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Cyclotomic polynomials with prescribed height
and prime number theory

Alexandre Kosyak, Pieter Moree, Efthymios Sofos and Bin Zhang

Abstract

Given any positive integer n, let A(n) denote the height of the nth cyclo-
tomic polynomial, that is its maximum coefficient in absolute value. It
is well known that A(n) is unbounded. We conjecture that every natural
number can arise as value of A(n) and prove this assuming that for ev-
ery pair of consecutive primes p ≥ 127 and q we have q − p ≤ √p − 1.
Using a result of Heath-Brown we show unconditionally that every in-
teger m ≤ x occurs as A(n) value with at most Oε(x

3/5+ε) exceptions.
On the Lindelöf Hypothesis we show there are at most Oε(x

1/2+ε) excep-
tions. Finally, we study these exceptions further by using deep work of
Bombieri–Friedlander–Iwaniec on the distribution of primes in arithmetic
progressions beyond the square-root barrier.

1 Introduction

Let n ≥ 1 be an integer. The nth cyclotomic polynomial

Φn(x) =

ϕ(n)∑
j=0

an(j)xj,

is a polynomial of degree ϕ(n), with ϕ Euler’s totient function. For j > ϕ(n)
we put an(j) = 0. The coefficients an(j) are usually very small. Indeed, in the
19th century mathematicians even thought that they are always 0 or ±1. The
first counterexample to this claim occurs at n = 105; we have a105(7) = −2. The
number 105 is the smallest ternary number (see Definition 1) and these will play
a major role in this article. Issai Schur proved that every negative even number
occurs as a cyclotomic coefficient. Emma Lehmer [21] reproduced his unpublished
proof. Schur’s argument is easily adapted to show that every integer is assumed
as value of a cyclotomic coefficient, see Suzuki [28] or Moree and Hommersom
[23, Proposition 5]. Let m ≥ 1 be given. Ji, Li and Moree [19] adapted Schur’s
argument to show that

{amn(j) : n ≥ 1, j ≥ 0} = Z. (1)
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Fintzen [10] determined the set of all cyclotomic coefficients an(j) with j and n
in prescribed arithmetic progression, thus generalizing (1).

We put

A(n) = max
k≥0
|an(k)|, A = ∪n∈NA(n), A{n} = {an(k) : k ≥ 0},

in particular A(n) is the height of the cyclotomic polynomial Φn.
It is a classical result that if n has at most two distinct odd prime factors,

then A(n) = 1, cf. Lam and Leung [20]. The first non-trivial case arises where n
has precisely three distinct odd prime divisors and thus is of the form n = peqfrg,
with 2 < p < q < r prime numbers. It is easy to deduce that A{peqfrg} = A{pqr}
using elementary properties of cyclotomic polynomials (as given for example by
[23, Lemma 2]). It thus suffices to consider only the case where e = f = g = 1
and so n = pqr. This motivates the following definition.

Definition 1. A cyclotomic polynomial Φn(x) is said to be ternary if n = pqr,
with 2 < p < q < r primes. In this case we call the integer n = pqr ternary. The
set of all ternary integers we denote by Nt. We put At = ∪n∈NtA(n).

Note that At ⊆ A. In this article we address the question how the sets A,At
and Aopt (see Definition 2) look like.

Conjecture 1. We have A = N, that is for any given natural number m there
is a cyclotomic polynomial having height m.

Conjecture 2. We have At = N, that is for any given natural number m there
is a ternary n such that Φn has height m.

The argument of Schur cannot be adapted to resolve Conjecture 1, as it allows
one to control only the coefficients in a tail of a polynomial that quickly becomes
very large if we want to show that some larger number occurs as a coefficient,
and typically will have much larger coefficients than the coefficient constructed.
Instead, we will make use of various properties of ternary cyclotomic polynomials.
This class of cyclotomic polynomials has been intensively studied as it is the
simplest one where the coefficients display non-trivial behavior. For these we still
have {an(j) : n is ternary, j ≥ 0} = Z, as a consequence of the following result.

Theorem 1 (Bachman, [3]). For every odd prime p there exists an infinite family
of polynomials Φpqr such that A{pqr} = [−(p−1)/2, (p+1)/2] ∩ Z and another
one such that A{pqr} = [−(p+1)/2, (p−1)/2] ∩ Z.

If n is ternary, then A{n} consists of consecutive integers. Moreover, we have
|an(j + 1) − an(j)| ≤ 1 for j ≥ 0, see Gallot and Moree [14]. Note that for each
of the members of the two families the cardinality of A{pqr} is p+ 1. This is not
a universal property for ternary n.

