Periodicity Theorems and Conjectures in Hermitian K-theory

AN APPENDIX TO THE PAPER OF R. HAZRAT AND N. VAVILOV

Max KAROUBI

The purpose of this appendix to [1], is to state some periodicity theorems and conjectures
in an algebraic context which are related to Bak’s work on the K-theory of forms [1].

Periodicity theorems in topological K-theory have already some history going back to
Bott, Atiyah and others (see [5] for a survey). As we shall see, the analog of these theorems
in a purely algebraic context uses the orthogonal or symplectic group rather than the
general linear group. From this point of view, the K-theory of forms plays an important
role.

1. RECALL OF BASIC DEFINITIONS

1.1. The starting point, as in the main body of the paper [1], is a ring A with an anti-
involution @ — @ and a “sign of symmetry” ¢ = +1. If E is a finitely generated projective
(right) A-module, its dual E* is the (right) A-module consisting of additive maps f : E — A
such that f(x\) = Af(z), where X belongs to A. There is an obvious natural isomorphism
between E and its bidual E**. Moreover, if o : £ — F is an A-linear map, its transpose
ta : F* — E* is defined in the usual way, so that the correspondence E +— E* defines
a contravariant functor. A non-degenerate e-hermitian form is simply an isomorphism
¢ : E — E* such that its transpose ‘¢ : E = E** — E* coincides with £¢. It is well known
and easy to show that an equivalent way of describing an e-hermitian form is to give a
Z-bilinear map

. ExE— A

such that ®(x), yu) = A®(z,y)u and ®(y, ) = e®(x,y). However, the definition of non-
degeneracy has built into it the notion of dual module.

1.2.  Of particular importance are the even forms which may be written as

¢ = o + £ o

(They are the only ones considered in this appendix, except in §4). The wunitary group
of (E, ) is the group of automorphisms f of E such that ¢ = 'f.¢.f. If ¢ is given, the
orthogonal group of (E, ¢g) is the subgroup of the unitary group which elements f are such
that 'f.¢o.f may be written as ¢y + v — 'v for some v. These two different groups are
called respectively O™ (E) and O™"(E) in Bak’s papers.
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1.3.  An illustrative example is £ = M @ M* = H(M), called the hyperbolic module
associated to M. The map

¢o: MEP M — M P M= MEP M

10
The elements of the unitary group O™*(FE) can be described as all block matrices
a b
(%)
such that f*f = ff* =1id, where f* is the “adjoint” matrix given by the formula
. td &b
I = ( gle ta ) '

The matrix f belongs to the orthogonal group O™"(E) if the additional assumption that
the matrices ‘c.a and *d.b are of the type u — c'u for some u is satisfied.

is given by the matrix

1.4.  The importance of the hyperbolic modules comes essentially from the following fact
(proved for instance in [7], p. 61): every quadratic or even hermitian module is a direct
summand of an hyperbolic module and therefore of H(A") for a certain n. Following again
Bak’s terminology, we shall denote by Ow2*(A) (respectively O5»'(A)) the unitary group
(respectively the orthogonal group) associated to H(A™). The stabilized versions of these
groups O™(A) = colim OF#*(A) and O™"(A) = colim Oy (A) will play an important
role in the sequel. We shall simply write them as O(A) (instead of O™ (A) or O™n(A))
for statements which apply to both situations.

1.5.  The theories “max” and “min” are the same if we assume the existence of an element
A in the centre of A such that A + X = 1. To see this, it suffices to show that if y is either
a (—¢)-hermitian form or an element of A with the property that u = —ef, respectively,
then either p = n — en* for some sesquilinear 7 or = n — en for some n € A, respectively.
But p = —ep* implies g = (A + AN = A — AeX* = (M) — e(Ap)*. Similarly, u = —efi
implies = (M) — e(A).

2. NEGATIVE K(@Q-GROUPS

2.1.  We define KQF**(A), (respectively KQm"(A)) as the Grothendieck group built out
of even hermitian modules (respectively quadratic modules) provided with the orthogonal
direct sum operation. We define KQ*(A) and KQT"(A) as the quotients of O™ (A)
and O™(A), respectively, by their commutator subgroups. In his book ([!], p.190-191),
Bak proves a fundamental exact sequence relating the “max” and the “min” groups (in
fact a more general one with different form parameters), where K@) means always . KQ

KQ™(A) — KQ™(A) — 6y(A) — KQg™(4) — KQg™(4) — 0.



