quasi-coherent presheaves
on X by abx

The following assertion is a corollary of Proposition 6.0.1.

6.0.2. Proposition. The functor A: R-mod ——— DbhX  induces an equivalence of

the category R-mod and the category QbR  of quasi-coherent presheaves on the
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topological space X = (Spec[R,E).

6.0.3. Associated sheaves? The next, standart, step is to go from presheaves to
associated sheaves. There is no problem to produce a sheafification functor, ?,
in our setting. Thus, we can assign to each R-module M its structure sheaf M4
= (M) We define a quasi-coherent sheaf as a (pre)sheaf which is isomorphic
to $(M ) for some R-module M.

If the ring R is commutative and I is the Zariski topology, the sheafi-
fication functor ¥ induces an equivalence between the category of quasi-
coherent presheaves and that of quasi-coherent sheaves. This fact, due to Serre,
is one of the comer stones of (commutative) algebraic geometry.

If R is noncommutative, this is, usually, not true. Besides, in the non-
commutative case, the Zariski topology might be not the best choice. For examp-
le, it is trivial if R is the algebra of differential operators with polynomi-
al coefficients.

Note that the reason for wusing the sheafification functor is that sheaves,
by their nature, could be reconstructed from local data - their values on cove-
rings. Note also that the reconstruction is given by a procedure which works far
beyond the limits of algebraic geometry.

There are two possibilities:

(a) Either to try to single out (classes of) modules which can be reconst-
ructed from their structure sheaf.

b) Or, to look after a different reconstruction algorithm which recovers,
hopefully, any module from its ’local data’. Up to isomorphism, of course.

The second way is, by many reasons, much more preferrable.

It occurs that there exists a very natural, specific for algebraic geometry
(localization)  setting procedure which allows to reconstruct quasi-coherent pre-
sheaves from local data for any topology.

Now we shall make this claim explicit and prove it.

6.1. The canonical diagram. Let Q be a family of radical filters, and let F

be the intersection of all the filters from Q.  Then the commutative diagrams

of functors
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G 'j "
BFI J“F—) BFIOGFH
jF,F"[ j I J ppe (1
F,F"
GF GF.”

where F’, F” run through Q, define the diagram

Cp,—— n G© GvoGpn
F rea = ppla FF @
6.2. Theorem. Let Q be a family of radical filters, and let F=  F. Then
Fe Q
1) The canonical morphism G F—— T S is a monomorphism.

Fe Q
2) Suppose that there exists a finite subfamily S of Q such that

F= n F. Then the diagram (2) is exact.
Fre Q
Proof. 1) We have to prove that, for each R-module M, the canonical arrow
Jjo G — | &M
FM Fe Q F
is a monomorphism.

In fact, let & be an element of Kerj. This means that, for any Fe Q,
there exists a left ideal m(F) € F° such that m(F)£=0, ie. Annf belongs
to the intersection, F, of all the filters from Q. But GFM is  F-torsion
free; hence &=0.

2) It is pretty clear that the diagram (2) is exact if the diagram

°F plo' F = pplg FoF
is exact for some subset €’ of Q. Hence we can (and will) assume that Q=Q’
is finite.

Let épe GF,M, Fe Q, be elements such that , for any F, F”" from «Q,
the images of E—'F’ and éF" under the canonical morphisms

GquF,,.' GF/M —_— GF/OIBF,M and jF;CBF,,.' GF.M _— GF'OGF,M
coincide.

Fix a filter F° from €, and let m" be an ideal from F° such that
the morphism -§P|m,: m— GFvM of multiplying by éF' is a composition of
a certain uniquely determined R-module morphism u': m'—— M/F'M  and the cano-
nical monomorphism

M/FM —— CBF,M.
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Choose, for any x € m’, an element n.e M  such that j F,('q)=xE,Fu. Then,
for any F"e Q, we have:

jpffpn(nx)=jF'Jp(nx)szn(x§p)=jp(xép")-
The equality jF/jF,,(nx)=jF,(x§F,,) means that, for every F” € €, a left
ideal m_., € F’ can be found such that

mejpdn,) - x& ) =0 (3)
Since £2 is finite by hypothesis, then the left ideal

Frr

m L= n M-y
Fx F'e Q F

belongs also to the fllter F’. Therefore we can write (instead of (3)):
mpe g - 2 p)=0 4)

Set é::{&F,| F'e QJ, and denote by (C(§) the set of all the left ideals
n of R such that the morphism

El on —s G M
n FeaF

of multiplication & by n factors through the canonical map
j: G —  GpM.
FM Fe Q F
(a) It follows from the equalities (4) that the set C(&) contains all the
ideals of the form Mpe X, where x  runs through the set of all the elements
of some ideal m € F’.

In fact, consider the commutative diagram

8y
m r———— T x=n
F’' x F' x

R

G M—— 1 &M
- Fe f
Since j is a monomorphism and 8, is an epimorphism, there exists an

arrow  A: n = mpy X —— M such that Joh=g| .

(b) If the left ideals n, n' belong 1o CE), then their sum, n + n’
also belongs to C(E).

Indeed, by hypothesis, the morphisms §|n and -§|n, are of the form
joA and joA’ for some uniquely determined morphisms A and A" respective-

ly. So, we have the commutative diagram
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GFM———> m GF,M

F'e Q
(M')l . | &l

nll "—— 5 n+n’

Since ¢ is an epimorphism and j is a monomorphism, there exists a
unique R-module morphism h: n+n’—— M such that §| _ ,=joh.

(c) Finally, together with every ascending family W of ideals, the set
C(E) contains the sum of all the ideals from W.

(d) The assertions (b) and (c) allow to deduce (applying Zorn’s Lemma) that
the sum, n(g), of all ideals from C(E) belongs to C(E).

Now, it follows from (a) that n(§) Dbelongs to FoF. Since F is a
radical filter, the ideal n(§) belongs to F.

(e) Through the whole argument above, F’  was an arbitrary radical filter
from Q, the ideal n(§) belongs to the intersection F  of all the filters
from Q. w

6.3. Quasi-coherent presheaves and ®-sheaves. Fix again a topology ¥ on
SpeclR, and denote, as in 6.0, the topological space (Spec!R,I) by x
Call a presheaf of modules F on X an wo-sheaf if, for any finite cover

U of an open set U, the canonical diagram

FU) —— q FU) —— n FUu nU") (D
Uel > UL UEl
is exact,
Consider now the structure presheaf M of an R-module M, M (U) = 6 < U>M
(cf. 6.0). We have the commutative diagram
6_, M— 1 6_;, M—0 M G_;p oG _rn M
<U> U e u<U> —— U e 11<U> <U">
id id Y (2)
G M— n 6, M—— m G_;p M
<U> U oe u <U> __—)U’,U"eu'(U nu">

By Theorem 6.2, the upper row of the diagram (2) is exact. This implies
that the lower row is exact if the canonical morphism Yy is a monomorphism. In

particular, if the canonical map

Y pn * SeprsCeyrsM ——— Sy prsM (3)
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is a monomorphism for every pair U’, U” of open subsets of X, then the stru-
cture presheaf M is an o-sheaf.

