
Periodicity Theorems and Conjectures in Hermitian K-theory

An appendix to the paper of R. Hazrat and N. Vavilov

Max Karoubi

The purpose of this appendix to [4], is to state some periodicity theorems and conjectures
in an algebraic context which are related to Bak’s work on the K-theory of forms [1].

Periodicity theorems in topological K-theory have already some history going back to
Bott, Atiyah and others (see [5] for a survey). As we shall see, the analog of these theorems
in a purely algebraic context uses the orthogonal or symplectic group rather than the
general linear group. From this point of view, the K-theory of forms plays an important
role.

1. Recall of basic definitions

1.1. The starting point, as in the main body of the paper [4], is a ring A with an anti-
involution a→ a and a “sign of symmetry” ε = ±1. If E is a finitely generated projective
(right) A-module, its dual E∗ is the (right) A-module consisting of additive maps f : E → A
such that f(xλ) = λf(x), where λ belongs to A. There is an obvious natural isomorphism
between E and its bidual E∗∗. Moreover, if α : E → F is an A-linear map, its transpose
tα : F ∗ → E∗ is defined in the usual way, so that the correspondence E 7→ E∗ defines
a contravariant functor. A non-degenerate ε-hermitian form is simply an isomorphism
φ : E → E∗ such that its transpose tφ : E ∼= E∗∗ → E∗ coincides with εφ. It is well known
and easy to show that an equivalent way of describing an ε-hermitian form is to give a
Z-bilinear map

Φ : E × E → A

such that Φ(xλ, yµ) = λΦ(x, y)µ and Φ(y, x) = εΦ(x, y). However, the definition of non-
degeneracy has built into it the notion of dual module.

1.2. Of particular importance are the even forms which may be written as

φ = φ0 + εtφ0

(They are the only ones considered in this appendix, except in §4). The unitary group
of (E, φ) is the group of automorphisms f of E such that φ = tf.φ.f . If φ0 is given, the
orthogonal group of (E, φ0) is the subgroup of the unitary group which elements f are such
that tf.φ0.f may be written as φ0 + v − εtv for some v. These two different groups are
called respectively Omax(E) and Omin(E) in Bak’s papers.
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1.3. An illustrative example is E = M
⊕

M∗ = H(M), called the hyperbolic module
associated to M . The map

φ0 : M
⊕

M∗ →M∗
⊕

M∗∗ ∼= M
⊕

M∗

is given by the matrix

φ0 =

(
1 0
0 0

)
The elements of the unitary group Omax(E) can be described as all block matrices

f =

(
a b
c d

)
such that f ∗f = ff ∗ = id, where f ∗ is the “adjoint” matrix given by the formula

f ∗ =

(
td εtb
εtc ta

)
.

The matrix f belongs to the orthogonal group Omin(E) if the additional assumption that
the matrices tc.a and td.b are of the type u− εtu for some u is satisfied.

1.4. The importance of the hyperbolic modules comes essentially from the following fact
(proved for instance in [7], p. 61): every quadratic or even hermitian module is a direct
summand of an hyperbolic module and therefore of H(An) for a certain n. Following again
Bak’s terminology, we shall denote by Omax

n,n (A) (respectively Omin
n,n (A)) the unitary group

(respectively the orthogonal group) associated to H(An). The stabilized versions of these
groups Omax(A) = colimOmax

n,n (A) and Omin(A) = colimOmin
n,n (A) will play an important

role in the sequel. We shall simply write them as O(A) (instead of Omax(A) or Omin(A))
for statements which apply to both situations.

1.5. The theories “max” and “min” are the same if we assume the existence of an element
λ in the centre of A such that λ+ λ = 1. To see this, it suffices to show that if µ is either
a (−ε)-hermitian form or an element of A with the property that µ = −εµ, respectively,
then either µ = η − εη∗ for some sesquilinear η or µ = η − εη for some η ∈ A, respectively.
But µ = −εµ∗ implies µ = (λ + λ)µ = λµ − λελ∗ = (λµ) − ε(λµ)∗. Similarly, µ = −εµ
implies µ = (λµ)− ε(λµ).

2. Negative KQ-groups

2.1. We define KQmax
0 (A), (respectively KQmin

0 (A)) as the Grothendieck group built out
of even hermitian modules (respectively quadratic modules) provided with the orthogonal
direct sum operation. We define KQmax

1 (A) and KQmin
1 (A) as the quotients of Omax(A)

and Omin(A), respectively, by their commutator subgroups. In his book ([1], p.190-191),
Bak proves a fundamental exact sequence relating the “max” and the “min” groups (in
fact a more general one with different form parameters), where KQ means always εKQ

KQmin
1 (A) −→ KQmax

1 (A) −→ Θ0(A) −→ KQmax
0 (A) −→ KQmin

0 (A) −→ 0.
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The group Θ0(A) has an explicit description. It is the quotient

(Γ/Λ⊗A Γ/Λ)/[a⊗ b− b⊗ a, a⊗ b− a⊗ bab],
where Γ = Γ(A) is the group of elements σ in A such that σ = εσ and Λ = Λ(A) is the
group of elements σ in A which may be written as η + εη.