The group Oy(A) has an explicit description. It is the quotient

(T/A@aT/A)/[a®@b—-bRa,a®b— a® bab),

where I' = T'(A) is the group of elements o in A such that @ = eo and A = A(A) is the
group of elements ¢ in A which may be written as 1 + 7.

2.2. The negative K and KQ@Q-groups are usually defined using the suspension of the
ring A (see [7] for instance). In this way, we define KQ_;(A4) = KQ(SA), KQ_2(A) =
KQ_1(SA) = KQ(S?A), etc. On the other hand, SA is the quotient of the cone C'A of
the ring A which is “flabby” and the obvious map ©(CA) — ©y(SA) is onto. The group
©p(C'A) fits into Bak’s exact sequence (where again K () means . K(Q))

KQM(CA) — KQM™(CA) — 0¢(CA) — KQM™(CA) — KQM™(CA).

Since the KQ-groups of C'A are reduced to 0, it follows that ©(C'A) and hence ©¢(SA)
are also reduced to 0. This implies the following theorem:

Theorem 2.1. The obvious map
KEQy™(A) — KQu™(4)
1s an isomorphism for n < 0.

2.3. These negative K and K(@Q-groups play an important role in the proof of the peri-
odicity theorem in Hermitian K-theory as it was emphasized in [6]. We shall sketch this
periodicity statement in the next sections.

3. THE PERIODICITY THEOREM IN HERMITIAN K-THEORY

3.1. As a standard notation, let us call C(A) the classifying space of algebraic K-theory
(its homotopy groups are Quillen’s K-groups). We shall also call .KLQ(A) the classifying
space of Hermitian K-theory whose homotopy groups are . KQ,(A). Strictly speaking, in
our context, one should distinguish between the “max” and the “min” categories, in which
case we should write . KQ™*>(A) or . KQ™"(A).

3.2.  The forgetful functor induces a continuous map
KQ(A) — K(A),

whereas the hyperbolic functor induces a map backwards
—K(A) = KQ(A),

(note the change of symmetry of € which is justified below). Let us call .V(A) (respectively
_:U(A)) the homotopy fibers of these maps. As it was detailed in [5, 0], the periodicity
theorem (also called the fundamental theorem in Hermitian K-theory) states that there is
a natural homotopy equivalence between the spaces .V(A) and the loop space Q_.U(A).
However, this theorem has been proved in [(] only with the additional assumption that
there is an element \ in the centre of A such that A+ X = 1, in which case there is no need
to distinguish between our favorite categories “max” and “min”.
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3.3. We should not list all the applications of this periodicity theorem which are detailed
in [5, 6]. We should say however that a nice consequence is an exact sequence (which is
part of a 12 terms exact sequence detailed in [0], p. 278)

ki (A) — —WQy(A) — - WQ(A) — ki (A).

Here _.WQ((A) is the “coWitt group”, i.e., the kernel of the forgetful functor . KQo(A) —
Ky(A). The group _.WQ2(A) is the cokernel of the hyperbolic map Ky(A) — _.KQ2(A).
Finally, ki (A) (respectively kj(A)) is the 0 (respectively the 1st) Tate cohomology group
of Z/2 acting on the Bass group K;(A). This exact sequence has also been proved by R.
Sharpe in a wider context ([%], see also [1], p. 227).

3.4. Let us now look at the general case (i.e., we don’t assume the existence of such a A
as in 3.2). A closer look of the proof of the periodicity theorem [0] shows that there is a
well defined map (we don’t need \) for that):

B VME(A) — Q_ U™ (A).

It is essentially given by a cup-product with a remarkable element us in _; KQ5**(Z) (cf.
[6], p.273, line 5 and the reference [9] in this paper, p. 249).

Conjecture 1. The map [ defined above is an homotopy equivalence.
3.5. A strategy for a proof is to define a map backwards
/8/ . Qisumin(A) N Evmax(A)

following the methods in [6]. This can be done by using the ideas of Clauwens [3] about
almost symmetric forms. Hopefully, in a future paper, we shall prove that g and (3 are
homotopy equivalences mutually inverse.

3.6. Example. Let A be a field of characteristic 2. Since WQ{™*(A) = 0, the conjecture
implies that

coker(Ky(A) — 1 KQY™(A)) =
= coker(Hy((GL(A), GL(A)}; Z) — Hy([0(A), O(A); Z)) = 0.