6.3.1. Example. Suppose that the ring R is commutative.

(a) Let & and §” be multiplicative systems of elements in R, and

F', F" the corresponding radical filters: F' = F o F'=F G- Then
GF"DGF” . GF”OGF', & GFS’
where § = S§§"  Clearly FS i1s the minimal among the radical filters which

contain both F° and F".
(b) If F is a radical filter such that either the functor Cp is exact,
or F is of finite type (i.e. every ideal from F  contains a finitely genera-

ted ideal from F), then F =  <p>.
peF
(Note that filters of the form F g satisfy the both conditions.)

Clearly F ¢ n <p> Let o be an arbitrary ideal of the ring R which
¢ F

does not belong to ?‘

1) Suppose that the functor Cp is exact. Since GO is a proper ideal of

the ring GFR, it is contained in some maximal ideal, p. The exactness of the
functor Gp implies that the natural functor ‘
R-mod/F —— GFR-mod

is an equivalence of categories. In particular, the preimage W of the ideal

R does not belong to F. Since R is commutative, pn° is prime. Thus, o <
W, and W € SpecR - F. Therefore « is not contained in  <p>. This pro-
ves that n <p> ¢ F. | pek
peF

2) Assume now that the filter F is of finite type. Then the supremum of
any ascending chain of ideals from IR - F does not belong to F. This tmplies
that the ideal o is contained in a maximal ideal, p, in [R - F The set
Hp= {x € R| (Wwx) € F} is a left ideal (since (u:x+y) 2 (W:x) n (Wy), and
(W:rx) = ((W:x):r))  which contains p  and is not contained in F  (since the
filter F is radical, the inclusion Hp € F  would imply that p € F). The ma-
ximality of p implies that g = Hp

If (ux) # p, then, thanks to the same maximality of pu, (px) € F
which implies that x € Hp = W ie. MU is prime.

(c) Tt follows from (a) and (b) that if the functors &
are exact or of finite type, then the canonical functor morphism
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Ty * BersCeyr> — Sy nu (4)
is an isomorphism.
This implies, among others, a basic fact of algebraic geometry: for any

R-module M  the restriction of the structure presheaf M~ to the topology of
principal open sets is a sheaf.

If the ring R is noetherian, than the morphism (4) is an isomorphism for
any sets U’, U"”. This means that the structure presheaf of any R-module is an

w-sheaf for any topology on  SpecR  which is compatible with specializations ~of
points. m

6.3.2. Lemma. Let now R be an arbitrary associative ring; and Y a topology
on SpeclR. If an R-module M is <U>-torsion free for every open set U, then
the structure presheaf M is an ®-sheaf.

Proof. In fact, in this case the adjunction arrow

is a monomorphism. Since the functors G <U'> and G <U">

are left exact, and
B>ty U> = Bty U = BctsCet n U
the monomorphness of (5) implies the monomorphness of

Yur© Bers CepyrsM — Sy N yr>M- .
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6.4. Structure presheaves of modules over semiprime Goldie rings. Recall that a
ring R is called a left Goldie ring if

(a) any set of left annihilators in R (l.e. left ideals of the form
(0:x) for some x < R) has a maximal (with respect to the inclusion) element;

(b) R does not contain any infinite direct sum of nonzero left ideals.

Clearly any left noetherian ring is a left Goldie ring.

Recall that a ring R is semiprime if it has no nonzero nilpotent ideals
or, equivalently, the intersection of all prime ideals in R is zero.

We need the following fact (Lemma 7.2.2 in [Hel):

6.4.1. Lemma. Any semiprime left Goldie ring satisfies the minimality condition
for left annihilators.

6.4.2. Lemma. Let R be a semiprime left Goldie ring. Then, for any left anni-
hilator  m in R, there exists x € P(R}) such that (m:x) = (m:R). In parti-
cular, the ideal m is equivalent (with respect to <) to the two-sided ideal
{m:R).

Proof. Clearly if m is a left annihilator, then  (m:y) is a left annthi-
lator for any y < R. By Lemma 6.4.1, the set of left annihilators {(m:u)| u €
P(R)}] has a minimal (with respect to <) element (m:x). Since, for any u €
P(R),

(m:x+u) = (m:x) n (mu) © (m:x),
and (m:x) is minimal, (m:x) o (m:u) = (m:x) for any w« € P(R). This implies
that

(mR) = (mx) 0 ( n (m:u)) = (m:x).
u € P(R)
The relations

(m:R) ¢ m < (m:x) = (m:R)

show that m is equivalent (m:R) =

6.4.3. Proposition. (a) Let R  be a prime left Goldie ring. Then any left anni-
hilator in R is equivalent (with respect to <) to the zero ideal.
(b) Any semiprime left Goldie ring satisfies the maximality and minimality

conditions for left annihilators with respect to <

Proof. (a) Recall that a ring R is called prime if the zero ideal in R
is prime.

Let m be a left annihilator in R; ie. m = (0:x} for some subset x C
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R. Since the zero ideal is prime,
(m:R}) = ((0:x):R) = (O:Rx) = 0.
By Lemma 6.4.2, the left ideal m is equivalent to the ideal (m:R) = O.
(b) Let X be an arbitrary subset of left annihilators of a semiprime left
Goldie ring R. Consider the set X':= {(m:R)] m € X]. Since X is also a set
of left annihilators, it has a maximal element, (V:R), v e X We claim that

v is a maximal element of X with respect to <

In fact, let m € X, and v £ m; ie. (vix) € m for some x € P(R).
Then (V.R) ¢ (vix) € m, and, since the ideal (V:R) is two-sided, and (m:R)
1s the biggest two-sided ideal in  m, the inclusion (V:R) € m is equivalent

to that (v:R) ¢ (m:R).

Since (m:R}) € X’ and (v:R) is a maximal element in X, (v:R) = (m:R).
Now, by Lemma 6.4.2, (m:R) = (m:u) for some u € P(R). So, we have the follo-
wing relations:

m < (m:u) = (m:R) C (V:R) ¢ v,
ie. m < v. Since the ideal m in this argument is an arbitrary element of
X, the maximality of v is proved.

The similar argument shows the existence of a minimal element in (X,<). m

6.4.4. Proposition. Suppose that R is a prime left Goldie ring. And let M be
a submodule of the product of an arbitrary family of projective R-modules. Then
the corresponding to the module M structure presheaf in the Zariski topology
is an w-sheaf.

Proof. Every open set in the Zariski topology is of the form
Ufa) = [p € SpecR| o - p # D),

where o is an arbitrary two-sided ideal in R. One can see that
<Ul((x)> = {me IIR| if m<p and p e SpeclR, then o < pJ.

Thanks to  Lemma 6.3.2, it suffices to show that the module M is
Ul( o)-torsion free for any two-sided ideal o # 0.

Note that in the condition "M is a submodule of the product of a family
of projective R-modules”, can be replaced by "M is the product of a family of
copies of R".  Since any submodule of an  F-torsion free module is F-torsion
free (for any Gabriel filter F), it 1is sufficient to consider the case when M
is the product of a family of copies of the ring R.

Clearly the annihilator of a nonzero element of the module M is a left
annihilator in R. So, what we actually need to show is that the Gabriel filter
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UI(OL) does not contain left annihilators of the ring R  provided that the two-
sided ideal o is nonzero.

