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Abstract

We consider the problem of Lech, whether for a local deformation
(A,m) — (B,n) of a local singularity Bo = B/mB the inequality
eo(A) < eo(B) between the multiplicities is true, and give a positive an-
swer in the case By corresponds to a point of the Hilbert scheme (with
respect to some formal embedding), having regular reduction and being
Cohen-Macaulay itself.
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greatfully acknowledged by the author. Personally he would like to thank B. Her-
zog (Stockholm) for an introduction to that kind of problems and L. Géttsche
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Introduction

In 1959 C. Lech [Le 59] stated the problem whether the multiplicities of local
rings (A,m) and (B,n) being base, respectively total space, of a deformation
(A,m) — (B,n) of a local ring B, = B/mB satisfy the inequality

eo(A) < eo(B). (1)

Note that the only condition on such a homomorphism to be a deformation is its
flatness.
A generalization of this is the analogous inequality

HiY < Hj (2)

between sum transforms of the Hilbert series (d denotes the dimension of the
fiber By ). Here a sum transform is defined by

Hy:=(1-T)7 Hj,
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where HY is the usual Hilbert series

o0
Hy =) dima/m m'fm!* . T,

=0

The inequality between two formal power series H = Y52, H(I) - T' and
H' = Y2, H'(I) - T' is always to be understood in its total sense, i.e.

H(l) < H'(I)

for all {.

In 1970 H. Hironaka [Hi 70] asked whether inequality (2) is always true with
1+ = 1, since that would simplify his proof of the existence of a resolution of
singularities in characteristic zero [Hi 64].

Unfortunately, this paper does not deal with that problem, but only with the
inequality (1) between the multiplicities.

But also this inequality is established in very few cases, only. The most
interesting result in that direction is due to Lech himself. It says that

Hy < Hp

in the case, that the special fiber By is a zero dimensional complete intersection
[Le 64]. B. Herzog generalized this to the situation that By corresponds to a
regular point of the Hilbert scheme [He 90]. This includes all complete intersec-
tions (well known) and all singularities with an embedding dimension less than 3
(That is a result due to Hartshorne, but may be found in [Fo), see also [Gra].).
Further, Larfeldt and Lech [LL] (see also [Le 64] for one direction) showed
that the general problem (1) of Lech is equivalent to the following statement:
For every local ring A and every coheight one prime P in A the inequality

eo(Ap) < €0 A) 3)

is true.

This one, its immediate corollaries and the analogous inequalities for Hilbert
series are usually referred as Bennett’s inequality. Note that these problems can
not be easy, since they generalize, at least in the Hilbert series version

H}, < HY,
Serre’s result [Se], that the localization of a regular local ring by a prime ideal is
again regular. They are solved in the case A is excellent (cf. Lemma 1.7 below),
but that does not imply anything for Lech’s problem, even for excellent rings!

We note, that there is also a completely different approach to the Lech- Hiron-
aka problem. One can consider singularities with tangentially flat deformations
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only as in [He 91). A generalization of that may be found in the doctoral thesis
of the author [J].

In this paper we will follow the philosophy of (He 90] proving Lech’s inequality,
when Bp corresponds to a mild singularity of the Hilbert scheme. Concretely,
we require, that the base of the formal versal embedded deformation of By [Schl]
has a regular reduction and is Cohen-Macaulay itself. To say the truth, we also
give in Theorem 1.6 a more general condition, but that seems to be very difficult
to handle.

We shall use the conventions and notations of commutative algebra as in
[Ma). Further all local rings are assumed to be Noetherian. An A-algebra is a
homomorphism of the ring A into some ring, a homomorphism of A-algebras is
a commutative triangle. k will always denote a fixed ground field. Note that
we use "local k-algebra” for algebras k — (A, m), where (A, m) is local and
k — A/m is an isomorphism. In particular, "complete local k-algebras” form
just the category C of [Schl]. By a local deformation of a local k-algebra By we
mean a flat local homomorphism of local k-algebras with special fiber By.

At some point we use the technical concept of tangential flatness. A local
homomorphism f : (A,m) — (B, n) of local rings such that the induced homo-
morphism gr(A) — gr(B) of the associated graded rings

=]

gr(A) := P m![m*!