Definition 2. If the cardinality of A{pqr} is exactly p + 1, we say that Φpqr is
ternary optimal and call n = pqr optimal. We denote by Aopt the set of all A(n),
with n optimal.
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This terminology reflects the fact that #A{pqr} ≤ p+ 1, by [2, Corollary 3].
The latter bound only involves the smallest prime factor of the ternary integer

pqr. This also holds for A(pqr), which we know to be bounded above by p − 1
since the 19th century [22].

Conjecture 3. We have Aopt = N\{1, 5}.

We will see that this conjecture is closely related to the following prime number
conjecture we propose (with pn the nth prime number).

Conjecture 4. Let n ≥ 31 (and so pn ≥ 127). Then

pn+1 − pn ≤
√
pn − 1. (2)

Although the gaps dn := pn+1 − pn between consecutive prime numbers have
been studied in extenso in the literature, this particular conjecture we have not
come across. There is a whole range of conjectures on gaps between consecutive
primes. The most famous one is Legendre’s that there is a prime between consec-
utive squares is a bit weaker, but for example Firoozbakht’s conjecture that p

1/n
n

is a strictly decreasing function of n is much stronger. Firoozbakht’s conjecture
implies that dn < (log pn)2− log pn+1 for all n sufficient large (see Sun [27]), con-
tradicting a heuristic model, see Banks et al. [4], suggesting that given any ε > 0
there are infinitely many n such that dn > (2e−γ−ε)(log pn)2, with γ Euler’s con-
stant. A very classical conjecture of Cramér states that pn+1−pn = O((log pn)2),
which if true, clearly shows that the claimed bound in Conjecture 4 holds for all
sufficiently large n.

A lot of numerical work on large gaps has been done (see the website [25]),
and this can be used to deduce the following result.

Proposition 1 (Tomás Oliveira e Silva [26]). The inequality (2) holds whenever
127 ≤ pn ≤ 2 · 1018.

We denote the set of natural numbers ≤ h by Nh.

Theorem 2. Let h be an integer such that (2) holds for 127 ≤ pn < 2h, then

Nh ⊆ At ⊆ A, Nh\{1, 5} ⊆ Aopt\{1, 5}.

Corollary 1. If Conjecture 4 is true, then so are Conjectures 1, 2 and 3.

Theorem 2 is in essence a consequence of a result of Moree and Roşu [24]
(Theorem 6 below) generalizing Theorem 1, as we shall see in § 2.

On combining Proposition 1 and Theorem 2 we are led to the following con-
clusion.

Theorem 3. Every integer up to 1018 occurs as the height of a ternary cyclotomic
polynomial.

The following theorem is the main result of our paper. Its proof rests on
combining Lemma 3b), the key lemma used to prove Theorem 2, with deep work
by Heath-Brown [18] and Yu [29] on gaps between primes.
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Theorem 4. Almost all positive integers occur as the height of an optimal ternary
cyclotomic polynomial. Specifically, for any fixed ε > 0, the number of positive
integers ≤ x that do not occur as a height of an optimal ternary cyclotomic
polynomial is �ε x

3/5+ε. Under the Lindelöf Hypothesis this number is �ε x
1/2+ε.

(Readers unfamiliar with the Lindelöf Hypothesis are referred to the para-
graph § 3 before the statement of Lemma 9.) In addition to Conjecture 4, there
is a further prime number conjecture (that we have not come across in the liter-
ature) of relevance for the topic at hand.

Conjecture 5. Let h > 1 be odd. There exists a prime p ≥ 2h − 1, such that
1 + (h− 1)p is a prime too.

The widely believed Bateman–Horn conjecture [1] implies that given an odd
h > 1, there are infinitely many primes p such that 1 + (h − 1)p is a prime too,
and thus Conjecture 5 is a weaker version of this.

Theorem 5. If Conjecture 5 holds true, then At contains all odd natural numbers.
Unconditionally At contains a positive fraction of all odd natural numbers.

The first assertion is a consequence of work of Gallot, Moree and Wilms [15]
and involves ternary cyclotomic polynomials that are not optimal. The second
makes use of deep work of Bombieri, Friedlander and Iwaniec [6] on the level of
distribution of primes in arithmetic progressions with fixed residue and varying
moduli. The level of distribution that is needed here goes beyond the square root
barrier (that is studied in the Bombieri–Vinogradov theorem, for example) and
this is due to the condition p ≥ 2h − 1 in Conjecture 5, see Remark 2 for more
details. As far as we are aware of, this is the first time that this kind of level
of distribution is used in the subject of cyclotomic coefficients. We would like to
point out though that Fouvry [12] has used the classical Bombieri–Vinogradov
theorem in a rather different way and context, namely, for studying the number
of nonzero coefficients of cyclotomic polynomials Φn with n having two distinct
prime factors. The proof of Theorem 5 is based on a second-moment argument
and is found in § 4.

That prime numbers play such an important role in our approach is a con-
sequence of working with ternary cyclotomic polynomials. One would want to
work with Φn with n having at least four prime factors, however this leads to a
loss of control over the behaviour of the coefficients in general and the maximum
in particular.

