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NONCOMMUTATIVE AFFINE SCHEMES.

Alexander L. Rosenberg

INTRODUCTION

The purpose of this work is to introduce the basics of noncommutative affi­

ne algebraic geometry. In other words, we consider here facts which are natural­

ly expressed in the language of rings, ideals, and modules, without using cate­

gorical approach (as in [R6]).

Section 0 contains preliminaries about Gabriel localizations.

Section 1 presents the first notions and facts of the noncommutative local

algebra: the left spectrum, localizations at points of the left spectrum, cano­

nical topologies, supports of modules.

In Section 2, we prove the 'stability' of the left spectrum under localiza-

tions.

Section 3 IS concerned with functorial properties of the left spectrum. If

f' A --7 B is a generic associative ring morphism, the prelmage of an ideal

from the left spectrum of B does not belong, In general, to the left spectrum

of A.

A standart way to handle this

ring morphisms which respect the left

important cIasses is the cIass of left

others central extensions.

situation IS to single out the cIasses of

spectrum. One of the (practically) most

nonnal morphisms which contains among

description of the related to the left

the intersection of all ideals of the

fact is that this radieal equals to

spectrum radieal which IS, by definition,

left spectrum. A surpnslllg and important

one of the cIassical objects of ring theory:

Another way which proved to be much more important for applications (cf.

[R3], [R4] , [R5]) is based on the observation that any nng morphism

f' A -----? B
induces a correspondence - a map from the left spectrum of the ring B into the

set of subsets of the left spectrum of the ring A. In commutative case, tbis

correspondence coincides with the preimage map.

The central fact of Section 4 is the

Theorem (4.10.2). The intersection of all ideals of the left spectrum of a ring

coincides with the biggest locally ni/potent ideal (Levitzki radical) of this



ring.

One of the consequences of this theorem is that the (introduced in Section

I) Zariski topology of the left spectrum of an arbitrary associative ring has a

base of quasi-compact open sets. This fact is established, among others, in Sec­

tion 5.

Section 6 15 concerned with structure (pre)sheaves on the left spectrum.

The central result 15 the reconstruction theorem (6.2) which, in eommutative

ease, implies the equivalenee of the eategory of modules over a ring and the ea­

tegory of quasi-eoherent sheaves on the speetrurn of the ring.

In Seetion 7, the noneommutative quasi-affine sehemes and the projeetive

spectrum are introdueed.

Finally, we eonsider a eouple of simplest examples. First, we describe the

left spectrurn of a left and right principal ideal domain (this happens to be

useful for all examples). This description is applied then to produce the spect­

ral pieture of a generic quantum plane over an algebraically closed field. For

'real' applications, areader is referred to [R3], [R4], and [R5].

O. PRELIMINARIES: LOCALIZATIONS AND RADICAL FILTERS.

R be an associative fing with unity, I[R

an arbitrary left ideal m of Rand a

(m:w):= {z E R I zw c m}. Tt is easy to see

ForR.the set of left ideals of

0.1. Conventions and notations. Let

subset w of elements of R, set

that (m: w) is a left ideal as weil.

For any Z-module V, the symbol P(V) will denote the set of all finitely

generated Z-submodules of V.

Note that if x, y E P(R), then .xy and x + y also belong to P(R).

The following relations are going to be used a lot:

(m:yx) = ((m:x):y) and (m:x+y) = (m:x) n (m:y)

Jor any leJt ideal m and Z-submodules x, y in R.

0.2. Multiplication of filters. Denote by jil-R

peet to inclusion) of left ideals in the ring R.

cation, (F, G)~ F0G, on Jil-R as folIows:

F0G = U F0{m}
m E G

the set of filters (with res­

Define the Gabriel multipli-

where

F0{m}:={n E lfl (n:w) E F for any w E P(m)}.

2



0.3. Radical filters. A filter F

dical filter if F0{R} = F = F0F.

tent topologizing filter.

of left ideals of a flng R is called a ra-

Other names: a Gabriel filter, and an idempo-

0.3.1. Example: filters FS Let S be a subset of peR). Denote by F
S

the

set of a11 left ideals m in R such that P((m:x)) contains elements of S

for any x E peR).

Call a subset S ~ peR) a mulliplicative system (or set) if st E S for

any s, t E S.

0.3.2. Lemma. For any multiplicative system S k; peR), the set FS lS a radi-

cal filter.

has

since

y

x E P(rn).

such that sy

S such that

Proof a) If m E FS' then (m:x) E FS for any x E peR),

((m:x):y)=(m:yx) for any y E peR); and therefore P(((m:x):y)) n S ~ 0.

b) Let m E FSand n E F:;0{m}; l.e. (n:x) E FS for each

Take an arbitrary y E P(R). Since m E FS' there exists SES

E P(rn). Therefore (n:sy) E FS" [n particular, there exists t E

t(sy)=rsy c n; or, equivalently, rs E P((n:y)). Since rs E Sand

been chosen arbitrarily, this means that n E FS' •

called equivalent if

It is possible to

(the largest In a

particularly nice

modules over an

0.4. Flat localizations and radical filters. A flar localization of an abelian

category A 1S an exact functor, Q:.il ~ 73, which has a fully faithful

right adjoint J: 13 ~ s4. The category 'B here is called the quotient cate­

gory 0/ sd.

Localizations Q: sd ~ 'B and Q': A ~ 'B' are

there exists an equivalence T::B ~ 73' such that ToQ=Q'.

assign to any equivalence dass of localizations its canonical

certain sense) quotient category. This correspondence admits a

description in the case when A- is the category R-mod of left

associative ring R.

Let F be a radical filter. Denote by R-mod/F the full subcategory of

the category R-mod fonned by all the left modules M such that the canonical

map M ~ HomR(ln,M), which sends an element Z of the module M into the

morphism Tf--7 r'Z, is a bijection for any ideal m from the filter F.

On the other hand, for any R-module M, set

H'I.M):= colim{Ho11lR(rn,M) : m E F}

(morphisms in F are inclusions). The Z-module H'IM) possesses a natural
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(1)

requirement

structure (1)

structure, ~, of R-module which is uniquely determined by the property:

the canonical map 'tF , M .' M -----? H'IM) is an R-module morphism from M

to HIM):=(H'IM).~). Moreover, the map M f-+ HIM) is extended to a func­

tor HF: R-mod -----? R-mod such that 1p = {1F , MJ is a functor morphism from

Id to HF' Denote the square of the functor HF by ~F (- the Gabriel func­

tor), and set jr·=HF1 Fo 1F.

0.4.1. Theorem. (a) Let F be a radical filter. Thell the functor f3F takes va-

lues in the subcategory R-mod/F. The corestriction QF of the functor a3F

onto R-mod/F is a flat localization of the category R-mod, with the natural

inclusioll as the right adjoint functor.

/11 particular, an R-module M belongs to the subcategory R-mod/F if and

only if the canonical arrow jpi.M): M ) ~~ is an isomorphism.

(h) /f Q is a localization of the category R-mod. then the set FQ of

all the left ideals m such that Q(Rlm) = 0 is a radical filter.

(c) The map F f-+ Qp defines a bijection of the set of all radical fil-

ters of left ideals in the ring R onto fhe set of all equivalence classes of

flat localizations of the category R-mod. More explicitly. FQF = F. and the

localizatioll QFQ is equivalent to Q for any radical filter Fand allY loca-

lization Q.

For any M E ObR-mod/F and an element z of M, the action

·z: R --~) M, rl-I--) rz,

is extended uniquely to a morphism a3pR -------7 M - the composition of

~I·z): (J~ ) mpvt
and the isomorphism f3pvt -------7 M (cf. the assertion (a) of Theorem OA.l). The-

se morphisms define a map
Jl(M) : rnpR ® M -~) M

which depends functorially on M such that

Jl(GP!?): rnpR ® f3p? -~) rnpR (2)

is an associative ri ng structure; and Jl{M) is a left a3pR-module structure for

any module M from the subcategory R-modiF.

Note that the nng structure (2) IS uniquely defined by the

that j IR): R ) rnpR is a ring morphism; and the f3pR-module

is uniquely defined by the compatibility with the R-module morphism

JIM): M ) rB~.

Thus, there IS a functor fjr· R-mod/F ) rnpR-mod.
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R-mod/F IS naturally equivalent to the cate-

IS right ad)oint /0 the localization at the

in the ring «3p? such that the prei-m

0.4.2. Proposition. The June/or §'F

radical filter F' 01 all leJt ideals

mage )F- 1
(m) 0/ m belongs to F.

In particular, the category

gory «3~-mod/F'.

Proofs of Theorem 0.4.1 and Proposition 0.4.2 can be found In [BD] or In

[F,I], Chapter 16.

1. LEFT SPECTRUM.

1. Apreorder on the set of left ideals. Deftne a relation $; on the set IlR of

left ideals in the ring R a, folIows:

m $; n if (m:x) ~ n for some x E peR).

1.1. Lemma. The relation $; is apreorder.

Proof Let rn'$; m, and m $; n; I.e. (m':x) c m,

some x, y E peR). Then ((m':y):x) ~ (m:x) ~ n. But

xy E peR).•

and (m:y) ~ n

(m':xy)=((m':y):x),

for

and

1.2. Remark. 1t IS easy to see that if the ideal m IS two-sided, then the re-

lation m:::; n IS equivalent to the inclusion m ~ 11 (since In this case m c

(m:x) for any subset x ER). In particular, if the ring R IS commutative.

then the preorder $; coincides with the inclusion.•

l.e. if m E ~ and m:::;; n.

Call a set

with respect to :::;;;

of left ideals In R a uni/onu filter if it IS a filter

then 11 E ~.

1.3. Example: filters [mJ. With a left ideal m, one can associate the set

[mJ={n E llR I m :s; 11}. Obviously, (mi is the smallest among uniform filters

containing m.

It is easy to see that the filter [mi is topologizing.

In fact. if (m:x) ~ n and (m:y) ~ n' for some x and y from peR),

then (m:x+y) = (m:x) n (m:y) c n n n'. '.

1.4. Example: filters <m>. Given a left ideal m, denote by <m> the set IIR

- {n E llRI 11 :s; m}. It follows from Lemma 1.7.1 that <m> IS a uniform filter.

Clearly <m> is the biggest unifonn filter which does not eontain the ideal m.

1.4.1. Lemma. For any two leit ideals m, n in the ring R,
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In particular,

<m> = <11>.

m ~ n if and only if <n> ~ <m>.

111 is equivalenl 10 n wilh respeCI 10 :$ if and only if

Proof If m:S; n, then IIR - <m> ~ IZR - <n>; or, equivalently, <n> IS

a subset of <m>.

Conversely, the inclusion

m ::; n.•

implies, evidently, that

order IS isomorphie to the ordered

pair, Cl, ß, of two-sided ideals such

mare non-empty, then et, ß E <m> and

In other words, the associate with

set ({<m> j m E 11RJ,-:=J)

Note that, for a generic left ideal

eofilter. For example, if there exists a

that et n ß c m, but Cl - m and ß­
Cl n ß e <m>.

m, the filter <m> needs not to be a

1.5. Left spectrum. The Zeft speClrum, Spec IR,

left ideals p which have the following property:

(*) (p:x) :$ p for any x E R - P .

of the flng R consists of all

1.5.1. Note. Since, in commutative case, the relation :$ IS the inclusion (cf.

Remark 1.2), the left spectrurn of a commutative ring coincides with its pflme

spectrurn.•

The following lemma shows that the left spectrum is pretty ample.

1.5.2. Lemma. The left spectrum,

malleil ideals in Ihe ring R.

Spec/R, contains the set Max/R of all maXI-

Proof In fact, if n, 111 are left ideals 10 R such that the relation

(m:x) :s; 111 does not hold if x E n, then it does not hold if x E n + m. But

if m E MaxzR and n IS not contained in m, then n + In = R. In particular,

n + m contains the unity, I, of R. Clearly (111:1) = m :$ m. Hence, if In E

Maxt, then 11 c m. This means that m E Spec/R. •
1.6. CompJeteJy prime Jeft ideals. Call a left ideal p completely prime if

the set R - p is a rnultiplicative system. The set of eompletely prime left

ideals (completely prime speclrum) will be denoted by SpeCjR.

As a rule, completely prime spectrurn is much poarer than the left spectrum,

as one can see from the second assertion of the following lemma.
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is completely prime. The

Since (Jl:x) is a maximal

implies that (J.l:x) COln-

1.6.1. Lemma. 1) Spec'jR ~ Spec IR.

2) A leit maximal ideal m in the ring R is completely prime if and only

if m is two-sided.

3) /f every left ideal in the ring R is two-sided (e.g. R is commuta-

tive), then Spec[R = Spee IR.

Proo! 1) Note that left ideal Jl is eompletely prime if and only if

(J.l:x) c J.l for any x E R - Jl. This implies immediately that Spec'jR ~ Spee IR.

2) If m is two-sided, then m ~ (m:x) for each x E R. Therefore, if m

is a maximal left ideal, then (m:x) = m for any x E R - m' I.e. m belongs,

to SpecjR.

Conversely, suppose that a left maximal ideal

latter means that (Jl:x) ~ Jl for all x E R - Jl.

left ideal for any x E R, the inclusion (Jl:x) ~ J-l

eides with J-l. Therefore J.l is a two-sided ideal.

3) For two-sided ideals, the preorder ~ coincides with c .•

1.7. Remark. The difference between Spec!jR and Spec IR provides a number of

exampIes of radieal filters of the form FS (cf. Example 0.3.1), where S IS

not a multiplicative system.

In fact, for any p E Spec IR, the radieal filter <p> coincides with FS'

where S = R - p, and with F5' where 5 = P(R) - P(p). •

1.8. The prime spectrum and the left spectrum. Recall that the pTlme spectrum,

SpeeR, of R consists of prime ideals. A two-sided ideal IS called prime if,

for any pair of two-sided ideals, m, n, the inclusion mn c p implies that

either m ~ p or n ~ p.

1.8.1. Lemma. For every p ESpecf. the two-sided ideal (p:R) is prime.

Proo! Let 111, n be two-sided ideals such that m IS not contained In p,

but mn c p. Since the ideal m is two-sided, m E <p>, and, therefore,

(mn:x) E <p> for any x E P(n). This implies that 11 ~ p. Since the ideal n

is two-sided, and (p:R) is the maximal among the two-sided ideals which are

contained in p, the inclusion n ~ p implies that n k; (p:R) .•

1.8.2. . Remark. Weshall show later that if

SpeeR ~ SpeclR.

7
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lt is c1ear that

1.9. The left spectrum and the filters <m>. For each proper left ideal m in

the ring R, denote by m/l. the set

{r E R I (m:r) E <m>}.

IS a left ideal if and only if it is a

happens quite seldom that, for a glven left

left ideal.

proper left ideals m In the flng R for

IS a filter with<m>smce

<m>,(m:y) E

are such that

X E peR),

and

and

(m:xr).

Nevertheless, it

turns out to be am/l.

R.