=0

makes gr(B) into a flat gr(A) -module is called tangentially flat. The fundamen-
tal facts about tangential flatness may be found in [He 91]. '

We shall use the language of Schlessinger’s paper {Schl]. Note, that we call
the ”pro- representable hull” of the deformation functor, he constructs, *formal
versal embedded deformation”. It is well known, and can easily be derived from
the universal property of the Hilbert scheme, that the completed local ring of the
Hilbert scheme at [By] is nothing but the base of that formal versal embedded
deformation of the singularity Bo.

At the end of the introduction the following principal remark: We consider
only local deformations f : (A,m) — (B, n) of local k-algebras, where A and B
are equicharacteristic and f is residually rational. Using Cohen’s structure theory
one could really generalize that, at least one can replace "residually rational” by
"residually separable”. We will omit the proof for that, since it does not seem to
make sense to consider the abstract situation, when almost nothing is known in
the ”geometric case”.



1 A condition on the base of the versal defor-
mation implying Lech’s inequality

1.1 In this paper we are particularly interested in the class of local rings de-
scribed in the Definition below.
Definition. We will call a local ring R permissible, when it satisfies the following
condition.
There exists a system of parameters {zy, ...,z,} of R such that

LR/(z1,...,2,)) L iR).
Here the invariant i(R) is defined to be

HR) = o min gy E )

1.2 Remark. A word of interpretation for the invariant i. It measures how
far the scheme Spec R is from having a component, in the generic point of which
it is reduced. When we consider the special case, that R is Cohen-Macaulay
and has only one minimal prime nil R, then i could be called "integrality de-
fect”. Indeed, in this case R has no embedded primes {[Ma], Theorem 17.3), i.e.
Ass(R) = {nil R} such that the complement of nil R contains regular elements
only. Therefore, nil R = 0 if and only if nil R+ Ry; g = 0, hence R is integral, if
and only if Ry g is a field, the latter being equivalent to i(R) = 1.

1.3 Now we come to our fundamental Proposition, implying ewerything what
follows. Note that it is a direct generalization of [He 90}, Theorem 6.
Proposition. Let the commutative diagram

(R,M) — (S,N)
! !
(A,m) — (B,n)

of local rings and local homomorphisms be cartesian, i.e. B = A®p S, and
assume the following conditions to be fulfilled.

1. R — A is @ homomorphism of local k-algebras.

2. The special fiber of R — S has minimal dimension, i.e.

dim S = dim R + dim S/M S
(e.9. R— S is flat).

8. R is permissible.
Then there exists a constant ¢ (depending on the diagram) such that

H{ (n) < Hy(n + )
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foralln (d:=dim B/mB).
In particular,
eo(A) < eo( B).

Proof. We are even in the position to specify the constant ¢, for which we will
prove the assertion above:
¢ is the minimal natural number such that

(pS})+ =0

in S, for all minimal prime ideals p in 5.

Here we put §' := SM[Th, ... ,Ti]], where S™ denotes the completion of S,
tepa(m) is the minimal number of generators of the mazimal ideal m in A and
Ty, ..., Ti are indeterminates.

Note that this definition makes sense, since there are only finitely many min-
imal prime ideals in S’ and all the localizations by them are Artin local rings.

We start with several straightforward steps.

First step. We may assume A to be an Artin local ring.

For proving

H3*'(n) < Hy(n +¢)

for arbitrary given n the local rings A and B can be replaced by A/m"t°t! and
B/m™t*1 B, respectively.

Second step. We may assume, that B, R and S are complete local algebras
(S and B possibly over an other ground field.)

Replace the local rings of the diagram above by their completions. Since
A® N is an n-primary ideal in B = A ®g S, the canonical topology of B is that
as a finite S-module. Therefore

B" = (A®r S)* = A@p» S™.

Further, Cohen’s structure theory ([Ma], Theorem 28.3 or [EGA V), §19) gives
algebra structures on S and B over their coefficient fields.

Third step. In the cartesian diagram above we may replace R and S in such
a way that R — A becomes surjective.

Adjoin indeterminates T; to R and S, which are mapped to a minimal system
of generators of the maximal ideal m in A and consider the resulting commutative
diagram.

R[T]] — S[[T]]

! !
A — B,

where T denotes {11, ... ,T}}.



Since A is Artin, R[[T]] — A factors through R, := R[[T])/(T) for some I.
Therefore we see, using that S[[T]]/(T)" is a free S-module,

B2 AQrS = AQ®g Ri®rS = AQg S[[T))/(T) &
& A ®g, Ri @rpry S[(T7) 2 A ®rgry SIT],

meaning that the new commutative square is cartesian, too.