2 More on ternary cyclotomic polynomials

The goal of this section is to prove Theorem 2. Set

M(p; q) = max{A(pqr) : 2 < p < q < r},

where p, q are fixed and r > q. This quantity was introduced and first studied
by Gallot et al. [15]. Put

M(p) = max{M(p; q) : q > p}.
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Since A(pqr) ≤ p− 1 both quantities exist. Note that M(p) is the largest height
that occurs among the ternary cyclotomic polynomials having p as smallest prime
factor. Sister Marion Beiter [5] conjectured in 1968 that M(p) ≤ (p + 1)/2 and
proved it for p ≤ 5. Zhao and Zhang [30] proved it for p = 7 by showing that
M(7) = 4. Theorem 1 implies that M(p) ≥ (p + 1)/2. Gallot and Moree [13]
disproved the Sister Beiter conjecture. They showed that M(p) > (p + 1)/2 for
p ≥ 11 and that, for 0 < ε < 2/3 one has M(p) > (2/3−ε)p for every p sufficiently
large. They conjectured that M(p) ≤ 2p/3. The smallest counterexample to the
Sister Beiter conjecture occurs for n = 17 · 29 · 41 (see Table 1).

Given any m ≥ 1, Moree and Roşu [24] constructed optimal ternary infinite
families of Φpqr such that A(pqr) = (p+1)/2+m, provided that p is large enough
in terms of m.

Theorem 6 (Theorem 1.1, [24]). Let p ≥ 4m2 + 2m+ 3 be a prime, with m ≥ 1
any integer. Then there exists an infinite sequence of prime pairs {(qj, rj)}∞j=1

with pqj < rj, qj+1 > qj, such that

A{pqjrj} =

{
−(p− 1)

2
+m, . . . ,

p+ 1

2
+m

}
.

Put

R =
{p+ 1

2
+m : p is a prime, m ≥ 0, 4m2 + 2m+ 3 ≤ p

}
. (3)

Lemma 1. We have R ⊆ Aopt.

Proof. For the elements of R with m = 0 this follows from Theorem 1, for those
with m ≥ 1 it follows from Theorem 6.

Lemma 2. If (2) holds for 127 ≤ pn < 2h with h an integer, then we have
Nh\{1, 5, 63} ⊆ R.

The proof is a consequence of part a) of the following lemma and the compu-
tational observation that 1, 5 and 63 are the only natural numbers < 64 that are
not in R.

By brc we denote the entire part of a real number r.

Lemma 3. Let n ≥ 5. Denote the interval [pn+1
2
, pn+1−1

2
] by In.

a) If (2) holds, then In ∩ N ⊂ R.
b) If (2) does not hold, then there are at most

b(pn+1 − pn −
√
pn + 1)/2c (4)

integers in the interval In that are not in R.

Proof. The assumption on n implies that pn ≥ 11. Put zn = (
√
pn − 1)/2. Note

that 4z2n + 2zn + 3 = pn −
√
pn + 3 < pn. As 4x2 + 2x+ 3 is increasing for x ≥ 0,

the inequality 4x2 + 2x+ 3 < pn is satisfied for every real number 0 ≤ x ≤ zn. In
particular it is satisfied for x = mn, with mn the unique integer in the interval
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[zn−1, zn]. Thus mn ≥ (
√
pn−3)/2 and 4m2

n+2mn+3 ≤ pn. Using it, we deduce
that the numbers

(pn + 1)/2, . . . , (pn + 1)/2 +mn

are in R. As (pn+1 + 1)/2 is clearly in R, part a) follows if we can show that the
final number (pn + 1)/2 +mn is at least (pn+1 − 1)/2. For this it suffices that

pn + 1

2
+mn ≥

pn + 1

2
+

√
pn − 3

2
≥ pn+1 − 1

2
,

where the second inequality is implied by the assumption (2). Part b) follows on
noting that the number of integers of R that are not in In is bounded above by
(pn+1− pn)/2− 1−mn, which using mn ≥ (

√
pn− 3)/2 we see is bounded above

by the integer in (4).

Since we believe that (2) holds for all pn ≥ 127, Lemma 2 leads us to make
the following conjecture.

Conjecture 6. We have R = N\{1, 5, 63}.

The numbers 1, 5 and 63 are special in our story.

Lemma 4. The integers 1 and 5 are in At ⊆ A, but not in Aopt. The integer 63
is in Aopt ⊂ At ⊆ A, but not in R.

