
---- ~.',~\~-"I";o:-l'.,""""""p,..\-~--_-.-....--....._-~~----- ..

LINEAR DIFFERENTIAL EQUATIONS IN TWO

VARIABLES OF RANK FOUR

*) **)
Takeshi Sasaki and Masaaki Yoshida

. *) Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

and

Kumamoto University
Departrnent of Mathematics
Kumamornoto 860 Japan

MPI

**) Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
0-5300 Bonn 3

and

Kyushu University
Department of Mathematics
Fukuoka 812 Japan

86-51



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

~ 1

1

1

1

1

1

1

1

1



-1-

Introduetion

We study systems of linear partial differential

equations in two eomplex variables of rank (= complex
,

dimension of the' solution space) four. We state first our

motivation and some backgrounds.

Uet X be a -Herrnitian symmetrie spaee, r be a properly

diseontinuous subgroup of the group Aut(X) of complex

analytic automorphisms, M be the quotient variety f\X

naturally equipped with the structure of an orbifold,

TI:X --r M be the natural projection and finally let

~ = n- 1
:M ~ X be the developing rnap of the orbifold M.

We ~hink there should be a linear 'differential equation

on M of which solution gives the developing rnap ~. If

such a differential equation exists, it is called the

uniformizing equation of the orbifold M.

If X is a complex unit ball in ~n C F n , then the

uniformizing equation is a system of differential equations

of the form

( 0 • 1 ) k az 0
p .. (x)-k + p .. (x}z

1.) ax 1.)
(i,j = 1, ... ,n)

where z i5 the unknown and 1 n
(x , ••• ,x) 1s a system of

local coordinates on M. The developing map ~:M ~ F n is

given by the ratio of n+ 1 linearly independent solutions

of (O.1). The system of coefficients {pki'}~ . k-1 1s theJ 1.,J, -
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holornorphic projective structure on M naturally induced

from TI:X ~ M, and the coefficients {p? ,}~ '1 are
1.J 1.,J=

determined by the projective structure. Namely, the integra-

b~lity condition of the system (0.1) (the relation of the

coefficients garanteeing (0.1) has (n+ 1)-dirnensional solution

ospace) says that,each p" is a differential polynomial of
1.J

:{P~j}. The differential equations of the form (0.1) are studied

by many authors analytically and geornetrically (see [Yos).

We now turn to the case when X = H x H is the product

of two upper half planes H = {z E a: I Im z > O}. Since X is a

domain of the product ]P
1

x ]P
1 of two projective lines, and

since JP
1

x JP 1 can be considered as a non-degenerate quadratic

3surface Q in the 3-dimensional projective space ]p , the

uniformizing equation should be a system of differential equations

of rank four and the developing map tP:M --7 Q c JP3 is given by

the ratio of four linearly independent solutions. In local

coordinates (x,y) of M, such a differential equation can

be written in the following form

r~ a2 az ~= ~ z + a- + + pz
dX 2 dXdY dX dY

(EQ) 1
a2 z a2 z 3z d~
ay2

= ffi ax3y + c- + + qzdX 3y

The coefficients t and m gives the holomophic conforrnal

structure tdx2
+ 2dxdy + rndy2 on M naturally induced fram
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TI:X ~ M and the embeddings

In this way we encounter the differential equations of

the form (EQ). Although some classical examples (so ealled

hypergeometrie differential equations in two varia~les) are

known, this paper is the first systematic study of such

differential equations, in which geometrie as weIl as

analytic studies are made.

We study the equation (EQ), especially its normalization

and integrability condition, and establish same fundamental

propositions and formulae. We make use of some differential

geometrie technique which. is essential to endow the equation

with a geometrie meaning. It makes also possible to charaeterize

(in terms of the coefficients) the property QR that "four

linearly independent solutions are quadratieally related".

Ta show that our study is effective, we construct the

uniformizing equation on a Hilbert modular orbifold M found

by F. Hirzebruch [Hir]. Recently R. Kobayashi and I. Naruki

[K-N] succeeded to find the explicit conformal structure on M.

Unlike the projective case (0.1), the conformal structure

(i.e. ~,m) does not deterrnine all the rernaining coefficients.

This phenomenon is characteristie in two dimensional conformal

structure (see [Sas]). So we have to make aglobai

eonsideration (the invariance under certain finite group) to

find the differential equation . The equation thU5 obtained i5

the first non-trivial example of the equations of the form (EQ)
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which is hon-hypergeometric. Its coefficie~ts are given as follows:

222
n __ 2-y -x Y
;,.,- 2

xy (1-x )

2 2 2 2
3 3 (1-x y ) (2-~ -y )

a= - "2 3x log 2
1-x

2222222
b=.! -!.lcg(Z-y -x y ) (1-x y ) (2-x -y )

2 3x (1_x2)2

222
rn= _ 2-x -x y

xy (1_y2)

2222222_rn 3 (2-x -x y ) (1-x y ) (2-x -y )c~ -log ....._-'-:::~ L.......,;.-:..- .

2 3y (1_y2)2

2 2 2· 2
3 a (1-x y ) (2-x -y )

d= - 2" ay log 2
1-y

p=
2 2-2 (x -y )

222(1-x) (1-y)

2 2_ -2 (y -x )
q- 2 2 2

(1-x ) (1-y )

We.also study the hypergeornetric differential equations

in two variables. Since those equations of rank four are 5tudied

very little, we rnake a large table of thern, which will be a

basic data in the future. We study the condition QR for

thern and expre S5 i t in terms of the ir parameters. We further

show that sorne of thern (under QR) are transforrned by an elernentary
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(i.e. algebraic and logarithmic) change of variables into an

equation of the following form:

a2z :::: p (x) z
a7(0.2)

a2z cj(x)z
ä7 '- .

This means that the monodromy group of the equation is the

tensor product of those of the two ordinary differential

equations (0.2).

This work was done during the stay of both authors 85/86

at the MPI für Mathematik, to which they are grateful. Thesecond

author is also grateful to Universite Louis Pasteur, Strasbourg.
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§ 1 Hypersurfaces in projective space

Let M be an n-dimensional complex local hypersurface

in the complex projective space F n + 1
• We want to define

a certain local projective invariant which is necessary to

develop the theory of linear differential equations in the

following sections. Let i:M --7 F n +1 be an immersion. We

choose a lift of i to which covers F n + 1

The image eO(M) is locally a submanifold in n+2a: • At each

point e O(p), p E: M, we assicate a set of linearly independent

vectors such that the first n vectors

e 1 ,···,en are ta~gent to eO(M). We call the set

e = {e O, ..• ,en +1} a projective frame along M. We assume that

det (eO, ... ,en+1 ) = 1. The dependence of this frame on the

point p is given by an infinitesimai equation

( 1 • 1 ) de == we,

where w:'p~ w (p) is a sI (n+2,<r) - valued holomorphic

one form on M, which is called the Maurer- Cartan form. The

integrability condition of (1.1) is given by

( 1 • 2 ) dw == W 1\ W,

i.e.

Now the condition that

implies n+1Wo = 0

are tangent .to

~nd, by (1.2), we have
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= o.

Sinee wi : = w~, 1:;;; i :;;; n, are linear ly independent I Cartan I s

lemma shows the existenee of asymmetrie "tensor ll

that

n+1 _ \,n j
w. - L' 1 h .. w •
~ J= ~J

h ..
~J

sueh

We define asymmetrie 2-form ~2 (the fundamental form)

on M by

( 1 • 4 )

This form obviously depends on the ehoiee of the frame e.

Another possible frame ""e is written as

f"OJ

e = ge I i.e. e
Cl

where the matrix g satisfies

for

n+1= g.
1

= 0, 1 ~ i ~ n.

Let "" ""w be the Maurer-Cartan form associated with e , then

-1 -1
w = dg. 9 + gwg •

Using this identity we can see
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Namely the conformal elass of ~2 is independent of the

ehoiee of,a frame. Now assume that this form is non-degenerate,

equivalently that the matrix (h .. )
1J

is non-degenerate. Then,

by a frame change, we may assume

( 1 .5) det(h .. ) = 1,
1)

o n+1Wo + wn + 1 = o.

We next define a new quantity h. 'k1J
by

(1 • 6 )

Under the condition (1.5), it is seen that h ijk is symmetrie

with respeet to subindices and behaves like a tensor. Namely

unde~ a frame change it varies as

(1 .; 7)

So we put

Ah. 'k1J

(1 .8) tn = \n h i j k
'+"3 L" k 1 .. k W W W1,J, = 1J

This i5 called the Fubini-Pick cubic form. From (1.7) we can see

Hence, especially, the vanishing of ~3 is independent of the

choice of a frame satisfying (1.5). Moreover we have
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Lemma (L. Berwaldi see [Fla],§ 12). The cubic form W3

vanishes if and only if the hypersurface is locally a quadric.