We replace R and S by R[[T]] and S[[T7]], respectively. Then a system of
generators of m may be lifted to R. Since all rings are complete and R — A is
residually rational, this implies it is surjective.

Note that S’, occuring in the definition of our constant ¢, is nothing but our
new S. Further the permissibility of R is not affected by the replacement (Remark
1.10) and the dimension of the special fiber of R — § is still the minimal one.

Fourth step. In the cartesian diagram above we may replace S and B such
that S/M S becomes an Artin local ring.

Choose some prime ideal P in S satisfying MS C P and

dim S/P = dim S/MS (=d).

Then the special fiber of the induced homomorphism R — Sp becomes zero
dimensional and the commutative diagram

R-—-’Sp

l i
A—-—-—"Bp

is again cartesian: Bp 2 B®s Sp = AQr S Qs Sp = A ®p Sp. Further, Bp
is a local ring as a factor of the local ring Sp and all the homomorphisms in
the diagram above are local. That is trivial, except for A — Bp, and there it
follows from the simple reason that m consists of nilpotent elements only, which
cannot be mapped to units.

Since B is complete, one has Bennett’s inequality (Lemma 1.7)

d+1 1
Hgt! < Hp.

So we have to prove H{t'(n) < H§t'(n + c), for which Hi(n) < Hf_ (n + ¢)
would be sufficient, obviously.

Further it turns out that the dimension of the fiber of B — Sp is minimal.
Here that means simply dim Sp = dim R. But this is clear by dim S = dim R+ d
and dim S/ P = d, when one notes that S is complete and, therefore, catenary.

We replace S and B by Sp and Bp, respectively. Note that ¢ conserves the
property, that (pS,)°*! = 0 in S, for all minimal primes p in S.

Fifth step. This is the key step. We will prove that B= A®Rr S is a factor
of B := A®; 5§ tn a very spectfic way.



Note that B’ is Noetherian as a finitely generated S-algebra. Let n’ be a
maximal ideal in B’. Then (m):=m ® S C n/, since m is nilpotent, and n'/(m)
is maximal in B'/(m) = A®; S/m ® § & §. Therefore,

n=m@®S+AQN,

which shows B’ to be local. Further we see

B =2 A®rS
¥ AQ:R/(z1,...,%:) OR)(z:,....z.) BRIM ®r S
= A®k R/(zlr 79:0) ®RR/M ®Rsv
where {z,, ... ,z,} is the special system of parameters for R, required for per-

missibility. Using the commutativity of the tensor product, one obtains, denoting

R/(zlv sxt) byR

B A®:SOrRE®rR/M
A @ S®RR®F‘R/M
A® S/(z1, ...,z op F/M

B'/(zy, ... ,z,) @ B/M.

R R IR

Here we remark, that B is Artin, hence M is nilpotent, which implies
dim B'/(zy, ... ,z,) = dimB'/(z1, ... ,2,) @g B/M = dimB =0

by our reduction steps before. On the other hand dimS = dim R, since the
dimension of the fiber of R — S is the minimal one and we reduced that fiber
to be Artin, and, furthermore,

dimB'=dimA®; S =dimA/m ®; S =dimS = dim R,

when we use m is nilpotent. Altogether that means, that {z,, ... ,z,} is a system
of parameters not only for R but also for B’.
Sixth step. Now we are in the position to complete the proof, applying a
method very similar to that used by B. Herzog in the case R is regular.
Let
Ci:=B/(z1, ... ,z:)-

By the fact that {z;,...,z,} is a system of parameters for B’ we know
dimC; =38 ~-1.
Therefore we may take a chain of prime ideals

PC...CP,
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in B’ such that
i) dimB'/P; =dimC; =3 —1,
li) }D{+1 3 (Pi,$.‘+1). ‘

Then by Lemma 1.7

1 0
H(Ci)P" < H

1
- (Ci)P,'+1 S H(Cl'+1)P.‘+1,

hence

H‘lgh, < Hig/e,.. < Hpya,,.