Suppose that it is not the case; i.e. there exists an o € [R  such that
the filter <Ufa)>  contains a left annihilator, m, of the ring R. By the
assertion (b) of Proposition 6.4.3, the set

{(m:x}| x € P(R)-P(m))},
being a set of left annihilators, contains a maximal with respect to < ele-
ment, say (m:u). Clearly (m:u) € SpeclR, since, for any x € P(R), (m:u) <
((m:u):x) = (m:xu)  which, thanks to the maximality of  (m:u), implies that the
left ideals ((m:u):x) and (m:u) are equivalent.

It follows from the relation m < (m:u), the the ideal (m:u) is contai-
ned in the intersection of SpeclR and F(o) which means exactly that o is
contained in (m:u).

Since the ring R is prime (note that till this moment the primeness of R
is not required), the ideal (m:u), being a left annihilator, is equivalent to
the zero ideal (cf. the assertion (a) of Proposition 6.4.3). Thus, o < 0 which
means, since o is two-sided, that o is the zero ideal. The latter contra-
dicts to the initial assumption that o is nonzero. m

6.4.5. Proposition. Letr R be a left semiprime Goldie ring. Then

(a) For any left annihilator, m, in R, there is u € P(R) such that
(m:u) € SpeclR.

(b) If a left ideal p  from Spech is «a left annihilator, then p s
equivalent to the prime ideal (p:R).

(a) Conversely, any prime ideal p in R which is a left annihilator be-

longs to SpeclR.

Proof. The proof of the assertion (a) is contained in the proof of Proposi-
tion 6.4.4.

The assertion (b) is a special case of Lemma 6.4.2.

(c) Let a prime ideal p be a left annihilator in R. Then, by the asser-
tion (a), (p:u) € Spec[R for some wu € P(R} - P(p). Since (pu) is a left
annihilator, it is equivalent, according to the assertion (b), to the ideal
((p:u):R) = (p:Ru). Thanks to the primeness of p, the ideal (p:Ru)  coin-

cides with p. =

6.4.6. Corollary. For any left noetherian ring R, the set of all prime ideals,

SpecR, is contained in the left spectrum of R.
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In particular, the prime spectrum of R coincides with its Levitzki spect-
rum.

Proof. In fact, for any prime ideal p in R, the quotient ring R/jp is
left noetherian (hence left Goldie) prime ring. This implies that the zero ideal
in R/ip belongs to SpeclR/p (cf. the assertion (c¢) in Proposition 6.4.5).
Since ring epimorphisms respect the left spectrum, the ideal p € SpeclR. (]

6.5. Structure sheaves of noetherian rings. Fix an associative ring R. For any
left ideal m in R, let [m] denote the intersection of all radical (filters

of left ideals which contain m. Clearly m < m’ implies that [m'] ¢ [m].

6.5.1. Lemma. Let F  be a radical filter of left ideals in R  such that any
two-sided ideal in F contains a finitely generated two-sided ideal. Then a
two-sided ideal o  belongs to F if and only if any prime ideal containing o
belongs to F.

Proof. Consider any increasing chain =  of two-sided ideals containing 0.
If the sum of all ideals of Z belongs to F, then one of them belongs to F.
This implies (by Zorn’s lemma) that there is a maximal two-sided ideal p  which
contains @, but does not belong to F. We claim that p is prime.

In fact, suppose that 7} and v are two-sided ideals which are not
contained in p, but pv ¢ p. Replacing w by upu+p and v by v+p, we can
assume that both p and v contain p properly. This implies that they belong
to F. Therefore the inclusion pv ¢ p implies that (p:x) € F for any x € Vv
which means that p € F. Contradiction. m

6.5.2. Lemma. Let R be a left noetherian ring and F a radical filter of left
ideals in R. The following conditions on a two-sided ideal o are equivalent:

(a) o0 € F;

(b) any prime ideal containing o belongs to F;

(c) Vl(a):= {p e Spec[R| o cp/ck

Proof. Clearly (a}) = (b). The implication (b} = (c) follows from Lemma
1.8.1. The implication (¢} = (b) is a consequence of Corollary 6.4.3. Finally,
(b) = (a) according to Lemma 6.5.1. m

6.5.3. Corollary. For any two-sided ideal o  of a left noetherian ring R  the
filter [o] is the smallest among radical filters F  having the property
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SpecR n F = V(o) )

Note that <Ul(a)> is the biggest among radical filters F  with the pro-
perty (1).

For any R-module M, denote by Ass(M) the set of those annihilators of
elements of M which belong to SpeclR. We call them associated points of M.
Clearly Ass(M) < Supp(M).

6.5.4. Lemma. Suppose that the ring R s such that, any nonzero R-module has
an associated point. Then, for any radical filter  F, the corresponding Serre
subcategory Sg is generated by all modules M such that Supp(M) < F.

Proof. Let M be any nonzero R-module which does not belong to Sp and
let M’ be the quotient of M by its F-torsion. By hypothesis, there exists an
element x in M such that Ann(x) € Spec[R. Since M’ is F-torsion free,
the ideal Anmn(x) does not belong to F. And, of course, Ann(x) belongs to
Supp(M}  (cf. Proposition 1.11.2).

This shows that if Supp(M) ¢ F, then M € ObsF The inverse implication
i1s evident. m

6.5.5. Corollary. Let R  be as in Lemma 6.54. Then, for any two-sided ideal
o, the filter <U[((1)> coinsides with the minimal radical filter  [o]  contai-
ning the ideal o.

Call a ring R left <-noetherian if any subset of left ideals in R has a
maximal element with respect to the preorder <.

6.5.6. Lemma. If R is left <-noetherian, then any nonzero R-module has an

associated point.

Proof. Tt suffices to check the fact for quotient modules R/m.  The set of
annihilators of nonzero elements of R/m is Qm:= {(m:x)| x € R-mJ. By Lemma
3.4.1, the maximal with respect to < element of Qm belongs to SpecIR. =

6.6. Quasi-coherent presheaves on the structure space. Consider now the subspace

of left maximal ideals, (Max lR,}}t), of the space (Spec lR,‘t") (recall that T
denotes the Zariski topology). The described in 4.0 procedure assigns to every
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R-module M  the structure presheaf JItM  which sends an open set U  of the

space (Male,{St) into the R-module: 3tM(U):= G<U>M‘

The map 7y : m —— (m:R) defines a quasi-homeomorphism
(Male,at) — PrimR,

where  PrimR  is the Jacobson's structure space of the ring R, ie. the space
of primitive ideals of the ring R.  Thus, the categories of presheaves and she-
aves on the spaces (Male,gt) and PrimR  are equivalent. In particular, the
direct image functor of the map Y transfers equivalently structure presheaves
from (Male,{)t) onto PrimR,

7. AFFINE AND QUASI-AFFINE SCHEMES. PROJECTIVE SPECTRA.

The goal of this section is to make a couple of introductory steps towards
a noncommutative scheme theory.

In Section 7.0, we are trying to argue what is a ’noncommutative space’ and
to single out minimal requirements on a space to be a scheme. The result of our
reasoning is that the category of noncommutative schemes, whatever it is, should
contain locally quasi-affine spaces and open imbeddings as morphisms.

In Section 7.1, we show that (non-affine) quasi-affine schemes are just af-
fine schemes associated to rings without unity.