Let us recall the normalization (1.5) of the frame

implies the so-called apolarity condition which is written

as

(1 • 9 ) \,n ij
Li,j=1 h h ijk = 0, where -1

(h .. ) •
J.J

For the detailed description refer [Sas].
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§ 2 Linear differential equations in two variables of rank four

For notational simplicity, we denote by f x (resp. f y )

the partial derivative of a function f with respect to x

(resp. y). Consider a linear differential equation

(EQ)
= 1 z + a z + b z + pzxy x y
= m z + c z + d z + pz

xy x y

where (x,y) are independent variables and z is the

unknown. We assume throughout the paper that the rank

(= dimension of the solution space) is four. Differentiate

(EQ) to obtain

( 2 • 1 )

We have

(2 • 2)

( 1- 1m) z = {t· + a + bm + t '( m + d + c t) } z
xxy y x xy

+ {a y + b c + t (c + ca) + tq} zx x

+ {by + bd + t (d + bc) + p} z
. x y

+ {P + bq + t (q + c p) }zy x

( 1-1m) z = {m + d + c t + m ( t + a + bm) } zxy x y xy

+ {c + ac + m(a + bc) + q} Z -x y x

+ {d:x+ bc + rn (b:y + bd) + mp} Zy

+ {q +cp+m(p +bq)}z.x y

1 - tm *' 0,

otherwise the rank would be smaller than four. Let o
z ,
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1 2z , z

and put

and z3 be linear independent solutions of

o 1 2 3 ~z = (z ,z ,z ,z ). z defines a map Lrom

(EQ)

(x,y)-

spaee into F
3 . The image is loeally a surfaee S. The

geometrie treatment of this surfaee in whieh we are

interested will be given in § 4. In this seetion we would

like to present some basic formulae. Let us introduce a

function 6 by

(2 • 3 ) 26e = det ( z , z , Z , Z ).
x y xy

We call the function 26
e the normalization factor of the

equation (EQ). By differentiating (2.3) we have

28
x

28
y

-28
= e {det ( z , z , Z , Z ) + det (z , z , z , z ) }

xx y xy x y xxy

-26= e {det(z,z,z iZ ) + det(z,z ,Z,z )}.
x yy xy . x y xyy

Then rnaking use of (2.1) we get

28 1
~(m +d+c2}= a + 1- 2m { '~y + a + bm +x x

(2. 4)

26 d 1= + 1- 2m{mx + d + c 9.. + rn {9.. y + a + bm} } .y

For the sake of simplicity we put

BO
= {Py+ bq+ 9..{Qx+ cp)}/ (1-R..m) cO = {~x+ cp+ m(py + Pei) }/(1-.Q..m)

B
1

= (A + 9..q) / (1 - bn) C
1

= (C + q) / (1 - hn)
(2.5)

B
2

C2= (B + p) / (1 - bn) = (D + IllP) / (1 - bn)

B3
= {\ + a+ l:rn+ 9.. (rrx + d + c21 }/ (1-bn) C

3
:;:: {rrx ;d+c2 + m(9y + a + trn)}/ (1-bn) ,
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where

A :::: a'y + be + t (e x + a e )

C :::: e . + ae + m (a + be)
x y

B :::: b y + bd + t (d x + be)

D :::: d' + be + m (h + bd) .
x Y

In these abbreviations, (2.1) and (2.4) are written as

(2.11'!z = B3 z + B
1 z + B2 z + BOz

xxy xy x y

Z :::: C
3

Z '+ C
1

z + C
2

z + cOz
xyy xy x y

(2.4) I B3
:::: 28 - a, C

3
:::: 26 - d.

x y

We next choose a projective frame e:::: {eO,e 1 ,e2 ,e3 } along

the surface S as follows:

(2 .7)

Since

z ,x
-26:::: e z

xy

vectors and are tangent to s. The Maurer-Cartan form

w defined by de:::: we is equal to

0 dx dy 0

pdx adx bdx
28e (,Wx+ dy)

(2.8) w ::::
e26 (rrdy + dx)qdy cdy ddy

e-28 (B0dx + COdy) e-28 (B1dx+ C1dy) e-28 (B2dx + c 2dy -ad '- ddyx
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We assumed that· (EQ) is of rank four. This condition is

expressed. by a system of algebraic relations of the

differentials of the coefficients, which is called the

integrability condition of (EQ). Let us define as

usual the curvature form n by

(2.9) n = dw - W 1\ w.

Then the integrability condition of (EQ) is nothing but the

identity

n = o.

On the contrary this garantees that (EQ) is of rank four.

We will rewrite this condition explicitly in terms of

coefficients of (EQ) .

ncx 'ni i
Lemma 2 • 1 (0 :;i Cl :;i 3) , (0 ~ i ::; 2') , 51 2

(0$i~2)0 1

and n3 vanish identically.3

Proof . We prove n~ = 0 as an exarnple. By definition,

n~ = d (pdx) - bqdx 1\ dy

= - (p + bq + .Q.,C
0

- B0 ) dx 1\ dY •
Y

Hence (2.5) shows n~ = O. Other identities can be seen

similarly from (2.5). o
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Jhe rernaining cornponents of n are calculated as foliows:

n3 =1

n3 =2

n1 =3

n2 =3

n° =3

{ (2 8 - a - B
3 ) - (2 8 - d - C3 ) R,} dx A dY

x Y .

{(28 -a-B3 )rn-(28 -d-C
3

) }dXAdyx y

e- 28 {(28 -d)B'-B1 - (28 -2a)C'-cB2 +CO+C'}dxAdy
y y x x

e- 28 {_ (28 - a)c2 + C2 + (28 - 2d)B2
+ bC 1 - BO - B

2
} dx 1\ dy

x x Y y

e- 28 { (28 ~ d)BO - (28 - a)cO + pc 1 - qB2 - B
O

+ cO} dx 1\ dy.
y x Y x

lt is now easy to rewrite the right handsides of these

forms in terms of coefficients and as a result we have

Proposition 2.2 The equation (EQ) is integrable if and only

if the following conditions hold.

(leO)

(Ie, )

(IC2 )

(IC3)

where

(a+B3 ) = (d+C 3 )
Y x

R,q - 2q - rrp - (R, ~ - E;, - 2 R, ) q = R1
y x y y x y

mp - 2P - R, q - (m ~ - E;. - 2m ) p = R
2

x Y x x Y x

= cp - bq + (d + 2m + E;, - mt.: ) p .- (a + 2 R. + E;, -.e.s: )q
x y x y x y y x y x

+ (ma + 2c - 2c .e. -.e.c - c (E;, -.e. E;, )) py x y y x y

- (.e.d + 2b - 2bm - mb - b (E;, - mE;, )) qx y x x y X I
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R
1

::;;: (d + 2C 3 + ~ ) A - (2B 3 + ~ ) C - cB + C - A
Y x x y

(2.10) R
2

:::: (a + 2B 3 + ~x) D - (2C3 + ~ ) B - bC + B - D
Y 'y x

~ :::: log (1 - ~m) •

Proof. Frorn the vanishing of n~ and n~ follows

28 x ::;;: a + B 3 and 28 y = d + c 3 , namely (2.4) I. Hence (lCD).

1The conditions (lC1), (lC2) and (lC3) correspond to n3 =0,

by (2.4) I. Conversely, form (leD) we can find

n2 = D
3

28
Y

and respectively, if we replace 28
x

8

and

up

to an additive constant such that (2.4) I holds. This assures

n~ ::;;: n~ = ° for this choice of e and furthermore (le 1,2,3)

implies the vanishing of and
o



--.......,.. --- ---~-~~- -~ - -_.