~Ts)) P, - vZs)"

Note that on the right hand side we simply use Bennett’s inequality. Further,
Lemma 1.8 gives

H}?’/(m.--- +Ta) < £(R) : Hxls'/(z,,...,z.)@-ﬁﬁ/‘ﬂ = E(R) ) H}lz
by the previous step. Altogether we found
HY, < 4T H),
such that it would be sufficient to show
{R) - Hy(n) < H};;}o(n + ¢) (11)

for all n.
For that we identify S with its canonical image in B’ := A ®; S and put
P := PynNS. Then the canonical homomorphism

Sp — B-;’o
is well defined, local and factors through A®;Sp, a ring being local with maximal
ideal
Mp:=m@®,Sp+AQ PSp

(use that m is nilpotent). The induced homomorphism
AQr Sp — (A®« S)p,

turns out to be local, when we note once more that m is nilpotent. But, on the
other hand, the ring on the right is obtained from the ring on the left by a further
localization. So this homomorphism is even an isomorphism. In particular,

1 — 1
HB;’O —HAQkSP'

By the completeness of the local k-algebra A we may assume that
A = k[[X]])/J for some finite set X = {Xi, ..., X,} of indeterminates and some
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ideal J in k[[X]]. The canonical imbedding £ — Sp is trivially tangentially flat,
hence so is

k(X)) — Spl(X]}, Xi— X

Therefore, by [He 91], Remark (1.4.i) or [J], Folgerung (1.12.i), the,induced ho-
momorphism

A= K[[X]]/J — Sp[[X])/J - Sp([X]] = (K[[X])/J) @ Sp = A ®x Sp

is tangentially flat, too. Note that Sp[[X]]/J- Sp[[X]) may be written as the ten-
sor product above, since the ring A is Artin. Now the reformulation of tangential
flatness in terms of Hilbert series (see [He 91], Theorem (1.2.ii.e)) implies

1 _ — .

Writing down that explicitly one sees
) n+c ) ) '
HB;,O("+C) = > Hi(n+e~j) Hs (j)

i=0

> S Hy(n)- HY,(5)

H(n) - €(Sp/(PSp)™*)
Hi(n) - £(Sp),

using that HY is monotonically increasing and that (PSp)°*' = 0 in Sp by
construction of the constant c¢. Comparing that with (11) it turns out to be
sufficient to prove

USp) 2 UR) (=UR/(z:, ... ,7.)))- (12)
For doing that we put p:= P N R. Then the canonical homomorphism
R, — Sp

is well defined, flat and local. Lemma 1.9 implies

USp) 2 U(R,).

Furthermore, we have
{(R,) 2 i(R)
by the definition of i(R). Note here, that, in the case that p is not a minimal

prime, £(R,) is even infinite, which would also satisfy the required inequality, but
easily turns out to be impossible. Finally we can use the permissibility of B

'(R) 2 E(R/(xla Tet 135))°
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All these three inequalities together give

£{(Sp) 2 {(R/(zy, - .. ,2,)),
being just the required inequality (12).
o

1.4 Remark. We note, that, in the assumption of our Proposition, we did not
need R — S to be flat. We only required the minimality of the dimension of
its fiber. The author does not know whether this fact is useful for the Lech-
Hironaka problem. One should ”lift” a formal versal deformation in such a way
that the base becomes permissible (e.g. regular). Of course such a lift will not be
flat, but it is reqired to have a fiber of minimal dimension. This ”lift”-problem
does not seem to be easy.

1.5 Remark. The following Theorem is, in some sense, the main result of this
paper. We assume the base of the formal versal deformation of a singularity
to be permissible. That condition seems to be difficult to handle. In the next
section we will analyse that problem and construct a class of local rings being
permissible.

1.6 Theorem. Let (By,ng) be a local k-algebra. Then consider its completion
as an embedded singularity.

B(? = k[[Xls e :Xr]]/IO

Suppose, that the base of the formal versal embedded deformation of B} is per-
missible.
Then for every local deformation

(A,m) — (B,n)
of the local k-algebra By the Lech inequality
eo(A) < eo( B)

is true.
Proof. We will prove the following better assertion.
There ezists a natural number ¢ (depending on A — B) such that

H3*'(n) < H(n + )

for all n. Here d denotes the dimension of B,.
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First step. We may assume the local k-algebras By, A and B to be complete.

Replace A and B by their completions. Then the induced homomorphism
A" — B* is again flat and its fiber is BA/m*B”" = Bf. Of course, there is no
effect on the Hilbert series.

