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TWO REMARKS ON MOISHEZON CALABI-YAU 3-FOLDS

MIKIO FURUSHIMA AND KEIlI ÜGUISO

Introduction.

In this paper, we shall prove the following existence theorem concerning with a
Calabi-Yau 3-fold, i.e., a 3-dinlensional simply connected cornpact conlplex mani­
fold with trivial canonical bunclle, with 2 extrernally distinguishecl properties each
of which never occurs for a projective variety.

Theorenl 1. There exists a Moishezon Calabi- Yau 3-fold Y which satisfies that

(1) Pie Y = Z . L with L 3 = 0, i.e., the cubic form is idel1tically zero,
(2) Y contains an effective algebraic l-cyc1e e which Inoves algebraica1ly and

sweeps out wilole Y but eitself is hOlnologous to zero.

This phenomenon is related to I(ollar's problem ([1(0, 5.16]) anel Nakamura's
example ([Na]). We shall construct such Y by taking an elementary transfonnatioll,
called flop, of a (projective) Calabi-Yau 3-fold X described in the next theoreill.

Theorenl 2. There exists a projective Calabi- Yau 3-fold X Wllic1l satisfies that

(1) PicX = Z· H, wbere H 3 = 8 and BslHJ = 0, and Tor H2 (X, Z) = 0,
(2) X contains a slllootll rational curve C witll C.H 2 and

Nc1x = OC(-1)$2.

We shall prove this theorenl by lllodifying I(atz's argument on a quintic 3-fold
([I(a]) to that on a complete intersection of a quadratic and a quartic in pS , 01' in
other worcls, by showing that a generie complete intersection X of a quadratic and
a quartic in }pS contains a smooth conie C with NClx = Oc( _1)$2.

The authors would like to express their thanks to professor Dr.'s J. I(olleir and
!(. Ono for their valuable eornluents anel Professor Dr. F. Hirzebruch for offering
theI1l an opportunity to visit Max-Planck-Institut für Matheluatik. This work was
done clurillg their stay in the institute.

Proof of Theorenl 2.

Let us fix a SIllooth cOllie in !ps defined by

C := {[S2 : st : t2 : 0 : °:On c r.s = {[xo : Xl : X2 : X3 : X4 : xsn,

where [s : t] is a hOl1logeneous coordinate of C = pI. Let us consider a complete in­
tersection X = Fn G in IF, where F (resp.G) is clefined by the following polynomial
f of clegrce 2 (resp. g of degree 4):

f := (xi - XOX2) + f3 X3 + f4 X4 + fsxs, fi E HO(O~!\(l)),
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9 := 93 X 3 + 94 X 4 + 9S X 5, 9i E H O(Ojpll(3)).

Since C is contained in X, in order to complete the proof, it is enough to show the
following claiIll 1:

Claitn 1. For general f alld 9, we have,

(1) X is nOll-singular, and
(2) NClx = Oc( _1)$2.

In fact, the other conditions in Theorem 2 are autoluatically satisfied by Lefschetz
Theorem and by the the adjunction formula

The stateluent (1) follows froIll Bertini 's argument. Let Al be the subsystem of
10Ifu(2)1 consisting of f defined above. By taking (/3, f4, f5) a.s (0,0,0), (X3'0,0),
(0, X4, 0), (0,0, xs), we see that BsAI C (xi - XOX2 = 0) n (X3 = 0) n (X4 =
0) n (xs = 0) = C, so that Sing F C C for general f· But, since (it )Ic =
(-t2

, 2st, _8
2

, /31 c, /41 c, /51 c), F is also non-singular along C. Thus F is nOll­
singular for general f. Let us consider the subsystem A2 of 10F(4)1 consisting of
9 defined above on a non-singular F. By taking (g3, 94, gs) as (x~, 0,0), (0, X~, 0),
(0, 0, X~), we see that BsA2 c F n (X3 = 0) n (X4 = 0) n (xs = 0) = C, so that
Sing X C C for general/ and g.

But, since

2t8
o /slc)

9slc '

X is nonsingular along C if t2931 c = 82931c = t2941c = s2 94 1c = t2g51c =
829si c = 0 has no COlumon fOOtS [8 : t]. But this condition is clearly Zarski open
condition and it is satisfied by (931 e, 941 c, 951 c) = (8

6 +t6
, 2s6 +t 6

, S
6 +2t6

). Thus
X is non-singular for general/ and g.

