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LOWER ESTIMATES FOR THE SUPREMUM
OF SOME RANDOM PROCESSES

B. KASHIN AND L. TZAFRIRI*

In this paper we consider random processes of the type

Y &it)ei(@),

j=1

where {{;}7_; is a system of independent random variables on a probability space
(T,7,7) and & = {99_5}3’:1 is a system of functions in an Lo(X, T, i) -space with
(X, X, 1) being another probability space.

Many problems in functional analysis and probability theory lead to the inves-
tigation of the expectation (relative to 7)

Efl D &0ei(2) lLam - (1)

J=1

A well-known result of this type having many applications is the estimate

E | S rj(t)e* 5 {1, < Cln log n)'/2, (2)
i=1

( with {r;(t)}$2, being the usual Rademacher variables), first formulated in an
explicit manner by R. Salem and A. Zygmund [7]. In the same paper {7], it was
shown that the estimate (2) is exact in the sense that

k13
E |l Y ri)e*™ 5 (1> ofn log n)'/2,
j=1

i
for all n and some constant ¢ > 0.
A similar question was considered for stationary Gaussian processes while trying

to find necessary and sufficient conditions for the continuity a.s. of the trajectory
of processes of the type

m .
Z aj’)rj(t)ezm-m,

j=1

*This work was performed while both authors visited the Max-Planck-Institute in Bonn, Germany.
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with ¢; € Rfor all j, and {;}32, being a system of independent Gaussian variables
satisfying Ey; = 0 and E|y;|? = 1, for all j (cf. X. Fernique [2]).

The behaviour of the expression (1) in the case when {¢;} is a system of char-
acters of a locally compact abelian group G restricted to a compact symmetric
neighbourhood V of the identity element O € G was considered in papers of Mar-
cus, Pisier, Talagrand and others. A detailed presentation of this topic can be
found in the books [5] and [4]. The approach to obtain lower estimates used in [5]
and [4] is based on the comparison of the expectation (1) with the quantity

E | Z’Yj(t)%(i') Leo ()3 (3)
=1

which in turn is estimated by using variants of Slepian’s lemma. This lemma enables
us to estimate from below expressions of the form

it

E max IIFHET

121-‘5\,,,’;”( Jes(ze)l,
J:

and thus also the expression (3), provided that the points {zx}7., are chosen in V

in such a manner so that the vectors

I'[/'__L,k ES (c,pl(:t:k),cpg(.’b'k), e ,(,0,,(:1:5-)) < Cn,

k=1,2,...,m, are far away from each other in the euclidean metric in C". In this
way, the lower estimate of (3) is controlled by the e -entropy in the €} -metric of
the set ['s = {W.}zev. The realization of the above program is not trivial even in
relatively simple cases.

The method used in the present paper relies instead on a sharper version (with
precise estimates of the error term) of the central limit theorem for sequences of
independent vectors in R?. Our approach is, in some sense, a return to the original
method of R. Salem and A. Zygmund [7] though their method cannot be applied
directly in this case. The argument described below is not limited in use for the
theorem proved in the sequel but can be applied also to more general situations (
see also the remarks at the end of the paper). The lower estimate of (1) is connected
with a special selection of points {w }PL | in X which maximizes some energy type
functions. In the case considered in the paper, the main role of the selection is to
ensure that the average

m

1 .
n? Z P < Wy, Wy > |2
C k=1

is relatively small, which is much easier than guaranteeing the condition appearing
in the entropy estimate of I'¢ that all the scalar products (W, , Wy,), k # (£, are
small in absolute value.



Theorem. For every M < oo there ezists a constant ¢ = ¢(M) > 0 such that,
whenever {p;}, is a system of functions i an Lo(jt) -space satisfying:

L I @i llzan=1 and || i iy < M, for all i,

2° || iy @ipi | L < M lai®)V?, for all {ai},,

and {&;}2, are independent random. variables over a probability space (T, 7T, 1)
with

3° E(&) =0, El&|2 =1 and (B|&1P)Y3 < M, for all i,

then

EllY €l cln log n)'/?