2.2. The negative K and KQ-groups are usually defined using the suspension of the
ring A (see [7] for instance). In this way, we define KQ−1(A) = KQ(SA), KQ−2(A) =
KQ−1(SA) = KQ(S2A), etc. On the other hand, SA is the quotient of the cone CA of
the ring A which is “flabby” and the obvious map Θ0(CA)→ Θ0(SA) is onto. The group
Θ0(CA) fits into Bak’s exact sequence (where again KQ means εKQ)

KQmin
1 (CA) −→ KQmax

1 (CA) −→ Θ0(CA) −→ KQmax
0 (CA) −→ KQmin

0 (CA).

Since the KQ-groups of CA are reduced to 0, it follows that Θ0(CA) and hence Θ0(SA)
are also reduced to 0. This implies the following theorem:

Theorem 2.1. The obvious map

KQmin
n (A)→ KQmax

n (A)

is an isomorphism for n < 0.

2.3. These negative K and KQ-groups play an important role in the proof of the peri-
odicity theorem in Hermitian K-theory as it was emphasized in [6]. We shall sketch this
periodicity statement in the next sections.

3. The periodicity theorem in Hermitian K-theory

3.1. As a standard notation, let us call K(A) the classifying space of algebraic K-theory
(its homotopy groups are Quillen’s K-groups). We shall also call εKQ(A) the classifying
space of Hermitian K-theory whose homotopy groups are εKQn(A). Strictly speaking, in
our context, one should distinguish between the “max” and the “min” categories, in which
case we should write εKQ

max
n (A) or εKQ

min
n (A).

3.2. The forgetful functor induces a continuous map

εKQ(A)→ K(A),

whereas the hyperbolic functor induces a map backwards

−εK(A)→ KQ(A),

(note the change of symmetry of ε which is justified below). Let us call εV(A) (respectively

−εU(A)) the homotopy fibers of these maps. As it was detailed in [5, 6], the periodicity
theorem (also called the fundamental theorem in Hermitian K-theory) states that there is
a natural homotopy equivalence between the spaces εV(A) and the loop space Ω−εU(A).
However, this theorem has been proved in [6] only with the additional assumption that
there is an element λ in the centre of A such that λ+λ = 1, in which case there is no need
to distinguish between our favorite categories “max” and “min”.
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3.3. We should not list all the applications of this periodicity theorem which are detailed
in [5, 6]. We should say however that a nice consequence is an exact sequence (which is
part of a 12 terms exact sequence detailed in [6], p. 278)

k1(A) −→ −εWQ2(A) −→ −εWQ′0(A) −→ k′1(A).

Here −εWQ′0(A) is the “coWitt group”, i.e., the kernel of the forgetful functor εKQ0(A)→
K0(A). The group −εWQ2(A) is the cokernel of the hyperbolic map K2(A)→ −εKQ2(A).
Finally, k1(A) (respectively k′1(A)) is the 0 (respectively the 1st) Tate cohomology group
of Z/2 acting on the Bass group K1(A). This exact sequence has also been proved by R.
Sharpe in a wider context ([8], see also [1], p. 227).

3.4. Let us now look at the general case (i.e., we don’t assume the existence of such a λ
as in 3.2). A closer look of the proof of the periodicity theorem [6] shows that there is a
well defined map (we don’t need λ) for that):

β : εVmax(A)→ Ω−εUmin(A).

It is essentially given by a cup-product with a remarkable element u2 in −1KQ
max
2 (Z) (cf.

[6], p.273, line 5 and the reference [9] in this paper, p. 249).

Conjecture 1. The map β defined above is an homotopy equivalence.

3.5. A strategy for a proof is to define a map backwards

β′ : Ω−εUmin(A)→ εVmax(A)

following the methods in [6]. This can be done by using the ideas of Clauwens [3] about
almost symmetric forms. Hopefully, in a future paper, we shall prove that β and β′ are
homotopy equivalences mutually inverse.

3.6. Example. Let A be a field of characteristic 2. Since WQ′max
0 (A) = 0, the conjecture

implies that

coker(K2(A)→ −1KQ
min
2 (A)) =

= coker(H2([GL(A), GL(A)]; Z)→ H2([O(A), O(A)]; Z)) = 0.