Section 7.2 is concerned with the projective spectrum. Thanks to the spect-
ral theory, we are able to define the left projective spectrum associated to a
graded ring approximately the same way as it is done in the commutative case. We
show that an analog of the Serre’s theorem [S] describing the category of quasi-
coherent sheaves on noetherian projective scheme is true in the noncommutative
setting. Only ’noetherian’ is in the sense of the preorder < which is quite na-
tural. When R is an arbitrary (not necessarily noetherian) commutative ring,
our definition of Proj(R) is equivalent to the classical one.

A serious study of projective spectra, or more general noncommutative sche-
mes, is out of the scope of this work. And one of the reasons is that the langu-
age of rings and ideals is not quite adequate to the task. Especially as to app-
lications. A (based on [R6]) sketch of noncommutative projective geometry shall
appear in a forthcoming paper.

7.0. General remarks on noncommutative schemes. Geometrical objects of commuta-
tive algebraic geometry are locally ringed spaces; i.e. pairs (X,0), where X
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is a topological space and © is a sheaf of local rings on X  satisfying some
additional properties. What we really care about are certain subcategories of
the category of @-modules, such as categories of quasi-coherent or coherent she-
aves. Luckily, these categories can be reconstructed from the pair (X,0).

Moreover, the pair (X,0) can be reconstructed by the category of quasi-
coherent sheaves on X  uniquely up to isomorphism. This fact is proved in [Gab]
for noetherian schemes. The general case follows from [R6]. The reconstruction
procedure is particularly straightforward when a scheme is known to be affine:
it is the map HA—— (SpecC(A),OCM)), where C(«#) is the center of a catego-
ry 4, ie. the ring of endomorphisms of Id o

In the noncommutative setting, the role of a ring, or a sheaf of rings, is
less essential, and the choices are not canonical: Morita-equivalent rings have
the same rights. Another, more important circumstance is that lots of natural
objects of noncommutative geometry (to begin with open subspaces of spectra of
rings) are not locally affine.

Thus, a right thing to do in the noncommutative setting, is to replace the
sheaf of rings by the category of ’structure sheaves’. A straightforward forma-
lization leads to the notion of a bundle of localizations.

7.0.1. A bundle of localizations is a triple (X, 6[B), where X is a topologi-

cal space, & is a map which assigns to any open set U < X a category Bqp

and to any inclusion 1. 'U < U of open sets a flat localization
gl: Gur —_— gu
Here ’flat” means ’exact and having a right adjoint’. Finally, § is a function
which assigns to any pair U U ¢ U, U: ¥ < U" of inclusions a functor iso-
morphism
By € o6y — 6y

H

such that, for any three composable inclusions, 1, U, 1", the diagram
B v 1€t" O

r " _'——) ° L
€l°€1 o@l gl’l Gl

gl[}l " , l, ’ Bl”,l,’l
Bl"l', 1
€1°€lull > Glnlll
is commutative and
gid = Id, Bl,id = Bia',l = id. (2)

Besides, we require that, for any covering V¥ of an open set U, the set

42



of localizations {€l| L € vV} reflects isomorphisms; ie. if s is a morphism
in G‘u such that E’Ls is an isomorphism for all 1 € Vv, then s itself is an
isomorphism.

7.0.2. Note. Although B here is inavoidable by technical reasons, it is not
really important. In fact, if we fix, for any open set U, the canonical loca-
lization G‘U_)X: t?X _— té’,u (cf. [GZ], 1.1), then, we define restriction func-

tors © by the requirement:

CuswCusx = Cuny &)
Thanks to the universal property of localizations, (3) defines the functor

U

€ uniquely. This implies that we can take [ = id. =

U
7.0.3. Open imbeddings. Following the standart pattern, define a morphism of
bundles of localizations (X,6,8) —— (X, €,p") as a pair (¢,D), where ¢
is a morphism X —— X’ of topological spaces, and @& is a function which as-
signs to any open subset U g X’ a functor

D, €¢-1,u — t?’,u
and to any inclusion U < U’ of open sets a functor isomorphism

o TPy = PurBy e )

satisfying natural compatibility requirements with respect to compositions which
are expressed by a commutative diagram (this is exactly the place where [3 and
B” get involved) left to a reader.

A morphism  (¢,®) of bundles of localizations is called an equivalence (by
abuse of language an isomorphism) if ¢ is a homeomorphism, and the functor @,
is an equivalence of categories for all U.

Let X = (X,6B) be a bundle of localizations, and let ¢: ¥ —— X be an
open map. Then we can induce a bundle of localizations ¢*X = (Y,0*6,8’) on Y
in the usual way:

O760= Coruy 2 O Bru=Cgru)0n)
for any two open subsets U ¢ Y of Y. In particular, we have a well defined
restriction X|U = (U,'G‘|U,B’) of a bundle X to any open subset U of X and

a canonical morphism X| g—— X. We call a morphism X’ —— X an open imbed-
ding if it is a composition of X|U —— X for some open subset U and of an
equivalence X' —— X]| U

Open imbeddings are the only morphisms we need for what follows.

7.0.3. The local algebra setting. Suppose we are given a topological space X
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and a flat localization Qx: 4 — for all x € X. For any open set U in

X, take a localization Q <u> A the Serre subcategory <U>:= Keer. This

xeU
will define a bundle of localizations (cf. Note 7.0.2).

One of the attractions of this approach is that the topology plays the role
of a parametre. Another ’global’ parametre is the category 4 = «(X) of struc-
ture presheaves on X

Note that a local algebra setting on X induces in an obvious way a local
algebra setting on any subspace Y of X. And the induced category of structu-
re presheaves of Y is equivalent to the quotient category «(X)/<VY>.

7.0.3.1. Basic examples. (a) Let X = (Spech,ﬂ' ), where g is one of the cano-
nical topologies (cf. 1.10.2 and 1.10.3). To each point p € Spec[R, we assign
a localization at <p>.

M If g is the Zariski topology, there is a quasi-isomorphism, ¢, from
(SpeclR,ﬂ) to the Levitzki spectrum LSpecR of R (cf. Theorem 5.3). Thus, we
assign to any associative ring R  the bundle of localizations  (LSpecR,0), whe-

re O,u = d/<U>, d:= R-mod, <U> = n. <>
<p>ed (U)
We shall write Op and Opu when there is a need to mention the ring R

(for instance in Section 7).

Note that this bundle of localizations can be obtained from a local algebra
setting on  LSpecR  which assigns to any point p € LSpecR the localization at
the Serre subcategory of R-mod generated by all modules M such that Ann(M)
is not contained in p. =

7.0.4. Affine schemes. We define a left affine (Zariski) scheme as a bundle of
localizations (X,6,B) which is isomorphic to the bundle (LSpecR,0) of
Example 7.0.3.1 (b).

We would like to underline that the affine scheme (LSpecR,0) is not
always the best choice of a geometrization, since it 1is trivial for all simple
rings. If R is simple (e.g. a Weyl algebra), the bundle of Example 7.0.3.1 (a)

with the topology 7 of 1.10.3 is in most cases an adequate geometrization. m

7.0.4.1. Comparison with the construction by Van Opyestaeyen and Vershoren. Van
Oyestaecyen and Vershoren [OV] assign to a left noetherian R its prime spect-
rum, and to any open subset Ulo) the localization at the minimal radical fil-
ter [o] containing the two-sided ideal o



Since the prime spectrum of any left noetherian ring coincides with its Le-
vitzki spectrum, the underlying space is the same as that of a left affine sche-
me. But, it is not the same with structure presheaves. Because the radical fil-
ter [o] is, usually, a proper subset fo <Ul(0t)> (cf. Section 6.5). The lat-
ter means that left affine schemes are locally simpler. They have greater simi-
larity with locally ringed spaces (cf. [R6]).