Let [iR denote the set of all

which the following condition holds:

(,~") if the elements x. y of the ring R

(m:x) E <m>

l-submodule of

ideal m, the set

(a) m ~ m~R;

(b) xr E m/l. for any r E m/l.

'respect to ~, and (m:r) ~ ((m:r):x) =
It follows from (b) that m/l.

tlten (m:{x,y}) E <m>.

1.9.1. Proposition. 1) For any n E I?R, the set n/l. lS an ideal from SpecZR.

2) The following conditions on a proper left ideal mare equivalent:

(a) m/l. is a left ideal, and m/l. ~ m;

(h) the filter <m> is radical.

3) The following conditions on a proper left ideal mare equivalent:

(c) m = m/l.;

(d) nl E SpeclR.

Proof 1) Suppose that n E I?R; l.e., for any pair x, y of elements of

n", the ideal (n:x) n (n:y) = (n:{x,y}) belongs to the filter <n>. Since

(n:x) n (n:y) ~ (n:x+y),

the ideal (n:x+y) also belongs to <n>. This means that n/l. is c10sed under

the addition and is, therefore, a left ideal.

Let us show that n/l. E SpeclR. This fact IS equivalent to the following

condition:

If zER and (n/l.:z) E <n>, then ZEn.

1.9.2. Lemma. Let n Elf. and let w be a finite subset in R such that

(n/l.:w) is not contained in n/l.. Then (n:w) is not contained in n.

Proo! Suppose that (n:w) C 11. Then, for any x E (n:w)-n, the following

relations hold:
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(n:xw) = ((n:w):x) ~ (n:x) ~ n.

On the other hand, SInce xw is a finite subset from

<n>. Contradiction.•

n", then (n:xw) E

For an arbitrary zER, we have, by Lemma 1.9.2, the following implicati-

ons: [(n:z) E <n">] <=> [(n:xz) is not contained in n" for any finite subset

x In R] ~ [(n:xz) is not contained in n for any finite x c R] <=> [(n:z) E

<n>; i.e. ZEn"].

This is exactly what we wanted to prove.

2) (a) ~ (h). Given a left ideal n, we have:

[(m:x) E <m> for every x E n] ~ [n c m" (hy definition of m")] <=> [n ~ m (since

m"5: m by condition].

(b) ~ (a). Tt follows from the definition of rjR that any left ideal m

such that <m> is a topologizing filter belongs to IiR. Therefore, according

to the first assertion of this Proposition, m" E Spec,R. In particular, p" E

Spec,R if <p> is a radical filter. Moreover, since (p:x) E <p> for any x E

P(p") , the ideal p" does not belong to <p>; i.e. p":$; p.

3) The implication (d) ~ (c) follows from the definition of Spec,R. The

converse implication is obvious.•

RIn the ringm1.9.3. Corollary. rhe following properties of a left ideal

are equiva'ent:

(i) there exists an ideal p from Spec,R (md an x E P(R) such that

(p:x) ~ m c p (in particular m is equivalent to p);

(ii) the filter <m> is radical.

left spectrum. Define the specialization of a 'point' p

all P'E Specf such that p ~ p'. We are interested

compatible with specializatian, i.e. tapologies with the

1.10. Topologies on the

E Specf as the set of

only In the topolagies

property:

(s) the closure of a point p contains the set s(p) of all the speciali-

zations of p.

1.10.1. The topologies t and t*" Denate by 't the strongest topology satis-

fying ($). The closure of a set X ~ SpeclR 10 t is, evidently, the set

U s(p).
p E X

It IS easy to see that the set Open(t) of open In the topology 't sub-
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sets of Spec1- is closed under arbitrary intersections.

We denote by "C* the weakest topology with the praperty:

the closure 0/ a point p coincides with the set s(p)

fions.
oj its speciaUza-

The family of sets (s(p) I p eSpecf} is the base of the topology "C*.

1.10.2. The topology 't". Given a two-sided ideal a, denote by

set {p e SpeclRI a ~ p} and by Via) the set SpeclR - Via).

1.10.2.1. Lemma. Let Q be a subset 0/ the set IR 0/ two-sided ideals In the

rmg R' and let a, ß e IR. Then,

Vlsup{a'l a'e Q} = U V/a'), V/a n ß) = Via) n U/ß)
a'e Q

Proof 1) The first equality is equivalent to the equality

V!sup{a'l a'e Q} = n Vfa') ,
a'e n

which is obviaus.

2) Clearly Ula n ß) ~ Via) n U/ß).

On the other hand, if p e SpeclR and a n ß ~ p, but ß IS not

contained in p, then, for any x e ß-p, we have:

a c (a n ß:x) ~ (p:x) ~ p.

In particular, a ~ p. Since a is a two-sided ideal, this means that a ~ p.

Thus, we have checked that

Via n ß) ~ V/a) U VIß),

or, equivalently I

Lemma 1. 10.2.1 shows that the collection of the sets VIa), where a

runs through the set IR of all the two-sided ideals In R, forms the set of

open sets of a topology on Specf which we denate by "C".

The topology 1" is the less refined among reasonable topologies on the

left spectrum. It IS, obviously, trivial if the ring In question IS simple (Le.

has no nonzero proper two-sided ideals). For example, it is trivial if R is

the algebra of differential oPerators with palynomial coefficients. We shall

see, however, that the topology 1" has the most desirable for algebraic geome­

try property: it has a base of quasi-compact open sets.

1.10.3. The topology 't*. The topology t* is detennined by its base of closed

10



subsets which, by definition, consists of all sets of the form

V!m):={p E Spec/? I m ~ pi,

where m runs through the set of all the proper left ideals in the ring R.

The topology 't* is more refined, but, at the same time more capncious

than 't". However, it behaves itself properly when the ring has a finite Krull

dimension and in some other cases.

Clearly, if the ring R IS commutative, then both 't" and 't* coincide

with the Zariski topology. If it is cOInmutative and noetherian, then the topoJo­

gies 't", 't* and 't* coincide.

1.11. The support of a module. The support of an R-module

Supp(M) of all p E SpecIR such that t <p>M ":t O.

M is the set

Since the kernel of the canonical module morphism
. . M M

J<p>=J<p>.M: ---? ~<p>

coincides with the <p>-torsioll, <p>M={~ E M I Ann(~) E <p>}, and the canonical

map G M~ GJ< >(MI<p>M) IS an isomorphism, the support of M can be des-<p> p
cribed as the set

.{p E Specf-I <p>M":t M} = (p E SpecjR I Ann(~) ~ p for some ~ E M}.

Clearly the set Supp(M) is closed in the topology 't for any module M

(cf. 1.10.1).

If M is a finitely generated R-module, then Supp(M) 15 closed In the

topology t* (cf. 1.10.3).

1.11.1. Lemma. Supp(M) = 0 if and only if M = O.

Proof I) Clearly Supp(M) = 0 if M = O.

2) Let M":t 0, and Jet ~ be a nonzero element of M. Then Ann~ = {r E

R I r~ = O}, being a proper left ideal in R, is contained in some left maximal

ideal, say I.t. In particular, Ann~ e <Jl>; Le. ~ e <Jl>M. Since Il E Spec/R

(cf. Proposition 1.4.1), this shows that 11 E Supp(M).•

1.11.2. Proposition. 1) I/
o ------? N ------? M ------? L ------? 0

is an exact sequence 0/ R-modules. then

Supp(M) = Supp(N) U Supp(L).

11



2) If M is the sum of a family {Ni I i E J} of its submodules, then

Supp(M)= U Supp(M .).
i E J l

Proof 1) Clearly SuppeN) ~ SuppeM).

Let ~ E L, and let ~' belangs to the preimage of the element ~ In M.

If P E SpeclR is such that Ann~ e <p>, then, obviously, Ann~' e <p>. Thus,

Supp(L) ~ Supp(M).

It remains to show that there is the inverse inclusion:

SuppeM) ~ SuppeN) U SuppeL).

In fact, sinee the funetor OJ <p> is left exaet, the sequence

(;<p>N 'i= 0,

P belangs

Iffi-U SuppeM.) ~ SuppeM) IS obvious, as weil as the
i E J l

plication: [<p>M:;:. M} => [<p>M i 'i= Mi for some i E J}.•

is exacL Therefore, if P E Supp(M), l.e. f3 <p>M 'i= 0" then either

or rn <p>L :;:. 0. In the first ease, p E SuppeN), in the second case

to Supp(L).

2) The inclusion

1.11.3. Corollary. FOT any family ID of R-modules,

Suppe EB M) = U SuppeM).
MeID MEID

2. LOCALIZATIONS AND THE LEFT SPECTRUM.

2.0. Preorders (IzM,'5:) and localizations. Let Rand B be associative

rings. Fix an (R. B)-bimodule M. Denate by (If1' '5:) the set It'f of all the

R-submodules of M with the prearder ~ whieh is defined as folIows:

N ~ N' if (N:b):={z E MI zb c N) ~ N' for some b E P(B).

Clearly if M 15 the (R. R)-bimodule R, then the preorder (lft/,~) eoin-

eides with IIR = (1IR,'5:).

Every funetor IF: R-mod ) RJ -mod defines uniquely the funetor BIF

from the eategory (R,B)-bi of (R,B)-bimodules inta the eategory (R',B)-bi

af (R',B)-bimodules. In partieular, to the funetor f3F' there corresponds the

functor BrnF'

2.1. Proposition. Let F be a radical filter of left ideals in the

and let M be an (R,B)-bimodule. Then, for any R-submodule N of M

ring R;

and any

12



b E P(B). we have: GIN:b) = (f3~:b).

Proof Let bEB be an arbitrary element in B, and ·b the action of

b on M. For any R-submodule N of M, the square

N --------4) M

r I-b

(N:b) ---~) M

(I)

In which the horizontal arrows

tor

square

is left exact, it

are the embeddings, IS cartesian. Since the func­

sends the cartesian square ( 1) into the cartesian

rn~ ---~) rn~

r r -b

IJ3p (N:b) ----4) rnpvt

Therefore G-IN:b)=(1J3FJ:b).

Now, let b'E P(B) and {bi I i EI} be a finite set of generators of b'.

Thanks to the left exactness of f3F' we have:

G....JN:b') = IJ3F( n (N:b.)) = n G-iN:b.) = n (1J3..JV:b.) = (rn..JV:b').•
1'1 . J I . I 1'1 I . I 1'-' I 1'- .

IE IE IE

2.2. Corollary. The functor Brnp detennines a morphism

of preordered sets.

2.3. Corollary. (i) For every radical filter F of the left ideals In

map m f----------7 [;~. m Elf~' is a morplzism

(lfP?,5:) ) (lfP?,5:)

of preordered sets.

(ii) The map n f----------7 [;pt. n E I[R, is a morphism

(I[R:5:) ) (If~.5J

of preordered sets.

R. the

2.4. Note. If N is an R-submodule of [;~, then IJ3pfJJ;:MN)) is canonically

identified with G~.

Indeed, by definition, the square

13



N ------.) f,~

r r JF,M
- [

Jp,M(N) )M

is cartesian; and {iF transfonns cartesian squares into eartesian

particular, the arrow O3p i: f3!-JF,'AlN)) ---4)' 03~ is an isomorphism.•

2.5. Proposition. Let F be a radical filter in IIR. Then the map

ml----4 f,pn. m Eil.
sends the ideals from Spec1 - F into the ideals from Specf p?

squares.

(I)

In

Proo! Let p E Specl - F, n E 1f'P?; and (03 pJ:X) IS not contained in

03pP for each x E P(n). In partieu lar, (~pp.jF R(x)) is not contained In
- I '

O3fP for any x from P(jp,R(n)). But, aecording to Proposition 2.1,

for any x E P(R). Therefore the ideal (p:x) is not contained in p
- I - I

X E P(jF,R(n)). Since p E SpeclR, this implies that JF,R(n) c p.

have come to the inclusions (cf. Note 2.4)

n k; f3FUj;:R(n)) = f3[1l c f,pP'

Hence G3p} E Specf p? •

2.6. Proposition. Let p'E Specf~' and P:=Jj;:R(P') e F.

Then p'=03fP'

for any

Thus, we

Proo! By Note 2.4, P'k; GfP. Our task is to prove the inverse indusion.

Suppose that (p';x) ~ p' for some x E P(G3pp). Then there exists a left

ideal m E F such that j pfm)x ~ j pp) c p'. Since p e F, the set j pfm) ­

p' is non-empty. By condition, p' belongs to Specfp? Therefore (p';y) ~

p' for any element y in Jlm) - p'. In particular, O3pp':y):f. f3~.

Thanks to the indusion (p';x) ~ p' and the equality ((p';x):y) =(p';yx) ,

this implies that G3pp':yx) ::/:. 03~. But yx c p', and, therefore, f3pfp':yx) =
a::;~. Contradiction.

Thus, for any x E P(03pp) , the ideal (p':x)

Since p' E SpeCIG3p?, this implies that GfP c p'.•

IS not contained 10
,

p.

2.7. Lemma. Let F be a radical filter 01 leit ideals in R; and let p be a

14



left ideal in R

Then the ideal

such that is a completely prime left ideal of a3~.

is completely prime.

PF := j"F: R(rBPJ) = (r ER) (p: r) E F}

Proof If y E R - PFund x E R, then

[yx E PF1 ~ Upry)jprx) E tPJ} ~ Ulx) E IßPJ (since a3PJ lS cOlnpletely prime

and j Iy) <e GFP)} => [x E PF}' •

2.8. Corollary. If the ring R is commutative (or, more generally, all the left

ideals in Rare two-sided), then, for every radical filter F, the map

m 1-----7 a3F'l detennines a bijeetion of the set SpeeR - F onto the set 0/ prime

ideals p' of GpR such that }F:R(P') e F.

Proof By Proposition 2.6, p' = rBj7P' where p = }"F:R(P'). By Lemma 2.7,

the ideal p is prime. The rest follows from Proposition 2.5.•

2.9. Remark. In general situation, we cannot maintain that

a) the ideal f3pP is completely prime if p is completely prime;

b) the ideal PF = j F,l R(tpp) belongs to Specf if IßpP belongs to the

left spectrum of (;~.

However, the la~t assertion becomes true if we add the following condition:

(#) P is a maximal with respect to :$ element 0/ the set

{(p:x) I x E R, (p:x) <e F}.

In fact, by condition (#), (p:x) E F for any x such that (p:x) E <p>.

This means that p E IiR (cf. 1.15); hence p":={r E RI (p:r) E <p>} IS a left

ideal from SpeclR.

On the other hand, p"={r E R I (p:r) E F}; and the right-hand set coinci-

des with }"F:R(IßfP)' •

2.10. Localization of maximal left ideals. Here we have the following

2.10.1. Lemma. Let F

the ring R, and 11 e F,

be a radical filter. If 11 is a maximal lef! ideal in

then t pt is a maximal lef! ideal in the ring 03pR.