-17-

§ 3 Transformation formulae

In this section we will prepare some transformation formulae

of the differential equation (EQ). We first obtain the

transformed equation when we perform a coordinate change

(x,y) ~ (u,v). Let

(3 • 1 ) 6. = u v - u vx y y x

be the jacobian determinant of the coordinate change. We put

(3 .2)

2 2
A = 9..v - 2v v + mvy x y x

2 2
J.L =.Q..u - 2u u + muy x y x

V = 9..u v - u v - u v + mu vx y x y y x x x

and define

(v 2
'iv v )/~, B

2 -
a. :: :: (v - mv v ) / ~x x y y x y

(u 2 'iu u )/6., 0
2 .

y = - :: (u . - mu u ) / ~x x y y x y

R (u) = u - ( 'iu + au + bu )
( 3 . 3 ) xx xy x y

S(u) = u - (mu + cu + du )yy xy x y

R(v.) :: v (9..v + av + bv )xx xy x y

S (v) = v (mv + cv + dv ) .yy xy x y

Then a calculation shows

Proposition 3.1 Perform a coordinate change of the equation

(EQ) from (x,y) to (u,v) and denote the coefficients of
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the transformed equation by the same letter with bars. Then

1 A m = _ 1:.
= v v

1 S(u)ct) - 1 R(u)o)a :::: -(R(u)ß c = -(S(u)y
(3 • 4)

v v

b ..!(R(V,)B cl 1 R(v)o)= S(V)a) = -(S(v)y -
v v

1 1 yq)P :::: - (a.q - ßp) q :::: - (op - .
v ' v

The normalization factor changes as

(3 .5)
28

e
v 28

:::: - 6 3 e

We next derive a formula when the unknown function z is

multiplied by a factor e:p . If we put z:::: e-Pw, then it is easy

to see that

-·0 e -p (w p w)z :::: e (w - P w) z :::: -
X X X Y Y Y

z = e-p{w - 2P w - {'P - p2} w}
xx xx x x xx x

(3 • 6)

z :::: e-p{w - Pxwy - pywx - Co - P ,p ) w}
xy xy xy x y

e -'p{w 2p w ( Pyy
2

z = - - p .) w} .
yy yy y y y

From these identities we have

Proposition 3.2 Perform a change of the unknown z by

multiplying a factor e'p. Then the coefficients of the trans-

formed equation, which are denoted by the same letter with primes,

are gvien as follows .
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R,' ::;; R.

a l
::;; a + 2 p - R.px y

b ' ::;; b - R.Px

pi::;; P - ap - bpx y
2

+ (pxx -PX) - R. (pxy - PxPy)

m I ::;; rn

Cf::;; C - rop
y

d' ::;; d + 2p - ropy x

q I ::;; q - cp - dp
x Y

2
+ (Pyy -Py) - m(pxy - PxPy)

The normalization factor changes as follows .

(3 .8) e 281 ::;; e 4p + 26
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§ 4 Linear differential eguations defining maps into guadrics

§§ 4.1 Conforrnal structures

We have denoted by S the surface defined by the equation

(EQ) by use of their independent solutions. To this surface

we have associated a projective frame defined by (2.7). Then,

from the expression of the corresponding Maurer-Cartan form in

• (2.8) and by the definition (1.4), the conformal structure ~

of S is given by

(4.1) ~ = ~dx2 + 2dxdy + mdy2
I

§§ 4.2 Fubini-Pick cubic form

We want to calculate the Fubini-Pick cubic form i.e.

its coefficients h ijk of S. Für this purpose it is

necessary to rnodify the frame e so that it satisfies (1.5).

Put

(4 .2)

A being a function to be determined. With respect to this

frame

-1 -1
W = A dx, -2

W = A- 1dy

-3 ,4 28( 2 1)w2 = 1\ e rnw + w •

Hence the tensor h.. is given by
1J
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(4 .3)

and, if we take

(4 .4) A = e

18 1
2 (0 1)-8Nm -

then det h.. = 1. In this choice of
1.J

-2
= - 2 d log A e 3 + Ade3

-Again rnodify e defining
......
e by

(4 .5)

With respect to this frame we have

w~ = - 2 d log A - a dx - ddy +

+ A3 e 2 8 { jl (R. dx + dy) + v (rn dy + dx)} .

In order that
...... 3
w = 0

3
it is sufficient to choose and v

so that they satisfy the following equalities.

2A /A
x

+ a

2A /A + d
Y

Namely,
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;;;; A- 3e - 2 6 (R-m - 1 ) - 1 { (2 >.. j A + a) m - (2 A I A + d) }
x Y

;;;; . >.. - 3e - 2 6 (~m - 1 ) -1 { (2 >.. / >.. + d) R. - (2 >.. /. 11. + a) } •
y ··x

Now that we have chosen a projective frame
,...".

e which satisfies

the condition (1.5), we can compute

for simplicitiy. A computation shows

h
ijk

. We now drop

w~ 'J;;;; [adx + dlogA - llA3e28 (.edx + dy)

2 3 26w... a::1y - ~>.. e (dx + rrrly)
L.

oox- VA 3e
26

(R.dx + .dy) )

3 26ddy + dlog).. - VA e (dx + rrrly)

Hence by defintion (1.6) we have

4 28 3 28
- 211. e {bdx- VA 2 (R-dx + dy)}.

By (4.6),

(4.7.1)

Similarly,

h
111

;;;; t.. 5e 28 {6~>"xj A + 2R.8
x

+ R-
x

- 2b}

h
112

;;;; >..5 e 28{4A jA + 2R.t.. jA + 2R.8 + R. + 2a} •
x y y y
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h 2= )..5e 28{4A /).. + 2mA /A + 2m8 + m + 2d}J 12 Y x x x

l h 22 = )..5e 28{6m).. /).. + 2mS + In - 2c}
2 y Y x

Proposition 4.1 The cubic form of the surface S associated

with the differential equation (EQ) vanishes identically if

and only if

{ b

~ ~x 3 8 )= -(- - "4f;x -2 ~ x
(4.8.1)

m
!!!(~ 3 8 )c = 4"f;y2 m y

1 .Q., ~ 1a = 4"E;x + 8 __ (-Y
'4t.:y + 8 )

J x 2 .Q., Y
(4.8.2)

l 1 m mx 1 )d = 4~y + 8 -(- - '4E;x + 8y 2 m x

Proof. Recall ~ = log (1 - ~m). Then it is enough to use

(4.4) •

Remark 4.2 The tensor {h, 'k} satisfies the apolarity
1.)

11

condition (1.9). In this instance

roh 111 - 2h 112 + ~h122 = 0

rnh 112 - 2h 122 + ih
222

= O.

So, if ~m - 4 * 0, then the vanishing of h
ijk

is equivalent

to h 111 = h222 = 0, i.e. the condition (4.8.1). The

condition (4.8.2) follows from (4.8.1).
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§§ 4.3 Equations with the property QR

The equation (EQ) is said to have property QR if four

linearly independent solutions are quadratically related, namely

if its coefficients satisfy (4.8) (cf. Lemma in § 1). Now

assurne that (EQ) has this property. Since lP:::: R..dx 2
+ 2dxdy + mdy2

is non-degenerate, we can find new coordinates such that R..:::: m :::: O.

(Such a coordinate system is called asymptotic). Then (4 .8)

implies b :::: c :::: 0 and a :::: 8x
, d :::: 8y . Per form a transformation

of the unknown multiplying -8/2 Then the equation changes ase .

(4.9.1)

(4.9.2)

82 - 8
:::: pi Z pi +

X xxz , :::: pxx 4

8
2 - 8

z :::: q' Z q' ;:: q +
y yy

yy
,

4

The integrability condition of (2.13) is easily seen to be

(4.10) q I :;:: p' :;:: O.
x y

be solutions of (4.9.1) (resp. 4.9.2).

and

Let

Then

Z1,z2 (resp. Z3,z4)

1 3 2 3 1 4z z , z z , z Z 2 4
Z Z are four linearly independent

solutions. So we have proved

Proposition 4.3 Assume that (EQ) has the property QR. Then

it is (locally) reduced to the pair of ordinary differential

equations (4.9) by a coordinate change and by a renormalization.

This reduction corresponds to the fact that a quadric in w 3
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is ruled and decomposed into JP 1x lP 1 .

Let us examine the"integrability condition. The

condition (4.10) corresponds to (rCl) and (rC2) in Proposition

2.2. The condition (rC3) is Pyy - qxx = 0 and follows from

(4.10). More precisely we have

Proposition 4.4 Given functiens t,m,a,b,c,d,p,q and e

assume that these functions satisfy the condition (4.8) and

identities (rCl) and (IC2). Then the differential,equation

(EQ) with ~',m, ... ,p,q as its coefficients is integrable

with 28
e as the normalization factor and has the property QR.

Proof. Substituting the expression cf a,b,c and d in

(4.8) inte the right handsides of (2.4), we see the identities

(2.4), narnely the vanishing n3 = n3 = 0, and hence1 2
(rco). We

will examine (rC3). Fer this purpose we fellow again the reduction

process stated above in terms of frames. If we perform a

coordinate change from (x,y) to (u,v), then the corresponding

frame e defined in (2.7) and
.......
e defined analogously with

respect to the coordinate (u,v) are related as,follows .

.......
e =

1 0 0 0

0 x Yu 0
= u

0 - xuYug1 = xuYv .
.0 x Yv 0

v

* * * l/ö
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We next renorrnalize the unknown z by rnultiplying eP~

Denote by .e the frame associated with ePz. Then

eP

Pu eP

g2 =
P v

0 EfJ

* * *
-3pe

Hence e = g2g1e. Now let TI be the curvature form with

respect to e . Then, since n is a tensor,

From this relation, using also (leO) , we see

-1 e 4P o(xuSlj 2n3 = + xuS' 3)

-2 4P ö ( n1 2
ü 3 = e Yu 3 + Yuü 3)

-0 e4Pön~ mod
1 2

(23 Ei (ü3 ,n3 ) ·

We have seen thatthe identity IT~ = 0 follows from

-1 -2n3 =n
3

= 0 provided that the coordinates (u,v)· is choosen

so that ~ = m = 0 and that 1
p = - 28. So if we assume

nj =n; = 0 then from the above three identi ties follows

n~ = 0 which is the condition (le3). Hence in view of
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Proposition 2.2, -we have proved the assertion. •

§§ 4.4 Moduli of equations with a fixed conformal structure

Assurne further that we are given two equations with the

same conformal structure and the same normalization factor.