7.0.5. The minimal requirements on the category of noncommutative schemes. Deno-
te by ¥6#  the class of bundles of localizations which should be regarded as
schemes. We would like it to have the following properties:

(a) Affine spaces (LSpecR,0) (cf. Example 7.0.3.1) should be schemes.

by If (X, €) is a scheme, then, for any open subset U of X, the indu-
ced bundle (U,€|U) i1s a scheme (an open subscheme of (X,€)).

(c) If (X&) is a bundle of localizations such that (u,r;’|,u) is a scheme
for every U from some covering of X, then (X&) is a scheme.

Clearly y6x includes all commutative schemes. Moreover, in the commutati-
ve setting, (a) and (c¢) imply (b). But, if R is a generic associative ring, an
open subscheme of the associated affine scheme is not usually locally affine.

Call a bundle of localizations a left quasi-affine scheme is it 1is equiva-
lent to an open subscheme of a left affine scheme. ,

One can see that the minimal class of bundles of localizations which satis-
fies the conditions (a), (b), and (c) consists exactly of locally quasi-affine
schemes. Thus quasi-affine schemes deserve a special attention.

7.1. Quasi-affine schemes and spectra of rings without unity. Let R be an
arbitrary  associative ring; i.e. not necessarily with unity. For any left ideal
m of the ring R, denote by <m> the set of all left ideals n of R such
that m does not contain neither n nor any of the ideals (n:y), where y €
P(R). The rest of the notions and results of this paper can be transfered on
rings without unity more or less straightforwardly (see [R1]). In paricular, for
an arbitrary ring R, one can define its left spectrum SpeclR with canonical

topologies and, given a topology, quasi-coherent (’structure’) presheaves.

7.1.2. Theorem. Let R  be an arbitrary associative ring, and let o  be a
two-sided ideal of R. The map p —— p O determines an isomorphism of the
open subscheme (Ul(a)’0R|U1(a))' where Ul(a)':“’ € SpeC[R[ p does not contain

o/, onto the bundle of localizations (Specla,oa).
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Proof. (a) Let p € Ul(a), and let m be a left ideal of o such that
(p:x) n o is not contained in p n o for any x € P(m). Then (p:x) is not
contained in p for any x € P{oum) Since owm is a left ideal in R and p €
SpeclR, om < p, and, therefore, o(R,m) < p, where (Rm):=Rm + m. The claim
is that (Rm) < p.

In fact, if it is not so, one can find z € (Rm) - p. The ideal (p:2),
which contains o (cf. the argument above), is equivalent to P ie.
((p:z):w) < p for some w € P(R). Thus, we have:

o c (oww) c ((pd)w) € p
which contradigts to the inclusion p € UI(OL).

(b) Now, let N € Specla. Set Hy' = {ze R | az < p). Clearly e is a
left ideal in R. Let m be a left ideal in R such that (ua:x) - Ky is not
empty for any x € P(m). By definition, this means that for any x € P(m) the-
re exists kx such that oclxx c 1L and alx is not contained in p. In parti-
cular, (p:x) n o is not contained in W for any x € P(om). This implies,
since U € Spectoc, that owm ¢ W; or, equivalently, m € He - Therefore My €
SpeclR.

(c)If w=pna forsome pe U[(a) then

By = {2 € Rl azcp] =p

On the other hand, He N & ={z € O (u:z)a = ). Therefore, since p €
Specla, we have the equality Ho N O = K. Le. the map p—— p n o deter-
mines a bijection Mo from Ul(a) onto Spec[a with the inverse map

Vo TR

(d) The map ey is continuous with respect to the topology 1",  since,

for any two-sided ideal [ of the ring «, we have:

Bcuyp):=pnal e lopcpl

(e) The map u is open.

In fagt, it scnc(iz the open subset U[(a') N Ul(oc) of Ul(o'.) into the open
subset U? (’'n o) of Spec JO Thus, e, is @ homeomorphism.

(f) Tt is easy to check that, for any localizing filter F of the left
ideals of the ring R, which contains the ideal o, the set Fo = [mpno [ m
e F} is a localizing filter of the left ideals of .  Since Fa is a cofinal
subset of F, the F-torsion FM: = {z € M| mz = (0} for some m € F}] of an
arbitrary R-module M coincides with its F a-torsion. Besides,

HomR(M',M") = Homa(M',M")
provided the {o-torsion of the module M" is zero.
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Therefore we have (cf. 0.3):
GF(M) = colim{HomR(m,M/FM)| me F] = colim{Homa(m',M/FaM)l m'e Fa} = BFG(M).

This implies that the homeomorphism iy, induces an equivalence of the ca-
tegories of quasi-coherent presheaves and, therefore, sheaves, on Ul(oc) and
Spec i respectively. In other words, e induces an isomorphism of bundles of
localizations (Ul(a)‘ORIU(oc)) onto (Specla,oa).l

7.1.3. Corollary. The bundle of localizations X is isomorphic to a left
quasi-affine scheme if and only if it is isomorphic to (LSpecR,0p)  for some

associative ring R (without identity element in general).

Proof. In fact, any associative ring R is a two-sided ideal of the ring
R" generated by R and an element e (unity) which satisfies the relations:
e2=e, ex = x for any x € R.
Now the assertion follows from Theorems 7.1.2 and 5.3. =

7.1.4. Local algebra setting for quasi-affine schemes. Let (X,0) be a left
affine (or any other) scheme given by a local algebra data
(X,Qx: oX) — 0| x € X)
(cf. Section 7.0.3). Then, any open subscheme of (X,0) is given by
(“’Qx" oy — 0| x e u),
where U is an open subset of X and O(Y} is equivalent to the quotient ca-

tegory O(X)/<uU>, <U>:'= n Keer.
xely
If O(X) « R-mod, then <U> 1is the full subcategory of R-mod generated

by all modules with support contained in the closed subset X-U.

7.2. Left projective spectrum. We begin with some generalities on the graded
left spectrum.

7.2.1. Graded spectral theory. Let H be a commutative semigroup; and let R
be an H-graded ring. Denote by H-SpeclR the subset of SpeC[R formed by
H-graded ideals. Similarly, we define the H-graded Levitzki spectrum of R,
H-LSpecR.

Denote by gnHIlR, or just anIR when it is clear (or does not matter)
what is H, the set of all homogenious left ideals in R. Clearly the
imbedding anI [R — I IR is a retract: the corresponding coretraction assigns
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to any left ideal m in R the left ideal h(m)} generated by the set of all
homogenious elements of m.