Second step. A — B is a base change of the formal versal deformation
Of BD-

Let the homomorphism
£:(R,M) — (S,N) (=R[[Xi, ..., X]/T)

of local k-algebras be the formal versal embedded deformation of
By = k[[Xi, ..., X.]]/Jo. (The fact that ¢ is of that special form can easily
be deduced from [Ar], Remark 1.1.)
Using the language of Schlessinger [Schl], the couple (R,§) induces a mor-
phism
hp — Dpyx,

where hg, Dp,/x : {Artin local k-algebras (with residue field k)} — {Sets} are
the Hom-functor of R and the deformation functor of By, respectively. This
morphism is a pro- representable hull for the functor Dg,/x ([Schl], (3.10) and
(2.7)), therefore it is smooth, which implies that the induced morphism

hg = Homigeat k-aig( R, .) — Dgo/k
between the canonical prolongations to
{complete (Noetherian) local k-algebras (with residue field k)}

is objectwise surjective ([Schl], (2.2) and (2.4)).
Down the earth this means nothing but the existence of a cartesian diagram

R — §
1} i
A -— B,

So the claim comes from the Proposition above.

|

1.7 Lemma. Let (A,m) be a local ring and £ € m be an element. Then

Hg < H;/:A'
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If, moreover, A is excellent (e.g. complete), then for any prime ideal P € Spec(A)
HY < HY

Ap =

(d:=dim A/P).

Proof. The first statement is easily proved by the reader. Alternatively, see
{Si], Theorem 1. The second part of the Lemma is just Bennett’s inequality
([Be], Theorem (2)) in the improved version due to Singh (see [Si], p.202). For a
comment on Singh’s proof see [He 90], Proof of Lemma 2.

O

1.8 Lemma. Let f: (A,m) — (B, n) be a local homomorphism of local rings
and assume A to be Artin. Then

Hy < YA) - Hpg yapm:

Proof. Note that this is a weakification of Theorem (1.2.i) of [He 91]. To give a
direct proof, it will be sufficient to show ¢(M) < £(A) - {(M ®4 A/m) for every
A-module M. But this is clear, since {(M ®4 A/m) = ps(M) is the minimal
number of generators of M.

Q

1.9 Lemma. Let f: (A,m) — (B,n) be a flat local homomorphism of local
rings. Then
¢(A) < {B) and  i(A) <i(B),

where € denotes the length and i is the invariant i from Definition 1.1.
Proof. Of course, the first statement is interesting only when A is Artin. Then
taking a composition series of A as an A-module and tensoring with B we obtain

¢(B) = ¢(A) - §(B/mB) > €(A).

For the second assertion let P € Spec(B) be such a prime that £(Bp) becomes
minimal. When one puts p := PN A, then A, — Bp is flat and local, which
implies £(A,) < £(Bp).

O

1.10 Remark. Let the local ring R be permissible. Then replacing R by
a) its completion R*
or
b) the formal power series ring R[[T}, ..., Tt]]
does not affect the permissibility.
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Actually in both cases Lemma 1.9 above implies that i(R) can increase only.
On the other hand, in case a) we can use for R* the system of parameters
coming from R, while in case b) we may extend it by {T, ... ,T;}, to obtain
the same length on the left hand side and, therefore, to conserve the permissibility
inequality from Definition 1.1.

2 The case that the base of the versal defor-
mation has regular reduction and is Cohen-
Macaulay itself

2.1 Here we will apply Theorem 1. For that we have to construct examples of
local rings being permissible in the sense of section 1. We will show that those,
announced in the title, admit this property.

2.2 Theorem. Let (By,no) be a local k-algebra. Then consider its completion
B} as an embedded singularity.

B{l\ = k[[Xl, v er]]/ID

Suppose that the reduction R/nil R of the base R of the formal versal embedded
deformation of B{ is regular and that R itself is Cohen-Macaulay.
Then for every local deformation

(A,m) — (B,n)
of the k-algebra By the Lech inequality
eo(A) < eo( B)

18 true.
Proof. This is a direct consequence of the Theorem above and the Fact below.

O

2.3 Remark. Let By be a local singularity corresponding to a point [Bo] of
the Hilbert scheme (with respect to some formal embedding), which has regular
reduction and is Cohen-Macaulay itself.

This implies Lech’s inequality for every local deformation of B,.

In fact, the base of the formal versal deformation of By is the completion
of the Hilbert scheme at [B,) and completing preserves the properties having
regular reduction and being Cohen-Macaulay.
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2.4 Fact. Let R be a complete local k-algebra such that the reduction R/nil R
i3 regular and R itself is Cohen-Macaulay.

