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Introduction

We study systems of linear partial differential
equations in two complex variables of rank (= complex

dimension of the solution space) four. We state first our

motivation and some backgrounds.

Let X be a Hermitian symmetric space, I be a properly
discontinuous subgroup of the group BAut(X) of complex
analytic automorphisms, M be the quotient variety TI\X
naturally equipped with the structure of an orbifold,

m:X —> M be the natural projection and finally let

Y = n-1:M —> X be the developing map of the orbifold M.

We think there should be a linear differential equation
on M of which solution gives the developing map . If
such a differential equation exists, it is called the

uniformizing equation of the orbifold M.

If X is a complex unit ball in €® « P", then the
uniformizing equation is a system of differential equations

of the form

2
372 k 9Z 0
(0-1) — = ..( e i -.( Z .'.=1’-o-
axTaxI ! plj X)Bxk pl] ) (l,J‘ 'é)

where 2z 1is the unknown and (xl,...,xn) is a system of
local coordinates on M. The developing map ¢:M —> P" is
given by the ratio of n+ 1 linearly independent solutions

of (0.1). The system of coefficients {pij}? 5 x=q 1is the



holomorphic projective structure on M naturally induced

from 7m:X — M, and the coefficients {pQ.}P ._. are

i3°1,3=1
determined by the projective structure. Namely, the integra-
bility condition of the system (0.1} (the relation of the
coefficients garanteeing (0.1) has (n+ 1)-dimensional solution
space) says that each pgj is a differential polynomial of

Iptj}. The differential equations of the form (0.1) are studied

by many authors analytically and geometrically (see [Yos]).

We now turn to the case when X = HxH 1is the product
of two upper half planes H = {z€ E| Im z>0}. Since X 1is a

domain of the product P1XZP1 of two projective lines, and

since Iﬂx Eﬂ can be considered as a non-degenerate quadratic
surface Q in the 3-dimensional projective space P~ , the
uniformizing equation should be a system of differential equations
of rank four and the developing map Y:M —> Qc:P3 is given by
the ratio of four linearly independent solutions. In local

coordinates (x,y) of M, such a differential equation can

be written in the following form

2 2
37z _ 9z 02 ]8z
552 = xay Y et 3y | PZ
(EQ) A
2 2
3%z _ 3%z 3z, .9z
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The coefficients & and m gives the holomophic conformal

structure dez + 2dxdy + mdy2 on M naturally induced from



. 3
the projection m:X —> M and the embeddings XcQoP .

In this way we encounter the differential equations of
the form (EQ). Although some classical examples (so called
hypergeometric differential equations in two variables) are
known, this paper is the first systematic study of such
differential equations, in which geometric as well as

analytic studies are made.

We study the equation (EQ), especially its normalization

- and integrability condition, and establish some fundamental
propositions and formulae. We make use of some differential
geometric technique which is essential to endow the equation
with a geometric meaning. It makes also possible to characterize
(in terms of the coefficients) the property QR that "four

linearly independent solutions are quadratically related”.

To show that our study is effective, we construct the
uniformizing equation on a Hilbert ﬁodular orbifold M found
by F. Hirzebruch [Hir]. Recently R. Kobayashi and I. Naruki
[K-N] succeeded to find the explicit conformal structure on M.
Unlike the projective case (0.1), the conformal étructure
(i.e. 2,m) does not determine all the remaining coefficients.
This phenomenon is characteristic in two dimensional conformal
structure (see [Sas]). So we have to make a global
consideration (the invariance under certain finite group) to

find the differential equation . The equation thus obtained is

the first non-trivial example of the equations of the form (EQ)



which is hon-hypergeometric.

2.2 2 2
log (1-x"y )(22;{ v©)

1-x

.32
a=~" 3 3x

] (1-x52) 2 (2-x°=y?) 2

L
+ 5 75— log
2 9y (1-y2)2 (2—y2-x2y2)

po & 8 @yt (1)) elyh)
2 ax 9 )
(1-x7)
L2y
(1-x2) 2 (1-y?)

Its coefficients are given as follows:

psos2?
me - 22X =Xy

xy(1—y2)

m 3 (2-x2—x2y2} (1-x2y2) (2-x2—y2)
C=7 39 .
{(1-y")
2.2 2 2
.39 (1-x"y™) (2=x"-y7)
d=-3 3y 19 2
'
m 9 (1—x2y2)2(2—x2-y2)2
M R N S R R
{(1-x") " (2—x"=x"y")
q= —2(y2—x2)
(1-x2) (1-y?) 2

We . also study the hypergeometric differential equations

in two variables. Since those equations of rank four are studied

very little, we make a large table of them, which will be a

basic data in the future. We study the condition QR for

them and express it in terms of their parameters. We further

show that some of them (under QR) are transformed by an elementary



(i.e. algebraic and logarithmic) change of variables into an

equation of the following form:

52,

_.2_ :p(x)z
(0.2) 9%

2

é—-—% = qgixlz .

ENY

This means that the monodromy group of the equation is the

tensor product of those of the two ordinary differential

equations (0.2).

This work was done during the stay of both authors 85/86
at the MPI flir Mathematik, to which they are grateful. The second

author is also grateful to Université Louis Pasteur, Strasbourg.
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§ 1 Hypersurfaces in projective space’

Let M be an n-dimensional complex local hypersurface
+ .
in the complex projective space EJ11 . We want to define
a certain local projective invariant which is necessary to

develop the theory of linear differential equations in the

. . + . .
following sections. Let i:M —> EJI1 be an immersion. We

choose a 1lift ey of i to el {0} which covers Pn+1.

The image eO(M) is locally a submanifold in En+2. At each

point eo(p), pEM, we assicate a set of linearly independent

vectors e1,...,e ’ such that the first n vectors

n en+1

e,r--.,€ ~ are tangent to eO(M). We call the set

e = {eo,...,e } a projective frame along M. We assume that

n+1

det (eO,...,e = 1. The dependence of this frame on the

n+1)

point p 1is given by an infinitesimal equation
(1.1) de = we,

where w:pP k= w(p) is a s1(n+2,€) - valued holomorphic
one form on M, which is called the Maurer- Cartan form. The

integrability condition of (1.1) is given by

(1.2) dw = 0w A W,

. = yh+1l vy B,
i.e. duw Xy=0 Wy A Wy 0sa,Bsn+1.

Now the condition that e &, are tangent to eO(M)

.l’ “ e
. . n+1
implies Wy, = 0 and, by (1.2), we have



n i n+l _
(1.3) Zi=1 wy A Wy = 0.
Since wi := wé, 1$1isn, are linearly independent, Cartan's

lemma shows the existence of a symmetric "tensor" hij such

that

We define a symmetric 2-form @, (the fundamental form)

on M by

n i 3
wiwd .

(1-4) ©2 = 15,321 Py

This form obviously depends on the choice of the frame e.

Another possible frame € is written as

e =ge , il.e. e =

where the matrix g satisfies

gg = gn+1 = g2+1 =0, 1sisn.

Let ® be the Maurer-Cartan form associated with e , then

w = dgag +gwg

Using this identity we can see

~ _ 2 _ 0
Lpz - A wzl A - go .



Namely the conformal class of ©, is independent of the

choice of a frame. Now assume that this form is non-degenerate,
equivalently that the matrix (hij) is non-degenerate. Then,
by a frame change, we may assume

_ : 0 n+1 _
(1.5) det(hij) = 1, Wy * W Lq 0.

We next define a new quantity hijk by

- _ th k _ ¢n k
(1.6) The 1.Ukw = dhy | =1 By w5 De=1Pyx®y -

Under the condition (1.5}, it is seen that hijk is symmetric
with respect to subindices and behaves like a tensor. Namely
under a frame change it varies as

| .. = gn P g, T
(1.7) Mgk = Lp,q r=1 Ppar9i9i%

SO we put
ijk

- tn
(1.8) N Xi,j,k=1hijkw wiw o .

This is called the Fubini-Pick cubic form. From (1.7) we can see

LY

~ L2
lD3 - A(D3°

Hence, especially, the vanishing of ©, is independent of the

choice of a frame satisfying (1.5). Moreover we have



_.10_
Lemma (L. Berwald; see [Fla],§ 12). The cubic form O
vanishes if and only if the hypersurféce is locally a quadric.