Let p. ,g. (i == 1,2) be the respective coefficients. Put
1. 1.

P == P1 - P2 and Q == q1 - q2. Then they satisfy linear

differential equation

(4.11)
{ .tQy - 2Qx - mPy ~ (.tC;y - C;x - 2.ty ) Q = 0

'mP - 2P - ~Q - (ms - ~ - 2m )P = o.x y x· x y x

This gives the moduli of (EQ) with the property QR. When we

are concerned with global equations (e.g. the Fuchsian

differential equations on 2
P ) , to determine the solution

space of '(4.11) turns out to be a very important problem.

Here we give an example.

Example 4.5 . Let us consider the equation F
2

defined by

R. Appell (see §§ 6.1). The corresponding equation (4.11)

which is defined on .W
2

(X,y) , (x,y) being the inhomogeneous

coordina te, i5

x (1 - x) Px - 2 (1 - x) (1 - y) p y - y (1 - y) Qx- ( 3x - 2) r == o.

(4.12)
y (1 - Y) Qy - 2 (1 - x) (1 - y) Qx - x (1 - x) Py - ( 3y - 2) Q = 0

{
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The fbllowing are. specialsolutions of this equation:

ß 1
P =

Xl (1-x) p :=
(1-x) (2-x-y)

( 1 ) (2) {

ßI 1
q = y2 (1-y) q = (1-y) (2-x-y)

The first one appears in F 2 . The second solution is related

to the fact that the equation F 4 (see §'§ 6. 1) can be trans­

forrned to an equation which has the same conforrnal structure

as that of F 2 (see §§ 6.4). It is interesting to find all

rational solutions of (4.12).
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§5 Uniformizing differential equation of a Hilbert modular orbifold

§§ 5.1 Hilbert modular orbifold M on F 2 ([Hir))

Let 0

aHI2) .

SL (2 ,0 )

be the ring of integers in the real quadratic field

and let f(2) be the principal congruence subgroup of

associated with the ideal (2) of 0:

f (2) :::: {g E SL(2,O·) I gE identity mod (2)}.

Let further f(2) c fl c SL(2,0) be the group such that r l /r(2)

is the center of SL(2,0)/f(2). We note that [fl :f(2)] :::: 2

and SL(2,0)/f l is isomorphie to the symmetrie group of degree

four. The group SL (2 ,0 ) acts on H x H as follows

g:(z1'Z2) r----+ (glz1,g"22 ) 9 E SL (2,0 )

where g' and

Let finally r

gll are two embeddings of

be the group genera ted by

SL (2,0 ) into SL (2,:IR) .

fl and the involution

The factor space H x H/ r is isomorphie to ]p2 minus six

points. The ramification locus of the natural projection

-H 21T: XH -> lP

is given by D:::: {D:::: O} where

(5 • 1 ) 2 2 2 2 2 2D :::: (1 - x ) (1 - Y ) (1 - x Y ) (2 - x - y )
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provided that the affine coordinates x,y are suitably

chosen. The above six points are exactly six multiple points

of D. The branching of 1T is caused by the involution T

and its conjugates, and so the branching index is two. The

projective plane" ]p2 equipped with the ramification locus D

and the index 2 will be refered to as the orbifold M

y

Orbifold M

The group G of projective transformations which leave M

invariant is order 48 which is generated by three"reflections:

1
1

with respect to the associated homogeneous coordinates.
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§§ 5.2 Kobayashi-Naruki's result ([K-N])

Since a quadratic surface in F 3 has a natural holomorphic

conformal structure (see § 1), the factor space M has a

holomorphic conforrnal structure outside D. The conforrnal

structure on M is explicitly known. In terms of the

inhomogeneous coordinates (x,y), it is given by

2 2
~ = tdx + 2dxdy + mdy

where

(5. 3)
222

2-y -x y
2xy (1-x )

m =
2222-x -x Y

2xy (1-y )

§§ 5.3 Differential eguation giving the developing map

We would like to find the differential equation of the form

(EQ) whi~h gives the inverse map of TI

2
W:F ---7 H x H

The space H x H can be eonsidered as a domain in the non-

degenerate quadratic surfaee Q (whieh is isomorphie to

HXH c

where

( 2 1 I Z 2) L-___ ( [ 1 1] [1 2]) ~ [1 1 .2 1 2]
~ ,2,,2 ~ ,2 ,2' ,Z Z

] stands for the ratio. Aceordingly we have
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1 1
Aut (HxH) c Aut (:IP x:IP ) ~ Aut (]p3 ,Q)

where Aut(X) stands for the group of complex analytic

automorphisms 'of a manifold X and
3Aut(JP ,Q) stands

for the group of projective transformations leaving Q invariant.

This implies that the multi-valued map

Z ::::::

has the monodromy i*f c PGL(4,~). If we fix inhomogeneous

coordinates (x,y) on ][>2 and homogeneous coordinates

_0 3 3 0 3(Z , ... ,2) on JE> , then the 4-vector function (Z (x,y) , ... ,z (x,y))

has the monodromy in GL(4,~).

Now consider the linear differential equation with the

unknown z and the independent variables (x,y):

0 3 o, 0 3 0z z •.•. Z ::::: Z Z ••• Z :::

0 3 0 3
z z z z z z

x x x x x x

zO z3 0 3
(5 .4) z z ·z zy y y y y y

z~y ••• Z~y
0 3z z z ••• zxy xy xy xy

0 3 zO 3
z z z z ••.. zxx xx xx yy yy yy

then the ratios of the coefficients are single valued (because

o 3z , ... ,z change only linearly). Studying loeal properties of the

coeffieients in Lemma 5.5 and 5.7 we will know that the coefficients

are rational functions. Without loasing generality we can assume
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zO 3 5i 0." .. z

0 3z z
x x

0 3z z
y y

0 z3zxy xy

so that the equation (5.4) is of the form (EQ).

On the other hand paragraph two teIls us the coefficients

~ and m in (5.4) give the conforrnal structure on M. Since

Kobayashi-Naruki determined ~ and rn as in §§ 5.2, we shail

determine the remaining coefficients. The equation (5.4) i5

uniquely determined by the group r up to the normalization

(rnultiplication of any non-zero functions to zO, ... ,z3).

Normalize the equation as follows

(5 .5)

7

e 28 = (1 _ ~m) 2 (xy)-6 .

Lemma 5.1 The norrnalization factor is G-invariant. Namely,

when the coordinate transformation (x,y) ~> (u,v) induced by

g E G changes (see Proposition 3.1) i ~ I, ... ,q ~ q , we

have

iee v
3"
ß

28e ;;;; (1 - I m)
7

'2 (uv) -6 .

Proof Straightforward calculation. •
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Then by proposition 4.1 the four coefficients are.

2 2 2 2 )

~
(1-x y ) (2-x-y )

a =- log 2 2
2 (1-x ) (1-y ) x

2 2 2 2 2 2)
(5 • 6 ) t(l (1-x y) (2-x -y ) ,

+ 2 og 2 2 222
(1-y) (2-y -x y) y

222 22 22
_ ~l (2-x -x y ) (1 -x. y .) (2, -x -y ))

c-- og 22
2 (1-y )

22222 2 2) ~ 22 22·b = M
log

(2-Y -x Y ) (1-x y ) (2-x -y ) d = - ~ log(1-X
2
Y ),t~-x - y ))

2\ (1_x2)2 Y (1-x ) (1-y )

2 2 2 2 2 2)m(l (1-x y) (2-x -y )
+ 2\ og 2 2 2 2 2

(1-x ) (2-x -x y) x

Remark 5.2. The normalization is unique if your require that it

is invariant under the action of G and that the four eoeffieients

a,b,e and d have poles only along D and {xy = O} .

Onee the normalization is fixed the equation (5.4) is uniquely

determined by the group r. Let us call the equation (UEQ).

Lemma 5.3. The equation (UEQ) is G-invariant.

Proof. It follows from Lemma 5.1 and the fact that the orbifold

M is G-invariant. •

Remark 5.4 The equation (EQ) is invariant under the coordi~ate

change (x,y) ~ (u,v) if and only if (by the notations in

Proposition 3.1)

I(u,v) = t(u,v), .... ,~(u,v) = q(u,v).
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The conformal structure and the normalization da not

determine all the coefficients of (EQ). This is a characteristic

feature of two dimensional conforrnal structures of hypersurfaces

(see [Sas)). We shall use Lemma 5.3 to determine the remaining

coefficients p and q in the following subsections and

obtain the explicit form of the equation (UEQ).