Then R is permissible.
We need several Lemmata.

2.5 Lemma. Let R be a complete local k-algebra such that its reduction R/nil R
is reqular.

Then the canonical surjection p: R — R/nil R admits a section.
Proof. By completeness we may identify the regular local k-algebra R/nil R
with k[[T}, ... ,T1]], where Ty, ... , T} are indeterminates. Then choose elements
Ty, ... ,T} from the maximal ideal M of R, which are mapped to T3, ... ,T;,
respectively. They induce a homomorphism on the free k-algebra.

KTy, ..., T)— R ,T;—T

Here (T, ...,T) is mapped into M and any polynomial, not contained in
that ideal, has a constant term, therefore it is not mapped to zero in R/M,
hence it is mapped to a unit in R. We get a local homomorphism
k[T, ..., T, ..;;y — R. By the completeness of R this one may be con-
tinued to

i k[T, ..., T)] — R.

It remains to prove pi : K[[Ti,...,Ti]] — k[[Th,...,Ti]) is the identity.
But by construction we have T; +— T;, implying that at least on
k[Ty, ..., Ti)xy, ... 1) C K{[T1, ..., T1])]. The continuity of pi with respect to the
natural topologies completes the proof.

O

2.6 Lemma. Let R be a complete local k-algebra such that p: R — R/nil R
has a section

i: R/nilR— R.
Then R is, via i, a finite module over R/nil R.
Proof. Let {z,,...,z,} be a system of generators of the maximal ideal M
in R. Then, obviously,
{z1 = ip(z1), ..., @y — ip(z0),ip(21), - .. ,ip(20)} (21)

is such a system, too. Consider the following homomorphism of R/nil R-algebras.
g:R/MmilR[Y,...,.Y,]] R Y. z; —ip(z))

This one is well defined, local and also a homomorphism of k-algebras. The
system (21) of generators of M may be lifted to {Y;, ... ,Y,,n(z1), ... ,p(z,)}.

14



Since both rings are complete and ¢ is residually rational, this implies ¢ is sur-
jective,
Further, we observe that

p(zi = 1p(z:)) = 0,

maening z; — ip(z;) is nilpotent for all . Choose a; such that (z; — ip(z;))* = 0.
Then ¢ induces a surjection

R/l R[[Y, ..., Y ])/(Yi, ..., Y>) — R,
proving that R is finite as a module over R/nil R.

D

2.7 Lemma. Let:: R’ — R be an injective local homomorphism of local rings,
where R' is regular. Suppose that R 1is, via 1, a finite R'-module.

Then, if R is Cohen-Macaulay, it is even free as an R'-module.
Proof. This is just one direction of [Na], Theorem (25.16).

]

2.8 Proof of the Fact. The canonical surjection p : R — R/nil R has a
section ¢ : R/nil R — R by Lemma 2.5. Further, the R/nil R-module R (via 1)
is finite by Lemma 2.6 and, by Lemma 2.7, it is even free. Say r is its rank.

Identify the regular local k-algebra R/nilR with k[[Ty,...,T,]], where
T, ...,T, are indeterminates, and put

z; .= i(T}).

Then R/(z, ... ,z,) is free of rank r over k[T, ....,T,]]/(TI, cer s Ty) =k, L.
£(R/(z1, ... ,Z,)) = r. On the other hand, nil R is nilpotent, therefore

dim R =dim R/nilR = s.
So we found a system of parameters {z, ... ,z,} of R such that
LR[(zq,...,2,)) =T (22)

Furthermore, one can use localization instead of factorization. Let S be the
multiplicative system

S:=1i(R/nil R\ {0}).
in R. Then Ryg is free of rank r over the quotient field Q(R/nil R), so

E(Rs) =r.

15



Obviously, S C R\nil R. Therefore Ry g is a further localization of Rs. We will
prove, that, actually, R,y p = Rs.

For that we have to show, that every z € R\nil R is mapped into a unit in
Rs. But

z = 1p(z) + (z — ip(x)),
where the first summand is in § and the second one is nilpotent, since
p(z — ip(z)) = 0. So the image of z in Rg is a sum of a unit and a nilpotent
element and, therefore, in fact a unit ([Ma], §1, very first remarks).
We have shown

f(R,m]R) =r.

But R/nil R is regular, hence integral. Therefore nil R is the only minimal prime
ideal in R. Our definition gives

i(R)=r.

Combined with (22) this is the claim.
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