=1
The proof consists of several steps.

Step I. For € > 0 consider the set

Elw{m—Zm I < M /e}

and notice that, by our assumption,

A M3n . 4 5
w(ET) < E loi()|°dpy < Mn
€
i=1

i.e.
p(EY) <e
so that
(E]) 1—c¢
Next notice that if
o) = L3 oifa)?
" i=1 1

then || ¢ || z,(n=1 and

L3/2(f‘ / Z |(P I 3/2(3‘[1 2/3 Z ” Pi ”Lq(u)—

Consider the set

I »

By = {z:p(z) > )



and observe that

f ple)dp < 7
o
SO
3
15 [0 < laapatn wE) < MPu(B)'
E2
le.
w(Eq) > (3/4 M*).
Now put
42
By ={z € By p(e) < 2(——)"}
and notice that
4M*?
2 B~ w(E) < [ o) <1
Es~Es
from which it follows that
1
p(Es) 2 3(3/4M2)3-

The final conclusion is that if e = 3(3/4M?%)* then the corresponding set E =
Ey N Ej has the following properties:

(i) w(B) 2 (M) = 3(537z)" >0
(i) € E= L30  Jei(e)]® < 2200

(iii) 2 € E = ¢(z) = L T |pi(=)|* satisfies

n

1 4M*?
7 <wle) <y(M)=2(

)3
Step II. Change of density. Consider the measure v defined by:

v Ee(x)dpu

dv = ,\’E(:n)(«p(m)/.t(E')//cp(u)(ly,)d;.t
E
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and notice that v s a probability measure on the same measure space as u so that

if

en(z) 3 z€E"

, 1<h<n
Pa(e) =
) [ eldufolan(EY? ;o E
E
then
(1) || ¥i l|na(y=1, for all ,
(i) | i aithi hram=Il Zisy @i o< MEZL, |al?)V2, for all {ai}i,
(i) $(e) = 4 Tioy 9i0)P = [o(w)du/u(E) = K, € B,
where
1/4 < K% < y(M),
(iv) L0, (o) < B(M) = 105M'%, 5 € E.
Finally, notice that for € E and t € T,
|Z€z i(a |<5A13|ZE wi(z)|
so that
Ej ZE D)XE || Lo ()< BME | ZE: ) N Lo () -

=1

Hence, it suffices to prove our assertion for the system {¢;}!_, on the set E, intro-
duced above.

Step III. There exist points {z;}_, in E so that

M?*n
?'12 Z |Z¢1 ’LJ '1b1 T"Ik = a( /[)2‘

J k=1 1=1

Moreover, one can assume without loss of generality that {z;}7_, are points of
approximative continuity for all the functions {%;}!_,. Indeed, notice that
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n

|Z'¢i($j)¢i(-'b'k)|2du(m] ). dv(z,) <

i=1

E

£ k=1
1
)n) 2 Z //|Z¢ (z;)i(zp) P dv(zj)dv(zr) <
- _L Z /Z’"’(T P dv(zi) < Min _ M'n < Mn
S WEm i) S o T U(E? T p(EE T a(M)?

which of course completes the argument.

Step IV. For z € E and p > 0 fixed, put

z)={te€ T,Zfi(t)z,b,-(w) > py/n logn}.
=1
Our aim is to show that, for some p = p(M), n 2 no(M) and d = d(M) > 0, we

have that

(*) (| Bolz;)) > d.

Then, for ¢ € U;;l E,(x;) and n 2 ng,

I Z‘f: 2)XE(Z) Loy pV/1 logn

so that

E”Zf Wilz)xe(®) | Lo w)= pdy/n logn,

thus proving the assertion for n > ng, by using the observation made at the end of
Step II. The extension to all n is immediate.