Proof. If pqr is optimal, then A(pqr) ≥ (p+ 1)/2 ≥ 2 and so 1 6∈ Aopt. It is also
easy to see that there is no optimal pqr such that A(pqr) = 5 (and so 5 6∈ Aopt).
If such an optimal pqr would exist, then as A(pqr) ≤ 3 for p ≤ 5 and A(pqr) ≥ 6
for p ≥ 11 (for an optimal pqr), this would force p = 7 and A{7qr} = [−5, 2]∩Z
or A{7qr} = [−2, 5] ∩ Z, contradicting the result of Zhao and Zhang [30] that
M(7) = 4.

The number 63 is in Aopt. This follows on applying Theorem 3.1 of [24].
The obvious approach is to consider the largest prime p such that (p+1)/2 < 63,
which is p = 113, and take l = 11 (here and below we use the notation of Theorem
3.1). For this combination the result does not apply, unfortunately. However, it
does for p = 109 and l = 15. In this case we obtain A{109 · 6803 · 12084113} =
[−46, . . . , 63] ∩ Z (with q = 6803, ρ = 2870, σ = 62, s = 46, τ = 18, w = 45,
r1 = 12084113).

Proof of Theorem 2. Follows on combining Lemmas 1, 2 and 4.

3 Gaps between primes

The goal of this section is to prove Theorem 4. The quantity of central interest,
N(x), is defined below.

Definition 3. The number of integers ≤ x that does not occur as a height of an
optimal ternary cyclotomic polynomial is denoted by N(x).

6



Recall that pn denotes the nth prime and dn = pn+1 − pn. In this notation
Conjecture 4 can be reformulated as

dn ≤
√
pn − 1, for n ≥ 31. (5)

Unfortunately this conjecture is out of reach, even under the Riemann Hypothesis
(RH). Cramér [8] showed in 1920 that under RH we have dn = O(

√
pn log pn). He

[9] conjectured in 1936 that

0 < lim inf
x→∞

max{dn : pn ≤ x}
(log x)2

≤ lim sup
x→∞

max{dn : pn ≤ x}
(log x)2

<∞,

and gave heuristical arguments in support of this assertion. Cramér’s conjecture
implies that dn = O ((log pn)2) . Further work on dn can be found in [4, 11, 16].

If Cramér’s conjecture holds true, then the next lemma implies that N(x) =
O(1).

Lemma 5. We have N(x) ≤ E(2x)/2 +O(1), where

E(x) =
∑
pn≤x

dn≥
√
pn−1

(dn −
√
pn + 1).

Proof. By Lemma 1 it suffices to bound above the number of integers ≤ x that
are not in R. By Lemma 3b) this cardinality, on its turn, is bounded above by
E(2x)/2 +O(1).

Heath-Brown [18] recently proved the following result estimating a quantity
closely related to E(x).

Lemma 6 (Heath-Brown). We have∑
pn≤x

pn+1−pn≥
√
pn

(pn+1 − pn)�ε x
3/5+ε.

As a warm-up we show how from this result with minor adaptations we can
obtain a non-trivial upper bound for N(x).

Proposition 2. We have N(x)� x
log x

.

Proof. By Lemma 5 it suffices to show that E(x)� x/ log x. In the sum defining
E(x) there are two kinds of terms, namely those with dn ≥

√
pn and the ones

with
√
pn − 1 ≤ dn <

√
pn, for which obviously

0 ≤ dn −
√
pn + 1 < 1. (6)

The first ones can be dealt with directly using Lemma 6, leading to a contribution∑
pn≤x

dn≥
√
pn

(dn −
√
pn + 1) ≤

∑
pn≤x

dn≥
√
pn

dn �ε x
3/5+ε.

Taking into account the contribution of the second type of terms and (6) leads
to ∑

pn≤x√
pn−1≤dn<

√
pn

(dn −
√
pn + 1) ≤

∑
pn≤x√

pn−1≤dn<
√
pn

1 ≤
∑
pn≤x

1� x/ log x.

Putting the two estimates together yields the required estimate.
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We recall the following recent result of Heath-Brown [18, Theorem 2].

Lemma 7 (Heath-Brown). For any fixed ε > 0 the measure of the set of y in
[0, x] such that

max
0≤h≤√y

∣∣∣∣π(y + h)− π(y)−
∫ y+h

y

dt

log t

∣∣∣∣ ≥ √
y

(log y)(log log y)

is Oε(x
3/5+ε), where π(y) denotes the number of primes not exceeding y.

A closer look at the proof of Lemma 6 leads to the following slightly stronger
lemma.

Lemma 8. For every fixed C > 0 and ε > 0 we have∑
pn≤x

pn+1−pn≥C
√
pn

(pn+1 − pn)�C,ε x
3/5+ε.

Proof. If C ≥ 1, the result is a corollary of Lemma 6. Therefore, without loss of
generality, we may assume that 0 < C < 1.