(;pR which contains

R. Since I.l k Jj;:R(V)

Proof Let v

Ißpt. Then j F: R(v)

is maximal, Il=jj;: R(v),

be a proper left ideal of

is a proper left ideal in

Thus we have:
- 1

03pt ~ v ~ a3f',JF, R(v)) =

15
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i.e. v = a3pIl. •

3. MORPHISMS OF LEFT SPECTRA.

The only one of the major 'commutative' properties of the spectrum which

fails to have a straightforward noncommutative analogue IS the functoriality

with respect to arbitrary ring morphisms: for a geneflc associative flng mor­

phism, <p: A ~ B, . and a generic p E SpeclB, the left ideal (fl(p) is

not necessarily an element of Specl.

The main goal of this section is to single out some important for applica­

tions classes (subcategories) of ring marphisms that preserve the left spectrum.

3.1. The category LRings. Let LRings denate the class of all ring morphisms,

<p: R~ R', such that

(L) lf p'E SpeclR', emd m IS a left ideal in R' such that m:5 p',

t/zen <p- I(m):5 q.-I(p').

Or, equivalently,

If p' E Spec,R', m Elf-' emd <p-1(m) E <<p-l(p'». then the ideal m

belongs to <p'>.

3.1.1. Proposition. Let $: R ---7 R' be a morphism from LRings. Then (he map

q.: m ---7 q. -I (m) induces the map

<Pt' SpeclR' --7 SpeclR,

which is continuous with respect to fhe topologies 't. 't* and 'tA (cf J.10).

Proof 1) If P'E Specf-' then, for any x E peR), we have:

[(cfl(p'):x) E <p'>1 => [(p':<t>(x)) E <p'>1 =>

[p' cOlltains q.(x)j <=> [q.-I(p') contains xl.

Therefore, since x E peR) is arbitrary, <t>-I(p') ESpecf.

is continuous with respect to the2) The map

topology 't.

In fact, let W be a closed subset of (SpecIR. 't); i.e W = {p' E SpecIR I
P :5 p' for some p E W}. Suppose that p'E SpeclR', and 'p:5 p' for some 'p

from the preimage W (with respect to <PI) of the set W. Since q. is a mor-

phism from LRings, <t>-I ( 'p) :5 <p-I (p'). Therefore, thanks to the closedness of

the set W, the inclusion <P-I ('p) E W implies that <t>-1 (p') belongs to W;

i.e. P'E W.

16



3) Clearly the same argument shows that

The map $t" SpecIR' ------? SpecIR' IS contilluous with respect to the topo-

logy 't*,

<p/-I(Vlan={p E Specf'l <P-I(p') contains a} =

{p'E R' I p' contains R'<p(a)}.

is a morphism of the category LRings, the following implicati-Since

4) It remains to show that

the map $J is continuous with respect to the topoJogy 'tA •

More exactly, the preimage of the closed subset VJ(a) of the space

(Specf, TA), a E IR, coincides with Vla$) , where aq> is the two-sided ide-

al in the ring R' generated by q,(a).

In fact,

ons hold:

[$-I(p) contains Cl. p ~ p', p'E SpecJR'] => [a ~ <p-I(p')] <=> [<P-l(p') contains a]

<=> [p' contains R'<p(a)].

In particular, since p E SpecIR', we have:

[<P-I(p) ~ a] => [(p:z) ;? R'q>(a) for all Z E peR)] => [the two-sided ideal aq>

generated by <P(a) is contained in p].

In other words, the preimage of VICa) IS Vla<p).•

3.1.2. Corollary. LRings is a subcategory of Rings.

3.2. Left normal morphisms. Denote by

Rings formed by all the ring morphisms

is a morphism of preordered sets

L-Rings the subcategory of the category

$: R ------? R' such that the map $-I

Clearly L-Rings IS a subcategory of the category LRings. According to

Lemma 3.1. I, all ring epimorphisms belong to the subcategory L-Rings.

Now we are going to give much more subtle "estimate from below" of this ca­

tegory.

For an arbitrary ring morphism $: R ------? R', set

N/$):={z ER': $(x)z E R'$(x) for any x ER}.

It is easy to see that N f<P) is a subring of the ring R'.

3.2.1. Definition. A ring morphism <p: R ------? R' will be calied left nonnal if

the subrings $(R) and Nf q» generate R'.

17



3.2.2. Lemma. The class NIRings of left nomzal morphisms fomzs Cl subcategory

of the category Rings.

Proof is left to the reader. •

3.2.3. Proposition. The category NIRings is a subcategory of L-Rings.

that, for any left

the ideal

Proof Let 4>:R ~ R' be an arrow from Nfings; and n, m be left

ideals in the ring R' such that In contains (n:y) for some y E peR'). We

have to show that there exists a finite subset w of elements of the ring R

such that (4)-1 (n):w) is a subset of the ideal 4>-'(m).

1) It follows from the definition of the subring N/4»
ideal 111' in the nng R' and for any element z from Nl$),
4>-I((m':z» contains $-I(m').

2) Suppose that a Z-submodule y IS generated (over Z) by an element u

of R', and consider different possibilities.
-[ -[

a) If U E N/$) then 1) implies that $ (n) ~ $ (m).

b) If u = $(x)z for some z E Nf4» und x E R, then

(n:u)=((n:z): 4>(x).

Therefore

$-I((n:u) = cp-I(((n:z):$(x)=($-I((n:z)):x) ;;;2 (cp-I(n):x).

c) If u = z$(x), where z E N!$), then

-I -I -I -I
$ ((n:u)) = cp (((n:$(x)):z)) ~ $ ((n:q>(x))) = ($ (n):x).

Thus, in both cases, b) and c), ($-l(n):x) c cp-I(m).

d) Applying the standart induction to the situations b) and c), one can ea-

sily check that if u is the product of several elements of the form <p(x.),
J

O<}'5k, by elements zi' O<i<r, from Nfcp) (the factors are aranged in an

arbitrary order), then the ideal $-I((ll:U) contains the ideal

(cp(n):x ....x. ), where J1, ... jk are numbers of factors in the order of the
J1 Jk

appearence of $(x.) in the expression of u (from the left to the fight).
J

e) Consider now the general case. Since 4> is a morphism from N fings,

every element U E R' is of the form

+ II ,
S

where each summand is the product of elements from q,(R) by elements from

18



Nltp). Therefore, for each summand

ment x· ERsuch that the ideal
I

Thus, we have:

Ui, there exists, according to d), an ele-

4>-I((n:u.)) contains the ideal (4)-I(n):x.).
I I

4>-I((n:u)) ~ n (4)-'((n:u.))} ~ n {(4)-I(n):x ) d (4)-I(n):x),
I <·< l 1< '/~ l_1_S _l~

where x:= {x.: 15:i<~}.
I

3) This implies that, for any finite family U of generators of the Z-

module y, there exists a finite subset x of elements frorn R such that

4>-I((n:u) contains (tp-'(n):x).•

3.3. Central extensions. A fing morphism $: R -----7 R' IS called a central

extension if its centralizer 2(tp):= {z E R': (P(x)z =z4>(x) for any x E R} and its

image, (P(R) , generate the ring R'.

Clearly central extensions form a subcategory of the category N/Rings. In

particular, if 4> is a central extension then the map

-I -I
4> : In ~ 4> (m)

induces a continuous map

(Spec,R', T) -----7 (Spee,R, 't'),

where the topology 't' is either 't or 't" (cf. Proposition 3.1.1).

3.3.1. Lemma. Let (p: R ~ R' be a central extension. Then the map (p-I

determines a continuous map G(p: SpeeR'~ SpeeR.

Proof For any p'E SpeeR and a pair U, ß of two-sided ideals in the

ring R, there are the following irnplications:

[4>-'(p') contains aß] <=> [P' contains (p(a)(p(ß)] => [p' contains tp(a)4>(ß) +

$(a)(p(R)Z($)$(ß)=($(a) + tp(a)R')$(ß)] => [p' contains either tp(a) or <P(ß)].

The verification of the identity a<p-'(V(a)) = V(a$), where atp

two-sided ideal in the ring R' generated by (p(a), is left to the reader.•

is the

3.4. A nonabelian functoriality. Most of ring morphisms are not compatible with

the left spectrurn in the way morphisrns of LRings are. It is possible, however,

to establish a weaker sort of functoriality for arbitrary ring morphisrns.

First note that we are interested not in the left spectrurn of a ring R,

but in the quotient of Spee,R by the equivalence relation induced by the pre­

order 5:. Denote this quotient ordered set by Specf. According to Lenuna

1.4.1, the set Specf can be canonically realized as the set {<p> \ p E

SpeclRj with the order given by the inverse inclusion, =>.
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a map

and

Let 4>: A ---) B be a ring morphism. We can try to assign to 4>
from Specl3 to Spect\ as folIows. Take P E SpeclB, set p':=4>-lp ,

consider the set flp,={(p':a) I a E A - p'} of left ideals in the ring A.

3.4.1. Lemma. Suppose that a left ideal v in the ring R is such that the set

nv = {(v:a) I a E A - v} has a maximal element with respect to the preorder ~.

Then this maximal element belongs to SpecZR.

Proo! Let a be such an element of A - v that (v:a) is a maximal

element of flv ' This means that if (v:a):S; (v:a') for some a' E A - v, then

(v:a) :::: (v:a').

Suppose that x E A - (v:a); or, equivalently, xa e v. Then (v:xa) ~

(v:a). But, since (v:xa)=((v:a):x) and (v:a) ~ ((v:a):x), this implies that

((v:a):x) :::: (v:a) for any x E A - (v:a); i.e. (v:a) E Specr4 .•

, -I
Return now to our ideal p =4> p. Suppose that the set

fl , = {(p':a) : a E A - p'}
p

(p':a). Since

the left ideal

element, say

and $(a) e p,

has a maximal with respect to

«r1p:a) = 4>-I(p:$(a)), p E SpeclB

is equivalent to the ideal p.

Denote by a~ the map which assigns to any class

SpecIB the set

<p>

(p':a):=

(p:ep(a))

of elements of

B IS from LRings, then a<t>(<p» equals

this case with the preimage map. Note that

morphism to B is from LRings.

Clearly the map (l4> IS weil defined, and, if the preordered set

is noetherian (for instance, A IS a commutative, noetherian ring),

acp(<p» is nonempty for any <p>.

If the morphism <p: A ---)

{<cp-I(p»}; l.e. (1$ coincides in

if the ring B is commutative, then any

(lt,$)

the set
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4. LEFT SPECTRUM AND LEVITZKI RADICAL.

4.0. Lert radicaI. Fix an associative ring R. For any c10sed in the topology

't (cf. 1.10.1) subset W of SpecJR, denote by radfW) the intersection of

all ideals frorn W. Since p e W irnplies that the ideal (p:x) is in W for

every x e R - p, we have:

radfW) = n ( n (p:x)) = n (p:R).
peWxeR peW

In particular, radfW) is a two-sided ideal. We call the ideal radlW)

the radical 0/ the set W.

If W = VIm):= {p E SpecJR I m ~ p} for some left ideal m, we shall

write radfR Im) instead of radiVIm)) and call the ideal radfR j m) the

left radical 01 m. Finally, we shall write radfR) instead of radfR I0) =

radfSpecJR) and call this ideal the left radical oJ the ring R.

The goal of this section is to prove that radfR) coincides with the lar-

gest locally nilpotent ideal of the ring R.

4.1. I-Systems. A subset S of peR) will be called an l-systenl if, for any

t E S, there exists a E peR) such that Sat IS a subset of s· l.e. t'at E,

S for any I' E S. Obviously, any multiplicative system S of peR) (i.e.

st E S for any s, t E S) is an I-system. Another senes of examples of

I-systems is provided with the following lemma.

4.2. Lemma. A leit ideaJ p oJ the ring R beJongs to SpecIR if and only if
the set S(p):=P(R)-P(p) is an J-system.

Proo! By definition, p belongs to Spec JR if and only if (p:t) ~ p

for any t E S(p). This means exactly that (p:at)=((p:t):a) IS a subset of

the ideal p for same a E peR). Clearly p contains (p:al) if and only if

S(p) contains the set Sal. _

4.3. Proposition. 11 S IS an I-system 0/ the ring R then the set 01 leit

ideals FS:={n E [IR : P((n:x)) n S is non-ernpty Jor any x E peR)} is a radi­

caJ filter.

Proo! Let rn E FS and n E F~{rn}; i.e. the interseetion P((n:y)) n S
is non-ernpty for any y E P(rn) and P((m:x)) n S is non-empty for any x E

peR). We need to show that P((n:x)) n S IS non-empty for every x E peR).

Let t be an element of S such that Ix e P(m), and let a be an element of

peR) such that Sat is contained in S. Since atx E P(rn), then there exists
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t' E S such that t'atx IS a subset of the ideal n', l.e. t'at E P((n:x)).'

But, since S is an l-system, t'at ES.•

4.4. Levitzki radical. A ring R' IS called locally nilpotent if every finite

subset X af its elements generates a nilpatent subring. This means that there

exists N = N(X) ~ such that the product of any N elements of X is zero.

The following facts are weIl known (cf. [1], Ch.8, Section 3):

4.4.1. Theorem. I) A two-sided ideal generated by a left or right locally ni/po­

tent ideal is Ioeally ni/potent.

2) The sum L(R) 0/ all the loeally ni/potent ideals 0/ R is a two-sided

loeally ni/potent ideal.

The (obviausly) largest locally nilpotent ideal

radical of the ring R.

L(R) is called Levitzki

4.5. Proposition. The /ollowing properties 0/ a le/t ideal rn 0/ the ring R

are equivalent:

(a) Any I-system S such that S n P(rn) is non-ernpty eontains (Ol.

(b) Any rnultipUeative subset S 0/ P(R) sueh that the interseetion 0/
Sand P(rn) is non-enzpty contains (OJ.

(e) the ideal nz is loeally ni/potent.

is anpeR)sInce any multiplicative subset ofProof. (a) ~ (b),

l-system.

(b) => (e). Obviously, the ideal rn IS locally nilpotent if and only if

for any t E P(R), there exists N = N(t) such that ~=(O); Le. (O) be-

longs to the multiplicative system generated by t.

(c) ~ (a). Let S be an l-system, and let ,t E S n P(nz). By definition,

there exists a E P(R) such that Sat IS a subset of S. In particular, tat,
k(tatJat, ... , t(at) are elements of S for all k;?:: I. Since at belongs to

i
P(ln) , there exists (by hypothesis) 2: 1 such that (at) = (OJ. Therefore

(O) = t(at) I belangs to S.•

4.6. Corollary. The intersection rad irR) 0/ all ideals 0/ the left spectrum 0/
an arbitrary associative ring R eontains the Levitzki radical 0/ this ring.

Proo! Let m

empty. This means that

be a left ideal in R such that the set rn-rad / R) is not

rn-p is non-empty for same p E Spec IR. If m were 10-
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radfR) , then m

is a subset ofL(R); I.e. L(R)

IS not contained in

cally nilpotent then this would imply (by Proposition 10.5 and Lemma 10.2) that

the set S(p) = peR) - pep) contains (0). But this is impossible. Hence we

have the following implication:

If a left ideal m of the ring R

is not contained in the' Levitzki radieal

Thus, we have improved the estimate of the left radieal from the low; Le.

from B(R) s rad I(R) s J(R) we have passed to

L(R) ~ rad I (R) ~ J(R).