Theorem The developing rnap 1JJ: M ---+ Q c JP2 of the orbifold

M is given by the ratios of the four linearly independent

solutions of the equation (UEQ) of which coefficients are given

by (5. 3), (5 .6) and

p =
2 22(y -x )

2 2 2'(1-x ) (1-y )
q =

2 2.2 (x -y )
. 2 2 2

(1-x ) (1-y )

The remaining part of this section is devoted to the proof of

the theorem.

§§ 5.4 Determination of the coefficients p and 9

Lemma 5.5 Outside the curve D the coefficients p and q

have at worst simple poles along {xy = O} .

Lemma 5.6 The coefficients p and q are even functions with

respect to x and y and satisfies p(x,y) = q(y,x). In

particular they are holomürphic outside the curve D.

Lemma 5.7 . The cüefficients p and q have at würst double

poles along the curve D.
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Lemma 5.8 The coefficients p and q can be written in the

following form:

p = P(x,y)

D2
q = Q(x,y)

D2

where P and Q are even polynomials of degree S18 such that

P (x, y) = Q (y , x) •

Proof of Lemma 5.5 Outside the ramification locus D, the

developing map W is Iocally biholomorphic. Choosing Iocal

coordinates (u,v) and a norrnalization suitably) (UEQ) is

locally equivalent to the system with coefficients ~O,mO,aO'

(5 .7)

and qo which are zero, namely

= 0

= 0

which has the normalization factor e 260 = 1. We shall trace the

proeedure in the opposite direction starting from (5.7) and see

Ioeal properties of (UEQ).

A coordinate change (u,v) ~ (x,y) transforrns (5.7) into

- --an equation (5.7) with the eoeffieients ~,m, ... ,p,q (see

Proposition 3.1):

v = -x y - x yu u v u 6. = x y - x yu v v u

(5 .8)

rn = -2x x Ivu v

~,E,~,a .. = 1 x (holornorphie funetion)v

p,q = 0



-37-

with the normalization

ie 3
e = -v/6 .

We note that v and YuYv (as weIl as v and x x )u v have

no divisor in common, otherwise the Jacobian 6 of the

biholornorphic rnap has a divisor.

A change of the unkown z ~ ePz transforrns (5.7) into

(UEQ) with the coefficients ~, ... ,q (see Proposition 3.2):

rn = rn

(5.9)

a = a + 2p - R..p
x Y

b = b - R..p x
2

P = p xx - ,P x - ~ ( Px y - Px PY)

-ap - bp
x y

c = c - mpy

d = CI + 2p - mpy x
2

q = Pyy - Py - rn (pxy - PXPy)

-cp - op
x y

with the norrnalization factor

(~.10)

Since we have

2222-y -x y __
- - 9. ::;"I = -2y Y /v ,

xY(1-x 2 ) u v

outside D, v has simple zeros along {xy::; O}. Since we have
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28e = (1 - 2m)

7
2 2 2 2)- 2

(
(1-x y ) (2-x -y )

=xy -2 2 2
(1-x ) (1-y )

(5.10) irnplies that p has no poles along {xy = O}. Thus

(5.9) shows that p and q have at worst simple poles along

{xy = O} outside D. •

Proof of Lemma 5.6 We make use of the G-invariance of (UEQ).

Change the coordinates by T2 E G (resp. T1T2T 1 E G), namely'

(-x,y) (resp. ~ (x,-y)). By the transformation formula Proposition 3.1

we .have p(u,v) = p(x,y) and q(u,v) = q(x,y). On the other hand,

G-invariance means p(u,v) = p(u,v) and q(u,v) = q(u,v). Thus

we have p(u,v) = p(x,y) and q(u,v) = q(x,y), which teIls us

p and q are even functions with respect to x and y. This

implies in particular that simple poles of p and q do not

occur. Analogously T
1
-invariance leads to p(x,y) = q(y,x) .•

Proof of Lemma 5.7 Along the ramification locus the map TI:

HXH ~ M is locally equivalent to the quotient map with respect

1 2 2 1to the 'involution t:(z,z) -,~ (z ,z ). Choosing local

coordinates (u,v) suitably, TI is given by

and {v = O} is the ramification locus. The differential equation

in

1 ,

(u,v)-coordinates with the four linearly independent solutions

1 2 1 2z,z and z z is given by the following coefficients:
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1 1
i ::: 1 mO

::: -
0 4v

b O 0 -d 1
a O

::: ::: Co ::: :=.
2v0

Po = 0 qo :=. 0

namely

(5.11) z = zuu uv

Z vv
1 + _1_ 1= (1 - 4v)zuv 2v Zu - 2v Zv

with the normalization factor

It is obtained by det(w,w ,w,w ,w )=0 and det(w,w ,W,w ,w )=0,u v uv uu. u v uv vv
1 2 1 2where w is the transposed vector of (1,z ,z ,z z ,z). We shall

do the same thing as in the proof of Lemma 5.5.

A coordinate change (u,v) ~ (x,y) transforms (5.11)

into an equation (5.11) with the coefficients I, ... ,q:

(5.12)

1v :=. xuYv + (1 - )x y - x v - X Y4v u U u.lv V U

R"m = _1_ x (holornorphic function)
vv

ä,b,c,d: = _1_ x (holornorphic function) (see (3.4) carefully)
\)v

p = q = 0

with the norrnalization factor

ie
e
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P
A change of the unknown z ~ e z transforms (5:11)

into (UEQ) with coefficients ~, ... ,q satisfying (5.9)

with the normalization factor this time

(5.13) 28e

In case v = (1 - x 2 ) x (unit), by (5.13), we have

P = 1 log (vv4 ) x (unit),

•where (unit) stands for a non-vanishing holomorphic function.

So either v divides v or not, Px has at most simple pole

"along v = 0 and is holomorphic. Thus (5.9) teIls that

a (resp. b) has at most simple (resp. double) poles along

{v = O} and that p and q have at most double poles along

{v = O}. The case .when v = (1 - y2)x(unit) the argument is

exactly the same and when v = (2 - x 2 - y2)x(unit) the

argument is simpler. •

Proof of Lemma 5.8 Apply Lemma 5.6 near the line-at infinity.

Then we see that p and q are rational functions of degree

-2. Since D is an even symmetrie polynomial of degree 20 the

lemma is derived by Lemma 5.5 ~ 5.7. •

We now study the effect of T3-invariance. The transformation

T3 in inhomogeneous coordinates is given by

u = 2-x+y
x+y v = 2-x-y

x+y
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The transformation formula (Propositon 3.1) teIls that

p(u,v) = ~(aq - ßp), q = ~(OP - yq)

where

v =
uv
xy

4
2

(x+y)

a. =
222,(l-y) (2-y +xy-xy -x y)

2xy (x+y) (l-x) , ß
222= (l+x) (2-x +xy+xy +x y)

2xy(x+y) (l+y)

222
Y = (1 +y) (2-y +xy+x y+xy )

2xy (x+y) (1 +x)
, 0

- 2 2 2= (l-x) (2-x +xy-x y-xy )
2xy (x +y) (l-y)

The T3-invariance p(u,v) = p(u,v), q(u,v) = q(u,v) is stated by

(5.14)

where

P(u,v)
2o (u,v)

1 {,+v ~-v }= ~~~~~~--- l+u BP(x,y) - l-u AQ(x,y)2uv (u+v) 0 2 (x,y)

A A ( ) 2
_

Y
2 2 2= x,y = + xy - xy - x Y

B = B(x,y) = A(-y,-x).

The corresponding formula for Q is derived by P(x,y) = Q(y,x)

(Lemma 5.6,from (5.14). The following formulae are useful:

4 -2(u-v)x + Y = x - y =u+v. ,
u+v

2 2(2 + u + v)
2

2(2 - u - v)+ x + y = , - x- y =
u + v u + v

2 + 4v
2

4ux - Y = - x + y =u+v u+v
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1 - x ::;
2 ( 1 -u)

1 + x ::;
2 (1 +v)

u+v u+v

, - y ::; - 2 (' -v)
1 + ::;

2 ( 1+u)
u+v y

u+v

4 (1 +uv) 2 2
1 + xy ::; , - xy =

2(2-u -v )
2 2(u+v) (u+v)

2
2 2 8 (1-uv)- x - y ::; - 2

(u+v)

Since we have

D(x,y)
10 -10= 2 (u +v ) D (u , v )

(5.14) is equivalent to

(5.16)
2-20( )20 {1 }

P (u,v) ::; '2uv (u~~~ 1:~ BP (x,y) - ~=~ AQ (x,y) .