We shall prove (2). For a non-singular X, we consider the following 3 standard
exact sequences just like as in [I(a, Appendix B]:

(a) 0 ---t Oe~ Ojpll(1)$6jc = OC(2)$6 ~ TP51c -----t 0

(b) 0 --t Txlc ~ T~r;lc ~ NXljplllc = Oc(4) ffi Oc(8) -----t 0

(c) 0 -----t Tc -----t Tx le -----t N elx -----t O.

Note that every hOlll0nl0rphislll above is described by a nlatrix whose coefficients
are in EBHO(Oe(a)), because every vector bundle on pI decomposes into a direct
sunl of Elle bundles. Since 'PI E H om(CJc ,OC(2)$6) is describecl by the matrix
(s2

, st, t2
, 0, 0, 0) t by clefini tion, a Iuatrix representation of

'P2 E H om(OC(2)$6, Tplllc) is

t -s
o t
o 0
o 0
o 0

o 0 0 0
-3 0 0 0
o 1 0 0
o 0 1 0
o 0 0 1
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and we have TplI le = Oe(3) EB2 EB Oe(2) EB 3 just as is proved in [I<a, Appendix B,
page158]. Now, in order to finish the proof of (2) in claim 1, it is enough to show
the next claim 2:

Clainl 2. CP4 is surjective for general I and 9.

In fact, if claitu 2 is true, then we know that H 1 (Teix) = 0 by the sequence (b)
and by H 1 (TplIlc) = H 1 (Oe(3) )EB2 EBH1(Oe(2) )EB 3 = O. Thus we get H 1(Nelx) = 0
by the sequence (c). Since !(x = 0, this induces the desired equality Nelx ­
Oe( _1)EB2.

We shall prove claiul 2. Since the map

is given by

the matrix representation

of CP4 E Hom(TplIlc, NXIPlllc) = Holn(OC(3) EB2 EB Oe(2) EB3, Oe(4) EB Oe(8)) lUllst
satisfies the equality:

t -5 0 0 0 0
0 t -s 0 0 0

= (_~2 2ts _s2 /3 74 Zs) ,A 0 0 0 1 0 0
0 0 0 0 1 0

0 0 93 94 95

0 0 0 0 0 1

where li = lile and 9i = 9ilc .
Thus, CP4 is nothing hut the following map:

(
-t S Z3 Z4 Zs): Oe(3)$2 EB Oe(2)$3 --+ Oc(4) EB Oe(8).
o 0 93 94 95

Thus the following 3 conditions (I), (II), (III) are equivalent tü each üther:

(I) CP4 : HO (Tpslc) ---+ HO (Nx IpIS Ic) is surjective,

(11) Für every (cp,7.jJ) E HO(Oc(4)) EB HO(Oc(8)), there exists an element
(a,b,c,d,e) E HO(Oc(3))$2 EB HO(Oc(2)) EB 3 such that cP = -ta + sb +
13 c + 14 d +75 e and 7.jJ = [he + 94 d + 9s e,

(III) Für every 7.jJ E HO(Oc(8)), there exists an element (c,d,e) E HO(Oc(2))$3
such that 7.jJ = 93C + 94d +9se, i.e., the hÜlllümorphism

defined by(c, cl, e) I-t Y3C +94d +95e is surjective.
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Note that the last condition (lU) is Zariski open condition for g. On the other
hand, since every eleluent 1/;(s, t) = L:~=o aisit8-i of HO(Oc(8)) is written as
1/;(s, t) = S6(L:~=6 aäsi-6t8-i) + s3t3(L:~=3 aisi-3t5-i) + t 6 (L:;=o aisit2-i), the last
condi tion of (lU) is satisfied by (g3, g4, 95) = (x ~, xt , x~).

Now we have just finished the proof of Theorem 2. Q.E.D.