Dur next step is to improve the estimate from the above.

4.7. The upper nil-radicaI. A ring is called a nil-ring

nilpotent. An ideal is called a nil-ideal if it is a nil-ring.

The following fact is weil known ([1], eh.S, 1):

if every its element is

4.7.1. Theorem. rhe sum K(R) of all two-sided nil-ideals of fhe Tlng R IS a

nil-ideal.

Clearly the ideal K(R) IS the largest two-sided nil-ideal of the ring R.

It is called the upper nil-radical or the Keflte radical of the ring R.

4.8. Proposition. rhe Left radicaL of an arbitrary associative Tlng is contained

in its upper nil-radical.

Proof. Obviously, it suffiees to show that rad,(R1K(R)) = K(R) for any

associative ring R (cf. 4.0). Let 0'. be a two-sided ideal of R. There

exists a natural isomorphism radleR/ny ~ radL(Rla)/a whieh follows from the

bijectivity of the map V,(a) ----7 Spec ,RIO'., pr----? pla.

Therefore rad L(R 10'.) = 0'. if and only if rodL(Rla) = O. In particular,

radfRIK(R)) = K(R) if and only if rad L(RIK(R) = O.

Thus, we should show that the left radieal of the flng R'= RlK(R) is tri-

vial. For this purpose, we shall use the following theorem of Amitsur «( 16],

6.1.1):

4.9. Theorem. If the ring R' /las no non-zero two-sided nil-ideaLs. then the

polynomial ring R'ft] is semiprimitive (i.e. its Jacobson radical is zero).

Since, for any flng A, we have radfA) ~ J(A), Theorem 4.9 implies that
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Specf?[tJsends

rad/R'ft)) = O. Here, as above, R'=RJK(R).

Now notice that the natural embedding R ------7 R[tJ IS a central extension;

hence, the map JlI----------7 Jl n R is a preordered sets morphism

(lf?[tJ,5)~ (l fR,5)

In particular, the restriction map JlI----------7 Jl n R

Therefore radfR') c radfR'[t)) n R'= O.•

(cf. 3.3).

into SpecIR.

4.10. Left radical aod Levitzki radieat. It remains to perform the last step: to

pass from the estimate L(R) c radfR) s K(R) to the equality radfR) = L(R).

In order to do it, consider the polynomial ring

R = R[t ,t2,...J
00 I

in infinitely many non-commuting indeterminates.

4.10.1. Lemma. If

non-zero nil-ideals; i. e.

R has 110 non-zero locally nilpotent ideals then

K(R ) = O.
00

R
00

has 110

NO) the set of all the finite ordered sets of positive

= (i I' ... , in) E NO), denote by t
i

the product

rIng R generated by the set of coefficients (af I

IS a nilpotent element of R for each x
00

k is an index which is not encountered among

Proof. Denote by

integers. For every

t. ·t. ·... ·t ..
"2 'I n

Suppose that K(RooJ

non-zero element of K(Roo).

a) Tlte slIbring of the

E EJ is nilpotent.

In fact, by hypothesis,

E Roo' Now, take x = tk,

the elements of i. Since

IS non-zero; and let

xf(t)

where

J(t) = L a.i
. E IIE

be a generic

(
.) n i i

L a.tktl = L a. ·... ·a. tkt 'tk... tkt n
'E I • EI IIE lyE I n

l~y~n

the condition

that

the n-th power of the efement vanishes means exactly

a. ·... ·a. = 0 for every (ii,···,in) E Ex ... x E.
I I

I n
b) Now we shall show that the left ideal, generated by the set of coeffici-

ents {ai I i E E}, is locally nilpotent.

In other words, we should check that, for any finite set {ho I (i, y) E E
I,y

X Q} of elements of the flng R, the subring generated by the set {ai'
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b. va.l v E n, i E E} is nilpotent.
I, 1

Select positive integers k, k., i
I

I) k. ':t k for every i E E,
1

2) neither k nor any of

i, E E.
Consider the linear form

E E, such that

and k.= k., iff i coincides with i /;
I I

k. is encountered among the indeces of the sets
I

g(t)=t
k

+ L h. t
k(i, v) E E x n I, v i, v

By hypothesis, g(t)!(t) is an element of the nil-radical K(R ). As it
00

has been just shown, this implies that the set of coefficients of the polynomial

L (l.tk t
i +

• I

g(t)!(t) = L h. (l., t
k t

l

i E E I (i, v) E E x n I,V 1 i,v

generates a nilpotent subring of the ring R. Obviously, if a set of elements

of R generates a nilpotent subring, then so does any of its subsets. In parti­

cular, {Q., b. va. I (i, v) E E x n} generates a nilpotent subring. •
1 I, 1

4.10.2. Theorem. The Zeft radicaZ of any assoeiative ring

Levitzki radieal: radfR) = L(R).

R eoineides with its

Proof Since we have already established that L(R) ~ radfR), it remains

to verify the inverse inc1usion. Taking the quotient of R module L(R), we

reduce the desired assertion to the following one:

lf R has no non-zero locally nilpotent ideals, then radfR) = (Ol.

Proof of this assertion follows the scenario of the proof of Proposition

4.8 with the ring R[t] being replaced by the ring Roo = R{tI,t2,...J.
The natural eInbedding R ~ R IS a ceotral extension. Therefore the

00

map p~ p n R sends ideals from SpeejR ioto the ideals from Specfoo'

Hence the inclusion

holds. But, according to Proposition 4.8, rad/Roo) ~ K(Roo); and, as Lemma

4.10.1 claims, K(Roo) = (Ol if L(R) = (Ol. Therefore radfR
oo

) = (Ol, and

raJlR) = R n rad/Roo) = (O). •

5. THE LEVITZKI SPECTRUM AND TUE LEFT SPECTRUM.

5.1. Levitzki spectrum LSpecR of the ring R is the set of aB the prime ide-

als p of the ring R such that the quotient ring Rlp has 00 locally nilpo-

tent ideals. The topology on LSpecR is induced by the Zariski topology on the

25



prime spectrum SpeeR.

p

co-

belongs to the(p:R)the two-sided ideal

in R. its left radieal. radfR Ia).

radieal 01 the quotient ring Rla.

p belongs to LSpeeR if and only if

5.2. Lemma. (a) For any p E Speef,

Levitzki speetrum of R.

(h) For any two-sided ideal a

incides with the preimage of the Levitzki

(c) In partieular, a prime ideal

is equal to radlR Ip).

Proof (a) Fix a p E SpeclR. By Lemma 1.8.1, the two-sided ideal (p:R)

IS prime. Obviously, (p:R) is the interseetion of all the ideals (p:x), whe-

re x runs through the set R-p. The left ideal (p:x)/(p:R) belongs to

SpecIRl(p:R). Therefore, by Theorem 4.10.2, the ring R1(p:R) has no locally

nilpotent ideals.

(h) By Theorenl 4.10.2, radlR1a) coincides with Levitzki radieal of the

nng Rla, and radI R1a) = radI R Ia)/a.

The assertion (e) is a special case of the assertion (b).•

Recall that a topological space X IS called soher if every nonempty clo-

sed irreducible subset of X has a unique generic point.

5.3. Theorem. (a) The map p~ (p:R) is a quasi-homeomorphism

(SpecIR,t) --~) LSpeeR.

(h) The space LSpecR soher.

V 01 the Levitzki speet-

V induees a bijection of

onto the set 01 oll the two-

Proof (a) 1) It follows from the assertion a) of Lemma 4.4 that the map

p ~ (p:R)

sends the left spectrum of the ring R into its Levitzki spectrum.

2) The map, whieh assigns to a subset V of SpeezR its radieal - the in-

terseetion of all the ideals from V - induees a bijeetion of the set of closed

subsets 01 the space (SpeclR,t) onto the set of all the two-sided ideals a
such that a = radI a).

3) Similarly, the map, whieh assigns to Cl suhset

rnm LSpecR the interseetion 01 oll the ideals from

the set 01 elosed subsets 01 the spaee LSpeeR

sided ideals eoinciding with their Levitzki radiea!.

4) But, according to the assertion b) of Lemma 4.4, these two kinds of two­

sided ideals coincide. Hence the map

q: SpeczR -~) LSpecR, p 1t-----7) (p:R)

26



is a quasi-homeomorphism.

b) Note that

the elosed subset X 0/ the spaee LSpeeR is irredueible if and only if
its radical r(X)· the interseetion 0/ all ideals 0/ X - is a prime ideal.

aß c r(X). Suppose

is not a subset of

In fact, let a and ß be two-sided ideals such that

that a is not contained if r(X); or, equivalently, r(X)

the closed subset LV(a):={p E LSpeeR I a ~ p}. Therefore, since

X ~ LV(aß) = LV(a) U LV(ß),

and, by assumption, the set X is irreducible, that LV(ß)

equivalently, ß ~ r(X).•

contains X', Of,

canonical

sheaf-theoretic

are

the

there

from

since

is equivalent,

(SpeerR, TA),

5.4. Remark. Now it IS an appropriate moment to compare the left geometry with

the right one. First of a11, it fo11ows from Theorem 4.5 that

radfR Ia) = rad/R Ia) for any two-sided ideal 0:,

where the right radieal radr(R Ia) is the intersection of a11 the ideals of the

right spectrum, Spee R, of the ring R.
r

The topological space (Spee,R,'T;A)

point of view, to its right analogue

quasi -homeomorphisms

(SpecIR,'t") ------4 LSpeeR~ (SpecrR,T")

Of course, the categories of quasi-coherent (pre)sheaves on (SpeelR, 't")

and (Spee R,T") (which are introduced in Section 6) can differ considerably.•
r

5.5. Lemma. Let J he a directed (with respeet to

als whieh eoillcide with their Levitzki radical. Then

J, supeJ), also has this property.

~) /amily 0/ two-sided ide­

the supremum 0/ the family

Proof Let peR) be such that
n

subobject of sup(J) for somex E x IS a

O. Since n .1

finitely generated Z-module, and the family J is di-n > x IS a

rected,
n

for ideal J. By hypothesis, coincides with itsx c a some Ci. E Cl

Levitzki radieal. Hence x c a.•

5.6. Theorem. An open subset U of the spaee (SpecIR, 't") lS quasi-eompact if
and only if V = U/a.) /or some finitely generated !Wo-sided ideal a.

i E

Proof I) Let Cl be a finitely generated two-sided ideal;

I} be an infinite cover of the open set V/a). Denote by

and let {V i I
I the directed
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and let rJ be the

I. Wehave to provei E

I',

{ a j : i EI} also equaIs

= radlR Iß)· Therefore ß
U /ß) = U. In partieular,

of the eomplement to d closed subset; I.e.

ideals from SpeclR - rJ The ideals a
i

a j= radIR Ia j ). By Theorem 4.10.2, this

eoineides with its Levitzki radical. Accor-means exactly that each ideal a.
I

ding to Lemma 4.7, the supremum ß of the family

to its Levitzki (or, equivalently, left) radical: ß
is the largest two-sided ideal with the property

since U = V I(a), the ideal 0: is contained in ß.
By hypothesis, the ideal a is finitely generated (as a two-sided ideal).

Therefore, since the family a j : j E I is direeted, the inc1usion a ~ ß
implies that a k a j for some i. Thus, U = U/a j ).

(with respect to inclusion) set of finite subsets of

union of the family of sets {Vi I i E j} for each
j

that U = U for some j E I.

Denote by a j the radical

0:. IS the intersection of all the
I

coincide with their left radicals

2) Let now U 1(0:') be a quasi-compaet open subset of

a' can be represented as a supremum of a directed family

rated two-sided ideals. The quasi-eompactness of UI (a')

= U I(a) for some ideal a E C:;••

Spec IR. The ideal

r;; of finitely gene-

implies that U /a')

5.7. Corollary. An open subset of the Levitzki spectrum 01 a ring R

compact if and only if it coincides with LV(a) for some finitely

ideal a.

is quasi­

generated

Proof follows immediately from Theorem 4.5.•

6. STRUCTURE PRESHEAVES. RECONSTRUCTION OF MODULES.

6.0. Structure presheaves. The

refonnulated as folIows:

a uniform (i.e. with respeet

is radical iff the following eondition

if m E Fand a left ideal

then n E F.

definition of a

to ::;) filter F

holds:

n IS such that

radieal filter (cf. 0.3) ean be

of left ideals of a ring R

(n:x) E F for any x E peR),

~ =Fix a topology :r
(SpecIR, !) as any functor

This reformulation makes dear that the intersection of an arbitrary family

of radical filters IS a radieaI filter. In particular, to any subset V of

SpeclR, we can assign a radieal filter <Y>:= n <p>.
p E Y

on Specl' Define a presheaf of modules on

F: Open! P ---7) R-mod such that F(U) IS an ob-
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Denote by f-lh~ (or

FUllet(OpenIoP,R-mod)

ject of the subcategory R-mod/<U> for every open set U.

by f-lf)(SpecIR, I)) the full subcategory of the category

generated by all presheaves of modules.

There is the global sections functor

r: Ph~ ) R-mod

which sends a presheaf of modules F it value at Specf.

The strueture presheaf of an R-module M is the presheaf of modules Nr =
MI which assigns to every open subset U of the space ~ = (SpecIR, I) the

R-module G<U>M.

Clearly the map M I )!v1 extends to a funetor

6.: R-mod ----}) f-lhÄ.

6.0.1. Proposition. The global sections functor is left adJoint to the functor

6.. The functor D.. is fully faithful.

Proo! Set for eonvenience X = Specf. Fix a presheaf of modules

any open subset U of X, the restriction map F(X) ) F(U)

decomposed (since F( U) E R-mod/<U» into the adjunetion morphism

J<U>: F(X) -----? F(X)-(U):= f3<U>F(X)

F. For

is uniquely

and a morphism

Öp,U): F(X)-(U) -~) F(U).

The set ÖF := (Öp,U) I U E OpenI} is a functor morphism from

Idf-lhiA'
For every R-module M, we have an isomorphism (which can be chosen to be

identieal) e(M): M ~ Nr(X). The set e:= tErM)} is a functor isomorphism

IdR d -) roD... One can see that-mo
rÖoer = idr, and ÖD..oD..e = idD..

•which means that Ö and e are adjunction arrows. Since e IS an isomorphism,

the functor D.. is fully faithful. •

Call a presheaf of modules quasi-coherent if it tS isomorphie to a struc­

ture presheaf of some R-tnodule. Denote the category of quasi-coherent presheaves

on Ä by DhÄ.

The following assertion is a corollary of Proposition 6.0.1.

--~) f-lhÄ induces an equivalence of

of quasi-coherent presheaves 011 the

6.0.2. Proposition. The functor /).: R-mod

the category R-mod anti the category Dh~
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topological space it = (Spec!?,'X).