Since we have 1 + u::; (1 + y) (u + v) /2. BP must be a multiple

of 1"+ y. Since B is prime and P is even, we can put

. P(x,y) ::; (1-y 2)P1 (x,y) and Q(x,y)
2::; (1-x )Q1 (x,y)

where P, and 01 are even polynomials of degree ~16 such

that P 1 (y,x) ::; 01 (x,y). Then the equality (5.16) is equivalent

to

(5.17)

Put

-19 17
p 1 (u, v) ::; - 2 u v (u +v) { BP 1 (x, y) - AQ 1 (x, y) } •



-43-

R (x, y) = (P 1 (x, y) - P1 (y, x)) / 2

S (x,y) = (P1 (x,y) + P 1 (y ,x)) /2

then (5.17) is equivalent to

4 -2 (u + v) 2 (2 + x - y) (2 - x + y) (R (u,v) + S (u,v»
(5. 18)

= _219(u+v)17{(4_ (x-y)2)R(X,y) + (x+y) (2xy-x+y)S(x,y)}.

This teIls that S has (2 + x - y) (2 - x + y) as a factor. Since

S is even it is divisible by

(2±x±y) := (2+x+y)(2+x-y)(2-x+y)(2-x-y).

Put

S = ( 2 .± x ± y) S l' R
2 2

= (x - y.)R
1

where S' and1 , are even symmetrie polynomials of degree

~ 12 and ~ 14, respectively. Then (5.18) is equivalent to

(5.19)

2 2(u -v) R
1

(U,v) + (2±u±v)S,(u,v)

-15 15 2 2
= -2 (u+v) {(x -y ) R

1
(x,y) +

+ (x+y) (2xy-x+y) (2+x+y)(2-x-y) 51 (x ,y)} .

Exchange in (5.19) x and y as weIl as u and v and we have

an equality (5.19) '.

Add (5.19) and (5.19) I then we have
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-10 10
~ 2 (u+v) 51 (x,y) •

Substract (5.19) from (5.19) land put

then we have

(5.21) R
2

(U,V) -12 12
~ 2 (u+v) R

2
(x,y) •

By the equalities (5.20) and (5.21) we know that the even

symmetrie polynomials R
2

and 51 are ,of degree ~12 and

~ 10, respectively.

Lemma 5.9 Let f(x,y) be a polynornial of degree ~d such

that

-d df (u, v) ~. 2 (u +v) f (x ,y) •

Then the homogeneous polynomial (of degree d) f(x,y,z} = zdf(x/z,y/z}

is T3-invariant, namely f(T
3

(X,y,z}) ~ f(x,y,z}.

Proof Easy. •

Lemma 5.10 Any polynomial in (x,y,z) which is invariant under

the action of the group

A = z2 + x 2 + y2

B = .{ x 2 - Y2 } 2 + 8 (x 2 + Y2 ) z 2

C= <x 2 _ y 2)2 z 2
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Change the coordinates by (X,y,z) = (x-y,x+y,2i)

then the matrices T
1

,T
2

and T3 are transformed into

1 , (-1 -1

,) 1

respectively. The fundamental invariant of this group are

easily seen to be and

which are (in terms of x,y,z) A,B and C, respectively.

•

Note 5.11 The group is the so-called imprimitive reflection group

sometimes denoted by G(2,1,3).

Lemma 5.12

such that

There are constants a.(1SiSS)
1.

and b.(1Sj$7)
]

51 = ~1A5 +a2A)B + a)AB
2

+ a4A2c + aSBC

6.4 22 3 3 6R:2 = b1A +~A B + b3A B +b 4 B + bSA C+ b6ABC + b7C

where

A = A(x,y,1) 2 + 2 2
= x + y

B B(x,y,1) (x2 y2)2 8(x2 y2)= = + +

C C(x,y,1) (x 2 y2)2= =

Proof It follows from Lemmas 5.9 and 5.10. •
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Summing up, we now know that the coefficients p and q

are expressed as folIows:

1d 2 2 2 2P == - 2 [(x -y )R2 + {(2 ±x±y)+4(x -y )}S1]
D

(5.22)

1-x2 2 2 2 2q = -2-[-(x -y )R2 +{(2±x±y) -4(x -y )}S1]
D

we shall determine the twelve constants a. and b. by making
1 J

use of (IC1) and (IC2) in §2 (see also ,Proposition 4.4) of which

left hand sides we shall call L1 and L2 :

L1
:= R..q - 2q - mp - (.Q,~ - E;. - 2 R.. ) q == R1

(5.23) Y x Y Y' x Y

L
2

:= rnp - 2p - R..q - (rn~ - ~ - 2m ) p == R2
Y Y x x y x

Lemma 5.13 Compare the coefficients of maximal poles along

{1 - x
2 = O} in the both sides of (5.23) then we get

(5.24) = 0 , = 0

(5.25)
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On the other hand one can show by (long) cornputation that

1 4 -1
R =- 2 2 + 0 (X )

(l-y ) xX

The identity L
1

= R1 leads to S 1 IX=Q

'l'he identity L
2

= R2 leads to R2IX~Q

(5.25) .

= Q which implies (5.Z4).

= _Z(1_ y Z)4 which implies

•
We do the same thing along 2 - x 2 - y2 = Q. Put X = 2 _ x 2 _ y2

and by

Rzi = r Q(y) + r 1 (y)X + Q(X 2 )2 2x =2-y -x

8 1 I = sO(y) + s1 (y)X + Q(X2 )
x 2 =2_y 2_x

then we have

p =
U 1 (y)

+
U

2 (y)
+ 0 ( 1 )

X
2 X

q =
W1 (y).

+
W2 (y)

+ 0 ( 1 )
X

2 X
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where

2ro+{4(1-y2)+8}50

(1_y 2)6

2 (1- 2y 2) (2r
O

+ (4 (1_y 2) +8) sO)

(1_y 2)8

2 2 2 2
2(1-y )r

1
-r

O
+4y sO+(4(1-y )+8) (l-y )sl

(1_y 2)7

2rO+{-4(1-y 2)+8}SO

(1_y 2)6

(1- 3y2) (-2r +(4(1-y 2)-8)s)o 0

+

(1_ y 2)8

2 (l-y 2)r,-r
O

- (8+ 4y 2) sO- (4 (1-y 2)-8) (1_y 2) s1
+

. (1_y 2) 7

2
. W (y) =

(5.26)

So we have

2 1 2 1
L1 = -4y V -4(2-y )W

XX 3 +

1 J4W 1 4xW1 2- - -- - 4xW -
X

2 L x 21-y

2 . 2 1 2 1
Y (l-y ) (2 yV + U ) - 4 ( 1+y ) U

Y
2

x (1-y )
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On the other hand, one can show by (long) computation"that

R1 and R2 have no pole along X = O. The (Ie) leads to

(5.27)

(5.28)

(5.29)
2 1 222 2 1

4y(2-y )W - 2y(2-y ) (1-y )W + 4y(1+y )U

322 2 2 1 221-2y (1-y )U - Y (1-y )l)y + (1-y ) (2-y )W
y

= O.

Frorn (5.28) and (5.29), using the differential of (5.27), we can

eliminate U1 and w1 and obtain
y y

which together with (5.27) and (5.28) implies

,( 5 . 30)

(5.31)

The definition of U1 and w1 ((5.26) and (5.30» imply

(5.32) So = r O = O.

Since we know by Lemma 5.13 that
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So = 0 impli~5

and 50

a = 4a 3 .
4

Thus we have

2222222 2
= 4 a

3
(2 - x - y ) (1 - x) (1 - Y ) (1 - x Y ) = 4 a

3
D •

Analogously by Lenuna 5. 13 'and r = 0o imply

Thus we have

b 7
b -- =5 4

(5.34) 2222222
R

2
= 4 b

3
A (2 - x - y ) (1 - x Y ) (1 - x ) (1 - Y )

2 2 2 2+ b
7

C (2 - x - y ) (1 - x Y ).

The equalities (5.33) and (5.34) together with (5.31) lead to

b 7
b 3 = =T6

1
- ä
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Therefore we have

51 ::: 0

and finally

222 2 2(1-y ) (x -y )R2 -2(x -y )p :::

D2 222(1-x ) (1-y )

2 2
q :::

2(x -y )
222(1-x ) (1-y )

ending the proof of the theorem.
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§ 6 Hypergeometrie differential eguations in two variables

of rank four

§§ 6.1 Table of coefficients

As generalizations of the Gauss hypergeometrie differential

equation, se~eral hypergeometrie differential equation

(HGDE for short) in two variables are known ([Erd]). They are

denoted F 1 , ... ,F4 (Appell's HGDE), G1,G2,G3,H1, ••. ,H7 and

confluent HGDE's $1,$2,$3'~1'~2'~1'~2/r1,r2,H1,... /H11. These

HGDE's are systems of linear partial differential equations of

rank three or four. We are interested in those of rank four.