Let us recall the normalization (1.5) of the frame

implies the so-called apolarity condition which is written

as

n ij - 1j, _
(1.9) Xi,j=1 h™7h; 5 = 0, where (h™7) = (h; )

For the detailed description refer [Sas].
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§ 2 Linear differential equations in two variables of rank four

For notational simplicity, we denote by fx (resp. fy)
the partial derivative of a function £ with respect to x

(resp. y). Consider a linear differential equation

n
o
N

+
jall
(3]

,[Zxx xy % + b zy + pz
L =
zyy m zxy + cC A d zy + pz

(EQ)

where (x,y) are independent variables and 2z is the
unknown. We assume throughout the paper that the rank

(= dimension of the solution space) is four. Differentiate

(EQ) to obtain

(1-Lm)zxx {2y+~a-+bm-+R(mx-+d-+c2}}zx

v y

+ {ay4-bc4-2(cx4-ca)-flq}zx
+ {by+ bd + £(d_ +bc) + p}zy

(2.1) + {p,+bg+ (g, +cp)lz

(1—R,m)zx {mx+d+csz,+rn(!¢y+cr+brn)}zxy

Y

+ {cx-+ac-+m(a -+bc)-+q}zx-

Y
+ {d:x.+bc+m(bjy+ bd) +mp} 2,

+ {q, +cp +m(p, +ba)lz.

We have

(2.2) 1 - &m % 0,

otherwise the rank would be smaller than four. Let =z ,
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1

z ,22 and z3 be linear independent solutions of (EQ)

and put - z = (20,21,22,23). z defines a map from (x,y)-

space into iP3 . The image is locally a surface §S. The
geometric treatment of this surface in which we are
interested will be given in § 4. In this section we would

like to present some basic formulae. Let us introduce a

function 6 Dby

26 _
{(2.3) e = det (z,zx,zy,zxy).

We call the function e29 the normalization factor of the

equation (EQ}. By differentiating (2.3) we have

e—ze{det(z,z )}

ZBX xx'zy’zxy) + det(z,zx,zy,zXxy

20 e-ze{det(z,zx,z

fzxy) + detiz,zx,zy,z V).

Yy XYY

Then making use of (2.1) we get

20, = a + T:%E{£Y+a-+bm+-z(mx-+d-+c£}

{(2.4)
]
29y = d + T:Ia{mx-rd-rcR-rm(2y4-a-+bml}.

For the sake of simplicity we put

B0 = {py+ ba+ Lq,+ cp)}/ (1=4m) ¢ = (g + cp+mip + ba)}/(1-tm)
s B; = (a+2q)/(1- tm) c'=c+ /00 - )
B = (B+p)/(1- fm) = ©+mp)/ - g
B> = {2y+ a+bm+ 2 (m +d+cl)}/(1~2m) Cy = {m +d+ct +m(fy +a+bm)}/ (1-2m),
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+bd + 2(d, + bc)

+ bc + m(b‘y+ bd)

are written as

eo,e1,e2,e3}

~28
Z
Xy

along

The Maurer-Cartan form

where
A =ay+bc+2(cx+ac) B =by
C =cx+ac+mwy+bc) D =dk
In these abbreviations, (2.1) and (2.4)
z = B3z + BTZ + Bzz + Boz
XXY Xy X Y
(2.1)"
z = C32 + C1z + sz + Coz
Xyy Xy X Y
(2.4)' B> =20_-a, C> =28 - d.
We next choose a projective frame e = {
the surface S as follows:
(2.7) e0 =z, e1 = zx, e2 = zy, e3 e
Since
de0 = e14x + ezdy,
vectors e, and e, are tangent to S.
w defined by de = we 1is equal to

/0 ox
pdx adx
(2.8) w-=
qdy cdy
\ €720 8%x + Pay) 7?0 (plax+

dy
bdx
ddy

0
&9 (sax+ dy)

%0 (mdy + ax)

C1dy) e-ze(Bzdx+C2dy -ad*— ddy
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We assumed that. (EQ) is of rank four. This condition is
expressed- by a system of algebraic relations of the
differentials of the coefficients, which is called the

integrability condition of (EQ). Let us define as

usual the curvature form § by
(2.9) = do - w A w,

Then the integrability condition of (EQ) is nothing but the

identity

On the contrary this garantees that (EQ) is of rank four.
We will rewrite this condition explicitly in terms of

coefficients of (EQ).

i
Lemma 2.1 Qg (0 £as3), @ (05i52), 2, (05i52)

and Qg vanish identically. :
Proof. We prove Q? = 0 as an example. By definition,
0

=
I}

d(pdx) - bgdxady - 2% (rax + ay)a e2%(8%x + cOay)

-(p, + bg + 2c? - 8%) ax  ay.

Hence (2.5) shows Q? = 0. Other identities can be seen

similarly from (2.5). o
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The femaining components of  are calculated as follows:

Q) = {(20, - a-B) - (2ey-d-c3)z} dx A dy

) = {(20 -a-B))m- (26y—d-C3) }ax A dy

2l = .c-_'z":’{(zey-d)a1 -B;— (26, - 2a)c’ - cB® + 0 + ¢l lax A dy
2 = e %20 -a)c?+cl+ (28y—2d)B2+bC1 —Bo—-Bi} dx A dy
a) - e""e{(zeY?d)Bo- (26, - a)c® + pc -qu-Bgafcfc} dx A dy.

It is now easy to rewrite the right handsides of these

forms in terms of coefficients and as a result we have

Proposition 2.2 The equation (EQ) is integrable if and only

if the following conditions hold.

3 - 3
{ICO) (a+B )y = (d+ C )x
1
IC1 L -2 - - - -2 =
(Ic1) q,- 29, ~m, - (RE - £ =28.)q = R
_.2
-(IC2) mpx—Zpy- qu- (mEx— E,y- 2mx)p = R

(IC3) Pyy ™ 9y ~ WPyy * Mgy

CPy " b4y + (d+2m + & -mE Jp - (a+ 20 4 -2 )a,

+

(may+2cx -2c£y-—Rcy-—c(&x-igy))p

(Rdx-+2by-2bmx-mbx-b(£y-m£x))q,

where



it e - v A e

-16—-

- 3 - 3 - -
R' = (a+r2c’+g )a~- (287 + £ )C-cB+C - A
(2.10)  R* = (a+28%+£,)D- (2¢7+ £ )B-bC+B ~D,
£ = log(t-fm).

Proof. From the vanishing of Q? and Qg follows
20 = a+B> and 20, = d +c>, namely (2.4)'. Hence (ICO).

The conditions (IC1), (IC2) and (IC3) correspond to 93 =0,

93 =0 and Qg = 0 respectively, if we replace 28x and

ZGY by (2.4)'. Conversely, form (IC0) we can find 6 up

to an additive constant such that (2.4)' holds. This assures

3 .3
1 ‘_Qz

implies the vanishing of Q

= 0 for this choice of 6 and furthermore (IC 1,2,3)

1 .2 0
3,93 and 93 .

Q
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§ 3 Transformation formulae

5

In this section we will prepare some transformation formulae

of the differential equation (EQ). We first obtain the

transformed equation when we perform a coordinate change

(x,y) —— (u,v}). Let
(3.1) A =uv =-uv
Y

be the jacobian determinant of the coordinate change. We put

A= 2v2 - 2v. Vv +mv2
Y Xy X
(3.2) p= £u2 - 2u_u +mu2
Y XYy X
V= zuxvy-uxvy-uyvx-kmuxvx
and define
o= (v2 - v.v )/h, B = (Vi-mv v )/A
X xVy , vy mvxvy /
Y = (u2 - fu_u ) /A § = (uzJ-mu u_)/A
X Ty "t Y Xy
R(u) = u - (2u +au_+b
(3.3) XX Xy X uy)
S{u) = uyy - (muxy-fcux-quy)
R(v) = Vex "~ (vay4-avx4-bvy)
S(v) = vyy-— (mvxy-rcvx-fdvy) .

Then a calculation shows

Proposition 3.1 Perform a coordinate change of the equation

(EQ) from (x,y) to (u,v) and denote the coefficients of



——— o —
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the transformed equation by the same letter with bars. Then

— A - _ B
2 = - S m v
7 = J(R(WB - S(uwa) © = %(s(uw - R(u}$)
(3.4) v |
B = 1(R(VJB - S(V)a)  d = S8 Y = R(v)6)
B = < (aq - BPR) g =5 - va)

The normalization factor changes as

{3.5) e = - = e .,

We next derive a formula when the unknown function 2z is

multiplied by a factor ef. 1f we put z = e_pw, then it is easy

to see that

—- - —_ = -p -
z, = e (W, pw z, = e (w p W)
2 = e Plw_ -20w - (P - P2 w}
XX XX X X XX X
(3.6)
- a P - - - - ‘
2y e "{ xy oxwy oywx (pxy oxpy)w}
_ =P 2
e - 20 W - - . .
Zyy Wy oy = (g = v

From these identities we have

Proposition 3.2  Perform a change of the unknown 2z by

multiplying a factor eP. Then the coefficients of the trans-
formed equation, which are denoted by the same letter with primes,

are gvien as follows



- et —p— ——
o ———-rar b —

£

a+2px- lpy

b - sz

p'=p-ap,~bp

2
+ (pxx -Dx) - l(px

-19-

- ony)

dl

il

[}

m
cC—m
Py

<Ei+2pny—mpX
I = - —
q'=g-cp, 2py

+ - - m

(oyy oy) =

The normalization factor changes as follows

(3.8)

e29'

_ e4p+29

Yy

- oxoy)
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§ 4 Linear differential equations defining maps into quadrics

§§ 4.1 Conformal structures

We have denoted by S the surface defined by the equation
(EQ) by use of their independent solutions. To this surfacé
we have associated a projective frame defined by (2.7). Then,
from the expression of the corresponding Maurer-Cartan form in

(2.8) and by the definition (1.4), the conformal structure ¢

of S 1is given by

(4.1) @ = Rdx2 + 2dxdy + mdy2

§§ 4.2 Fubini-Pick cubic form

We want to calculate the Fubini-Pick cubic form i.e.

its coefficients h of §. For this purpose it is

ijk
necessary to modify the frame e so that it satisfies (1.5).