Step V. Put f(t) = 3°5_| XE,(z;)(t); t € T, and observe that if (-, E,(z;)) <
d, for some d > 0, then by the Cauchy-Schwartz inequality,
Elﬂ < ]E|f|2 1/2 . U E ]/2 < dl/?(]E!fl )1/9
which means that the assertion
(**) E|f| > d'/*(E|f[*)"/*

G



implies (*). So now we shall find a d = d(M) > 0 for which (**) holds.
1

Step VI In order to estimate E|f| and (E|f|?)!/2, we shall use a sharper version
of the one and two-dimensional central linit theorem containing an estimate of
the error term. Among many results of this type exposed in the book of R.N.
Bhattacharya and R. Ranga Rao [1], we shall use the following one due to V.
Rotar’ [6] (see Corollary 17.2 in [1]).

Proposition 1. There ezists a constant Cy = Ci(m) < oo so that, whencver
{X:}h_| are independent random vectors in R™ for which B(X;) = 0; 1 < i < h,
then

sup{Qa(A) — Bo,v(A)] < CLh™ "2 pA73/2,
A€l

where C denotes the class of all Borel measurable convez sets in R™,

h
=h"! ZIE | X: ]| r>1
=1

X is the smallest eigenvalue of the matriz V. = h™! ZLI cov(X;) (recall that if

Xi=Xiy, ..., Xim);1=1,2,... ,h, then cov(X;) = (E(X; ¢ 'Xi,j))?:j=1)1 Qr(A)

18 the probability of the event that (X + ... +Xh)/h.]/2 belongs to to conver set A
and, finally, ®o v denotes the normal distribution whose density function is

wov(Y) = (2m)" ™% (det V)~ '/29\p{——(1 VIV, Y e R™.

The first application of the proposition above is done in the one-dimensional
case, when, for fixed 1 < 5 < n, we put

Xi(t) = &()i(z;); 1 <i<n, teT
Then, it is easily verified that

ng,. i) < MB(M),
cov(X;) = IE|§ (O [i()|* = i)
and
V=n"" i (e ))F = K2

It follows that

Ir(By(z;)) — (2m) /21~ f cap {—y? 2K} dy| <
og n
< CMPB(MYEK 30~ < B'(M)n =12,
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for some new constant /(M) < oco.

For functions ¢; and g¢; of a parameter {, we shall use the expression ¢; < ¢y,
whenever there exists a universal constant 0 < € < oo such that

C™ ' g1(¢) € g2(¢) < C i (0),

for all values of ¢ in the domain under consideration, and g, < ¢; if only the right
hand side inequality above is true. With this notation, it is well known that

/ exp(—y*/2)dy < (" eap(—C?/2); (> 1.
¢

Hence,

o0 T poo
/\/l_e"’p(_yz/ﬂ\’?) dy = Ik /I 1 exp (—w? /2)dw =
pyvilog n =1p 1_og -
IK? ; I-"Z )
= &— 333'}3{—{)2 IOg 7?-/2.[{2} = \—7?'_'02/21\2.

pv/logn pv/log n

Therefore, if we choose p < % then

2

2L

Hence, the error term, which is < #/(M)n~"/?  can be neglected relative to the
term

<

D] =

= o]
(2#)_1/21{_1/ exp{—y?/2K*} dy.
p/log n

The outcome of these considerations is that, for all 1 < 57 < n,

= 2 joy 12 K2p=r*/2h°
p/Tog n :

which implies that the function f introduced in Step V satisfies

n K2 1—p?/2K*

i=

Also

=1 5, k=1
J#k
=Elf|+ Y T(E,(x;) N Ey(z1))
j k=1
JFEk



Therefore, if we will prove the existence of a constant D = D(M) < oo so that (
for some p = p(M) < 1/2),

n

(***) Y m(Bp(w;) N Ep(wx)) < D(E|f])?
J, k=1
i#k

then, since E|f| < (E|f|)? (as a consequence of the fact that E|f]| is large), it would
follow that

E|f|* < (1 + D)(EIf])?,
thus proving condition (**) and the theorem.