Suppose that pn ≤ x and dn ≥ C
√
pn. Since pn+1 < 2pn < 4pn by Bertrand’s

Postulate, it follows that
√
pn >

1
2

√
pn+1 and hence dn ≥ C

2

√
pn+1. This shows

that if y ∈ Jn := (pn, pn+1 − C
2

√
pn+1), then

y +
C

2

√
y < pn+1 −

C

2

√
pn+1 +

C

2

√
y < pn+1 −

C

2

√
pn+1 +

C

2

√
pn+1 = pn+1,

so that π(y + C
2

√
y) = π(y). Note that, for y sufficiently large,∫ y+C

2

√
y

y

dt

log t
≥

√
y

(log y)(log log y)
.

Since by assumption C < 1, the length of the interval (y, y + C
2

√
y) is bounded

by the square root of its smallest element and hence Lemma 7 can be applied.
Therefore, the contribution of primes pn ≤ x with dn ≥ C

√
pn towards the set of

y in Lemma 7 is at least

meas(Jn) = dn −
C

2

√
pn+1 ≥ dn −

C

2

√
2pn ≥ dn −

dn√
2
≥ dn

10
,

provided that n is large enough. In particular, there exists an absolute positive
constant C ′ such that ∑

pn≤x
dn≥C

√
pn

dn ≤ C ′ + 10
∑
pn≤x

dn≥C
√

pn

meas(Jn),

which is bounded above by Oε(x
3/5+ε) by Lemma 7 and the fact that the intervals

Jn are pairwise disjoint.
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Proof of the unconditional bound of Theorem 4. ¿From Lemma 8 we can imme-
diately deduce that N(x)�ε x

3/5+ε. To this end we first note that the inequality
1−√pn ≤ 0 gives ∑

pn≤x
dn≥

√
pn−1

(
dn + 1−√pn

)
≤

∑
pn≤x

dn≥
√
pn−1

dn.

We have
√
pn − 1 ≥ 1

4

√
pn and so∑

pn≤x
dn≥

√
pn−1

dn ≤
∑
pn≤x

dn≥ 1
4
√
pn

dn.

Applying Lemma 8 with C = 1
4

concludes the proof.

In order to complete the proof of Theorem 4 we need to improve the exponent
3/5 in Lemma 8 to 1/2, conditionally on the Lindelöf Hypothesis. The Lindelöf
Hypothesis states that for all fixed ε > 0 we have

ζ(1/2 + it) = Oε (tε) , t ∈ R, t > 1,

where as usual ζ denotes the Riemann zeta function. It is well-known that the
Riemann Hypothesis implies the Lindelöf Hypothesis, but also that the two con-
jectures are not equivalent. There is a large body of work concerning the Lindelöf
Hypothesis (see, for example, the recent work of Bourgain [7]), however, it is still
open.

We will make use of the following result of Yu [29].

Lemma 9 (Yu). Fix any ε > 0. Under the Lindelöf Hypothesis we have∑
pn≤x

(pn+1 − pn)2 �ε x
1+ε.

¿From it one can easily derive a conditional improvement of Lemma 8.

Lemma 10. Assume the Lindelöf Hypothesis and fix any C > 0 and ε > 0. Then
we have ∑

pn≤x
pn+1−pn≥C

√
pn

(pn+1 − pn)�C,ε x
1/2+ε.

Proof. For all C > 0 one has∑
pn≤x

dn≥C
√

pn

dn � (log x) max
1≤y≤x

∑
y<pn≤2y
dn≥C

√
pn

dn ≤ (log x) max
1≤y≤x

∑
y<pn≤2y
dn≥C

√
pn

d2n
C
√
pn
,

which by Lemma 9 is at most

(log x) max
1≤y≤x

1

C
√
y

∑
y<pn≤2y

d2n �C,ε x
1/2+ε.

Proof of the conditional bound of Theorem 4. Here we use Lemma 10 to prove
that under the Lindelöf Hypothesis the number of exceptional positive integers
≤ x is �ε x

1/2+ε. This can be done in a manner that is similar to our deduction
of the unconditional bound �ε x

3/5+ε from Lemma 8 and the proof is left to the
reader.
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4 A special case of the Bateman–Horn conjec-

ture on average

The goal of this section is to prove Theorem 5.

Lemma 11. Let h > 1 be odd. If there exists a prime p ≥ 2h− 1, such that the
integer 1 + (h− 1)p is a prime too, then A(n) = h for some ternary n.

Proof. This is a consequence of the result of Gallot et al. [15, Theorem 43] that
if q ≡ 1 (mod p), then

M(p; q) = min
{q − 1

p
+ 1,

p+ 1

2

}
.

The conditions on p and h ensure that M(p; q) = h.

Example 1. Using the latter result and [15, Lemma 24], we find that

A(131 · 8123 · 25497973) =
8123− 1

131
+ 1 = 63

and a131·8123·25497973(13459462019674) = −63.

We define the set G ⊂ N as follows,

G := {m ∈ N : ∃p > 4m such that 1 + 2mp is prime}.