The y are F2 ' F3 I F 4 ' G3 ' H1 ' · · · , H7 ; lfl. 1 ' Ifi 2 I E1 ,~ 2 ' r 1 ' H1 ' . · · , H11 ·

Since we intend this paper to be a basic data of differential

equations of rank 4, we tabulate their coefficients:

~ m

a c

name b d

P q

parameters included 1 - im



I
M
L{)

I

F 2

F 3

y x
1 - x 1 - Y

(a+ß+1)x-y ß'x
x(1 - x) y (1 - y)

ßy (a+ß'+1)y-y'
x (1 - x) Y (1 - y)

aß aB I
x (1 - x) y(1-y)

a,8,ßI: y,yl 1-x-y
~

(1-x) (1-y)

-y -x
x (1 - x) y (1 - y)

(a+ß+1)x-y
0x (1 - x)

0 (a'+ß'+1)y-y
y (1 - y)

aß alß'
x(1 - x) y (1 - y)

a,al,ß,~I:y xy - x - y
(1-x)(1-y



2y 2x
1-x-y 1 - x - y

(a+ ß+ 1)x-y(1-y) (a + ß + 1 ) x - yx
x(1-x-y) Y (1 - x - y)

(CI + ß + 1) Y"- TY (a + ß + 1 ) Y - ..y' (1 - x) ...
4

x (1 - x - y) ..y (1 - x· ~ y-). " .

.. .

aß aß
x (-1 - x - y) y(l-x-y)

2
a,ß : y,y' (1 - x - y) - 4xy

2(l-x-y)

y{ (2 + 4x) (1 + 4y) - (2 + 4y)x} x{ (2 + 4y) (1 + 4x) - (2 + 4x)y}
x{(1 + 4x) (1 + 4y) -xy} y { (1 + 4x) (T + 4y) - xy}

- (1 + 4y) {1 - Cl + (4 ß + 6) x} + 2axy x { 2Cl (1 + 4x) + (1 - a + (4 ß + 6) x) }
x { (1 + 4x) (1 + 4y) - xy} y { (1 + 4x) (1 + 4y) - xy}

y{ (28 (1 + 4y) + (1 - 8 + (40 + 6) y) } - (1 + 4x){1 - 8 + (40 + 6ry} + 2ßxy
G) x { (1 + 4x) (1 + 4y ) - xy} y{(1 +4x)(1 +4y) -xy}

-8(8 + 1) (1 -+- 4y) + a(a+ 1) -a (a + 1 ) (1 + 4x) + ß (ß + 1)
x { (1 + 4x) (1 + 4y) - xy} y{ (1 + 4x) <,1 + 4y) - xy}

2 2
a,o.l

-) - 12x - 12y - 54xy + 81 x Y
2

(1 + 4x + 4y. + 1SxY)

F

I
-.::f'
Ln

. I



I
Lf)

Ifl
I

~ .........
~

-y (1 - y) x (1 - y)
(1-x)(1+y) y (1 + y)

yxy - (1 + y) (0 - (cx + ß + 1) x) -yx
x(1 - x) (1 + y) y(1 + y)

H
J

y(2cxy-ß) a~ 1- (ß+y+ 1)y
x(1-x)(1+y) y(1 + y)

aß (1 + y) + Byy -ßy
x(1-x)(1+y) y(1 + y)

2(1 + y) - 4xy
CX,ß,YiO 2(1-x)(1+y)

-
-xy x

x (1 - x) y (1 + y)

-E + (a+ ß+ 1)x
0x (1 - x)

-ßy n-1-(y+o+1)y
x(1 - x) y(1 + y)

tl; aß -oy
x (1 - x) y(l + y)

,

cx,ß,y,oiE 1 + Y - xy
(l-x) (1 +y)



I
1,,0
u")

I

_ y{ (1 - y) (1 - 4x) + x(1 - 2y)} _ x (1 - 2y)
x(1-4x)(l-y) y(1 - y)

_ (1 - y) {y -( 4 a + 6) x} - 2 ßxy 28x
x(1-4x)(1-y) y (1 - y)

H
3

y{ 2 (a + 1) (1 - y) - y + (a + ß + 1) y} (0.+8+1) Y-y
x(1-4x)(1-y) .y(l-y)

0. (a + 1) (1 - y) + a ßy 0.8
x(1-4x)(1-y) y (1 - y)

2
0.,8;y -y +y-x

2(1 - y) (1 - 4x)

2
2x4y - 2y

(l-y)(l-4x) T=Y

2 ßxy - (1 - y) {y - (40 + 4) x} 2ßx
x(l-y)(1-4x) y(l - y)

H
4

y{(1-y)(3a+2)- (0- (a+ß)y)} (o.+ß)y-ö
x(l-y)(l-4x) y(1 - y)

a (a + 1) (1 - y) + 0 Sy aß
x(l-y)(1-4x) y(l - y)

2
a,8;y,ö (1 - y) - 4x

2
(1 - y) (1 - 4x)



I
r­
U'1

I

y{ (1 - y) (1 - 4x) - xy} x(12x- 1)
x { (1 + 4x) (1 - y) - 2xy} (1 + 4x) (1 - y) - 2xy

- (1 - y) {1 - y + 4 (a + 1 ) x} - (2 + Ci. - 2 ß) xy x{2(1-y+4(Ci.+1)x) - (2+a-2ß)(1-4x)}
x { (1 + 4 x) (1 - y) - 2xy} Y { (1 + 4x) (1 - y) - 2xy}

HS
yJ Y - (Cl + ß + 1) Y - (30 + 2) (1 - y)_ . 2 (3 a + 2) xy - (1. :- 4x) {r - {a + 8 + 1 ) Y }
x { (1 + 4x) (1 - y) - 2xy } . y{ (1..+ 4x)· ~ 1- -y) ':"'" 2xy

a (Cl + 1 ) (1 - y) - Ci. ßy 2a(o. + 1)x- aß(1 + 4x)
x { (1 + 4x) (1 - y) - 2xy } Y { (1 + 4x) (1 - y) - 2xy }

2 2
Ci,8iY 1 + 8x - y + 16x - 36xy + 27xy

{(1 +4x)(1-y) _2y}2

y{(1 + 4x) (1 +y) - (2+y)x} x (2 + y)
x(1+4x)(1+y) y (1 + y)

- (1 + Y) {1 - ß + (40.·+ 6) x} + yxy yx
x (1 + 4x) (1 + y) Y (1 + y)

H6
y{2a("l·+ y) + (1 - Cl + (8 + Y + l)y) 0. - 1 - ( ß +y + 1 ) y

x(1+4x)(1+y)

- 0. (a + 1 ) (1 + y) + ßyy -ßy
x(1+4x){1+y) y (1 + y)

a,8,y (1 + 4x) (1 + y)2_(2 + y){1 + 4x) (1 + y)-x(2+y)}
(1 +4x)(l + y)2



2
- 4y 3x-y

(1-4x)(1+y) 1+y

yxy - {6 - (4 a + 6) x} (1 + y) yx
x(1-4x)(1+y) Y (1 + y)

_ y{ 1 + a + (ß + y + 2a + 1 )y} a-1-(6 +y+1)y
7 x(1 - 4x) (1 + y) y(1 + y)

- ßyy + a (a + 1 ) (1 + y) -ßy
x(1-4x)(1+y) Y (1 + y)

a,ß,y;6 (1 - 4x) (1 + y) 2 + 3xy (4 + y)
2(1-4x)(1+y)

"....:i.-
01 - x

-y + (Cl + ß" + 1) x x-x (x - 1 ) Y
..

- .

't'1 ßy -6 + y
x (1 - x) y

aß a-x (1 - x) y

a,ß;y,y' 1
..