Put

(4.2) e0 = eo,e1 = Ae1, e2 = Aez, e3 = ) e3 ’

A being a function to be determined. With respect to this

frame

o = a7 tax , w? =2 lay ,

G? = A4e28(£w14-w2), $§==A4e28(mw2 r ).
Hence the tensor h.. is given by

1]
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£ 1
- _429( )
(4.3) _ hij = e 1

and, if we take

1 1
- 28 "3
(4.4) A= e (Zm - 1) ’
then det Eij = 1. In this choice of A
de, = -2 dlog X 8, + A %de
3 3 3

e -(2dlogA+adx+ddy) e, mod (eO'ET’eZ)‘

Again modify e defining € by

(4.5) ' e =e

With respect to this frame we have

33 = -2dlogh - adx- ady +
3 26
+A7 e {p(tdx +dy) + vimdy +dx)}.
In order that Gg = 0 it is sufficient to choose p and v

so that they satisfy the following equalities.

A3926(u2+ V)

It}

ZAX/A + a

A3e26(u-+vm)

2h /A + d
y/

Namely,
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e = A'3e‘29(zm-1)'1{(2Ax/x+-a)m-(2Ayyx-+d)}
(4.6) { N )
v =738 gm- 1) 1{(2Ay/A+ QL= (22 /r+a)}.

Now that we have chosen a projective frame € which satisfies

the condition (1.5), we can compute hijk' We now drop ~'s

for simplicitiy. A computation shows

\ | 3
w; w? ) [adx+ dlogh- un3e2® (ax+ dy)  bax- vae?d (zax+ dy)
wy wr ) \cdy- pre®® @x+ may) ddy + dlogh - v e (@x + mdy) X

Hence by defintion (1.6) we have

th...w* = dh 1

114 - 2Lhyw

11

a(r%e?%) —22%%5 (adx + dlogh - pr3e?® (2dx + dy) )

4 28 3

- 22%e%%(bax - va®22% (nax + ay) }.

By (4.6),

= AS

oy
|

eze{GRAx/l + 208 + & - 2b}
(4.7.1) X X

5 20
e {

=y
1

= A 4 A+ 204 /X 0+ 228 0+ + 2
X/ y/ y ly al

Similarly,



_23~_

h,. .= A5e29{4xy/x-+2mxx/x-+2mex-+mx-+2d}

122

5 .26

L _ _
h222 ATe {6mAy/A4—2m8y-+mx 2c} .

Proposition 4.1 The cubic form of the surface S associated

with the differential equation (EQ) vanishes identically if

and only if

L
= A= _3,
b=l = 36— 8
(4.8.1) { m
=M Y _ 3 _
c 5 (= 4€y By)
1 v by
a =gk * 0 T algT o gty v oY)
(4.8.2) {
_1 m Mx 1
d = 4gy * ey Z(E— ng + 8,
Proof. Recall & = log (1 - 2m). Then it is enough to use
(4.4). ]
Remark 4.2 The tensor {hijk} satisfies the apolarity

condition (1.9).
mhy g -
mhygp

So, if m-4 * O

to hyyq = hyoy

» then the vanishing of hijk

=0’

In this instance

*2hy,, =0

+ 2h222 = 0.

is equivalent

i,e. the condition (4.8.1). The

condition (4.8.2) follows from (4.8.1).
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§§ 4.3 Equations with the property QR

The equation (EQ) is said to have property QR if four
linearly independent solutions are quadratically related, namely
if its coefficients satisfy (4.8) (cf. Lemma in § 1). Now
assume that (EQ) has this property. Since ¢ = dez + 2dxdy-+mdy2
is non-degenerate, we can find new coordinates such that 2=m=0.
(Such a coordinate system is called asymptotic). Then (4.8) |

implies b =¢ =0 and a =6_ , d = By. Perform a transformation

X
of the unknown multiplying e_e/z. Then the equation changes as
2
8 -8
= p - X xx
(4.9.1) 2. - P'Z p' =p + 3 -
- 82 - o
(4.9.2) Zyy = q'z ’ q' = q + _Lrﬂ

The integrability condition of (2.13) is easily seen to be

(4.10) g = 0.

Let 21,22 (resp. Z3,z4) be solutions of (4.9.1) (resp. 4.9.2).

) .
Then z1z3, z 23, z1z4 and 2224 are four linearly independent

solutions. So we have proved

Proposition 4.3 Assume that (EQ) has the property QR. Then

it is (locally} reduced to the pair of ordinary differential

equations (4.9) by a coordinate change and by a renormalization.

This reduction corresponds to the fact that a quadric in P3
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is ruled and decomposed into EJXJP1 .

Let ué examine the integrability condition. The

condition (4.10) corresponds to (IC1) and (IC2) in Proposition

2.2. The condition (IC3) is pyy s 0 and follows from

(4.10) . More precisely we have

Proposition 4.4 Given functions &,m,a,b,c,d,p,qg and ©

assume that these functions satisfy the condition (4.8) and
identities (IC1) and (IC2). Then the differential equation
(EQ) with &,m,...,p,q as its coefficients is integrable

with e28 as the normalization factor and has the property QR.

Proof. Substituting the expression of a,b,c and d in

(4.8) into the right handsides of (2.4), we see the identities
(2.4), namely the vanishing Q? = Qg = 0, and hence (IC0). We
will examine (IC3). For this purpose we follow again the reduction
process stated above in terms of frames. If we perform a
coordinate change from (x,y) to (u,v), then the corresponding

frame e defined in (2.7) and € defined analogously with

respect to the coordinate (u,v) are related as follows.

e = g.e o
1 0 0 0
0 b4 Yy 0
_ u u _ _
91 6 = XYy Xafu
0 X Yy 0
v v
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. . P
We next renormalize the unknown 2z by multiplying e".

Denote by e the frame associated with e z. Then

E=g2g}

eP
Pu e’
g =
2 Py 0 eP
* * * e-3p

Hence e = g2g1e. Now let Q be the curvature form with

respect to € . Then, since { is a tensor,

7= (9,907 '2(g,9,)

From this relation, using also (ICO0), we see

=1 _ _4p 1 2

93 = e 6(xu93 + quB)

=2 _ 4p 1 2

3 = e "y, f3 + y,fy)

=0 _ 4p..0 1 .2
93 s e 693 mod (93,93).

We have seen that the identity ﬁg = 0 follows from

§;==§§ = 0 provided that the coordinates (u,v) 1is choosen
so that & = m = 0 and that p = - %e. S50 if we assume

Q; =Q§ = 0 then from the above three identities follows

Qg = 0 which is the condition (IC3}. Hence in viéw of
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Proposition 2.2, we have proved the assertion. . n

§§ 4.4 Moduli of equations with a fixed conformal structure

Assume further that we are given two equations with the
same conformal structure and the same normalization factor.
Let P; 9 (i = 1,2) be the respective coefficients. Put

P = Py ~ Py and Q = 9 ~ 95- Then they satisfy linear

differential equation

20 - 2Q " mP - (RE -E - 22.)Q = 0
(4.11) { Y x ¥y X Y ‘
mP, - 28 - 4Q - (mE, - £ - 2m )P = 0.

This gives the moduli of (EQ) with the property QR. When we
are concerned with global equations (e.g. the Fuchsian
differential equations on Pz) , to determine the solution
space of ‘(4.11) turns out to be a very important problem.

Here we give an example.