In the remaining part of this section we show that the density of G among all
integers is positive, i.e. that there exists c0 > 0 such that

lim inf
M→+∞

#{m ∈ G ∩ [1,M ]}
M

≥ c0. (7)

For any natural number m and any x ∈ R we define

πm(x) := #
{
x
2
≤ p < x : 1 + 2mp is prime

}
.

Lemma 12. For all x,M ∈ R with x > 8M and M ≥ 1 we have

#{m ∈ G ∩ [1,M ]}
∑

1≤m≤M

πm(x)2 ≥
( ∑

1≤m≤M

πm(x)
)2
. (8)

Proof. Put

um(x) =

{
1, if πm(x) 6= 0;
0, otherwise.

Fix x > 8M . By Cauchy’s inequality we have∑
1≤m≤M

πm(x) =
∑

1≤m≤M

πm(x)um(x)

≤#{1 ≤ m ≤M : πm(x) > 0}1/2
( ∑

1≤m≤M

πm(x)2
)1/2

.

If m ≤M and p ≥ x/2, then 4m ≤ 4M < x/2 ≤ p, hence

#{1 ≤ m ≤M : πm(x) > 0} ≤ #{m ∈ G ∩ [1,M ]},

concluding the proof.
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We would like to estimate the sums
∑

1≤m≤M πm(x) and
∑

1≤m≤M πm(x)2 oc-
curing above. One may easily obtain an upper bound, say A, for

∑
1≤m≤M πm(x)2

by using standard sieve results. If we get a lower bound
∑

1≤m≤M πm(x) ≥ B,
then by (8)

#{m ∈ G ∩ [1,M ]} ≥ B2

A
.

A good lower bound for
∑

m πm(x) is however not easy to prove owing to the
condition x > 8M ; the way to overcome this is to use deep work of Bombieri–
Friedlander–Iwaniec regarding the level of distribution of primes in arithmetic
progressions with fixed residue and varying moduli.

We start with
∑

1≤m≤M πm(x)2, for which we need the following lemma, which
is obtained on putting b = k = l = 1 in [17, Theorem 3.12].

Lemma 13. Let a be a positive even integer. Then for all x > 1 we have,
uniformly in a, that

# {p ≤ x : ap+ 1 is prime} ≤ 8C2x

(log x)2

∏
p|a
p>2

(p− 1

p− 2

){
1 +O

( log log x

log x

)}
,

where

C2 =
∏
p>2

(
1− 1

(p− 1)2

)
is the twin prime constant.

Remark 1. Hardy and Littlewood conjectured based on heuristic reasoning that
asymptotically

# {p ≤ x : p+ 2 is prime} ∼ 2C2
x

(log x)2
.

A similar heuristic reasoning leads to the conjecture that asymptotically

# {p ≤ x : ap+ 1 is prime} ∼ C2

(∏
p|a
p>2

(p− 1

p− 2

)) x

(log x)2
.

Both conjectures are special cases of the Bateman-Horn conjecture, cf. [1].

Lemma 14. Let x,M be any two positive real numbers. Then∑
1≤m≤M

πm(x)2 ≤ 64C1C
2
2M

x2

(log x)4

{
1 +O

(
log log x

log x
+

1√
M

)}
,

where the implied constant is absolute and

C1 :=
∏
p>2

(
1 +

2

p(p− 2)
+

1

p(p− 2)2

)
. (9)

11



Proof. By Lemma 13 with a = 2m, we get

πm(x)2 ≤ 82C2
2

x2

(log x)4

∏
p|2m
p>2

(
p− 1

p− 2

)2{
1 +O

(
log log x

log x

)}
,

therefore, we conclude that the sum in our lemma is at most

82C2
2

x2

(log x)4

{
1 +O

(
log log x

log x

)} ∑
1≤m≤M

∏
p|m
p>2

(
p− 1

p− 2

)2

.

We define the multiplicative function f via

f(pe) := 1p>2(p)1e=1(e)

(
2

p− 2
+

1

(p− 2)2

)
, (e ∈ N, p prime).

One can then easily verify that∏
p|k
p>2

(p− 1

p− 2

)2
=
∑
d|k

f(d) =
∑
d|k
2-d

f(d)

for all non-zero integers k. This shows that∑
1≤m≤M

∏
p|2m
p>2

(
p− 1

p− 2

)2

=
∑

1≤d≤M
2-d

f(d)
∑

1≤m≤M
d|2m

1

=M
∑

1≤d≤M

f(d)

d
+O

( ∑
1≤d≤M

f(d)
)
,

where we used several times that f(d) = 0 if d is even. Noting that f(p) ≤ C/p
for some absolute constant C > 0 yields the bound

f(d) ≤ µ(d)2
Cω(d)

d
� 1√

d
, (d ∈ N),

which can be used to obtain∑
1≤d≤M

f(d)

d
=
∞∑
d=1

f(d)

d
+O

(∑
d>M

1

d3/2

)
= C1 +O

(
1√
M

)
and ∑

1≤d≤M

f(d)�
∑

1≤d≤M

1√
d
�
√
M.