" H

I
co
LO
I
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:-L- x-
1 - x y

-0 + (1 +0.+ 6+y)x -x-x (1 - x) y

-(6-y)y a - 1 - Y
1 x(1 - x) y

(a+y)6 ~
x(1 - x) y

0,6;0
1

l-x

-x ·x-
1-x y

-0 + (a + 6 + 1)x
0x (~ - x)

H2
(1 - a + y) x - ßy a - 1 - Y.

x (1 - x) y

aß + xx -y

x (1 - x) Y

y - xy + x 2
a,ß,y;o

y (1 - x)

H

'l"-

\0
I
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I
M
\0
I

x0 -
y

-0 + x
0.x

H
S

=:.t.. Cl - 1
x y

#

Cl -1-
x y

CliO 1

y(1 - 3x) x-
x(1-4x) y

2xy + (4 Cl + 6) x - y 2x-x(1-4x)
Y -

H6
(2a + 2 - Y + y) Y -y + y

x(1-4x) y

Cl (Cl + 1 + y) Cl
x(1-4x) Y

-x
CliY

1 - 4x



I...,.
1..0
I

4y
01 - 4x

-y + (1 + 4a + 2y) x 2x
x(1 - 4x) y

H7
(3cx + 2 - 0 + y) Y -0 + y

x(1-4x) y

(1 +cx+y)cx Cl-x(1-4x) y .
etiY,O 1

y(1 + 2x) 2x
x(1 + 4x) Y

8-1- (6+4a+y)x x-x(1 + 4x) y

Ha
y(1+a+y) Ci.-1-y
x(1 + 4x) y

-et(1+a)+8y -ß
x(1 + 4x)

- y

a,B -1
1 + 4x
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§§ 6.2 Normalization factors

it is important to know the normalization factors of the

equations. Since (2.4) gives the expressions of 8 and 8
x y

in terms of the coefficients, we integrate them to know 8,

up to additive constants. The followinq is the normalization

factor 28
e (up to multiplicative constants) of each Appell's

HGDE's

~ I ,
E O c. o E 1 E 1 0

x y (1-x) (1-y) (1-x-y)-

E, ::: a+ß+1-y-ß I
,

o = a+ß+ß'+2-y-y'

E;::: a+B ' +l-y'-B

E EI E E'

(F
3

): x 0y 0{1-x) 1{1_y) 1 {xy-x-y)O

E O = (1' + ß' - 2y ,

E 1 = y-cx-ß-1,

o = y-cx-a'-ß-ß I -1

E6 = cx + ß - 2y.

EI = y-a'-ß' - 11

E O Eo ' 2 0
x Y (1 - x - y) { (1 - x - y) - 4xy }

E o = -2y'

o = y + y' - (1- ß - 5/2
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§§ 6.3 Equivalence between some equations

By changing coordinates and normalization factors F3 and

H
2

are transformed into F2 , and H6 is transformed into

H). The following shows the explicit transformation. The

equations in the left hand sides have (x,y) and z as

independent variables and the unknown, and the ones in the

right hand sides have (u,v) and w as independent variables

and the unknown

F
3

(a,al,B,B 1 iY) ~ F
2

(B + BI + 1 - y,B,B' iB + 1 - a,B' + 1 - ( 1
)

(x,y) ~ (u,v) = (1/x,1/y)

f{2(a,ß,y,o;e:) -~

(x,y) ~

z ~

(x,y) ~

w = u-ßv -ß I z

F
2

(a+ß,B,y;e: ,y-ö+1)

(u,v) :;:: (x, - 1/y)

H3 (o+y,y;y- ß+ 1)

(u,v) = (-x,-1/y)

w = v-Yz
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§§ 6.4 Relati0n between F2 "and F 4

Lift the F4 to the four sheeted covering of the (u,v)-space

branching along the two lines u = 0 and v = 0 with indices

two. In terms of coordinates

u =
x 2

(x+y..... 2) v =

Looking from upstairs, the projection is the quotient rnap by

the group G(~ (Z/2Z)2) generated by

g1: (x,y) ~ -x -Y­
(1-x ' 1-x) ,

x+y=1
x=1

2
lP (x, y), 2

.lP (u,v)
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ceefficients ar~ given as fellows:

..L- x
9.. = m =1-x 1-y

(ll1+ 61+1)x-2 ß1
ß IX

1
a = x(1-x)

c = y (1-y)

b
ß1y

d
(ll1+ ß ,+1)y-2ß,

= = y ( 1-y)x (1-y)

p = °1 81 +x (1-x) 2(1-x) (x+y-2)
q = °1 61

+y (1-y) 2 •
( 1-y) (x+y- 2 )

The equation F
4

includes F2 with restricted parameters:

which are exactly those F2 invariant under G. The condition

that F 2 . i5 invariant under G (i.e. y = 28, y' = 26')

happens to be a pa~t of the condition QR for F 2 (see §§ 6.5).

Thus under the" condition QR, F4 coincides with F2 .

Note s. Nishiyama"([Nis]) studied

geometrically in detail.

§§ 6.5 Condition QR for hypergeometrie differential equations

Let us study the condition QR «4.8» for HGDE's. We first

exarnine (4.8.1) for F 2 as folIows:
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_ a+ß+1-y-ß'x _ y(2-x) + a.+ß+2-2y-y'+(y+ß')y+ (y+ßI)X
282 - 1-x x 1+x-y

( 1- R.m)
x

1- >!m

The equality (4.8.1) is

o =
2b-t

x + e
x

(1- tm)
+ 3 x

4" 1-J'-m

=

This implies

a+ 6+1-y- 6 I X
2 + y(2-x)-46
1-x x

1
o+6+2-2Y- Y '+(Y+ß ' )y+(y+ß ' )x

1-x-y

. y = 28, Y I = 2 ß I , ß + ß I = a. +
1
2·

The equality (4.8.2) produces the same condition.

For other HGDE's we make similar computations and obtain

the following result.
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HGDE QR

F 2 (a,8,B' i''(,X I
) X = 2B, Xl = 28 t , 8+.B I =0+ 1/2

F 3 (a,a' ,8,B I iX) a+ß=o'+ ß ' = 1 , Y = 3/2

F 4 (a,B i X,X ' ) y+X I =a+ ß + 1

H2 (cx,ß,y,oiE) X + 0 = 1 , E = 26, B = 0 + 1 /2

H3 (a,BiY) a= ß = 1/2, Y = 3/2

HG (a,B,y) a= ß = 0, y = 1/2

~2(a,ßiY) o + ß = 1 , Y = 3/2

H10 (ai o ) ö = a + 1

ether HGDE No parameter satisfies the condition QR

§§ 6.6 F 4 under QR

Change the normalization of F 4 by

1. .y I

2 2
z ~ x y z to get an

equation F'4 with the following coefficients:

= E-(y+yl)O +
P 2x (1-x-y)

AI
+--

4y2

2x
1-x-y

ox
y (1-x-y)

Ö

m =

c =

d = 1-x-y

= E-(y+y')ö
q 2y (1-x-y)

öy

2y
1-x-y

1-x-y

x (1-x-y)

a =

b =

F I

4

where

ö = a + ß + 1 - Y - Y I , E = 2aß _ yy t

2
A = Y - 2y A' = y' 2 - 2y I
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The condition QR is "ö = Oll. Lift the F'
4

to the double

covering of the (x,y) - space branching along the curve

(1 - x - y) 2 - 4xy = O. In terms of coordinates, perform the

coordinate transformation

x = (1 + 2u) (1 + 2v)/4, y = (1 - 2u) (1 - 2v)/4.

Looking from upstairs the projection is the quotient map under

the involution (u,v) --7 (v,u)

u=v

>
'liJ /2'li

u=co1u=-
2

1
u=-; '2

1
v=2" ~1-------7f:.....----_+_-

v=oo-i-----t----~-

1 ..
v=-­

2~1'-----1-------+--

2
lP (x,y)

Under the condition QR the equation thus obtained is

z = p(u)z, z = q(v)zuu vv

where

p(u) 2E A Al
= + +2 (1+2u)2 21-4u (1-2u)



q(v) = 2s
2

1-4v
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AI
+ +

(1-2v) 2 2
(1 +2v)

Each of which is expressed by Riemann's P-function

( 1 u(resp. 1 u(resp. v) =00

!
u(resp. v) = - "2 v) =2"

1 1 -1+/A+A I -2E:+llf+X + l1+X'"2 + 2 2

l1 1 -1-/A+A ' -2s+1"2 - 11+A - l1+X'2 2

§§ 6.7 -2 and H10 under QR

Let us define an equation ~(A/~'V) with the parameters

A,~ and \) by

t
y 2x= m :;;; -2 ( 1-x) y

1
0a = c =2 ( l-x)

b 0 d
-2= = - y

Ay + Jl A +P = q = \)
4x (1-x) 2 y .

x (l-x)

This equation has the property QR and includes both
~2

and H10 under QR as follows (using the convention in

§§ 6.3):
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2
H10 (a,1 +'C1}

- C1 -1
----ilo- ~ (-1 '-4-,0)

(x, y) ~ (u, v) = (4x,y)
ct + 1

z ~ w = u-2z

~2(a,1-a,~) ~ ~ (O,-a(1-a) ,4)

(x, y) ~ (u ,v) = (1/x,·'/y)

z ~ w = z

The equation =(A,~,V) is decomposed into two ordinary .

differential equations by the elementary change of variables.

Indeed put

1 J 1!2x-1 dx + i log (ylX)u = 2" x 1-x

1 f 1/~2X-1 dx - i log (ylX)v = 2" x 1-x

then the fundamental form

y
2 ( 1-x)

d 2 2d d 2x dy2x + x y +
y

is conformally equivalent to the form dudv.

§§ 6.8 H) and H6 under QR

We da not know whether the equations H) and H6 under QR

are decomposed into two ordinary differential equations or not.
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