Example 4.5 . Let us consider the eqguation F2 defined by

P.. Appell (see §§ G.A). The corresponding equation (4.11)
which is defined on _332(x,y) » (x,y) being the inhomogeneous

coordinate, is

It
o

(1 - -2(1 - 1 - -x{1- - -
(4.12) {Y y)Qy. (1= x) y)Q, - x{ x)Py (3y-2)Q

3]
o
.

x (1 —x)Px- 2(1 - %) (1 —y)Py-—y(1 -y)QX-(:ix—Z)P
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The following are. special solutions of this equation:

- _B = L
P =X (0% P = T=x) (Z-x-y)
(1) (2){
- _B' - 1
9= Ty 47 -y (2=%-y)

The first one appears in F,. The second solution is related
to the fact that the equation Fy (see §§ 6.1) can be trans-
formed to an equation which has the same conformal structure
as that of F2 {see §§ 6.4). It is interesting to find all

rational solutions of (4.12).
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§5 Uniformizing differential equation of a Hilbert modular orbifold

2 .
§§ 5.1 Hilbert modular orbifold M on P ([Hir])

Let 0 be the ring of integers in the real quadratic field
@{(v/2) " and let T (2) be the principal congruence subgroup of

SL(2,0) associated with the ideal (2) of 0:
r2) = {gesL(2,0) | g= identity mod (2)}.

Let further T(2) < T' < SL(2,0) Dbe the group such that TI'/T(2)
is the center of SL(2,0)/T(2). We note that [I'':T(2)] = 2
and SL(2,0)/I'' 1is isomorphic to the symmetric group of degree

four. The group SL(2,0) acts on HxH as follows
g:(z1,22) —> (g'z1,g“zz) g€ sL{z,0)

where g' and g" are two embeddings of SL(2,0) into SL(2,R) .

Let finally I be the group generated by T and the involution
T:(ZT:ZZ) — (22:21)

The factor space Hx H/T is isomorphic to IP2 minus six

points. The ramification locus of the natural projection
W{HXI{——> Pz

is given by D = {D=0} where

(5.1) D= (1-x%)(1-y3) (1 - x%y%) (2 - %% - y?
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provided that the affine coordinates x,y are suitably
chosen. The above six points are exactly six multiple points
of D. The branching of 7 is caused by the involution 1

and its conjugates, and so the branching index is two. The
projective plane - Pz equipped with the ramification locus D

and the index 2 will be refered to as the orbifold M

Orbifold M

The group G of projective transformations which leave M

invariant is order 48 which is generated by three reflections:

with respect to the associated homogeneous coordinates.
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§§ 5.2 Kobayashi-Naruki's result ({[K-N])

Since a guadratic surface in Eﬁ has a natural holomorphic
conformal structure (see § 1), the factor space M has a
holomorphic conformal structure outside D. The conformal
structure on M 1is explicitly known. In terms of the

inhomogeneous coordinates (x,y), it is given by

Q = Q.dx2 + 2dxdy + mdy2

where
2- 2—x 2 2-x2—x2 2
(5.3) 2 = - > , m= - XXV )
2
xy (1-x7) xy (1-y7)

§§ 5.3 Differential equation giving the developing map

We would like to find the differential equation of the form

(EQ) which gives the inverse map of 1w :

w:mz-——+ HxH

The space HxH can be considered as a domain in the non-

degenerate quadratic surface Q (which is isomorphic to

IP1>< IPT) in ]P3:

HxH c 1P1><.'1P1 —-—i—:\-QC——:- ]P3

(21,22) = ([1,21],[1.22]) > [1,21,22,2122]

where [ ] stands for the ratio. Accordingly we have
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Aut (HxH) < Aut (P 'x P if? Aut (P>,Q)

where Aut(X) stands for the group of complex analytic
3
automorphisms of a manifold X and Aut(P~,Q) stands
for the group of projective transformations leaving Q invariant.

This implies that the multi-valued map

Zz = i°1,b::lP2 e Qc]P3

has the monodromy i,I' « PGL(4,T). If we fix inhomogeneous

coordinates (x,y) on ]P2 and homogeneous coordinates

(zq...,z3) on Eﬁ , then the 4-vector function (zo(x,y),,..,ZB(x,y))

has the monodromy in GL(4,C).

Now consider the linear differential equation with the

unknown 2z and the independent variables (x,y):

VA we Z = 0, Z e 2 = 0
V4 ZO "o 23 z ZO .ss 23
X X X X X X
0 3 0 3
(5 .4 ) Zy Zy .es Zy Zy -Zy .oe Zy
, 0 3 0 3
£xy Xy ves ny Xy zxy .. ZXY
Z zo [, 23 4 ZO seo Z3
XX XX XX YY Yy Yy

then the ratios of the coefficients are single valued (because
zO,...,z3 change only linearly). Studying local properties of the
coefficients in Lemma 5.5 and 5.7 we will know that the coefficients

are rational functions. Without loosing generality we can assume



-33-

20 ... 23 lFo
ZO 23
X X
0 3
2 A
y y
0 3
ny . ny

so that the equation (5.4) is of the form (EQ).

On the other hand paragraph two tells us the coefficients
2 and m in (5.4) give the conformal structure on M. Since
Kobayashi~-Naruki determined £ and m as in §§ 5.2, we shall
determine the remaining coefficients. The equation (5.4) is
uniquely determined by the group T up to the normalization
0 3

(multiplication of any non-zero functions to z ,...,z7).

Normalize the'equation as follows

N~

6

20 (xy) 8 .

(5.5) e = (1 - m)

Lemma 5.1 The normalization factor is G-invariant. Namely,
when the coordinate transformation (x,y) > (u,v) induced by
g € G changes (see Proposition 3.1) & — %,...,9 — q , we

have

7
e20 - _ 23 e26 = (1 - % m) 2 (uv)hG.

=

Proof Straightforward calculation. .
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Then by proposition 4.1 the four coefficients are.

—x>y2) (2- 2,2 (2—x%x2y2)(1—x2y2JJ2.*x2—y2)
a=- %(10c_'r(1 x2y )( 2x A4 )> c = g(log > 2 )
(1=x7) (1=y™} X (1-y™)

560 + YraplD
Y

2 2
(1-y%) 2 (2-y*-x*y%)
2 22, 22 . 22 22 2 2.
8 (2=y"=x“y*) (1=x°y%) (2-x —y)) d=-§(1 (1-xy “) (2-x% v*)
b = —(1ocﬁ og
2 (1-x%)* y 2\ (1% (19D )

2.2 2 2 2.2
m (1=-x"y") " (2=x"-y ) )

(1-x7) (2—#2;x2y2) X

Remark 5.2. The normalization is unique if your require that it
is invariant under the action of G and that the four coefficients

a,b,c and d have poles only along D and {xy = 0}

Once the normalization is fixed the equation (5.4) is uniquely

determined by the groﬁp I'. Let us call the equation (UEQ).

Lemma 5.3. The equation (UEQ} 1is G-invariant.

Proof. It follows from Lemma 5.1 and the fact that the orbifold

M is G-invariant. ™

Remark 5.4 The equation (EQ) is invariant under the coordiqate
change (x,y) —> (u,v) if and only if (by the notations in

Proposition 3.1)

L(u,v) = 2(u,v),....,q(u,v) = g(u,v).
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The conformal structure and the normalization do not
determine all the coefficients of (EQ). This is a characteristic
feature of two dimensional conformal structures of hypersurfaces
(see [Sas}). We shall use Lemma 5.3 to determine the remaining
coefficients p and gq in the following subsections and

obtain the explicit form of the equation (UEQ).

Theorem The developing map Y:M —> Qc::IP2 of the orbifold
M is given by the ratios of the four linearly independent

solutions of the equation (UEQ) of which coefficients are given

by (5.3), (5.6) and

2 (y2-x?) o - 2 (x%-y?)
(1-x2) % (1-y%) (1-x2) (1-y2) 2

p:

The remaining part of this section is devoted to the proof of

the theorem.

§§ 5.4 Determination of the coefficients p and g

Lemma 5.5 Outside the curve D the coefficients p and ¢

have at worst simple.poles along {xy = 0} .

Lemma 5.6 The coefficients p and g are even functions with
respect to x and y and satisfies pi(x,y) = qly,x). In

particular they are holomorphic outside the curve D.

Lemma 5.7 The coefficients p and g have at worst double

poles along the curve D.
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Lemma 5.8 The coefficients p and q can be written in the

following form:

_ P(X;Y) = Q(x.rz)
P = D2 ! q D2

where P and Q are even polynomials of degree <$18 such that

P(er) = Q(Y:x)-

Proof of Lemma 5.5 Outside the ramification locus D, the

developing map Y 1is locally biholomorphic. Choosing local
coordinates (u,v) and a normalization suitably) (UEQ) 1is
locally equivalent to the system with coefficients RO'mO’aO’
bo,co,do,p0 and 9 which are zero, namely

z = 0
(5.7) {u“
Z

vv

which has the normalization factor e260 = 1. We shall trace the

procedure in the opposite direction starting from (5.7) and see

local properties of (UEQ).