6.0.3. Associated sheaves? The next, standart, step is to go from presheaves to

associated sheaves. There is no problem to produce a sheafification functor, !f,

In our setting. Thus, we can assign to each R-module M its structure sheaf !vfl
= !f(lvl). We define a quasi-coherent sheaf as a (pre)sheaf which is isomorphie

to !f(lvl) for some R-module M.

If the ring R is commutative and :r 1S the Zariski topology, the sheafi-

fication functor !f induces an equivalence between the category of quasi-

coherent presheaves and that of quasi-coherent sheaves. This fact, due to SeITe,

IS one of the corner stones of (commutative) algebraie geometry.

If R is noncommutative, this is, usually, not true. Besides, in the non-

commutative case, the Zariski topology might be not the best choice. For examp­

le, it is trivial if R is the algebra of differential operators with polynomi­

al coefficients.

Note that the reason for uSlng the sheafification functor IS that sheaves,

by their nature, could be reconstructed from local data - their values on cove­

rings. Note also that the reconstruction is given by a procedure which works far

beyond the limits of algebraic geometry.

There are two possibilities;

(a) Either to try to single out (classes of) modules which can be reconst­

ructed from their structure sheaf.

b) Or, to look after a different reconstruction algorithm which recovers,

hopefully, any module from its 'local data'. Up to isomorphism, of course.

The second way is, by many reasons, much more preferrable.

It occurs that there exists a very natural, specific for algebraic geometry

(localization) setting procedure which allows to reconstruct quasi-coherent pre-

sheaves from local data for any topology.

Now we shall make this claim explicit and prove it.

6.1. The canonical diagram. Let n be a family of radieal filters, and let F

be the intersection of all the filters from n. Then the commutative diagrams

of functors
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f3p
f3F ,jF"

) rnF' 0 rnF"

jF.FI
j F F"

I j pGF" (I)
,

f3F -7G3F "

where P, F" run through Q, define the diagram

G3F ----7) n f3F' ----4) n Q3F' 003
F'eQ ) F',F"eQ F" (2)

6.2. Theorem. Let Q be a family of radical filters, and let F= n F'. Then
Pe Q

1) The canonical morphism 03F ) n Q3F' is a monomorphism.
Pe n

2) Suppose that there exists a finite subfamily Q' of Q such that

F= n F'. Then the diagram (2) is exact.
F' e Q'

Proof J) We have to prove that, for each R-module M, the canonical arrow

j: rn~ ) n f3F'M
F'e n

This means that, for any

m(F')~=O; l.e. Ann~

n. But 1J3~ is

is a monomorphism.

In fact, let ~ be an element of Kerj.

there exists a left ideal m(F') e F' such that

to the intersection, F, of all the filters from

free; hence ~=O.

2) It is pretty clear that the diagram (2) is exact if the diagram

) n 03F, --~) n f3 J:'I 0 rnF "
F'eQ' ) F' F"eQ' r,

F'e n.
belongs

F-torsion

is exact for some subset Q' of Q. Hence we can (and will) assurne that Q=Q'

lS finite.

Let ~F'e rnF'M, Pe Q, be elements such that , for any F', F" from n,
the Images of ~F' and ~F" under the canonical morphisms

GF'jF": rnpM ) f3p o rnF,M and j pmF": f3F,M ) f3F' 0 lGF,M

coincide.

Fix a filter F' from n, and let m' be an ideal from pt such that

the morphism .~F' Im': m'----:, f3pM of multiplying by ~P lS a composition of

a certain uniquely detennined R-module morphism u': m'-'j M/F'M and the cano­

nical monomorphism
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Choose, for any x E tn', an element llxE M such that ) P<ll)=x~F" Then,

for any F"E.o, we have:

)p)F,,(ll)=)F,Jp(ll)=)F,,(x~F')=JP(x~F")'

The equal ity ) pJF',(11)=JF'(x~F") means that, for every F" E.o, a left

ideal tnF" E F' can be found such that

tnF"VF,,(ll) - x~F")=O (3)
Since n is finite by hypothesis, then the left ideal

tnp:= n mF"
,x F" E n

belongs also to the fllter P. Therefore we can write (instead of (3»:

mF',xVF,bl.\) - x~F")=O (4)

Set

/1 of R

~:=(~p I F'E n;, and denote by

such that the morphism

C(~) the set of all the left ideals

.~ I : 11 --? n [;pM
11 PE 11

of multiplication ~ by n factors through the canonical map

): [;~ -~) n [;pM.
F'E n

(a) It follows from the equalities (4) that the set C(~) contains all the

ideals of the fonn tnp x, where x runs through the set of all the elements,x
of some ideal tn E F'.

In fact, consider the commutative diagram

gx
mF , ~ tnF , x=n

,x ,x

h 1 j 1'~In
f3~ -------'7) n [;F' M

F'E n

epimorphism, there exists anIS an

are of the form

Since J IS a monomorphism and g
x

arrow A: /1 = tnF' x~ M such that JoA=·~ I .,x n

(b) Jf the feit ideals n, /1' belong to C(~).

also belangs to C(~).

Indeed, by hypothesis, the morphisms .~ In and

)OA and JOA' for some uniquely determined morphisms

ly. So, we have the commutative diagram

then t!zeir

.~ In'
A and

sum,

A'

n + n',

respective-
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f3~ --~) n !3F,M
F'E n

(Ä,A' )1 1 1; In+n'
<p

n II 11'----4) 11+11'

Since <p is an epimorphism und } IS a monomorphism, there exists a

unique R-module morphism h: ll+n'-----) M such that ~ I ,=joh.
n+ll

(c) Finally, together with every ascending family W of ideals, the set

C(~) contains the sum of all the ideals from W.

(d) The assertions (h) and (c) allow to deduce (applying Zorn's Lemma) that

the sum, n(~), of all ideals from C(~) belongs to C(~).

Now, it follows from (a) that n(~) belongs to p'oF'. Since F' IS a

radieal filter, the ideal n(~) belongs to F'.

(e) Through the whole argument above, pt was an arbitrary radieal filter

from .0, the ideal n(~) belongs to the intersection F of all the filters

from n.•

6.3. Quasi-coherent presheaves and w-sheaves. Fix agalß a topology on

SpecZR, and denote, as in 6.0, the topological space (SpecZR,T.) by i{.

Call a presheaf of modules F on i{ an m-sheaJ if, for any finite cover

U of an· open set V, the canonical diagram

F(V) -~) n F(V') ----} n F(V' n V")
V'EU V',V"EU

(1)

IS exact.

Consider now the structure presheaf lv1 of an R-module M, Ar(V) = f3 <V> M

(cf. 6.0). We have the commutative diagram

n
V'JU" E u

f3

<U'>r: UH
>M

!3<V>M ---7) V' ~ u!3<V,>M ----) V',V" ~ uf3 <U' n U,,>M

(2)

.> !3<V' n V,,>M

By Theorem 6.2, the upper row of the diagram

that the lower row is exact if the canonical morphism

particular, if the canonical map

YU',U" : G<U'> orß<V,,>M

(2) is exacl. This implies

Y IS a monornorphism. In

(3)
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IS a monomorphism for every pair V', V" of open subsets of iZ. then the stru-

eture presheaf NI is an ffi-sheaf.

andR,

where S = S'S". Clearly

eontain both F' and F".

(b) If F IS a radieal filter such that either the funetor f3FIS exaet,

or F IS of finite type (i.e. every ideal from F eontains a finitely genera-

ted ideal from F), then F = n <p>.
p e F

(Note that filters of the fonn FS satisfy the both eonditions.)

6.3.1. Example. Suppose that the ring R is eommutative.

(a) Let S' and S" be multiplieative systems of elements 10

P, F" the eorresponding radieal filters: F' = FS" F" = Fs". Then

fjF'0fJF" :::.: fJF"ofJF' ~ GF '
S

FS is the minimal among the radieal filters whieh

Jl' of the ideal

is prime. Thus, a ~

n <p>. This pro­
peF

F~Clearly

is an equivalenee of

does not belong to

and Jl' E SpeeR -

n <p>. Let a be an arbitrary ideal of the ring R which
p ~ F

does not belong to F.

I) Suppose that the funetor 113F is exaet. Sinee 113pt IS a proper ideal of

the ring GpR, it is eontained In some maximal ideal, Jl. The exaetness of the

funetor rf,F implies that the natural funetor

R-modlF ) 113~-mod

eategories. In partieular, the preimage

F. Sinee R IS eommutative, Jl'

F. Therefore a is not eontained in

ves that n <p> c F.
peF

2) Assurne now that the filter F IS of finite type. Then the supremum of

any aseending ehain of ideals from IR - F does not belong to F. This implies

that the ideal a is eontained Iß a maximal ideal, Jl, m IR - F. The set

JlF'= {x E R I (Jl:x) E F} is a left ideal (sinee (Jl:x+y) ~ (Jl:x) n (Jl:Y), and

(Jl:rx) = ((Jl:x):r)) whieh eontains Jl and is not eontained in F (sinee the

filter F is radieal, the indusion JlF E F would imply that Jl E F). The ma­

ximality of Jl implies that Il = JlF .

If (Jl:x) 'i; Il, then, thanks to the same maximality of Il. (Il:x) E F

which implies that x E IlF = Il; Le. Jl is prime.

(e) It follows from (Cl) and (b) that if the functors fJ< V'> and 113< V">

are exaet or of finite type, then the eanonieal funetor morphism
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) (J3<U' n V"> (4)

is an isomorphism.

This implies, among others, a basic fact of algebraic

R-module M the restrietion of the structure presheaf lvJ

geometry: for any

to the topology of

principal open sets is a sheaf.

If the ring R is noetherian, than the morphism (4) is an isomorphism for

any sets V', V". This means that the structure presheaf of any R-module is an

co-sheaf for any topology on SpecR which is compatible with specializations' of

points. _

6.3.2. Lemma. Let now R he an arhitrary associative ring; and !

on SpecZR. IJ an R-module M is <V>-torsion free Jor every open set

the structure presheaj ~ is an ro-sheaf

a topology

V, then

Proo! In fact, in this case the adjunction arrow

M ---» (J3<V' n V,,>M

is a monamorphism. Since the functors (J3<V'> and (J3<V"> are left exact, and

(5)

the monomorphness of (5) implies the monomorphness of

"tV',V" : (J3<V'> of3<V,,>M ) f3<V' n V,,>M. -
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6.4. Structure presheaves of modules over semiprime Goldie rings. Recall that a

ring R is called a left Goldie ring if

(a) any set of left annihilators in R (i.e. left ideals of the form

(D:x) for some x c R) has a maximal (with respect to the inclusion) element;

(b) R does not contain any infinite direct sum of nonzero left ideals.

Clearly any left noetherian ring is a left Goldie ring.

Recall that a ring R is semiprime if it has no nonzero nilpotent ideals

or, equivalently, the intersection of all prime ideals in R is zero.

We need the following fact (Lemma 7.2.2 in [He»:

6.4.1. Lemma. Any semiprime left Goldie ring satisfies the minimality condition

for left annihilators.

6.4.2. Lemma. Let

hilator m In R,

cular, the ideal m

(m:R).

R be a semiprime left Goldie ring. Then, for any left annl-

there exists x E peR) such that (m:x) = (m:R). In parti-

is equivalent (with respect to :5) to the nvo-sided ideal

Proof Clearly if m

lator for any y ~ R. By

P(R)) has a minimal (with

peR),

IS a left annihilator, then (m:y) IS a left annihi-

Lemma 6.4.1, the set of left annihilators ((m:u) I u E

respect to k:) element (m:x). Since, for any u E

(m:x+u) = (m:x) n (m:u) ~ (m:x),

and (m:x) IS minimal, (m:x) n (m:u) = (m:x) for any U E peR). This implies

that

(m:R) = (m:x) n (n (m:u)) = (m:x).
U E peR)

The relations

(m:R) ~ m :s; (m:x) = (m:R)

show that m is equivalent (m:R) •

6.4.3. Proposition. (a) Let R be a prime left Goldie ring. Then any left anni-

hilator in R is equivalent (with respect to ~) to the zero ideal.

(b) Any semiprime left Goldie ring satisfies the maximality and minimality

conditions for left annihilators with respect to <

be a left annihilator In

is called pnme if the zero ideal inProof (a) Recall that a ring R

IS pnme.

Let In R', l.e. m = (O:x)

R

for some subset x S
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for some x E peR).

two-sided, and (m:R)

k m is equivalent

R. Since the zero ideal IS pnme,

(m:R) = ((O:x):R) = (O:Rx) = O.

By Lemma 6.4.2, the left ideal m is equivalent to the ideal (m:R) = O.

(b) Let X be an arbitrary subset of left annihilators of a semiprime left

Goldie ring R. Consider the set X':= {(m:R) 1 m EX}. Since X 1S also a set

of left annihilators, it has a maximal element, (v:R), v E X. We claim that

v is a maximal element of X with respect to $.

In fact, let m E X, and v $ m; l.e. (v:x) ~ m

Then (v:R) ~ (v:x) c m, and, since the ideal (v:R) IS

IS the biggest two-sided ideal in 11l, the inc1usion (v:R)

to that (v:R) ~ (11l:R).

Since (m:R) E X' and (v:R) is a maximal element in X', (v:R) = (m:R).

Now, by Lemma 6.4.2, (11l:R) = (m:u) for some u E peR). So, we have the fo11o­

wing relations:

Le. m $ v.

m S;; (m:u) = (m:R) ~ (v:R) k;; v;

Since the ideal m in this argument is an arbitrary element of

X, the maximality of v is proved.

The similar argument shows the existence of a minimal element in (X,S;;).•

6.4.4. Proposition. Suppose that R

a suhmodule 0/ the product 0/ an

the corresponding to t~e module

is an ro-sheaf

is a prime left Goldie ring. And let M be

arbitrary family of projective R-modules. Then

M structure presheaf in the Zariski topology

Proof Every open set in the Zariski topology is of the form

U/ a) = Ip E SpecIR 1 a - p ":F- 0},

where a is an arbitrary two-sided ideal in R. One can see that

<V/a» = Im E 111 if m:S; p and p E SpeclR, then a ~ pi.

Thanks to' Lemma 6.3.2, it suffices to show that the module M IS

UI a)-torsion free for any two-sided ideal a":F- O.

Note that in the condition tlM IS a submodule of the product of a family

of projective R-modulesu
, can be replaced by tlM 1S the product of a family of

copies of RU. Since any submodule of an F-torsion free module is F-torsion

free (for any Gabriel filter F), it is sufficient to consider the case when M

is the product of a family of copies of the ring R.

Clearly the annihilator of a nonzero element of the module M is a left

annihilator in R. So, what we actua11y need to show is that the Gabriel filter
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Uia) does not contain left annihi Iators of the ring R provided that the two-

sided ideal a is nonzero.

Suppose that it IS not the case; l.e. there exists an a E IR such that

the filter <Via» contains a left annihilator, In, of the fing R. By the

assertion (b) of Proposition 6.4.3, the set

((m:x)! x E P(R)-P(m)),

being a set of left annihilators, contains a maxin1al with respect to ~ ele-

ment, say (m:u). Clearly (m:u) E Spee,R, sinee, for any x E P(R), (m:u) ~

((m:u):x) = (m:xu) which, thanks to the maximality of (m:u), implies that the

left ideals ((m:u):x) and (m:u) are equivalent.

