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TWO REMARKS ON MOISHEZON CALABI-YAU 3-FOLDS

Mikio FURUSHIMA AND KEIII OGUISO

Introduction.

In this paper, we shall prove the following existence theorem concerning with a
Calabi-Yau 3-fold, i.e., a 3-dimensional simply connected compact complex mani-
fold with trivial canonical bundle, with 2 extremally distinguished properties each
of which never occurs for a projective variety.

Theorem 1. There exists a Moishezon Calabi-Yau 3-fold Y which satisfies that

(1) PicY =Z- L with L* =0, i.e., the cubic form is identically zero,
(2) Y contains an effective algebraic 1-cycle £ which moves algebraically and
sweeps out whole Y but £ itself is homologous to zero.

This phenomenon is related to Kollar’s problem ([Ko, 5.16]) and Nakamura’s
example ([Na]). We shall construct such Y by taking an elementary transformation,
called flop, of a (projective) Calabi-Yau 3-fold X described in the next theorem.

Theorem 2. There exists a projective Calabi-Yau 3-fold X which satisfies that

(1) PicX =Z- H, where H* = 8 and Bs|H| =@, and Tor Hy(X,Z) =0,
(2) X contains a smooth rational curve C with C.H = 2 and
Neix = Oc(-1)%2.

We shall prove this theorem by modifying Katz’s argument on a quintic 3-fold
([Ka]) to that on a complete intersection of a quadratic and a quartic in P° | or in
other words, by showing that a generic complete intersection X of a quadratic and
a quartic in P° contains a smooth conic C with Nex = Oc(-1)92,

The authors would like to express their thanks to professor Dr.’s J. Kollar and
K. Ono for their valuable comments and Professor Dr. F. Hirzebruch for offering
them an opportunity to visit Max-Planck-Institut fiir Mathematik. This work was
done during their stay in the institute.

Proof of Theorem 2.
Let us fix a smooth conic in P® defined by

C:={[32:st:tz:U:O:U]}CIPsz{[a;O:ml:3:2;;53;34;3;5]},

where [s : t] is a homogeneous coordinate of C = P'. Let us consider a complete in-
tersection X = FNG in P°, where F (resp.G) is defined by the following polynomial
f of degree 2 (resp. g of degree 4):

f:= (5'?? — Tozy) + fas + faza + fszs, fi € H'(Ops(1)),
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g = g3T3 + gaTs + g5Ts, gi € H'(Ops(3)).

Since C is contained in X, in order to complete the proof, it is enough to show the
following claim 1:

Claim 1. For general f and g, we have,

(1) X is non-singular, and
(2) Nepx = Oc(-1)%*.

In fact, the other conditions in Theorem 2 are automatically satisfied by Lefschetz
Theorem and by the the adjunction formula.

The statement (1) follows from Bertini’s argument. Let A; be the subsystem of
|Ops (2)| consisting of f defined above. By taking (f3, f4, f5) as (0,0,0), (z3,0,0),
(0,z4,0), (0,0,2z5), we see that BsA; C (23 — zpz2 = 0)N(z3 = 0) N (z4 =
0)N(zs = 0) = C, so that Sing F C C for general f. But, since (%NC =
(—t%,2st,—5s%, falc, filc, fs|lc), F is also non-singular along C. Thus F is non-
singular for general f. Let us consider the subsystem A, of |Op(4)| consisting of
g defined above on a non-singular F. By taking (g3, 94, 95) as (z3,0,0), (0,z3,0),
(0,0,z}), we see that BsA; C FN(z3 =0)N(z4 = 0)N(z5 = 0) = C, so that
Sing X C C for general f and g¢.

But, since

(%M):(—t?’ 2ts —s* fale file f5|c)

20 0 0 0 gslc g4le osle

X is nomsingular along C if t?gs|c = sigslc = tPqslc = sPgalc = t?gslc =
s*9s|c = 0 has no common roots [s : ¢]. But this condition is clearly Zarski open
condition and it is satisfied by (gs|c, g4]c, gslc) = (s® +15, 255 +15, 5% 4 2¢%). Thus
X is non-singular for general f and g.