A coordinate change (u,v) —> (x,y) transforms (5.7) into

an equation (5.7) with the coefficients €,m,...,p,q (see

Proposition 3.1):

v = XYy TOX Yy a = Xa¥v 7 XYy

L = —2yuyv/v ' m = —2xuxv/u
(5.8) o _ 1

a,b,c,d = 5 x (holomorphic function)
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with the normalization

e28 - -v/A3
We note that v and Yo¥v (as well ag v and xuxv) have
no divisor in common, otherwise the Jacobian 4 of the

biholomorphic map has a divisor.

A change of the unkown z —> ePz transforms (5.7) into
{UEQ) with the coefficients %,...,q9 (see Proposition 3.2):
2=1 m=m
a=a+2p_ =12 c =E—nmy
5.9 = b= = d -
( ) b =Db-2p d = d+ 2p mp_
=p__ - 2-2( - ) = - - m{ - )
P xx " Px Py ™ PxPy) A = Py, Pxy ™ PxPy
—apx--bpy “Cp,, -~ apy
with the normalization factor
(5.10)  e29 = _e%Py /3
Since we have
2- 2-—x2 2 -
- —LEX = 4 =1 = —Zyuyv/\) ,
. xy (1-x7)

°

outside D, v has simple zeros along {xy = 0}. Since we have
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_ 7

- (- am Zxy) 78

298
e

N ~J

_ (1-x2y2) (2-x%-y?)
=xy| ~2 2 2
(1-x2) (1-y2)

(5.10) implies that p has no poles along {xy = 0}. Thus

(5.9) shows that p and g have at worst simple poles along

{xy = 0} outside D. .

Proof of Lemma 5.6 We make use of the G-invariance of (UEQ) .

Change the coordinates by T2 € G (resp. T1T2T1 € G), namely’

(-x,y) (resp. —> (x,-y))}. By the transformation formula Proposition 3.1
we have pf(u,v) = p(x,y) and g(u,v) = gl(x,y). On the other hand,
G-invariance means :ﬁ(u,v) = p(u,v) and 9g(u,v) = g{u,v). Thus

we have pfu,v) = p(#,y) and gf(u,v}) = qlx,y}, which tells us

p and g are even functions with respect to x and y. This
implies in particular that simple poles of p and g do not

occur. Analogously T1—invariance leads to pl(x,y) = gl(y,x). =

Proof of Lemma 5.7 Along the ramification locus the map m:

HxH —> M 1is locally equivalent to the quotient map with respect
2

to the involution r:(z1,22) —> (z ,z1). Choosing 1local
coordinates (u,v) suitably, m is given by

HxH 3(21,22) —> (u,v) = (z1+-22— (z1- 22)2,(21—22)2)
and {v=0} is the ramification locus. The differential equation
in (u,v)-coordinates with the four linearly independent solutions

1, 21,22 and 2122 is given by the following coefficients:
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o =1 mp =l
- = -q. = -
ag = bg =0 S = "9y T I
po—o q0=0
namely
{(5.11) Zou © Zuv
z = (1 - ;L)z e

vV 4v’ “uv 2v "u 2v v

with the normalization factor

]
0280 - %v 2

It is obtained by det(w,wu,wv,w ,wuu?=0 and det(w,wu,w W )=0,

W
vouv vy

where w 1is the transposed vector of (1,z1,22,z122,z). We shall

uv

do the same thing as in the proof of Lemma 5.5.

A coordinate change (u,v) —» (x,y) transforms (5.11)

into an equation (5.11) with the coefficients £,...,q:

= _ _ _
voE Xy, r av) *u¥u X% T Ny
(5.12) L,m = s%><(holomorphic function)

a,b,c,d = j% x (holomorphic function) (see (3.4) carefully)

with the normalization factor

1
e28 - J% % v 2
A
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p _—

A change of the unknown 2z —> e 2z transforms (5.17)

into (UEQ) with coefficients &,...,g9 satisfying (5.9}

with the normalization factor this time

]
(5.13) e26 = —e4p (J% % v 2).

A
In case v = (1 - x2) x (unit), by (5.13), we have

p = % log (vv4) x (unit),
where (unit) stands for a non-vanishing holomorphic function’
So either v divides Vv or not, Py has at most simple pole
‘along v = 0 and p is holomorphic. Thus (5.9) tells that

y
a (resp. b) has at most simple (resp. double) polés along

{v = 0} and that p and g have at most double poles along
{v = 0}. The case when v = (1 - yz)x(unit) the argument is
exactly the same and when v = (2 - x2 - y2)X(unit) the
argument is simpler. "

Pfoof of Lemma 5.8 Apply Lemma 5.6 near the line.at infinity.

Then we see that p and g are rational functions of degree
-2. Since D 1is an even symmetric polynomial of degree 20 the

lemma is derived by Lemma 5.5 ~ 5.7. (]

We now study the effect of T3—invariance. The transformation

T in inhomogeneous coordinates is given by

3

u = 2TX¥Y v = 2IX-

Xty
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The transformation formula (Propositon 3.1) tells that

Blu,v) = ~(ag - Bp), G = S(6p - Ya)

where
uv 4
e ]
XY (x+y)
o = 11—y)(2—y2+xy—xy2—x2y) g = (1+x)(z—x2+xy+xy2+x?zl
2xy (x+y) (1-x) ! 2xy (x+y) (1+y)
- (1+y)(2-y2+xy+x2y+xy2) 5 = (1-x)(2-x2+xy-xzijy2)
Y 7 2xy (x+y) (1+x) ’ 2Xy K +y) (1-Y) :
The T,-invariance plu,v) = p(u,v), glu,v) = glu,v) is stated by
P(u,v) 1 1+v 1-v
(5-14) = F) { BP(XIY) - T AQ(XIY)}
Dz(u,v) 2uv (u+v)D® (x,y) |1+u 1-u
where
= _ 2 2 2
A=2Aa(x,y) =2 -y +xy -xy -xy
B = B(x,y) = A(-y,-X).
The corresponding formula for Q is derived by P(x,y) = Q(y,x)

(Lemma 5.6, from (5.14). The following formulae are useful:

4 -2 (u-v
X*Y Sy X" Y-© (u+v)
2(2 + + 2 - -
2+ x+ys= (u n 3 2,2 - xmy= - (i + 3 2
2+x—y=4v,2—x+y=4u

u+v ut+v
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_ _2{(1-u) _ 2(1+v)
1 X = el Ty
- _ 2(1-v) _2(1+u)
VryYy s Ty o T rY F T
2 2
1+ xy = 4 (1+uv) , 1 - xy = - 2(2-u Ev )
(u+v) (u+v)
5 - x2 _ y2 _ _ 8(1-uv)
(u+v)
Since we have
D(x,y) = 210(u+v)'10D(u,v)
(5.14) is equivalent to
=20 20
_ 2 (u+v) 1+v S 1-v
(5.16) Plu,v) = 2uv (u+v) {1+u BP(x,y) - 1-u AQ(X'Y)}‘

u=(1+y)(u+v)/2. BP must be a multiple

<+

Since we have 1

of 1+y. S5ince B is prime and P 1is even, we can put

"P(x,y) (1—y2)P1(x,y) and Q(x,y) = (1-x2)Q1(x,y)

where P, and Q1 are even polynomials of degree £16 such
that P1(y,x) = 01(x,y). Then the equality (5.16) is equivalent

to

2-19(u+v)17

uv

(5.17) P (u,v) = - {BP1(x,y) - AQ1(x,y)}.

Put
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R(x,y) = (Py(x,y) = By (y,x)/2

S(XJY) = (P.] (le) + P1 (y;x))/'?-

then (5.17) is equivalent to

4720+ v)2(2+x-y) (2-x+y) (R(u,v) +5(u,v))
(5.18)
e =2 7= (x-y)2)R(x,y) + (x+y) (2xy - x +y)S(x,y) }.

This tells that S has (2+x-y)(2-x+y) as a factor. Since

S 1is even it is divisible by

(2t x+ty) 1= (2+x+y)(2+x-y)(2-x+y)(2-x-Y¥).

Put

S = (2¢xty) S, R=(x2-y2.)R1

where Sy and R, are even symmetric polynomials of degree

$ 12 and < 14, respectively. Then ({5.18) is equivalent to

(u2—-v2) R1(u,v) + (2% u:'v)s1(u,v)

(5.19) = =27 () PPy DR, (x,y) ¢

+(x+y)(2xy-x+y)(2+x+yH2—x—y)ST(x,y)}

Exchange in (5.19) x and y as well as u and v and we have

an equality (5.19)".