It follows from the relation m ~ (m:u), the the ideal (m:u) IS eontai-

ned in the interseetion of SpeeIR and F(a) whieh means exactly that a IS

contained in (m:u).

Since the ring R is prime (note that till this moment the

is not required), the ideal (m:u), being a left annihilator,

the zero ideal (cf. the assertion (a) of Proposition 6.4.3). Thus,

means, since a is two-sided, that a is the zero ideal.

dicts to the initial assumption that a is nonzero.•

primeness of R

IS equivalent to

a ::; 0 which

The latter contra-

6.4.5. Proposition. Let R be a lef! semiprime Goldie ring. Then

(a) For any left annihilator, m, in R, there is U E peR) such that

(m:u) E SpeeZR.

(b) If a left ideal p froln Specf is Cl left annihilator, then p is

equivaLent to the prime ideal (p:R).

(a) ConverseLy, any prime ideal p in R whieh lS a left annihilator be­

langs to Spec f.

Proof The proof of the assertion (a) is eontained In the proof of Proposi­

tion 6.4.4.

The assertion (b) is a special ease of Lemma 6.4.2.

(e) Let a prime ideal p be a left annihilator in R. Then, by the asser-

tion (a), (p:u) E Specf for some u E peR) - pep)· Since (p:u) is a left

annihilator, it IS equivalent, aecording to the assertion (b), to the ideal

((p:u):R) = (p:Ru). Thanks to the primeness of p, the ideal (p:Ru) COln-

eides with p.•

6.4.6. Corollary. For any left noetherian rmg

SpeeR, is contained in the Left speetrum of R.
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rum.

In partieuLar, the prime speetrum of R eoincides with ils Levitzki speet-

Proof In fact, for any prime ideal p In R, the quotient ring Rlp is

left noetherian (hence left Goldie) prime ring. This implies that the zero ideal

in Rlp belongs to SpeelRip (cf. the assertion (e) In Proposition 6.4.5).

Since nng epimorphisms respect the left spectrum, the ideal p E SpeclR. _

6.5. Structure sheaves of noetherian rings. Fix an associative nng R. For any

left ideal m In R, let [m] denote the intersection of all radieal filters

of left ideals which contain m. Clearly m ~ m' implies that [m'] ~ [m].

6.5.1. Lemma. Let

two-sided ideaL in

two-sided ideaL a

beLongs to F.

F be a radkaL fiLter of Left ideaLs in R such that any

F eontains a finitely generated two-sided ideal. Then a

beLongs to F if and onLy if any prime ideal eontaining a

Faradkal fiLter 0/ left

aare equivalent:

Proof Consider any increasing chain =.. of twa-sided ideals cantaining a.
If the sum of all ideals of ~ belangs ta F, then one of them belangs ta F.

This implies (by Zam's lemma) that there is a maximal twa-sided ideal p which

contains a, but does not belang to F. We claim that p is prime.

In fact, suppose that Jl and v are two-sided ideals which are not

contained in p, but Ilv ~ p. Replacing Jl by Il+P and v by v+P, we can

assurne that both Jl and v contain p properly. This implies that they belang

to F. Therefore the inclusion Ilv ~ pimplies that (p:x) E F for any x E v

which means that p E F. Contradictian._

6.5.2. Lemma. Let R be a Left noetherian ring and

ideals in R. The following eonditions on a two-sided ideaL

(a) a E F;

(b) any prime ideaL containing a belangs to F;

(c) V/a):= {p E SpeeLRI a ~ p} ~ F.

Proof Clearly (a) => (b). The implication (h) => (e) follows from Lemma

1.8.1. The implicatian (e) => (b) is a consequence of Carallary 6.4.3. Finally,

(b) => (a) according to Lemma 6.5.1. _

6.5.3. Corollary. For any two-sided ideal a of a left noetherian ring R the

fiLter [a] is the smallest amollg rac/ieal filters F having the property
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(1)

Note that <Ula»
perty (1).

is the biggest among radical filters F with the pro-

For any R-module M, denote by Ass(M) the set of those annihilators of

elements of M which belong to SpeclR. We call them associated points of M.

Clearly Ass(M) ~ Supp(M).

6.5.4. Lemma. Suppose that the ring R lS such that, any nonzero R-module has

an ass(Jciated point. Then, for any radical filter F, the corresponding Serre

subcategory sF is generated by all modules M such that Supp(M) ~ F.

Proof Let M be any nonzero R-module which does not belong to SF; and

let M' be the quotient of M by its F-torsion. By hypothesis, there exists an

element x in M' such that Ann(x) E Spec/? Since M' is F-torsion free,

the ideal Ann(x) does not belong to F. And, of course, Ann(x) belongs to

Supp(M) (cf. Proposition 1.11.2).

This shows that if Supp(M) ~ F, then M E ObsF The inverse implication

is evident. •

6.5.5. Corollary. Let R

a. the filter <UI a»
ning the ideal Ci..

be as in Lemma 6.5.4. Then, for any two-sided ideal

coinsides with the minimal radical filter [a] contai-

Call a ring Rieft 5:.-noetherian if any subset of left ideals In R has a

maximal element with respect to the preorder ~.

6.5.6. Lemma. lf
associated point.

R is left ~-noetherian, then any nonzero R-module has an

Proof It suffices to check the fact for quotient modules Rlm. The set of

annihilators of nonzero elements of RJm 15 n:= {(m:x) I x E R-m]. By Lemma
m

3.4.1, the maximal with respect to 5:. element of n belangs to SpecIR.•
111

6.6. Quasi-coherent presheaves on the structure space. Consider now the subspace

of left maximal ideals, (Max IR,'i5t), of the space (Spec IR;rA) (recall that 't/\

denotes the Zariski topology). The described in 4.0 procedure assigns to every
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R-module M the structure presheaf

space (Max [R,'Vt) into the R-module:

'VtM which sends an open set

'VtM(U):= f3<U>M.

U of the

The map y: m 1----------7 (m:R) defines a quasi-homeomorphism

(Max [R,'Vt) -----4 PrimR,

where PrimR is the lacobson's structure space of the flng R' l.e. the space,

of primitive ideals of the flng R. Thus, the categories of presheaves and she-

aves on the spaces (Max [R,'Vt) and PrimR are equivalent. In particular, the

direct Image functor of the map y transfers equivalently structure presheaves

from (Max[R,'Vt ) onto PrimR.

7. AFFINE AND QUASI-AFFINE SCHEMES. PROJECTIVE SPECTRA.

The goal of this section IS to make a couple of introductory steps towards

a noncommutative scheme theory.

In Section 7.0, we are trying to argue what IS a 'noncommutative space' and

to single out minimal requirements on aspace to be ascheme. The result of our

reasoning is that the category of noncommutative schemes, whatever it IS, should

contain locally quasi-affine spaces and open imbeddings as morphisms.

In Section 7. I, we show that (non-affine) quasi-affine schemes are just af­

fine schemes associated to rings without unity.

Section 7.2 is concerned with the projective spectrum. Thanks to the spect­

ral theory, we are able to define the left projective spectrum associated to a

graded ring approximately the same way as it is done in the commutative case. We

show that an analog of the Serre's theorem [S] describing the category of quasi­

coherent sheaves on noetherian projective scheme is true In the noncommutative

setting. Only 'noetherian' IS in the sense of the preorder ~ which is quite na­

tural. When R is an arbitrary (not necessarily noetherian) commutative ring,

our definition of Proj(R) is equivalent to the classical one.

A serious study of projective spectra, or more general noncommutative sche­

mes, 1S out of the scope of this work. And one of the reasons is that the langu­

age of rings and ideals is not quite adequate to the task. Especially as to app­

lications. A (based on [R6]) sketch of noncommutative projective geometry shall

appear in a forthcoming paper.

7.0. General remarIes on noncommutative schemes. Geometrical objects of commuta­

tive algebraic geometry are locally ringed spaces; Le. pairs (X, 0), where X
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satisfying some

subcategories of

or coherent she-

( 1)

is a topological space and 0 IS a sheaf of local nngs on X

additional properties, What we really care about are certain

the category of O-modules, such as categories of quasi-coherent

aves. Luckily, these categories can be reconstructed from the pair (X, 0).

Moreover. the pair (X,O) can be reconstructed by the category of quasi-

coherent sheaves on X uniquely up to isomorphism. This fact is proved in [Gab]

for noetherian schemes. The general case follows from [R6]. The reconstruction

procedure is particularly straightforward when a scheme is known to be affine:

it is the map ih-----.:, (SpecC( A),OC(sIl))' where C(A) is the center of a catego­

ry A, i.e. the ring of endomorphisms of IdA'

In the noncommutative setting, the role of a ring, or a sheaf of rings, is

less essential, and the choices are not canonical: Morita-equivalent rings have

the same rights. Another. more important circumstance is that lots of natural

objects of noncommutative geometry (to begin with open subspaces of spectra of

rings) are not locally affine.

Thus, a right thing to do In the noncommutative setting, IS to replace the

sheaf of rings by the category of 'structure sheaves'. A straightforward fonna­

lization leads to the notion of a bundle of localizations,

7.0.1. A bUDdle of localizations is a tripie (X.~,ß), where X is a topologi-

cal space, ~ is a map which assigns to any open set 1.1 k X a category ~11'

and to any inclusion t: '11 c 11' of open sets a flat localization

~t: ~tl' ~ ~~.f

Here 'flat' means 'exact and having a right adjoint', Finally, ß is a function

which assigns to any pair t: 1.1 c 1.1', t': 11' ~ 1.1" of inclusions a functor iso­

morphism

ßt',t: ~tO~t' ~ ~t't
such that, for any three composable inclusions. t, t'. t", the diagram

ßt " t~t"

1ßt",l'l

~t O~t"t' -----~) ~t"t't

IS commutative and

~'d = Id, ß 'd = ß'd = id.
I 1., I I •t

Besides. we require that, for any covering V of an open set 1.1,
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of localizations {~t I t E V} reflects isomorphisms~ l.e. if s

In '(;11 such that '(;tS is an isomorphism for aIl t E V, then

isomorphism.

IS a morphism

S itself is an

7.0.2. Note. Although ß here is inavoidable by technical reasons, it is not

really important. In fact, if we fix, for any open set 11, the canonical loca­

lization ~'U~X: ~X ~ ~11 (cf. [GZ], 1.1), then, we define restriction func­

tors ~'U~11' by the requirement:

~'U~11'o~'U~X = ~1.1'-7X· (3)
Thanks to the universal property of localizations, (3) defines the functor

~11~1.1' uniquely. This implies that we can take ß = id. •

pattern, define a7.0.3. Open imbeddings.

bundles of localizations

FoIlowing the standart

(X,'(;,ß) ~ (X',~'.ß') as a patr (4). ep),

morphism

where

of

is a morphism X ~ X' of topological spaces, and <ll is a function which as-

signs to any open subset 11 ~ X' a functor

<I>1r' b(f''U~ ~''U

and to any indusion 1.1 c 1.1' of open sets a functor isomorphism

<l>U-711'; b'll~l1,o<I>l.l ~ cI>ll,ob4>-I(l1)~-I(ll')
satisfying natural compatibility requirements with respect to composltlons which

are expressed by a commutative diagram (this is exactly the place where ß and

ß' get involved) left to areader.

A morphism (4).<1>) of bundles of localizations is called an equivalence (by

abuse of language an isomorphism) if cf> is a homeomorphism, and the functor <1>1.1

is an equivalence of categories for all 1.1.

Let X = (X,~,ß) be a bundle of localizations. and let $: Y~ X be an

open map. Then we can induce a bundle of localizations 4>*X = (Y,<p~,ß') on Y

in the usual way:

<t>*~1f'= ~$(11) and 4>~'U~ll':=~$(l.l)~('U')
for any two open subsets CU ~ 1.1' of Y. In particular, we have a weIl defined

restriction X IV = (V, r; IU' ß') of a bundle X to any open subset V of X and

a canonical morphism X IV~ X. We caIl a morphism X' ~ X

ding if it is a composition of X IV -) X for some open subset

equivalence X'~ X IV·

Open imbeddings are the only morphisms we need for what folIows.

an open imbed­

V and of an

7.0.3. The local algebra setting. Suppose we are glven a topological space X
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and a flat localization Qx: sIJ ~ ilx for all x E X.

X, take a loealization Q<1.1> at the Serre subeategory

For any open set 1L In

<1.1>:= n KerQ.. This
XE 1.1 .x

will define a bundle of localizations (cf. Note 7.0.2).

One of the attraetions of this approach is that the topology plays the role

of a parametre. Another 'global' parametre is the eategory .il = il(X) of strue-

ture presheaves on X:

Note that a loeal algebra setting on X induces In an obvious way a local

algebra setting on any subspace Y of X. And the induced category of structu-

re presheaves of Y is equivalent to the quotient category il(X)/< Y>.

we asslgn

We shall write 0R

(for instanee in Section 7).

Note that this bundle of localizations can be obtained from a local algebra

setting on LSpecR which assigns to any point p E LSpecR the localization at

the Serre subcategory of R-mod generated by all modules M such that Ann(M)

is not contained in p. •

7.0.3.1. Basic examples. (a) Let X = (Specf,'!J), where 'j IS one of the cano-

nieal topologies (cf. 1.10.2 and 1.10.3). To each point p E Spec!?,

a localization at <p>.

(b) If ':J is the Zariski topology, there IS a quasi-isomorphism, <p, from

(Specf,':J) to the Levitzki speetrum LSpecR of R (cf. Theorem 5.3). Thus, we

assign to any associative ring R the bundle of localizations (LSpecR,O), whe-

re 01.1 = N< 1.1> , il:= R-mod, <1.1> = n <p>.
<P>E <P-'(1.1)

and 0 R, 1.1 when there is a need to mention the flng R

7.0.4. Affine schemes. We define a lejt affine (Zariski) scheme as a bundle of

localizations (X,rg,ß) which is isomorphie to the bundle (LSpecR,O) of

Example 7.0.3.1 (b).

We would like to underline that the affine scheme (LSpecR,O) is not

always the best choice of a geometrization, since it is trivial for all simple

rings. If R is simple (e.g. a Weyl algebra), the bundle of Example 7.0.3.1 (a)

with the topology '!J of 1.10.3 is in most cases an adequate geometrization. •

7.0.4.1. Comparison with the construction by Van Oyestaeyen and Vershoren. Van

Oyestaeyen and Vershoren [OV] assign to a left noetherian R its prime spect­

rum, and to any open subset U(a) the localization at the minimal radical fil­

ter [al containing the two-sided ideal a.
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Sinee the prime speetrum of any left noetherian nng eoincides witb its Le­

vitzki speetrum, the underlying spaee is the same as that of a left affine sche­

me. But, it is not the same with structure presheaves. Beeause the radieal fil­

ter [a] is, usually, a proper subset fo <Ufa» (cf. Seetion 6.5). The lat­

ter means that left affine sehemes are loeally simpler. Tbey have greater simi­

larity with loeally ringed spaces (cf. [R6J).