Note that [O(A), O(A)] is the kernel of the homomorphism
O(A) — KQ"™(A) = Z/2 x A*/A™,

(see [7], p. 81 for instance). Moreover, if A is finite, K5(A) = 0 and A*/A*? =0, as A* is
of odd order, which makes the above formulas simpler.



4. GENERALIZATION AND CONJECTURES WITH FORM PARAMETERS

4.1. The Conjecture 1 does not answer completely the periodicity problem. One would
like to have as target of 3 the group with the form parameter “max” instead of “min” for
instance. One way to proceed is to fully exploit form parameters as in [I]. Most of the
statements here are conjectural for the moment.

More precisely, if A is a form parameter, one can consider not only the category of A-
quadratic modules of sign € but also the category of A-hermitian modules of the same sign,
as in [1], p. 31. We just put the extra condition that the hermitian form ¢ has the property
that ¢(x,z) belongs to A\. However, it is not true anymore that any hermitian module is
a direct summand of an hyperbolic module, except if A = min, which is the case of even
hermitian forms.

We now follow essentially the notations of [I] in order to emphasize the role of the
form parameter A. For instance, we denote by .K Hy(A, A) the Grothendieck group of the
category of e-hermitian modules such that ¢(x, z) belongs to A as above. In the same way,
we write KH (A, A) for the classifying space of this category. We also write ;VH(A, A) for
the homotopy fiber of the forgetful map KH(A,A) — K(A), etc '. We adopt the same
notation for the theory K@, i.e., .KQ(A, A) instead of . KQ(A), etc.

4.2. If A and B are two rings with form parameters A and I'; we now define an important
“cup-product”

K Hy(A,A) x yKQo(B,T) — ., KQo(A® B,A®T).

In order to do this, we first make the following remark. Let 7y be a sesquilinear form on
a C-module defining a quadratic form (with respect to a form parameter ¥ and a sign o)
and let us call 7 the associated o-hermitian form. Then we may write

TO(“) ?)) + 7_O(Ua u) = TO(ua U) + 0-?0(”7 U) + 7—O(Ua U) - O-?O(Ua u)7

which shows that 7o(u, v) + 70(v, u) = 7(u,v) mod X.

We apply this remark to the following situation; ® is a A— A hermitian form of sign € and
Vg is a B —TI' quadratic form of sign n. Then we claim that 7o = P Vyisa A B—A®D
quadratic form of sign o = en, independent of the choice of ¥y.

First, it is clear that 7 = ® @ U (where U is the n-hermitian form associated to Wy) is a
o-hermitian form. Secondly, we have to show that 7(u, u) is well defined in (A® B)/A®T,
i.e., is independent of W,. For this we write u = )} z; ® y; and

To(u,u) = Y (P @ Wo)[(x: @ i), (5 @ )] + Y (P & Wo)[(2: @ i), (w3 © )],
i#j i
According to the previous remark, the first sum is
i<j

1t is not clear however how to deloop these spaces. Therefore, our statements or conjectures are
considered for spaces and not for spectra.
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whereas the second sum is
Z O (24, 2) @ Uoly; @ ;).

Since ®(x;, x;) belongs to A, the last sum makes sense in A ® B/T" and therefore 7o(u, u) is
well defined in (A® B)/A ® T and is independent of Wy.

4.3. The cup-product defined above can be extended to the categorical level and defines
a pairing between the associated classifying spaces

KH(AA) x ,KQ(B,T) — ,KQA® B,A®T).

An important example for us is B = Z, I' = max and n = —1. Then the same method as
in [6] enables us to define a map (note the intertwining between hermitian and quadratic
modules: The theory V is hermitian, whereas the theory U is quadratic)

B VH(AAN) — Q_UQ(AN).
Our second conjecture can now be stated as follows:
Conjecture 2. The map [ defined above is an homotopy equivalence.

4.4. We remark first that this conjecture implies the previous one for A = min, since
VH(A, min) is just . V™*(A), whereas _.UQ(A, min) is _U™"(A), with our previous no-
tations in 3.4.

Secondly, we remark that a consequence of Conjecture 2 is proved in the book of Bak[1],
p. 277, Lemma 11.30, and is related to the results of R. Sharpe [8] (for A = min), already
quoted in 3.3 (with less generality).

Finally, this conjecture seems related to the results of Barge and Lannes [2] for A a
commutative ring and A = max (at least for lower homotopy groups).

For the moment this second conjecture is widely open, although, as we mentioned, some
evidence may be found in [3, 1] and [2].
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