7.2.1.1. Lemma. The map h: I IR —_— anIlR induces a coretraction
Sh: SpeclR — anSpeclR.

Proof. In fact, let p € SpeclR. And let r € R-h(p). The latter means
that one of the homogenious components of r, say ry does not belong to p.
Since p is in the left spectrum, (p:rv) < p which means, by definition, that

((p.'rv):w) < p for some finite subset w of r . Let W be the set of

homogenious components of elements of w. We have:v
(p:Wr,) = ((p:r,):W) < ((p:r,):w) < p. (1)
Now, since er is the set of homogenious elements,
M(p:Wr)) = (h(p):Wr,). ()
Finally,
(h(p):r) < (h(p):r,). 3

Combining (1), (2), and (3), we get the inclusion:
((h(p):r):W) < ((h(p):r,):W) < hip)
which means that (h(p):r) £ h(p). This proves that h(p) € SpeclR. »

One can see that the (induced) Zariski topology on H—SpeclR has the set
of closed sets H-Vl(a).: H-Spec[R N V,(U,), where o  runs through the set of
H-graded two-sided ideals in R,

In fact, if V is a closed subset in Spec!R, then

V':= H-Spec V = HSpecR n V p). 4)
R fnvin,

Theorem 5.6 implies the following

7.2.1.1. Proposition. If o is a finitely generated homogenious two-sided
ideal, then the open set H-Ul(oc) is quasi-compact. In particular, for any
H-graded ring R  (not necessarily with unity) the space  H-LSpecR  has a base

of open quasi-compact subsets.

7.2.1.2. Structure sheaves of graded modules. Denote by F the forgetting
grading functor from the category anR-mod of H-graded left R-modules to the
category of left R-modules. Since the functor ¥ is exact and respects and
reflects colimits, the preimage of any Serre subcategory S of  R-mod is a
Serre subcategory of anR-mod., And we have a commutative diagram:
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, 1)
0 (
gryR-mod ———— gnR- mod/¥'s

F F’

R -mod s R-mod/s

Since %'s is a Serre subcategory of the Grothendieck category anR-mod,
the localization Q" has a right adjoint functor. And anR-mod/‘S‘"S is cano-
nically identified with a full subcategory of the category anR-mod. In parti-
cular, any object of anR—mod/?'lS is an H-graded R-module.

Now we describe all this in the language of rings, left ideals, and Gabriel
filters.

To the Serre subcategory S, we assign a QGabriel filter & = S¢ in the
usual way: 8:= [m € IZR| R/m e Obs]). The analogous operation with respect to
s’:= ¥'s gives us the set

g:= m e H—IZR| R/m e 0ObS'] = § p H-IZR,
where H—IIR denotes the set of H-graded left ideals in R.
Fix an H-graded R-module M. For any H-graded module L, we have a well
defined "inner hom"
RomR(L,M):= @heHJ{omR(L,M)h.
Here }famR(L,M)h consists of all R-module morphisms f: L —— M of degree #h
ie. ﬂLr) c Mh+t for all r e H. Thus, we have an H-graded Z-module
He(M):= colim(?famR(m,M)| me g). 2)
And one can show that ‘Rg,(M) has unique structure of H-graded R-module
compatible with the structure of R-module on
H (M) = colim(HomR(m,M)I me 8 (3)
(cf. 0.4). The compatibility means that the Z-module morphism from ‘.‘Rg,,(M) to
‘Hg(M) induced by the compositions of Z-module morphisms
RomR(m,M) — HomR(m,M) and HomR(m,M) — ‘Hg(M), me g,
is an R-module morphism. The map ‘Jfg,(M) is functorial in M. So, we have a
well defined functor

+

Her! anR-mod e anR-mod. (4)
The functor Bg,:= Rg,o}fg, is the Gabriel functor of the localization at
the Serre subcategory §°  (or, what is the same, at the filter §); ie. G/

is isomorphic to the composition Q™-Q" of the localization Q" at 8  with
its right adjoint.
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Moreover, for any H-graded module M, there is a canonical H-graded action
Hpg lBEé,,R ® Gg”y_j . Gg,M (5
such that Hp is an H-graded associative ring structure and Hag is a structure
of an H-graded Bg,R-module. Of course, this structures are defined uniquely by
the compatibility condition with the corresponding non-graded  structures (cf.
Section 0.4).

7.2.2. Left projective spectrum. Let now R be a Z 4-graded ring; and let R 4 de-
note the (direct) sum of all components Rn’ nzl

By analogy with the commutative case, denote by Projl(R) the open set

an[(R+):= UI(R+) N gnJIR = {p e SpeclR| p does not contain R+} N qn.[lR
of the graded left spectrum of R.

Note that, thanks to Theorem 7.1.2, we can identify UZ(R +) with  Spec

But, we are not going to use this identification here.

[R+.

Now, to any open subset U of U[(R +), we assign the localization
[0 <U> anR-mod — qan-mod/<'u>

at  <U>'=p <p> (in the sense of 7.1.1). Thus we have defined a bundle of
peU
localizations which we denote by Proj l(R)‘

Clearly Projl(R) can be given by a local algebra data:
Proj (R) = (X,Qx: oX) — 0] x € X),

where X = Proj[(R); the category O(X) of structure presheaves is equivalent
to anR-mod/<U[(R +)>; Qx’ x € X, are localizations at points of the (homoge-
nious) left spectrum.

For any U ¢ anpec[R, consider the composition P'u of the fully faithful
imbedding

anR-mod/<'Lt> —_— anR-mod

and the functor

PO: anR-moa' —_— Ro-mod (D

which assigns to any Zz-graded module (respectively graded module morphism) from
anR-mod/<‘u> its zero component.

7.2.2.1. Lemma. Let the ideal R + be generated by Rl. Then, for any subset U

of U Z(R + ), the kernel of the functor
Py anR-mod/<u> —— R -mod

consists of all modules M = @ Mn such that Mn =0 foral n<0.
nef

50



Proof. f U < U, then P.u is the composition of the fully faithful fun-
ctor g R-mod/<U> —— qan-mod/<'U'> (full faithfulness is due to the fact
that this functor is right adjoint to a localization; cf. [GZ], Chl) and P

Therefore, it suffices to prove the assertion in the case U = U [(R +).

ul.

Since the functor P,u has a left adjoint, it is left exact. This implies
that the faithfulness of P,u is equivalent to the property:
for any object M, P,u(M) =0 iff M = 0.
Let M be a graded module from anR-mod/<‘u> such that Mo = . Then,

for any n 2 1, RlnM_n = 0. Since Rl generates R+, this implies that & M
n<o
is an R-submodule of M  which is [R+]-t0rsion. Since <U> D [R+], it is also a

<U>-torsion. But, all objects of anR-mod/<U> are <U>-torsion free. Therefore

&M =0, ie. M=€BMn. s
n<og " n2i1

Fix a set § of elements in R  satisfying the left Ore conditions; ie. for
any s € § and r € R, there exist s € § and r € R such that ~#s = s'r.
Let Ug denote the subset of all p € SpecR  such that p n S = . Or, equi-
valently, US = SpeclR - FS’ where FS = [/m e 11R| (m:x) n § = &). Since, by
Lemma 0.3.2, FS is a radical filter, the set US is closed in the topology 7T
(cf. Section 1.10.1).

Suppose that § above consists of homogenious elements, and some of them
are of positive degree. Then anS is, obviously, a subset of U[(R +).

7.2.2.2. Lemma. Suppose that R + is generated by Rl. And let S be a left

Ore subset of R v U g anS. Then the functor PU" anR-mod/<‘u>  — Ro-mod
is faithful.