Proof of Theorem 1

Let X be a projective Calabi-Yau 3-fold which satisfies the condition of Theorem
2. Let us take an elementary transfornlation, or flop, of X along C:

CcX~CxD=ECZ~DCY,

where trI is the blowing up of X along C = Irl , E = C x D (= pI X Ir1 )

is the exceptional divisor on Z, and tr2 is the contraction of E along C. Since
EIE = tr;Oc( -1) 0 triOc( -1) (because, for eXaIuple, tr;Oc( -2) 0 triOD( -2) =
!{E = (tr;!{x + 2E)jE = 2EIE), and sillce X - C ~ Y - D, we know that Y is
a smooth Calabi-Yau 3-fold with Pie Y = Z L, where L is the proper traIlsform
of H. Since C.H = 2, we have tr; H = tri L - 2E. On the other hand, since
(tr;H)3 = H3 = 8, (tr;H)2.E = H2.trl.E = 0, (tr;H).E2 = tr;(Hlc).EIE = -2 by
C.H = 2, and E 3 = (EIE)2 = 2, we have L3 = (triL)3 = (tr;H + 2E)3 = O. Thus
Y satisfies the condi tion (1) of Theorenl 1. Now, we shaU prove that Y satisfies the
conditioll (2) of Theorelll 1. Since H is the generator of Pie X so that every luember
of IHI is irreducible, anel since lHI is free, we see that h := H 1 n H 2 is an effective
algebraic 1-cycle for every BI "# H 2 in IHI anel that h nloves algebraically and
sweeps out whole X. Thus every lllember of ILI is also irreelucible anel e= LI nL2 is
an effective algebraic l-cycle on Y for every LI "# L 2 in ILI and f.llloves algebraically
and sweeps out whole Y because X - C ~ Y - D and BslLI = D. But, since
o = L 3 = L.f anel since H 2 (Y, Z) ~ Pie Y = Z L, f nlust be a torsion element
in H 2 (Y, Z). But, by the property of blowing up anel by our assumption, we have
Tor H2 (Y, Z) ~ TorH2 (X, Z) = O. Thus f is hOlllOlogous to zero. This cOlupletes
the proof of Theorem 1. Q.E.D.
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Appendix.

1. There is another exanlpIe of a Moishezon threefold M with Pic M ....... Z·0 M (L )
and (L3)M = 0, which was construeted by Nakamura:

(1.1) Example [(3.3), Na]. Tllere is a smootb Moishezon threefold M wbicb bas
tbe following properties:

(1) H 1(M; Z) = O.
(2) H 2 (Mj Z) .......-PiCl\1 = Z·OM(L), where L is arational surface with (L3 )M =

O.
(3) KM = -2L.
(4) Hi(M; OM) = 0 for 1 :::; i ::; 3.

From his eonstructioll, one sees M is a eompactifieation of «:2 x C·.
On the other hand, Peternell-Sehneider ([pp.131,PS-l],[pp.463,PS..2]) stud­

ied on the projectivity of a Moishezon compactification of C3 with the second Betti
number equal to one. Let (X, Y) be such a Moishezon compactification of C3 with
~(X) = 1 (i.e., Y is irreducible). Then we have [BM]:

(1.a) H 1 (X; Z) ~ H 1 (Y; Z) = O.
(lob) H 2 (X; Z) ~ H2 (y; Z) = Z.
(l.c) Hi(X; Ox) = 0 for 1 ::s; i ::; 3.
(l.d) Pie X ~ Z . CJ x(Y).
(l.e) Kx = -dY (d > 0).

As a threefold, the above A1 and X have similar properties, hut as a pair,
(M,L) and (X, Y) are different. In fact, in the former case, the homomorphism
H2(M; Z) ----t H'2(L; Z) is never isomorphie. This suggests the eondition
H2 (X; Z) ....... H 2 (Y ; Z) = Z plays a essential role for tbe projectivity of X. Fi­
nally one can prove the followillg:

Theorenl 3 (cf. [PS-I] [PS-2]). Let (X, Y) be a smooth Moishezon compacti­
ncation ofC3 witll [,'2(."\) = 1. Tllen){ is projective.

Proolol Theorem :1

2. Let / : X' ---+ ..\ be abirational projectivization of X and B = UBi (Bi is a
curve or point) the fUlldalllental set of the birational (inverse) map /-1 : X ... ~
X', hence 1-1 is ison10rphic on X - B. Let H ' be an very ample divisor and put
H = f(H'). Then H is a Cartier divisor on X. Since PicX = Z· Ox(Y) and since
both Hand Y are non-zero effective divisors, one has H = kY for some positive
integer k. Since H is yery nillpie on X - B, Y is ample on X - B.

(2.1) Leuuna [(5.3.8),!(0]. Let X be a n"ormal proper n-dimensional algebraic
space. Let D be a C(lrtier divisor which is ample in codimension one (i.e., tbere
is a codiInensioll two subset Z C )( such that Dlx-z is ample). Tben we bave
Hn-l(Xj Ox(I<x + D)) = O.