Add (5.19) and (5.19)' then we have
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(5.20) 51(u,v) = 2-10(u+V)1OS1(x.y).

Substract (5.19) from (5.19)' and put

then we have

-1

(5.21) R, (u,v) = 2 2(u+v)12R2(x,y).

By the equalities (5.20) and (5.21) we know that the even

symmetric poljnomials R, and S, are of degree 512 and

S 10, respectively.

Lemma 5.9 Let f(x,y) be a polynomial of degree &d such

that

£(u,v) = 2 % u+v)9E(x,y).

Then the homogeneous polynomial (of degree d) fbgy,z)==zdf0q%,y/z)

is T3—invariant, namely f(T3(x,y,z)) = f(x,y,z).
Proof Easy. (]

Lemma 5.10 Any polynomial in (x,y,z} which is invariant under

the action of the group G = <T1,T2,T3> is a polynomial in

A = z2 + x2 + Y2 -
§=_m2-y)2+8m +y )z
T = (xz_y2)222
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Proof Change the coordinates by (X,Y,2) = (X-y,x+y,22)

then the matrices T1,T2 and T3 are transformed into

(V) T ) e ()

respectively. The fundamental invariant of this group are

easily seen to be X2 +¥?+122, x%v%+v%22,2%%? ana x%v?22,

which are (in terms of x,y,z) A,B and C, respectively.

Note 5.11 The group is the so-called imprimitive reflection group

sometimes denoted by G(2,1,63).

Lemma 5.12 There are constants ai(1S i<£5) and bj(1 $js7)

such that

_ o A5 3 2 2
S.l a1A_ +a2A}B + a3AB + 3ATC + a5BC

R, = b,a° +b,a’B + b3A2132 +b4B3+b5A3C+ bgABC + b706
where

A= A(x,y,1) = 2 + x% + Y2

B = B(x,y,1) = (x2 - y2)2 + 8(x2 + y2)

C = Cix,y,1) = (x? - y2)2 .

Proof It follows from Lemmas 5.9 and 5.10. ]
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Summing up, we now know that the coefficients p and g

are expressed as follows:

2
= l:§_[(x2..y2)R2-+{(2:tx;ty)+4(x2—y2)}s1]
D

o
1

(5.22)

le]
1

2
1—§ [-(Xz"yz)R2'+{(2:tx:ty)'-4(X2-y2)}51]
D .

we shall determine the twelve constants ay and bj by making

use of (IC1) and (IC2)} in §2 (see also -Proposition 4.4) of which

left hand sides we shall call L1 and Lz:

1l
e’

L' := g, - 29 - mp, - (2§ -E& =2
(5.23) dy qy Py = (RE, -8, - 28,09

L := mp

1}
w

y " ZPY - 2q, - (mEX-Ey-ZmX)p

Lemma 5.13 Compare the coefficients of maximal poles along
2

{1 - x° = 0} in the both sides of (5.23) then we get
(5.24) Coay + a, + a3 = Q0 , a, + a5 =0
(5.25) b1 + b2 + b3 + b4 =0, b5+b6 =0, b7 = =2

then we have

0
-

|
b

Proof Put X

2
Ry +(125(1-y°) 5. )

- Uty) =1 -
p = + 0(X ), Uly) = 2_
X2 (1-y%)* x“=1
2
“R,+({4+(1-y7)S.)
a=3 w0, vy = 2 —— 1 |5
~ (1-y*) x=l

and
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xX Y
2
12 L 28, AUy o 72
X Y Y

On the other hand one can show by (long) computation that

1

R =-—g—2 + 0(X ")
(1-y ) xX

R2 - 123 +0(X-2)
yX

The identity L1 =R1 leads to S

n

11320 = 0 which implies (5.24).

The identity 1?2 =r? 1leads to RZIX;O = -2('1—372)4 which implies
(5.25). .
2 2 2 2

We do the same thing along 2-x"-y“=0. Put X=2-x"-y

and define rgeTq:8, and 54 by

2[ 2 2 ryly) + r,(yIX + 0 (x?)
s, | = s, (y) + s.(y)X + 0(x%)
ito2 0 1

then we have

2
SN S'2 R A 62 R
X

1, 2
= W y) +Wx(y) + 0(1)
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where
2
1 i 2r0+{4(1-y )+81sy
(1-y™)
2 2
5 2(1-2y )(2r0+(4(1—y )+8)so)
(1-y™) _
20-y?)ryrgray®sgr (4 (1-y%) +8) (-y®) s,
(5.26) | (1—y2)7
1 ) 2r0+{—4(1-y2)+8}sO
{(1-y~)
, ) (1-3y2)(—2r0+(4(1-y2)~8)80)
WO ly) =

(1-y2)8
2 2 2 2
2(1-y*)r,-r = (8+4y") s5= (4 (1-y")-8) (1-y7) s,

(1-y2)7
S50 we have

2.1 2,1
LV zaytul-ae-yw

xX3

2 1

1 2
+U ' )-4(1+ u
y) (1+y7)

) .
1 I4W1 _ 4xw1 _ 4xw2_ y(1-y7) (2yU
X2 | X 1—y2 x(1—y2)

4y(3-y2)w1-+x2(1-y2)(2yw2-+w1)
. !}

xy (1-y2)

2 _ -ay2u' - g 2yHw!

yX3
1 2 2.2 2, .1 1
N {4w . 2" U-y U8y U (ogu2ey]) XY,
X ¥ y{1-y°) Y -y

4(3—y2)w1+2x2(1-y2)w2}

y(1-y2)
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On the other hand, one can show by (long) computation that

R1 and R2 have no pole aloeng X = 0. The (IC) leads to

(5.27) v2ul + (2-y*)w! =0

(5.28) aw’ + 20" 4 y2 (1-y2) U+ (2—y2)(1-y2)W2+y(1~y2}U;=0
1 1

(5.29) 4y (2-y?) W' - 2y (2-y%) (1-y*)w® + 4y (14y7) U

-

—2y3(1-y2)02-y2(1-y2)U; + (1—y2)(2-y2)w; = 0.

From (5.28) and (5.29), using the differential of (5.27), we can

eliminate U; and W; and obtain

G-yhw + s yhul 2o

which together with (5.27) and (5.28) implies

(5.30) vliy) =wl(y) =0
2.2 2 2
(5.31) v2ut + (2 - y W% = 0.
The definition of U' and W' ((5.26) and (5.30)) imply
(5.32) sy = o = 0.

Since we know by Lemma 5.13 that
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2 3 2
Sy = (A ~—B){—a2A - a3A(A i—B)+—a4C},

Sy ~ 0 implies

Silyep = -43a2-4a3(42+‘|6+4(1—y2)2)+a4'4(1-y)2 =0
and so

a, = ~2a3, a, = 4a3

Thus we have

(A% - B) (2A° - A(a2 + B) + 4C)a,

€3]
n

I

42a3(2—x2-y2)(1—x)2(1-y2)(1 - x%y?%) = 4%a.p.

Analogously by Lemma 5.13 'and r, =0 imply

b,
by =0, by=-2by , bg-— = db
Thus we have
(5.34) R, = 42b3A(2-x2—y2)(1 - x%y%) (1-%8) (1-v9)

+ b7C(2—-x2-y2)(1-x2y2).

The equalities (5.33) and (5.34) together with (5.31) lead to
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Therefore we have

—2(2-x2=y2) (1-x2y?) [ (2+x24y2) (1-x2) (1-y2 H(x2-y?) 2}

o
3%
[}

—2(2-x2—y2)2(1—x2y2)2

and finally

(-y?) -yhiR,  _y 2. 2
p = =
p? - (1-x%) 2 (1-y%)
2(x2-y2)

4

q:
(1-x2) (1-y2) 2

ending the proof of the theorem.
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§ 6 Hypergeometric differential equations in two variables

of rank four

§§ 6.1 Table of coefficients

As generalizations of the Gauss hypergeometric differential
equation, several hypergeometric differential equation
(HGDE for short) in two variables are known ({Erd]). They are
denoted F,,...,F, (Appell's HGDE), G,/G,,Gg,Hyyev iy and

] = -
confluent HGDE's ¢1,¢2,¢3)F1,Wz,_1,_2,r1,F2,H1,...,H11. These
HGDE's are systems of linear partial differential equations of
rank three or four. We are interested in those of rank four.