Putting everything together it follows that∑
1≤m≤M

∏
p|2m
p>2

(
p− 1

p− 2

)2

= C1M

{
1 +O

(
1√
M

)}
,

which is sufficient for our purposes.

12



We now proceed to evaluate the sum
∑

1≤m≤M πm(x) appearing in Lemma 12.
Writing n = 1 + 2mp we see that the it equals∑

1≤m≤M

∑
x/2≤p<x

1+2mp prime

1 =
∑

x/2≤p<x

∑
1≤m≤M

1+2mp prime

1

=
∑

x/2≤p<x

# {n prime : 2 < n ≤ 1 + 2Mp, n ≡ 1(mod p)}

≥ 1

log(1 + 2Mx)

∑
x/2≤p<x

∑
n prime

2<n≤1+2Mp
n≡1(mod p)

log n, (10)

where we used that log n ≤ log(1 + 2Mp) ≤ log(1 + 2Mx).

Remark 2. One now recognizes the argument in the latter sum as a counting
function of primes in an arithmetic progression of varying modulus as p runs
through (x/2, x]. We would now use the Bombieri–Vinogradov theorem, however,
the size of the primes n is of the order of magnitude

1 + 2Mp ≈ 2Mx,

since the moduli p have typical size x. Therefore, owing to the condition x > 8M ,
we are counting primes in a progression whose modulus exceeds the square-root
of the size of the primes. Therefore, the Bombieri–Vinogradov theorem cannot be
applied in our case. To be more precise, it can only be applied when the moduli
are bounded by

√
z/(log z)A, where A > 0 and z is the length of the interval (0, z]

we are counting primes in. This means that we need

p ≤
√
p2M

(log(p2M))A
,

for some fixed A > 0, and this can only happen when x = o(M). To deal with
this problem we shall need a special case (Lemma 15 below), of the work of
Bombieri–Friedlander–Iwaniec [6].

As usual let

θ(x; q, a) :=
∑
p≤x

p≡a(mod q)

log p, ψ(x; q, a) :=
∑
n≤x

n≡a(mod q)

Λ(n),

with Λ the von Mangoldt function.

Lemma 15 (Bombieri–Friedlander–Iwaniec). For any t ≥ y ≥ 3 we have∑
√
ty/2≤q<

√
ty

∣∣∣∣ψ(t; q, 1)− t

φ(q)

∣∣∣∣� t

(
log y

log t

)2

(log log t)B,

where B is an absolute constant and the implied constant is absolute.

This can be obtained by setting a= 1, x= t, Q=
√
xy in [6, Main Theorem,

p. 363].
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Lemma 16. For any t ≥ y ≥ 3 with y ≤ t1/20 we have

∑
q prime√

ty/2≤q<
√
ty

∣∣∣∣θ(t; q, 1)− t

φ(q)

∣∣∣∣� t

(
log y

log t

)2

(log log t)B,

where B is an absolute constant and the implied constant is absolute.

Proof. Clearly

ψ(t; q, 1) = θ(t; q, 1) +
∞∑
k=2

∑
p≤t1/k

pk≡1(mod q)

log p.

The inner sum vanishes if t1/k < 2, therefore only the integers k ≤ (log t)/ log 2
are to be taken into account. The contribution of all such integers with k ≥ 3 is
� t1/3 log t, since the sum over p is � t1/k by the prime number theorem. The
steps so far are the standard arguments that one performs when moving from
asymptotics for ψ to asymptotics for θ, however, in our case, owing to the level
of distribution being comparable to the square root of the length of the interval,
the term k = 2 cannot be controlled with the classical arguments. Instead, we
use the bound

1

log t

∑
p≤t1/2

p2≡1(mod q)

log p ≤
∑

m≤t1/2
m2≡1(mod q)

1 =
∑

m≤t1/2
m≡−1(mod q)

1 +
∑

m≤t1/2
m≡1(mod q)

1,

where we used the fact that q is prime. Each of the sums in the right side is
trivially � t1/2/q + 1 and therefore

∑
p≤t1/2

p2≡1(mod q)

log p� (log t)

(
t1/2

q
+ 1

)
.

We thus find that

ψ(t; q, 1) = θ(t; q, 1) +O

(
t1/3(log t) +

t1/2

q
log t

)
.

This shows that the sum over q in the statement of this lemma is

�
∑

√
ty/2≤q<

√
ty

∣∣∣∣ψ(t; q, 1)− t

φ(q)

∣∣∣∣+
∑

√
ty/2≤q<

√
ty

(
t1/3(log t) +

t1/2

q
log t

)
.

