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1 Introduction

“Generalized geometry” is an approach to differential geometric structures which
seems remarkably well-adapted to some of the concepts in String Theory and Su-
pergravity, for example: 3-form flux, gauged sigma-models, D-branes. It implicitly
assumes the existence of a background gerbe.

The fundamental idea is to take a manifold M of dimension n and replace its tangent
bundle by the direct sum T ⊕ T ∗ of the tangent bundle and its dual. This has a
natural inner product of signature (n, n) defined by (X + ξ, X + ξ) = iXξ and for any
2-form B, X + ξ �→ X + ξ + iXB is an isometry.

The other feature is the Courant bracket

[u, v] = [X + ξ, Y + η] = [X, Y ] + LXη −LY ξ − 1

2
d(iXη − iY ξ)

on sections of T ⊕ T ∗, which replaces the Lie bracket on vector fields. When B is
closed the transformation X + ξ �→ X + ξ + iXB preserves the Courant bracket.

We can twist T ⊕T ∗ using a 1-cocycle with values in closed two-forms to get a bundle
0 → T ∗ → E

π→ T → 0 with an inner product and Courant bracket. A connective
structure on a gerbe gives this information.

2 Generalized metrics

A generalized metric is defined as a rank n subbundle of E on which the inner product
is positive definite. It defines a splitting of the sequence above, as does its orthogonal
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complement V ⊥. The average of these is an isotropic splitting which defines a curving
of the gerbe, and yields a three-form curvature H .

The splittings V and V ⊥ define two liftings X+, X− of a vector field X and we can
define two affine Riemannian connections ∇+,∇− by

2g∇+
XY = [X−, Y +] − [X, Y ]−, 2g∇−

XY = [X+, Y −] − [X, Y ]+

which have skew torsion H and −H respectively. The simplest example is to take
V ⊂ T ⊕ T ∗ as the graph of a metric g : T → T ∗ to get the familiar formula for the
Levi-Civita connection:

[
∂

∂xi
− gikdxk,

∂

∂xj
+ gjkdxk

]
−

[
∂

∂xi
,

∂

∂xj

]−
=

(
∂gjk

∂xi
+

∂gik

∂xj
− ∂gij

∂xk

)
dxk = 2g�kΓ

�
ijdxk.

Connections with skew torsion should always be viewed in pairs like this: the curva-
ture tensors R+, R− satisfy a modified Bianchi identity: R+(X, Y, Z, W ) = R−(Z, W, X, Y ).

3 Generalized Kähler metrics

Definition 1 A generalized complex structure on a manifold M of dimension 2m
with bundle E is an automorphism J : E → E such that

• J2 = −1

• (Ju, v) + (u, Jv) = 0

• if Ju = iu, Jv = iv then J [u, v] = i[u, v] using the Courant bracket.

Here we have imitated the definition of a Kähler metric, but replaced T by E, a
metric by the natural inner product, and the Lie bracket by the Courant bracket.
The linear algebra data consists of a reduction of structure group of the bundle E to
U(m, m) ⊂ SO(2m, 2m).

The interesting feature about this notion is that it includes both symplectic and
complex manifolds: for a complex manifold with E = T ⊕ T ∗ we take

J =

(
I 0
0 −I

)
.
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and for a symplectic manifold

J =

(
0 −ω−1

ω 0

)
.

A Kähler manifold is a manifold with both a complex structure and a symplectic
structure and a compatibility condition between the two. Both of these structures
can be encoded as generalized complex structures, and it turns out that compatibility
means they commute. Thus our generalized geometry definition is:

Definition 2 A generalized Kähler structure consists of two commuting generalized
complex structures J1, J2 such that the quadratic form (J1J2u, u) is positive definite.

A theorem of Marco Gualtieri [2] is:

Theorem 1 A generalized Kähler structure on a manifold M defines

• a generalized metric

• two integrable complex structures I+, I− on M such that the metric g is Hermi-
tian with respect to both

• the connections ∇+,∇− of the generalized metric preserve I+, I− respectively.

Conversely, up to the action of a closed B-field, this data determines a generalized
Kähler structure on M .

Such structures form the target spaces for the nonlinear sigma model with (2, 2)
supersymmetry [1].

4 Poisson structures

On any generalized Kähler manifold there is a 2-form Φ(X, Y ) = g([I+, I−]X, Y ).
which vanishes identically for a Kähler metric, where I+ = −I−. Using the metric
it defines the real part of a holomorphic section of Λ2T which is a complex Poisson
structure [3]. There is one for I+ and one for I−. On a complex surface we can
replace these by meromorphic 2-forms ω + iω′, ω + iω′′. The hermitian form for I+ is
the (1, 1) part (with respect to I+) of ω′′.
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A concrete example is the Hopf surface S = C2\{0}/Z where the Z-action is (z1, z2) �→
(λz1, λz2), λ > 1 and the meromorphic form is dz1dz2/z1z2. The diffeomorphism
ϕ(z1, z2) = (z2, z̄1)/r

2 is symplectic with respect to ω, the real part of this form, and

ϕ∗(ω + iω′) =
1

r2
(dz1dz̄1 + dz2dz̄2) +

z̄1

z2r2
dz1dz2 +

z2

z̄1r2
dz̄1dz̄2.

We can see here that the (1, 1) part of ω′′ = ϕ∗ω′ is the product metric on S1 × S3.

A more interesting class of examples is to take a Del Pezzo surface with a choice
of hermitian metric on K∗ whose curvature is positive. If σ, a section of K∗, is
the Poisson structure for I+ = I, then we use the Hamiltonian flow of the function
log ‖σ‖2 to define a diffeomorphism ϕt which extends across the zero of σ. Then ω +
iω′′ = ϕt(ω+ iω′) defines a generalized Kähler structure for small enough deformation
parameter t [4].

5 Curving of gerbes

In the case of complex surfaces, ω′−ω′′ is singular where I+ = −I− and ω′+ω′′ where
I+ = I−. If the anticanonical divisor is connected then one of these is non-zero, say
ω′ − ω′′ = ρ. This is a symplectic form and in fact, up to a B-field, defines one of the
two generalized complex structures. Then the three-form H satisfies

H =
1

2i
d((σ − σ̄)ρ2) = dB

where σρ2 ∈ Ω0,2 is obtained by contraction. This is an explicit curving on the trivial
gerbe.

On the Hopf surface the divisor has two components so we get ρ0 and ρ1 smooth on one
and with a singularity on the other. Covering the surface with the two complements
of the curves, these two forms define similarly a curving of a connective structure on
a non-trivial gerbe, if λ or the Poisson tensor are chosen appropriately.
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