Proof. a) The functor P,u i1s (isomorphic to) the composition of a fully

faithful functor anR-mod/<‘U> S gnZR-mod/<US> and the functor

PUS: qan-mod/<US> — Ro-mod.
So, it suffices to consider the case U = US'

b) According to Lemma 7.1.2.1, the kernel of PU consists of all modules
M from anR-mod/<u> such that Mn =0 for n <O
Since M € ObanR-mod/<‘u> the canonical (graded) morphism M —— an <'U>M

is an isomorphism. This implies that M —— GFM is an isomorphism for any ra-
dical filter F which is contained in <U>. Note now that F s S <U>. And, due

to the Ore conditions, Cp M =« S"R®RM, where the tensor product is the graded
S
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tensor product. But, if M # 0, the graded module S"R@RM has nonzero negati-
ve components which contradicts to the existence of a graded isomorphism from M
to STR®M. =

7.2.2.3. A special case. If U = US in the conditions of Lemma 7.1.2.2, then
the Gabriel functor & <U> is isomorphic to Mr—— S'1R®RM, and the quotient
category gnZR-mod/<U> is equivalent to the category qnlS—IR-mod. One can see
that the forgetting functor an_'R-mod e Ro-mod is the composition of the
functor

F: gnS ' R-mod ——s (S"'R) -mod (1
(the zero component of a graded S™'R-module is an (S_IR)O-modu]e) and the ’pull-
back’ functor

(S"'R) -mod —— R -mod.

The functor ¥ is right adjoint to the functor AF:= S 'R®, -1 of gra-
(S'R), &

ded tensor product; and one can see that the adjunction morphism

Id —— 3%
is an isomorphism which means that ¥ is a fully faithful functor. Therefore
the functor & is a localization ([GZ], 1.2). But, ¥ is faithful. And the on-
ly faithful localizations are equivalences of categories.

It remains to notice that US is naturally homeomorphic to the left spect-
rum of the ring (S”'R-mod) .

All together shows that the structure of the projective spectrum of a gene-
ral associative ring over the open sets US is the same as in the commutative
case.

Suppose there is a family €  of finitely generated left Ore subsets of ho-

mogenious elements in R + such that Prole = U Ug The sets US are open in
SeQ
the topology (induced by) T* (cf. 1.10.3). And the restriction of the bundle

of localizations to each US i1s equivalent to the bundle of localizations of
((Specl(S_lR)O,‘c*),O) (cf. Example 7.0.3.1(a)).

For Proj to be locally affine, we need a stronger requirement. Suppose that
there is a set E of elements in R_ such that  Ru is a two-sided ideal for
any u € Z. This implies that, for any u € Z, the multiplicative system (u)
= {un| n 2 0} is left a Ore set. Clearly U’(Ru) c UI(R+) for any u € EZ=.

Suppose that the (Zariski open) sets an[(Ru), u € E, cover gn,Ul(R +).
Then Proj [(R) is locally affine. Explicitly, the restriction of Proj[(R) to
an[(Ru) is isomorphic to the Zariski bundle (Spec[((u)'lR)O,'tzar),O).
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If we consider Zariski topology, it is better to replace Projl(R) by the
corresponding Levitzki spectrum LProj[(R) = (X;Qx:O(X) — Ox| X € X), where,
this ttme, X = LProj(R):= anU(R+); oX) = qan-mod/<U[(R+)>; and Qx 1s a
localization of gnZR-mod at the Serre subcategory generated by all modules M
such that the annihilators of nonzero elements of M do not contain x.

7.2.2.4. Example. Let R be a ’quantum space’, ie. an algebra over a field &
generated by the indeterminates X 0<i<n, subject to the relations:
XX, = . XX (l)

i iy
where  0<ij<n, and g¢q,, € k* for all i, j. Taking the standart grading, we

define the LProj ,(R). Cl%ar]y the ideal in is two-sided for all i. Therefore
LProjl(R) is locally affine. And the restriction of LProjl(R) to LU(Rxl.) is
isomorphic to the affine scheme of the ring generated by the indeterminates Zj
= xj/xi, 0<j<n, j # i, satisfying the (following from (1)) relations:

zf:m - (qmijmqji-l)zmz' . )
Osjmsn, j#i*xm =

7.2.3. Serre’s theorem. Recall the description due to Serre of the category of
quasi-coherent sheaves on X = Proj(R), where R is a Z +—graded commutative
noetherian ring generated as an Ro-a]gebra by RI:
The category  Qcoh(X)  of quasi-coherent sheaves on X  is equivalent to
the quotient category of anR-mod by the Serre subcategory S + spanned on mo-
dules having finite number of nonzero component.
We shall see in a moment that there is a natural generalization of Serre’s

theorem to the noncommutative setting.

Note that the category S + in the Serre’s theorem 1is exactly the minimal
Serre subcategory containing all graded modules annihilated by the ideal R +
In other words, S is the Serre subcategory corresponding to the minimal radi-
cal filter [R +] containing R + The Serre’s theorem holds if and only if

[R+] = <UI(R+)>‘ Recall that the category <UI(R+)> is generated by all
Z-graded R-modules M such that Supp(M) c V[(R+):= {p € Spech| R+ c p}, or,
what is equivalent, by those graded modules M for which grSupp(M) < anl(R +).

We have the following analog of Lemma 6.5.4:

7.2.3.1. Lemma. Suppose that the ring R is such that any nonzero graded R-

module has an associated point. Then, for any radical filter F in g0 [R the
Serre subcategory Sg is generated by all graded modules M  such that Supp(M)
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is contained in F.

In particular, the filter [R+] coincides with <UI(R+)>'
Proof repeats word by word the proof of Lemma 6.5.4. u

A sufficient condition for nonzero modules to have associated points is the
following version of noetherian property (cf. Lemma 6.5.6):

(Max<) Any nonempty set of graded left ideals in R has a maximal element
with respect to <.

If R is commutative, the property (Max<) says exactly that R is noethe-
rian which gives immediately the Serre’s theorem.

But, in the noncommutative case, the class of <-noetherian rings was not
properly studied yet, and there are no known methods of checking weather a ring
is <-noetherian or not.

The situation with the using Lemma 7.23.1 directly is a little bit better.
For instance, one can show that nonzero modules over a quantum space (cf. Examp-
le 8.2.4) do have associated points.

7.2.3.2. Note. The Serre’s theorem (or equivalent to it description of the cate-
gory of coherent sheaves on X as the quotient of the category of noetherian gra-
ded modules by the subcategory of noetherian modules with finite number of non-
zero components [S]) is taken usually as a definition of the noncommutative pro-
jective spectrum (see [A], [M], [SmT], [Sm]). As Lemma 7.2.3.1 and the following
discussion shows, the adopting such a definition means even more than just rest-
ricting to the noetherian case.

One of the advantages of our approach is that it does not require noetheri-
an hypothesis of any kind. =

APPENDIX: PRINCIPAL IDEAL DOMAINS, THE QUANTUM PLANE.

We consider here two simplest examples of computing the left spectrum. The
first of them (principal ideal domains) proved to be very useful, the second one
(the quantum plane) is ruther an illustration. The reader who is interested in
real life’ applications of the developed here (and in [R6]) spectral theory to
the study of representations of algebras of mathematical physics is invited to
look into [R3], [R4], and [RS5].
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A.l. The left spectrum of a principal domain. Recall that a ring R is called a
left and right principal ideal domain if R is a ring without zero-divisors
such that each left and right ideal of R is generated by one element.