Step VII. In order to prove (***), we divide the set of all pairs (j,k) with 1 < j #
k < n into two sets:

or={(7,k);1<j#k<n, I—Zsb zj)i(er)| < 1/8}
and o2 = of. By Step III, we conclude that

loz| < 64 M*n/a(M)?

so that

Y T(Bp(x;) N Epfax)) < Iazlllgl;gnf(Ep(mj)) <
(jvk)eaﬁ
nl—p?/2K? MPE|f| _ M*(E|f])*

M2 :
«M a(M)2p/logn — K?2a(M)? — K2a(M)?

Next we consider the pairs (7, k) € o1. To thisend, we fix such a pair s = (7,k) € o1,
and consider the random vectors in R? defined by

X7 () = (G(#)di(z;), &G(typi(ze)); 1 <i<n,teT.

In the case, it 1s readily verified that

ZEI& B1il )2 + ilor) )2 <

P+ Ri(en)P)Y? < 8MPB(M).

=1
Since E|¢;)? = 1; 1 €7 < n, it follows that
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[hi(z) 2 il )i(en)
cov (X]) =
ile;)hi(er) i)

and
( K* Iy ¢.~(wj)¢,-(a:k))
Ve =
L e il )i(we) K2
Hence,
1 1 1
S (L NORRWS 2o
detV® = I nﬂ;%(%)%(u)l > 53
and

trace V* = 2K? < 24(M)

Denote the eigenvalues of V' by A; and A, and suppose that 0 < Ay < Ag. Then, on
one hand, Ay + Ay < trace V? < 29(M) which yields that Ay < 2v(Ad). Therefore,
since det V¥ = Ay Ay, we get that

1
E S /\] . A'z = 27(1\1)/\]

By using the estimate described in Step VI, it follows that

7 (Bp(x;) 0 Epfar)) — (2m) " (det V)~ / / exp{—= (Y, (V) Y)}dY] <
plog n Jp\/flog n “

< C 22 MPB(M)y(M) ™32~ = Cyn /2,

for some constant C; = C2(M) < co. Hence,

. 11 [ oo 1
r(By(2;) 0 By(wr)) < Can™'/* + —/ ] exp {—5(Y,(V*)"'Y)}dY,
m pTog n Jp\/og n =

which yields that, for some new constant C3 = C3(M) < oo,

s ]

& 1,.. . .
T(Ep(z;) N Ep(zr)) < Cs (77."]/2 + ] / err:p{——g()’, (Vo) 'y )}dY) :
p pvlog n <

Viog n
Thus,

T T; Ty 3 | n/? ~ - eTp —lﬂ (VHYTIY)Y .
S (Byla)NE k))sca( +/\A__/W_(Z p{-(¥, (V") Y>}w)

s=(i.k)€an €

10



Since

n

(EIf1)? = D 7(Epl2)) - T(By(x))

5k=1

it is only natural to compare the expression 3 o, T(Ep(2;)NE,(2x)) with - o 7(E,(z;))-
7(E,(zx)). Notice that

1
ETP {- 5LE (yi+v3) by dya+6,

s€m

S T(Ep(w)) m(Bplan)) w\/

€0y p/log n

where |§] € Cyn~=1/2, for some constant Cy = C4(M) < co. In order to compare
these two expressions, observe first that

1 K — & oy Yile)Pi(ee)

h /8 n ’
det _111_21,=1¢,-($j)¢i(-"3k) K

(V)= =
so if we introduce the notation

W, = %Z'z/n(m,)w (xx)

then
W,
o= |
W, 1
Ki-W2 N2 1;; Z

which yields that

Y 7(Eo(25) N Ey(ar)) < Ca(n®/*+

8Coy

1 yiye W,
+/ [ 8.'!5]){——.(.], + J2) + —}dyl dys.
plog n Jp/Tog n sgl 2(_[\—2 — %’52-) - I‘Vf