. = =

They are F2,F3,F4,G3,H1,...,HT,%1,W2,_1,_2,F1,H1,...,H11.
Since we intend this paper to be a basic data of differential

equations of rank 4, we tabulate their coefficients:

L m
a c
name b d
P q
parameters included T - 4m
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¥

X
1-x 1~y
(ac+B+1)x-vy B'x
x (1= x) y(1-y)
B (a+B'+1)y-xy'
x{1=x) y(1-y)
aB af!
x (1= YO -9
"ioy,y! 1-x-y
a,B,B YrY =30 (=75
- -X
X(1 - x) m
(a+B8+1)x—-y
Xx{1-1x) 0
0 (@' +B8'+ 1)y -y
y(1-y)
G.B G'B'
x{1-x) vy(1-3)

0-:01'13:9'2‘{

Xy =X~y

M-x)(1-y
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2y
1-x-vy

2X
1-x-vy

(o+ 8+ 1)ix~-Y(1-y)
X(1-x-y)

(o +B +1)x-vyx
y({(1-x-vy)

(a+B+1)y- Yy

(a+B8+1)y-¥(1-x)
x{(1-x-vYy) : Yyl -x-vy)
B oB

x(1-x-y) y(1-x-y)
2
a,B: v,y (1 -x-y)~ -~ 4xy

(1—x-y)2

[ v{(2+4x) (1 +4y) - (2 + dy) x}
x{ {1+ 4x) (1 + 4y) - xy}

x{(2+4y) (1 +4x) - (2 + 4x)y}
y{ (1 +4x) (T + 4y) - xy}

(1 +4y){1-a+ (4B + 6)x} + 2axy

x{ (1 + 4x) (1 + 4y) - xy!}

{20 (1 +4%) + (1 -a+ (48 + 6)x) }
yl (1 +4x) (T + 4y) - xy?

v{(28 (1 +4y) + (1 -B+(4a+6)y)}
x{ (1 +4x) (1 +4y) - xy!

_ (1+4x){1 -8+ (4a +6)y} + 2Bxy
yi(1+4x) (1 + 4y) - xy}

-B(B+ 1) (1 +4y) +afa+1)
x{ (1 + 4x) (1 + 4y) - xy}

—of{a+ 1) (1 +4x) + B(B + 1)

yi (1 +4x) (1 + 4y) - xy}

o,a’

=3 - 12x - 12y - 54xy + 81x2y2

(1 +4x + 4y + 15xy) 2
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-v(1-vy)

(1=x) (1 +y) y(1+y)
yxy - (1+y) (8- (a+ B+ 1)x) —vx
x(1-x) (1 +y) y(1 +y)

y(2ay - B)

x{(1=-x) (1 +y)

a~1-(B+y+ 1)y
y(1 +y)

af (1 +y) + Byy
x(1-x)(1+y)

-B
y{(1 +vy)

a,B,y;é

(1+y)2 - 4xy
(1-x) (1+7y)2

-X
x(1 - x)

X ___
vy (1 +vy)

-e+ (a+ B+ 1)x

x (1 - x) 0
-By a=-1=-(y+8+1)y
x(1-x) yi{l+vy)
afl -8y
x{1-x) y{(1+y)
a,B,Y,6;¢ 1*Y—X_‘{

(1-x)(1 +y)
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y{i{(1~vy)(1-4x) +x(1-2vy)} _ x(1-2y)
x(1-4x}) (1 -y) y{1-y)
(1 = y){y (40 + 6)x} - 2Bxy 28x
x{1-4x) (1 ~-y) v(1-y)

vy{2(a+ 1) (1 -y)-y+ (a+B+ 1)y}

x(1-4x) (1 -y)

(o +B+1) y—~-v
y(1-y)

ala+1)(1-y) + aBy _oB
x(1-4x) (1 -y) y(1-1yv)
2
arB;Y i 4 +Y2-X
(1 -vy) (1 -4x)
4y - 2y2 2X
(1= y) (1= 4x) Ty
28xy - (1-y){y- (4a + 4)x} 28x
x{1-vy)(1-4x) y{1-vy)
yi(1-y) (3a+2) - (5= (a+B8)y)} (0 +B)y~8§
x(1-y)(1-4x) y(1-y)
ala+ 1) (1 -y) +aBy _oB
x(1-y) (1 -4x) y(1~-y)

G‘IB;YI6

(1-v)2 - 4x
(1-y)2(1 - 4x)
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v{{1-y)(1-4x) - xy}

x{ (1 +4x) (1 -y) - 2xy}

x(12x-1)
(1 +4x) (1 -y) - 2xy

- (1-y{1-y+4(a+1)x} - (2+a-2B)xy

x{ (1 +4x) (1 -y) - 2xy}

x{2(1-y+4(a+1)x) -~ (2+a-28)(1-4x)}
y{ (1 +4x) (1 - y)= 2xy}

yly-(a+B8+1)y=-(3a+2)(1-y)
x{ (1 +4x) (1 -y) - 2xy} ‘

2(30+2)xy - (1+4x){y~ {(a+B+1)y}

Cyl (14 4x) (1= y) - 2xy}

ala+ 1) (1 -vy)-aBy
x{(1+4x) (1 -y) - 2xy}

2a(a+1)x-aB(1 + 4x)

vy (1 +4x) (T -y) - 2xy}

O'-IB;Y

1+8x~-vy+ 16;«:2—361-(y+27xy2

{(1+4x) (1 -y) - 2y}?

yi(1 +4x) (1 +y) - (2+y)x} x(2 +y)

x (1 + 4x) (1 +y) y (1 +vy)

_(1+y){1-8+ (4a+ 6)x} + yxy Yx
x{(1+ 4x) (1 +y) y(1+y)

y{2a(1+y) + (1 ~a+ (B+y+1)y)
x(1+4x) (1 +y)

a-1~ (B +y + 1)y

—a{a+1)(1 +y) +Byy
x(1 + 4x) (1 +y)

-8
y(1 +vy)

a,B,Y

{1 +4x) (1 +y)2-(2+y){1 +A4x) (1 +y)=-x(2+y)}
(1+4x) (1 + y)2 :
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2
-y -4y

3x
(1 -4x) (1 +y) T+y
yxy = {8 - (4a+ 6)x} (1 +y) X
x(1-4x) (1 +vy) v(1+y)

_ y{1+a+ (B+Y+2a+1)y}

a-1-(B8 +'Y+‘])y

x(1-4x) (1 +y) y{(1+vy)
- Byyt+taf{a+1)(1+vy) -By
x(1-4x) (1+y) y(l+y)

a,B,y:6

(1 - 4x) (1 +y)2+3xy(4+y)

(1-4x%)(1+y)°

Y
1-x 0
-y+ {(a+B+1)x x

x(_x-1) §
*x(1 -~ x) v
_oB o
x(1 - x) §

a,B;y.y’
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r\,'C-

<%

E o

|UH._+ ”H

xIe

e ie!

a;yY,yY'

R3]

) AN
x{1-x)

-y + (o +B+ 1)x

x{1 - x)

B

x{(1-x)

a,a',B;y
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Nill

=Y
x(1-x)

u+AQ+ B+ 1)x

x(1-x)

__oB
x(1-x)

a,B;y

Y
X

<R

B-1-(a+B'+ 1)x

x{(1 + x)

S

) AN

x(1+x)

-aB"
x (71 + x)

a,B,B’
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= a

X
1“X y
-6+ (1+a+B+ylx -X
x(1-x) y
-~(B-y)y a-1-vy
x{1 - x) Y
(o +y)B -B
x(1-x) Yy
«,B;6 1_1_}{
-X X
1-x Y
-8+ (a+ B+ 1)x 0
x (1 - x)
(1-a+vy)x -8y a-1-y
x(1-x) - Y
af + yx Y
x(1-x) Yy
arByY?(S Xyt X

y{1-x)
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X X
1-x .4&
-6+ (a+8+ 1)x 0
x(1 - x)
(1-a)x-By a-1
x(1 - x) Yy
af + X -1
x{1 - x) y
Qsmm& Fvn
(1-x)y
X
0 y
-8 +x 0
X
Y a-1-~-y
X Yy
G X
X y
a,Y;6 1
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0 X
Y
-8 +x 0
X
-y a-1
X Y
o -1
X Y
o;6 1
_ oy (1 -3x) - X
x(1 - 4x) Yy
2xy + {da + 6)x - vy 2x
x(1 - 4x) y
(2a+2—Y+yiy- -I+X'
x(1 - 4x) Y
ala+1+vy) a
x({1 - 4x) Y
-x
oy
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1-4x% 0
-y + (1 +4a+ 2y)x 2x

X (1 = 4x%) Ty
(3a+2-8+y)y —5 4y

X(1—4X) Yy
(1+a+vy)a a
x{1 - 4x) §
aFYra 1
y(1+2x) 2x
x(1 +4x) v
B-1-(6+4a+vy)x X

X (1 + 4%) y
y(1+a+y) a-1-
x(1 + 4x) Yy
—a(l +a) + By -8
x(1+ 4x) _§
a,f mll
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1-4x

-6 + (4da + 6)x

x(1-4x)

-y(1 +qa+vy)
x(1-4x%)

a(l+a) - By
x(1 - 4x)

10

1~ 4x

-6{da +6)x
x{1 -~ 4x)

(1 +a)y
x(1 - 4x)

a{l+a) -y
x(1 - 4x)

o; 6

1-4x
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11

X
0 y(1+y)
-8 +x 0
X
Y a-1=-(B+y+1)y
% y(1+y)
a 8y _
X y (1 +y)
a,B,y 1
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§§ 6.2 Normalization factors

It is important to know the normalization factors of the
equations. Since {2.4) gives the expressions of Gx and ey
in terms of the coefficients, we integrate them to know 6,

up to additive constants. The following 1is the normalization
factor e29 (up to multiplicative constants) of each Appell's

HGDE's F2,F3,F4. We omit the others.