A.1.1. Proposition. Let R be a left and right principal domain. Then every
nonzero ideal from Spec[R is equivalent to a left maximal ideal. Every left
maximal ideal of the ring R is of the form Rf, where f is an irreducible

element of the ring R.

Proof. Let p € Spec[R. Since R is a left principal ideal domain, p =
Rf  for some element f € R It is easy to see that the absence of zero-
divisors garantees that the right ideal fR is proper.

In fact, if fg = 1 then (i1-¢f)g = g(i1-fg) = 0; therefore, ¢gf is also
equal to 1; ie. p = Rf = R

Being a proper ideal, fR is contained in a right maximal ideal . Since
R is a right principal ideal domain, p = gR for some irreducible element ¢
of the ring R. The inclusion fR ¢ gR means that f = gh for some h. Note
that h ¢ p.

Indeed,

[hepl] e [h=HK forsom fe Rl [¢gh =1]e [L=¢gR=R]
Since p € SpecIR and h ¢ p, the left ideal (p:h} is equivalent to p.
Clearly Rg < (p:h). But Rg is a maximal left ideal (thanks to the irreduci-
bility of g@); hence Rg = (p:h)m

A.1.2. Lemma. Let R  be a left principal domain. Then every radical filter of
left ideals is of the form F S for some Ore multiplicative subset S.

Proof. Let F be a localizing filter of left ideals. Denote by § the
set of all the elements ¢+ € R such that Rt € F. Since R is a left ideal
principal ring, (Rt:x) = Rr; ie. for any ¢ € S and any x € R there exist
y € R and (e § such that ¢x = y. The second Ore condition - if sa = 0
for some s € S then there exists s'€ § such that as’ = 0 - holds automati-
cally.

It remains to show that

if s,te S then ste S; ie Rste F.
In fact, for any element x = at of the left ideal Rt, we have:
(Rst:x) = ((Rst:t):a) 2 (Rs:a).
Since (Rsca) € F for any a € R, then (Rstx) € F for any x € Rt
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Therefore Rst € F. m

A.1.3. Topology t,. If a ring R is such that SpeclR/z coincides with
Male/z, then, obviously, a subset of Spec[R/= is closed in the topology T,
(cf.  L1.10.1) if and only if it is finite. In particular, this gives the
description of T, when R is a left and right principal ideal domain.

A.1.4. Proposition. Let R be a left and right principal ideal domain such that
every nonzero element of R is the product of a finite number of irreducible

elements. Then the topologies T and 1T, coincide.

Proof. Clearly, for an arbitrary ring R, every closed in the topology T,
subset of SpeclR is also closed in the topology T. To prove the inverse
inclusion, it is sufficient to show that, under the conditions of the
proposition A.1.4, each set of the form Vl(m), for an arbitrary left ideal m
of R, consists of a finite number of equivalence classes.

Since R is a principal left ideal domain, m = Rg for some element ¢
of the ring R. Consider the decompositon of ¢ into irreducible factors: ¢
= ¢y To this decomposition, there corresponds the sequence of monoar-
rows

R/Rg »— R/Rq(2)>—-—a >—> R/Rq,(n-])>—> R/m (D
where q(v): = @Gy

Clearly

(R URRG™) = RRg,

is an irreducible module; i.e. (1) is a Jordan-Helder decomposition.
Now, note that the closed subset V[(m) coincides with Supp(R/m); and
Supp(R/m)= U Supp(R/Rgq.)
1<i<sn !
But Supp(R/qu) is the equivalence class of the left maximal ideal qu .
Therefore V[(m) consists of no more than n equivalence classes.

A.1.5. Localizations at points. Let p € Max[R; ie. p = Rg for some irredu-
cible element g. The localization at <p> = <Rg¢g> can be obtained by inverting
all the irreducible elements of R, which are not equivalent to g. ‘

A.L.6. Localizations at open subsets. Now, let U be an arbitrary open subset

of SpeclR. By Proposition A.1.4, U = SpeclR -V, where V = U XVZ(Rq) for
g €
some finite set X  of irreducible elements of the ring R.  The localization
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at the open subset U is the inverting of all the elements ¢, ¢ € X.

A.2. Left normal morphisms and quantum plane. Let &k be a field. The quantum
plane is the k-algebra

k[x,y]q= k<x,y>/xy - qyx),

where k<x,y> is the associative k-algebra freely generated by x, .

A.2.1. Left spectrum of k[x,y]q. Fix a left ideal p in Speclk[x,y]q. There
are the following possibilities:

(a) p contains a nonzero polynomial in x;

(a’) p contains a nonzero polynomial in y;

(b) pnkix] = {0}

¥) p n kvl = {0},

Consider each of these alternatives.

(b') Consider the localization k[x'y](} of the algebra k[x,y]q at the
set  kfy] - {0} of all the nonzero polynomials in y. This localization sends
the ideal p into the ideal p° from Speclk[x,y](']. Now, note that the ring
k[x,y]('} is an euclidean domain. In particular, k[x,y]"] is a ring of left and
right principal ideals. This means that Speclk[x,y]"? consists of the principal
ideals generated by irreducible elements of k[x,y](’].

In particular, p° = k[x,y](’{-h for some irreducible element h of the
algebra k[x,y]"l .

(a) and (b'). The natural embedding kix] —o k[x,y]q is a left (and
right) normal morphism (cf. 3.). In particular, the intersection Ps= PN kix]

is a prime ideal of the ring kix], ie. P, = kixJf(x), where f(x) is an
irreducible polynomial. Clearly f(x) is an irreducible element of the ring
k[x,y](’{. Therefore the irreducible element h (cf. (a)) is equivalent to f;

ie. p = k[x,y]t'l-f.

(a) and (d’). Then the ideal P contains irreducible polynomials f(x)
and ¢(y). In the commutative case, when g¢g=1, every pair of irreducible poly-
nomials,  <f(x),g(y)>, defines a maximal ideal of the ring k[xy]. It is not
so in the noncommutative situation.

Suppose that the field & is algebraicly closed. Then f(x) = x - ¢ and
¢(y) =y - d for some elements ¢, d of k . The ideal p contains, together
with f and g, the elements

y(x - ¢) =qgxy -cy and xy - dx.
This implies that the element gdx - ¢y  belongs to p.  And, therefore, the
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element
qdx - cy - qd(x - ¢) + c(y - d) = (q - )cd
belongs to p. Since the ideal p is proper, (g - t)ed = 0; ie. either ¢ =
0 or d = 0 or both of them.
(b) and (b’). Then p = phzk[x,y];]-h N k[x,y]q , Wwhere A is an irredu-
cible element of the ring k[x,y](’l ,  which is not equivalent to any polynomial
in x orin y.

A.2.2, The topology ™ and 1T on Speclk[x,y]q. Every proper closed subset
of (Speclk[x,y]q,‘t") is a finite subset of the cross lx U ly’ where

L=((c0)] ¢ € k. 1 = ((od)] d € k.

The topologies 1t and 1, coincide. Moreover, every closed in the topo-
logy T  subset of Speclk[x,y]q is a finite union of the specializations of
the points; i.e. the sets s(p), p € Speclk[x,y]q.
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