Fix s = (7,k) € oy, put a, = m and by = ATT‘IW and notice that, by the

definition of oy,

1
2> b= ———
> = b = T 2 1AM
It follows that, with L = L(M) > 16y(M),

11



o0 00 a
/ / exp{—— (Ui +¥2) + ba y1v2 bdyrdys <
Lpvlog n Jp/log n =

= ) o0
8 _bs
< / / e-’fsp{—(i9———)(912 +y3) by dy <
L

pViog n Jp\log =
1 (as o) 241 ] gﬂ';_b"l(lfz'{'l)PQ
~ Lp?log n cop {5 (L7 + 1)p’log n} = Lp?log n

However, the choice of L ensures that, for large n,
2’?._&,;_!:,_)([’2_*_1)‘02 < n—pQ/I\'Q
and thus that

Z T(Ep(z;) N Ey(zi)) <

SEU]

2/ \ LpTog . pLpylogn
< G + (BN + [ / eap (= (0 +13) + by yaya ),
Pm P\/]m SEo)

for some constant Cs = Cs(M) < oo.

Step VIII. In order to estimate the double integral above and to complete the proof
of the theorem, it is enough to show that, for some constant C = C(A) and for any

pair (y1,y2) with pylog n < y1, 12 < Lpyiog n, the following (pointwise) estimate
holds:

—a,
Y= ewp{—(0F +u8) + by} <

'460’1
—Wi+vi), _ - yi + v
<C Z exp{ ‘)lI = 22} = C|cr||e:1:p{—(—i2f2—‘—?-)}.
360’1

For this purpose set

Sp={s€0: 27" < |W,| <271} 4<r <0

and observe that

r=4

Moreover, the selection of the points done in Step IIT implies that

12



12

rd a(M)?’
lLe.
nM?
8| <min [ n?, 22" ———
161 < ( a(M)? )’
for r =4,5,-.-. Also notice that, for any s € §, and yy,y2 > 0,

lag (y2 + y2) — 2bsyrys — K72yt +y2)| =

(Wo/I)* (yi +93) = 2Woy1ya
K= W? =

< 220272 (y? 4 y2y + 27y 0] < G277 (yE + yl),

for some constant Cg < co. Hence,

ecp{——(Jl +y3) + bsym}/e%p{—ﬂ (i +93)} <

< exp{Ce2™ Jl + Jz)} < nc‘*rr+IL2 :

provided |y |, ly2| < Lpv/log n. From the last inequality, taking into account that
nCe2” L < O C7: (M) if r > log, log, n, we get that

log, log, n

YosCr| X T o] ) x

r=4
X ex {———1 y?2 + N <
ep =gz W + )} <

4 1 y
< Crexp {—W(Elf +y3)}(lou )+

log,log, n

2
Cs £-r+1L2 2 . ‘)21_ nM'
* Z =T

The last thing that we have to check is that for p = p(M) > 0 small enough,

log, loga n 2
Z "6'32_"'“ szn . 2 . ﬂﬁf <
o2(M)
r=4

Cg 10'1|

13



for some constant Cs = Cg(M). This completes the proof of the theorem. O

Remarks. 1. The comparison of the L, and L;-norms, considered in the Step
V of the proof above, has already been used in [7] and recently also in [3], in
order to estimate the minunum on the unit circle of the absolute value of random
polynomials with coefficients equal to 1.

2. As a generalization of the result mentioned as a remark in [7] p. 282, we can
obtain the following proposition, by using essentially the same method as above.

Proposition 2. With {&}, and {v:}', as in the statement of the Theorem,

i=1

0 <o <1/2, Z as arbitrary subset of X of measure u(Z) > n™7 and

1 ) 1< )
— Y i@ 2 K> 0, =3 foi(e)* < Ko, w € Z,

=1 =1

then

E| ) s

=1

where ¢’ = (o, M, K|, 3) > 0.

Le(Zw2 € (n log 71)1/2,

Let us add that condition 2 in the statement of the Theorem above can be also
weakened by replacing M with n?, 0 < o < 1/2.

3. The condition of boundedness in the L3 -norm for both {&;}iL, and {¢;}, in

the statement of the Theorem can be replaced by the weaker condition of uniform
boundedness in some L, -space, p > 2. The proof remains the same except that
instead of Proposition 1 one must use Corollary 18.3 from [1].
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