7.0.5. The minimal requirements on the category of noncommutative schemes. Deno­

te by !f~H. the class of bundles of localizations which should be regarded as

schemes. We would like it to have the following properties:

(a) Affine spaces (LSpeeR,O) (cf. Example 7.0.3.1) should be schemes.

(b) If (X, ~) IS ascherne, then, for any open subset 11 of X, the indu-

ced bundle (tL, ~ 1
11

) is a scheme (an open subscheme of (X, ~)).

(c) If (X,~) is a bundle of localizations such that (tL, ~ 1
11

) is a scheme

for every 11 from some covering of X, then (X,~) is ascherne.

Clearly :r€1f includes all commutative schemes. Moreover, in the commutati-

ve setting, (a) and (c) imply (b). But, if R is a generic associative nng, an

open subscheme of the associated affine scheme is not usually locally affine.

Call a bundle of localizations a Left quasi-affine seheme is it IS equiva­

lent to an open subscheme of a left affine scheme.

One can see that the minimal class of bundles of localizations which satis­

fies the conditions (a), (b), and Cc) consists exactly of locally quasi-affine

schemes. Thus quasi-affine schemes deserve a special attention.

7.1. Quasi-affine schemes and spectra of rings without unity. Let R be an

arbitrary associative ring; i.e. not necessarily with unity. For any left ideal

In of the ring R, denote by <m> the set of all left ideals n of R such

that m does not contain neither Il nor any of the ideals (n:y), where y E

peR). The rest of the notions und results of this paper can be transfered on

rings without unity more or less straightforwardly (see [Rl J). In paricular, for

an arbitrary ring R, one can define its left spectrum SpeelR with canonical

topologies and, given a topology, quasi-coherent ('structure') presheaves.

7.1.2. Theorem. Let R be an arbitrary associative ring, and let a be a

two-sided ideal of R. The map p ~ p n adetermines an isol1lorphism of the

open subscheme (V/a),ORI Via))' where VI(a):={p E Spectl p does not contain

a.}, onlo the bundle of localizations (Specp.,0a.).
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(p:X) is not

Rand p E

m. The claim

I.e.

(p:Z),

Jl E

deter-

for same p E UI a) then

Jla = {z E R I az k p} = p.

On the other hand, Jla n a ={z E al (Jl:z)a = a). Therefore, since

Spec La, we have the equality Jla n a = Jl. Le. the map p~ p n a
mines a bijection lla from UIn) onto Spec [a with the inverse map

va: Jl 1--------7 Jla .

Proof (a) Let p E U [ra), and let m be a left ideal of U such that

(p:x) n a is not contained In p n a for any x E P(m). Then

contained In p for any x E P(am). Since UJn is a left ideal in

Spec [R, am ~ p, and, therefore, a(R,m) ~ p, where (R,m):=Rm +

is that (R,nz) ~ p.

In fact, if it IS not so, one can find z E (R,m) - p. The ideal

which contains u (cf. the argument above), is equivalent to p;

((p:z):w) c p for same w E peR). Thus, we have:

a ~ (a:w) ~ ((p:z):w) k p

which contradi~ts to the inclusion p E Ula).
(h) Now, let Jl E Spec [u. Set Jla : = {z E R I az ~ Jl}. Clearly Jlu IS a

left ideal in R. Let m be a left ideal in R such that (Jla:x) - Jla is not

empty for any x E P(m). By dc;finition, this means that for any x E P(m) the-

re exists A such that u/... x ~ Jl and a'A is not contained 10 Jl. In parti-x x x
cular, (Jl:x) n u is not contained in Jl for any x E P(am). This implies,

since Jl E Spec LU, that um ~ Jl; or, equivalently, m E Jlu ' Therefore Jla E

Spec [R.

(c) If Jl = p n a

since,1'1\ ,(d) The map ua is continuous with respect to the topoLogy

for any two-sided ideal ß of the ring a, we have:

[ß ~ lla(p): = p n a] (::::) [aß ~ p]

(e) The map ua lS open.

In fa~t, it sends the open subset Ufa') n Ufa) of Ula) into the open

subset l!f(a'n a) of Spec La. Thus, ua is Cl homeomorphisnz.

(fJ It is easy to check that, for any localizing filter F of the left

ideals of the ring R, which contains the ideal a, the set Fa: = {m n alm

E F j is a localizing filter of the left ideals of a. Since Fa IS a cofinal

subset of F, the F-torsion FM: = {z E MI mz = {Oj for some m E F} of an

arbitrary R-module M coincides with its Fa-torsion. Besides,

HomR(M',M") = HOlna(M',M")

provided the {aj-torsion of the module M" is zero.
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Therefore we have (cf. 0.3):

f]~M) = eolim{HomR(m,MIFM) I m e F} = eolim{Homa(m',MIFaM) I m'e Fa J = f3F (M).
a

This implies that the homeomorphism ua induees an equivalenee oI the ea-

tegories 0/ quasi-eoherent presheaves and, therefore, sheaves, on Uf a) and

Spee La respeetiveLy. In other words, u
a

induces an isomorphism of bundles of

localizations (U /a),oR IU(a)) onto (Spee IU'Ou)·.

7.1.3. Corollary. The bundle of loealizations )Z is isomorphie

quasi-affine seheme if and only if it is isomorphie to (LSpeeR, 0 R)

associative ring R (without identity element in general).

to a left

for some

Proof In fact, any associative ring R is a two-sided ideal of the flng

RU generated by Rand an element e (unity) which satisfies the relations:
'J

e- = e, ex = x for any x ER.

Now the assertion follows from Theorems 7.1.2 and 5.3.•

7.1.4. Loeal algebra setting for quasi-affine sehernes. Let

affine (or any other) scheme given by a local algebra data

(X,Q : O(X)~ 0 I x e X)x x
(cf. Seetion 7.0.3). Then, any open subscheme of (X, 0) is given by

(11,Q : 0(11) ~ 0 I x e 11),x x
where 11 IS an open subset of X and 0(11) is equivalent

tegory o(X)I<11>, <11>:= n KerQx·
XE 11

If O(X) ~ R-mod. then <11> IS the full subcategory of

by all modules with support contained in the closed subset X-l1.

(X, 0) be a left

to the quotient ca-

R-mod generated

7.2. Left projective spectrurn. We begin with some generalities on the graded

left spectrum.

7.2.1. Graded spectral theory. Let H be a commutative semigroup; and let R

be an H-graded ring. Denote by H-SpeeiR the subset of Speet formed by

H-graded ideals. Similarly, we define the H-graded Levitzki spectrum of R,

H-LSpeeR.

Denote by qJ1.H1IR, or just QJ1lt. when it is clear (or does not matter)

what IS H, the set of all homogenious left ideals In R. Clearly the

imbedding q.n..dlR ~ IIR is a retract: the corresponding coretraction assigns
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to any left ideal m In R the left ideal h(m) generated by the set of aB

homogenious elements of m.

7.2.1.1. Lemma. The map h: IIR ~ Q/"tHI/R induces a coretraction

!fh: Specf -------7 Q/"tySpec/R.

r E R-h(p). The latter means

(1)

does not belang to p.

means, by definition, that

W be the set ofLet

ry ,

which

Proo! In fact, let p e Spec/R. And let

that one of the homogenious components of r, say

Since p is in the left spectrum, (p: ry) ::; p

((p:ry):w) b; p for some finite subset w of r y '

homogenious components of elements of w. We have:

(p:Wry ) = ((p:ry):W) k ((p:ry):w) b; p.

Now, since Wry is the set of homogenious elements,

(2)

Finally,

(h(P): r) ~ (h(p): ry)'

Combining (1), (2), and (3), we get the inclusion:

((h(p):r):W) ~ ((h(p):ry):W) ~ h(p)

which means that (Np):r)::; h(p). This proves that h(p) e SpecZR. •

(3)

One can see that the (induced) Zariski topology on H-SpecZR has the set

of closed sets H- Via): = H-Spec/R n Vla), where a runs through the set of

H-graded two-sided ideals in R.

In fact, if V is a closed subset In Spec/R, then

V:= H-Specf n V = H-Spec/R n Vf n p). (4)
peV

Theorem 5.6 implies the following

7.2.1.1. Proposition. If a is a fin iteZy generated

ideal, then the open set H-Ula) is quasi-compact.

H-graded ring R (not necessarily with unity) the space

of open quasi-compact subsets.

lzomogenious two-sided

111 particu/ar, fOT any

H-LSpecR has a base

7.2.1.2. Structure sheaves of graded modules. Denote by c:J the forgetting

grading functor from the category Q/"tHR-mod of H-graded left R-modules to the

category of left R-modules. Since the functor ':f is exact and respects and

reflects colimits, the preimage of any SeITe subcategory S of R-mod is a

Serre subcategory of qn..JI?--mod., And we have a commutative diagram:
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Q' (1)
-I

q'tHR-mod ) QftHR - modlr:; s

~ 1
Q

1~'
R-mod ) R-modlS

Sinee ~-IS IS a Serre subeategory of the Grothendieek eategory QftJl?-mod,

the loealization Q' ha~ right adjoint funetor. And -I
a QI1HR-modl:f S IS eano-

nieally identified with a fuU subcategory of the eategory QI1JI?-mod. In parti-

cular, any object of
-I

is an H-graded R-module.QI1F.f-modl!F S

Now we deseribe all this In the language of flngs, left ideals, and Gabriel

filters.

To the Serre subeategory S, we asslgn a Gabriel filter §' = §'S in the

usual way: §':= Im Elf I Rlm E Obsj. The analogous operation with respeet to

S': = ~-IS gives us the set

rJ':= Im E H-IIRI Rlm E Obs'J = §' n H-1f'

where H-IIR denotes the set of H-graded left ideals in R.

Fix an H-graded R-module M. For any H-graded module L, we have a weIl

defined tlinner hom"

HamR(L,M):= ffihE JlfamR(L,M)h'

Here 1f.am
R

(L,M)h eonsists of all R-module morphisms f' L ~ M of degree h~

l.e. f(L~ ~ M
h
+

t
for all t E H. Thus, we have an H-graded I-module

'1f.§',(M):= colim(HamR(m,M) I m E §"), (2)

And one ean show that '1f§',(M) has unique strueture of H-graded R-module

eompatible with the strueture of R-module on

H'§'(M) = colim(HomR(m,M) I mE§') (3)

(cf. 0.4). The compatibility means that the I-module morphism from '"Jf.rJ,(M) to

'H§'(M) induced by the compositions of I-module morphisms

1f.am
R

(m,M) ------7 HomR(m,M) and HomR(m,M) ------7 'HrJ(M) , m E rJ',

is an R-module morphism. The map '1frJ,(M) is functorial In M. So, we have a

weil defined funetor

lfrJ': QI1J1?-mod ) QI1HR-mod. (4)

The funetor 03rJ':= 1f§',oH§', IS the Gabriel funetor of the localization at

the Serre subcategory s' (or, what is the same, at the filter §"); l.e. ür!/'

is isomorphie to the composition Q'l\o Q' of the localization Q' at S' with

its right adjoint.
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(5)

and IlM IS a structure

are defined uniquely by

non-graded structures (cf.

for any H-graded module M, there is a canonical H-graded action

J.lM: rn'!!l,R ® Gw~ -------7) rJ:g,M

IS an H-graded associative ring structure

{ll:1,R-module. Of course, this structures

condition with the corresponding

Moreover,

such that J.lR
of an H-graded

the compatibility

Section 0.4).

at <11>:= n <p>
pE 11

localizations which we denote by Proj [(R).

Clear]y ProjZeR) can be given by a local algebra data:

Projl(R) = (X,Qx: O(X) ----4 0x! x EX),

where X = Proj/R); the category O(X) of structure presheaves IS equivalent

to Q/LzR-modl<U/R+»; Qx' x E X, are localizations at points of the (homoge-

nious) left speetrum.

For any 11 k qn.Spec f' eonsider the composition P11 of the fully faithful

imbedding

7.2.2. Left projective spectrum. Let now R be a 7l+ -graded ring; and let R+ de-

note the (direct) sum of all components R, n ~ I.
n

By analogy with the commutative case, denote by Projf R) the open set

Q/LUfR +):= UfR+) n <yt!IR = (p E SpeclRI p does not contain R+l n qrUIR

of the graded left spectrum of R.

Note that, thanks to Theorem 7.1.2, we ean identify UfR+) with SpecjR+.

But, we are not going to use this identifieation here.

Now, to any open subset 11 of U/ R+), we assign the loealization

Q<l1>: Q!l.,f-mod ) Q!lzR-modl<l1>

(in the sense of 7.1.1). Thus we have defined a bundle of

-------7) QIl~-mod

and the funetor

(I)

which assigns to any z-graded module (respectively graded module morphism) from

Q/tZR-modl<11> its zero component.

7.2.2.1. Lemma. Let the ideal R+ be generated by R l' Then. for any subset ti

of UfR +). the kemel of the functor

P11: QIt-!?-modl<l1> ) Ro-mod

consists of all modules M = EB M such that M = 0 for all n:5 O.
nEZ n n
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Then,

EBM
<0 nn_

is {R+l-torsion. Sinee <11> ~ [R+1, it is also a

<JIl-!?-modl<11> are <l1>-torsion free. Therefore

is an R-submodule of M whieh

<ll>-torsion. But, all objeets of

EB M = 0; Le. M = E9 Mo.
nSO n n~l n

Proof If 11 c 11', then P11 is the eomposition of the fully faithful fun-

etor <JIl~-mod/<1.1> ) <JIt~-modl<1.1'> (full faithfulness is due to the fact

that this funetor is right adjoint to a localization; cf. [GZ], Ch.I) and P11"

Therefore, it suffiees to prove the assertion in the ease 11 = U/R +).

Sinee the funetor P11 has a left adjoint, it is left exaet. This implies

that the faithfulness of P11 is equivalent to the property:

for any objeet M, Pl1(M) = 0 iff M = O.

Let M be a graded module from QIt?!-modl<11> such that Mo = O.

for any n ~ I, R nM = O. Sinee R generates R, this implies that
1 -n I +

Fix a set S of elements lß R satisfying the left are eonditions; i.e. for

any SES and r E R, there exist s' E Sand r' ERsuch that r's = s'r.

Let US denote the subset of all p E SpeclR such that p n S = 0. Or, equi­

valently, Us = Spec~ - FS' where FS = {m E I[RI (m:x) n S = 0}. Since, by

Lemma 0.3.2, FS is a radieal filter, the set US is closed in the topology t

(cf. Seetion 1.10.1).

Suppose that S above consists of homogenious elements, and some of them

are of positive degree. Then <JIlUS is, obviously, a subset of UfR +).

s be a left

---) R -mod
o

consists of all modules

R+ is generated by RIO And let

Then the functor P11: QltIR-modi< 11>

The funetor P1l IS (isomorphie to) the eompOSltlon of a fully

QI1-!?-modl<ll> ) Q/t-j?-modl<US> and the funetor

PuS: QIt/?-mod/< US> ) Ro-mod.