Note that [O(A), O(A)] is the kernel of the homomorphism

O(A)→ KQmin
1 (A) ∼= Z/2× A∗/A∗2,

(see [7], p. 81 for instance). Moreover, if A is finite, K2(A) = 0 and A∗/A∗2 = 0, as A∗ is
of odd order, which makes the above formulas simpler.
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4. Generalization and conjectures with form parameters

4.1. The Conjecture 1 does not answer completely the periodicity problem. One would
like to have as target of β the group with the form parameter “max” instead of “min” for
instance. One way to proceed is to fully exploit form parameters as in [1]. Most of the
statements here are conjectural for the moment.

More precisely, if Λ is a form parameter, one can consider not only the category of Λ-
quadratic modules of sign ε but also the category of Λ-hermitian modules of the same sign,
as in [1], p. 31. We just put the extra condition that the hermitian form φ has the property
that φ(x, x) belongs to λ. However, it is not true anymore that any hermitian module is
a direct summand of an hyperbolic module, except if Λ = min, which is the case of even
hermitian forms.

We now follow essentially the notations of [1] in order to emphasize the role of the
form parameter Λ. For instance, we denote by εKH0(A,Λ) the Grothendieck group of the
category of ε-hermitian modules such that φ(x, x) belongs to Λ as above. In the same way,
we write εKH(A,Λ) for the classifying space of this category. We also write εVH(A,Λ) for
the homotopy fiber of the forgetful map εKH(A,Λ) → K(A), etc 1. We adopt the same
notation for the theory KQ, i.e., εKQ(A,Λ) instead of εKQ(A), etc.

4.2. If A and B are two rings with form parameters Λ and Γ, we now define an important
“cup-product”

εKH0(A,Λ)× ηKQ0(B,Γ)→ εηKQ0(A⊗B,Λ⊗ Γ).

In order to do this, we first make the following remark. Let τ0 be a sesquilinear form on
a C-module defining a quadratic form (with respect to a form parameter Σ and a sign σ)
and let us call τ the associated σ-hermitian form. Then we may write

τ0(u, v) + τ0(v, u) = τ0(u, v) + στ 0(v, u) + τ0(v, u)− στ 0(v, u),

which shows that τ0(u, v) + τ0(v, u) = τ(u, v) mod Σ.
We apply this remark to the following situation; Φ is a A−Λ hermitian form of sign ε and

Ψ0 is a B−Γ quadratic form of sign η. Then we claim that τ0 = Φ⊗Ψ0 is a A⊗B−Λ⊗Γ
quadratic form of sign σ = εη, independent of the choice of Ψ0.

First, it is clear that τ = Φ⊗Ψ (where Ψ is the η-hermitian form associated to Ψ0) is a
σ-hermitian form. Secondly, we have to show that τ0(u, u) is well defined in (A⊗B)/Λ⊗Γ,
i.e., is independent of Ψ0. For this we write u =

∑n
1 xi ⊗ yi and

τ0(u, u) =
∑
i 6=j

(Φ⊗Ψ0)[(xi ⊗ yi), (xj ⊗ yj)] +
∑
i

(Φ⊗Ψ0)[(xi ⊗ yi), (xi ⊗ yi)].

According to the previous remark, the first sum is∑
i<j

(Φ⊗Ψ0)[(xi ⊗ yi), (xj ⊗ yj)] mod Λ⊗ Γ,

1It is not clear however how to deloop these spaces. Therefore, our statements or conjectures are
considered for spaces and not for spectra.
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whereas the second sum is ∑
i

Φ(xi, xi)⊗Ψ0(yi ⊗ yi).

Since Φ(xi, xi) belongs to Λ, the last sum makes sense in Λ⊗B/Γ and therefore τ0(u, u) is
well defined in (A⊗B)/Λ⊗ Γ and is independent of Ψ0.

4.3. The cup-product defined above can be extended to the categorical level and defines
a pairing between the associated classifying spaces

εKH(A,Λ)× ηKQ(B,Γ) −→ εηKQ(A⊗B,Λ⊗ Γ).

An important example for us is B = Z, Γ = max and η = −1. Then the same method as
in [6] enables us to define a map (note the intertwining between hermitian and quadratic
modules: The theory V is hermitian, whereas the theory U is quadratic)

β : εVH(A,Λ)→ Ω−εUQ(A,Λ).

Our second conjecture can now be stated as follows:

Conjecture 2. The map β defined above is an homotopy equivalence.

4.4. We remark first that this conjecture implies the previous one for Λ = min, since

εVH(A,min) is just εVmax(A), whereas −εUQ(A,min) is −εUmin(A), with our previous no-
tations in 3.4.

Secondly, we remark that a consequence of Conjecture 2 is proved in the book of Bak[1],
p. 277, Lemma 11.30, and is related to the results of R. Sharpe [8] (for Λ = min), already
quoted in 3.3 (with less generality).

Finally, this conjecture seems related to the results of Barge and Lannes [2] for A a
commutative ring and Λ = max (at least for lower homotopy groups).

For the moment this second conjecture is widely open, although, as we mentioned, some
evidence may be found in [8, 1] and [2].
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