Sin~e ](x = -dY allel since Y is ample in coclimension one, by (2.1), we obtain

(2.2) Lenulla. H 2 (.y; Ox«(t - d)Y)) = 0 for any t E Z (t > 0).
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(2.3) Corollary.

(1) Hi(Xj Ox(-V)~ = 0 fo1' 0 ~ i ::; 2.
(2) H 3 (X; Ox(-Y) = 0 if cl ~ 2,= C if d == 1.
(3) H 1 (y;Oy) = H2 (y;Oy) == 0 if d ~ 2 and H 1(y;Oy) = 0, H 2 (y;Oy) ==

C if d == 1

Proof. Consieler an exact sequence

0-+ Ox(-Y) -+ Ox -+ Oy -+ 0.

By (1.c),(2.2) allcl the SeITe cluality theorem, one abtains the conclusion. D

{2.4} Lenuna. H 2 (y; 7l) ~ P'ic Y == Z· Ny, wl1ere Ny :== Oy(Y).

Proof. Consider the followillg exact sequence:

°-+ Z ----+ 0 x ----+ 0 X ----+ 0 .

Since Ny E H 1 (Y j 0).') i- 0, by (1.a), (1.b) anel (2.3), we have the claim. 0

3. We nlay asslllne that Y" is non-nonual (irreclucible). In fact, if Y is nor­
Inal , then the projectivit.y of ...Je is proved by Brel1ton-Morrow [BM] and Peternel­
Schneider [( 1.1), P 5-1], [P5-2]). Since X is s1l10oth, Y is Gorenstein. Let K y

be the canonical (Carticr) divisor. By the adjunction formula, one has !(y ==
(1 - d) Ny (cl ~ 1). Lc t a : 1'~ ----+ Y be the nonualization, anel I C Oy be the
conductor of a clefining closecl subschelue E in Y and E in Y. Then we have

](y == a*](y - E == -Cd -l)a*Ny - E

(as a Weil divisor) (cf. [(3.34.2), Mo]).

{3.1} Lenllna. H 2 (y"; Oy) == o.

Proof. In the case uf d == 1, sillce ](y == -E, one has easily HO(y; Oy(Ky » == O.
By SeITe dl1ality thCOl'eIll, \Vc have the claüll. In the case cf d ~ 2, since E is
effective, it is enollg;h to show tha.t HU(y; Oy( -Cd - 1)a* Ny» == O. In fact, since
H[y == kY[y == hJl)', is an effective divisor for a large integer k > 0, one has
HO(y; Oy(-ku* Jlly» == O. Tbis yields HO(y; Oy( -Cd - 1)a* Ny» == 0, hence
HO(y; Oy(](y» == O. 0

Let I), : Y-+ Y be tohe Ininilnall'esolutioll with the exceptional set ~ :== U~i
(~i is il'reducible) of /L. Since ](9 == IL* ](y - ~imi~i (mi ~ 0, 7ni E Z, one

has HOCYj Oy(m](y) = 0 for any rn > O. Sillce Y is Moishezon, Y is projective,

indeed, :Y is a ruled sllrfnce over a Sll100th algebraic curve r of genus q = h1 (Oy).
Since b3 (Y) == b3 (Y) == 2(J i- 1 aud since H 2 (y; Gy) == 0 by (3.1), by [Proposition
7, Br], one sees Y" is projed,ive. Since a is a finite 1110rphisIll, we have
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(3.2) Lenlma. Y is projective.

4. Fioally we shall prove the projectivity of X. Sioce Y is projective and sioce
Pie Y = Z . Ny by (2.4), one sees Ny is not trivial. Since X - Y f"W C3 , Ny is
not negative line bundle by Grauert. Hence Ny is positive (= ample) on Y. Sioce
there is 00 positive dilnensional compact analytic subvariety in X - Y ~ (:3, by
Nakai-Kleiman's criterion far ampleness, ane sees Ox(Y) is ample. Therefore X is
projective. The proof is conlplete.

(4.1) Remark. It is known that any analytic compactificatioo af (:3 with the
second Betti number equal to Olle is Moishezon (see [PS-2], hence it is projective
by Theorelll 3. Such a projective compactification of C3 is classified in [Fu].
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