The first sum can be bounded by Lemma 15. Noting that
∑

x/2<q≤x 1/q = O(1),

cf. (11), we see that the second sum is

� (ty)1/2t1/3(log t) + t1/2 log t,

which is � t19/20 � t(log t)−2, as y ≤ t1/20.
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Lemma 17. Let ψ : (1,∞) → (4,∞) be any non-decreasing function satisfying
ψ(M) ≤ logM+4 and limM→∞ ψ(M) =∞. For any M > 1, we let x = Mψ(M)
and have ∑

1≤m≤M

πm(x) ≥ Mx

log(Mx)

log 2

log x

{
1 +O

(
(log log x)B+2

log x

)}
,

where B is the absolute constant from Lemma 16.

Proof. By (10) and the inequality 1 + 2Mp ≥ 2Mp ≥ Mx valid for primes
p ≥ x/2, we see that the sum in our lemma is at least

1

log(1 + 2Mx)

∑
x/2≤p<x

∑
n prime
2<n≤Mx
n≡1(mod p)

log n.

Using Lemma 16 with t = Mx and y = ψ(M) shows that this is

Mx

log(1 + 2Mx)

∑
x/2≤p<x

1

p− 1
+O

(
Mx

log(1 + 2Mx)

(
logψ(M)

log x

)2

(log log x)B

)
.

Using the standard estimate∑
p≤x

1

p− 1
= log log x+ C ′ +O

(
1

(log x)2

)
,

we obtain ∑
x/2<p≤x

1

p− 1
=

log 2

log x

{
1 +O

(
1

log x

)}
. (11)

It follows that the main term is as claimed in our lemma. Furthermore, on using
the bound logψ(M)� log logM � log log x, we see that the error term is

� Mx

log(Mx)

(log log x)B+2

(log x)2
,

as required.

Proof of Theorem 5. The first assertion is a corollary of Lemma 11.
The inequalities obtained in Lemmas 14 and 17 in combination with the in-

equality in Lemma 12 give rise, on choosing x = M logM, to the inequality

#{m ∈ G ∩ [1,M ]} 64C1C
2
2M

x2

(log x)4
≥
(

Mx

log(Mx)

log 2

log x

)2

(1 + o(1)).

We combine this with the estimate

log(Mx) = log(x2/ψ(M)) = 2 log x− logψ(M) = 2 log x(1 + o(1)),

and conclude that (7) holds with

c0 =
(log 2)2

256C1C2
2

> 0.
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It follows that a positive percentage of all integers m are such that there exists
a prime p > 4m with 1 + 2mp being a prime. By Lemma 11 for each m with
the property that there exists a prime p > 4m with 1 + 2mp also a prime, we
have 1 + 2m ∈ At and it thus follows that unconditionally At contains a positive
fraction of all odd natural numbers.
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5 Ternary cyclotomic polynomials of small height

Table 1: Ternary examples with prescribed height

height p q r k sign diff.
1 3 7 11 0 + 2
2 3 5 7 7 – 3
3 5 7 11 119 – 5
4 11 13 17 677 – 7
5 11 13 19 1008 – 9
6 13 23 29 2499 – 10
7 17 19 53 6013 + 14
8 17 31 37 5596 – 14
9 17 47 53 14538 – 17
10 17 29 41 4801 – 17
11 23 37 61 20375 – 16
12 23 37 41 14471 + 21
13 31 59 73 58333 – 25
14 37 53 61 52286 + 27
15 37 47 61 45939 – 29
16 41 79 97 133844 – 30
17 41 43 53 38240 + 33
18 61 97 103 178013 – 34
19 43 83 89 101051 – 33
20 47 83 131 235842 + 37
21 47 101 109 217278 – 41
22 53 83 89 165453 – 44
23 43 71 109 108355 + 43
24 53 103 109 189160 – 42
25 61 79 97 224640 – 47
26 41 71 97 96529 – 41
27 61 109 113 332589 – 54
28 53 89 131 186685 – 53
29 83 109 139 552035 – 58
30 67 131 137 389139 – 52
31 83 107 113 444435 + 61
32 79 149 163 881529 + 63
33 73 103 113 389314 + 61
34 71 109 113 409320 – 60
35 83 103 139 544198 – 69
36 127 149 151 1246462 – 72
37 71 101 239 671716 + 67
38 127 137 409 3355658 – 75
39 83 149 157 941094 + 76
40 79 233 239 1624556 + 79

17



Table 1 gives the minimum ternary integer n = pqr with p < q < r such that
A(n) = m for the numbers m = 1, . . . , 40. The integer k has the property that
apqr(k) = ±m, with the sign coming from the one but last column. The final
column records the difference between and the largest and smallest coefficient
and is in bold if this is optimal, that is equals p (compare Definition 2).
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