So, it suffiees to eonsider the ease 1l = US.

b) Aecording to Lemma 7.1.2.1, the kernel of P1.1

M from QIt R-modl<l1> such that M = 0 for n S O.r- II

Since M E Ob<Jll-If-modl<l1> the eanonical (graded) morphism M ----7 {3qrt<ll>M

is an isomorphism. This implies that M ------? f3~ is an isomorphism for any ra­

dieal filter F which is eontained in <11>. Note now that FS ~ <11>. And, due

to the are eonditions, f3FM::.: S-I R@It1, where the tensor produet is the graded
S

7.2.2.2. Lemma. Suppose that

Ore subset oj R+' 1l ~ <JIlUS

is faithful.

Proof a)

faithful funetor
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tensor produet. But. if M 'i= 0, the graded module S-IR0J?!vf has nonzero negati­

ve eomponents whieh eontradiets to the existenee of a graded isomorphism from M
-I

to S R0It1.•

7.2.2.3. A special case. If

the Gabriel funetor a3<cu>

category o/L?f-modl< CU> is

that the forgetting funetor

funetor

cu = US In the eonditions of Lemma 7.1.2.2, then

is isomorphie to M~ S-IR0J1v!' and the quotient

equivalent to the category o/L-J!-I R-mod. One can see
-1

qrzS R-mod -------7 R -mod is the composition of the
o

r;: qnS-I R-mod -------7 (S-IR)o-mod (1)

(the zero eomponent of a graded S-IR-module is an (S-IR)o-module) and the 'pull­

back' funetor

ded tensor produet; and one ean see that the adjunetion morphism

Id ----7 r; 0 Ar;

The funetor

(S-I R) -mod -------7 R -mod.
o 0

1$ right adjoint to the functor Ar;: = of gra-

1S an isomorphism which means that Ar:.; is a

the functor GJ- is a localization ([GZJ. I.2). But.

fully faithful funetor. Therefore

r; is faithful. And the on-

ly faithful localizations are equivalences of categories.

I t remains to notiee that US is naturally homeomorphie to the left speet-

rum of the ring (S-I R-mod).
o

All together shows that the strueture of the projeetive speetrum of a gene-

ral associative ring over the open sets US is the same as in the eommutative

case.

loealizations ofto the bundle ofis equivalent

Suppose there is a family n of finitely generated left Ore subsets of ho­

mogenious elements in R+ such that Proj[R = U US. The sets US are open in
SEn

(cf. 1.10.3). And the restriction of the bundlethe topology (induced by) 't*

of loealizations to eaeh US
-I

((SpecfS R)o''t*),O) (cf. Example 7.0.3.1(a».

For Proj to be loeally affine, we need a stronger requirement. Suppose that

there is a set .=. of elements in R+ such that Ru is a two-sided ideal for

any u E..... This implies that, for any u E:=:, the multiplicative system (u)

= fun I n 2: O} IS left a Ore set. Clearly V/Ru) ~ U/R+) for any u E 3.

Suppose that the (Zariski open) sets o/LU/ Ru). U E 3. cover q.n.U/R+).

Then Proj ,(R) 1S loeally affine. Explicitly, the restrietion of Proj [(R) to

QltUfRu) is isomorphie to the Zariski bundle (Spec!(uf'R)itZar)'O).
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If we eonsider Zariski topology, it is better to replaee ProjzCR) by the

eorresponding Levitzki spectrum LProjl(R) = (X; Qx:o(X) ~ 0x
l

x EX). where,

this time, X = LPro}(R):= q.rtLU(R+); O(X) ~ QIl-!?-modl<UfR+»; and Qx IS a

loealization of QI1?f-mod at the Serre subcategory generated by all modules M

sueh that the annihilators of nonzero elements of M do not eontain x.

7.2.2.4. Example. Let R be a 'quantum spaee', i.e. an algebra over a field k

generated by the indeterminates x., (}5;,i5n, subjeet to the relations:
I

xix) = qi/(jXi (1)

where 05:iJ5n, and q.. E k* for all i, j. Taking the standart grading, we
lJ

define the LProj/R). Clearly the ideal Rxi is two-sided for all i. Therefore

LProjl(R) is locally affine. And the restriction of LProjl(R) to LU(Rx
i
) IS

isomorphie to the affine seheme of the ring generated by the indetenninates z.
J

= x Ix " 05:j5n,}:t i, satisfying the (following from (l)) relations:
J I _I

Z;,zm = (qml.qjmqji )zmly (2)

05:j,m5n, j:t i :t m. •

7.2.3. Serre's theorem. Reeall the description due to Serre of the category of

quasi-coherent sheaves on X = Proj(R), where R 15 a :z+-graded commutative

noetherian ring generated as an R -algebra by R:o 1

The category Qcoh(X) of quasi-coherent sheaves on X is equivalent to

the quotient category of QIt/?-mod by the Serre subcategory S+ spanned on mo-

dules having finite number of nonzero component.

We shall see in a moment that there IS a natural generalization of Serre's

theorem to the noncommutative setting.

Note that the category S+ In the Serre's theorem is exactly the minimal

Serre 5ubcategory contmnlng all graded modules annihilated by the ideal R+'
In other words, S+ is the Serre subcategory corresponding to the minimal radi-

eal filter [R +1 eontaining R+ . The Serre' s theorem holds ifand only if

[R+J = <UfR+». Recall that the category <UfR+» is generated by a11

Z-graded R-modules M such that Supp(M) ~ VfR+):= {p E SpeczR I R+ c pi, or,

what is equivalent, by those graded modules M for which Q!1Supp(M) ~ qrtVfR+).

We have the following analog of Lemma 6.5.4:

7.2.3.1. Lemma. Suppose that the ring R IS such that any nonzero graded R­

module has an associated point. Then, for any radicaI filter F in QIll/?' the

Serre subcategory SF is generated by all graded modules M such that Supp(M)
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is contained in F.

In particular, the filter IR+1 coincides with <UlR+».

Proof repeats word by word the proof of Lemma 6.5.4. _

A sufficient condition for nonzero modules to have associated points IS the

following version of noetherian property (cf. Lemma 6.5.6):

(Max~) Any nonempty set of graded left ideals In R has a maximal element

with respect to ~.

If R IS commutative, the property (Max::;) says exactly that R IS noethe-

rian which gives immediately the Serre's theorem.

But, In the noncommutative case, the dass of ::;-noetherian rings was not

properly studied yet, and there are no known methods of checking weather a ring

is ~-noetherian or not.

The situation with the using Lemma 7.2.3.1 directly IS a Httle bit better.

For instance, one can show that nonzero modules over a quantum space (cf. Examp­

le 8.2.4) do have associated points.

7.2.3.2. Note. The Serre's theorem (or equivalent to it description of the cate­

gory of coherent sheaves on X as the quotient of the category of noetherian gra­

ded modules by the subcategory of noetherian modules with finite number of non­

zero components [S]) is taken usually as adefinition of the noncommutative pro­

jective spectrurn (see [A], [M], [SrnT], [Sm]). As Lemma 7.2.3.1 and the following

discussion shows, the adopting such adefinition means even more than just rest­

ricting to the noetherian case.

One of the advantages of our approach IS that it does not require noetheri­

an hypothesis of any kind. _

ApPENDIX: PRINCIPAL IDEAL DOMAINS, THE QUANTUM PLANE.

We consider here two simplest examples of cornputing the left spectrurn. The

first of them (principal ideal domains) proved to be very useful, the second one

(the quantum plane) 15 ruther an illustration. The reader who is interested m

'real life' applications of the developed here (and In [R6]) spectral theory to

the study of representations of algebras of mathematical physics is invited to

look into [R3], [R4], and [R5].
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A.l. The left spectrum of a principal domain. Recall that a ring R IS called a

left and right principal ideal domain if R is a nng without zero-divisors

such that each left and right ideal of R is generated by one element.

A.l.l. Proposition. Let R

nonzero ideal from Specf
maximal ideal of the ring R

element of the ring R.

be a leJt anti right principal domain.

is equivalent to a leJt maximal ideal.

IS oJ the Jorm Rf, where f is an

Then every

Every left

irreducible

Proof Let P ESpecf. Since R IS a left principal ideal damain, p =

Rf for same element f E R. It is easy to see that the absence of zero-

divisors garantees that the right ideal fR is proper.

In fact, if fq = 1 then (I-qf)q = q(1-fq) = 0; therefore, qf IS also

equal to 1; i.e. p = Rf = R.

Being a proper ideal, fR is contained in a right maximal ideal '.t. Since

R is a right principal ideal domain, 11 = qR for some irreducible element q

of the ring R. The inclusion fR ~ qR means that f = qh for some h. Note

that h i: p.

Indeed,

[h E P ] <=> {h = h'f Jor some f E R] <=> {qJz' = I] <=> [11 = qR = R]

Since p E Specf and h i: p, the left ideal (p:h) is equivalent to p.

Clearly Rq c (p:h). But Rq is a maximal left ideal (thanks to the irreduci-

bility of q); hence Rq = (p:h) .•

A.l.2. Lemma. Let R

left ideals is of the Jorm

be a leit principal domain. Then every radical filter of

FS Jor some are multiplicative subset S.

Proof Let F be a localizing filter of left ideals. Denote by S the

set of all the elements t ERsuch that Rt E F. Since R IS a left ideal

principal n ng, (Rt:x) = Rt'; Le. for any t E Sand any x E R there exist

y E Rand t'E S such that t'x = yt. The second Ore condition - if sa = 0

Jor some SES then there exists s'E S such that as' = 0 - holds automati­

cally.

It remains to show that

if s, t E S then st E S; i.e. Rst E F.

In fact. for any element x = at of the left ideal Rt, we have:

(Rst:x) = ((Rst:t):a) ~ (Rs:a).

Since (Rs:a) E F for any a E R, then (Rst:x) E F for any x E Rt.
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Therefore Rst E F. •

A.l.3. Topology 't *. If a ring R

MaxfUr::=, then, obviously, a subset of

(cf. l.1 0.1) if and only if it

description of 1'* when R is a left and

IS such that SpecIRl~ coincides with

Specp= is closed in the topology 't*

]s finite. In particular, this g]ves the

right principal ideal domain.

A.1.4. Proposition. Let R be a leit and right principal ideal domain such that

every nonzero element of R is fhe product of a finite !lumber of irreducible

elements. Then the topologies 't (md l' * coincide.

Proof Clearly, for an arbitrary ring R, every closed in the topology 't*

subset of Spec,R is also closed in the topology t. To prove the inverse

inclusion, it is sufficient to show that, under the conditions of the

proposItion A.IA, each set of the form V/m), for an arbitrary left ideal m

of R, consists of a finite number of equivalence classes.

Since R is a principal left ideal domain, m = Rq, for some element q,

of the ring R. Consider the decompositoo of q ioto irreducible factors: q,

= q,1· ... ·qn. To this decomposition, there corresponds the sequence of monoar-

rows

where q,(v): =

Clearly

RlRq >---? R1Rq(2)>---7 ... >--) RlRq(n-I)>--) Rlm

q[·····qv·

(1)

is an irreducible module; i.e. (1) is a Jordan-Helder decomposition.

Now, note that the closed subset VIm) coincides with Supp(R1m); and

Supp(R/ln)= U Supp(RJRq.)
I~i~ 1

But

Therefore

SuppeR/RQ) IS the equivalence class of the left maximal ideal

VIm) consists of 00 more than n equivalence classes.

Rq..
l

A.l.5. Localizations at points. Let p E Max,R; l.e. p = Rq for some irredu-

cible element q. The localization at <p> = <Rq> can be obtained by inverting

all the irreducible elements of R, which are not equivalent to q,.

A.1.6. Localizations at open subsets. Now, let U

of SpeclR. By Proposition A.l.4, U = SpeclR - V,

R.

be an arbitrary open subset

where V = U V/Rq,) for
q E X

The localizationthe ringof irreducible elements ofxsome finite set
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at the open subset U is the inverting of all the elements q, q E X.

A.2. Left normal morphisms and quantum plane. Let k be a field. The quantum

plane is the k-algebra

k[x,Y]q= k<x,y>/(xy - qyx) ,

where k<x,y> is the associative k-algebra freely generated by x, y.

ThereSpecZk[x,yjq'InA.2.1. Left spectrum of k[x,y]. Fix a left ideal pq
are the following possibilities:

(a) p contains a nonzero polynomial in x;

(a') p contains a nonzero poLynomiaL in y;

(b) p n k[x] = {O};

(b') p n k[y] = {O;'

Consider each of these alternatives.

(b') Consider the loealization k[x,y]~ of the algebra k[x,y]q at the

set k[y] - {D} of a11 the nonzero polynomials in y. This localization sends

the ideal p into the ideal p from SpecLk[x,y]~. Now, note that the ring

k[x,yj' is an euclidean domain. In partieular, k[x,yj' is a ring of left andq q
right principal ideals. This means that Specf[x,yj~ consists of the principal

ideals generated by irreducible elements of k[x,yj'.q
In particular, p' = k[x,yJ'·h for some irredueible element h of theq

algebra k[x,yj' .q

(a) and (b'). The natural embedding k[x] ------7 k[x,y} IS a left (and
q

right) normal morphism (ef. 3.). In partieu Iar, the intersection px: = p n k[x}

is a prime ideal of the ring k[x]; i.e. px = k[x]f(x), where fex) is an

irreducible polynomial. Clearly fex) IS an irreducible element of the ring

k[x,yj~. Therefore the irreducible element h (cf. (a) is equivalent to f;

i.e. p' = k[x,y}~.f.

(a) and (a'). Then the ideal p contains irreducible polynomials fex)

and q(y). In the commutative case, when q=l, every pair of irreducible poly-

nomials, <f(x),q(y» , defines a maximal ideal of the ring k[x,y}. It is not

so in the noncommutative situation.

Suppose that the field k IS algebraicly closed. Then f(x) = x - c and

q(y) = y - d for some elements c, d of k. The ideal p contains, together

with f und q, the elements

y(x - c) = qxy - cy and xy - dx.

This implies that the element qdx - cy belongs to p. And, therefore, the
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element

qdx - cy - qd(x - c) + c(y - d) = (q - I)cd

belongs to p. Since the ideal p is proper, (q - I)cd = 0; i.e. either c =

o or d = 0 or both of them.

(h) and (b'). Then p = P, =k[x,y]'·h n k[x,y] where h IS an irredu-
1 q q

cible element of the ring k[x,y]', which is not equivalent to any polynomialq
In x or in y.

A.2.2. The topology

of (Spec f[x,y)q' 't")

T" and 't on Spec!'[x,y]q.

is a finite subset of the cross I U I ,
x Y

Every proper closed subset

where

Ix: ={(c, 0) I c E kJ, ly = {(o,d) I d E kJ.

The topologies

logy T subset of

the points; Le. the sets
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