We shall prove (2). For a non-singular X, we consider the following 3 standard
exact sequences just like as in [Ka, Appendix B]:

(a) 0 — Oc Z5 Ops(1)® |0 = 0c(2)% L2 Tps|o — 0
(b) 0 — Txlo = Tpslo =5 Nxpsle = Oc(4) @ O¢(8) — 0

(C) 0_““"TC_’TX|C“'_’NC|X"_>O-

Note that every homomorphisim above is described by a matrix whose coefficients
are in @H°(Oc(a)), because every vector bundle on P! decomposes into a direct
sum of line bundles. Since ¢; € Hom(Og, Oc(2)®%) is described by the matrix
(s2,st,t%,0,0,0) by definition, a matrix representation of

2 € Hom(Oc(z)Qs,Tpa |C) 18

t —s 0 0 0 O
0 ¢t —-s 0 0 0
0 0 0 1 00
0 0 0 010
0 0 0 001
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and we have Tps|c = Oc(3)%? @ Oc(2)®?® just as is proved in [Ka, Appendix B,
pagel58]. Now, in order to finish the proof of (2) in claim 1, it is enough to show
the next claim 2:

Claim 2. y, is surjective for general f and g.

In fact, if claim 2 is true, then we know that H'(T¢|x) = 0 by the sequence (b)
and by H'(Tps|c) = H'(Oc(3))®2@H' (Oc(2))®® = 0. Thus we get H'(N¢x) =0
by the sequence (c). Since Kx = 0, this induces the desired equality N¢jx =
OC(—l)ez.

We shall prove claim 2. Since the map

O[pb(l)es — T]ps i NX]P“ = Ox(z) @Ox(‘l)

is given by
(ho, ..., hs) — Zh H(Zh Zh 7

the matrix representation
A= ay 4z daz a4 4as
C\b by by by b

of p4 € Hom(Tps|c, Nx|pslc) = H0771(00(3)®2 @® 00(2)63, Oc(4) ® Oc(8)) must
satisfies the equality:

—s5 0
N _ ( -2 2ts —s? ?3 ?4 ?5 )
0 0 0 G T4 95/’

o
i N N
o oo -+
oo o
co+HOO
orRrOo OO
HO O OO

where f; = filc and §; = gilc -
Thus, ¢4 1s nothing but the following map:

—t s fy fu Js).
( 0 0 ﬁ:: E: :(7:) : 00(3)692 b 00(2)&)3 — 00(4) @ 00(8)

Thus the following 3 conditions (I), (IT), (III) are equivalent to each other:
(I) ¢4 : H(Tps|c) — H®(Nx|ps|c) is surjective,
(I1) For every (¢,%) € HY°(Oc(4)) & H°(Oc(8)), there exists an element
(a,b,¢,d,e) € H(Oc(3))®* @ H(0Oc(2))®? such that ¢ = —ta + sb +
f30+f4d+f-'e and ¥ = gyc + g4d + Tse,

(IIT) For every ¢ € H°(Oc(8)), there exists an element (¢, d,e) € H'(Oc(2))®?
such that ¢ =7;¢+7,d + 7se, 1.e., the homomorphism

(@5,94,95) : H'(0c(2))® — H*(Oc(8))

defined by(c,d, e) — Gy¢ + §,d + Gse 1s surjective.



Note that the last condition (III) is Zariski open condition for g. On the other
hand, since every element ¥(s,t) = Y o a;s't®"" of H(O¢(8)) is written as
B(s,1) = (30 g @is' 037 ) 4+ 5330 ais* 35T 44800, ais't2 ), the last
condition of (III) is satisfied by (g3, 94,95) = (3, z3,z3).

Now we have just finished the proof of Theorem 2. Q.E.D.