€. € € €}
(F): x %% %(1-x) "(1-y) T(1-x-y)7°

€q = -2y 56 = =-2y'
€y = O F B+1-y-8', Ei =a+B'+1~-y'-8
§ = a+B+B" +2~-y-¥y' b
€. €} € €.
(F3): x0y0(1-x) 1(1--y) 1 (xy—x-y)(S
eb = a'+B8'-2vy , 86 = a+ B-2y.
€1 = Y-a=-B-1, ei= Yy-a'-g' - 1
6§ =y-a-a'-B-B8'-1
€, EA
0 '
(Fgl: x 7y 0(1-—x-—y){(1--x--y)2 - 4xy}‘S
80 = -2Y R 86 = _2Y1
6 =y+y'-a-8-5/2
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§§ 6.3 Equivalence between some equations

By changing coordinates and normalization factors Fq and

H2 are transformed into F2’ and H6 is transformed into

H,. The following shows the explicit transformation. The

3
equations in the left hand sides have (x,y) and 2z as
independent variables and the unknown, and the ones in the

right hand sides have (u,v) and w as independent variables

and the unknown

Fy(a,a',B,B';y) —> F,(B+B'+1-v,8,B";8+1-0a,8'+1-0a')
{(x,y) — (u,v) = (1/x,1/y)

B -8

Z = wWw =1 v z

Hola,B,vy,8:€) -— Fﬂa+8ﬁfﬂ€rY‘5+H
(x,y) —> (u,v} = (x,-1/y)
A h— w = VYZ
He (0t B,Y) —> Hyla+y,y;y=8+1)
(x,y) —> (u,v) = (-x,-1/y)
-Y
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§§ 6.4 Relation between F2 ‘and F4

Lift the F4 to the four sheeted covering of the (u,v)-space

branching along the two lines u =0 and v = 0 with indices

two. In terms of coordinates

X )2

—Y 2
X+y=+2

! V= (x+y—2

u = (

Looking from upstairs, the projection is the quotient map by

the group G(= (z/2z)2) generated by

g-]:(le) -_—> (T_;{ ) _Y_) ’

gyt (x,y) —> (1—}_(; , —2)

f(Twu—v)2~4uv=0‘

JPZ(u,v)

Then we have the lift F4(a1,81,85,y1) of Fyla,Biy,y'). The
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coefficients are given as follows:

.Y - X
=9 S P
(o *By+1)x-28, b
a = X (1-X) y (1-y)
F
4 B,y (@ +B3+1)y-28!
b = d =
x(1-y) - y{1-y)
a, B Y o, B2 Y
P = (}-;) ¥ : z 9° }13 )" 1 2
X (1-x) (x+y=-2) YUTYD (1-y) (x+y-2)

The equation §4 includes F, with restricted parameters:

F4(a1r81:8‘i10) = Fz(a1181r8i;281128.i)

which are exactly those F2 invariant under G. The condition
that F2 is invariant under G (i.e. vy = 28, y' = 2B')
happens to be a part of the condition QR for F, (see §§ 6.5).

Thus under the condition QR, 54 coincides with F2.

:%,%;1,1) algebro-

|-

Note S. Nishiyama ((Nis]) studied Fo

geometrically in detail.

§§ 6.5 Condition QR for hypergeometric differential equations

Let us study the condition QR ((4.8)) for HGDE's. We first

examine (4.8.1) for F2 as follows:
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2g. = OtBH1=y=B'x  y(2-x) | otB+2-2y-y'+{y+B')y+ (y+B')x
2" 1-x X 1+x-y ~
1-2m
( : )x _ 1 1
1= fm 1=-x-y 1=x
WP 128
L 1-x x
The equality (4.8.1) is
2b-4 (1-4m)
- X 3 _ X
0 = 7 + Bx + 7 7Inm
a+B+l—Y-B'x
- 2 , Y(2-x)-48
1-x X

Q+B+E=2y=y '+ (Y48 ) y+ (y+8') X

This implies

28, y'

The equality

For other

the following result.

1~x-y

28" g+ B!

(4.8.2) produces the same condition.

HGDE's we make similar computations and obtain
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HGDE QR
F,(o,B,8";v,vy') [ v = 2B, y'=2B', B+B'=a+1/2
F3(a,a',B,B';Y} a+B=0a'"+B" =1, vy = 3/2
FolaBiv,y') Yy+y'=a+g+1
Hz(a,B,Y,G;e) Yy+§ = 1-, e = 28, B=a+1/2
Hyla,8iv) a=R8=1/2, y = 3/2
Hs(a,B,Y) ao=R8=0, y = 1/2
Eylo,Biy) a+f =1, y = 3/2
Hyglaid) 6;a+1
other HGDE No parameter satisfies the condition QR
§§ 6.6 F, under QR

Yy

Change the normalization of Fu by z — xzyzz to get an

equation F& with the following coefficients:

o = 2y m o= -2X
1-X-y T-x-y
a = 98 c = Sx_
Fa T-x-y y{1-x-y)
_ __ 8 : _ §
b = x(1-x-y) a4 T-x-y
_ E=(y+Yy')$ A e~ {(y+y')§ A
p— — v + q':.. — +
2x (1-x-y) | 4x2 2y (1-x-y) 4Y2
where
§=a+B + 1-y-y'", € = 2aB-yy'

>~
1l

vo-2y A= ytie 2y



The condition QR is

covering of the (x,y)
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"§=0". Lift the F&

to the double

- space branching along the curve

(1-—x-—y)2-4xy = 0. In terms of coordinates, perform the

coordinate transformation

x = {(1+2u)(1+2v)/4, vy

(1 -2u)(1-2v)/4.

Looking from upstairs the projection is the quotient map under

the involution (u,v}) —» (v,u) .
u=v
vV=w
Z/2%

ves

2

1
V=x

A

u:— l u:l u—w
2 2 -

Pliu) x ®'(v)

. , -
N1=x-y) “-4xy=0

_JP2 (x,y)

Under the condition QR the equation thus obtained is

2z = p(u)z,

where

Z
vv

A

+

glv)z

A!

+

(1+2u) 2

(1-2u)
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2¢ A A
q(v) + +
1=av®  (1-2v)2  (1+2v) 2

Each of which is expressed by Riemann's P-function

1 1

r u(resp. v) = - % u(resp. v)=§ u{resp. v)=m
{ 3+ /17X 3+ /TR —2+/XFRT-2eRT |
[ 3 - /1 3 = /TIRT - 3= /AFA =2+ |

§§ 6.7 ) and H under QR

Let us define an equation EZ(A,p,v) with the parameters

A,u and v by

D A - 2%
S E m ==
SO c =0
& = 2(1-x)
-2
= d = ==
b =0 s
- Ay i - A
p = — + g ==+v ,
4x (1-x) x2(1—x) y

This equation has the property QR and includes both 52

and H.!0 under QR as follows (using the convention in

§§ 6.3):
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2
. = a -1
H10(a,1+'011 —> = (-1, ) ro)
(XIY) —— (ulv) = (4XIY)
otl

z — w =u 2 z

£, (a,1-a,3) —> 2(0,-a(1-a) ,4)

(X:Y) —> (u,v) = (1/){1‘/?)
z —> w = 2z .
The equation Z(A,u,v) 1is decomposed into two ordinary -

differential equations by the elementary change of variables.

Indeed put
1 1 /2x-1 .
u =5 < T dx + i log (y/x)
1 1 /2x-1 .
v =5 [ /355 dx - 1 log (yvX)

then the fundamental form

Y 2 2x 2
311=%) dx” + 2dxdy + v dy

is conformally equivalent to the form dudv.

§§ 6.8 H3 and H6 under QR

We do not know whether the equations H3 and H6 under QR

are decomposed into two ordinary differential equations or not.
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