Proof of Theorem 1

Let X be a projective Calabi-Yau 3-fold which satisfies the condition of Theorem
2. Let us take an elementary transformation, or flop, of X along C:

CcXECxD=EcZ>3Dcy,

where m, is the blowing up of X along C = P!, E = C x D(= P! x P})
is the exceptional divisor on Z, and m, is the contraction of E along C. Since
Elg = n}0¢(-1) @ m3Oc(-1) (because, for example, 711 Oc(—-2) @ 73 0p(—2) =
Kg = (n{Kx + 2E)|g = 2E|g), and since X — C ~ Y — D, we know that Y is
a smooth Calabi-Yau 3-fold with PicY = Z L, where L is the proper transform
of H. Since C.H = 2, we have nfH = #;L — 2E. On the other hand, since
(ryH) = H* =8, (s} H)*.E = H*.m.,E =0, (n}H).E? = n}(H|¢).E|g = -2 by
C.H =2, and E? = (E|g)* = 2, we have L? = (7} L)® = (n{H + 2E)* = 0. Thus
Y satisfies the condition (1) of Theorem 1. Now, we shall prove that Y satisfies the
condition (2) of Theorem 1. Since H is the generator of Pic X so that every member
of |H| is irreducible, and since |H| is free, we see that h := Hy N H, is an effective
algebraic 1-cycle for every Hy # H, in |H| and that h moves algebraically and
sweeps out whole X. Thus every member of |L| is also irreducible and £ = Ly N L, is
an effective algebraic 1-cycle on Y for every Ly # L in |L| and £ moves algebraically
and sweeps out whole ¥ because X — C' ~ Y — D and Bs|L| = D. But, since
0 = L*® = L.£ and since H*(Y,Z) ~ PicY = ZL, £ must be a torsion element
in Ho(Y,Z). But, by the property of blowing up and by our assumption, we have
Tor Hy(Y,Z) ~ TorH,(X,Z) = 0. Thus ¢ is homologous to zero. This completes
the proof of Theorem 1. Q.E.D.



Appendix.

1. There is another example of a Moishezon threefold M with Pic M = Z-Op(L)
and (L3)ps = 0, which was constructed by Nakamura:

(1.1) Example [(3.3), Na]. There is a smooth Moishezon threefold M which has
the following properties:

(1) HY(M;Z) = 0.

(2) H3(M;Z) = PicM = Z-Op(L), where L is a rational surface with (L3)p =
0.

(3) Km = -2L.

(4) H'(M;Om)=0for1 <:<3.

From his construction, one sees M is a compactification of C? x C*.

On the other hand, Peternell-Schneider ([pp.131,PS-1],[pp.463,PS-2]) stud-
ied on the projectivity of a Moishezon compactification of C* with the second Betti
number equal to one. Let (X,Y) be such a Moishezon compactification of C* with
b2(X) =1 (i.e., Y is irreducible). Then we have [BM]:

(l.a) HY(X;Z)=2 H(Y;Z) = 0.
(1.b) HY(X;Z) = HY(Y;Z) = Z.
(1.c) H'(X;0x)=0for 1 <i<3.
(1.d) PicX =2 Z-Ox(Y).

(l.e) Kx = —dY (d > 0).

As a threefold, the above M and X have similar properties, but as a pair,
(M, L) and (X,Y) are different. In fact, in the former case, the homomorphism
H?(M;Z) — H?*(L;Z) is never isomorphic. ~This suggests the condition
H¥*X;Z) = H*Y;Z) = Z plays a essential role for the projectivity of X. Fi-

nally one can prove the following:

Theorem 3 (cf. [PS-1] [PS-2]). Let (X,Y) be a smooth Moishezon compacti-
fication of C* with b,(X) = 1. Then X is projective.

Proof of Theorern 8

2. Let f : X' — X be a birational projectivization of X and B =} B; (B;isa
curve or point) the fundamental set of the birational (inverse) map f~!': X --. —
X', hence f~! is isomorphic on X — B. Let H' be an very ample divisor and put
H = f(H'). Then H is a Cartier divisor on X. Since PicX = Z - Ox(Y) and since
both H and Y are non-zero effective divisors, one has H = kY for some positive
integer k. Since H is very ample on X — B, Y is ample on X — B.

(2.1) Lemma [(5.3.8),Ko0]. Let X be a normal proper n-dimensional algebraic
space. Let D be a Cartier divisor which is ample in codimension one (i.e., there

is a codimension two subset Z C X such that D|x_z is ample). Then we have
H Y X;0x(Kx + D)) =0.

Since {x = —dY and since Y is ample in codimension one, by (2.1), we obtain

(2.2) Lemma. H3(X;Ox((t —d)Y)) =0 foranyt € Z (t > 0).
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(2.3) Corollary.
(1) H{(X;0x(-Y))=0for0<i <2,
(2) B3(X;0x(-Y)=0:ifd>2,=Cifd=1.
(3) H'(Y;Oy)= H¥Y;Oy)=0if d > 2 and H(Y;Oy) =0, HY(Y;Oy) =
Cifd=1

Proof. Consider an exact sequence
0— Ox(-Y)— Ox — Oy — 0.

By (1.c),(2.2) and the Serre duality theorem, one obtains the conclusion. O
(2.4) Lemma. H*(Y;Z) = PicY = Z- Ny, where Ny := Oy(Y).

Proof. Consider the following exact sequence:
0—Z—0x — 0% —0.
Since Ny € H!(Y;0%) # 0, by (1.a), (1.b) and (2.3), we have the claim. O

3. We may assume that Y is non-normal (irreducible). In fact, if ¥ is nor-
mal, then the projectivity of X is proved by Brenton-Morrow [BM] and Peternel-
Schneider [(1.1), PS-1], [PS-2]). Since X is smooth, Y is Gorenstein. Let Ky
be the canonical (Cartier) divisor. By the adjunction formula, one has Ky =
(1 —d)Ny (d > 1). Let 0 : ¥ — Y be the normalization, and T C Oy be the
conductor of o defining closed subscheme E in Y and E in Y. Then we have

Ky=0*Ky —E=—(d—1)0*Ny - E

(as a Weil divisor) (cf. [(3.34.2), Mo]).
(3.1) Lemma. H*(Y;0%) = 0.

Proof. In the case of d = 1, since Ky = —E, one has easily H°(Y; O+(Ky)) = 0.
By Serre duality theorem, we have the claim. In the case of d > 2, since E is
effective, it is enough to show that H'(Y; Oy (—(d — 1)0* Ny)) = 0. In fact, since
Hly = kY |y = kNy is an effective divisor for a large integer & > 0, one has
HY(Y; Oy(—ko*Ny)) = 0. This yields H*(Y;Op(—(d — 1)o*Ny)) = 0, hence
HYY,;04(K¥))=0. O

Let 1o : Y — Y be the minimal resolution with the exceptional set A 1= U A
(A; is irreducible) of p. Since Ky = p*Ky — Eimid; (my 2 0, m; € Z, one
has HO(?; Op(mKe) = 0 for any m > 0. Since Y is Moishezon, Vis projective,
indeed, ¥ is a ruled surface over a smooth algebraic curve T of genus ¢ = ! (Op)
Since b3(Y) = b3(Y) = 2¢ # 1 and since H¥(Y; Oy) = 0 by (3.1), by [Proposition

7, Br], one sees Y i1s projective. Since ¢ 1s a finite morphism, we have
) 3 Proj ’



(3.2) Lemma. Y is projective.

4. Finally we shall prove the projectivity of X. Since Y is projective and since
PicY = Z - Ny by (2.4), one sees Ny is not trivial. Since X — Y = C? Ny is
not negative line bundle by Grauert. Hence Ny is positive (= ample) on Y. Since
there is no positive dimensional compact analytic subvariety in X — Y = C?, by
Nakai-Kleiman'’s criterion for ampleness, one sees Ox(Y) is ample. Therefore X is
projective. The proof is complete.

(4.1) Remark. It is known that any analytic compactification of C* with the
second Betti number equal to one is Moishezon (see [PS-2}, hence it is projective
by Theorem 3. Such a projective compactification of C? is classified in [Fu].
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